
ptg11524036

ptg11524036

 Learning Mobile App
Development

97803e21947864_Book 1.indb i 11/21/13 2:56 PM

ptg11524036

This page intentionally left blank

ptg11524036

 Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

 Learning Mobile App
Development

A Hands-on Guide to Building
Apps with iOS and Android

 Jakob Iversen
 Michael Eierman

97803e21947864_Book 1.indb iii 11/21/13 2:56 PM

ptg11524036

 Editor-in-Chief
Mark Taub

 Senior Acquisitions Editor
Trina MacDonald

 Senior Development Editor
Chris Zahn

 Managing Editor
Kristy Hart

 Project Editor
Andy Beaster

 Copy Editor
Barbara Hacha

 Indexer
 Heather McNeill

 Proofreader
 Sara Schumacher

 Technical Reviewers
Frank McCown
 Aileen Pierce
 Ray Rischpater
 Valerie Shipbaugh

Editorial Assistant
 Olivia Basegio

Media Producer
 Dan Scherf

Interior Designer
Gary Adair

 Cover Designer
Chuti Prasertsith

 Compositor
Nonie Ratcliff

 Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

 The authors and publisher have taken care in the preparation of this book,
but make no expressed or implied warranty of any kind and assume no
responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

 The publisher offers excellent discounts on this book when ordered in quantity
for bulk purchases or special sales, which may include electronic versions
and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

 U.S. Corporate and Government Sales
(800) 382-3419
 corpsales@pearsontechgroup.com

 For sales outside the United States, please contact:

 International Sales
 international@pearsoned.com

 Visit us on the Web: informit.com/aw

 Library of Congress Control Number: 2013951436

 Copyright © 2014 Pearson Education, Inc.

 All rights reserved. Printed in the United States of America. This publication
is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. To obtain permission to use material
from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street, Upper Saddle River, New Jersey
07458, or you may fax your request to (201) 236-3290.

 ISBN-13: 978-0-321-94786-4
 ISBN-10: 0-321-94786-X

 Text printed in the United States on recycled paper at R.R. Donnelley in
Crawfordsville, Indiana.

 First printing: December 2013

97803e21947864_Book 1.indb iv 11/21/13 2:56 PM

ptg11524036

 Dedicated to Kim, Katja, Rebecca, and Natasja.

 Dedicated to my wife, Theresa, and daughters,
Lindsey and Kyra.

97803e21947864_Book 1.indb v 11/21/13 2:56 PM

ptg11524036

vi Contentsvi Contents

Contents

 Preface xiv

Part I Overview of Mobile App Development 1

 1 Why Mobile Apps? 3

Transformative Devices 3

Reaching Customers 4

Changing Business Process 6

Making Money 9

Summary 10

Exercises 10

 2 App Design Issues and Considerations 13

App Design 13

Operating System Design Issues 13

Screen Size and Orientation Issues 17

Connectivity Issues 18

Battery Issues 19

Hardware Issues 19

Device Differences 21

Android 21

iOS 23

Introducing Your First App 23

Contact Screen 24

Contact List Screen 24

Map Screen 25

Settings Screen 26

Summary 26

Exercises 27

 Part II Developing the Android App 29

 3 Using Eclipse for Android Development 31

Starting a New Project 31

Setting Up the Workspace 32

Creating the Project 32

97803e21947864_Book 1.indb vi 11/21/13 2:56 PM

ptg11524036

viiContents viiContents

Components of the IDE 35

The Android Manifest 37

Configuring the Emulator 39

Coding the Interface 42

Coding App Behavior 50

Adding Code 52

Summary 54

Exercises 54

 4 Android Navigation and Interface Design 55

Activities, Layouts, and Intents 55

The Activity Class 56

Layout 56

Intents 57

Creating the Interface 57

Create the Project 58

Create the Navigation Bar 59

Create the Contact Layout 64

Activating the Interface 78

Code the Navigation Bar 78

Code the Toggle Button 80

Code the DatePicker Dialog 82

Summary 86

Exercises 87

 5 Persistent Data in Android 89

Preferences, Files, and Database 89

Preferences 89

Files 90

Database 90

Creating the Database 91

Create the Database Helper Class 91

Create the Data Source Class 93

Using the Database 98

Capture User-Entered Data 99

Save User-Entered Data 101

Use the Debugger 105

97803e21947864_Book 1.indb vii 11/21/13 2:56 PM

ptg11524036

viii Contentsviii Contents

Using Preferences 107

Create the Settings Layout 107

Code the Page’s Behavior 109

Summary 113

Exercises 114

 6 Lists in Android: Navigation and Information
 Display 115

Lists and Adapters 115

Lists 115

Adapters 116

Simple Lists 116

Create the Data Source Method 116

Create the Layout 118

Code the Activity 118

Complex Lists 121

Create the Data Source Method 121

Create the Layout 123

Create the Custom Adapter 125

Code the Activity 127

Add Delete Functionality 128

Completing the ContactList Activity 135

Populating the ContactActivity Screen 135

Coding the Add Button 138

Sort the Contacts List 139

Set ContactListActivity as the Default Activity 141

Set ContactActivity as Default Activity with no
 Contacts in Database 142

Summary 143

Exercises 143

 7 Maps and Location in Android 145

Location Sensors, Maps, and Fragments 145

Location Sensors 145

Maps 146

Fragments 146

Setting Up for Maps 146

Passing Data Between Controllers 151

97803e21947864_Book 1.indb viii 11/21/13 2:56 PM

ptg11524036

ixContents ixContents

Finding Your Location 152

Geocoding: Get Coordinates from an Address 152

Get Coordinates from the GPS Sensor 155

Get Coordinates from Network Sensor 159

Get Coordinates from the Map 161

Displaying Your Contacts’ Locations 164

Summary 170

Exercises 171

 8 Access to Hardware and Sensors in Android 173

Sensors, Managers, and Other Hardware 173

Sensors 173

Managers 174

Other Hardware 174

Monitoring the Battery 174

Using Sensors to Create a Compass 177

Using the Phone 181

Using the Camera 183

Summary 189

Exercise 190

 Part III Developing the iOS App 191

 9 Using Xcode for iOS Development 193

Creating the Xcode Project 193

Project Settings 196

Creating the User Interface 199

Running the App in the Simulator 200

Adding App Behavior 202

Dismissing the Keyboard 205

App Icons and Launch Images 208

Summary 211

Exercises 211

 10 iOS Navigation and Interface Design 213

Views and Controllers 213

View Controller 213

Tab Bar Controller 214

Navigation Controller 215

97803e21947864_Book 1.indb ix 11/21/13 2:56 PM

ptg11524036

x Contentsx Contents

Creating the Interface 215

Creating the Project 215

Creating the Views 216

Design the Contacts Screen 222

Add Navigation Controller for the Date Screen 226

Activating the Interface 230

Summary 233

Exercises 233

 11 Persistent Data in iOS 235

File Data Storage 235

User Defaults 236

Core Data 236

Setting Up Core Data 237

Creating the Project 237

Designing Data Structure 241

Passing Data Between Controllers 243

Saving Data to Core Data 248

Storing the Settings 251

Creating the Settings Interface 252

Working with NSUserDefaults Object 256

Activating the Settings Interface 257

Global Constants 259

Summary 262

Exercises 262

 12 Tables in iOS: Navigation and Information
 Display 263

Overview of Tables 263

Setting Up Tables 265

Populate the Table with Data 265

Retrieve Data from Core Data 269

Adding Contact Data 272

Display Detailed Data 273

Save Changes to Records 276

Deleting Records 277

Accessory Buttons 280

Alert View 281

97803e21947864_Book 1.indb x 11/21/13 2:56 PM

ptg11524036

xiContents xiContents

Show Subtitles in the Table 285

Sort the Table 285

Summary 288

Exercises 288

 13 Maps and Location in iOS 289

Overview of Location and Mapping 289

Hardware and Sensors 289

Core Location 290

MapKit 290

Adding Location Information to the App 291

Finding Location 291

Adding a Map 300

Summary 309

Exercises 309

 14 Access to Hardware and Sensors in iOS 311

Getting Device Information 311

Monitoring Battery Status 314

Controlling the Camera 317

Calling a Phone Number 324

Long Press Gesture 324

Adding Long Press to Enabled Text Field 326

Using Core Motion for Accelerometer Data 328

Summary 333

Exercises 333

 Part IV Business Issues 335

 15 Monetizing Apps 337

App Monetization Strategies 337

Paid Apps 337

Ad Supported Apps 338

In-App Purchases 340

Understanding the Economics of App Stores 341

Owning Your Own Business 342

Create an LLC 342

Plan Your Business 342

97803e21947864_Book 1.indb xi 11/21/13 2:56 PM

ptg11524036

xii Contentsxii Contents

Other Income Possibilities 343

Choosing a Platform 343

Summary 345

Exercises 345

 16 Publishing Apps 347

App Distribution Through the App/Play Stores 347

Android Play Store Distribution 348

iOS App Store Distribution 351

App Distribution for the Enterprise 353

Android Enterprise Distribution 353

iOS Enterprise Distribution 354

Testing and Fragmentation 354

Keeping Up with the Platform 356

Summary 356

Exercises 357

 Part V Appendixes 359

 A Installing Eclipse and Setup for Android
 Development 361

Setting up Java and Eclipse 361

Download and Install Java SE SDK 362

Downloading Eclipse 363

Installing Eclipse on Windows 363

Installing Eclipse on Mac 365

Installing Android 366

Setting Up the Classroom 369

97803e21947864_Book 1.indb xii 11/21/13 2:56 PM

ptg11524036

xiiiContents xiiiContents

 B Installing Xcode and Registering Physical
 Devices 371

Download and Install Xcode 371

Apple Developer Programs 372

Setting Up the Classroom 373

Deploying Apps to Real Devices 373

Creating Developer Accounts 375

Backing Up the Development Certificate 376

Registering Devices 378

Checking the Development Environment 379

 C Introduction to Objective-C 383

A Brief History of Objective-C 383

Two Languages in One 384

Objects and Classes 385

Properties in Detail 394

Declaring and Calling Methods 396

Inheritance and Protocols 397

Memory Management 398

 Index 399

97803e21947864_Book 1.indb xiii 11/21/13 2:56 PM

ptg11524036

 Preface
 Welcome to mobile application development!

 Developing apps can be fun and is potentially lucrative, but it is also quickly becoming a core
skill in the information technology field. Businesses are increasingly looking to mobile apps to
enhance their relationships with their customers and improve their internal processes. They
need individuals skilled in developing the mobile apps that support these initiatives.

 This book is intended to be an introduction to mobile app development. After you successfully
complete the book, you will have the basic skills to develop both Android and iPhone/iPad
apps. The book takes you from the creation of an app through the publication of the app to
its intended audience on both platforms. We (the authors) have been teaching technology for
many years at the collegiate level and directly to professionals and strongly believe that the
only way to learn a technology is to use it. That is why the book is structured as a series of
tutorials that focus on building a complete app on both platforms.

 Although the book is an introduction, it does cover many of the unique features of the mobile
platforms that make apps a technology offering new capabilities that businesses may use to
enrich or augment their operations. The features covered in the book include using the device’s
capability to determine its location, using hardware sensors and device components in apps,
and mapping.

 If you have suggestions, bug fixes, corrections, or anything else you’d like to contribute to a
future edition, please contact us at jhiversen@gmail.com or michael.eierman@gmail.com . We
appreciate any and all feedback that helps make this a better book.

 —Jakob Iversen & Michael Eierman, September 2013

 What You’ll Need
 You can begin learning mobile application development with very little investment. However,
you will need a few things. The following list covers the basics of what you need for Android
programming:

 Eclipse and the Android SDK —You can download the SDK from Google (http://
developer.android.com/sdk/index.html) as an Android Development Tools (ADT)
bundle that includes the Eclipse Integrated Development Environment (IDE), Android
development tools, Android SDK tools, Android platform tools, the latest Android SDK,
and an emulator. The ADT bundle is for Windows only. If you are going to develop on
the Mac, you will have to download Eclipse separately and use the preceding URL to
get the various other tools. If you have an existing Eclipse installation, you can use this
location to add the Android tools. Appendix A , “Installing Eclipse and Setup for Android
Development,” has more details on how to install the tools. If your existing Eclipse
installation is earlier than the Helios version, we recommend that you update your
installation to be perfectly in sync with this book. If you cannot upgrade, you should

97803e21947864_Book 1.indb xiv 11/21/13 2:56 PM

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html

ptg11524036

xvPreface

still be able to work the tutorials. Some of the menu commands may be slightly different
and some of the windows may have minor differences, but you should still be able to
complete the tutorials.

 An Android device —This is not necessary for purely learning, but if you plan to release
your apps to the public, you really should test them on at least one device. The more
types of devices, the better—Android on different manufacturers’ devices can sometimes
behave in different manners.

 Familiarity with Java —Android apps are programmed using the Java programming
language. You should be able to program in Java. At a minimum you should have
programming in some object-based programming language such as C# or C++ so that
you can more easily pick up Java.

 The following list covers the basics of what you need for iPhone/iPad programming:

 A Mac running Mac OS X Lion (v 10.8 at a minimum) —iPhone/iPad programming can
be done only on a Mac. That Mac should have a fair amount of disk space available and
a significant amount of RAM so you don’t have to spend as much time waiting for things
to compile and execute.

 Xcode 5 —Xcode is an IDE provided by Apple available from Apple’s iOS Dev Center
(http://developer.apple.com/ios). Xcode 5 is free, but you can only run the apps you
develop on the simulator provided with Xcode. If you want to distribute your apps, you
must sign up as a registered developer ($99/year for individuals, $299/year for corporate
developers). If you are a teacher at the university level, your university can sign up for
the University Program (http://developer.apple.com/support/iphone/university). This
will allow you and your students to test apps on actual devices but does not allow public
distribution of the apps you create. If you are a student at a university, check with the
computer science or information systems department to see if they have signed up for
this program.

 An iOS device —As with Android, this is not necessary for learning how to program
an iOS app, but it is important for testing apps that you want to release to the public.
Additionally, some features of iOS programming cannot be tested on the simulator.
 Appendix B , “Installing Xcode and Registering Physical Devices” has more details both
on installing Xcode and the work needed to be able to test your apps on a physical iOS
device.

 Knowledge of Objective-C 2.0 —iOS apps are programmed in Objective-C. Objective-C is
a language that extends the C programming language and is organized like the SmallTalk
object-oriented programming language. If you have previous experience with Java or C++
it will ease your transition to Objective-C. Appendix C , “Introduction to Objective-C,”
contains an introduction to Objective-C that will help you with that transition.

97803e21947864_Book 1.indb xv 11/21/13 2:56 PM

http://developer.apple.com/ios
http://developer.apple.com/support/iphone/university

ptg11524036

xvi Preface

 What if I Can’t Upgrade My Lab Computers?
 Xcode 5 requires OSX 10.8. If your existing Macs cannot be upgraded to 10.8 you should still
be able to use this book to learn iOS development. In that case use Xcode 4.6. The sample
code provided with this book will not work, but you should be able to develop your own working
code by working through the tutorials. Some of the menus and windows will be different, but
the tutorial will still work.

 Your Roadmap to Android/iOS Development
 This book is intended as an introduction to mobile development for both Android and iOS.
Although the book provides everything you need to know to begin creating apps on both
platforms, it is not intended to be a comprehensive work on the subject. The book assumes
programming knowledge. At a minimum you should have taken at least one college-level
course in the Java or C programming languages. Mobile development introduces issues and
concerns not associated with traditional development, but at its core requires the ability to
program. Experience with an IDE is a plus. This book will help you learn the Eclipse and Xcode
IDEs but if you have some understanding and experience prior to working through this book, it
will ease your learning curve.

 As a beginner’s book, that should be enough to successfully work through the tutorials.
However, to truly master Android and iOS development there is no substitute for designing and
implementing your own app. For this you will likely need some reference books. Following is a
list of books we have found helpful in our app development efforts. Of course, if all else fails—
Google it! And then you’ll likely end up with the good folks at StackOverflow.com, which has
quickly become a trusted source for answers to programming questions.

 iOS Programming: The Big Nerd Ranch Guide, by Joe Conway & Aaron Hillegass (Big Nerd
Ranch, 2012)

 Programming iOS 6, by Matt Neuburg (O’Reilly, 2013)

 iPad Enterprise Application Development BluePrints: Design and Build Your Own Enterprise
Applications for the iPad , by Steven F. Daniel (Packt Publishing, 2012)

 Android Wireless Application Development, by Lauren Darcy & Shane Conder (Addison-
Wesley, 2011)

 Android Wireless Application Development Volume II: Advanced Topics, by Lauren Darcy &
Shane Conder (Addison-Wesley, 2012)

 How This Book Is Organized
 This book guides you through the development of mobile applications on both Android and
iOS. The book focuses on building a single, complete app on both platforms from beginning
to publication. The book is meant for the beginner but goes into enough depth that you could
move into developing your own apps upon completion of the book. The philosophy embedded

97803e21947864_Book 1.indb xvi 11/21/13 2:56 PM

ptg11524036

xviiPreface

in the book’s approach is that the best way to learn to develop is to develop! Although the
book begins with Android development, you could choose to begin with iOS without any
problem or setback in understanding. However, we do suggest that you read Chapter 2 , “App
Design Issues and Considerations,” before beginning either platform. After that, you can choose
either Chapters 3 – 8 on Android or Chapters 9 – 14 on iOS. You could even switch back and
forth between the platforms, reading first the introduction to Android in Chapter 3 , then the
introduction to iOS in Chapter 9 , and then continue switching back and forth between the
platforms.

 Here’s a brief look at the book’s contents:

 Part I , “Overview of Mobile App Development”

 Chapter 1 , “Why Mobile Apps?” —Mobile apps are a potentially disruptive
technology—technology that changes the way business works. This chapter
explores the potential impact of mobile technology and discusses how apps can
and do change the way organizations do business.

 Chapter 2 , “App Design Issues and Considerations” —Mobile technology has
different capabilities and limitations than more traditional computing platforms.
This chapter discusses many of the design issues associated with app development.

 Part II , “Developing the Android App”

 Chapter 3 , “Using Eclipse for Android Development” —Eclipse is an open source
development environment commonly used for Android development. Chapter 3
shows how to use Eclipse to build a simple “Hello World” app. The chapter is your
first hands-on look at app development.

 Chapter 4 , “Android Navigation and Interface Design” —The limited amount
of “real estate” on a mobile device typically requires multiple screens to build
a complete app. This chapter introduces how you program movement between
screens in Android. The chapter explores in depth on how a user interface is coded
in Android where the number of screen sizes that your app has to accommodate is
relatively large.

 Chapter 5 , “Persistent Data in Android” —Business runs on data. An app has to
be able to make sure important data is preserved. This chapter explores two types
of data persistence methods in Android: the persistence of large and complex
data in a relational database using SQLite and simple data persistence through
 SharedPreferences .

 Chapter 6 , “Lists in Android: Navigation and Information Display” — Chapter 6
introduces a structure ubiquitous in mobile computing—the list. Lists display data
in a scrollable table format and can be used to “drill down” for more information
or to open new screens. This chapter explains how to implement a list in an
Android app.

97803e21947864_Book 1.indb xvii 11/21/13 2:56 PM

ptg11524036

xviii Preface

 Chapter 7 , “Maps and Location in Android” —Displaying information on a
map can be a very effective way to communicate information to an app user. This
chapter examines implementing Google Maps in an app and also demonstrates
how to capture the device’s current location.

 Chapter 8 , “Access to Hardware and Sensors in Android” —Mobile devices
come equipped with a number of hardware features that can enhance an app’s
functionality. The code required to access and use these features is discussed in this
chapter.

 Part III , “Developing the iOS App”

 Chapter 9 , “Using Xcode for iOS Development” — Chapter 9 begins the book’s
discussion of iOS. Xcode is the development environment used to develop iPhone
and iPad apps. Xcode and iOS development is introduced by guiding you through
the implementation of a simple “Hello World” app.

 Chapter 10 , “iOS Navigation and Interface Design” —Just as in Android,
interface design and navigation between screens are important concepts to master
in mobile development. This chapter guides you through the development of a
Storyboard for app navigation and demonstrates how to use Xcode’s Interface
Builder to implement a user interface.

 Chapter 11 , “Persistent Data in iOS” —Many of the same data persistence features
available in Android are also present in iOS. One primary difference is that the
database feature of iOS is implemented through a wrapper kit called Core Data.
Core Data enables the updating and querying of an underlying SQLite database.

 Chapter 12 , “Tables in iOS: Navigation and Information Display” —Tables in
iOS provide the same type of information presentation format as Lists in Android.
Tables display data in a scrollable table format and can be used to “drill down” for
more information or to open new screens. Chapter 12 describes how to implement
this very important mobile computing concept.

 Chapter 13 , “Maps and Location in iOS” — Chapter 13 covers the implementation
of maps and capturing device location information on an iOS device. It is
analogous to the Android chapter on maps and location.

 Chapter 14 , “Access to Hardware and Sensors in iOS” —This chapter
demonstrates the techniques used to access hardware features of the device. It
covers many of the same sensors and hardware features covered in the Android
chapters on the topic.

 Part IV , “Business Issues”

 Chapter 15 , “Monetizing Apps” —One of the reasons many people consider
getting into mobile application development is to make money. Both Android and
Apple provide a marketplace for apps that has a wide reach. This chapter discusses
various approaches to making money from your apps and briefly discusses
organization of your app development business.

97803e21947864_Book 1.indb xviii 11/21/13 2:56 PM

ptg11524036

xixPreface

 Chapter 16 , “Publishing Apps” —After you have developed an app, you’ll likely
want to make that app available to its intended audience. This chapter discusses
publishing apps on Google Play and the App Store, as well as distribution of
corporate apps that are not intended for the public at large.

 Appendixes

 Appendix A , “Installing Eclipse and Setup for Android Development” —This
appendix provides instruction on installing the Eclipse development environment
and how to set up Eclipse specifically for Android development.

 Appendix B , “Installing Xcode and Registering Physical Devices” —This
appendix provides instruction on installing iOS development environment, Xcode,
and describes how to register iOS devices so that they can be used to test your
apps.

 Appendix C , “Introduction to Objective-C” —This appendix provides a brief
tutorial on the Objective-C language.

 About the Sample Code
 The sample code for this book is organized by chapter. Chapters 3 and 9 contain a single
“Hello World” app in Android and iOS, respectively. Chapters 4 through 8 build a complete
Android contact list app, and Chapters 10 through 14 build the same contact list app in iOS.
Each chapter folder contains the code for the completed app up to that point. For example,
at the end of Chapter 7 the code includes the code developed for chapters 4 , 5 , 6 , and 7 . The
exception to this single completed app per folder model is in chapters 7 and 13 . These chapters
demonstrate several approaches to getting location information on the mobile device. Each
technique has a folder with the complete app that demonstrates the technique. If a book
chapter requires any image resources, you will find those images in the respective chapter.

 Getting the Sample Code
 You’ll find the source code for this book at https://github.com/LearningMobile/BookApps on
the open-source GitHub hosting site. There you find a chapter-by-chapter collection of source
code that provides working examples of the material covered in this book.

 You can download this book’s source code using the git version control system. The Github site
includes git clients for both Mac and Windows, as well as for Eclipse. Xcode already includes git
support.

 Contacting the Authors
 If you have any comments or questions about this book, please drop us an e-mail message at
 jhiversen@gmail.com or michael.eierman@gmail.com .

97803e21947864_Book 1.indb xix 11/21/13 2:56 PM

https://github.com/LearningMobile/BookApps

ptg11524036

 Acknowledgments

 Acknowledgments from Jakob Iversen
 Thank you goes out to Mindie Boynton at the Business Success Center in Oshkosh for
organizing the training seminars that formed the first basis for the tutorials at the core of the
book. Thank you also to all the students taking those seminars for keeping the idea alive and
providing feedback and catching mistakes in early versions.

 Thanks go as well to everyone who worked with us at Pearson: Trina MacDonald, Chris Zahn,
and Olivia Basegio, all of whom worked hard to answer our questions and keep us in line.
Thank you also to the technical editors, Valerie Shipbaugh for making sure the material was
accessible to the target audience and Aileen Pierce for detailed insights in getting the original
material updated for iOS 7.

 Thank you to my family and friends for providing support and encouragement during long
hours of programming and writing. Especially to my wife, Kim, and daughters, Katja, Rebecca,
and Natasja, for picking up the slack around the house.

 Acknowledgments from Michael Eierman
 A big thank you is owed to my friend and business partner George Sorrells. After I showed him
an app that I was fooling around with he said, “We should sell that!” That led to a level of
work in Android and iOS that gave me the depth of knowledge required to write this book. I’d
also like to thank Mindie Boynton at the Business Success Center in Oshkosh for organizing the
training seminars that helped us develop the tutorials that are the basis for this book.

 Thanks go as well to the good people at Pearson, Trina MacDonald, Chris Zahn, and Olivia
Basegio, who worked so hard to get this book in shape. Thank you also to the technical editors,
Valerie Shipbaugh, Ray Rischpater, and Frank McCown, for their help in getting many of the
inevitable technical errors and oversights eliminated from the text. I would especially like to
single out Frank McCown for in-depth reviews that greatly improved the final product.

 Finally, thank you to my friends and family. They supported me by providing feedback on the
apps I was developing and encouraged me to continue the effort even when things were most
frustrating. My wife, Theresa, and daughters, Lindsey and Kyra, deserve extra special thanks for
putting up with my constant work on app development and writing this book.

97803e21947864_Book 1.indb xx 11/21/13 2:56 PM

ptg11524036

 About the Authors
 Jakob Iversen, Ph.D. is Associate Professor of Information Systems, Chair of the Interactive
Web Management Program, and Director of Information Technology Services at the University
of Wisconsin Oshkosh College of Business. His current research interests include software
process improvement, agile software development, e-collaboration, and mobile development.
Dr. Iversen teaches and consults on web development, mobile development, technology
innovation, information systems management, strategy, and software development processes.

 Michael Eierman, Ph.D is a Professor of Information Systems and Chair of the Information
Systems Department at the University of Wisconsin Oshkosh College of Business. Dr.
Eierman has worked in the information systems field for nearly 30 years as a programmer,
analyst, and consultant, but primarily as a teacher. From the very first class taken in college
at the suggestion of an advisor, information systems have been his passion. His research has
taken many directions over his years as a professor but is currently focused on the impact
of collaborative and mobile technology. Dr. Eierman is also co-owner and manager of Ei-Sor
Development, LLC—a provider of Android and iOS apps designed for the outdoorsman.

97803e21947864_Book 1.indb xxi 11/21/13 2:56 PM

ptg11524036

This page intentionally left blank

ptg11524036

 Part I
 Overview of Mobile App

Development

Chapter 1 Why Mobile Apps? 3

Chapter 2 App Design Issues and Considerations 13

97803e21947864_Book 1.indb 1 11/21/13 2:56 PM

ptg11524036

This page intentionally left blank

ptg11524036

 1
 Why Mobile Apps?

 Mobile, Mobile, Mobile! Mobile technology is certainly receiving a lot of attention in the IT world as
well as the general business world right now. It seems everyone is executing a mobile strategy, designing
a mobile app, or worrying about managing mobile devices. But why all the buzz? What makes mobile
so special that it garners this much attention? In this chapter you explore some of the key reasons
behind the hype. It really is not “much ado about nothing!”

 Transformative Devices
 For all the hype, there must be something that makes these devices important. There is! Mobile
devices add a host of new possibilities for business and personal software because they are truly
the first mobile computing platforms. Although laptops and netbooks are moveable, their size
significantly impacts how easily they are transported. Very few people carry a laptop during
their every waking hour to every location they visit! However, if this were their only advantage,
mobile devices would not be causing such a stir. There is much more.

 One key feature of a mobile device is the capability to be made aware of its current environ-
ment through built-in sensors. Mobile devices have sensors designed to capture where they
are, where they’re going, and the environment around them. Sensors can identify their present
location to within a few meters and capture their current heading, orientation, and accelera-
tion. Additionally, they can recognize how close they are to another object through a proxim-
ity sensor. These devices also have the capability to capture information about the ambient
environment, including light levels, temperature, pressure, and magnetic field.

 Another important feature of a mobile device is the capability to communicate with other
computing devices through a variety of mechanisms. A laptop can communicate using Wi-Fi
and Bluetooth. However, mobile devices also have these communication capabilities; they
can communicate via cellular signals and using Near Field Communication (NFC). Wi-Fi is
not available in all situations, and its range is measured in yards, whereas cellular’s range is
measured in miles. Bluetooth may be too short range to be useful in many situations, but
too long in other situations. The range of communication using Bluetooth is measured in

97803e21947864_Book 1.indb 3 11/21/13 2:56 PM

ptg11524036

4 Chapter 1 Why Mobile Apps?

feet, whereas the range of NFC is measured in inches. If a device wants to communicate with
another device based on its proximity, broadcasting in inches may be preferable to broadcast-
ing and listening in feet.

 In addition to these capabilities not present in other computing platforms, mobile devices
have most of the same features, such as being able to display and manipulate data. Some of
these features have enhanced usability because they are on a device that is easily moved. One
example of this is the camera. Although many laptops and desktops have cameras built in, their
usefulness is limited because they cannot easily be moved. Data input is also similar because a
user can use either a keyboard or speech to enter data or instruct the device to perform some
operation. Again, these features may be more useful because data can be entered at its source,
when it is produced, rather than after the fact when human memory errors can impact the
integrity of the data. Another similarity is that mobile devices also have the capability to store
data in a number of formats, including in relational databases. Finally, mobile devices are also
computers.

 Taken together, the added capabilities of mobile devices compared to traditional computing
platforms means that the smartphone and tablet are the most dramatic change in technologi-
cal capability since the introduction of the PC. Dramatic change in technological capability
enables the reexamination of the assumptions that business processes and products are based
on! Organizations base the design of what they do and how they do it on available technology.
If technology changes, the assumptions about what can be done are no longer valid. This inval-
idation of previous assumptions is disruptive, and if existing organizations don’t re-examine
their products and processes, it is likely that their competitors and start-ups will.

 Reaching Customers
 Smartphone users almost always have their device within reach. Organizations want to be
ready when a potential customer is interested in a product or service. If customers have to wait
until they get home to their computers, or worse yet, go to an actual store to get information
about or purchase their product, it may be too late. Individuals may forget about what they
wanted, or worse yet, a competitor’s product may be available and the sale is permanently
lost. Additionally, smartphone adoption rate and sales have greatly outpaced PC sales in recent
years. In many homes, they may be the only way to access the Internet. Furthermore, tablet
sales are expected to surpass PC sales in the near future, and many consumers are choosing
tablets instead of a PC, rather than in addition to a PC. Companies that provide their service
over the Internet may be left behind in these situations if they do not have a mobile strategy.

 In many cases a website designed to be mobile friendly may be enough to hold or attract the
customer. However, to truly tie your organization to the customer, an app is required. Many
organizations are pursuing both approaches. Apps can provide a stronger link to your organiza-
tion because static data and the basic interface is always available on the device, reducing the
amount of data that needs to be transferred and providing quicker access than having to always

97803e21947864_Book 1.indb 4 11/21/13 2:56 PM

ptg11524036

5Reaching Customers

download this information. An app also can provide some functionality even when the device
cannot connect to the Internet. In these situations, customers could make a purchase when
they get the urge, and the transaction could be uploaded when the device gets a data connec-
tion. Having the app always available on the device may lead to your organization being one of
the first choices when the consumer is in the buying mood. Additionally, the app’s consistent
interface may help the individual learn it so that working with your organization becomes
quicker and easier than working with others.

 Having a mobile app can also support brand loyalty and awareness. Some organizations
have developed apps that allow customers to interact with their brands in positive ways. For
example, Starbucks lets customers define favorite drinks and collect rewards within their app.
Axe has developed several games where the player has to collect Axe cans to earn points. Nestlé
has an app that promotes fitness, and Zyrtec gives asthma patients tools to keep track of symp-
toms and current pollen levels. Finally, Kimberly-Clark helps parents with potty training their
toddlers in the Pull-Ups Big Kid App (Figure 1.1). Although these apps could also be available
on a traditional computing platform, having them on a mobile app allows the customer to
access them quickly when they happen to think of it, even if they are standing in line or sitting
on a bus. This allows the company to have a positive interaction with a customer in more situ-
ations than only when the customer is sitting at a computer.

 Figure 1.1 Screen shot of Pull-Ups app from Kimberly-Clark Inc.

97803e21947864_Book 1.indb 5 11/21/13 2:56 PM

ptg11524036

6 Chapter 1 Why Mobile Apps?

 The Good Old Days
 Ever hear the phrase “Banker’s Hours”? Many years ago, banks had very limited customer
service times, and getting to the bank to perform your business required going at hours not par-
ticularly friendly to many people’s schedules. The technology of that time required that the bank
have time to complete transactions after the customer left. To have enough time in the day to
complete the work, they had to limit the amount of time they were available to the customer.
This phrase became pejorative because people thought that the customer service hours were
the only time that bankers worked and because the limited access frustrated customers.

 However, with the advent of better technology, banks were able to expand their customer ser-
vice hours, and the Internet made interacting with your bank something you could do anytime,
anywhere. These days, a bank would not have much of a customer base if it did not provide
online access. Mobile devices expand this problem. With many customers using a smartphone
as their only Internet access, banks that don’t provide mobile-friendly access will begin to lose
customers to those that do—or never have a chance to gain that customer.

