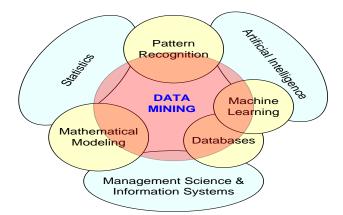
Chapter 5: Data Mining

Data Mining Concepts/Definitions

Why Data Mining?

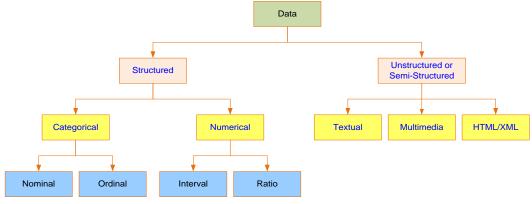

- More intense competition at the global scale.
- Recognition of the value in data sources.
- Availability of quality data on customers, vendors, transactions, Web, etc.
- Consolidation and integration of data repositories into data warehouses.
- The exponential increase in data processing and storage capabilities; and decrease in cost.

Movement toward conversion of information resources into nonphysical form.

Definition of Data Mining

- The nontrivial process of identifying valid, novel, potentially useful, and ultimately understandable patterns in data stored in structured databases.
 Fayyad et al., (1996)
- Keywords in this definition: Process, nontrivial, valid, novel, potentially useful, understandable.
- Data mining: a misnomer?
- Other names: knowledge extraction, pattern analysis, knowledge discovery, information harvesting, pattern searching, data dredging,...

Data Mining is at the Intersection of Many Disciplines


Data Mining Characteristics/Objectives

- Source of data for DM is often a consolidated data warehouse (not always!).
- DM environment is usually a client-server or a Web-based information systems architecture.
- Data is the most critical ingredient for DM which may include soft/unstructured data.

- The miner is often an end user
- Striking it rich requires creative thinking
- Data mining tools' capabilities and ease of use are essential (Web, Parallel processing, etc.)

Data in Data Mining

- Data: a collection of facts usually obtained as the result of experiences, observations, or experiments.
- Data may consist of numbers, words, images, ...
- Data: lowest level of abstraction (from which information and knowledge are derived).

What Does DM Do?

How Does it Work?

- DM extract patterns from data
 - Pattern? A mathematical (numeric and/or symbolic) relationship among data items
 - Types of patterns
 - Association
 - Prediction
 - Cluster (segmentation)
 - Sequential (or time series) relationships

A Taxonomy for Data Mining Tasks

Data Mining	Learning Method	Popular Algorithms				
Prediction	Supervised	Classification and Regression Trees, ANN, SVM, Genetic Algorithms				
	Supervised	Decision trees, ANN/MLP, SVM, Rough sets, Genetic Algorithms				
Regression	Supervised	Linear/Nonlinear Regression, Regression trees, ANN/MLP, SVM				
	Unsupervised	Apriory, OneR, ZeroR, Eclat				
Link analysis	Unsupervised	Expectation Maximization, Apriory Algorithm, Graph-based Matching				
Sequence analysis	Unsupervised	Apriory Algorithm, FP-Growth technique				
Clustering	Unsupervised	K-means, ANN/SOM				
Outlier analysis	Unsupervised	K-means, Expectation Maximization (EM)				

Data Mining Tasks (cont.)

Time-series forecasting

- Part of sequence or link analysis?
- Visualization
 - Another data mining task?

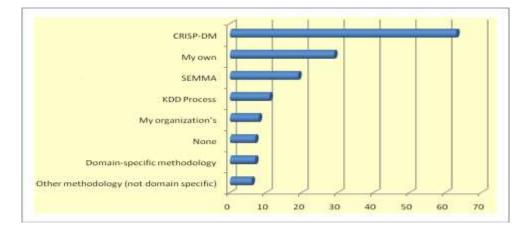
Types of DM

- Hypothesis-driven data mining
- Discovery-driven data mining

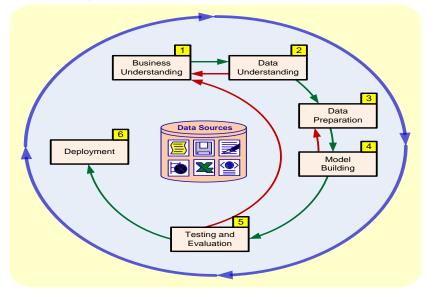
Data Mining Applications

- Customer Relationship Management
 - Maximize return on marketing campaigns
 - Improve customer retention (churn analysis)
 - Maximize customer value (cross-, up-selling)
 - Identify and treat most valued customers
 - Banking & Other Financial
 - Automate the loan application process
 - Detecting fraudulent transactions
 - Maximize customer value (cross-, up-selling)
 - Optimizing cash reserves with forecasting
- Retailing and Logistics
 - Optimize inventory levels at different locations
 - Improve the store layout and sales promotions

