
 WK.7 / CH.7

v Location Sensors, Maps, and Fragments

- Sensors are hardware built in to the mobile device to allow an app to capture environmental data.
- Maps are used to display data that can be enhanced by a visual representation of its location.
- Fragments are a newer approach to coding Android Activities

1) Location Sensors

o Android devices typically have 2 location sensors:

Network Sensor GPS Sensor

- based on cell towers and/or the Wi-Fi

access points your device is connected to.

- provides approximate location of the

device.

- faster

- based on a built-in (GPS) receiver.

- provide accurate position information to within a

few meters, depending on conditions.

- Very slow in acquiring its position information

- not all devices have a GPS sensor

o Location information is accessed within app through LocationManager object.

o Location information exists as an Android system service,and is accessed through the method

getSystemService.

o The LocationManager object can request updates from either or both sensors.

o To get the updates, app has to instantiate a LocationListener . A LocationListener implements

the method onLocationChanged

o If sensor reports a location change:
- change is captured by the LocationListener ,

- passed a Location object,

- and the onLocationChanged method is executed.

o Location object contains information on the new location, including:

1- GPS coordinates and altitude

2- which sensor provided the location,

3- measure of the accuracy of the coordinate

o To begin receiving location information from the sensors, the LocationManager requests the

updates from a specific provider and tells it what LocationListener to use to handle the

updates.

o When the LocationManager requests updates from the GPS, the GPS is activated. However,

the GPS must also be enabled by the user to be activated. If it has not been enabled, the

code cannot turn it on.

o It is recommended the developer test if the GPS is enabled and inform the user if it is not.

2) MAPS
o Maps are implemented using the GoogleMap object in the source code file and a

MapFragment in the layout file.

o These objects are not a part of the standard Android SDK but rather the Google Play Services
SDK.

o Google Play Services SDK must be installed + Using Google Maps requires an API key.

o Maps are implemented as a MapFragment widget in a layout.

o The Activity that implements the code for the map’s behavior is a FragmentActivity

3) Fragments
o The FragmentActivity is a subclass of the Activity class.

o An Activity that needs to implement a map must extend the FragmentActivity class . why?

o because maps are encapsulated in a MapFragment.

o This allows a map to be a part of a layout rather than the only thing in a layout.

o permissions are used to alert the user during installation or upgrade

o Permissions are set in the Android manifest file.

o If a permission is required by what we are trying to do but not in the manifest, app will crash.

o Coarse permissions . give permission to use the network

o Fine permissions location give permission to use GPS listeners

v Finding your location (2 way)
1) using a known location (address) and looks up the GPS coordinates via the Internet. (Geocoding)
2) using the device network and/or GPS sensors to locate the device in real-time.

o You can use the map’s getMyLocation() method to get the device’s current GPS coordinates.

Munirah Alrushud

Ø Code to Look Up Address Coordinates

Ø Code to Get Coordinates with the GPS Sensor

TB

1. To use both the network and GPS location services, you must instantiate two LocationManagers. F

2. A LocationListener must be instantiated for the location sensor you want to get location data from. T

3. A location change identified by the location sensor is broadcast as an Intent with Extras. F

4. Location changes detected by the location sensors is reported as a Location object. T

5. The map used in Android is a widget available to any Activity. F

6. You need an Application Program Interface key to display maps on an Android device. T

7. You cannot use a standard Activity if you want to display a Map in an Android device. T

8. Location object reports latitude and longitude but not accuracy.which is reported by the listener directly. F

9. To use maps,you must implement code provided by Google that has nothing to do with map functionality T

10. Geocoding is the process of changing an address into GPS coordinates. T

11. Your app must always check to see that the new reported location is better than the last reported location.F

12. Markers on a map can contain a title but no other data. F

13. A map type (satellite, street) is set at map creation and cannot be changed. F

14. A change in accuracy is reported as a new Location. T

15. An app needs several permissions to use a Google map. T

16. You cannot get a device’s GPS location from a Google map. F

17. You cannot add multiple markers to a Google map. F

18. The standard marker on a GoogleMap object can be replaced with a custom image. T

WK.9 / CH.8

v Sensors

• The Android platform supports 12 sensors.

• sensors that measure the devices’ ambient environment, temperature, humidity, atmospheric

pressure, magnetic field, light level, sensors detect moving or rotating the device.

• Sensor class represents all types of sensors.

• Sensors are system service instantiated by OS not by an app.

• Sensors are accessed through the SensorManager class.

• SensorManager is a system service instantiated by OS and not by an app.

• Access is through Rreference created by calling the getSystemService method within an app.

• SensorEvent and SensorEventListener are also required to work with sensor.