 One area where mobile devices enable a strong potential for disruption of the assumptions
made about a business process is the payment industry, where a lot of companies are innovat-
ing to provide consumers and businesses the capability to make and receive payments. For
instance, Square provides small retailers a simple solution to accept credit cards via a mobile
device and even use an iPad as a cash register, complete with inventory and listing of all prod-
ucts in the store. Although customers may not be able to easily get a printed receipt, the capa-
bility to easily email receipts may be even better. PayPal also allows for sending money easily
to individuals. Although PayPal has this capability on a traditional computing platform, the
capability to do it on a mobile device enables the customer to get money quickly to someone,
wherever they may be.

 The final, and potentially most important, advantage of an app is that it can take full advan-
tage of the device’s hardware and software capabilities to provide the customer with capabilities
that make your products an easy option for them. The device’s location could be used to guide
potential customers to a nearby store or even find a product within a store. The device camera
could be used to present your products that are similar to the product image capture. Captured
UPC codes could be used to provide product information and prices. NFC or Bluetooth could
be used to alert customers that they are near your product in the store. The potential is there.
An app provides the capability to realize that potential. For example, Amazon has an app that
the consumer can use to scan UPC codes to compare a competitor’s product to theirs.

 Changing Business Process
 One of the most exciting possibilities associated with mobile technology is the potential it
has to impact business processes. Processes are designed within the parameters of the available
technology. When technology drastically changes, new forms are enabled. When that tech-
nology is cheap, change is enabled in areas that may have previously seen limited impact of

97803e21947864_Book 1.indb 6 11/21/13 2:56 PM

ptg11524036

7Changing Business Process

the technology. Businesses are paying significant attention to mobile because these qualities
suggest that the technology may have implications for strategic and tactical advantage, or, as
demonstrated with the banking app, become competitive necessities.

 Several years ago, business process reengineering (BPR) received significant attention in the
business and academic worlds. The idea of reengineering was important because of what was
termed the “productivity paradox.” For years, organizations were investing a significant amount
of money in information technology without realizing corresponding significant increases in
productivity. Investigation found that a major contributor to this problem was that organiza-
tions were using the new technology simply to automate existing processes. Information tech-
nology was applied to portions of the existing process to make it faster or increase accuracy.
This approach produced improvements, but they were incremental rather than revolution-
ary. As businesses became more adept with the technology and the technology became more
capable, it was recognized that the full potential of the technology was not being realized, and
companies began rethinking entire processes to take advantage of the technology. Noteworthy
improvements in process measures were realized, and BPR was born.

 Mobile technology is likely to follow a similar path in application to business processes.
However, that path could be traversed much more quickly because of the past experience of
applying technology to business processes. The excitement over mobile technology is evidence
that a more aggressive approach to reengineering processes may be truer than a simple automa-
tion approach.

 Still, there is room for automation, especially in smaller businesses that may have found that
the cost, complexity, and nonmobile nature of traditional computing platforms made techno-
logical solutions to their business process infeasible. Bossy (Figure 1.2) is an example of this.
The app is designed for the dairy farmer. As the farmer attends his cows, with Bossy he has at
his fingertips a complete display of the actions that need to be taken on different animals in his
herd. This automates the process of tracking the animals on paper or on a desktop computer
with written notes used while attending the herd.

 Fence Builder Pro (Figure 1.3) is an app designed to support the fence-building industry.
Although some big fence-building organizations exist, the majority of fence-building compa-
nies are much smaller, family owned businesses in which technology plays a very limited role.
Fence Builder Pro is designed to manage job scheduling and communication. Jobs performed
by these smaller organizations typically last on the order of hours, rather than days or weeks,
precluding the need for more traditional project management software. Additionally, a need
exists to quickly rearrange the schedule because of outside influences such as the weather,
material delivery errors, and interaction with external agencies. Because these externalities can
change quickly, and because of the short nature of jobs, there is a need to quickly communi-
cate the new schedule to the field crew. Fence Builder Pro is innovative for the industry because
the schedule is also loaded on the crew foreman’s device. When the company’s owner changes
the schedule, it is automatically communicated to the foreman.

97803e21947864_Book 1.indb 7 11/21/13 2:56 PM

ptg11524036

8 Chapter 1 Why Mobile Apps?

 Figure 1.3 Fence Builder Pro—an app for the
small job shop.

 Figure 1.2 Bossy—an app for the dairy farmer.

97803e21947864_Book 1.indb 8 11/21/13 2:56 PM

ptg11524036

9Making Money

 These two apps represent innovation in business processes that could not have been done
without a mobile device. In contrast to consumer apps, these apps sell for much more money.
They represent a significant investment by the developer in analysis and design and are focused
on a much smaller market.

 Large organizations can also benefit from process redesign based on mobile technology, and
many are creating mobile development teams to explore, design, and implement process solu-
tions. The focus for these companies is on internal processes, and they are large enough to
absorb the cost of creating apps to support their processes. These apps are generally not avail-
able to other companies via an app market, although some apps available to consumers hint
at the internal process changes. One such example is the insurance company apps that allow
customers to provide insurance claims.

 Although this provides an added convenience to the consumer, the benefit is much larger to
the insurance company, because claims are reported electronically and with no people at the
insurance company involved in receiving and recording the claim. Claims can also potentially
contain much more accurate, rich, and timely information. For example, State Farm’s Pocket
Agent app lets their customers report an auto incident; they can include pictures taken with
the device camera, tag the report with GPS coordinates, and draw a sketch of the scene. It’s not
hard to imagine that State Farm also has mobile apps for insurance agents and claims adjusters
that use the data entered into Pocket Agent, so the entire process can be changed to take the
mobile devices into account.

 Making Money
 A final reason that mobile is all the rage is that many enterprising individuals see the potential
to start businesses and make money. The Google Play Store and the Apple App Store provide
the app developer access to the market of app purchasers. The developer does not have to
worry about product distribution, returns, or payment collection. The store does all this and
conveniently deposits the proceeds into the developer’s bank account. Additionally, smart-
phone users automatically go to these stores to get new apps or browse for apps that might
interest them. One final and very big reason for the strong focus on app development is that
Google and Apple either support or provide the development environments needed to create
apps for their stores. Taken together, this creates significant potential for individuals or small
businesses to make money in the app market.

 Apps make money for their producer through several approaches. Apps can be sold for a one-
time fee, like other products. Consumers buy the app through the appropriate store and it is
theirs for use whenever they like. The more apps the developers sell, the more money they
make. Ad supported apps make money by including an advertisement on a small portion of
the screen. Anytime a user clicks an ad, the developer makes money. Both Google and Apple
provide developers access to the code to display ads and a service to provide the ads and
track the clicks. In contrast to a paid app, the only time the developer gets paid is if an ad is
clicked (Apple’s ad service also pays per view of the ad, but the amount is significantly less
than a click). The amount of money generated by a single click is very small, so to make much

97803e21947864_Book 1.indb 9 11/21/13 2:56 PM

ptg11524036

10 Chapter 1 Why Mobile Apps?

money it is important to get a lot of users of the app. A third approach to making money is to
provide for in-app purchases. With this model, the user gets the app for free but needs to make
a purchase to get additional features. For example, a developer might provide a game for free
but require a purchase for more advanced levels of the game. Another approach is subscrip-
tion based. The app provides functionality that requires access to the developer’s data or other
services. To use the service, users buy a monthly or annual subscription.

 The combination of device capabilities, an accessible market, and a diverse and large number
of developers makes the app market exciting and innovative. Because the market for consumer
apps puts a significant focus on free or low-cost apps, the challenge for a developer is to create
a product that appeals to a lot of people. Fortunately, the capabilities of the mobile computing
platform enable the implementation of apps that can do things in a variety of domains that
could never be done before. Chapter 15 , “Monetizing Apps,” has a more in-depth discussion of
how to make money from the apps you have created.

 Innovation Using Device Capabilities
 Figure 1.4 shows an app that takes advantage of device capabilities to provide a product not
previously available. This is a paid app called GoFishing! It uses the device’s capability to cap-
ture its location, connect to the Internet, and store data to allow fishermen to record their fish
the moment they catch them, including where they were, what the weather conditions were
like, and how the fish was caught. The app provides search and mapping capability so that the
fisherman can locate previously successful locations, methods, and conditions to use in future
efforts. This functionality is not possible without the mobile device’s sensors and Internet
access.

 Summary
 Mobile technology is receiving significant attention in the business and IT worlds. The tech-
nology represents a dramatic change in technological capacity that has enabled potential
economic advantage for those able to take advantage of it. Mobile technology is the basis of
innovations in reaching customers, and in redesigning business processes and software products
that lead to the creation of many small businesses.

 Exercises
 1. Find an app that uses device capabilities to provide a product that previously couldn’t

exist. Explain what makes this app important or innovative.

 2. Find an app designed to support a business process. What is the business process? How
does the app propose to improve it?

 3. Identify and explain a specific business process. How might this process be automated
with mobile technology? How might it be completely redesigned?

97803e21947864_Book 1.indb 10 11/21/13 2:56 PM

ptg11524036

11Exercises

 Figure 1.4 An app that innovates based on device capabilities.

97803e21947864_Book 1.indb 11 11/21/13 2:56 PM

ptg11524036

This page intentionally left blank

ptg11524036

 2
 App Design Issues and

Considerations

 App development for mobile devices is, in many ways, similar to development for other platforms.
However, in other ways, development requires attention to items that are not even present in traditional
development. Mobile devices have operating systems that run apps differently than traditional programs
do, have access to environmental sensors that are not available in laptop and desktop computers, have
a limited power supply, and have a much smaller screen. This chapter provides an overview of the
design issues associated with these differences. The chapter also discusses differences between iOS and
Android devices that impact design. The chapter concludes with an introduction to the app that will be
developed to illustrate design and development for both platforms.

 App Design
 Designing for the specific device your app will run on is extremely important! Applications that
work well on a traditional computer may be complete disasters if ported to a mobile platform
without redesigning the logic to fit the device’s capabilities. Additionally, the capabilities of
the device enable you to design an application that can do different things than an application
on a traditional computer. Apps are cheap and easy to obtain. If yours doesn’t work well, there
is likely to be an acceptable alternative. A well-designed app can be a delight to use. A poorly
designed app will not be used for long, if at all. The operating system, device size, and mobility
all impact design and must be accounted for.

 Operating System Design Issues
 The primary technical difference between mobile device operating systems and operating
systems used on laptop and desktop computers is that the mobile operating system is not a true
multitasking system. On mobile devices, only one app can be active at a time. When another
app is started, or the app is interrupted by another app (for example, a phone call), the app that

97803e21947864_Book 1.indb 13 11/21/13 2:56 PM

ptg11524036

14 Chapter 2 App Design Issues and Considerations

was running gets put in the background. It remains in the background until the user specifi-
cally accesses it again. If it remains in the background too long, or if available memory gets
too low, the operating system may kill it. This back-and-forth between different states is called
the app’s life cycle. Both Android and iOS apps have a life cycle. The life cycle is based on the
user’s interaction with the app and the operating system’s need for memory and processing
resources. As users interact with the device, they may switch between apps or different views
within a single app. When this happens the app goes through different states, requiring the
developer to handle this switch so that users don’t lose data or get unnecessarily interrupted in
the task they were performing. This makes understanding, and designing for, the app life cycle
extremely important to the successful app developer.

 Android Life Cycle

 To understand the Android life cycle it is useful to first understand the states that an Android
app user experiences. When users touch an app’s icon, the app is started and becomes visible
to the users. While the app is visible, the users can interact with it. This is considered the
 Resumed or running state. As the users interact with the app, they may be interrupted with a
pop-up window, or they may be distracted and not touch the screen for a period of time. If
the users stop interacting for a period of time, the app will fade but still be partially visible. In
either of these two cases the app enters the Paused state. If the users close the pop-up or touch
the screen, the app becomes fully visible again, and the app again enters the Resumed state. If
users don’t touch the screen for a longer period of time and the screen goes black, or the user
starts another app so that the original app is no longer visible, the app enters the Stopped state.
If users turn on the screen or use the Back button to get back to the app, the app again enters
the Resumed state. An app can remain in the Stopped state for quite some time. However, if the
device is rebooted or a user runs a number of other apps before coming back to the original
app, that app can be Destroyed by the operating system to free up resources for other apps that
the user is actually interacting with. To design an app that functions well given this pattern of
use, developers must understand what happens as the app enters and leaves these states, as well
as what they should design the app to do in those instances. This requires understanding the
Android life cycle.

 The Android life cycle (see Figure 2.1) begins when a user touches an app’s icon. This action
causes the onCreate method in the app’s initial activity to execute. This method includes code
to load the screen (called a layout) associated with the initial activity to load. The developer
needs to place code in this method that initializes variables and layout objects to the settings
required for the user to begin interacting with the app. After the activity has been created, the
 onStart method is executed. This method does not have to be implemented but is useful if the
app requires certain settings to be the same for every time the app starts, whether it is an initial
start after the activity is created or restarted after the activity is brought back from a stopped
(but not destroyed) state. After the activity has started, the onResume method is executed.
This method also does not have to be implemented but is very useful to return the app to the
running state that the app was in before it paused. This includes turning on system services
used by the app (for example the GPS or the camera), restarting animations, and any other
settings needed to allow users to pick up where they left off.

97803e21947864_Book 1.indb 14 11/21/13 2:56 PM

ptg11524036

15App Design

Resumed

/ onResume() / onStop()

/ onResume()

/ onPause()

/ onStart(),onRestart()
Started

Paused

Stopped

/ onStart()

/ onCreate()

/ onDestroy()

Created Destroyed

Activity is visible
and user CAN
interact with it.

Activity is visible
but user cannot
interact with it.

Activity is visible
but user cannot
interact with it.

 Figure 2.1 Android life cycle.

 When a user stops directly interacting with the app, the path to destruction begins. None of
the methods executed on the path to destruction have to be implemented. However, they often
serve a useful purpose and should be considered. The first method executed is onPause . This
method should be used to stop services that the app is using, to stop animations, or to store
important state information so that users can start using the app exactly as they left it. If the
app is about to become invisible, the onStop method will be executed. This method should
make sure important data is permanently stored so that as system resources are consumed by
other apps, they are not lost. Finally, if not restarted, the onDestroy method will be executed
just before the operating system takes away all the app’s resources. This is your last chance to
capture important data before all is lost.

 iOS Life Cycle

 The life cycle for iOS is similar to Android’s. However, iOS uses both an app life cycle and a
screen (called view) life cycle to accomplish essentially the same things. As with Android, the
life cycle (see Figure 2.2) begins when the user taps an app’s icon. The application:
didFinishLaunchingWithOptions: method is similar to an activity’s onCreate method.
However, in iOS this method is used to set up the operating environment for the complete app,
not just a single activity.

 The applicationWillResignActive: method is executed when the app is interrupted, similar
to when the onPause method is executed in Android. Finally, when the app is no longer
visible, the applicationDidEnterBackground: method is executed. As with Android, code in
these methods should be used to turn off services and save important data for the user before
it’s potentially lost.

97803e21947864_Book 1.indb 15 11/21/13 2:56 PM

ptg11524036

16 Chapter 2 App Design Issues and Considerations

 Unlike Android, iOS has a separate life cycle for displayed screens (called ViewControllers).
The view life cycle (see Figure 2.3) begins after the application has finished loading or the user
goes to a different page in the app. After the view is loaded into memory, the viewDidLoad:
method executes. This method is executed only once if the view stays in memory. You should
write code in this method to set the initial state of the view. After the view has loaded into
memory, just before the view is visible to the user, the viewWillAppear: method is executed.
Code in this method should be used to load any data into the views that will be visible to the
user and turn on services that the user needs to interact with the app. This method executes
every time the view reappears on the device.

Running

/ viewDidLoad:,viewWillAppear: / viewDidUnload:

/ viewWillAppear:

/ viewWillDisappear:

Loaded

Hidden

Unloaded

View is visible
and user can

interact with it.

View is not
visible.

 Figure 2.3 iOS View life cycle.

 Just like in Android, if an app is interrupted, or the user doesn’t interact with the device for
a period of time, or the user moves to another view in the app, the view is pushed into the
background. Just before this happens, the viewWillDisappear: method is executed. Code in

/ application:didFinishLaunchingWithOptions:

Running

/ applicationWillResignActive:

Paused

/ applicationDidEnterBackground:

App is visible
and useable.

App is no longer
visible or useable.

 Figure 2.2 iOS App life cycle.

97803e21947864_Book 1.indb 16 11/21/13 2:56 PM

ptg11524036

17App Design

this method should turn off services and take steps to save the user’s data. If the user doesn’t
interact with the view for a period of time while it is in the background, iOS may reclaim
its resources. Just before the view is released from memory, the viewDidUnload: method is
executed. This is the developer’s last chance to preserve important data used in the view.

 Understanding and properly coding the app to take advantage of the methods associated with
the life cycle are important to ensuring a good user experience with your app. Take the time
to understand these life cycles, and your app development experience will be significantly less
frustrating!

 Screen Size and Orientation Issues
 The most obvious difference between mobile and traditional application design is the amount
of real estate you have to work with. The mobile device has significantly less area to design the
interaction that your users can experience with your app. Poor interface design is the easiest
way to get bad reviews for your app. Mobile devices are also used in different situations than
traditional computing devices are. App users are often multitasking (walking, talking with
friends, and so on). The app design must allow users to switch to your app and do what they
want to do right away, before they are distracted again. If users can’t easily figure out how to
use the app, no amount of help will satisfy them. This is no different from traditional develop-
ment. However, the very limited screen real estate makes it a significant challenge. In addition,
the focus among app developers has been on very good user interface design, so the competi-
tion is fierce for apps that work really well.

 In response to the limited screen size, both iOS and Android have the capability to scroll to
interface elements not on the screen. Scrolling can be both horizontal and vertical. However,
both scrolling capabilities should be used judiciously, especially horizontal scrolling. Scrolling
down a list has become a natural action on both traditional computers and mobile devices.
However, horizontal scrolling has not. Horizontal scrolling should be reserved for use for
elements that start on the main screen and extend off the screen. Users won’t naturally think
to horizontally scroll to look for items they can’t find on the main screen. Even vertical
scrolling should be limited. Lists are obvious choices for vertical scrolling, but other types of
interface elements should be limited. Additionally, when scrolling, you must also fix certain
elements so that the user can perform needed operations without scrolling back through the
entire contents of the screen.

 The obvious answer to the limited screen size is to carefully plan the user’s interaction with
your app. Screens should focus on one, or a very limited and coherent, set of tasks that the user
can or would want to do. Navigation should be planned and designed so that it is obvious to
the user how to proceed to the next task. If a task requires multiple steps, those steps should
be designed as distinct screens, and the user should be guided through the screens needed to
complete the whole task.

 Although screen size is a nontrivial design issue, the fact that by default, a screen’s orienta-
tion can change as the user turns the device also presents design issues. When the user turns
the device from vertical to horizontal orientation, the layout or view reorganizes to that

97803e21947864_Book 1.indb 17 11/21/13 2:56 PM

ptg11524036

18 Chapter 2 App Design Issues and Considerations

orientation. This significantly changes the amount of vertical and horizontal real estate for
your interface. Interface elements that were obvious to the user in the vertical orientation
may become inaccessible in the horizontal orientation. Again, this can be a very frustrating
experience for your user, unless you carefully plan for the layout in both orientations, and
thoroughly test it as well. Scrolling can be implemented to alleviate some of the problems asso-
ciated with orientation change. However, simply adding scrolling may not solve the user expe-
rience issues. If you cannot make it work in an alternative orientation, as a last resort you can
code the app to work in only one orientation.

 The solutions to these screen size and orientation issues are planning and design. What does
the user want to do with your app? What can your user do with your app? What are the logical
steps needed to accomplish those tasks given the device limitations? These are the types of
questions you must answer to design a successful app.

 Connectivity Issues
 One of the most important aspects of mobile devices is that they are able to communicate with
other devices and the Internet. This enables the capability to create very powerful and useful
apps. However, this also poses design problems. The device’s capability to connect can be lost,
or the connection speed may be very slow. Additionally, these problems can arise if the device
moves even a few feet. Compounding the problem is that users may not recognize or even
understand that there is a connectivity problem while they are using your app. Apple requires
that all apps submitted to the app store include a user warning when the network connection is
lost, but this doesn’t address slow speeds, and is not required by Android at all.

 Again, design and planning are your solutions.

 The primary issue that the app developer has to be concerned with is blocking the user from
working with your app. When the app gets or sends data, it can take a significant amount of
time. Users are unlikely to be happy waiting for this action to complete before doing other
tasks. This means you have to plan for uploading and downloading data asynchronously,
which means you have to make it run outside the main thread of the app. It also means that
the rest of the app should be designed to provide other things users can do unless the data is
absolutely necessary for the task. If a user tries to do something that requires the data, provide
a warning. The warning should provide enough information to help users decide what they
should do next. If there is no connection or if there is a weak signal, tell them and give them
options.

 Users Can’t Wait!
 In my first app, I (Michael) made this mistake. The app retrieved weather information as part
of its functionality. I included it on the main thread of the application. Everything worked fine in
testing because I was in an area with good connectivity. But the first time I used it in the field
where there were connectivity problems, I couldn’t use the app at all! I could see the screen,
but nothing worked because it was waiting for the weather. The screen eventually timed out,
and I retried starting the cycle again. This was very frustrating. If I had purchased the app, I
would have immediately demanded a refund.

97803e21947864_Book 1.indb 18 11/21/13 2:56 PM

ptg11524036

19App Design

 Uploading important data is also a concern. As with a download, uploads should be performed
asynchronously. You need to check that the upload was completed fully so that if a connection
is lost during the upload, the user’s data is not corrupted. This means that the data should be
cached locally until it is successfully uploaded. Finally, you may need to provide functionality
to upload the data when a good connection becomes available.

 Communication problems external to the app can impact your app’s performance. You must
plan for this possibility to provide the best user experience possible.

 Battery Issues
 Mobile devices are just that—mobile. This means that they are not always connected to a
power source. They rely on batteries for their power, and batteries can be drained. Your job as a
developer is to not drain those batteries unnecessarily. This is not just a courtesy issue. If every
time your app is used the user’s device quickly becomes a brick, it will be noticed. An app that
quickly drains power will not get used, will get bad reviews, and eventually will not get down-
loaded at all.

 The primary power draw for devices is the display. You cannot do much about that except
to make sure that your code is efficient and doesn’t take an unnecessary amount of time to
complete the work that the user wants to do. Also, you should make sure that users can pick up
where they left off if the app is interrupted so the screen doesn’t need to be on so long.

 After the screen, the primary power drains are the sensors. Global Positioning System (GPS),
camera, communication, and other sensors are all big power draws. Fortunately, it is within
your power to control these things. You control access to device hardware within your app and
should turn on these capabilities only just before the user needs them. You should also turn
them off as soon as the user completes the task that requires these items.

 The app’s life cycle plays an important role here. If the app is interrupted, all device access or
use should be suspended immediately. When the app is about to become active, turn on as late
as possible only those device capabilities needed. For example, in the previously mentioned app
that uses weather data, the weather retrieval is started as one app activity becomes active. If the
weather data is successfully retrieved, it is time stamped. The next time the activity becomes
active, the weather data will be retrieved only if it is outdated, thus saving battery power.

 Some battery issues are beyond your control. You cannot make an app that extends battery
power. However, you can definitely make an app that significantly reduces battery life. Be sure
to plan for battery use when designing your app.

 Hardware Issues
 A very cool aspect of mobile computing is the set of hardware components available on the
device. Many devices have the capability to locate the device within a few meters using the
GPS, have sensors that can capture device orientation, have lights that can be turned on and
off, have cameras, and have other hardware components that allow the device to interact
with the environment. Access to these components can make fun and useful apps. However,

97803e21947864_Book 1.indb 19 11/21/13 2:56 PM

ptg11524036

20 Chapter 2 App Design Issues and Considerations

employing them within your app is not without potential problems. The battery issue was
discussed in the previous section, and this is always a concern when using hardware devices.
However, each component has its own set of issues that, when used poorly, can make an app
less desirable.

 The first issue to be aware of is availability of the component. Different manufacturers make
Android devices, and some include devices that others do not. iOS devices are generally more
homogeneous, but differences still exist. Because of this, it is very important to consider how
important the component is to the primary functionality of your app. If it is only tangential,
you may want to consider not using it because using it will often prevent the app from be
loaded onto the device. At best, the absence of the hardware component on the user’s phone
or tablet will cause frustration with your app. Another concern is situational availability. For
example, for a device to get a GPS signal, the device has to have the capability to get the satel-
lite signal required for operation. If the user is indoors, the GPS may not work.

 It’s My Fault!
 Early on in my app development efforts, I (Michael) created an app that uses GPS data to map
certain points. This app was made available in the Android Play Store, but to try to expand the
availability of the app, I submitted it to the Amazon App Store. Unlike Android, Amazon reviews
the apps submitted to them before they make them available. They rejected it because it didn’t
work! I couldn’t believe it. It always worked for me. However, they were testing it indoors where
it never got a GPS reading, and therefore nothing worked. My design didn’t account for this
possibility, and the entire functionality was dependent on getting a GPS reading. Realizing that
much of the app’s functionality did not require the GPS, I redesigned it to handle the situation,
and Amazon eventually accepted it. However, if this happened to a user, you may not get a sec-
ond chance—or worse, the user might write a scathing review of your app.

 A second issue to be aware of is time delays. To access a hardware component you must use the
component’s Application Program Interface (API). The component may take some time to turn
on and respond with the information you need. If this delay is significant, it may impact the
user experience in such a way that your app is viewed negatively. For example, the GPS system
takes time to acquire enough satellite signals to accurately locate your device. This could take
more than a minute. Stopping app function until this happens should be avoided if possible.
If the user is left waiting for the device to respond, the screen may time out. This issue may be
encountered even if you did everything properly and turned off the services when the app is
about to be sent to the background, and then turned them on again when the user re-opens
the app. However, if the activation of the device takes time, your app will end up hanging
every time it returns from the background. This vicious circle will not please the user. The
proper solution to this particular problem is to use a separate execution thread to do the initial-
ization, thus allowing the user to interact with other parts of your app while the services are
being activated.

 A final important issue with the use of hardware devices is accuracy. There are several aspects
of this issue. First, the accuracy of the component can differ among manufacturers. Consider
what the minimal level of accuracy is needed for effective use of your app, and design for that.

97803e21947864_Book 1.indb 20 11/21/13 2:56 PM

ptg11524036

21Device Differences

Be sure to give the user options if the required level of accuracy is not available. Second, accu-
racy often takes time. For example, to find the location of the device within a few hundred
meters is often very quick. However, accuracy of a few feet often takes much more time. What
is the required level of accuracy for your app’s functionality? What can the user do if the device
cannot achieve this? How quick does the acquisition of location need to be? All are important
considerations when you are designing the app. A very good design strategy when you need
better accuracy is to keep the user informed of progress. The Google Maps app provides an
example of this. When finding your location on the map, the app first shows a big blue circle
that gets progressively smaller as the accuracy improves. Finally, how the device returns data to
the app may impact the level of accuracy your app can access. Again, using GPS as an example,
the number of digits reported for the latitude and longitude coordinates dictate the level of
accuracy of those coordinates. In some cases, the number of digits reported can differ. This is
primarily an issue for the Android platform because it can differ among versions of the
Android OS.

 Device Differences
 Android devices (phones and tablets) and iOS phones and tablets each have a unique set of
hardware and software capabilities that make the way the user interacts with the device differ-
ent for each. Again, to fully capture the device’s capabilities and not degrade the user experi-
ence, you must design for those unique characteristics. Remember, users can and will do things
you are not expecting. Even if it makes no sense to you, they will do it! If the app crashes or
loses important data because of something they did, it does not matter: IT IS YOUR FAULT!
Plan accordingly.

 It’s Your Fault!
 I (Michael) have an app that uses GPS data to map certain points. Against my better judgment,
I was asked to allow the manual entry of GPS coordinates for the app. One user contacted me
about why his app was always crashing when he tried to display the map. We went back and
forth on potential fixes. (He really liked the app and wanted to use it. Most users would just
delete your app). I could not figure it out, so I finally asked him to send me his data. He wasn’t
entering GPS coordinates! He just entered information about the location. I assumed that my
users would know to enter the exact GPS coordinates, not just the location name without
exact coordinates. I had to add an error message to the manual location entry to handle the
situation. You never know what a user is going to do!

 Android
 Android devices originally used four hardware buttons (see Figure 2.4) to support the user’s
use of the device. These buttons were the Home button, the Menu button, the Search button,
and the Back button. The user could press any of these buttons at any time during use of your
app, which would impact the functioning of your app. The Home and Back buttons worked

97803e21947864_Book 1.indb 21 11/21/13 2:56 PM

ptg11524036

22 Chapter 2 App Design Issues and Considerations

independently of your code, whereas the Menu and Search buttons provided functionality only
if your app was specifically coded to use these buttons.

 Figure 2.4 Android hardware buttons.

 However, more recent Android devices (running Android 3.0, API 11 and greater) have replaced
these buttons with virtual buttons at the bottom of the screen and an action bar at the top of
the screen (Figures 2.5 and 2.6 , respectively). The Back and Home virtual buttons remain the
same in both form and function. However, the Menu and Search buttons were eliminated, and
a Recents virtual button was added. The Recents button shows the user’s recently used apps.
The action bar displays the app’s icon and title and the menu. Menu items will be displayed
with an icon (if defined). If there are too many menu items to be displayed with an icon, the
extra menu items are accessible through the three vertical dots on the right side of the menu
bar. If an app is targeting older versions of Android as well as newer, the action bar presents
only the three dots at the far right. When pressed, these dots perform the same function as the
Menu button.

 Figure 2.5 Android virtual buttons.

 Figure 2.6 Android action bar.

 The Home button immediately moves your app to the Stopped state. This causes the onPause
and onStop methods to execute. It will not destroy the app unless it needs the system
resources. This means you must pay attention to these events even though you may not be
anticipating this behavior when your app is in use.

 The Back button immediately goes back one action or activity. This can have several impli-
cations for your code. For example, if the user is looking at an activity and presses the Back
button, the visible activity will be immediately moved to the Stopped state (causing the
 onPause and onStop methods to execute). It will move the previous activity into the Running

97803e21947864_Book 1.indb 22 11/21/13 2:56 PM

ptg11524036

23Introducing Your First App

state. This will cause the onStart and onResume methods to execute for that activity. If
your activity has displayed a pop-up, the activity is currently in the Paused state (because it
is partially visible). Pressing the Back button will hide the pop-up and cause the onResume
method to execute, and your activity will be placed in the running state. If the soft keyboard is
displayed, your app is also in the Paused state. Pressing the Back button will hide the keyboard
and again put your activity in the Running state.

 If the user presses the Menu button, your app will not do anything unless you have specifically
programmed it to have a menu. Menus can be useful ways to provide the user with access to
functionality that is not used as the normal course of events in using your app; thus, you don’t
want to waste valuable screen real estate to provide access to that functionality.

 Finally, the Search button also does nothing unless you code it. You can use this button to
allow the user to search for information within your app.

 The hardware/virtual buttons provided by Android devices either have an impact on your app
or can be used to extend the functionality of your app. In either case it is important to plan for
the impact of these buttons when designing your app.

 iOS
 The primary hardware button of concern on iOS devices is the Home button. This button
immediately moves any app presently running to the background. The viewWillDisappear:,
applicationWillResignActive: , and applicationDidEnterBackground : methods will all
be called. Plan your app so that this action will not cause problems.

 Both Android and iOS have a button that puts the device to sleep or reboots it. This action also
must be handled. Fortunately, the same methods that put the app in the background for other
actions are executed so, typically, no additional programming is required to prepare for this.

 Introducing Your First App
 To learn both Android and iOS design and development, you will build the same app on each
platform. Building the same app on both platforms is useful for understanding differences and
similarities between the platforms. The app you will build is called MyContactList . Building a
contact list app is a good way to learn mobile development for two reasons. First, its purpose
and function is generally understood, so a significant part of any application development
effort (understanding the functional requirements) does not need to be explained. Second, a
contact list app requires utilizing many basic and advanced features of mobile development;
therefore, it is very useful in providing a context for learning these concepts.

 The MyContactList app consists of four different screens. Each screen is used to illustrate
basic app development concepts you will use in almost any subsequent app you develop.
Additionally, you’ll learn how to navigate between screens in an app.

97803e21947864_Book 1.indb 23 11/21/13 2:56 PM

ptg11524036

24 Chapter 2 App Design Issues and Considerations

 Contact Screen
 The contact screen shown in Figure 2.7 is used to enter, edit, and save information about
people in your contact list. While developing this screen, you learn some of the fundamen-
tal concepts of mobile user interface design and data entry. Later on, you use this screen as
a way to learn how to create and store data in a database on a mobile platform. Finally, the
contact screen shows you how to integrate hardware capabilities into an application by using
the device’s camera to capture a contact’s picture and to make a phone call by tapping the
contact’s phone number.

 Figure 2.7 The Contact screen.

 Contact List Screen
 The contact list (see Figure 2.8) is used to search for basic contact information and allow selec-
tion of a contact for further action (for example, editing and deleting). Lists are very important
components of many apps on both Android and iOS. Developing this screen teaches you how

97803e21947864_Book 1.indb 24 11/21/13 2:56 PM

ptg11524036

25Introducing Your First App

to integrate them into any future app. This screen also demonstrates how to access information
provided by hardware components of the device.