- Optimize logistics by predicting seasonal effects
- Minimize losses due to limited shelf life
- Manufacturing and Maintenance
- Predict/prevent machinery failures
- Identify anomalies in production systems to optimize the use manufacturing capacity
- Discover novel patterns to improve product quality
- Brokerage and Securities Trading
 - Predict changes on certain bond prices
 - Forecast the direction of stock fluctuations
 - Assess the effect of events on market movements
 - Identify and prevent fraudulent activities in trading
 - Insurance
 - Forecast claim costs for better business planning
 - Determine optimal rate plans
 - Optimize marketing to specific customers
 - Identify and prevent fraudulent claim activities
- Computer hardware and software
- Science and engineering
- Government and defense
- Homeland security and law enforcement
- Travel industry
- Healthcare


Medicine

- Increasingly more – popular application areas
- for data mining
- Entertainment industry
- Sports
- Etc.


Data Mining Process

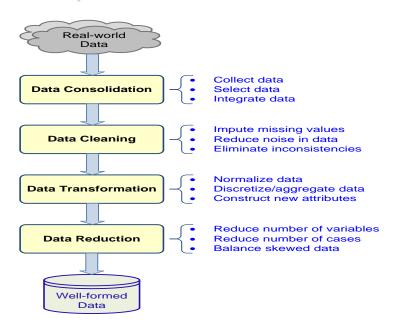
- A manifestation of best practices
- A systematic way to conduct DM projects
- Different groups has different versions
- Most common standard processes:
 - CRISP-DM (Cross-Industry Standard Process for Data Mining)
 - SEMMA (Sample, Explore, Modify, Model, and Assess)
 - KDD (Knowledge Discovery in Databases)

Data Mining Process

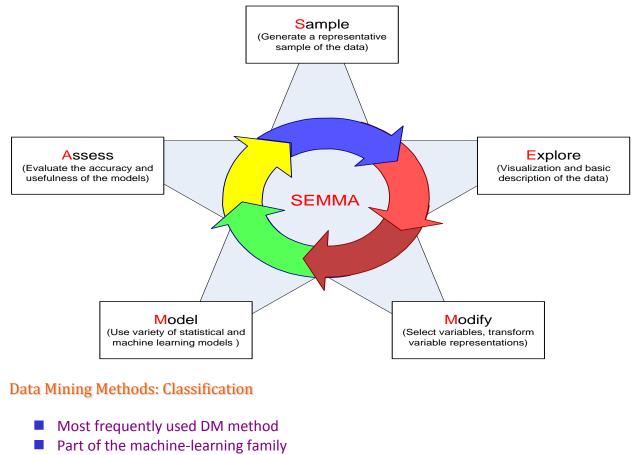
Data Mining Process: CRISP-DM

Data Mining Process: CRISP-DM

- Step 1: Business Understanding
- Step 2: Data Understanding
- Step 3: Data Preparation (!)
- Step 4: Model Building
- Step 5: Testing and Evaluation
- Step 6: Deployment
- The process is highly repetitive and experimental (DM: art versus science?)


Fatimah AL-Shaikh5

Accounts for ~85% of total


project time

DSS

Data Preparation – A Critical DM Task

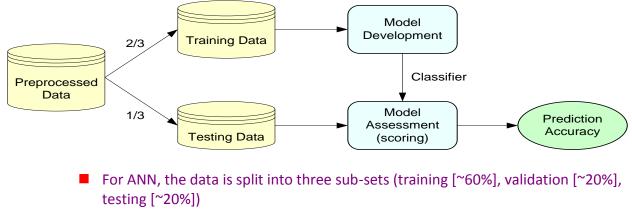
Data Mining Process: SEMMA

Employ supervised learning

- Learn from past data, classify new data
- The output variable is categorical (nominal or ordinal) in nature
- Classification versus regression?
- Classification versus clustering?