• SensorEvent is an object created by a Sensor when it has something to report.

• SensorEvent object has information about the event:

1. timestamp for when the object was created

2. the sensor that produced the event,

3. data that represents the sensor’s measurements at the time of the event

• SensorEventListener is an interface implemented by any app that wants to use sensor

information encapsulated in a SensorEvent

v Managers

• Manager monitor the status of the hardware ,Example (battery , storage , power manager) .

v Other hardware
• Android devices also have other hardware features, such as a phone and a camera.

• These devices have an app associated with them to provide access to their functionality.

• Hardware items are accessed by calling their Application Program Interface (API).

• The functionality of the hardware can also be accessed by integrating the features within the
app by calling the associated app’s API.

Munirah Alrushud

TB

WK.10 / CH.9

v IOS & Xcode

• iOS SDK is the software development kit that allows application programs to utilize classes

and frameworks provided by the SDK.

• iOS is multitasking and runs on different devices (iPhones, iPod , iPads, and Apple TVs).

• Apple provides an integrated development environment (IDE) called Xcode.

• Xcode is the IDE used by iOS &OS X developers.

• Xcode provides an interface to the compiler, editor, debugger, and code profiling tools.

• The language used to develop software for iOS is Objective-C.

v Content of IOS project file :

1. AppDelegate.h and AppDelegate.m
They manage issues related to the entire app. Primarily used to manage the life cycle of the
app.

2. Main.storyboard
Used to design the interaction between multiple screens in your app + designing the layout of
the individual screens.

3. ViewController.h and ViewController.m
They contains the code that controls the user interactions with the app.

4. Images.xcassets
Contains all the images, including icons, needed for your app.

5. Supporting Files
a. appname-Info.plist : contains a few app-specific settings.
b. main.m: responsible for launching the app.

6. Frameworks

various libraries that you can include in your project to add functionality to your app.

7. Products
This is your compiled app file.

v Action & Outlet :

Action & outlet are ways (connection) by which view controller will interact with the view.

Action is connection between user element & the code with a method that is called when a certain
event happens.
We use it when we want to detect a trigger (i.e when button is pressed)

Outlet is connection between UI element & the code allowing for referencing the element in code.
We use it when we want to change some property of control (i.e text color,text size)

TB

WK.11 / CH.10

v Views and Controllers

• UI classes in iOS are contained in the UIKit framework.

• UIKit framework classes arranged in an inheritance hierarchy with the top class being UIView

• UIView class

describes a basic rectangle with width, height, background color, and contain subviews that

has a parent view.

• UIKit > UIView > UIWindow

- which has been restricted to set its origin to the top left of the screen.

- Each iOS app has one UIWindow object created when the app launches.

- All other screens are subviews of UIWindow .

• UIKit > UIView > UILabel

 UIScrollView

 UINavigationBar

 UITableCell

 UIControl > UIButton

 UITextField

 UISlider

v View Control

View Controller managed three files:

.storyboard specifies the layout of user interface elements.

.h has information about outlets and actions needed to control the UI.

.m contains the implementation of the UI actions.

v Tab Bar Controller

shows up at the bottom of iPhone apps to allow user to choose Between different screens in app.

v Navigation Controller
used to allow the user to drill down through multiple screens while keeping track of the path so
user can go back the same way.

v Segues
Is the connections between the view controllers which define how screens will transition back and
forth.

TB

WK.12 / CH.11

v Persistent data

1) File Data Storage
• iOS enables saving data in files in regular text files or by archiving

• Apps are sandboxed, which means that each app is isolated from the other apps and from

the operating system.

• Each app has simple file system that by default consists of: Documents, Library, and tmp

• Developer, can store files in the Documents and tmp folder, while read only library folder.

• The Documents folder is backed up when the device is backed up. The tmp folder is not.

Comparison between android and iOS File data storage:
IOS ANDROID

store files in sequential file format or file storage store files in serialization (archiving format)
store files in 3 folders, Library, Documents ,tmp. Files written to internal or external storage.
Files private to app Files private to app - stored internal storage

Files are not private - stored external storage

2) User Defaults
• When you need to save a little bit of data in your app, the NSUserDefaults object is a very

simple and easy way to do so.

• NSUserDefaults is a front-end to a key-value file (often referred to as Plist files because of the
.plist extension) that is stored in the app’s Preferences directory.

• There’s only one file, but in this file you can store as many values as you want.

• When storing values in the file, you have to supply a key string to identify the value when
retrieving it later.

• You can store many data types in NSUserDefaults (NSData , NSString , NSNumber ,NSDictionary , NSArray)

Other data types can be archived and stored as an NSData object.