 Figure 2.8 The Contact List screen.

 Map Screen
 The map screen (see Figure 2.9) is used to display the recorded location of a single contact or
all your contacts on a map with a pin. The screen also demonstrates how to display the device’s
present location on the map and how to switch between different map views. The usefulness
and importance of maps on mobile devices needs no further explanation. Through the devel-
opment of this screen you learn how to integrate mapping into your apps. Additionally, the
screen will be used to demonstrate another approach to accessing sensor information.

97803e21947864_Book 1.indb 25 11/21/13 2:56 PM

ptg11524036

26 Chapter 2 App Design Issues and Considerations

 Settings Screen
 The Settings screen (see Figure 2.10) is used to set the sort order for the contacts in the Contact
List. In developing this screen, you learn to use a method of data persistence designed for captur-
ing and storing individual pieces of data. This type of data persistence is often used to capture
user preferences for an app. You also learn to use a different type of display widget (view).

 Summary
 App development is different from traditional software development. You must design to take
advantage of, and be aware of, the impact of the mobile operating system and the hardware
that the app is running on. If you do not design your app to account for these differences in the
device, you will ensure that your app does not get much use. Android and iOS devices have many
similarities and differences that require planning when you are developing an app that will run
on both device families. To learn both platforms and learn the differences between them, you will
develop the same app for both platforms in the next two sections of the book.

 Figure 2.9 The Map screen.

97803e21947864_Book 1.indb 26 11/21/13 2:56 PM

ptg11524036

27Exercises

 Exercises
 1. Find an app that runs on both platforms. Download and run it. Identify the similarities

and differences between the platforms.

 2. Find out what uses the most battery power on the mobile device. On Android find the
battery usage information. This can be in different places on different Android devices
but is typically in the Settings app. Scroll through the list of power draws. What requires
the most? What requires the least? Note: This feature is not available on iOS.

 3. Open an app that uses the GPS (for example, Google Maps). Look at the status bar at the
top of the device. What icons are there? What are they doing? Watch until the device
goes to black and then turn it on again. What changes occurred in the status icons? Now
switch to the home screen. What happened to the status icons?

 Figure 2.10 The Settings screen.

97803e21947864_Book 1.indb 27 11/21/13 2:56 PM

ptg11524036

This page intentionally left blank

ptg11524036

 Part II
 Developing the Android App

Chapter 3 Using Eclipse for Android Development 31

 Chapter 4 Android Navigation and Interface Design 55

Chapter 5 Persistent Data in Android 89

Chapter 6 Lists in Android: Navigation and
Information Display 115

Chapter 7 Maps and Location in Android 145

Chapter 8 Access to Hardware and Sensors in Android 173

97803e21947864_Book 1.indb 29 11/21/13 2:56 PM

ptg11524036

This page intentionally left blank

ptg11524036

 3
 Using Eclipse for Android

Development

 This chapter is an introduction to building a complete Android app. The chapter includes creating a
new app project, exploring the components of an Android app, setting up the emulator to run and test
apps, and building a variation of the traditional Hello World app. This and the following chapters in
this part assume that you have access to Eclipse and that it is set up for Android development. If this
is not the case, refer to Appendix A , “Installing Eclipse and Setup for Android Development” before
continuing.

 Starting a New Project
 Eclipse is a powerful, open source, integrated development environment (IDE) that facilitates
the creation of desktop, mobile, and web applications. Eclipse is a highly versatile and adapt-
able tool. Many types of applications and programming languages can be used by adding differ-
ent “plug-ins.” For example, plug-ins are available for a very large number of programming
languages as diverse as COBOL, PHP, Java, Ruby, and C++, to name a few. Additionally, plug-
ins provide the capability to develop for different platforms, such as Android, Blackberry, and
Windows. Many of the tools in the Eclipse IDE will be explained through the act of developing
an Android app.

 Android is a mobile operating system designed for smartphones and tablets. The operating
system is very powerful, enabling access to a diverse set of hardware resources on a smartphone
or tablet. Android is provided by Google and is continually updated, improved, and extended.
This makes the development of apps for Android smartphones and tablets both exciting and
challenging. As with Eclipse, the many features of the Android environment are best explained
through the act of developing an app.

97803e21947864_Book 1.indb 31 11/21/13 2:56 PM

ptg11524036

32 Chapter 3 Using Eclipse for Android Development

 Setting Up the Workspace
 Eclipse uses the concept of a workspace for organizing projects. Because Eclipse can be used to
develop many types of applications, this is very useful. A workspace, in reality, is just a folder
on some drive on your computer. The folder contains the application’s code and resources,
code libraries used by the application (or references to them), and metadata that is used to keep
track of environment information for the workspace.

 To begin, run Eclipse. The Workspace Launcher dialog window opens, asking which workspace
you want to use. The default workspace (or last used) is displayed in the dialog window’s text
box. Most IDEs are designed with the idea that developers are going to be working on the same
machine each time they work on a project. This can cause problems in the education environ-
ment where students do not have the ability to work on the same machine and/or store their
work on the machine they are currently working on. If you are using your own machine, you
can skip to the next section; your workspace was created when you installed Eclipse and is
ready to go. However, if you are working in an environment where you cannot use the same
machine each time, you need to set up a workspace on either a flash drive or on a network
drive. Determine which of these options is best for your situation and perform the following
steps:

 1. Create a folder in your selected location named workspace .

 2. Go back to the Workspace Launcher and browse to your new folder. Click OK.

 Often in a situation where you change the workspace to a location not on the machine
that Eclipse is installed on, Eclipse will not be able to find the Android SDK. If it cannot
find the SDK, a dialog window opens. If this happens, you will have to tell Eclipse where
the files are located by performing the next steps.

 3. Click Open Preferences on the dialog window and browse to the sdk folder. This is
usually located in the .android folder. Click Apply.

 The available Android versions should be displayed in the window.

 4. Click OK to close the dialog window. Your workspace is now ready to begin Android
development.

 Creating the Project
 The traditional beginning tutorial for many different languages and development platforms
is “Hello World.” Your first Android app will be a slightly modified “Hello World” app. In
Eclipse, all Android apps are created within a project. To create your first app, you will have to
create your first project. Creating a new project requires stepping through a series of windows
and making choices to configure your app. To get started, from Eclipse’s main menu choose
File > New > Android Application Project. You should see the New Android Application dialog
window, as shown in Figure 3.1 .

97803e21947864_Book 1.indb 32 11/21/13 2:56 PM

ptg11524036

33Starting a New Project

 Figure 3.1 Initial new Android application window configured for “Hello World.”

 Fill out the screen as shown. The application name is displayed on the phone’s screen as the
name of the app. You can use spaces if you want. As you type the name, the project name and
package name will be completed. There are no spaces allowed in these items. The wizard will
remove them as you type. Don’t put them back in either of these fields. The package name is
important. For this initial project you don’t need to change the default. However, if you are
building an app for sale, in place of “example” you should put your company name. This iden-
tifier will be used in the Play Store to link your apps to the services they use and connect all
your apps.

 Next, click the Minimum Required SDK drop-down. A list of potential Android SDKs are listed.
SDK stands for Software Development Kit, and it is a set of tools and code libraries used to write
software for a specific platform. Each release of the Android OS is associated with an SDK so
that programmers can write code for that platform. An application programming interface (API)
is a set of routines that allow a program (app) to access the resources of the operating system
to provide functionality to the user. The minimum required SDK determines what phones
and other Android devices will be able to install your app. (Phones and tablets using Android
operating systems earlier than this selection will not even see your app in the Play Store.) This
selection will also determine the features you can program into your app. The recommended
minimum is the default: Froyo API 8 . An app that has this minimum will be accessible to more
than 90% of the devices “in the wild.”

97803e21947864_Book 1.indb 33 11/21/13 2:56 PM

ptg11524036

34 Chapter 3 Using Eclipse for Android Development

 The Target SDK should usually be set to the latest version of the Android operating system. At
the writing of this book, that version is the Jelly Bean (API 17). After you release an app, you
should periodically update these values and recompile your app as new versions of Android
are released. At times, new versions of the operating system can affect the performance of your
app, so it is best to keep the app up to date. The Compile With target should also be the
latest SDK.

 Themes are a useful way to ensure a consistent look for your app. However, because this is an
introduction you will not be using them in this book. Click the drop-down and select None as
your theme.

 After you have verified that your selections match those in Figure 3.1 , click the Next button
and the Configure Project window will be displayed. You should accept the defaults on this
screen. After you learn the app creation process, you may want to modify the default settings
to better match your requirements. However, by using the defaults, some work is done for you
that can easily be changed later as needed. Click the Next button to display the Configure
Launcher Icon window.

 The Configure Launcher Icon window allows you to associate an icon with your app that will
be displayed on the phone’s screen along with the app name. Notice the different sizes of the
icons. If you are providing an icon for your app, you will have to supply several sizes of the
same picture. This is because Android apps can run on any Android device that meets the app’s
SDK requirements. However, these devices can have different screen resolutions and different
screen sizes. By supplying different icon sizes, the app will pick the one that best matches the
device it is running on. This helps ensure that your app will show up as you design it, regard-
less of the characteristics of the device it is running on. Suggested sizes for app icons are 32×32,
48×48, 72×72, 96×96, and 144×144 pixels for low to extra high density screens. Accept the
default icon for this app by clicking the Next button.

 The Create Activity window is the next step in configuring your project. An Activity is a core
component of any Android application. Activities are typically associated with a visible screen.
Most of the core functionality of an app is provided by an activity and its associated screen
(called a layout). Click among the different activity options. Notice that when you have selected
some of them, the Next button is disabled. The choices are limited by your choice of minimum
and target SDK. Eclipse won’t let you use features that will not work on the devices you
targeted. In this case, because you selected API 8 as the minimum SDK that your app would be
allowed to run on, some activity types are not available, even though they are available in the
target SDK you selected.

 From the list of possible activities, choose Blank Activity and click the Next button. The Blank
Activity window is displayed (Figure 3.2). This allows us to configure the first Activity in our
app. With this screen we can change the name of the activities we create. In the Activity
Name text box, delete MainActivity and type HelloWorldActivity. Notice below Activity Name
is Layout Name. As you typed in the activity name, the text in this box changed to reflect
the text you entered. A layout is an XML file that provides the user interface for the activity.
Layouts are discussed in detail later. For now, just remember that every activity has an associ-
ated layout file.

97803e21947864_Book 1.indb 34 11/21/13 2:56 PM

ptg11524036

35Starting a New Project

 Figure 3.2 Blank Activity window with default selections.

 The final item on this page is Navigation Type. Select it and click among the options. Notice
that just like the Create Activity window, you are not allowed to use some navigation types.
Again this is based on the SDK choices you made earlier. Select None as your Navigation Type
and click Finish. Your app project is created! Depending on the capability of your computer, it
may take some time to create the project. When Eclipse has finished creating your project, your
Eclipse environment should look like Figure 3.3 .

 Components of the IDE
 Many of the items in the IDE will be explained as needed. For now you will examine just a
few. The top center section is the Editor . Much of the development work is done here, includ-
ing the UI design and writing code. It should currently be displaying the layout for the
HelloWorldActivity in Graphical Layout mode. You can switch between graphical layout and
the XML code that generates the layout with the tabs below the layout. One tab will always say
Graphical Layout. The other will be the filename of the layout. In this case it is activity_hello-
world.xml.

97803e21947864_Book 1.indb 35 11/21/13 2:56 PM

ptg11524036

36 Chapter 3 Using Eclipse for Android Development

 The left side of the IDE shows the Package Explorer. The Package Explorer displays the structure
of the Android app and is used to move between different components of the app. Many of
these items will be generated for you, and many others you will work with as you create your
app. The src folder will contain all the Java code files for the app. Each file typically represents
one class. Double-click the folder and its subfolders until you see HelloWorldActivity.java. This
is where the code to create the activity’s functionality is written. Double-click the HelloWorld.
java file. The file contents are displayed in the editor with some Java code listed. This code is
explained later.

 Next, look for the res folder in the Package Explorer. This folder contains a number of folders
that all contain a different kind of resource file needed for your Android app. One very impor-
tant note about resource files: There are no capital letters allowed in the file names! Double-
click through the drawable-xxx folders. The drawable folders are for images. Android uses
Portable Network Graphics (PNG) files for its images. Notice the ic_launcher.png file is in all
the drawable folders except the drawable-lhdp folder. Each one of these files is the launcher
icon in a different size to match the size recommendations for different screen resolutions.

 Figure 3.3 Eclipse with the newly created Hello World project.

97803e21947864_Book 1.indb 36 11/21/13 2:56 PM

ptg11524036

37Starting a New Project

The lhdp folder does not contain an icon because no Android devices with low resolution are
available with an API 8 or higher. When your app is installed on a device, Android automati-
cally uses the one appropriate for the device it is installed in by selecting it from the correct
folder.

 Next is the layout folder. This folder holds all the layouts for the user interface of your app. The
menu folder holds the menu items to be displayed in your app when a user clicks the device’s
menu button. Menu functionality is not required for an app, and this book will not work
with them.

 The final set of folders is that of the values folders. Double-click the values folder. Three XML
files will be displayed: dimens.xml, strings.xml, and styles.xml. The values files hold configu-
ration data for an Android app. Android uses this information to limit the hard-coding of
potentially changeable data. For example, the dimens.xml file could hold a value for screen
title size that could be reused on each layout in the app. If you later decide that you want the
screen title size to be different, you only have to change the value in the dimens.xml file and it
automatically applies the new size to all titles that use that dimension. The values folders with
a dash and number or other information are for values to be used for specific versions of the
Android operating system. This enables the developer to take advantage of different OS capa-
bilities within the same app. Some common values files are described below:

 ■ dimens.xml—Values for the display size of items in a layout.

 ■ color.xml—Values for the displayed color of item in a layout.

 ■ strings.xml—Values for text.

 ■ array.xml—Defines string arrays and the values in those arrays.

 ■ ids.xml—IDs that cannot be reused by items in layouts.

 The Android Manifest
 The final and very important item in the Package Explorer that we will examine is the
AndroidManifest.xml file. The manifest file is not in a folder but is listed as one of the folder
independent files following all the folders in the project. Double-click this file. The Manifest
editor will be displayed in the editor. The manifest is used to configure the whole app and tell
the device it is installed on what it can and should be able to do. There are multiple tabs (at
the bottom of the editor) associated with the manifest. These are used to configure different
aspects of your app. The Manifest tab (which is the initial tab open) includes several important
elements. First, note the Version Code and Version Name elements. Version code is an integer
value. It is used to indicate that there is a new version of the app available. Increasing the
value enables the Play Store to notify users of the app that a new version is available. It also
controls the install of the upgrade so that no user data is lost during an upgrade. The Version
Name is the displayed version of your app. Beyond that it is nonfunctioning. However, it is
good practice to have a consistent approach to changing this so that you know what version
of the app is at issue when communicating with users about their problems with the app.
Click Uses Sdk. The current selections for minimum and target SDK are displayed. These can

97803e21947864_Book 1.indb 37 11/21/13 2:56 PM

ptg11524036

38 Chapter 3 Using Eclipse for Android Development

be modified here. Next click the Application tab at the bottom of the editor. This tab provides
the capability to configure specific operational and display elements of the app. Finally, click
the AndroidManifest.xml tab. The selections made in the editors generate code that is displayed
here.

 Interpreting the XML

 Although the tabs in the Manifest editor can be used to create a basic configuration of the
manifest, the ability to read and manipulate XML is a critical skill for the Android app devel-
oper. Modifying a manifest to allow your app to do more advanced behaviors is common,
and most online help on doing so, either from the Android Developer site or developer
forums, is provided in XML. To get started, take a look at the manifest components in the
AndroidManifest.xml file (Listing 3.1).

 Listing 3.1 Manifest XML

 <? xml version= " 1.0 " encoding= " utf - 8 " ?>
 //1
 < manifest xmlns:android= " http :// schemas.android.com / apk / res / android "
 package= " com.example.helloworld "
 android:versionCode= " 1 "
 android:versionName= " 1.0 " >
 //2
 < uses - sdk
 android:minSdkVersion= " 8 "
 android:targetSdkVersion= " 17 " />
 //3
 < application
 android:allowBackup= " true "
 android:icon= " @ drawable / ic _ launcher "
 android:label= " @ string / app _ name "
 android:theme= " @ style / AppTheme " >
 //4
 < activity
 android:name= " com.example.helloworld.HelloWorldActivity "
 android:label= " @ string / app _ name " >
 //5
 < intent - filter >
 //6
 < action android:name= " android.intent.action.MAIN " />
 //7
 < category android:name= " android.intent.category.LAUNCHER " />
 </ intent - filter >
 </ activity >
 </ application >

 </ manifest >

97803e21947864_Book 1.indb 38 11/21/13 2:56 PM

ptg11524036

39Starting a New Project

 The manifest contains a number of XML elements. Those elements and their attributes define
basic operational aspects of your app. Refer to the numbers in Listing 3.1 to see the complete
code associated with each element explanation below.

 1. The <manifest> component is the root element. The attributes associated with this
element define the application package, version code, and version name (as well as
others).

 2. The <uses-sdk> element and its attributes define the minimum and target SDKs for
the app.

 3. The <application> element has both attributes and child elements that configure how
the app works. Application attributes in this manifest define the app icon, theme, and
name. Each activity in an app must have an entry in the <application> element. In our
manifest there is one activity: the one created when we created the project. Its attributes
identify the Java class file for the activity and the display name of the activity. Currently,
that name is the same as the app’s name.

 4. The <activity> element tells the operating system that an activity has permission to
run in your application. All activities used in an app must be defined in the manifest. If
they are not, the app will crash when the user navigates to that activity. In this element
the Java source file for the activity and the activity’s title are identified.

 5. A child element of the <activity> element, the <intent-filter> element, defines
what the Android OS should do with this activity. Not all activities will have an intent-
filter. Specifically, activities that you want users to launch when they are using the app
do not need intent-filters. However, for this app you want this activity to be displayed
when the user runs it.

 6. Therefore, the <action> tag identifies the activity as the main or first activity to run.

 7. The <category> tag tells the OS to use the app launcher to start this activity.

 Configuring the Emulator
 Now that you have some understanding of the development environment, you are almost
ready to start creating the app. Don’t worry. Future projects will take less time to set up. You
could start coding at this point, but until you tell Eclipse how to execute the app, you will not
be able to see your results. Therefore, the next step will be to set up the test environment.

 Android apps may be tested on either the emulator provided by the Eclipse IDE or on an
Android device. The emulator is a program that simulates an Android device. If you choose to
test on the emulator, you should also test on several varieties of real devices before you publish
your app. Real devices often perform differently than the emulator. If you do not test on a real
device, you will likely have many unhappy users.

 To set up the emulator, we first must set up an Android Virtual Device (AVD). An AVD is a soft-
ware replication of one or more types of Android devices. Multiple AVDs with different charac-
teristics may be set up for testing. To set up an AVD we use the AVD Manager. From the main

97803e21947864_Book 1.indb 39 11/21/13 2:56 PM

ptg11524036

40 Chapter 3 Using Eclipse for Android Development

menu select Window > Android Device Manager to display the Android Virtual Device Manager
(Figure 3.4).

 Figure 3.4 Android Device Manager in initial state.

 The manager opens with the Virtual Devices tab displayed. Click the Device Definitions tab.
This displays all the device configurations your system knows about. Scroll through these to see
how many devices your app could run on. Press the Device Definitions tab and then click the
New button. The Create New Android Virtual Device (AVD) window is displayed. Complete the
device definition as follows, changing only these options:

 AVD Name: MyTestDevice

 Device: 3.2 QVGA (ADP2) (320 x 480: mdpi)

 Target: Android 4 2.2 – API Level 17

 SD Card: Size 1024 MiB

 When you click the Device drop-down, a large number of devices are available. Scroll down the
list to find the device: 3.2 QVGA (ADP2) (320 x 480: mdpi) and select it. After you’ve selected
the device, choose ARM from the CPU/ABI drop-down. Most devices have an SD card. However,
if you want to test your app for those that do not, don’t change anything for the SD Card
option. Click OK. The new AVD will be displayed in the Android Virtual Devices tab. Click the
new AVD named MyTestDevice that now shows in the existing AVD list, and the buttons on

97803e21947864_Book 1.indb 40 11/21/13 2:56 PM

ptg11524036

41Starting a New Project

the right of the AVD Manager will be enabled. Click the Start button and the Launch Options
window will be displayed. Leave all the defaults. Checking the Scale Display to Real Size box
will show the virtual device at the size of the real device. However, this can be hard to use
during initial development. Checking the Wipe User Data box will wipe out any data created in
a previous session. It is useful to leave the data intact so that you will not have to reenter data
every time you want to test some aspect of the app.

 Note
 I like to start my development with one of the smaller devices because I find it easier to scale
up when developing the user interface than to scale down. Also, I like to pick a lower API for
the device for similar reasons. Later, you can create different AVDs to test different device
configurations.

 Click Launch. The Start Android Emulator window will display and start loading the AVD.
When it is done, the virtual device displays (Figure 3.5) and begins further loading. The speed
at which the device loads depends greatly on your computer. At times it can be quite slow. If I
am testing with the emulator, my first task when beginning any development session is to start
the virtual device so that it is ready when I am. After the AVD is displayed, you can close the
Start Android Emulator and AVD Manager windows. The AVD will remain running.

 Figure 3.5 Android Emulator at initial launch.

97803e21947864_Book 1.indb 41 11/21/13 2:56 PM

ptg11524036

42 Chapter 3 Using Eclipse for Android Development

 Setting Up Run Configurations

 The final step in setting up the test environment is to tell our app to use this newly created
AVD. To do this you need to set up a Run Configurations.

 1. From the main menu select Run > Run Configurations. The Run Configurations window
is displayed.

 2. Click Android Application in the left side of the screen. Then click the New button,
which is the leftmost button above the text box that says Type Filter Text. The window
changes, showing configuration options. Change the name to HelloWorldRunConfig.

 3. Use the Browse button to select your HelloWorld project. Click the Launch Default
Activity option button.

 4. Click the Target tab. Click the box next to MyTestDevice. When you start testing on
a real device, you will need to click the option button next to Always Prompt to Pick
Device. This displays a device selection window where you can pick the device you want
to test on.

 5. Click the Apply button and then the Close button. You are ready to begin coding
your app!

 Coding the Interface
 As mentioned earlier, the interface for any Android app is created through the use of a layout
file. A layout file is an XML file that contains the XML used to create the objects and controls
that the user can interact with. The first step in coding the HelloWorld app is to modify the
layout so that it has some controls that the user can interact with. Your modifications will
be simple. You will make the app take a name entered by the user and display Hello [entered
name] after a button click.

 Double-click the activity_hello_world.xml file in the layout folder of the Package Explorer to
begin work coding the interface. If it is already open in the editor, click the activity_hello_
world.xml tab at the top of the editor (Figure 3.6 , #1). If the Graphical Layout is displayed,
click the activity_hello_world.xml tab at the bottom of the editor (Figure 3.6 , #2). The XML
code that creates the user interface is displayed with two elements in it. The root element is a
RelativeLayout. Because Android devices have so many screen sizes and resolutions, it is often
best to design the UI components as relative to one another rather than designing them as a
fixed position. Because the RelativeLayout is the root, it encompasses the whole screen. You
must have only one layout root in an Android layout file. All other items are children of this
root element.

 Examine the attributes of the RelativeLayout element (Listing 3.2). A closer look at the attri-
butes reveals a certain structure. Attributes have the format library:attribute name =
"attribute value" . First, all the attributes in the listing start with android: This indicates
that the attribute is associated with Android SDK library and that is where the compiler should
look for information on what to do. Other libraries are available from third parties. Adding

97803e21947864_Book 1.indb 42 11/21/13 2:56 PM

ptg11524036

43Coding the Interface

other libraries will be covered later in this text. The attribute name and values differ based on
the element to which they are applied.

 Figure 3.6 Editor and layout tabs.

 Listing 3.2 Layout XML

 <RelativeLayout xmlns:android ="http://schemas.android.com/apk/res/android"
 xmlns:tools ="http://schemas.android.com/tools"
 //1
 android:layout_width ="match_parent"
 android:layout_height ="match_parent"
 //2
 android:paddingBottom ="@dimen/activity_vertical_margin"
 android:paddingLeft ="@dimen/activity_horizontal_margin"
 android:paddingRight ="@dimen/activity_horizontal_margin"
 android:paddingTop ="@dimen/activity_vertical_margin"
 tools:context =".MainActivity" >
 //3
 <TextView
 android:layout_width ="wrap_content"
 android:layout_height ="wrap_content"
 android:text ="@string/hello_world" />

 </ RelativeLayout >

97803e21947864_Book 1.indb 43 11/21/13 2:56 PM

ptg11524036

44 Chapter 3 Using Eclipse for Android Development

 1. The first attributes of interest in the RelativeLayout are android:layout_
width="match_parent" and android:layout_height="match_parent" . These
attributes define the size of the element. In this case the value "match_parent" indicates
that the layout should be the height and width of the device screen. If a child element of
RelativeLayout has this value for either layout_height or layout_width, it will fill up
as much of the RelativeLayout as it can.

 2. The next few attributes: paddingRight , paddingLeft , paddingBottom , and
 paddingTop , all tell Android that it should not fill the entire screen with the
RelativeLayout. Instead, there should be blank space between the edge of the screen and
the edge of the layout. The amount of space is dictated by the value. The values in these
attributes are your first introduction to the use of the XML files in the values folder. To
refer to values from these XML files, Android also has a specific structure. That structure
is "@xml_file_name/value_name" . All values are enclosed in quotation marks. The
value for the attribute android:paddingBottom is "@dimen/activity_vertical_
margin" . This tells Android it should use the value named activity_vertical_margin
from the dimens.xml file. Double-click the dimens.xml file in the values folder in the
Package Explorer. The file will open to the Resources tab. Click the dimens.xml tab at the
bottom of the editor. This displays the XML used to define the dimensions. The <dimen>
tag is used to define each dimension. Each dimension has a name attribute, a value, and
then a closing tag that looks like this: </dimen> . The value between the beginning tag
and the closing tag is the value that Android uses as the size of the padding.

 Valid dimensions for Android include px (pixels), in (inches), mm (millimeters), pt
(points), dp / dip (density-independent pixels), and sp (scale-independent pixels). It
is generally recommended that dp be used for most dimensions and sp be used for
specifying font sizes. These two units of measure are relative to screen density. They
help keep your UI consistent among different devices. The reason that the sp unit is
recommended for fonts is because it also scales to the user’s preference in font size.

 3. The only child element of the RelativeLayout, and thus the only item on the screen, is
a TextView. TextView is Android’s version of a label. It is primarily used to display text.
This element currently has only three attributes. The two size attributes differ from the
RelativeLayout in that they have the value "wrap_content" . This tells Android to size
the TextView to the size of the text displayed in it. The only other attribute tells Android
what text to display. In this case it gets the text from the strings.xml file in the values
folder. Open the strings.xml file and examine the XML to find the “hello_world” item.
Note that its value is “Hello World!”, exactly what is displayed in the running app and
on the Graphical Layout view of the activity_hello_world.xml file. The TextView does
not have any attributes describing its positioning, so Android puts it in the first available
position, which is the very top-left position in the RelativeLayout.

 Switch back to the Graphical Layout view of the activity_hello_world.xml file. At the left of
the layout is a panel titled Palette. Palette contains a set of folders with different components
(called widgets) that can be used to design a user interface. If it is not open, click on the Form
Widgets folder in the Palette. Form Widgets contains a set of widgets for designing the user

97803e21947864_Book 1.indb 44 11/21/13 2:56 PM

ptg11524036

45Coding the Interface

interaction with your app. Hover your mouse over each of the icons to see what type of control
the widget implements. Notice that some controls have multiple versions that enable you to
pick the size that you want for your interface.

 A TextView that displays “Hello World” is already on the layout. This is used to display your
app’s message. However, the size of the text needs to be bigger. To the right of the editor
should be a panel with a tab with the label Outline (Figure 3.7). If this is not present, click
Window > Show View > Outline to display it. The top of the tab should show the structure
of the layout. It should have RelativeLayout as its root and textView1 indented below it. The
TextView should be displaying “Hello World” after it. As widgets are added to the layout, they
are displayed in the structure. This is very useful because sometimes controls are added to the
layout that get lost (not visible) in the Graphical Layout. However, if they are in the layout
they will be displayed in the structure.

 Figure 3.7 Layout Outline and Properties panels.

 Below the structure is the Properties window. If you haven’t clicked anything in the Graphical
Layout, that window will be displaying <No Properties>. Click “Hello World” in the Graphical
Layout. The Properties window should populate with all the attributes that can be set for
a TextView widget. Locate and click the ... button next to the bold attribute Text Size. The
Resource Chooser window is displayed. Two dimensions created when the project was created
are listed (the padding margins). Click the New Dimension button at the bottom of the
Resource Chooser. In the window that opens, enter message_text_size as the dimension name
and 24sp as the value. Click OK until you have closed these two windows. The size of Hello
World! should be increased. Open the dimen.xml file and switch to the XML view to see the

97803e21947864_Book 1.indb 45 11/21/13 2:56 PM

ptg11524036

46 Chapter 3 Using Eclipse for Android Development

dimension you created. Close this file and click back to the activity_hello_world.xml tab.
Switch from Graphical Layout to the XML view and examine the XML changes to the TextView
element. Switch back to the Graphical Layout.

 Note
 The values files are used to hold values that are going to be reused in your app. Unfortunately,
the only way to know what values are available is to open the file and inspect its contents
for the value you’d like to use. We recommend that when you add values, you name them
very clearly and limit the number of values you use to keep it somewhat manageable. Naming
clearly is very important because Eclipse’s code completion capability will list the value names
but not their actual value.

 Locate the Small TextView widget just below the Form Widgets folder label. Click and drag it to
the layout, position it as in Figure 3.8 , and drop it. Notice the green arrows pointing to the left
side of the layout and to the Hello World! TextView. These arrows show what object the widget
is relative to for positioning purposes. Click the XML view (Listing 3.3). A number of changes
have been made to the XML.

 Listing 3.3 Layout XML with TextView Added

 <RelativeLayout xmlns:android ="http://schemas.android.com/apk/res/android"
 xmlns:tools ="http://schemas.android.com/tools"
 android:layout_width ="match_parent"
 android:layout_height ="match_parent"
 android:paddingBottom ="@dimen/activity_vertical_margin"
 android:paddingLeft ="@dimen/activity_horizontal_margin"
 android:paddingRight ="@dimen/activity_horizontal_margin"
 android:paddingTop ="@dimen/activity_vertical_margin"
 tools:context =".HelloWorldActivity" >

 <TextView
 //1
 android:id ="@+id/textView2"
 android:layout_width ="wrap_content"
 android:layout_height ="wrap_content"
 android:text ="@string/hello_world"
 android:textSize ="@dimen/message_text_size" />

 <TextView
 android:id ="@+id/textView1" //2
 android:layout_width ="wrap_content"
 android:layout_height ="wrap_content"
 android:layout_alignLeft ="@+id/textView2" //3
 android:layout_below ="@+id/textView2"

97803e21947864_Book 1.indb 46 11/21/13 2:56 PM

ptg11524036

47Coding the Interface

 android:layout_marginLeft ="19dp" //4
 android:layout_marginTop ="36dp"
 android:text ="Name:" //5
 android:textAppearance ="?android:attr/textAppearanceSmall" /> //6

 </ RelativeLayout >

 1. The Hello World! TextView now has an attribute android:id="@+id/textView2" . To
correctly relatively position the new TextView, Android needed a way to reference it so
it added the ID. The +id tells Android to create the ID for the widget. IDs can be defined
in the ids.xml values file. However, to use these IDs for widgets, you need to define
them prior to use, and they cannot be reused. Using +id enables you to tell Android to
create an ID for the widget as you need it. textView2 is not a very useful ID. It does not
describe what the TextView is used for, so change the ID to textViewDisplay .

 2. The new TextView also has a +id . However, it is different from the first one. +id s may be
reused in different layouts but cannot be reused within the same layout! Next come the
widget size attributes. All items in a layout must contain these attributes.

 3. As the arrows on the Graphical Layout showed, this widget is positioned relative to
the Hello World! TextView. The layout attributes are the XML used to do the relative
positioning. alignLeft tells Android to align this widget’s left edge with the referenced
widget’s left edge. alignBelow tells Android to position the widget below the referenced
widget.

 4. The margin attributes layout_marginLeft and layout_marginTop tell Android how
much space to put between the widget and the referenced widget. Change the left
margin to 20dp and the top margin to 55dp. You will often have to tweak these values to
get the layout to look exactly the way you want it to.

 5. The android:text attribute indicates what text should be displayed. This attribute is
underlined with a yellow triangle on the left edge. This is a warning. Hover over or click
the yellow triangle. The warning is displayed. The value "Small Text" is a hard-coded
value. Android wants all values to be referenced from a value’s XML file. This is for ease
of maintenance. You can change a string value used multiple times just once in the
strings.xml file, and the changes will be made throughout your app. Also, by substituting
a different string’s.xml file, you can adapt your app to different languages more easily.
To simplify this example, leave the string hard-coded but change it to meet your needs.
Delete "Small Text" and replace it with "Name:".