Assessment Methods for Classification

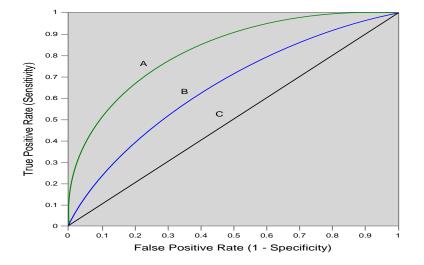
- Predictive accuracy
 - Hit rate
- Speed
 - Model building; predicting
- Robustness
- Scalability
- Interpretability
 - Transparency, explainability


Accuracy of Classification Models

In classification problems, the primary source for accuracy estimation is the confusion matrix

	True Class Positive Negative			$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$
Predicted Class	Positive	True Positive Count (TP)	False Positive Count (FP)	$True \ Positive Rate = \frac{TP}{TP + FN}$ TN
	Negative	False Negative Count (FN)	True Negative Count (TN)	$True \ Negative \ Rate = \frac{TN}{TN + FP}$ $Precision = \frac{TP}{TP + FP} \qquad Recall = \frac{TP}{TP + FN}$

Estimation Methodologies for Classification


- Simple split (or holdout or test sample estimation)
 - Split the data into 2 mutually exclusive sets training (~70%) and testing (30%)

Estimation Methodologies for Classification

- k-Fold Cross Validation (rotation estimation)
 - Split the data into *k* mutually exclusive subsets
 - Use each subset as testing while using the rest of the subsets as training
 - Repeat the experimentation for k times
 - Aggregate the test results for true estimation of prediction accuracy training
- Other estimation methodologies
 - Leave-one-out, bootstrapping, jackknifing
 - Area under the ROC curve

Estimation Methodologies for Classification – ROC Curve

Classification Techniques

- Decision tree analysis
- Statistical analysis
- Neural networks
- Support vector machines
- Case-based reasoning
- Bayesian classifiers
- Genetic algorithms
- Rough sets

Decision Trees

- Employs the divide and conquer method
- Recursively divides a training set until each division consists of examples from one class

A general algorithm for decision tree building

- 1. Create a root node and assign all of the training data to it.
- 2. Select the best splitting attribute.
- 3. Add a branch to the root node for each value of the split. Split the data into mutually exclusive subsets along the lines of the specific split.
- 4. Repeat the steps 2 and 3 for each and every leaf node until the stopping criteria is reached.

Decision Trees

- DT algorithms mainly differ on
 - 1. Splitting criteria
 - Which variable, what value, etc.
 - 2. Stopping criteria
 - When to stop building the tree
 - 3. Pruning (generalization method)
 - Pre-pruning versus post-pruning
- Most popular DT algorithms include
 - 1. ID3, C4.5, C5; CART; CHAID; M5

Decision Trees

- Alternative splitting criteria
 - Gini index determines the purity of a specific class as a result of a decision to branch along a particular attribute/value
 - Used in CART
 - Information gain uses entropy to measure the extent of uncertainty or randomness of a particular attribute/value split
 - Used in ID3, C4.5, C5
 - Chi-square statistics (used in CHAID)

Cluster Analysis for Data Mining

- Used for automatic identification of natural groupings of things
- Part of the machine-learning family
- Employ unsupervised learning
- Learns the clusters of things from past data, then assigns new instances
- There is not an output variable

Also known as segmentation Cluster Analysis for Data Mining

- Clustering results may be used to
 - Identify natural groupings of customers
 - Identify rules for assigning new cases to classes for targeting/diagnostic purposes
 - Provide characterization, definition, labeling of populations
 - Decrease the size and complexity of problems for other data mining methods
 - Identify outliers in a specific domain (e.g., rare-event detection)

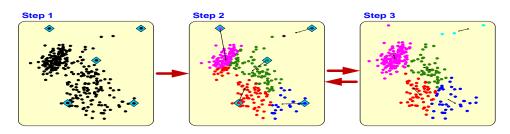
Cluster Analysis for Data Mining

- How many clusters?
 - There is not a "truly optimal" way to calculate it
 - Heuristics are often used
- Most cluster analysis methods involve the use of a distance measure to calculate the closeness between pairs of items.
 - Euclidian versus Manhattan/Rectilinear distance

Cluster Analysis for Data Mining

- k-Means Clustering Algorithm
 - k : pre-determined number of clusters
 - Algorithm (Step 0: determine value of k)

Step 1: Randomly generate k random points as initial cluster centers.