• NSUserDefaults = shared preferences in android

Ex. Write a code to store , retrieve and save the following values by using NSUserDefaults.

Key value NSUserDefaults *settings = [NSUserDefaults standardUserDefaults];

[settings setInteger:15 forKey:@"refreshTimeOut"];
[settings setObject:@"Hazazi" forKey:@"username"];
[settings setBool:YES forKey:@"isAdmain"];

NSInteger *name1 = [settings integerForKey:@"refreshTimeOut"];
NSObject *name2 = [settings objectForKey:@"username"];
Bool *name3 = [settings boolForKey:@"isAdmain"];

[settings synchronize];

refreshTimeOut 15

username Hazazi

isAdmain True

3) Core Data
• Core Data is a powerful data persistence solution developed by Apple to provide object-

oriented storage.

DATA FILE:
The framework stores data in files. The default is SQLite database, but you can also choose to
use XML or binary data.

PERSISTENT OBJECT STORE:
Wraps around the data file and presents a common interface to the rest of the stack.

THE PERSISTENT STORE COORDINATOR:
Allows for having multiple data stores in the same app, and will then coordinate access to those
stores.

THE MANAGED OBJECT MODEL:
Is where the description of the layout of the data is defined.

THE MANAGED OBJECT CONTEXT:
Which allows you to access the objects that are stored in the data file.

The Managed Object Context can keep track of multiple changes to the objects, and will
periodically, or when instructed, save the changes to the persistent store.

POS

PSC

MOC

MOM

TB

WK.13 / CH.15,16

v App Monetization Strategies

1) PAID APPS
• The price is advertised in the app store and the user decides, If the user buys the app, you

get the money (70% to you , 30% for the store).

2) AD SUPPORTED APPS
• Make money from a free app by embeding ads within the app screens.

• Ads take up screen real-estate, so you will have to plan and code the user interface with this

in mind.

• Google add is called AddMob, Apple has iAds, you can use both of them in Apple devices.

• Each click generates only a few cents, so you need a lot of clicks to make any real income.

• The money it generates is measured in dollars per month.

• Unlike Google’s ad service, iAd pays both for clicks on the ad and per impression ,the rate per

impression is very small.

3) IN-APP PURCHASES

• You make free app, get the users hooked, and then allow them to add features by advertising
the feature in the app. The sale is made during use of the app.

• More than 75% of the revenue going to iPhone developers in February 2013 came from in-
app purchases.

• in-app purchasing opens up the possibility of a regular revenue stream from the same user,
instead of relying on a single purchase up front.

• Often an in-app purchase strategy is combined with an ad-supported strategy. The free
version includes ads that are eliminated as a bonus for an in-app purchase.

v The Economics of App Stores

The app stores take a 30% cut of revenue that apps generate.

v What Platform Should You Develop?

v App Distribution through the App/Play Stores
• Developers must adhere to the store requirements

• Apple will review the app before it is published. If your app does not conform, it will be
rejected.

• Google will publish the application that does not meet its store requirements, but will remove
the app from the store later if it finds that the app violates its rules.

v The steps of publishing the app
1. Prepare an icon for the app.

• Android requires an app icon sized to 512 x 512.
• iOS requires the icon to be 1024 x 1024 pixel.

2. Prepare screen shots of the app.

• Android required size of the screen shot is 320 x 480.
• iOS regular size phone (640 x 960) and the 4-inch display phone (640 x 1136).

3. Determine price.

• Android, you enter the price you want to charge for the app.
• iOS you will be prompted to select from set of pricing.

4. Establish category. for example, game, sports, tool, and so on.
5. Determine countries for app.
6. Licensing Library and copyrights.
7. Compile app and sign into application.
8. Debug code.
9. Set a private key.

v App distribution within an organization

Android:		
•	Prepare	an	APK	and	give	it	to	your	users.		
•	Send	users	an	email	with	the	APK	attached.		
•	Set	up	an	internal	website	to	distribute	the	app.		
•	Organizations	implement	Mobile	Device	Management	(MDM)	solutions	to	manage	their	
mobile	devices	and	app	distribution.		
	
iOS	Enterprise	Distribution:		
•	Get	an	iOS	Enterprise	Developer	license.		
•	The	cost	of	the	license	is	$299	per	year	but	Allows	unlimited	distribution	of	apps	within	
the	organization.		
•	You	cannot	sell	apps	in	the	App	Store	with	this	license.		
•	Organizations	that	do	internal	and	public	development	need	an	Enterprise	Developer	
license	and	an	iOS	Developer	license.		
•	Set	up	an	enterprise	distribution	certificate	and	an	enterprise	distribution	provisioning	
profile.		

TB