 6. The final attribute in the new TextView is textAppearance . The value for this attribute
references the Android attr.xml file and is used in place of the textSize attribute. The
attr.xml file is a file supplied by the Android SDK. Switch back to the Graphical Layout
view. The TextView you added should now be displaying Name:.

97803e21947864_Book 1.indb 47 11/21/13 2:56 PM

ptg11524036

48 Chapter 3 Using Eclipse for Android Development

 UI Design—Android Versus iOS
 UI design in Android is done through relative positioning of the controls that make up the inter-
face. However, in iPhone and iPad, absolute positioning is used. Absolute position holds the
control to a fixed position on the screen. The use of absolute position makes the design of
the UI easier. Unlike in Android, when you move a control it has no effect on other controls in
the UI. Often in Android, moving one control changes the whole design. This can be frustrating!
When moving or deleting a control in an Android layout, especially if you do this in the XML, be
sure to check the impact of the change in the Graphical Layout.

 Interface design is not without its challenges in iOS. Devices that run iOS have a fixed screen
size, which is controlled by Apple. This enables the use of absolute positioning because all
device screen sizes are known by the developer. However, this means that the UI has to be cre-
ated multiple times for each device that you want your app to run on. These different screens
all run on the same code, so during design, the developer must be sure to be perfectly consis-
tent among the different screens needed.

 Figure 3.8 A Small TextView positioned properly on a Graphical Layout.

97803e21947864_Book 1.indb 48 11/21/13 2:56 PM

ptg11524036

49Coding the Interface

 Locate and click the Text Fields folder in the Palette. A number of widgets for entering infor-
mation are displayed. The widget for entering data in Android is called an EditText. Each of
the EditText widgets listed is configured for the entry of a different type of data. The different
configurations dictate what soft keyboard is displayed when the widget is clicked and, in some
cases, how the text is formatted as it is entered. For example, the EditText with the number 42
in it will display a keyboard with only numbers on it, whereas the EditText with Firstname
Lastname in it will display an alpha character keyboard and it will capitalize each word
entered. Drag the Firstname Lastname EditText to the right of the Name: TextView. As you are
dragging it, pay attention to the green arrows. You want this relative to the Name: TextView,
so there should be only one arrow, and it should point at the TextView. A dotted green line
should go from the bottom of the TextView through the EditText. This aligns the EditText with
the bottom of the TextView.

 Click the Form Widgets folder and drag a Small Button below the EditText. In this case you
want the green arrow pointing to the EditText and the dotted green line going through the
middle of the bottom, from the top of the screen to the bottom, to center it horizontally in the
RelativeLayout.

 Note
 Although Eclipse is a very powerful and useful tool in Android development, the need to make
all items in the UI relative makes designing a layout difficult. We recommend that you use the
Graphical Layout to get the UI approximately correct and then fine-tune in the XML.

 Switch to the XML view for the layout. Locate the EditText element. Change the default
 id to "@+id/editTextName" so that we have some understanding what data that widget is
handling. Change the marginLeft attribute to "5dp" . There are two new attributes. The first
is android:ems . This attribute sets the displayed size of the layout to 10 ems. Ems is a size
measurement equal to the number of capital Ms that would fit into the control. The second
new attribute is android:inputType . This attribute tells Android how you want text handled
as it’s entered and the type of keyboard to display when the user is entering data.

 Locate the Button element. Change the default id to "@+id/buttonDisplay" . There is also a
new attribute in this element: layout_centerHorizontal . This attribute is set to true to tell
Android to center the widget in the parent. Finally, change the text attribute to "Display" .
Change the value in the layout_below attribute to @+id/editTextName to match the change
you made in the EditText element. Switch to the Graphical Layout to see the changes.

 Run the app in the emulator using Run > Run Configurations > HelloWorldRunConfig and
click the Run button to see the layout as it would appear running (Figure 3.9). The first time
you run the emulator, you will have to slide the lock to unlock the device (like a real phone).
Note that the emulator might be behind Eclipse, so you will have to minimize windows or in
some other way bring it to the foreground. The button clicks but does not do anything. For this
you need to write code.

97803e21947864_Book 1.indb 49 11/21/13 2:56 PM

ptg11524036

50 Chapter 3 Using Eclipse for Android Development

 Figure 3.9 Initial run of Hello World.

 Note
 Either close the activity_hello_world.xml file or switch to the XML view after you are done editing
it. The reason is that if you close Eclipse with the layout file open in Graphical mode, Eclipse
will take a long time opening the project the next time you want to work on it.

 Coding App Behavior
 Code to give behavior to the layout is written and stored in the Java class file associated with
the layout. Open the HelloWorldActivity.java file by double-clicking it. If it is already open,
click its tab in the editor. You should see the basic code structure (Listing 3.4).

 Listing 3.4 Initial Activity Code

 //1
 package com.example.helloworld;
 //2
 import android.os.Bundle;
 import android.app.Activity;
 import android.view.Menu;
 //3

97803e21947864_Book 1.indb 50 11/21/13 2:56 PM

ptg11524036

51Coding App Behavior

 public class HelloWorldActivity extends Activity {

 @Override
 //4
 protected void onCreate(Bundle savedInstanceState) {
 super .onCreate(savedInstanceState);
 setContentView(R.layout. activi ty_hello_world);
 }

 @Override
 //5
 public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu; this adds items to the action bar if it is present.
 getMenuInflater().inflate(R.menu. main , menu);
 return true ;
 }
 }

 This code was generated by Eclipse when you created the activity at the start of the HelloWorld
project. It is important to understand what this code does to properly code an activity.

 1. At the top of the file is the keyword “package” followed by com.example.helloworld .
This identifies this class as belonging to the Hello World package. All source Java files (in
src folder) will have this entry as the first code in the file.

 2. After the package line and before any other code are the imports. Click the plus (+) sign
in front of the import android.os.Bundle; line of code. You should now see three
import lines. This code is used to get the source code needed for your activity. The
Activity class provides the functionality required for any class that uses or interacts with
other Activities used in this class. The Menu class provides the functionality for the menu
that is displayed when the user presses the device’s Menu button. The Bundle import
requires a bit more explanation.

 A Bundle is an object for passing data between activities. In this way we can have an
application that can perform some activity based on what another activity has done or
the data it has used. You will use this functionality later in the book. However, Bundle
also performs another very important function. It passes data back to the activity itself.
When the user rotates the device, the displayed activity is destroyed and re-created in the
new orientation. So that the user doesn’t have to start over if this happens, the activity
stores its current state just before it is destroyed in a bundle and passes that data to itself
when it re-creates the activity in the new orientation.

 3. The public class line of code begins the Activity class and declares that this class
is referred to as HelloWorldActivity and that it is a subclass of the SDK-provided
Activity class. Within the class are two methods, onCreate and onCreateOptionsMenu .

97803e21947864_Book 1.indb 51 11/21/13 2:56 PM

ptg11524036

52 Chapter 3 Using Eclipse for Android Development

Before each method declaration is @Overide . This annotation tells the compiler that the
following method is to be used in place of the super class’s method of the same name.

 4. The onCreate method is the first method executed by the Activity when it is started.
The method has a parameter that is of type Bundle named savedInstanceState . This
is the object that contains information on the state of the Activity if it was destroyed in
an orientation change as explained earlier. The next line super.onCreate calls the super
class’s onCreate method. Because this method is overriding the Activity class’s inherited
 onCreate method, it must call that method explicitly to use that functionality to create
the Activity. It is passed the savedInstanceState bundle. The final line of code is
 setContentView(R.layout. activity_hello_world) . This code tells the activity to
use the activity_hello_world.xml file as the layout to be displayed when the activity is
running. It is very important to understand the parameter R.layout. activity_hello_
world . The R parameter tells the compiler that we want to use a resource from the layout
folder named activity_hello_world . Whenever we want to access or manipulate a
resource, it has to be referred to in this manner. However, this does not refer directly to
the res folders; instead it refers to a file generated by the compiler that is named R.java.
To see this file, double-click into the gen folder in the Package Explorer until you see it.
You should not edit this file because it is automatically generated by the compiler. The
 onCreate method will be modified with our code to add further functionality to the
activity.

 5. The onCreateOptionsMenu(Menu menu) method is called when the user clicks the
device’s Menu button. It returns a Boolean (true or false) value indicating whether the
menu was successfully created. The first line of code (getMenuInflator()) gets an object
that can create a menu from the running activity. It then tells it to inflate (create) a
visual representation of the menu based on the main.xml file in the menu resource folder
and refer to it with the name “menu”.

 Adding Code
 Our app has only one function, to display the name entered into the EditText when the
Display button is pressed. Enter the code in Listing 3.5 before the last curly bracket in the activ-
ity Java file:

 Listing 3.5 Display Button Code

 //1
 private void initDisplayButton() {
 Button displayButton = (Button) findViewById(R.id. buttonDisplay); //2
 displayButton.setOnClickListener(new OnClickListener () { //3

 @Override
 public void onClick(View arg0) {

97803e21947864_Book 1.indb 52 11/21/13 2:56 PM

ptg11524036

53Coding App Behavior

 EditText editName = (EditText) findViewById(R.id. editTextName); //4
 TextView textDisplay = (TextView) findViewById(R.id. textViewDisplay); //5
 String nameToDisplay = editName.getText().toString(); //6
 textDisplay.setText("Hello " + nameToDisplay); //7
 }
 });
 }

 This code does the work and illustrates a number of important concepts in Android
development.

 1. This line declares a new method in the HelloWorldActivity class. The method is only
useable by this class (private) and does not return any value (void). The method
signature is initDisplayButton() . The signature, or name, of the method is completely
up to you. However, you should name it to give some idea what it does.

 2. Associate the code with the button on the layout. This line of code declares a variable
of type Button that can hold a reference to a button and then gets the button reference
using the command findViewById . All widgets on a layout are subclasses of the View
class. The method findViewById is used to get a reference to a widget on a layout so
it can be used by the code. The method can return any View object, so you have to use
 (Button) before it to cast the returned View to a Button type before it can be used as a
 Button by the code. Button is underlined in red after you type it in. This is because the
code for the button class is not automatically available in the class. You have to import
it. Fortunately, this is easy. Hover your cursor over the underlined word and a menu will
pop up. Select Import Button... Do this for any other items underlined in red.

 3. Set the button’s listener. There are a number of different listeners for widgets, which gives
great flexibility when coding app behavior. For this button we use an onClickListener .
The code creates a new instance of the listener and then adds a method (public void
onClick(View arg0)) to be executed when the button is clicked.

 4–5. The code for when the button is clicked gets references to the EditText where the name
was entered and the TextView where the message will be displayed.

 6. The name entered by the user is retrieved from the EditText and stored in a String
variable named nameToDisplay .

 7. The text attribute of the TextView is changed to the value of the String variable.

 Notice that initDisplayButton() is underlined in yellow. This is because the method is never
called by the code. To call it and get the behavior associated with the button to execute, you
have to call the method in the onCreate method. After the setContentView line of code enter

 initDisplayButton();

 The yellow underline goes away and your code is done! Run the app in the emulator using Run
> Run Configurations, and click the Run button to test your first app. You could also run your
app using Run > Run or by pressing Ctrl+F11.

97803e21947864_Book 1.indb 53 11/21/13 2:56 PM

ptg11524036

54 Chapter 3 Using Eclipse for Android Development

 Connecting Code to UI—Android Versus iOS
 In both Android and iOS (iPhone and iPad), the user interface (UI) and the code that makes
the UI work are stored in different files. This means that both types of app coding require that
the code has to be linked to the UI in some way. The chapters in this book that cover iOS
explain the process of “wiring up” an interface using the features of the Xcode IDE. However, in
Android, connecting the UI to the code is done entirely in the code itself.

 Whenever some code needs to use a widget on a layout, it has to get a reference to it
using the findViewById command. This requires extra coding but provides great flexibility.
Forgetting to connect the code to the UI widget needed in both operating systems will result in
a runtime error.

 Summary
 Congratulations! You have built your first app. You created an Android project, designed and
coded a user interface, and, finally, made the app do something. Along the way you learned the
process of Android App development, the Eclipse development environment, and the compo-
nents of an Android app.

 Exercises
 1. Change the Hello World app to allow the entering of a first and a last name and display

“Hello firstname lastname !” when the button is clicked. Be sure to label the EditText s to
reflect the new data that is to be input.

 2. Add a Clear button. The Clear button should remove any data in the EditText (s) and
change the display back to “Hello world!”

 3. Create a new Android Virtual Device that uses a bigger device to test your app on a
different screen size. Run the app using the new AVD.

97803e21947864_Book 1.indb 54 11/21/13 2:56 PM

ptg11524036

 4
 Android Navigation and

Interface Design

 App development for mobile devices is, as discussed in Chapter 2 , “App Design Issues and Consider-
ations,” both similar to and different from development for other platforms. Navigation within an app
follows this pattern. Different functionality is provided on different screens (windows in a traditional
environment), and the app designer has to both provide the capacity to switch between those screens
and make it easy and relatively obvious for users to do so when they want or need to access the func-
tionality provided by them. Likewise, screen design is both similar to and different from the traditional
user interface design. In a traditional environment, a window design is made up of a set of visible
objects that give the user the ability to accomplish some component of the overall task. This is the same
in the mobile environment. However, the objects available for design differ in both form and function,
the amount of screen real estate available is much more limited, and often the amount of real estate
available changes among devices that can use your app. This chapter introduces you to many of the
principles and components of interface design and navigation in the Android platform. To learn these
things, the chapter guides you through the development of MyContactList navigation and the develop-
ment of the Contact interface.

 Activities, Layouts, and Intents
 The primary structural components for an Android app are Activities and Layouts . These
objects work together to present a display that the user can interact with. Intents are objects
that are used to switch between activities in an app. All three objects are used as the basis for
the structure of your app. Understanding the role and responsibilities of these objects is very
important to effective development of an Android app.

97803e21947864_Book 1.indb 55 11/21/13 2:56 PM

ptg11524036

56 Chapter 4 Android Navigation and Interface Design

 The Activity Class
 The Activity class is designed to handle a single task that the user can perform. Activities
almost always have a visible component that allows the user to interact with the activity to
perform the task. The Activity class is not directly instantiated in an Android app. Rather,
it is subclassed for every activity that the user needs to perform in the app. These subclasses
are stored as .java files in the app project’s src folder. This allows developers to inherit all
the functionality of the Activity class and add their own unique functionality through Java
code. One of the most important inherited functions of the Activity class is the capability to
respond to life cycle events such as onCreate and onPause (refer to Chapter 2 for a discussion
of the Android life cycle).

 The Activity class has a number of important subclasses. Only two of these subclasses are
used in this book. The first of these is FragmentActivity . Fragments were a new addition to
the Android OS in the HoneyComb version (SDK 11). Fragments allow the developer to include
multiple tasks or panes within a single activity. If you are targeting only versions of Android
later than SDK 11, you’re not likely to use the FragmentActivity subclass because this class is
used to make an app backward compatible to OS versions earlier than 11. Because this book’s
focus is to build apps that may be run on as many devices as possible, SDK 8 is used as the
minimum rather than 11. Therefore, in addition to the Activity class, at times you will need
to use the FragmentActivity class. Map objects require the use of the FragmentActivity
subclass. You will use this class in Chapter 7 , “Maps and Location in Android,” when you
implement the map functionality of your app.

 The second Activity subclass you will use is ListActivity . ListActivity is designed to
specifically support the development of a list interface. A list is a very useful way to present a
large amount of data in a manner that makes it easy for users to navigate through to find the
data they are interested in. The ListFragment class is used in Chapter 6 , “Lists in Android:
Navigation and Information Display,” when you implement the contact list functionality of
your app.

 Layout
 A layout is the visual component of a user interface in Android. The layout is not a class
but rather an XML file that is used to tell the operating system what visual objects are to be
displayed, how those objects are configured, and where those objects should be displayed on
the screen. The XML in the file does use objects. The objects that make up an Android inter-
face are referred to as widgets . Widgets are subclasses of the View class. Android widgets include
widgets to define where other widgets are displayed (for example, RelativeLayout), to directly
interact with the user (for example, RadioButton), and to provide some type of navigation
within the interfaces (for example, ScrollView). Developing an understanding of the layout
XML is a critically important task for the new Android developer.

 Layouts can also be defined at runtime by instantiating the widgets that make up an interface
and configuring them as needed. This can be very useful in some cases. However, designing the
interface is more difficult because you cannot see the layout until you run the app. You will be
designing your interface with XML in this book rather than at runtime.

97803e21947864_Book 1.indb 56 11/21/13 2:56 PM

ptg11524036

57Creating the Interface

 Intents
 An Intent is a class that is used to describe an operation to be performed. Intents are the
primary way in which the developer starts new activities within the app. This is how you will
use them in the app you develop for this book. However, Intents can also be used to commu-
nicate between activities. An Intent is essentially a message that defines an action to be taken
and the data that the action is to be performed on. Intents can be used to start activities or
broadcast both within and outside the app to provide instructions and data to other activities.

 Activities, layouts, and intents are important components of an Android app. You will use all of
them in almost every app you develop.

 Creating the Interface
 The MyContactList app requires four activities and four layouts to provide the functionality
described in Chapter 2 . The app will use Intents to switch between activities and pass data
between these activities. Your first task in creating the MyContactsList app is to make sure you
have access to the image resources provided with this book. You will need four image files.
One image is the app icon (appicon.png) and the other three are used in the app for naviga-
tion (contactlisticon.png, settingsicon.png, mapicon.png). Every app needs a project, and
MyContactList is not different. Your second task is to create a new project.

 Importing a Project
 The completed project for each chapter is available in the online resources for this book
(https://github.com/LearningMobile/BookApps). You can import the project by following these
steps:

 1. Unzip the chapter code.

 2. Create a new project by selecting File > New > Android > Android Project from Existing
Code. Click Next.

 3. Use the Browse button to navigate to the unzipped code folder. Select MyContactList,
check Copy Projects into Workspace, and click Finish.

 The project will be created in your workspace. You will have to set up a Run Configuration to
execute the app. If you don’t want to import the whole project, you can inspect the different
files by navigating through the MyContactList folder.

 Sometimes when importing a project, Eclipse has problems. If your imported project will not
run, do the following:

 1. Right-click the project name and select Properties > Java Build Path.

 2. Click the Order and Export tab.

 3. Check Android Private Libraries. Click OK.

 4. Clean the project (Project > Clean).

97803e21947864_Book 1.indb 57 11/21/13 2:56 PM

https://github.com/LearningMobile/BookApps

ptg11524036

58 Chapter 4 Android Navigation and Interface Design

 Create the Project
 Create a new Android project by selecting File > New > Android Application project.

 1. Use the following values for the first window presented by the project creation wizard:

 Application Name: MyContactList

 Project Name: MyContactList

 Package Name: com.example.mycontactlist

 Minimum Required SDK: API 8

 Target SDK: API 17

 Compile with: API 17

 Theme: None

 2. Click Next. Accept the defaults on this screen by clicking Next again.

 3. On the Configure Launcher Icon window, use the Browse button to select appicon.png
from the location where you placed the resource files (available online). Click Next.

 4. On the Create Activity window, verify that Blank Activity is selected, and click Next.

 5. Change the name of the activity to ContactActivity in the Blank Activity window. Make
sure the navigation type is set to none. The navigation is coded by you later in the
chapter. Click Finish.

 To code the navigation, you need more than one activity. Create three more blank activi-
ties using the following process. Expand your MyContactList project in the Package Explorer.
Expand the src folder. Expand the com.example.mycontactlist folder so that you can see
ContactActivity.java. Right-click com.example.mycontactlist (Figure 4.1).

 Figure 4.1 Adding a new activity.

 1. Select New > Other. The Select a Wizard window displays. Expand the Android section
and double-click on Android Activity.

97803e21947864_Book 1.indb 58 11/21/13 2:56 PM

ptg11524036

59Creating the Interface

 2. Select Blank Activity and click Next. Enter ContactListActivity for the name of the
activity and Contact List as the title (Figure 4.2). Click Finish.

 Figure 4.2 New Activity properly configured.

 3. A new file, ContactListActivity.java, is entered in the Package Explorer right below
ContactActivity.java. If it is somewhere else, right-click the file and click Delete. Start
over. The file must be in the source code folder for your package, or the app will not run
correctly.

 Repeat this process to add another two activities to your project. Give the activities the names
ContactMapActivity and ContactSettingsActivity. Set their titles to Contacts Map and Settings,
respectively. Find the res folder in the Package Explorer and expand the layouts folder. You
should have four layout XML files, one for each activity.

 Create the Navigation Bar
 The navigation bar for the MyContactList app sits at the bottom of the screen and allows the
user to quickly move between different functions in the app by tapping one of the images on
the bar (Figure 4.3). The navigation bar is made up of three ImageButtons contained within a
 RelativeLayout . The RelativeLayout is set to be just big enough to hold the three buttons
and placed within the root RelativeLayout that was placed in the layout file by the wizard

97803e21947864_Book 1.indb 59 11/21/13 2:56 PM

ptg11524036

60 Chapter 4 Android Navigation and Interface Design

when you created the activity. The navigation layout is anchored to the bottom of that layout
so that it always appears at the bottom of the screen.

 Figure 4.3 Complete navigation bar layout.

 ImageButtons can only use image files that are within the project. To add the images to the
project:

 1. Right-click on the drawable-hdpi folder in the res folder and select Import from the
pop-up menu.

 2. In the Import window that opens, expand the General folder and select File System.
Click Next.

 3. Click the Browse button in the File System window and navigate to the location where
you placed the contactlisticon.png, settingsicon.png, and mapicon.png files.

 4. Click the check box next to each image you want to import and click Finish. Expand the
drawable-hdpi folder to verify the import.

 5. Open the activity_contact.xml file if it is not already open by double-clicking it in
the Package Explorer. Make sure that it is open in the Graphical Layout in the Editor
window.

 6. Click the Hello World! TextView and delete it.

 7. Open the Layouts folder in the Palette to the left of the Graphical Layout. Locate
the RelativeLayout and drag it onto the MyContactList layout. Position the layout
anywhere on the screen. The exact location is set by you in the XML later in this chapter.
The size of the layout is very small because the default layout_height and layout_
width attributes are initially set to "wrap_content." Initially, the layout has no widgets
in it so it sizes very small. This makes it difficult to place widgets within it. Fortunately
there are approaches to working around this issue. Open the Images and Media folder
in the Palette and make sure that the Outline display is visible on the right side of the
editor (Figure 4.4).

 8. Click and drag an ImageButton from the Palette across the editor to the outline. Position
the cursor on the indented RelativeLayout below the root RelativeLayout and
release. A window opens that allows the selection of the image.

 9. Select contactlisticon and click OK. The outline should look like the right side of
Figure 4.4 , and the button with the icon is displayed in the Graphical Layout.

97803e21947864_Book 1.indb 60 11/21/13 2:56 PM

ptg11524036

61Creating the Interface

 Figure 4.4 Outline before and after ImageButton drag and drop.

 Now that the RelativeLayout has some content, it is easier to work with.

 1. Switch to the activity_contact.xml view in the editor. Locate relativeLayout1 ’s
 layout_width attribute and change its value from "wrap_content" to "fill_parent" .

 2. Switch back to Graphical Layout. Click relativeLayout1 in the Outline. A much bigger
layout should be highlighted. Drag another image button to the right of the first one and
select the mapicon image.

 3. Repeat step 2 for the last button. Use the settingsicon image and make sure it is
positioned to the right of the mapicon button.

 The layout may look a little strange, but that’s okay for now; final configuration will be done
with XML. However, before you do that, you have to create a color resource to give the layout
the proper background color.

 To create a color resource, navigate to the values folder in the res folder and right-click it.
Select New > Other from the pop-up menu and complete the following steps:

 1. Expand the Android folder in the Select a Wizard window and select Android XML
Values File. Click Next.

 2. Type “color” into the File: text box. Click Finish.

 3. The Android Resource editor opens in the editor window. Click the Add button. Select @
Color in the window that opens and click OK.

 4. Type “navbar_background” for the Name and “#1a1a48” for the value. Switch to the
XML view by clicking the color.xml tab at the bottom of the editor. Your XML should
look like that in Listing 4.1 .

 Listing 4.1 Resource XML

 <? xml version = "1.0" encoding = "utf-8" ?>
 < resources >
 < color name = "navbar_background" > #1a1a48 </ color >
 </ resources >

 Close the color resource file by clicking the x to the right of the color.xml name tab at the top
of the editor. Be sure to click Yes to save the changes. Switch to activity_contact.xml. The rest
of the navigation bar will be configured in XML.

97803e21947864_Book 1.indb 61 11/21/13 2:56 PM

ptg11524036

62 Chapter 4 Android Navigation and Interface Design

 Several changes need to be made to the XML to give the navigation bar the correct look.
First, you will change the default layout of the whole screen. Second, the navigation bar
 RelativeLayout is modified to position it at the bottom of the screen and have the blue
background color. Finally, the layout of the ImageButtons are modified to center the middle
button and position the other two buttons around it. Refer to Listing 4.2 to complete the navi-
gation bar.

 Listing 4.2 Activity_Contact.xml

 //1
 < RelativeLayout xmlns:android ="http://schemas.android.com/apk/res/android"
 xmlns:tools ="http://schemas.android.com/tools"
 android:layout_width ="match_parent"
 android:layout_height ="match_parent"
 tools:context =".ContactActivity" >
 //2
 < RelativeLayout
 android:id = "@+id/navbar"
 android:background = "@color/navbar_background"
 android:layout_width = "fill_parent"
 android:layout_height = "wrap_content"
 android:layout_alignParentBottom = "true" >
 //3
 < ImageButton
 android:id = "@+id/imageButtonList"
 android:layout_width = "wrap_content"
 android:layout_height = "wrap_content"
 android:layout_centerVertical = "true"
 android:layout_toLeftOf = "@+id/imageButtonMap"
 android:layout_marginRight = "20dp"
 android:src = "@drawable/contactlisticon" />
 //4
 < ImageButton
 android:id = "@+id/imageButtonMap"
 android:layout_width = "wrap_content"
 android:layout_height = "wrap_content"
 android:layout_centerVertical = "true"
 android:layout_centerHorizontal = "true"
 android:src = "@drawable/mapicon" />
 //5
 < ImageButton
 android:id = "@+id/imageButtonSettings"
 android:layout_width = "wrap_content"
 android:layout_height = "wrap_content"

97803e21947864_Book 1.indb 62 11/21/13 2:56 PM

ptg11524036

63Creating the Interface

 android:layout_centerVertical = "true"
 android:layout_marginLeft = "20dp"
 android:layout_toRightOf = "@+id/imageButtonMap"
 android:src = "@drawable/settingsicon" />

 </ RelativeLayout >
 </ RelativeLayout >

 Very specific changes need to be made to the XML to get the desired look. The following
explains the changes to each widget in the activity_contact.xml.

 1. The first change is to the default layout attributes of the whole screen. By default,
the Blank Activity Wizard puts padding around the layout. To use the whole screen,
these attributes have to be removed. Locate the paddingBottom, paddingTop,
paddingLeft , and paddingRight attributes in the root RelativeLayout and delete
them.

 2. The RelativeLayout that contains the ImageButton is changed to a position at the
bottom of the layout and is given a dark blue background and a meaningful ID.

 a. Add an id attribute using this code: android:id=@+id/navbar .

 b. Add the background attribute and set its value to "@color/navbar_
background." This refers to the color resource file previously created.

 c. Add the layout_alignParentBottom attribute and set its value to “true.” This
tells Android to always position the layout at the bottom of the screen regardless of
any other widgets in the layout.

 d. Finally, remove all other attributes not shown in the listing. These are left over
from the random positioning of the layout when it was first dragged to the layout.

 3. The two image buttons on either end of the navigation bar are positioned relative to the
middle button, which is centered in the layout. All buttons are given meaningful IDs.

 a. Change the id of the first button to "@+id/imageButtonList."

 b. Add the attribute layout_toLeftOf and set its value to "@+id/imageButtonMap."

 c. Add the attribute layout_marginRight and set its value to "20dp" to position it
to the right of the centered Map button.

 d. Add the attribute centerVertical and set its value to "true."

 e. Remove all other attributes not shown in the listing. Note the src attribute and its
value. This is where the image file is associated with the ImageButton . The image
can be changed by changing its value.

 4.–5. Modify the remaining buttons in a similar way to match the XML in the listing.

97803e21947864_Book 1.indb 63 11/21/13 2:56 PM

ptg11524036

64 Chapter 4 Android Navigation and Interface Design

 Note
 You may get two warnings after you have completed the preceding changes. The first warns
that the RelativeLayout may be useless. This is because you have a RelativeLayout
within a RelativeLayout that has no other objects in it. After you add other objects later
in this chapter, this warning will go away. The second warning is “Missing contentDescription
attribute on image.” The contentDescription value is used by alternative access modes,
such as a screen reader that describes what is on the screen. You can safely ignore this warn-
ing. If you want your app to be accessible in a nonvisual manner, include the following in your
 ImageButton XML: android:contentDescription="your description of the image" .

 Switch to the Graphical Layout view. The navigation bar should be dark blue, positioned at the
bottom of the screen, and the map button should be positioned in the center. If this is not the
case, review the XML to make sure it matches Listing 4.2 .

 When the navigation bar is properly configured, you can copy it into each of the other
three layouts. Switch to activity_contact.xml, and then highlight and copy all the XML
that defines the navigation bar. Be sure to include the start <RelativeLayout and end
 </RelativeLayout> tags. Open the activity_contact_list.xml file in the layouts folder by
double-clicking it. Switch to the XML and delete all the XML associated with the “Hello World”
 TextView that was automatically generated when you created the Activity . Paste the copied
code just before the last </RelativeLayout> tag in the file. Delete the padding attributes
in the root RelativeLayout . Switch to Graphical Layout to verify that the navigation bar
is properly displayed. Close the file and repeat the process to add the navigation bar to
activity_contact_map.xml and activity_contact_settings.xml.

 Create the Contact Layout
 The contact activity provides functionality associated with adding and modifying information
about individual contacts. Although it is the most complicated layout in the MyContactsList
app, it also demonstrates the use and configuration of a significant number of interface
elements available in the Android platform. The relative nature of Android layouts makes
development challenging; however, the concepts discussed in this chapter should help make
the creation of a layout routine.

 There are three major sections in this layout. The navigation bar completed in the previous
section is one of these. One of the other two is another RelativeLayout at the top of the
screen to display the buttons that allow the user to access overall functionality for the screen—
in other words, a layout that will function as a toolbar. The other is a ScrollView that holds
all the widgets that allow the user to enter information about a contact. A ScrollView is used
to ensure that users can access all the data entry widgets regardless of the size of their device.

 Create the Toolbar

 The toolbar consists of a RelativeLayout positioned at the top of the root layout, a
 ToggleButton to switch between editing and viewing modes, and a Button to allow the user
to save changes to the contact’s information. Open activity_contact .xml if it is not already

97803e21947864_Book 1.indb 64 11/21/13 2:56 PM

ptg11524036

65Creating the Interface

open. Switch to Graphical Layout and drag a RelativeLayout to the screen. Don’t worry
about its position, but do not put it on the navigation bar. Again the RelativeLayout is very
small, so you’ll have to use the Outline to load the first widget. Open the Form Widgets folder
in Palette and locate the ToggleButton widget (the one that says Off). Drag the ToggleButton
to the new RelativeLayout in the Outline.

 Switch to the XML view and change the RelativeLayout's layout_width attribute’s value
to "match_parent" . Switch back to Graphical Layout and drag a Button to the right of the
 ToggleButton . The last thing to do before switching to XML to configure the toolbar is to
create another color resource for the toolbar’s background. Double-click the color.xml file. If
the file opens to XML, click the Resource tab at the bottom of the editor and click the Add
button. Add the color resource with the name “toolbar_background” and value “#bebebe”. Save
and close the color resource file.

 Switch to XML view and refer to Listing 4.3 to modify the XML so that the toolbar appears at
the top of the screen with the proper size and widget spacing.

 Listing 4.3 Toolbar XML

 //1
 < RelativeLayout
 android:id = "@+id/toolbar"
 android:background = "@color/ toolbar_background "
 android:layout_width = " match_parent "
 android:layout_height = " wrap_content "
 android:layout_alignParentLeft = "true"
 android:layout_alignParentTop = "true" >
 //2
 < ToggleButton
 android:id = "@+id/toggleButtonEdit"
 android:layout_width = "wrap_content"
 android:layout_height = "wrap_content"
 android:layout_alignParentLeft = "true"
 android:layout_marginLeft = "20dp"
 android:text = "ToggleButton" />
 //3
 <Button
 android:id = "@+id/buttonSave"
 android:layout_width = "wrap_content"
 android:layout_height = "wrap_content"
 android:layout_alignParentRight = "true"
 android:layout_marginRight = "20dp"
 android:text = "Save" />

 </ RelativeLayout >

97803e21947864_Book 1.indb 65 11/21/13 2:56 PM

ptg11524036

66 Chapter 4 Android Navigation and Interface Design

 There are only a limited number of new attributes to discuss in the XML. Make sure your
toolbar XML matches the listing.

 1. The layout_alignParentTop attribute locks the relative layout to always appear at the
top of the devices screen. The layout_alignParentLeft locks the RelativeLayout
to lock its left edge to the left edge of the screen. Technically, the alignParent
attributes do not lock to the screen but refer to the containing layout. Since the root
 RelativeLayout is the containing layout it has the effect of locking to the screen edges.