Step 2: Assign each point to the nearest cluster center.

Step 3: Re-compute the new cluster centers.

Repetition step: Repeat steps 3 and 4 until some convergence criterion is met (usually that the assignment of points to clusters becomes stable).

Cluster Analysis for Data Mining -

k-Means Clustering Algorithm

Association Rule Mining

- A very popular DM method in business
- Finds interesting relationships (affinities) between variables (items or events)
- Part of machine learning family

Fatimah AL-Shaikh10

DSS

- Employs unsupervised learning
- There is no output variable
- Also known as market basket analysis
- Often used as an example to describe DM to ordinary people, such as the famous "relationship between diapers and beers!"

Association Rule Mining

- A representative applications of association rule mining include
 - In business: cross-marketing, cross-selling, store design, catalog design, ecommerce site design, optimization of online advertising, product pricing, and sales/promotion configuration
 - In medicine: relationships between symptoms and illnesses; diagnosis and patient characteristics and treatments (to be used in medical DSS); and genes and their functions (to be used in genomics projects)

Association Rule Mining

- Are all association rules interesting and useful?
 - A Generic Rule: $X \Rightarrow Y$ [S%, C%]
 - **X**, **Y**: products and/or services
 - X: Left-hand-side (LHS)
 - Y: Right-hand-side (RHS)
 - **S:** Support: how often **X** and **Y** go together
 - C: Confidence: how often Y go together with the X
- Example: {Laptop Computer, Antivirus Software} ⇒ {Extended Service Plan} [30%, 70%]
 Algorithms are available for generating association rules
 - Apriori
 - Eclat
 - FP-Growth
 - + Derivatives and hybrids of the three
- The algorithms help identify the frequent item sets, which are, then converted to association rules
- Apriori Algorithm
 - Finds subsets that are common to at least a minimum number of the itemsets
 - Uses a bottom-up approach
 - frequent subsets are extended one item at a time (the size of frequent subsets increases from one-item subsets to two-item subsets, then threeitem subsets, and so on), and
 - groups of candidates at each level are tested against the data for minimum support.

(see the figure) \rightarrow --

DSS

Association Rule Mining Apriori Algorithm

Raw Transaction Data			One-item Itemsets			Two-item Itemsets		Three-item Itemsets		
Transaction No	SKUs (Item No)		ltemset (SKUs)	Support		ltemset (SKUs)	Support		ltemset (SKUs)	Support
1	1, 2, 3, 4		1	3		1, 2	3		1, 2, 4	3
1	2, 3, 4		2	6		1, 3	2		2, 3, 4	3
1	2, 3		3	4		1, 4	3			
1	1, 2, 4		4	5		2, 3	4			
1	1, 2, 3, 4				-	2, 4	5			
1	2, 4]				3, 4	3			

Data Mining Software

- Commercial
 - IBM SPSS Modeler (formerly Clementine)
 - SAS Enterprise Miner
 - IBM Intelligent Miner
 - StatSoft Statistica Data Miner
 - ... many more
- Free and/or Open Source
 - R
 - RapidMiner
 - Weka...

Data Mining Myths

Data mining ...

- provides instant solutions/predictions
- is not yet viable for business applications
- requires a separate, dedicated database
- can only be done by those with advanced degrees
- is only for large firms that have lots of customer data
- is another name for the good-old statistics

Common Data Mining Blunders

- 1. Selecting the wrong problem for data mining
- 2. Ignoring what your sponsor thinks data mining is and what it really can/cannot do
- 3. Not leaving insufficient time for data acquisition, selection and preparation
- 4. Looking only at aggregated results and not at individual records/predictions
- 5. Being sloppy about keeping track of the data mining procedure and results
- 6. ...more in the book

Fatimah AL-Shaikh12

DSS