 2–3. The layout_alignParentLeft and layout_alignParentRight attributes used in the
 ToggleButton and the Button refer to the toolbar RelativeLayout as the parent. With
these attributes set to true it does not matter where the layout is placed. They will always
remain fixed to those positions within the layout.

 Switch to Graphical Layout. The toolbar should appear at the top of the screen with a gray
background (see Figure 4.5).

 Figure 4.5 Complete toolbar layout.

 Create the Data Entry Form

 The data entry portion of the ContactActivity allows users to enter information on their
contacts. The data entry form primarily relies on the EditText and TextView widgets that
were introduced in the Hello World! app. New concepts introduced include configuring the
 EditTexts to limit and format the input, movement (tabbing) through the data entry widgets,
using a custom pop-up window to enter the birthday with a DatePicker widget, and using a
 ScrollView to expand the “real estate” available. The Birthday button and its functionality
shown on the screen in Chapter 2 are added in Chapter 8 , “Access to Hardware and Sensors in
Android.”

 Open the activity_contact.xml file (if it is not open) and switch to Graphical Layout. Open the
Composite folder in the Palette. Drag a ScrollView to anyplace between the toolbar and the
navigation bar. Notice that just like the RelativeLayout , the ScrollView is too small to be
useful. Switch to activity_contact.xml to edit the XML so that it is usable. Refer to Listing 4.4 to
properly configure the ScrollView .

 Listing 4.4 ScrollView XML

 //1
 < ScrollView
 android:id = "@+id/scrollView1"
 android:layout_width = " match_parent "

97803e21947864_Book 1.indb 66 11/21/13 2:56 PM

ptg11524036

67Creating the Interface

 android:layout_height = " wrap_content "
 android:layout_alignParentLeft = "true"
 android:layout_below = "@+id/toolbar"
 android:layout_above = "@+id/ navbar " >
 //2
 < RelativeLayout
 android:layout_width = "match_parent"
 android:layout_height = "match_parent" >

 </ RelativeLayout >
 </ ScrollView >

 Examine the XML on your screen. Notice that it is somewhat different from Listing 4.4 . These
differences are explained below. Change your XML to match Listing 4.4 .

 1. The layout_width attribute is changed to "match_parent" to use the full screen. The
height is left as "wrap_content" to allow the ScrollView to expand or contract based on
its contents and the device size. The margin attributes are eliminated to allow the use of
the full screen. Finally, the layout_above attribute is added to prevent the ScrollView
from overwriting the navigation bar.

 2. By default, the ScrollView has a LinearLayout as its only contents. ScrollViews can
have only one widget as their contents. However, if that widget is some type of layout,
more widgets can be added as long as they are within that layout. LinearLayouts allow
a simple display of widgets one right after the other either vertically or horizontally. To
get a more complex display, the LinearLayout is replaced with a RelativeLayout . You
could do this by deleting the LinearLayout and then dragging a RelativeLayout onto
the ScrollView . However, it is far easier just to change the XML. Change your XML to
match that in the listing.

 After making the changes to the XML, switch back to Graphical Layout. The basic structure of
the data input screen is complete. The next step is to add the widgets that the user can interact
with to save contact information.

 Open the Form Widgets folder in the Palette and drag a Small TextView (Small Text) onto the
 ScrollView . You might have trouble with this. The ScrollView is set to be the area between
the toolbar and the navigation bar. However, you cannot place a widget in the ScrollView
because it already has its one widget, the RelativeLayout . Although the RelativeLayout
is set to match the parent ScrollView's height and width, the lack of content is making it
wrap its content to a very small area. If you are having problems, drag the TextView to the
 RelativeLayout in the ScrollView in the Outline area instead. Then switch to XML view and
modify the TextViews attributes so that its ID is textContact , is aligned to the top and left
of its parent, and it has a left margin of 10dp , a top margin of 5dp , and displays Contact: as
its text.

97803e21947864_Book 1.indb 67 11/21/13 2:56 PM

ptg11524036

68 Chapter 4 Android Navigation and Interface Design

 Add an EditText for the user to enter the contact name. Open the Text Fields folder in the
Palette and drag an abc EditText to underneath the TextView . Switch to the XML and refer
to Listing 4.5 to configure the EditText .

 Listing 4.5 Contact Name EditText XML

 < EditText
 android:id = "@+id/ editName "
 android:layout_width = " wr ap_content "
 android:layout_height = " wrap_content "
 android:layout_ alignParentLeft = "true"
 android:layout_marginLeft = "10 dp"
 android:layout_below = "@+id/ textContact "
 android:ems = "14 " //1
 android:imeOptions = " actionNext " //2
 android:inputType = " text CapWords " > //3

 < requestFocus /> //4
 </ EditText >

 Modify the XML as shown. You have worked with many of the attributes already. However, a
few require additional explanation:

 1. The ems attribute tells Android how big the EditText should be. The unit ems is the
number of capital M’s that could fit into the widget. It often takes some experimentation
with the number to get the widget to size the way you’d like it.

 2. The imeOptions="actionNext" attribute/value pair tells Android to show a Next button
on the soft keyboard. When the user presses that button, focus will move to the next
 EditText . This is how tabbing is implemented in Android apps.

 3. The inputType attribute tells Android what type of keyboard to display and how to
format the data as its entered. The value textCapWords tells Android to display an alpha
keyboard and to capitalize each word as it’s entered.

 4. The final item in the XML <requestFocus /> is not an attribute. It is a tag to tell
Android to put the cursor in this widget when the layout is displayed. You should have
only one of these in a single layout file.

 Switch back to Graphical Layout to review the impact of the changes. Switch back to the
XML. The next widget will be added completely through XML. Locate the TextView XML and
copy all of it from the <TextView initial tag and including the /> closing tag. Paste it after the
EditText XML. Modify the XML to match Listing 4.6 .

97803e21947864_Book 1.indb 68 11/21/13 2:56 PM

ptg11524036

69Creating the Interface

 Listing 4.6 Address TextView XML

 < TextView
 android:id = "@+id/ textAddress "
 android:layout_width = " wrap_conten t "
 android:layout_height = " wrap_content "
 android:layout_alignParentLeft = "true"
 android:layout_below = "@+id/ editName "
 android:layout_marginLeft = "10 dp"
 android:layout_marginTop = "15dp"
 android:text = "Address:"
 android:textAppearance= "?android:attr/textAppearanceSmall" />

 Next, copy all the EditText XML and paste it after the TextView XML. Be sure to include the
 </EditText> closing tag. Delete the <requestFocus /> tag. Refer to Listing 4.7 to configure
the XML.

 Listing 4.7 Address EditText XML

 < EditText
 android:id= "@+id/ edit Address "
 android:layout_width= " wrap_content "
 android:layout_height= " wrap_content "
 android:layout_alignParentLeft= "true"
 android:layout_marginLeft= "10 dp"
 android:layout_below= "@+id/ text Address "
 android:ems= "14 "
 android:imeOptions= " actionNext "
 android:inputType= " text CapWords " >

 </ EditText >

 Switch to Graphical Layout. Your layout should look like Figure 4.6 . If it does not, return to the
XML and verify your settings.

 The next step is to add the three EditTexts required to enter the city, state and zip code of the
contact. Drag and drop or copy XML to add these widgets to your layout. Refer to Table 4.1 for
parameter values for each EditText . Attributes that have a value “---” in the table should not
be included for that particular widget. The table introduces three new attributes. The layout_
toRightOf attribute is used in place of the layout_below attribute to position a widget next
to another widget. The layout_alignBottom attribute tells Android to lay out the widgets so
that their bottom edges match, regardless of height or width of the widget. Some input has
a limited number of characters that should be entered. The maxLength attribute is how the
developer limits the number of characters that can be entered into an EditText . Finally, the
 nextFocusDown attribute is used when it is difficult for Android to figure out which of the
 EditTexts should get focus next. This attribute is used to specifically identify which widget
should get focus after the current one.

97803e21947864_Book 1.indb 69 11/21/13 2:56 PM

ptg11524036

70 Chapter 4 Android Navigation and Interface Design

 Table 4.1 Attribute Values of City, State, and Zip Code EditTexts

 Widget City State Zip Code

 Attribute

 +id editCity editState editZipcode

 layout_width wrap_content wrap_content wrap_content

 layout_height wrap_content wrap_content wrap_content

 layout_alignParentLeft true --- ---

 layout_marginLeft 10dp --- ---

 layout_below @+id/editAddress --- ---

 layout_toRightOf --- @+id/editCity @+id/editState

 layout_alignBottom --- @+id/editCity @+id/editState

 ems 8 2 4

 Figure 4.6 Contact layout.

97803e21947864_Book 1.indb 70 11/21/13 2:56 PM

ptg11524036

71Creating the Interface

 Widget City State Zip Code

 maxLength --- 2 5

 imeOptions actionNext actionNext actionNext

 nextFocusDown @+id/editState @+id/editZipcode @+id/editHome

 inputType textCapWords textCapCharacters numberSigned

 Verify with Graphical Layout that the interface looks like Figure 4.7 . If everything looks correct,
the next step is to add the phone number fields. You will need to add two TextViews and two
 EditTexts to the layout for the phone information. Configure the widgets using the informa-
tion in Table 4.2

 Table 4.2 Attribute Values of Phone Widgets

 Widget Home Text Home Edit Cell Text Cell Edit

 Attribute

 +id textHome editHome textCell editCell

 text Home Phone: --- Cell Phone: ---

 layout_width wrap_content wrap_content wrap_content wrap_content

 layout_height wrap_content wrap_content wrap_content wrap_content

 layout_alignParentLeft true true --- ---

 layout_marginLeft 10dp 10dp --- ---

 layout_marginTop 15dp --- --- ---

 layout_below @+id/editCity @+id/textHome --- ---

 layout_toRightOf --- --- --- @+id/editHome

 layout_alignBottom --- --- @+id/textHome @+id/editHome

 layout_alignLeft --- --- @+id/editCell ---

 ems --- 7 --- 7

 maxLength --- 14 --- 14

 imeOptions --- actionNext --- actionNext

 nextFocusDown --- @+id/editCell --- @+id/editEMail

 inputType --- phone --- phone

97803e21947864_Book 1.indb 71 11/21/13 2:56 PM

ptg11524036

72 Chapter 4 Android Navigation and Interface Design

 The phone number labels (TextViews) are above the EditTexts used for input of those phone
numbers. This layout poses challenges because the size of the EditText inputs can and will
change based on the device the user runs the app on. Given that, you cannot set the labels at a
fixed position because the inputs below them will change and no longer align with their labels.
This makes the interface look sloppy.

 The solution implemented in XML provided earlier is to align the cell phone label with the
bottom of the home phone label, but rather than position it to the right of the home phone
label, you align it with the left edge of the cell phone input. That way, as the EditTexts
change size, the Cell Phone: label will always be directly above the cell phone input. A new
attribute value/pair, layout_alignLeft="@+id/editCell, is used to implement this solution.
One other item of note in these widgets is the maxLength attribute of the EditTexts . Note
that they are set at 14 rather than 10, which is the number of digits in a U.S. phone number.
The maxLength of input is the total length, including formatting and spaces. When format-
ting is added to the phone number, the input length becomes greater than 10. For example,
a phone number formatted as (111) 222-4444 would be 14 characters long. When completed,
your layout should look like Figure 4.8.

 Figure 4.7 Contact layout with address fields.

97803e21947864_Book 1.indb 72 11/21/13 2:56 PM

ptg11524036

73Creating the Interface

 Figure 4.8 Contact layout with phone fields.

 The final elements of the contact activity layout are the email and birthdate inputs. You need
a TextView and an EditText for the email input and two TextViews and a Button for the
birthday input. One of the birthday TextViews will be used to display the birth date and
the Button will be used to open a pop-up window. Configure these widgets as identified in
Table 4.3 and Table 4.4 .

 Table 4.3 Attribute Values of Email Widgets

 Widget Email Text Email Edit

 Attribute

 +id textEMail editEMail

 Text E-Mail Address: ---

 layout_width wrap_content wrap_content

 layout_height wrap_content wrap_content

97803e21947864_Book 1.indb 73 11/21/13 2:56 PM

ptg11524036

74 Chapter 4 Android Navigation and Interface Design

 Widget Email Text Email Edit

 layout_alignParentLeft true true

 layout_marginLeft 10dp 10dp

 layout_marginTop 15dp ---

 layout_below @+id/editHome @+id/textEMail

 ems --- 13

 inputType --- textEmailAddress

 Table 4.4 Attribute Values of Birthday Widgets

 Widget Birthday Text Date Text Button

 Attribute

 +id textBday textBirthday btnBirthday

 text Birthday: 01/01/1970 Change

 layout_width wrap_content wrap_content wrap_content

 layout_height wrap_content wrap_content wrap_content

 layout_alignParentLeft true --- ---

 layout_alignParentRight --- --- true

 layout_marginLeft 10dp 10dp ---

 layout_marginRight --- --- 10dp

 layout_marginTop 15dp --- ---

 layout_below @+id/editEMail --- ---

 layout_toRightOf --- @+id/textBday ---

 layout_alignBottom --- @+id/textBday ---

 layout_alignBaseline --- --- @+id/textBirthday

 paddingBottom 25dp 25dp ---

 The Change Birthday button uses several new attributes. The button should be anchored to
the right side of the screen so that its position doesn’t change as the birthday value changes.
To do this, you use the layout_alignParentRight="true" attribute/value pair, and to make
it have a margin from the screen, you use the layout_marginRight="10dp" attribute/value
pair. The birthday widgets are all on one line. To make this work, the layout_toRightOf and
 layout_alignBottom attributes are used with the birthday date display TextView . However,
the button is aligned to the right of the screen with the attribute previously discussed. To make

97803e21947864_Book 1.indb 74 11/21/13 2:56 PM

ptg11524036

75Creating the Interface

it line up with other widgets, a new attribute, layout_alignBaseline , is used. This aligns the
center of the button with the bottom of the widget it refers to. Because a button is bigger than
the other widgets, aligning it bottom to bottom would make it tall enough on the screen to
cover a portion of the email EditText . Finally, the paddingBottom="25dp" attribute/value
pair provides whitespace in the ScrollView after the last widget. Without this, the birthday
widgets would be appear right above the navigation bar and the button would be partially
hidden by it. Test this yourself by executing the app on the emulator before you add the
padding attribute. To test on the emulator, you have to create a new Run Configuration like
you did for the Hello World app, except this one would use the MyContactList as the project.
If you are using the same workspace as you did for Chapter 3 , “Using Eclipse for Android
Development,” you do not have to create a new virtual device. You can select the same device
as you did in that chapter. Remember that you also need to start the emulator. When the
layout is displayed on the emulator, click and hold on any whitespace in the layout and drag to
the top of the emulator screen. Try it again after you add the padding.

 When the layout is complete, verify that it looks like Figure 4.9 . Examine the bottom of the
figure closely. The ScrollView was selected (surrounded by a thin blue line) before the screen-
shot was taken. Notice that the bottom blue line runs through the navigation bar. This is where
the bottom of the Change button would be if the paddingBottom attribute had not been
added. In other words, it would have been partially obscured by the navigation bar.

 Congratulations! You have completed your first real layout in Android. However, there is one
more layout task to complete before writing code to make the layout do something—that is to
create a layout for the birthday selection dialog box.

 Create the Dialog Layout

 Although Android provides a DatePickerDialog class that provides the functionality needed,
you are going to create the dialog from scratch to learn how to create and use custom dialogs in
an app. The birthday selection date dialog is relatively simple. It displays a DatePicker widget,
which allows the user to select a specific date, and Cancel and OK buttons. Development of
this pop-up introduces the use of two new layouts, LinearLayout and TableLayout .

 Begin by adding a new XML layout file to the project.

 1. Right-click the layouts folder in the Package Explorer and select New > Other from the
pop-up menu.

 2. Expand the Android folder in the window that opens, and double-click Android XML
Layout file. Enter dateselect as the name of this new layout.

 3. Click Finish, and the new layout will open in the editor and dateselect.xml will be
displayed in the layout folder of the Package Explorer.

 The wizard creates the layout file with a LinearLayout with a vertical orientation as its root
layout. This means that all widgets added will be stacked on top of the other. To see this, drag
a DatePicker object from the Time & Date folder in the Palette and then two small buttons.
Notice that whatever you do, they always end up one on top of another. This is not the best

97803e21947864_Book 1.indb 75 11/21/13 2:56 PM

ptg11524036

76 Chapter 4 Android Navigation and Interface Design

design for OK and Cancel buttons! This problem will be fixed by using a TableLayout . Leave
the DatePicker , but delete the two buttons. Then open the Layouts folder in the Palette and
drag a TableLayout to the editor, making sure it is positioned after the DatePicker . The
layout is empty, but you can see where it is because it is highlighted with a thin blue rectangle.

 Figure 4.9 Completed contact layout.

 Note
 Adding the DatePicker to the layout may cause an error screen to show up at the bottom of
the editor. You can ignore this. Although it says it can’t find the DatePicker class, it will at
runtime. This is a bug in some versions of Eclipse.

 Examine the Outline. Notice that the TableLayout also contains some TableRows . If there is
more than one row, delete the extras by right-clicking them in the Outline and selecting Delete
from the pop-up menu. Drag two buttons to the remaining TableRow either on the editor or in
the Outline. Verify that they are in the proper position by looking at the Outline (Figure 4.10).
Switch to dateselect.xml to configure the widgets.

97803e21947864_Book 1.indb 76 11/21/13 2:56 PM

ptg11524036

77Creating the Interface

 Figure 4.10 Outline after adding buttons.

 The modifications to this XML are relatively simple as compared to the data entry form.

 1. Add an id attribute to the LinearLayout with the value @+id/dateSelectLayout . An
ID is needed for this layout to be able to tell the pop-up window what layout to display.

 2. Change the ID of the DatePicker widget to @+id/birthdayPicker .

 3. Add the following attribute to the DatePicker just after the id attribute: android:
calendarViewShown="false" . Some versions of the Android OS will automatically show
a picker and a calendar if this line is not included.

 4. Change the id’s and text attribute values for the first and second buttons to
 @+id/btnCancel , Cancel and @+id/btnOk , Ok , respectively.

 5. Switch to Graphical Layout to view the results. Notice that the two buttons have
different sizes. This is a problem for usability. It makes the interface look asymmetrical
and one button more difficult to select than the other.

 6. Switch back to the XML and change the layout_width attribute of both buttons from
 wrap_content to 120dp .

 7. Switch back to Graphical Layout. If the buttons are the same size, your pop-up layout is
complete (Figure 4.11)!

 Figure 4.11 Completed pop-up layout.

97803e21947864_Book 1.indb 77 11/21/13 2:56 PM

ptg11524036

78 Chapter 4 Android Navigation and Interface Design

 The DatePicker widget will display only at runtime. However, you don’t write the code to
open the dialog until later in this chapter, so you will have to wait to test it. When you do run
the app you should see something like Figure 4.12 when you change the contact’s birthday.

 Figure 4.12 DatePicker displayed in running app.

 Activating the Interface
 The primary function of the Contact activity is to save information about the user’s contacts.
The saving of data is beyond the scope of this chapter but is addressed in the next chapter.
However, other functions can be implemented at this time. This section demonstrates the
coding of the navigation bar, coding the toggle button to switch between editing and viewing
modes, coding the Change Birthday button to display the dialog window, and coding the
dialog.

 Code the Navigation Bar
 Movement and data transfer between activities is done with Intents as discussed earlier in
this chapter. The use of Intents makes coding navigation relatively simple. The Intent does
most of the work. Open the ContactActivity.java file in the src folder by double-clicking it.

97803e21947864_Book 1.indb 78 11/21/13 2:56 PM

ptg11524036

79Activating the Interface

Begin by coding the List ImageButton . Enter the code in Listing 4.8 before the last } in the
ContactActivity.java file.

 Listing 4.8 List Button Code

 private void initListButton() {
 ImageButton list = (ImageButton) findViewById(R.id. imageButtonList); //1
 list.setOnClickListener(new View.OnClickListener() { //2
 public void onClick(View v) {
 Intent intent = new Intent(ContactActivity. this , //3
 ➥ContactListActivity. class);
 intent.setFlags(Intent. FLAG_ACTIVITY_ CLEAR _TOP); //4
 startActivity(intent);
 }
 });
 }

 When you enter the code, some of the objects may be underlined in red. This indicates that
the compiler doesn’t know what that object is. To fix this, rest your pointer on the underlined
object and select the Import statement from the list of hints that appear. If there is no Import
option, it is likely that you misspelled the object name. This code is used to associate the
 ImageButton named imageButtonList on the activity_contact layout with the code that
is executed when it is pressed.

 1. A variable to hold an ImageButton is declared and findViewById gets the widget named
 imageButtonList . FindViewById returns the widget as a generic object, so it must be
cast (ImageButton) to an ImageButton before it can be assigned to the variable.

 2. A listener is added to the ImageButton . A listener makes a widget able to respond to
different events. In this case, the listener makes the ImageButton able to respond to the
user pressing it.

 3. An Intent variable is declared and a new Intent is created and assigned to it. The intent
constructor requires a reference to its current activity (ContactActivity.this) and to
know what activity it should start (ContactListActivity.class).

 4. An intent flag is set to tell the operating system to not make multiple copies of the same
activity.

 The completed method name initListButton() is underlined in yellow. This indicates
that the method is never used. To use it, enter initListButton(); after the setContent
(R.layout.activity_contact) line of code in the onCreate method at the beginning of the
file. This code calls the button initiation code at creation of the activity so that it is ready for
use when the user sees the layout. The yellow line should disappear. Complete the navigation
bar code by copying the preceding code for each of the two remaining ImageButtons , and
make the following changes for the first new method:

97803e21947864_Book 1.indb 79 11/21/13 2:56 PM

ptg11524036

80 Chapter 4 Android Navigation and Interface Design

 initListButton() to initMapButton()

 R.id.imageButtonList to R.id.imageButtonMap

 ContactListActivity.class to ContactMapActivity.class

 Similar changes should be made to the second new method:

 initListButton() to initSettingsButton()

 R.id.imageButtonList to R.id.imageButtonSettings

 ContactListActivity.class to ContactSettingsActivity.class

 Be sure to call the new methods in the onCreate method. The navigation bar is now ready
for testing. Run the app on the emulator and test that each button opens the correct activity.
Because the navigation bar is not currently coded for these activities, you will have to use the
Back button to return to the ContactActivity.

 Code the Toggle Button
 Coding the toggle button is relatively easy, if not somewhat tedious. It is easy because you
need only to enable or disable the interface. It is tedious because each widget that the user
could interact with must be enabled or disabled separately. The ToggleButton's functionality
requires the creation of three methods. One method will initialize the button to respond to the
user. A second method will enable all the data entry widgets, and the third will disable all the
widgets. First enter the code in Listing 4.9 after the navigation bar button code to initialize the
 ToggleButton . Remember to import any items underlined in red.

 Listing 4.9 ToggleButton Initialization Method

 private void initToggleButton() {
 final ToggleButton editToggle = (ToggleButton)
 ➥findViewById(R.id. toggleButtonEdit); //1
 editToggle.setOnClickListener(new OnClickListener() {

 @Override
 public void onClick(View arg0) {
 setForEditing(editToggle.isChecked()); //2
 }
 });
 }

 The code is very similar to the navigation button initialization methods. A reference to the
widget is grabbed and an onClickListener is added to the button. There are a few differences
that need some explanation.

97803e21947864_Book 1.indb 80 11/21/13 2:56 PM

ptg11524036

81Activating the Interface

 1. The final keyword is added to the statement that gets the reference to the
 ToggleButton to prevent the variable assignment from changing. This is required
because it is being used in the button click code. It ensures that the widget referred to
cannot change, so the code is always working on the same thing.

 2. The onClick method calls the setForEditing method, passing it true if the button is
toggled for editing and false if it is not.

 The next step is to code the methods to do the enabling and disabling of the form. Enter the
code in Listing 4.10 to create the setToEditing() method.

 Listing 4.10 Code to Enable the Data Entry Form

 private void setForEditing(boolean enabled) {
 EditText editName = (EditText) findViewById(R.id. editName);
 EditText editAddress = (EditText) findViewById(R.id. editAddress);
 EditText editCity = (EditText) findViewById(R.id. editCity);
 EditText editState = (EditText) findViewById(R.id. editState);
 EditText editZipCode = (EditText) findViewById(R.id. edi tZipcode);
 EditText editPhone = (EditText) findViewById(R.id. editHome);
 EditText editCell = (EditText) findViewById(R.id. editCell);
 EditText editEmail = (EditText) findViewById(R.id. editEMail);
 Button buttonChange = (Button) findViewById(R.id. btnBirthday);
 Button buttonSave = (Button) findViewById(R.id. buttonSave);

 editName.setEnabled(enabled);
 editAddress.setEnabled(enabled);
 editCity.setEnabled(enabled);
 editState.setEnabled(enabled);
 editZipCode.setEnabled(enabled);
 editPhone.setEnabled(enabled);
 editCell.setEnabled(enabled);
 editEmail.setEnabled(enabled);
 buttonChange.setEnabled(enabled);
 buttonSave.setEnabled(enabled);

 if (enabled) {
 editName.requestFocus();
 }

 }

 Add the following two lines of code to the onCreate method to initialize the ToggleButton
and set the screen so that it is not in editing mode when it opens:

 initToggleButton();
 setForEditing(false);

97803e21947864_Book 1.indb 81 11/21/13 2:56 PM

ptg11524036

82 Chapter 4 Android Navigation and Interface Design

 Run the app to test the button. You may find one “error.” The Contact name field looks
disabled when the app opens, but it has focus and will allow data to be entered. Earlier versions
of the Android OS always want to put focus on an EditText and will do so on the first
 EditText it finds in a layout. This is a relatively well-known bug/feature. There are a number
of hacks to get around it. For demonstration purposes, one such hack is included in the sidebar.
However, not every approach works or is reasonable for all circumstances. If you want to stop
the autofocus from occurring, you should do it on a case-by-case basis.

 Hacking Autofocus of EditText
 One approach to stopping the autofocus places a dummy layout in the root layout to grab the
focus. It is set to be focusable but has no size so it is not visible. This approach also clears
the focus from all widgets in the setForViewing() method allowing the LinearLayout to
grab the focus. Enter the following XML as the first element after the root RelativeLayout in
the activity_contact.xml file.

 <LinearLayout
 android:focusable="true"
 android:focusableInTouchMode="true"
 android:layout_width="0px"
 android:layout_height="0px" />

 Next, modify the if statement at the end of the setForView() method in the ContactActivity.
java file so that it looks like the following:

 if (enabled) {
 editName.requestFocus();
 }
 else {
 ScrollView s = (ScrollView) findViewById(R.id. scrollView1);
 s.clearFocus();
 }

 After you disable all the widgets, this code clears the focus from all of them so that the dummy
LinearLayout can grab it. If you enter this code, your app will now properly switch between
editing and viewing modes.

 Code the DatePicker Dialog
 The DatePicker dialog is a window that opens when the user presses the Change button. A
custom dialog requires both a layout, which you have already created, and a class that contains
the code that gives the dialog its behavior. Using a custom dialog in an activity also requires
changes to the activity code. The following describes how to code the DatePickerDialog class
and make changes to the ContactActivity to display and use the dialog.

 The first task is to create a new class to hold the custom dialog code. Right-click com.
example.mycontactlist in the src folder and select New > Class from the pop-up menu. Enter

97803e21947864_Book 1.indb 82 11/21/13 2:56 PM

ptg11524036

83Activating the Interface

 DatePickerDialog for the Name and click Finish. The new class opens with a limited amount
of code. Replace all that code except the first line (package com.example.mycontactlist) with
the code in Listing 4.11 .

 Listing 4.11 DatePickerDialog Code

 import android.os.Bundle;
 import android.support.v4.app.DialogFragment;
 import android.text.format.Time;
 import android.view.LayoutInflater;
 import android.view.View;
 import android.view.ViewGroup;
 import android.view.View.OnClickListener;
 imp ort android.widget.Button;
 import android.widget.DatePicker;

 public class DatePickerDialog extends DialogFragment { //1

 public interface SaveDateListener { //2
 void didFinishDatePickerDialog(Time selectedTime);
 }

 public DatePickerDialog() { //3
 // Empty constructor required for DialogFragment
 }

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 ➥Bundle savedInstanceState) { //4
 final View view = inflater.inflate(R.layout. dateselect , container);

 getDialog().setTitle("Select Date");

 final DatePicker dp = (DatePicker)
 ➥view.findViewById(R.id. birthdayPicker);

 Button saveButton = (Button) view.findViewById(R.id. btnOk);
 saveButton.setOnClickListener(new OnClickListener() {
 @Override
 public void onClick(View arg0) {
 Time selectedTime = new Time(); //5
 selectedTime.set(dp.getDayOfMonth(), dp.getMonth(), dp.getYear());
 saveItem(selectedTime);
 }
 });
 Button cancelButton = (Button) view.findViewById(R.id. btnCancel);
 cancelButton.setOnClickListener(new OnClickListener() {

97803e21947864_Book 1.indb 83 11/21/13 2:56 PM

ptg11524036

84 Chapter 4 Android Navigation and Interface Design

 @Override
 public void onClick(View v) {
 getDialog().dismiss();
 }
 });
 return view;
 }

 private void saveItem(Time selectedTime) { //6
 SaveDateListener activity = (SaveDateListener) getActivity();
 activity.didFinishDatePickerDialog(selectedTime);
 getDialog().dismiss();
 }
 }

 A significant number of important concepts for Android app development are introduced in
this code. Fortunately, dialog coding follows the same pattern, so after you understand the
components, you can apply them whenever you need your app to show a dialog window.

 1. The declaration of the class includes the keywords extends DialogFragment . This
makes the DatePickerDialog class a subclass of the DialogFragment , which in turn is
a subclass of the Fragment class discussed earlier in this chapter. All custom dialogs in an
Android app should be created in this way.

 2. A listener must be created with the DialogFragment . This is how the dialog
communicates the user’s actions on the dialog back to the activity that displayed the
dialog. The listener must have a method to report the results of the dialog. The activity
will have to implement the listener to handle the user actions.

 3. A constructor for the class is required. It almost always is empty.

 4. This method is the workhorse of the class. It creates the View from the resources in the
layout file associated with it by the line inflater.inflate(...) . The method also gets
references to the widgets on the layout and sets up listeners for the widgets in the layout
so that they can respond to user action.

 5. Time objects are used to hold dates and times. This object stores a time/date as a number
of milliseconds (millis) from Jan. 1, 1970. A new time object is created, and when the
user clicks the OK button, it grabs the user selections on the DatePicker and sets the
time object to that time. Finally, it calls the saveItem method to report the selection to
the main activity.

 6. The saveItem method gets a reference to the listener and calls its method to report the
results of the dialog.

 Save the DatePickerDialog class. This pattern is always used with custom dialogs. Each dialog
needs a listener interface and associated method, a constructor, an onCreateView method, and
a call to the listener method. The call to the listener method does not necessarily have to be in

97803e21947864_Book 1.indb 84 11/21/13 2:56 PM

ptg11524036

85Activating the Interface

its own method as it is here. Finally, the dialog must be dismissed at the end of every code path
in the DialogFragment .

 Before the dialog can be tested, it must be implemented in the activity that uses it. In this case
it is the ContactActivity. Switch to or open the ContactActivity.java class. The following
steps must be done in the exact order listed here, or potential problems may occur.

 1. Locate the class declaration: public class ContactActivity extends Activity
and change Activity to FragmentActivity . This makes your ContactActivity a
subclass of the FragmentActivity discussed earlier in the chapter. This is required to use
 DialogFragments .

 2. FragmentActivity will be underlined in red and a whole bunch of errors will
show up in the code. Hover your cursor over FragmentActivity and select Import
FragmentActivity (android.support.v4.app). The FragmentActivity class is in the
android.support.v4.app library, which is a set of code that provides objects to make some
features in newer Android operating systems work in older versions.

 3. Add the words implements SaveDateListener after FragmentActivity so that the
class declaration is public class ContactActivity extends FragmentActivity
implements SaveDateListener { . After making the change, SaveDateListener will
be highlighted in red. Hover over it to get the pop-up menu and select Import.

 4. ContactActivity becomes highlighted in red. Hover your cursor over it and select
Add Unimplemented Methods from the pop-up menu. When an activity implements a
listener, it must implement the methods associated with the listener so that the results
may be used in the activity.

 5. Scroll down to the bottom of the ContactActivity.java file. You should find the following
code. If not, delete your changes and repeat the preceding steps.

 @Override
 public void didFinishDatePickerDialog(Time selectedTime) {
 // TODO Auto-generated method stub
 }

 The didFinishDatePickerDialog method is the code that will handle the date that the user
selected. Enter the following two lines of code in place of the TODO line:

 TextView birthDay = (TextView) findViewById(R.id. textBirthday);
 birthDay.setText(DateFormat. format ("MM/dd/yyyy" , selectedTime.toMillis(false)).
toString());

 Some of the code may be highlighted in red, indicating that it needs to be imported. In the
case of DateFormat you will see two import options. Choose android.text.format. This code
gets a reference to the TextView that will display the date and set its text attribute to a string
produced by the DateFormat.format method.

 You are almost ready to test your dialog. The last thing to do is to code the Change button to
make it display the dialog. Add the code in Listing 4.12 to the ContactActivity.

97803e21947864_Book 1.indb 85 11/21/13 2:56 PM

ptg11524036

86 Chapter 4 Android Navigation and Interface Design

 Listing 4.12 Change Birthday Button

 private void initChangeDateButton() {
 Button changeDate = (Button) findViewById(R.id. btnBirthday);
 changeDate.setOnClickListener(new OnClickListener() {

 @Override
 public void onClick(View v) {
 FragmentManager fm = getSupportFragmentManager(); //1
 DatePickerDialog datePickerDialog = new DatePickerDialog(); //2
 datePickerDialog.show(fm, "DatePick"); //3
 }
 });
 }

 Most of the code is standard initialization of a button to respond to the user pressing the
button. The code to be executed when the click occurs displays the dialog.

 1. A FragmentManager is a required object to manage any and all fragments displayed in
an activity. It needs to be imported. There will be two choices; again, choose the one
from the Android support library (android.support.v4.app).

 2. A new instance of the DatePickerDialog class is created.

 3. The DatePickerDialog's show method (inherited from DialogFragment) displays the
dialog. The method requires an instance of a FragmentManager and a name, which the
 FragmentManager uses to keep track of the dialog.

 Be sure to call the initChangeDateButton() method in the onCreate method of
ContactActivity. The app interface is ready to be tested! Run it to be sure that the dialog is
displayed and the correct date is placed in the TextView .

 Summary
 Creating layouts is a lot of work! In this chapter you learned how to use Eclipse to create an
Android layout file that is the user interface for an app activity. Development of a layout
requires use of both the graphical editor and modification of the associated XML to get the
exact design you want. Experimentation is often the key to getting the layout to look the way
you want it to.

 Intents are used to switch between Activities and sometimes pass data to those
 Activities . You learned how to use Intents to implement a navigation bar that allows the
user to move between different Activities in your app.

 Finally, you learned how to use Fragments to implement a custom dialog window. You also
learned how to display the custom dialog and to communicate the results of the user interac-
tion with the dialog back to activity so that it could act on those actions.

97803e21947864_Book 1.indb 86 11/21/13 2:56 PM

ptg11524036

87Exercises

 Exercises
 1. Create a new color resource to be used as the background for the data entry part of

the ContactActivity. Search on the Web for the color and associated Android color
code (color codes always start with a # symbol) and add it to the color.xml file. Set the
background of the data entry part of the layout to that color resource.

 2. Make the navigation work for all activities in the app. Copy the navigation bar XML code
to the layout associated with each activity. Copy the Java code that makes the buttons
work to the Java file associated with each activity. You will have to modify that code
to reference the activity it is in rather than ContactActivity. Add code to disable the
 ImageButton associated with the activity that is displayed.

 3. Modify the DatePickerDialog layout so that the Cancel/OK buttons are centered. Hint:
You’ll have to use the gravity attribute in the TableRow .

 4. Add the hack to your code to stop the autofocus of the EditTexts .

97803e21947864_Book 1.indb 87 11/21/13 2:56 PM

ptg11524036

This page intentionally left blank

ptg11524036

 5
 Persistent Data in Android

 The capability to have data that the app uses or relies on to continue to be available regardless of
changes to the app’s state as it moves through the app life cycle is vital to the user experience with the
app—and for the app itself to be a useful tool. For this to occur, the data needs to persist through these
life cycle changes. Android provides several ways in which the developer can make data persist. This
chapter introduces you to three of these data persistence approaches. A significant amount of time will
be spent on understanding and using the SQLite database system incorporated with Android, but the
chapter also discusses storing data in files and demonstrates how to store individual pieces of data in
an object that persists across an app’s life cycle.

 Preferences, Files, and Database
 The three approaches to data persistence discussed in this chapter are SharedPreferences ,
standard flat file input/output, and the SQLite database system. Each of these approaches
provides capabilities that are relevant for different tasks in an app. SharedPreferences are
often used for a limited set of data that represent user choices about the way they want the app
configured. They may also be used for other data that needs to persist across life cycle changes.
Flat files are useful for backing up data and transmitting to other users. Finally, databases are
the workhorses for data manipulation, storage, and retrieval. Developing an understanding of
where, when, and how to use these data persistence approaches is very important to effective
development of an Android app.

 Preferences
 Preferences are implemented through use of the SharedPreferences class. A
 SharedPreferences object can be used to store primitive data (for example, integers and
strings) in a key/value pair. Each value has its own key for storage and retrieval of that data.
 SharedPreferences are stored in memory private to the app and will persist as long as the
app remains installed on the device. App upgrades will not impact the values stored with
 SharedPreferences .

97803e21947864_Book 1.indb 89 11/21/13 2:56 PM

ptg11524036

90 Chapter 5 Persistent Data in Android

 There are two main modes for accessing SharedPreferences : getSharedPreferences
("String preference name", integer mode) and getPreferences(integer mode) . The
 getSharedPreferences mode is used when you want to have more than one set of prefer-
ences for an app, or you want the preferences available to any Activity in the app. Each set
is given a name that is used as the key to access that particular set of preferences.
If you need a set of preferences only for a single Activity , then you can use the
getPreferences method. With each of these methods you need to set an access mode. Using
0 (zero) makes the preferences private to the app. Preferences may also be given a mode that
makes them readable or writeable from outside the app. However, this is discouraged because it
opens potential security holes. Data is stored by using a method appropriate to the value being
saved (for example, putBoolean or putInt) and supplying a string that will be the key for
future access to that value. Likewise, data is retrieved from the object using the string key with
the appropriate get method (for example, getBoolean or getInt). Specific implementation of
the SharedPreferences method of data persistence will be explained later in this chapter.

 Files
 Files are written and read as a stream of bytes. This means that to the Android system, a file is
one thing. It does not have parts, such as different objects, within it. The advantage to this is
that the system stores the data efficiently and does not have to worry about what data is stored
within the stream. Thus, many kinds of data can be stored in a file. The disadvantage is that it
is up to the developer to code the reading and writing of the file so that the data can be used
appropriately when it is needed. For example, the developer can embed XML in the stream to
identify the different types of data. Another approach is to embed commas in the file to distin-
guish different pieces of data. However, in either case, the user of that file must know its struc-
ture to use it correctly.

 Files can be written to either internal or external storage. Files written to internal storage are
private to the app. They will persist as long as the app is installed on the device. Files written
to external storage (such as an SD card) are not private to the app. Other apps can access them
and if the device is connected to a computer, they are accessible (including being able to
modify and delete) to the user of the computer. Files are written and read from storage using
the FileOutputStream and FileInputStream objects in a similar fashion to any regular Java
program. Although files can be very useful persistence tools, they will not be discussed further
in this book.

 Database
 Android supports the use of SQLite databases. SQLite is a fully functional relational database
management system (RDBMS) that can integrate into any host application. It does not require
an independent server process to execute. A relational database system allows the developer
to give meaning to the data stored within it by separating the data into tables (for example,
a customer table and an order table. Each table will hold data pertinent for each instance of
whatever is stored in the table (for example, data for each customer). SQLite also provides
capabilities for retrieval and manipulation of the stored data through the use of queries written

97803e21947864_Book 1.indb 90 11/21/13 2:56 PM

ptg11524036

91Creating the Database

in Structured Query Language (SQL). Almost any type of data can be stored and manipulated
using a SQLite database, although some data types have more limited support than
other RDBMSs.

 Data stored in a SQLite database is private to the app and will persist as long as the app is
installed on the device. An app may create and use multiple databases, and each database can
have many tables, making data storage via SQLite both extensive and flexible. Databases are the
workhorse data storage of many apps and are discussed extensively in this chapter.

 Android Versus iOS: Data Persistence
 Android and iOS offer essentially the same three types of data persistence mechanisms
discussed in this chapter. The functionality provided by SharedPreferences in Android is
provided by the NSUserDefaults object in iOS. File input and output is also provided in iOS.
Finally, iOS also implements SQLite databases in a very similar manner to Android. iOS does
offer a storage solution called Core Data that offers an object-oriented approach to storing
data, but this is usually added on top of a SQLite database. Although in all cases the code has
different commands because the programming languages are different, the functionality is the
same, so porting data persistence between platforms requires work. However, the concepts are
easily replicated.

 Creating the Database
 The MyContactList app uses a simple, one table database to provide the data storage and
manipulation functionality described in Chapter 2 , “App Design Issues and Considerations.”
Two new classes will be created to provide the database functionality. One class is used to
create, modify, and delete the tables included in the database. The other class is used for
data access. It provides methods to open and close the database and the queries used to
store, access, and manipulate the data in the tables. The focus in this chapter is to make the
 ContactActivity able to store a contact’s data. Retrieval and manipulation of that data is
introduced in later chapters.

 Create the Database Helper Class
 The recommended approach to using SQLite in an Android app is to create a Database Helper
class whose only function is to provide for the creation, modification, and deletion of tables in
the database. The new class is defined as a subclass of the SQLiteOpenHelper class. Much of
the required functionality for working with databases is inherited from the SQLiteOpenHelper
class although some of its methods will be overridden to implement the functionality required
for this app.

 1. Right-click com.example.mycontactlist in the src folder of the Package Explorer.

 2. Select New > Class and enter ContactDBHelper as the name of the new class.

97803e21947864_Book 1.indb 91 11/21/13 2:56 PM

ptg11524036

92 Chapter 5 Persistent Data in Android

 3. Type the code in Listing 5.1 into the new class. You will have to import many of the
objects after you have entered the code.

 Listing 5.1 Code for the Database Helper Class

 import android.content.Context;
 import android.database.sqlite.SQLiteDatabase;
 import android.database.sqlite.SQLiteOpenHelper;
 import android.util.Log;

 public class ContactDBHelper extends SQLiteOpenHelper { //1

 private static final String DATABASE_NAME = "mycontacts.db" ; //2
 private static final int DATABASE_VERSION = 1; //3

 // Database creation sql statement
 private static final String CREATE_TABLE_CONTACT = "create table contact (_id
➥integer primary key autoincrement, " //4
 + "contactname text not null, streetaddress text, "
 + "city text, state text, zipcode text, "
 + "phonenumber text, cellnumber text, "
 + "email text, birthday text);" ;

 public ContactDBHelper(Context context) { //5
 super (context, DATABASE_NAME , null , DATABASE_VERSION);
 }

 @Override
 public void onCreate(SQLiteDatabase database) { //6
 database.execSQL(CREATE_TABLE_CONTACT);
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) { //7
Log. w (ContactDBHelper. class .getName(),

 "Upgrading database from version " + oldVersion + " to "
 + newVersion + ", which will destroy all old data");
 db.execSQL("DROP TABLE IF EXISTS contact");
 onCreate(db);
 }
 }

 The previous code is relatively standard and all that is needed to create the SQLite database and
the one table required for the MyContactList app. The code can be copied and modified for
other apps. The code and its potential modifications are described next:

97803e21947864_Book 1.indb 92 11/21/13 2:56 PM

ptg11524036

93Creating the Database

 1. The class ContactDBHelper is declared as a subclass of SQLiteOpenHelper . Most of its
functionality is inherited from this class.

 2. A static variable is declared to name the database. A database name is required. Use the
 .db extension.

 3. A static variable to hold the database version number is declared and initialized to 1. This
variable is important. Every time the database is accessed, the existing database version is
compared to the one here. If the number is higher, the onUpgrade method is executed.

 4. A string variable is declared and assigned to a SQL command that creates the table. It is
good practice to define the table definitions in this manner so that when a change to
a table needs to be made, all you have to do is change the definition in one place and
increment the version number. Declare a similar variable for each table needed in your
database.

 5. The constructor method calls the super class’s constructor method. Nothing else needs to
be done in this method. The constructor creates a new instance of ContactDBHelper .

 6. The onCreate method is called the first time the database is opened. If the database
named in the DATABASE_NAME variable does not exist, this method is executed. The
method executes the SQL assigned to the CREATE_TABLE_CONTACT variable.

 7. The onUpgrade method is executed when the database is opened and the current version
number in the code is higher than the version number of the current database. This
method first deletes the contact table and then executes the onCreate method to create
a new version of the table. Carefully planning the data needed by your app is important
so that you don’t have to use this method much. What happens in this method is
entirely up to the developer. Care must be taken because if a table is dropped, all the
user data currently in the table is lost. If you need to add columns to the table, consider
executing an ALTER TABLE SQL command rather than a drop, and re-create the table.
The Log command writes a message to the LogCat, which is a system for collecting and
viewing system debug information. You can view LogCat by selecting Window > Show
View > Other... > LogCat. This command may be eliminated if you want.

 A database helper class is recommended practice in Android. The primary function of the class
is to determine what must be done on creation of the database and what must be done when
the database is upgraded. The next step is to create a class that does the opening and closing of
the database and contains the queries used to store and retrieve data from the database.

 Create the Data Source Class
 Create a new class named ContactDataSource . Enter the code in Listing 5.2 , being sure to
import any objects underlined in red.

97803e21947864_Book 1.indb 93 11/21/13 2:56 PM

ptg11524036

94 Chapter 5 Persistent Data in Android

 Listing 5.2 ContactDataSource Required Code

 public class ContactDataSource {

 private SQLiteDatabase database ; //1
 p rivate ContactDBHelper dbHelper ;

 public ContactDataSource(Context context) { //2
 dbHelper = new ContactDBHelper(context);
 }

 public void open() throws SQLException { //3
 database = dbHelper .getWritableDatabase();
 }

 public void close() { //4
 dbHelper .close();
 }
 }

 The required methods are quite limited and fairly self-explanatory.

 1. Variables are declared to hold instances of the SQLite database and the helper class. You
will get a warning on the SQLiteDatabase line because you don’t use it yet.

 2. The helper class is instantiated when the data source class is instantiated.

 3–4. Open and close methods are used to access and end access to the database.

 The rest of the code in this class is dependent on the needs of the app. In the case of the
MyContactsList app, the ContactActivity needs to be able to insert new contacts and update
data for existing contacts. This is done by creating a method for each operation. The data for
insertion or updating a contact is passed to these methods with a Contact object.

 The Contact class does not exist, so the first task is to create that class. Create another new
class in the src folder named Contact. Enter the code in Listing 5.3 to create the Contact
object. The ContactActivity uses this object to store data entered by the user and pass it
to the data source class. Enter the code in Listing 5.3 to create the Contact class. Import any
needed classes. Note that two time classes are listed when you rest your pointer on the under-
lined Time . Use the android.text.format Time class.

 Listing 5.3 The Contact Class

 import android.text.format.Time;

 public class Contact {
 private int contactID ;
 private String contactName ;

97803e21947864_Book 1.indb 94 11/21/13 2:56 PM

ptg11524036

95Creating the Database

 private String streetAddress ;
 private String city ;
 private String state ;
 private String zipCode ;
 private String phoneNumber ;
 private String cellNumber ;
 private String eMail ;
 private Time birthday ;

 public Contact() {
 contactID = -1;
 Time t = new Time();
 t.setToNow();
 birthday = t;
 }

 public int getContactID() {
 return contactID ;
 }
 public void setContactID(int i) {
 contactID = i;
 }
 public String getContactName() {
 return contactName ;
 }
 public void setContactName(String s) {
 contactName = s;
 }
 public Time getBirthday() {
 return birthday ;
 }
 public void setBirthday(Time t) {
 birthday = t;
 }
 public String getStreetAddress() {
 return streetAddress ;
 }
 public void setStreetAddress(String s) {
 streetAddress = s;
 }
 public String getCity() {
 return city ;
 }
 public void setCity(String s) {
 city = s;

97803e21947864_Book 1.indb 95 11/21/13 2:56 PM

ptg11524036

96 Chapter 5 Persistent Data in Android

 }
 public String getState() {
 return state ;
 }
 public void setState(String s) {
 state = s;
 }
 public String getZipCode() {
 return zipCode ;
 }
 public void setZipCode(String s) {
 zipCode = s;
 }
 public void setPhoneNumber(String s) {
 phoneNumber = s;
 }
 public String getPhoneNumber() {
 return phoneNumber ;
 }
 public void setCellNumber(String s) {
 cellNumber = s;
 }
 public String getCellNumber() {
 return cellNumber ;
 }
 public void setEMail(String s) {
 eMail = s;
 }
 public String getEMail() {
 return eMail ;
 }
 }

 The Contact class is a very simple class. It declares variables for each piece of data needed for
a contact and declares a method to set the value of the variable and a method to get the value
of the variable (getters and setter). The only really important code is in the class constructor
method. Notice that in this method the contact’s ID is set to -1. This is used by the app to
determine if the contact is new and needs to be inserted or the contact already exists and needs
to be updated. The birthday variable is also initialized to the current date. This allows the app
to assume that there will always be a Time value in the birthday variable.

 After the Contact class has been created, you can now code the insert and update methods in
the ContactDataSource class. Enter the code in Listing 5.4 to create these methods. Enter the
code after the close() method.

97803e21947864_Book 1.indb 96 11/21/13 2:56 PM

ptg11524036

97Creating the Database

 Listing 5.4 Insert and Update Contact Methods

 public boolean insertContact(Contact c) {
 boolean didSucceed = false ; //1
 try {
 ContentValues initialValues = new ContentValues(); //2

 initialValues.put("contactname" , c.getContactName()); //3
 initialValues.put("streetaddress" , c.getStreetAddress());
 initialValues.put("city" , c.getCity());
 initialValues.put("state" , c.getState());
 initialValues.put("zipcode" , c.getZipCode());
 initialValues.put("phonenumber" , c.getPhoneNumber());
 initialValues.put("cellnumber" , c.getCellNumber());
 initialValues.put("email" , c.getEMail());
 initialValues.put("birthday" ,
 ➥String. valueOf (c.getBirthday().toMillis(false)));

 didSucceed = database .insert("contact" , null , initialValues) > 0; //4
 }
 catch (Exception e) {
 //Do nothing -will return false if there is an exception //5
 }
 return didSucceed;
 }

 public boolean updateContact(Contact c) {
 boolean didSucceed = false ;
 try {
 Long rowId = Long. valueOf (c.getContactID()); //6
 ContentValues updateValues = new ContentValues();

 updateValues.put("contactname" , c.getContactName());
 updateValues.put("streetaddress" , c.getStreetAddress());
 updateValues.put("city" , c.getCity());
 updateValues.put("state" , c.getState());
 updateValues.put("zipcode" , c.getZipCode());
 updateValues.put("phonenumber" , c.getPhoneNumber());
 updateValues.put("cellnumber" , c.getCellNumber());
 updateValues.put("email" , c.getEMail());
 updateValues.put("birthday" ,
 ➥String. valueOf (c.getBirthday().toMillis(false)));

 didSucceed = database .update("contact" , updateValues, "_id=" + rowId,
 ➥null) > 0; //7
 }

97803e21947864_Book 1.indb 97 11/21/13 2:56 PM

ptg11524036

98 Chapter 5 Persistent Data in Android

 catch (Exception e) {
 //Do nothing -will return false if there is an exception
 }
 return didSucceed;
 }

 The two methods are very similar. The primary difference is that the updateContact method
uses the Contact ID to overwrite values in the Contact table, whereas the insertContact
method just inserts contact data and the database inserts the ID because the _id field was
declared as an autoincrement field.

 1. A Boolean variable is declared and assigned the value false. Both the update and insert
methods return a Boolean to tell the calling code if the operation succeeded. The value is
initially set to false and then changed to true only if the operation succeeds.

 2. The ContentValues object is used to store a set of key/value pairs that are used to assign
contact data to the correct field in the table.

 3. The values for the table are retrieved from the Contact object, associated with the
correct field, and inserted into the ContentValues object. Note that the date is stored as
 millis , because SQLite doesn’t support storing data as dates directly.

 4. The database’s insert method is called and passed the name of the table and values to
insert. The method returns the number of records (rows) successfully inserted. The value
is compared to zero. If it is greater than zero, then the operation succeeded and the
return value is set to true.

 5. If the method throws an exception, the return value is already set to false, so we don’t
have to do anything.

 6. The update procedure needs the contact’s ID to correctly update the table. This value is
retrieved from the Contact object and assigned to the variable rowId .

 7. The database’s update method is called to place the changes in the database. Just like the
insert method, if the operation is a success, the method returns the number of records
affected. If this number is greater than zero, the operation was successful.

 The SQLite database is ready for use. An object to create and upgrade the database has been
implemented. Another object to open, close, and access the database has also been created. You
are now ready to save contact data!

 Using the Database
 The three classes, Contact , ContactDBHelper , and ContactDataSource , are used in the
 ContactActivity class to implement the saving of contact data to the database. This will
require implementing several new methods and modifying some existing methods. Because the
methods to retrieve contacts have not been implemented yet, the update functionality will be
only partially implemented at this time.

97803e21947864_Book 1.indb 98 11/21/13 2:56 PM

ptg11524036

99Using the Database

 The first step is to provide an association between the ContactActivity class and a Contact
object. This is implemented by declaring a private variable in the ContactActivity class. Enter
the following code after the class declaration and before the onCreate method:

 private Contact currentContact ;

 Next associate the currentContact variable with a new Contact object by entering the follow-
ing code as the last line in the onCreate method:

 currentContact = new Contact();

 Notice that while you are using a new object (Contact) in the ContactActivity class, you
do not have to import it. That’s because you created the Contact class as a part of the com.
example.mycontactlist package. Android already knows about this class, so it does not have to
be imported.

 The final step in modifying existing code is to add a line of code in the
didFinishDatePickerDialog method to store the selected birthday in the Contact object.
Add the following line of code as the last line of code in that method:

 currentContact .setBirthday(selectedTime);

 This code uses the Contact class’s setBirthday method to assign the date selected in the
custom dialog to the currentContact object.

 Capture User-Entered Data
 The first new method needed is used to capture the user data as it’s typed and store it in the
 currentContact object. The method itself does not capture the data. Rather, it sets up listeners
on all the EditText s where data can be entered. If the text changes, the listener then executes
the code to set the attribute that holds the code in the currentContact object. The method is
called in the onCreate method of the ContactActivity so that the listeners are ready to go
when the ContactActivity is ready for input. To start, enter the following line of code after
all the other init methods in the onCreate method:

 initTextChangedEvents();

 Next, create a new method in the ContactActivity class called initTextChangedEvents() .
Place this method after the other init methods currently in the class. Enter the code in
 Listing 5.5 .

 Listing 5.5 TextChanged Event Code

 private v oid initTextChangedEvents(){
 final EditText contactName = (EditText) findViewById(R.id. editName); //1
 contactName.addTextChangedListener(new TextWatcher() { //2

 public void afterTextChanged(Editable s) { //3
 currentContact .setContactName(contactName.getText().toString()); //4

97803e21947864_Book 1.indb 99 11/21/13 2:56 PM

ptg11524036

100 Chapter 5 Persistent Data in Android

 }
 public void beforeTextChanged(CharSequence arg0, int arg1,
 ➥ int arg2, int arg3) { //5
 // Auto-generated method stub
 }
 public void onTextChanged(CharSequence s, int start, int before,
 ➥ int count) { //6
 // Auto-generated method stub
 }
 });

 final EditText streetAddress = (EditText) findViewById(R.id. editAddress); //7
 streetAddress.addTextChangedListener(new TextWatcher() {
 public void afterTextChanged(Editable s) {
 currentContact .setStreetAddress(streetAddress.getText().toString()); //8
 }
 public void beforeTextChanged(CharSequence arg0, int arg1,
 ➥ int arg2, int arg3) {
 // Auto-generated method stub
 }
 public void onTextChanged(CharSequence s, int start, int before,
 ➥ int count) {
 // Auto-generated method stub
 }
 });
 }

 Listing 5.5 is not the complete method. A listener has to be added for all the other EditTexts
in the layout. However, the code is essentially the same for each EditText . Take time to under-
stand this code before adding the rest.

 1. A reference to the Contact Name EditText is assigned to the variable contactName . The
variable is declared as final because it is used inside the event code.

 2. A TextChangedListener is added to the EditText by creating a new TextWatcher
object. The TextWatcher object requires that three methods (lines 3, 5, and 6) are
implemented, even though you will use only one of these events.

 3. The afterTextChanged method is a required method for the TextWatch object. It is
called after the user completes editing the data and leaves the EditText . This is the
event that this app uses to capture the data the user entered.

 4. This code is executed when the user ends editing of the EditText . It gets the text
in the EditText , converts it to a string, and sets the contactName attribute of the
 currentContact object to that value.

 5. The beforeTextChanged method is a required TextWatcher method. This method is
executed when the user presses down on a key to enter it into an EditText but before
the value in the EditText is actually changed.

97803e21947864_Book 1.indb 100 11/21/13 2:56 PM

ptg11524036

101Using the Database

 6. The onTextChanged method is also a required TextWatcher method. The method is
executed after each and every character change in an EditText .

 7. The pattern repeats for another EditText in the layout, except that value is assigned to a
different attribute of the currentContact object.

 8. This code gets the value entered into the editAddress EditText , converts it to a string,
and sets the streetAddress attribute of the currentContact object to that value. It
is essentially the same as the code in number 4, except that it gets the value from a
different widget and assigns it to a different attribute.

 This code needs to be repeated for the remaining EditText s in the activity_contact.xml file.
This includes the remaining address EditText s, the phone and cell number EditText s, and
the email EditText . You can copy and paste the code you already entered or type it. In either
case, but especially with the copy/paste approach, make sure you get a reference to the correct
widget (R.id . widget+id) and assign the value to the correct Contact attribute.

 The next step in coding the initTextChangedEvents method is to set the phone number
 EditText s to autoformat the number as it’s typed. Enter the following code as the last code in
that method:

 homephonevariable .addTextChangedListener(new PhoneNumberFormattingTextWatcher());
 cellphonevariable .addTextChangedListener(new PhoneNumberFormattingTextWatcher());

 This code adds a listener to the phone number EditText s that calls the
 PhoneNumberFormattingTextWatcher object, which in turn adds the appropriate formatting
as the user types.

 The final step is to add initTextChangedEvents(); to the onCreate method to set up the
listeners when the activity is opened.

 Save User-Entered Data
 The intTextChangedEvents method you just created sets the stage for saving the contact’s
data. It sets the EditText s to update the ContactActivity ’s contact object with any changes
users make as they make them. All that is left is to pass that object to the insert or update
method in the ContactDataSource class so that the changes can be stored in the database.
This requires the addition of a method that initializes the Save button and executes the code
that will do the save operation when the button is pressed.

 The initialization of the Save button is similar to the initialization of all the other buttons you
have coded so far. The only difference is what happens when the button is pressed. Enter the
code in Listing 5.6 before the initTextChangedEvents method you just created. Don’t forget
to call the method in the onCreate method where the rest of the button initialization methods
are called.

97803e21947864_Book 1.indb 101 11/21/13 2:56 PM

ptg11524036

102 Chapter 5 Persistent Data in Android

 Listing 5.6 Save Button Code

 private void initSaveButton() {
 Button saveButton = (Button) findViewById(R.id. buttonSave);
 saveButton.setOnClickListener(new View.OnClickListener() {

 @Override
 pub lic void onClick(View v) {
 ContactDataSource ds = new ContactDataSource(ContactActivity. this); //1
 ds.open(); //2

 boolean wasSuccessful = false ; //3
 if (currentContact .getContactID()==-1) { //4
 wasSuccessful = ds.insertContact(currentContact);
 }
 else {
 wasSuccessful = ds.updateContact(currentContact);
 }
 ds.close(); //5

 if (wasSuccessful) { //6
 ToggleButton editToggle = (ToggleButton)
 ➥findViewById(R.id. toggleButtonEdit);
 editToggle.toggle();
 setForViewing();
 }
 }
 });
 }

 The only new code in this method is the code associated with the save operation. The basic
save operation opens the database, checks if this is a new contact to be inserted or if it should
be updated, and if the save was successful, to change the screen back to view rather than
editing mode.

 1. A new ContactDataSource object is instantiated.

 2. The database is opened. It is good practice to open the database just prior to using it and
close it as soon as you are done.

 3. A Boolean variable is declared and set to false. This variable captures the return value of
the ContactDataSource methods and is used to determine the operations that should
be performed upon success or failure of the method.

 4. The currentContact’s id is compared to -1. Only new contacts will have a -1 value. If it
is a new contact, the insertContact method is called and passed the currentContact
object. Otherwise, the updateContact method is called to save the new data.

97803e21947864_Book 1.indb 102 11/21/13 2:56 PM

ptg11524036

103Using the Database

 5. The database is closed as soon as possible. Do not forget to close the database! If you do
not close it, strange errors can show up during execution.

 6. The return value is checked. If the save operation was successful, the ToggleButton is
toggled to viewing mode, and the screen is set for viewing. If it was not successful, the
activity remains in editing mode.

 Test the code on the emulator. You may notice one discrepancy. When you push the Save
button and the screen changes to viewing rather than editing mode, the keyboard remains
displayed if you didn’t dismiss it with the Back button. If you don’t have this happen, edit your
Android Virtual Device. Look for Hardware Keyboard Present and uncheck it. Stop and restart
the emulator. Many Android devices do not have a hardware keyboard, and if your app keeps
the soft keyboard displayed when the user is clearly done, it will make the user think that the
app doesn’t work properly.

 Correct this by adding a method that dismisses the keyboard that is called when the Save
button is pressed. The code in Listing 5.7 is a partial method to do this. Place this method
before the didFinishDatePickerDialog method.

 Listing 5.7 Partial hideKeyboard() Method

 private void hideKeyboard() {
 InputMethodManager imm =
 ➥(InputMethodManager)getSystemService(Context. INPUT_METHOD_SERVICE);
 EditText editName = (EditText) findViewById(R.id. editName);
 imm.hideSoftInputFromWindow(editName.getWindowToken(), 0);
 EditText editAddress = (EditText) findViewById(R.id. editAddress);
 imm.hideSoftInputFromWindow(editAddress.getWindowToken(), 0);
 }

 Repeat the last two lines of code in Listing 5.7 for each EditText in the layout (changing
variable names and EditText s). The first line gets a system service that manages user input.
The second line gets a reference to an EditText , and the third line closes the keyboard. Every
 EditText must receive this treatment because there is no way of knowing which EditText
users were working with when they pressed the Save button. Add a call to this method in the
 initSaveButton method just before the ContactDataSource is instantiated.

 Test the modification in the emulator. Another discrepancy is exposed (again, only if you
have the hardware keyboard disabled in the AVD). The keyboard hides, but the screen remains
focused on the last EditText used. When the user saves the data and the screen displays in
view mode, it should be focused at the top of the screen. It does not do this. Fortunately,
there is an easy fix. Tell the ScrollView to focus on the top of the screen. Change the block
of code that requests focus for the contact name EditText in the setForEditing method to
the following to change the ScrollView ’s focus to the top of the screen when switching to
viewing mode:

97803e21947864_Book 1.indb 103 11/21/13 2:56 PM

ptg11524036

104 Chapter 5 Persistent Data in Android

 if (enabled) {
 editName.requestFocus();
 }
 else {
 ScrollView s = (ScrollView) findViewById(R.id. scrollView1);
 s.fullScroll(ScrollView. FOCUS_UP);
 }

 If you added the hack of the autofocus discussed in Chapter 4 , “Android Navigation and
Interface Design,” you can add the second line of code just before the s. clearFocus() line.
The focus up must be before the clear focus. Otherwise it will override the clear, and autofocus
will again occur. Test the app again. Everything should work as expected.

 One last problem exists with the ContactActivity . If the user adds a new contact, presses
the Save button, and then edits the data and presses Save again, another contact will be added
rather than updating the contact just entered. This is because the currentContact object
still has an ID of -1. There are a number of approaches to fixing this problem. You could
clear the screen and make users get the contact from the contact list (not yet implemented)
if they want to edit it. You could retrieve the newly inserted contact and reload the screen
with all the newly entered data and the id that was created by the auto increment of the ID
when the contact was inserted into the database. Or you could get the new ID and set the
 currentContact ContactID attribute to that value. That is the approach used here. Open the
ContactDataSource and create a new method using the code in Listing 5.8 .

 Listing 5.8 Retrieve the New Contact ID

 public int getLastContactId() {
 int lastId = -1;
 try {
 String query = "Select MAX(_id) from contact" ; //1
 Cursor cursor = database .rawQuery(query, null); //2

 cursor.moveToFirst(); //3
 lastId = cursor.getInt(0); //4
 cursor.close(); //5
 }
 catch (Exception e) {
 lastId = -1;
 }
 return lastId;
 }

 Notice that the structure of this method is similar to the other insert and update methods.
A try and catch is used to handle an error if it occurs, and a value, set to failure initially, is
returned. However, because this is a method to retrieve data from the database rather than save
it to the database, there are some significant differences.

97803e21947864_Book 1.indb 104 11/21/13 2:56 PM

ptg11524036

105Using the Database

 1. An SQL query is written to get the maximum value for the _id field in the contact table.
The last contact entered will have the maximum value because the _id field is set to
autoincrement.

 2. A cursor is declared and assigned to hold the results of the execution of the query. A
cursor is an object that is used to hold and move through the results of a query.

 3. The cursor is told to move to the first record in the returned data.

 4. The maximum ID is retrieved from the recordset. Fields in the recordset are indexed
starting at 0.

 5. The cursor is closed. Just like with closing the database, it is best to close the cursor as
soon as you are done using it. Forgetting to do so can lead to errors during execution.

 Save the ContactDataSource.java file and open the ContactActivity code. Navigate to the
 initSaveButton method. Enter the following code after the line of code that inserts a new
contact (not the update):

 int newId = ds.getLastContactId();
 currentContact .setContactID(newId);

 The first line uses the newly created retrieval method to get the newly inserted contact’s ID.
The second line sets the currentContact object’s ID to the retrieved value.

 Use the Debugger
 The ContactActivity is finished for now. However, it is difficult to test the recently added
functionality because currently it does not retrieve contact data. Therefore, to test that the
functionality you just added is working properly you have to watch it run. This is done using
the debugger.

 The first step in using the debugger is to set a breakpoint. A breakpoint tells the debugger to
halt execution at that line of code. This gives you the capability to inspect the values in the
variables and step through the code line by line. There are two ways to set a breakpoint. The
first is to double-click the light gray vertical bar to the left of the code. This will put a blue dot
that represents the breakpoint in the bar (Figure 5.1). This method is quick but can cause prob-
lems because if you are not completely on the vertical bar, it will collapse the method that the
line of code is in. This isn’t really a problem because you can just expand it again, but it can
be frustrating. The second method is to right-click the vertical bar and select Toggle Breakpoint
from the pop-up menu. If you are in the wrong location you will not get that menu option.

 To check whether the currentContact is getting a new ID, set a breakpoint in the
initSaveButton method on the hideKeyboard() line (Figure 5.1). When you run the
program, execution will halt at this line. After the breakpoint is set, run the app using the
emulator and the Debug Configuration you set up for the app. Fill in some values and press
the Save button. The Confirm Perspective Switch window opens, telling you that you need to
open the Debug Perspective. Click Yes. In the bottom left of the Debug Perspective, you will see
the app code with the hideKeyboard() line highlighted. The app has halted on that line and

97803e21947864_Book 1.indb 105 11/21/13 2:56 PM

ptg11524036

106 Chapter 5 Persistent Data in Android

is waiting for your command. To control execution during debugging, use the Debug toolbar
buttons at the top of the perspective (See Figure 5.2). Different versions of Eclipse have these
buttons in different locations and order at the top of the perspective, so you’ll have to look
for them.

 Figure 5.1 Code with breakpoint set.

 Figure 5.2 Debug control buttons.

 Hover over each of these to find the one that says Step Over. This advances the execution
by one line. Click this button and watch the code step line by line until you reach the
currentContact.setContactID(newId) line. Note that if your code doesn’t follow this path,
you’ve done something wrong and need to examine the code to see that it matches the code
in the previous listings. On the upper right of the perspective is a pane with two tabs: Variables
and Breakpoints (see Figure 5.3). Click the Variables tab if it is not already selected.

 Figure 5.3 Variable inspection tab.

97803e21947864_Book 1.indb 106 11/21/13 2:56 PM

ptg11524036

107Using Preferences

 In the Variables tab, find the newId variable and verify that its value is greater than -1. This
number may be significantly higher than -1 if you have run the app several times already. If
it is not greater than -1, review your code. Now step the code one more line and inspect the
 currentContact variable. You may have to expand currentContact to see its attributes. If
you cannot find currentContact in the variables list, expand the variable named this , which
represents the whole activity, so it will have all the activity variables in it. Expand it until you
find currentContact . Check to see that the contact ID attribute is the same as the newId
value. If it is, you have successfully created an activity that can save data to a database!

 The debugger can be stopped in several ways. The first would be to click the Terminate button
in the toolbar. The Terminate button is the one with the red square as an icon. The second is to
locate your debug configuration in the debug tab (typically in the top left of the perspective).
Right-click the configuration name and select Terminate from the menu.

 An alternative to stepping through the code with the debugger is to use logging. With this
approach you place Log statements in your code in places where you’d like to know the value
of variables or that the method was executed. When your code executes, these statements
will be written to LogCat (see the discussion of Log statement and LogCat in the “Create the
Database Helper Class” section earlier in this chapter). This is a useful approach if you have to
run through a significant amount of code to get to the code you are interested in.

 Using Preferences
 SharedPreferences are an easy way to store bits of information that need to persist
over the life cycle of an app. In the MyContactList app, preferences are set in the
ContactSettingsActivity. This activity is developed so that you can learn how to use
 SharedPreferences . To do so, the layout is first coded and then the Java file is edited.

 Create the Settings Layout
 Open the activity_contact_settings.xml file. If you have not already done so, add the naviga-
tion buttons to the layout. Do this by opening the activity_contact.xml file and copying the
 RelativeLayout xml with the +id set to navbar to the activity_contact_settings.xml. Be sure
to include the end </RelativeLayout> tag. While in the XML view, delete the TextView XML
and delete the padding attributes in the root RelativeLayout . Switch to Graphical Layout
to verify that the navigation bar is visible and in the correct position. There should be no
whitespace around the navigation bar.

 In Graphical Layout, drag two medium TextViews and two RadioGroup widgets from the
Form Widgets folder in the Palette to the layout. The RadioGroup widget looks like three circles
in a row. Positioning of these widgets should be similar to Figure 5.4 .

 Switch to activity_contact_settings .xml and modify the XML to match Listing 5.9 . Only
attributes that need to be added or modified are shown for each widget in the listing. Do not
change or modify any other attributes.

97803e21947864_Book 1.indb 107 11/21/13 2:56 PM

ptg11524036

108 Chapter 5 Persistent Data in Android

 Listing 5.9 RadioButton and TextView XML

 <TextView
 android:layout_marginLeft= "15dp"
 android:layout_marginTop= "15dp"
 android:text= "Sort Contact By:"

 <RadioGroup
 android:layout_alignParentLeft= "true"
 android:layout_marginLeft= "35dp"
 android:layout_marginTop= "10dp"

 Figure 5.4 ContactSettings layout loading widgets.

97803e21947864_Book 1.indb 108 11/21/13 2:56 PM

ptg11524036

109Using Preferences

 <RadioButton
 android:id= "@+id/radioName"
 android:text= "Name" />

 <RadioButton
 android:id= "@+id/radioCity"
 android:text= "City" />

 <RadioButton
 android:id= "@+id/radioBirthday"
 android:text= "Birthday" />
 </ RadioGroup >

 <TextView
 android:id= "@+id/textView2"
 android:layout_marginLeft= "15dp"
 android:layout_marginTop= "15dp"
 android:text= "Sort Order:"

 <RadioGroup
 android:layout_marginLeft = "35dp"
 android:layout_marginTop = "10dp"

 <RadioButton
 android:id = "@+id/radioAscending"
 android:text = "Ascending" />

 <RadioButton
 android:id = "@+id/radioDescending"
 android:text = "Descending" />

 </ RadioGroup >

 After the modifications have been made, switch to Graphical Layout and verify that the layout
looks like Figure 5.5 .

 Code the Page’s Behavior
 The settings activity’s function is relatively simple. When a user presses one of the choices,
that value is stored as a key/value pair in SharedPreferences . When the page is accessed, the
activity reads the stored preferences and sets the RadioButtons to the stored value. The value
stored in a SharedPreferences is used in ContactListActivity to sort the list of saved contacts.

97803e21947864_Book 1.indb 109 11/21/13 2:56 PM

ptg11524036

110 Chapter 5 Persistent Data in Android

 Open the ContactSettingsActivity .java file and complete the following steps:

 1. Copy the ImageButton initialization methods from the ContactActivity .java to the
 ContactSettingsActivity .java file so that the navigation bar will work. These methods
are initMapButton(), initListButton() , and initSettingsButton() . Paste this
code before the last } in the ContactSettingsActivity .java file.

 2. When the code is pasted into the ContactSettingActivity class, it will produce
errors. That is because the current activity in the Intent code is referencing the
 ContactActivity . Change this for each to be the ContactSettingActivity (some
versions of Eclipse may do this for you).

 3. Change the code in the initSettingsButton() method so that the button is disabled.
Use the following code:

 private void initSettingsButton() {
 ImageButton settings = (ImageButton) findViewById(R.
id. imageButtonSettings);

 list.setEnabled(false);
 }

 4. Call the three methods in the onCreate method.

 Figure 5.5 Completed ContactSettings layout.

97803e21947864_Book 1.indb 110 11/21/13 2:56 PM

ptg11524036

111Using Preferences

 After you have completed coding the navigation bar, you have to code the activity so that it
displays the current preference. Create a method called initSettings and refer to the code in
 Listing 5.10 to get it to properly configure the activity at startup.

 Listing 5.10 Code to Initialize the Activity

 private void initSettings() {
 String sortBy = getSharedPreferences("MyContactListPreferences",
 ➥Context. MODE_PRIVATE).getString("sortfield" , "contactname"); //1
 String sortOrder = getSharedPreferences("MyContactListPreferences",
 ➥Context. MODE_PRIVATE).getString("sortorder" , "ASC");

 RadioButton rbName = (RadioButton) findViewById(R.id. radioName); //2
 RadioButton rbCity = (RadioButton) findViewById(R.id. radioCity);
 RadioButton rbBirthDay = (RadioButton) findViewById(R.id. radioBirthday);
 if (sortBy.equalsIgnoreCase("contactname")) { //3
 rbName.setChecked(true);
 }
 else if (sortBy.equalsIgnoreCase("city")) {
 rbCity.setChecked(true);
 }
 else {
 rbBirthDay.setChecked(true);
 }

 RadioButton rbAscending = (RadioButton) findViewById(R.id. radioAscending); //4
 RadioButton rbDescending = (RadioButton) findViewById(R.id. radioDescending);
 if (sortOrder.equalsIgnoreCase("ASC")) {
 rbAscending.setChecked(true);
 }
 else {
 rbDescending.setChecked(true);
 }
 }

 The initSettings method gets the values stored in SharedPreferences to set the
 RadioButtons to the value that the user checks.

 1. A string variable is declared, and the value for the field to sort contacts by is
retrieved from SharedPreferences . The getPreferences method is used to
get the SharedPreferences object because there is no need to have multiple
 SharedPreferences objects in this app. The SharedPreference file is opened as a
private object. The getString method is called on the SharedPreference object to
retrieve the string value associated with the sortfield key. If there is no value stored for
that key, the default value of contactname is assigned to the variable. The next line does
the same thing for the preferred sort order.

97803e21947864_Book 1.indb 111 11/21/13 2:56 PM

ptg11524036

112 Chapter 5 Persistent Data in Android

 2. A reference to each radio button in the sort field RadioGroup is assigned to a variable.

 3. The value retrieved for the preferred sort field is evaluated to determine which
 RadioButton should be set as checked.

 4. The same operations are performed to set the sort order to the order preferred by the
user.

 The next step is to create a method to store the selected user preference for each option. Two
methods are required, one for each RadioGroup. When the user presses a RadioButton in one of
the groups, which RadioButton pressed is determined and then the value associated with that
RadioButton is saved in SharedPreferences. Refer to Listing 5.11 for the code for these methods.

 Listing 5.11 RadioButton Click Code

 private void initSortByClick() {
 RadioGroup rgSortBy = (RadioGroup) findViewById(R.id. radioGroup1);
 rgSortBy.setOnCheckedChangeListener(new OnCheckedChangeListener() {

 @Override
 public void onCheckedChanged(RadioGroup arg0, int arg1) {
 RadioButton rbName = (RadioButton) findViewById(R.id. radioName);
 RadioButton rbCity = (RadioButton) findViewById(R.id. radioCity);
 if (rbName.isChecked()) {
 getSharedPreferences("MyContactListPreferences",
 ➥. MODE_PRIVATE).edit()
 ➥.putString("sortfield" , "contactname").commit();
 }
 else if (rbCity.isChecked()) {
 getSharedPreferences("MyContactListPreferences",
 ➥. MODE_PRIVATE).edit()
 ➥.putString("sortfield" , "city").commit();
 }
 else {
 getSharedPreferences("MyContactListPreferences",
 ➥. MODE_PRIVATE).edit()
 ➥.putString("sortfield" , "birthday").commit();
 }
 }
 });
 }

 private void initSortOrderClick() {
 RadioGroup rgSortOrder = (RadioGroup) findViewById(R.id. radioGroup2);
 rgSortOrder.setOnCheckedChangeListener(new OnCheckedChangeListener() {

 @Override
 public void onCheckedChanged(RadioGroup arg0, int arg1) {

97803e21947864_Book 1.indb 112 11/21/13 2:56 PM

ptg11524036

113Summary

 RadioButton rbAscending = (RadioButton)
 ➥findViewById(R.id. radioAscending);
 if (rbAscending.isChecked()) {
 getSharedPreferences("MyContactListPreferences",
 ➥. MODE_PRIVATE).edit()
 ➥.putString("sortorder" , "ASC").commit();
 }
 else {
 getSharedPreferences("MyContactListPreferences",
 ➥. MODE_PRIVATE).edit()
 ➥.putString("sortorder" , "DESC").commit();
 }
 }
 });
 }

 Much of the code in these two methods has already been discussed. The only new code is the
code used to save the selected preference. Examine the listing to find the getPreferences
method. This method gets a reference to the SharedPreferences object using private mode.
It then sends the message edit() to the SharedPreferences object to open it for editing.
Next, the message putString is sent to the editable SharedPreferences object to save the
value. The first parameter in the putString method is the key and the second is the value to
be saved. Finally, the message commit() is sent to the changed SharedPreferences object to
make the changes persist.

 Add calls to these methods in the onCreate method and then run and test the Settings activ-
ity. You should select a sort field value and a sort order value. Navigate to another activity and
then navigate back to the Settings activity. If the values remain as you selected them, the activ-
ity is completed! These values stored in the SharedPreferences object are used in Chapter 6 ,
“Lists in Android: Navigation and Information Display,” to present a sorted list of contacts to
the user.

 Summary
 Data that exists beyond the execution of the app is said to persist. In this chapter you learned
several methods to make data persist in your app. You also learned how to get that persistent
data for use in the app. A SQLite database is used to store complex data. You created a class
(ContactDBHelper) to create and update the database and its contents. You created a class
(ContactDataSource) to access the database. Finally, you created a class (Contact) to pass a
contact’s data from and to the database methods.

 The second method you learned to persist data was through the SharedPreferences object.
The SharedPreferences object is used to store primitive bits of data, such as strings and
integers. You learned how to put data into a SharedPreferences object to save user choices
on contact sort order, and you learned how to get those choices from the object to display the
user’s past choices.

97803e21947864_Book 1.indb 113 11/21/13 2:56 PM

ptg11524036

114 Chapter 5 Persistent Data in Android

 Exercises
 1. Add the choice of a background color to the settings activity. Create a couple of new

color resources in color.xml. Add these choices as a RadioGroup to the settings screen.
You will have to modify the layout to place all the RadioGroups in a ScrollView so that
you can see them all. Make the choice persist in a SharedPreferences object. Use the
following command in the onCreate method of the settings activity to set the chosen
background color:

 scrollviewobject.setBackgroundResource(R.color.colorresourcename);

 2. Create a method in ContactDataSource that will only update the Contact’s Address.
Create a ContactAddress object to pass data to the method.

 3. Modify the Contact table to include a field BFF that is an integer data type. Modify the
onUpgrade method of ContactDBHelper to insert this new field without losing the data
that is currently in the table.

97803e21947864_Book 1.indb 114 11/21/13 2:56 PM

ptg11524036

 6
 Lists in Android: Navigation

and Information Display

 Lists are very useful tools and have become ubiquitous in mobile computing. So much so that my
daughter asked, after seeing my brother-in-law with a cast needed because of carpal tunnel syndrome
from computer use, if she was going to get a similar disease because she does this so often. With
that she moved her index finger in the list swipe gesture. Lists are so common because they are a very
useful way to organize, display, and access large amounts of data on a very small screen. This chapter
explores the implementation of lists in Android. It covers simple lists that exploit the built-in list
capabilities of the Android SDK and then examines the development of more complex lists, tailored
specifically to the task at hand. Finally, the chapter concludes by introducing passing data between
activities, using user preferences to sort a list, and changing the app’s launch activity to complete the
 ContactListActivity .

 Lists and Adapters
 Two components are required for any list implementation in Android: a ListView widget and
an adapter. The ListView widget is an object that can display a vertical list of items that can
be scrolled through. An Adapter is dynamically associated with the ListView . The adapter
provides access to the underlying data source for the list. In the case of a simple list, after an
adapter is associated with the widget, insertion of data as a list item is handled automatically.
In the case of a complex list, the developer must create a subclass of an Adapter object and
code the display and behavior of the list in the new subclass.

 Lists
 An AdapterView is the super class of all views that are bound to an underlying data source.
A View is the base class for all user interface components, such as the widgets used in creat-
ing layouts. The AdapterView has several subclasses, including GridView , ListView , and

97803e21947864_Book 1.indb 115 11/21/13 2:56 PM

ptg11524036

116 Chapter 6 Lists in Android: Navigation and Information Display

 Spinner widgets. The visible component of a list is implemented with a ListView widget in
an XML layout file. The widget has attributes that allow the user to configure some aspects
of the display. In many ways, a ListView is a standard widget. However, if given the special
ID of @id/android:list and a special subclass of Activity , many of the tasks of list imple-
mentation are easier because the developer can take advantage of many built-in features of the
SDK. To take advantage of these features, the Activity associated with the layout containing
the ListView must be a subclass of ListActivity rather than Activity . You don’t have to
use the ListActivity subclass, but that requires more coding, so only the ListActivity
approach is used in this chapter.

 Adapters
 Adapters act as a link between the view and the underlying data source for the list. Lists require
the use of an adapter. The adapter provides access to the data items and is responsible for creat-
ing a View for each item. A view determines how each list item is displayed. In most cases, this
display is uniform for each data item. The display does not have to be uniform, but in that
case, developers must implement their own adapters to create the different views.

 The super class for all adapters is BaseAdapter , which is an abstract class. The BaseAdapter
class has three subclasses, ArrayAdapter , CursorAdapter , and SimpleAdapter . The
 ArrayAdapter is used to bind an Array or ArrayList to a view. An ArrayAdapter is always
parameterized. That means it must be told what kind of data it is going to bind to a view. This
data can be simple, such as String , or more complex, such as the Contact object created in
the previous chapter. CursorAdapter is an abstract class that binds data from a database cursor
to a view. It has a concrete subclass, SimpleCursorAdapter , that is used to map a row layout
to fields in a cursor. The SimpleAdapter class is used to bind static data to a view.

 The ArrayAdapter is commonly used in list implementation. A solid understanding of how to
use this class can be easily extended to other adapter types where appropriate. In this chapter
the ArrayAdapter class is used to implement both a simple list and a complex list.

 Simple Lists
 The simple list implementation displays only the contact name of each contact in the user’s
contact database. For now, the user will be able to scroll through this list and click the list to
open the ContactActivity , but little else.

 Create the Data Source Method
 The first step to implementing the simple list is to have data. For this, you need to add
a method to the ContactDataSource class that will retrieve each contact’s name. Open
 ContactDataSource .java and add the code in Listing 6.1 to create a method for getting this
data from the database.

97803e21947864_Book 1.indb 116 11/21/13 2:56 PM

ptg11524036

117Simple Lists

 Listing 6.1 getContactName Code

 public ArrayList<String> getContactName() {
 ArrayList<String> contactNames = new ArrayList<String>(); //1
 try {
 String query = "Select contactname from contact" ; //2
 Cursor cursor = database .rawQuery(query, null);

 cursor.moveToFirst(); //3
 while (!cursor.isAfterLast()) {
 contactNames.add(cursor.getString(0));
 cursor.moveToNext();
 }
 cursor.close();
 }
 catch (Exception e) {
 contactNames = new ArrayList<String>(); //4
 }
 return contactNames;
 }

 Much of this method is similar to the method you wrote in the previous chapter to retrieve the
last contact’s ID number. The primary difference is that the query can return more than one
record to the cursor, so you have to implement a loop to retrieve all the records.

 1. The return value for this method is an ArrayList . An ArrayList is an object that acts
like an array in that the data it holds can be accessed through an index. In contrast to an
array, the ArrayList is not a fixed size. It can grow as data is added to it. An ArrayList
is parameterized. That is the <String> portion of the code. This says that the values
in the ArrayList are all of the String data type. Parameters for an ArrayList can be
more complex objects. Later, you will parameterize an ArrayList to hold the Contact
objects.

 2. The SQL query is set up to return the contactname field for all records in the contact
table.

 3. A loop is set up to go through all the records in the cursor. The loop is initialized by
moving to the first record in the cursor. Next, the while loop is set up to test if the
end of the cursor’s record set has been reached. Within the loop, the contact name is
added to the ArrayList , and the cursor is advanced to the next record. Forgetting the
 moveToNext() command will leave your method in an infinite loop because it will never
reach the end of the recordset.

 4. The ArrayList is set to a new empty ArrayList in case the routine crashes partially through
its filling. This way, the calling Activity can test for an empty list to determine if the
retrieve was successful.

97803e21947864_Book 1.indb 117 11/21/13 2:56 PM

ptg11524036

118 Chapter 6 Lists in Android: Navigation and Information Display

 Create the Layout
 Now that you have a way to get contact data, the next step is to modify the activity_contact_
list.xml file to include a ListView widget. Open this file and delete the HelloWorld TextView
if you have not already done so (see creating the layout in the “Using Preferences” section of
 Chapter 5 , “Persistent Data in Android”). Also add the navigation bar if you haven’t done that.
Be sure to delete the paddingLeft , attributes, and the like in the root RelativeLayout . In
Graphical Layout, from the Composite folder in the Palette, drag a ListView to anywhere on
the layout. Switch to activity_contact_list.xml and modify the XML for the ListView widget to
match Listing 6.2 .

 Listing 6.2 ListView XML

 < ListView
 android:id= "@id/android:list"
 android:layout_width= "match_parent"
 android:layout_height= "wrap_content"
 android:layout_alignParentLeft= "true"
 android:layout_alignParentTop= "true"
 android:layout_above= "@+id/navbar" >
 </ListView>

 This XML does not include any new attributes. However, it does include a new value. Examine
the android:id attribute. Notice that the id value is not a +id . It is @id/android:list . This
identifies this widget as using an Android-supplied ID. You use this to get access to the built-
in behaviors in ListActivity . After you’ve made the XML modifications, your layout should
look like Figure 6.1 .

 Code the Activity
 After the layout is complete, open ContactListActivity.java. Add code to make the navigation
buttons work. Be sure to disable the List button (see “Code the Page’s Behavior” in Chapter 5).
Next, change the class declaration line of code so that it extends ListActivity rather than
 Activity , as shown next:

 public class ContactListActivity extends ListActivity {

 You will have to import ListActivity. Next, enter the code in Listing 6.3 in the onCreate
method after the calls to the button initialization methods.

97803e21947864_Book 1.indb 118 11/21/13 2:56 PM

ptg11524036

119Simple Lists

 Listing 6.3 Simple List Activation Code

 ContactDataSource ds = new ContactDataSource(this);
 ds.open();
 ArrayList<String> names = ds.getContactName();
 ds.close();

 setListAdapter(new ArrayAdapter<String>(this ,
➥android.R.layout. simple_list_item_1 , names));

 Most of the code in Listing 6.3 should be familiar. The first four lines create a new
 ContactDataSource object, open the database, retrieve the contact names using the method
you created, and close the database. The last line is new. Its purpose is to associate the
 ListView widget with the Adapter that has the data to be displayed. To do so, it instantiates

 Figure 6.1 Initial list layout.

97803e21947864_Book 1.indb 119 11/21/13 2:56 PM

ptg11524036

120 Chapter 6 Lists in Android: Navigation and Information Display

a new ArrayAdapter that is parameterized to hold String data, providing it its context
(this), the layout to use for a list item (android.R.layout.simple_list_item_1), and an
 ArrayList with the data to be displayed (names). The layout is provided by the Android SDK,
which is why the reference to the layout begins with android rather than R . Notice that you
did not have to get a reference to the ListView widget like you have done every other time
you accessed a widget in a layout. This is because of the use of android:list ID and the
 ListActivity . All that work is built in to the Activity . Run the app on the emulator and tap
the List button in the navigation bar. Your display should look like Figure 6.2 . If you have no
data entered, the screen will be blank. Hit the Back button and enter a contact. Then tap the
List button again. It is more likely that you have a bunch of junk contacts leftover from testing
the app up to this point.

 Figure 6.2 Initial list running in emulator.

 A list of data is much more useful if it allows the user to do something with the data. In
time, you will make the tap of a contact in the list open the ContactActivity with that
user’s data displayed. After the following code is entered, the tap of a contact just opens the
 ContactActivity . Place the code in Listing 6.4 in the ContactListActivity's onCreate
method after the code that sets the list adapter, and fix the imports.

97803e21947864_Book 1.indb 120 11/21/13 2:56 PM

ptg11524036

121Complex Lists

 Listing 6.4 Code to Respond to an Item Click

 ListView listView = getListView();
 listView.setOnItemClickListener(new AdapterView.OnItemClickListener()
 {

 @Override
 public void onItemClick(AdapterView<?> arg0, View arg1, int arg2,
 ➥ long arg3) {
 Intent intent = new Intent(ContactListActivity. this ,
 ➥ContactActivity. class);

 startActivity(intent);
 }
 });

 The pattern in this code should be starting to get familiar. A reference to the layout widget
is grabbed. In this case, you used the ListActivity's getListView() method rather than
 findViewById . Next, a listener for the behavior you are interested in responding to is added
to the widget. Finally, the app’s response to the user’s behavior is coded. Run the app on the
emulator. Click any one of the contacts in the list and the ContactActivity should open.

 That’s all you need to code a simple list. Simple lists are useful for basic information display.
To make a more interesting list that works exactly as you need for your app, you must code
your own adapter and list item layout.

 Complex Lists
 The ContactListActivity needs to have more functionality than can be coded in a
simple list. In this activity, the list displays the contact’s name in a large blue font and the
contact’s phone number in a smaller black font below the name. The list item also displays
an arrow indicating that tapping the contact leads to some other activity. In this case, the
ContactActivity will open and the contact’s data is displayed. The list also allows the dele-
tion of one or more contacts. To get this functionality, you need to create data source methods,
create your own list item layout, and create your own adapter.

 Create the Data Source Method
 The complex list displays and uses several bits of data about a contact. To function properly, it
needs all the data for a contact. This requires a method to retrieve contact data for all contacts
from the database. Open or switch to ContactDataSource.java to create a new method that
returns that data as Contact objects in an ArrayList . Use the code in Listing 6.5 .

97803e21947864_Book 1.indb 121 11/21/13 2:56 PM

ptg11524036

122 Chapter 6 Lists in Android: Navigation and Information Display

 Listing 6.5 getContacts Method

 public ArrayList<Contact> getContacts() {
 ArrayList<Contact> contacts = new ArrayList<Contact>();
 try {
 String query = "SELECT * FROM contact" ;
 Cursor cursor = database .rawQuery(query, null);

 Contact newContact;
 cursor.moveToFirst();
 while (!cursor.isAfterLast()) {
 newContact = new Contact(); //1
 newContact.setContactID(cursor.getInt(0));
 newContact.setContactName(cursor.getString(1));
 newContact.setStreetAddress(cursor.getString(2));
 newContact.setCity(cursor.getString(3));
 newContact.setState(cursor.getString(4));
 newContact.setZipCode(cursor.getString(5));
 newContact.setPhoneNumber(cursor.getString(6));
 newContact.setCellNumber(cursor.getString(7));
 newContact.setEMail(cursor.getString(8));
 Time t = new Time(); //2
 t.set(Long. valueOf (cursor.getString(9)));
 newContact.setBirthday(t);

 contacts.add(newContact);
 cursor.moveToNext();
 }
 cursor.close();
 }
 catch (Exception e) {
 contacts = new ArrayList<Contact>();
 }
 return contacts;
 }

 This code is very similar to the method used to retrieve the contact name. The primary differ-
ence is that it retrieves all the data for each contact and places that data in a Contact object
before it adds it to the ArrayList (which is now parameterized to hold Contact objects).
There are some notable differences:

 1. A new Contact object is instantiated for each record in the cursor. All the values in the
record are added to the appropriate attribute in the new object. Care must be taken to get
the proper field. You need to know the structure of your table for this. The first field in
the table creation SQL statement is index 0 in the cursor, the second field is index 1, and
so on.

97803e21947864_Book 1.indb 122 11/21/13 2:56 PM

ptg11524036

123Complex Lists

 2. A new Time object is created to hold the contact’s birthday. Dates are stored in millis, so
the time object is set to the proper date using the set(long millis) method. After the
birthday object is created, it is inserted into the Contact object.

 Create the Layout
 A complex list relies on the ListView widget, but also requires a custom list item layout. The
list item layout is a layout like any other layout. However, it is organized so that it displays
important information from one of the items in the underlying data source. It typically
contains significantly fewer widgets than an activity’s layout and is organized in a rowlike
manner. There are several steps you need to take to create the list item layout for this chapter.

 1. Add some colors to the color.xml value file. Use #ff0000 as the value for the color
named system_red, #ffffff as the value for the color named system_white and #0000ff
for the color named system_blue. Save the file.

 2. Create a new XML layout file by right-clicking the layout folder in the Package Explorer
and selecting New > Other > Android XML Layout File. Give the file the name list_item.

 3. Switch to list_item.xml after the file opens in the editor, and change the root layout
from LinearLayout to RelativeLayout . Remember to make this change also in the
closing tag.

 4. Return to Graphical Layout and drag two large TextViews , one medium TextView , and
one small Button to anywhere on the layout.

 5. Switch to list_item.xml and configure the XML as identified in Listing 6.6 .

 Listing 6.6 List Item Layout XML

 < RelativeLayout xmlns:android ="http://schemas.android.com/apk/res/android"
 android:layout_width= "match_parent"
 android:layout_height= "match_parent" >
 //1
 <TextView
 android:id= "@+id/textContactName"
 android:layout_width= "wrap_content"
 android:layout_height= "wrap_content"
 android:layout_alignParentLeft= "true"
 android:layout_alignParentTop= "true"
 android:layout_marginLeft= "15sp"
 android:textColor= "@color/system_red"
 android:text= "Contact Name"
 android:textAppearance= "?android:attr/textAppearanceLarge" />
 //2

97803e21947864_Book 1.indb 123 11/21/13 2:56 PM

ptg11524036

124 Chapter 6 Lists in Android: Navigation and Information Display

 <TextView
 android:id= "@+id/textPhoneNumber"
 android:layout_width= "wrap_content"
 android:layout_height= "wrap_content"
 android:layout_alignParentLeft= "true"
 android:layout_marginLeft= "15sp"
 android:layout_below= "@+id/textContactName"
 android:text= "Phone Number"
 android:textAppearance= "?android:attr/textAppearanceMedium" />
 //3
 <Button
 android:id= "@+id/buttonDeleteContact"
 style= "?android:attr/buttonStyleSmall"
 android:layout_width= "wrap_content"
 android:layout_height= "wrap_content"
 android:layout_alignParentTop= "true"
 android:layout_marginTop= "10dp"
 android:layout_alignParentRight= "true"
 android:layout_marginRight= "10dp"
 android:layout_toLeftOf= "@+id/textContinue"
 android:textColor= "@color/system_red"
 android:background= "@color/system_white"
 android:visibility= "invisible"
 android:focusable= "false"
 android:focusableInTouchMode= "false"
 android:text= "Delete" />

 </ RelativeLayout >

 All the heights and widths of the widgets are set to wrap_content so that they adapt to the
data that is displayed within them. Much of the XML should be familiar to you. However, a
few items need to be explained.

 1. The contact name TextView is set to position itself at the top left of the list item. It is
set to have a large style, and the textColor attribute is set to the system resource for the
blue color.

 2. The phone number TextView is positioned below the contact name TextView . It uses
the default color so the textColor attribute is not used.

 3. The button widget introduces many new attributes. The first of these are the attributes
that give the appearance desired. The attribute textColor sets the button text to the red
color rather than the default. The background attribute sets the button’s background
color to white, which matches the background of the list item. This gives the appearance
that there is no button, just text to click. The visibility attribute is used to hide the
button until the user chooses to delete some contacts.

97803e21947864_Book 1.indb 124 11/21/13 2:56 PM

ptg11524036

125Complex Lists

 The focusable and focusableInTouchMode attributes are new, and both are set to
false. This is important to the behavior of the list. By default, if a list has a widget that
responds to some user event, that widget controls all clicks on the list item. In other
words, if the user selected the list item, but not the widget, instead of opening the
 ContactActivity , the widget’s method would execute and delete the contact. Setting
these two attributes to false corrects that behavior.

 Change the button’s visibility attribute value to visible so you can see it in the layout,
and switch to Graphical Layout. Your layout should look like Figure 6.3 . If it does, switch back
to list_item.xml and change the visibility attribute back to invisible .

 Figure 6.3 List item layout.

 Create the Custom Adapter
 A custom list item is of little use without a custom adapter. Custom adapters are always created
as subclasses of another type of adapter that is the closest fit for the behavior needed. Create a
new class called ContactAdapter in the com.example.mycontactlist source folder. Modify the
class by adding the code in Listing 6.7 .

 Listing 6.7 ContactAdapter Code

 //1
 public class ContactAdapter extends ArrayAdapter<Contact> {
 //2
 private ArrayList<Contact> items ;
 private Context adapterContext ;
 //3
 public ContactAdapter(Context context, ArrayList<Contact> items) {
 super (context, R.layout. list_item , items);
 c = context;
 this . items = items;
 }
 //4

97803e21947864_Book 1.indb 125 11/21/13 2:56 PM

ptg11524036

126 Chapter 6 Lists in Android: Navigation and Information Display

 @Override
 public View getView(int position, View convertView, ViewGroup parent) {
 View v = convertView;
 try {
 Contact contact = items .get(position);

 //5
 if (v == null) {
 LayoutInflater vi = (LayoutInflater)
 ➥ adapterContext .getSystemService(Context. LAYOUT_INFLATER_SERVICE);
 v = vi.inflate(R.layout. list_item , null);
 }
 //6
 TextView contactName = (TextView)
 ➥v.findViewById(R.id. textContactName);
 TextView contactNumber = (TextView)
 ➥v.findViewById(R.id. textPhoneNumber);
 Button b = (Button) v.findViewById(R.id. buttonDeleteContact);
 contactName.setText(contact.getContactName());
 contactNumber.setText(contact.getPhoneNumber());
 b.setVisibility(View. INVISIBLE);
 }
 catch (Exception e) {
 e.printStackTrace();
 e.getCause();
 }
 return v;
 }
 }

 A custom adapter is relatively easy to construct. However, it is important to understand the
components so that it works properly.

 1. The ContactAdapter class is declared as a subclass of ArrayAdapter that has been
parameterized to hold only Contact objects.

 2. Two variables are declared for the class. The items variable holds the ArrayList of
 Contact objects that have been retrieved from the database. The adapterContext
variable holds a reference to the context, in this case the ContactListActivity , where
the list is being displayed.

 3. The constructor method for the ContactAdapter class is passed the context and the
 ArrayList of contacts. It calls its super class constructor method (ArrayAdapter),
passing it the context, contacts, and the layout file used for the items. It then assigns the
contacts and context that were passed in to the items and c variables, respectively.

 4. The getView method is the workhorse of this class. This method is called for every item
in the underlying data source up to the number of list items that can be displayed in the
 ListView . As the user scrolls through the list, this method is called to display contacts in

97803e21947864_Book 1.indb 126 11/21/13 2:56 PM

ptg11524036

127Complex Lists

the ArrayList as they are scrolled into view. The ListView passes the index of the item
to be displayed and the View , which is the list item layout if it exists, null if it does not.
This is done so that list item views can be reused as they scroll off the screen rather than
re-creating a new view. This saves system resources.

 5. If there isn’t an existing view to be reused, the LayoutInflater service is called to
instantiate the list_item layout you previously created. You can use this to inflate
multiple views and use them as needed based on the underlying data.

 6. References to the widgets on the list_item layout are acquired and used to set the
widget to the proper settings for the contact it displays.

 Code the Activity
 You are almost ready to test your custom adapter. But first you need to change the
 ContactListActivity code to retrieve contact objects rather than contact names, set the
 ListView to use the custom adapter, and code the onItemClick method to pass the selected
contact’s ID to ContactActivity . The first two changes require changing only one line of
code each. Switch to the ContactListActivity.java. Code the activity to retrieve Contact objects
rather than names by changing the

 ArrayList<String> names = ds.getContactName();

 line of code to

 final ArrayList<Contact> contacts = ds.getContacts();

 The final keyword needs to be added because you will now use the ArrayList inside the
 onItemClick method.

 Code the activity to use the new adapter by changing the

 setListAdapter(new ArrayAdapter<String>(this ,
 ➥android.R.layout. simple_list_item_1 , names));

 line to

 setListAdapter(new ContactAdapter(this , contacts));

 Finally, modify the onItemClick method to pass the contact ID. Find the onItemClick
method in the onCreate method of the Activity . Modify the code to match Listing 6.8 .

 Listing 6.8 Selected Item Click

 @Override
 //1
 public void onItemClick(AdapterView<?> parent, View itemClicked, int position,
 ➥ long id) {
 Contact selectedContact = contacts.get(position); //2
 Intent intent = new Intent(ContactListActivity. this , ContactActivity. class);

97803e21947864_Book 1.indb 127 11/21/13 2:56 PM

ptg11524036

128 Chapter 6 Lists in Android: Navigation and Information Display

 intent.putExtra("contactid" , selectedContact.getContactID()); //3
 startActivity(intent);
 }

 Very little needs to be done to the method. All this method has to do is get the selected
contact from the contacts ArrayList , get the required data from it, and pass the data to the
 ContactActivity .

 1. The method declaration is functionally the same. However, change the name of the
method parameters from the generic arg so that it is easier to understand what each
parameter is.

 2. Create a variable named selectedContact and retrieve the contact from the ArrayList
using the position value. The position value is the index of the item tapped in the list,
and it matches the index of the contact in the ArrayList that is displayed in that
list item.

 3. Place the contact ID in the bundle that is passed to the ContactActivity . The method
 putExtra(key, value) is used to put primitive data types in the Intent so that they
are accessible by the activity receiving the intent.

 Save all your changes and test the adapter on the emulator. If you have properly coded these
objects, your ContactListActivity in the emulator should look similar to Figure 6.4 .

 Add Delete Functionality
 The final job associated with making the list work properly is to code the capability to delete
a contact from the list (and the database). This functionality is primarily implemented in the
custom adapter. However, because you don’t want the user to accidently delete a contact,
the app provides a button to turn the delete functionality on and off. Four tasks need to be
completed to implement the delete function:

 1. Add a button to the activity contact_list layout.

 2. Code a method to delete a contact from the database in ContactDataSource .

 3. Code the custom adapter to delete a contact from the list and database.

 4. Code the ContactListActivity to use the delete function of the adapter.

 First, add the button to the layout and, as long as you’re at it, add a button to add a new
contact to the layout. The code to implement the new contact button is addressed later in
this section. The two buttons are located at the top of the layout in a toolbar just like in the
 ContactActivity . In fact, the easiest way to implement the buttons is to copy the toolbar
XML and paste it into the ContactList layout file. Whether you copy the XML or type it
directly, it should look like Listing 6.9 when completed.

97803e21947864_Book 1.indb 128 11/21/13 2:56 PM

ptg11524036

129Complex Lists

 Listing 6.9 Toolbar XML for ContactListActivity

 < RelativeLayout
 android:id= "@+id/toolbar"
 android:layout_width= "match_parent"
 android:layout_height= "wrap_content"
 android:layout_alignParentLeft= "true"
 android:layout_alignParentTop= "true"
 android:background= "@color/toolbar_background" >

 <Button
 android:id= "@+id/buttonDelete"
 android:layout_width= "wrap_content"
 android:layout_height= "wrap_content"
 android:layout_alignParentLeft= "true"
 android:layout_marginLeft= "20dp"
 android:text= "Delete" />

 Figure 6.4 List with custom adapter running in emulator.

97803e21947864_Book 1.indb 129 11/21/13 2:56 PM

ptg11524036

130 Chapter 6 Lists in Android: Navigation and Information Display

 <Button
 android:id= "@+id/buttonAdd"
 android:layout_width= "wrap_content"
 android:layout_height= "wrap_content"
 android:layout_alignParentRight= "true"
 android:layout_marginRight= "20dp"
 android:text= "Add Contact" />
 </RelativeLayout>

 If you copied the XML, make sure you change the ToggleButton to a Button . The XML for
the list widget also needs to be modified. In the ListView's attributes, delete the line that
aligns the ListView with the top of the parent, and add the following line in its place:

 android:layout_below = "@+id/toolbar"

 This line positions the ListView below the toolbar. When complete, switch to Graphical
Layout and verify that the layout looks like that in Figure 6.5 .

 Figure 6.5 Modified ContactListActivity layout.

97803e21947864_Book 1.indb 130 11/21/13 2:56 PM

ptg11524036

131Complex Lists

 After you have the layout correct, open ContactDataSource to add a method to delete a
contact. This method will be passed the ID number of the contact to delete. Refer to Listing
 6.10 to code the method.

 Listing 6.10 deleteContact Method

 public boolean deleteContact(int contactId) {
 boolean didDelete = false ;
 try {
 didDelete = database .delete("contact" , "_id=" + contactId, null) > 0;
 }
 catch (Exception e) {
 //Do nothing -return value already set to false
 }
 return didDelete;
 }

 The deleteContact method is easy to understand. The method is passed the ID as the param-
eter contacted. A return value to indicate success or failure is set up, and the database’s delete
method is called. There are three parameters for the delete method. The first is the name of
the table to delete from. The second is the Where clause to use to determine which records to
delete. The final parameter is a string array of criteria for deletion. Only one of the last two
parameters is needed. The other can be null.

 Now turn your attention to the custom adapter (ContactAdapter.java) you created earlier.
You need to add three methods to this class. The first method is used to display the Delete
button in the list_item layout for a selected list item, and it sets a listener for the button
click event. The method executed when the user clicks the Delete button removes the contact
from the ArrayList , calls a method to hide the Delete button, and calls a method to delete
the contact from the database. The second method deletes the contact from the database by
calling ContactDataSource , and the third method hides the Delete button. The code for these
methods is in Listing 6.11 .

 Listing 6.11 Code to Delete from List

 public void showDelete(final int position, final View convertView, //1
 final Context context, final Contact contact) {
 View v = convertView;
 final Button b = (Button) v.findViewById(R.id. buttonDeleteContact);
 //2
 if (b.getVisibility()==View. INVISIBLE) {
 b.setVisibility(View. VISIBLE);
 b.setOnClickListener(new OnClickListener() {
 @Override
 public void onClick(View v) {
 hideDelete(position, convertView, context);

97803e21947864_Book 1.indb 131 11/21/13 2:56 PM

ptg11524036

132 Chapter 6 Lists in Android: Navigation and Information Display

 items .remove(contact);
 deleteOption(contact.getContactID(), context);
 }
 });
 }
 else {
 hideDelete(position, convertView, context);
 }
 }
 //3
 private void deleteOption(int contactToDelete, Context context) {
 ContactDataSource db = new ContactDataSource(context);
 db.open();
 db.deleteContact(contactToDelete);
 db.close();
 this .notifyDataSetChanged();
 }
 //4
 public void hideDelete(int position, View convertView, Context context) {
 ➥View v = convertView;
 final Button b = (Button) v.findViewById(R.id. buttonDeleteContact);
 b.setVisibility(View. INVISIBLE);
 b.setOnClickListener(null);
 }

 The user enables deleting by tapping the Delete button in the toolbar. This tells the list to
respond to a list item selection by showing the Delete button for that list item and enabling
the button’s capability to respond to a click event. If the user taps a list item that is showing
the Delete button but not on the button itself, the button is hidden. If the user taps the Delete
button itself, the button’s response to a tap event is executed, and the contact is deleted from
the database and the list. This functions as essentially a two-phase commit for deleting. The
user first has to choose a contact to delete and then choose to delete it. Because of this, there is
no need for a warning message on the delete.

 1. The showDelete method is the only public method of the three methods coded for the
delete functionality of the custom adapter. It is called the ContactListActivity when
the user selects a list time with deleting enabled. It is passed the position of the selection
in the list, the list item layout with the contact’s data in it, the context where the
method call originated, and the Contact object associated with the selected list item.

 2. The showDelete method checks if the Delete button is visible on the list item layout
passed to it. If it is, it calls the hideDelete method. If it is not, it displays the button
and enables the button click event. The click event uses Contact object passed to the
 showDelete method to remove the contact from the ArrayList and remove it from the
database.

 3. The deleteOption method is code standard for calling a method to access the database.
The only new item in this method is notifyDataSetChanged() . This method tells

97803e21947864_Book 1.indb 132 11/21/13 2:56 PM

ptg11524036

133Complex Lists

the adapter that the underlying data source has changed so that the list display will be
changed to reflect the deletion.

 4. The hideDelete method changes the button from visible to invisible and disables the
button’s onClick event.

 The final step in coding the delete functionality is to modify ContactListActivity. Open this
file and insert a new method to initiate the Delete button using the code in Listing 6.12 .
The adapter variable added below will produce a syntax error until you enter the code in
 Listing 6.13 .

 Listing 6.12 initDeleteButton() Code

 private void initDeleteButton() {
 final Button deleteButton = (Button) findViewById(R.id. buttonDelete);
 deleteButton.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 if (isDeleting) {
 deleteButton.setText("Delete");
 isDeleting = false ;
 //1
 adapter .notifyDataSetChanged();
 }
 else {
 deleteButton.setText("Done Deleting");
 isDeleting = true ;
 }
 }
 });
 }

 The code is relatively simple. It sets an onClickListener for the button, and when the button
is clicked, it checks if the user has deleting enabled. If it is enabled, it is disabled by setting
the isDeleting variable to false and changing the button display text to Delete. If it is not
enabled, the code enables deleting by setting the isDeleting variable to true and changing the
text of the button to Done Deleting.

 This requires adding the isDeleting variable. Just after the ContactListActivity class decla-
ration add the line

 boolean isDeleting = false ;

 The one new bit of code in this method is at //1. This code tells the adapter to update itself.
This is used to set the list back to the not deleting mode. If the user has selected a list item
and the Delete button is visible and the user then clicks Done Deleting, this code removes the
display of those buttons. Basically, the code tells the activity to update the UI when the adapter
receives the message notifyDataSetChanged() . Be sure to call the initDeleteButton()
method from the onCreate method.

97803e21947864_Book 1.indb 133 11/21/13 2:56 PM

ptg11524036

134 Chapter 6 Lists in Android: Navigation and Information Display

 The next step is to modify the onItemClick method (declared in the onCreate method) to
handle deleting. Modify this method to match Listing 6.13 .

 Listing 6.13 Modified onItemClick Method

 @Override
 public void onItemClick(AdapterView<?> parent, View itemClicked, int position,
 ➥ long id) {
 Contact selectedContact = contacts.get(position);
 if (isDeleting) {
 adapter .showDelete(position, itemClicked, ContactListActivity. this ,
 ➥selectedContact);
 }
 else {
 Intent intent = new Intent(ContactListActivity. this ,
 ➥ContactActivity. class);
 intent.putExtra("contactid" , selectedContact.getContactID());
 startActivity(intent);
 }
 }

 Just as in the initDeleteButton method, a variable is used that is not declared. Add the decla-
ration to hold the adapter after the declaration of the isDeleting variable. Use this code:

 ContactAdapter adapter ;

 You will also have to assign the ContactAdapter to this variable. In the onCreate method,
delete this line:

 setListAdapter(new ContactAdapter(this , contacts));

 Add this code in its place:

 adapter = new ContactAdapter(this , contacts);
 setListAdapter(adapter);

 Test your app. If you have properly entered this code, when you tap the Delete button and
then tap one of the items in the list, you will see something similar to Figure 6.6 . If you then
tap the Delete button, the contact should be deleted from the list.

 Android Versus iOS: Creating Complex Lists
 Creating a list like the one shown in this chapter is much simpler in iOS because a lot of
the functionality is available in ready-made controls. In iOS, the list is called a table, and the
default delete behavior is as it’s described here, where the user taps a button to initiate delete
mode and then is able to delete rows until the delete mode is cancelled.

 Although the iOS controls provide a lot of functionality and can be customized, you do have less
freedom than what is available in Android.

97803e21947864_Book 1.indb 134 11/21/13 2:56 PM

ptg11524036

135Completing the ContactList Activity

 Figure 6.6 Deleting a contact.

 You’ve completed the development of a custom list! The code is relatively involved, but the
pattern is the basis for any future complex lists you might want to create. Complex lists are
really not that difficult. Through the use of a custom adapter and layout, you can create list
items with a significant amount of diverse information, including images if desired.

 Completing the ContactList Activity
 There are a few things left to complete the ContactList Activity. These things include modify-
ing ContactActivity to use the contact ID passed to it, adding an Add Contact button, sorting
the list using user preferences, and making the app open to the list rather than a blank contact.

 Populating the ContactActivity Screen
 You’ve learned how to get a list to respond to the selection of a contact in the list by opening
the ContactActivity and passing a contact’s ID value to it. The next step is to get the
 ContactActivity to use that ID to retrieve the contact’s data and display it.

97803e21947864_Book 1.indb 135 11/21/13 2:56 PM

ptg11524036

136 Chapter 6 Lists in Android: Navigation and Information Display

 Open the ContactDataSource.java file and add a method to retrieve a specific contact based
on the contact’s ID. Use the code in Listing 6.14 to create the method. This code is essentially
the same as the getContacts method, except that it returns a single contact rather than an
 ArrayList of all the contacts.

 Listing 6.14 GetSpecificContact Method

 public Contact getSpecificContact(int contactId) { //1
 Contact contact = new Contact();
 String query = "SELECT * FROM contact WHERE _id =" + contactId; //2
 Cursor cursor = database .rawQuery(query, null);

 if (cursor.moveToFirst()) { //3
 contact.setContactID(cursor.getInt(0));
 contact.setContactName(cursor.getString(1));
 contact.setStreetAddress(cursor.getString(2));
 contact.setCity(cursor.getString(3));
 contact.setState(cursor.getString(4));
 contact.setZipCode(cursor.getString(5));
 contact.setPhoneNumber(cursor.getString(6));
 contact.setCellNumber(cursor.getString(7));
 contact.setEMail(cursor.getString(8));
 Time t = new Time();
 t.set(Long. valueOf (cursor.getString(9)));
 contact.setBirthday(t);

 cursor.close();
 }
 return contact;
 }

 The pattern should look very familiar. In this method, there is no loop because only one
contact is returned. Also, a Contact object is the return value rather than an ArrayList . There
are three other notable differences:

 1. The method has a parameter in its signature. The parameter is an integer that holds the
ID of the contact to be retrieved.

 2. The SQL query has a WHERE clause that is passed the value of the parameter so that only
the contact with that ID value is returned to the cursor .

 3. Move to the first record returned. If a contact is found, populate the contact object.

 Next, a new method needs to be added to ContactActivity and its onCreate method must
be modified. The new method, called initContact , is used to retrieve the contact and popu-
late the layout with the values of the retrieved contact. The onCreate method is modified

97803e21947864_Book 1.indb 136 11/21/13 2:56 PM

ptg11524036

137Completing the ContactList Activity

to get the passed ID and call the method to retrieve and display the contact. Use the code in
 Listing 6.15 to create the new method.

 Listing 6.15 Method to Load a Contact

 private void initContact(int id) {
 //1
 ContactDataSource ds = new ContactDataSource(ContactActivity. this);
 ds.open();
 currentContact = ds.getSpecificContact(id);
 ds.close();
 //2
 EditText editName = (EditText) findViewById(R.id. editName);
 EditText editAddress = (EditText) findViewById(R.id. editAddress);
 EditText editCity = (EditText) findViewById(R.id. editCity);
 EditText editState = (EditText) findViewById(R.id. editState);
 EditText editZipCode = (EditText) findViewById(R.id. editZipcode);
 EditText editPhone = (EditText) findViewById(R.id. editHome);
 EditText editCell = (EditText) findViewById(R.id. editCell);
 EditText editEmail = (EditText) findViewById(R.id. editEMail);
 TextView birthDay = (TextView) findViewById(R.id. textBirthday);
 //3
 editName.setText(currentContact .getContactName());
 editAddress.setText(currentContact .getStreetAddress());
 editCity.setText(currentContact .getCity());
 editState.setText(currentContact .getState());
 editZipCode.setText(currentContact .getZipCode());
 editPhone.setText(currentContact .getPhoneNumber());
 editCell.setText(currentContact .getCellNumber());
 editEmail.setText(currentContact .getEMail());
 //4
 birthDay.setText(DateFormat. format ("MM/dd/yyyy" ,
 ➥ currentContact .getBirthday().toMillis(false)).toString());
 }

 Again, this code should be familiar by now. It is similar to the methods used to set the
 ContactActivity for editing or viewing.

 1. The contact is retrieved and assigned to the Activity’s currentContact variable.

 2. A reference to all the widgets in the layout needed to display the contact’s data is to a
variable.

 3. The widgets are set to display the values in the retrieved contact.

 4. The display of the contact’s birthday requires a little more work. The time value
retrieved for the birthday is converted to millis and then converted to a string value. The
 DateFormat object’s format method uses this value to create a string representation of
the date in the given format (“MM/dd/yyyy”).

97803e21947864_Book 1.indb 137 11/21/13 2:56 PM

ptg11524036

138 Chapter 6 Lists in Android: Navigation and Information Display

 Now you’ll code the activity to get the id passed to it and call the initContact method to
display the contact. Scroll to the onCreate method and delete the currentContact = new
Contact() line. Before the setForViewing() line, add the code in Listing 6.16 .

 Listing 6.16 onCreate Code to Get and Use Passed ID

 Bundle extras = getIntent().getExtras();
 if (extras != null) {
 initContact(extras.getInt("contactid"));
 }
 else {
 currentContact = new Contact();
 }

 This code checks the intent for extras. If it finds an extra, it gets the contact ID, retrieves the
contact from the database, and displays the data in the layout. If there is no extra, it assigns a
new contact object to currentContact , effectively setting the currentContact ID to -1. This
takes care of coding for the click of the Add Contact button in the ContactListActivity (see
“Coding the Add Button” section that follows). The Add Contact button does not pass an extra
to the ContactActivity , so the activity is ready to add a new contact’s data.

 Run your app. If you’ve done everything correctly, when you tap a name in the contact list, the
 ContactActivity will open with all the contact’s data displayed. Congratulations! You have
successfully learned to get data from an item selected in a list and pass that data to another
activity.

 The ContactListActivity is almost complete. You’ve got four tasks left:

 1. Code the Add Contact button.

 2. Modify the list to sort the data according to user preferences.

 3. Modify the app to open this activity as the first activity.

 4. Modify the onCreate method of this activity to check if there are any contacts saved. If
there are no contacts, it will open the ContactActivity instead of the list.

 Coding the Add Button
 Coding the Add button is just reusing code that you used before (Listing 6.17).

 Listing 6.17 initAddContactButton() Method

 private void initAddContactButton() {
 Button newContact = (Button) findViewById(R.id. buttonAdd);
 newContact.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 Intent intent = new Intent(ContactListActivity. this ,

97803e21947864_Book 1.indb 138 11/21/13 2:56 PM

ptg11524036

139Completing the ContactList Activity

ContactActivity. class);
 startActivity(intent);
 }
 });
 }

 Remember to call the initAddContactButton() method in the onCreate method.

 Sort the Contacts List
 The next task is to code the ContactListActivity to sort the contact list according to
the preferences set by the user. The first step is to modify the getContacts method in
 ContactDataSource . The method needs to be modified to accept the sort field and sort
order as parameters and use these parameters in the SQL to perform the actual sort. Switch
to ContactDataSource.java and locate the getContacts method. Change the message
signature from

 public ArrayList<Contact> getContacts() {

 to

 public ArrayList<Contact> getContacts(String sortField, String sortOrder) {

 Next, change the SQL statement from

 String query = " SELECT * FROM contact ";

 to

 String query = "SELECT * FROM contact ORDER BY " + sortField + " " + sortOrder;

 The next step is to modify the ContactListActivity to retrieve the user sorting preferences
and pass them to this modified method. Switch to ContactListActivity . If you saved your
last changes, there will be an error in the code because the method getContacts() no longer
exists. To fix the error, you must first retrieve the stored user preferences. Enter the following
two lines before the line that creates a new ContactDataSource object:

 String sortBy = getSharedPreferences("MyContactListPreferences",
 ➥Context. MODE_PRIVATE).getString("sortfield" , contactname");
 String sortOrder = getSharedPreferences("MyContactListPreferences",
 ➥Context. MODE_PRIVATE).getString("sortorder" , "ASC");

 Now modify the call to the getContacts method to use these values:

 final ArrayList<Contact> contacts = ds.getContacts(sortBy, sortOrder);

 Run the app. Change the sort preferences using the Settings screen. You should see the order of
the contacts on the list change as you change your preferences. Try changing the sort settings
and returning to the list using the list ImageButton . Now try changing the sort order and
returning to the ContactListActivity using the Back button. You should notice that the list is

97803e21947864_Book 1.indb 139 11/21/13 2:56 PM

ptg11524036

140 Chapter 6 Lists in Android: Navigation and Information Display

not re-sorted when you use the Back button, but it is when you use the ImageButton . When
you use the ImageButton , the flag you set causes the old ContactActivityList activity to be
destroyed and a new one is created so the onCreate method is executed. When you use the
Back button, the Activity still exists, so the onCreate method is not executed and the sort
order is thus never changed.

 The solution to this is to place the code that populates the list in the onResume() method.
As you saw in Chapter 2 , “App Design Issues and Considerations,” the onResume method is
executed just before the Activity becomes visible. This method will be executed everytime
the user navigates to the activity. This is where you need to move some of the code from the
 onCreate method to the onResume() method. Use the following steps:

 1. After the onCreate method, create the onResume method.

 2. Cut the code from the onCreate method that gets the preferences, retrieves the contacts,
and sets up the list, and paste it into the onResume method.

 When complete, your code should look like Listing 6.18 .

 Listing 6.18 The onResume Method

 @Override
 public void onResume() {
 super .onResume();
 String sortBy = getSharedPreferences("MyContactListPreferences" ,
 ➥Context. MODE_PRIVATE).getString("sortfield" , "contactname");
 String sortOrder = getSharedPreferences("MyContactListPreferences" ,
 ➥Context. MODE_PRIVATE).getString("sortorder" , "ASC");

 ContactDataSource ds = new ContactDataSource(this);
 ds.open();
 final ArrayList<Contact> contacts = ds.getContacts(sortBy, sortOrder);
 ds.close();

 adapter = new ContactAdapter(this , contacts);
 setListAdapter(adapter);
 ListView listView = getListView();
 listView.setOnItemClickListener(new AdapterView.OnItemClickListener() {

 @Override
 public void onItemClick(AdapterView<?> parent, View itemClicked,
 ➥ int position, long id) {
 Contact selectedContact = contacts.get(position);
 if (isDeleting) {
 adapter .showDelete(position, itemClicked,
 ➥ContactListActivity. this , selectedContact);

97803e21947864_Book 1.indb 140 11/21/13 2:56 PM

ptg11524036

141Completing the ContactList Activity

 }
 else {
 Intent intent = new Intent(ContactListActivity. this ,
 ➥ContactActivity. class);
 intent.putExtra("contactid" , selectedContact.getContactID());
 startActivity(intent);
 }
 }
 });
 }

 Most of the code has been explained as you wrote it. The one new thing is the creation of the
 onResume method itself. The method overrides the onResume method built in to the Activity so
the first line in the methods calls that method, and so that all the things that need to happen
when activity resumes still happen. Then your code is executed. The code you pasted into the
 onResume method should no longer be in the onCreate method.

 Set ContactListActivity as the Default Activity
 The third task is to modify the AndroidManifest.xml file to open the ContactListActivity
instead of the ContactActivity as the initial app activity. Open AndroidManifest.xml by
double-clicking it in the Package Explorer. Switch to the XML view if it is not already open.
Find the code that matches Listing 6.18 and switch the name and label attributes so that the
activity with the intent filter is ContactListActivity and its label, and the other activity has
the name ContactActivity and its label. To do this, delete the strikeout lines (these are the
original lines) in Listing 6.19 and add the new lines.

 Listing 6.19 Changing the Launch Activity

 < activity
 android:name = "com.example.mycontactlist.ContactActivity"
 android:label = "@string/app_name" >
 android:name = "com.example.mycontactlist.ContactListActivity"
 android:label = "@string/title_activity_contact_list" >
 <intent-filter>
 <action android:name = "android.intent.action.MAIN" />
 <category android:name = "android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity
 android:name = "com.example.mycontactlist.ContactListActivity"
 android:label = "@string/title_activity_contact_list" >
 android:name = "com.example.mycontactlist.ContactActivity"
 android:label = "@string/app_name" >
 </activity>

97803e21947864_Book 1.indb 141 11/21/13 2:56 PM

ptg11524036

142 Chapter 6 Lists in Android: Navigation and Information Display

 Test the app. If the app does not start with the ContactListActivity , try cleaning the project
to reload the manifest file. Select Project > Clean. Verify that the MyContactList project is
selected or Clean All Projects is selected, and click OK. Run the app again. If the list still does
not show as the first activity, you will have to modify your debug configuration. Select Run >
Debug Configurations. In the window that opens, select your debug configuration if it is not
already selected, and then select Launch Default Activity. Run the app again.

 Set ContactActivity as Default Activity with no Contacts in
Database
 The final task is to modify the onResume method of the ContactListActivity to
check if there are any contacts in the database. If there are not, the app should open the
 ContactActivity . Refer to Listing 6.20 to make these changes.

 Listing 6.20 Modify the onResume Method to Check for Contacts

 if (contacts.size() > 0) { //1

 adapter = new ContactAdapter(this , contacts);
 setListAdapter(adapter);
 ListView listView = getListView();
 listView.setOnItemClickListener(new AdapterView.OnItemClickListener() {

 @Override
 public void onItemClick(AdapterView<?> parent, View itemClicked, int
 position, long id) {
 Contact selectedContact = contacts.get(position);
 if (isDeleting) {
 adapter .showDelete(position, itemClicked,
 ContactListActivity. this , selectedContact);
 }
 else {
 Intent intent = new Intent(ContactListActivity. this ,
 ContactActivity. class);
 intent.putExtra("contactid" , selectedContact.getContactID());
 startActivity(intent);
 }
 }
 });
 } //2
 else {
 Intent intent = new Intent(ContactListActivity. this , ContactActivity. class);
 startActivity(intent);
 }

97803e21947864_Book 1.indb 142 11/21/13 2:56 PM

ptg11524036

143Exercises

 You are really just adding a few lines of code around an existing body of code. Add the if
statement before the line that sets the adapter variable to check if there are any contacts
retrieved from the database (//1). Close the if statement body after the setting of the
 onItemClickListener body of code (//2). Then add the else block of code to open the
 ContactActivity if there are no contacts.

 Test the app. Delete all the contacts. Rerun the app to see if it opens to the ContactActivity .
If it does, you have successfully completed this chapter. Congratulations!

 Summary
 Lists are an important part of almost every app. Lists can be very simple displays of relatively
static data, or they can be quite complex, displaying a variety of data and having a diverse set
of behaviors. Simple lists can be implemented using components provided with the Android
SDK. More complex lists require the development of custom list layouts and adapters.

 The ContactListActivity is finished! The activity not only displays a list of contacts, but also
sorts that list according to user preferences and passes data to the ContactActivity to display
a selected contact.

 Exercises
 1. Add the contact’s cell phone number to the complex list. The list should display the

contact name on the first line and Home:the number Cell:the number on the second
line.

 2. Add another line to the list so that the list displays

 Contact Name

 Street Address, City, State, ZIP,

 Phone number

 3. Modify the custom adapter to alternately display the contact name in red and blue. For
example, the first name in the list will be red, the second will be blue, the third is red,
and so on.

97803e21947864_Book 1.indb 143 11/21/13 2:56 PM

ptg11524036

This page intentionally left blank

ptg11524036

 7
 Maps and Location

in Android

 Smartphones and tablets are mobile computing devices. Both parts of that description are why location
and maps are important components of many apps. Useful computation can be performed based on
the device location. That location can change much faster than the location of a traditional comput-
ing device. This enables the app to very quickly change its behavior as it moves to different locations.
Knowing how to capture and display location information can help you build powerful apps. This
chapter describes how to take advantage of location information within your app. Location sensors can
be accessed and used directly through the Android SDK. However maps require more work. This chapter
also teaches you how to set up your Eclipse environment to work with maps.

 Location Sensors, Maps, and Fragments
 This section begins with an overview of sensors, maps, and fragments. Sensors are hardware
built in to the mobile device to allow an app to capture environmental data. Maps are used to
display data that can be enhanced by a visual representation of its location. Finally, fragments
are a newer approach to coding Android Activities.

 Location Sensors
 Android devices typically have two location sensors. One sensor (network sensor) is based
on the cell towers and/or the Wi-Fi access points your device is connected to. This sensor
provides the approximate location of the device. The other sensor is based on a built-in Global
Positioning System (GPS) receiver. This sensor can provide position information accurate to
within a few meters, depending on conditions. However, the GPS sensor is much slower in
acquiring its position information than the network sensor. Additionally, not all devices have a
GPS sensor.

97803e21947864_Book 1.indb 145 11/21/13 2:56 PM

ptg11524036

146 Chapter 7 Maps and Location in Android

 Location information is accessed within an app through the use of the LocationManager
object. A LocationManager is not directly instantiated. It exists as an Android system service,
and is accessed through the method getSystemService . The LocationManager object
can request updates from either or both sensors. To get the updates, an app has to
instantiate a LocationListener . A LocationListener implements the method
 onLocationChanged . Whenever the sensor reports a location change, that change is
captured by the LocationListener , which is passed a Location object, and the
 onLocationChanged method is executed. A Location object contains information on the
new location, including GPS coordinates and altitude, which sensor provided the location, a
measure of the accuracy of the coordinate estimate (usually in meters), as well as other infor-
mation. The onLocationChanged method uses this object to perform operations based on
the code the developer provided in the method. To begin receiving location information from
the sensors, the LocationManager requests the updates from a specific provider and tells it
what LocationListener to use to handle the updates. When the LocationManager requests
updates from the GPS, the GPS is activated. However, the GPS must also be enabled by the user
to be activated. If it has not been enabled, the code cannot turn it on. It is recommended that
the developer test whether the GPS is enabled and inform the user if it is not.

 Maps
 Maps are implemented using the GoogleMap object in the source code file and a MapFragment
in the layout file. These objects are not a part of the standard Android SDK but rather the
Google Play Services SDK. This SDK must be installed on your development machine to imple-
ment maps in your app. Using Google Maps requires an API key. This key associates your app
with an attempt to access the GoogleMap API. This is how you, and Google, can track how
often your users access the map portion of your app. The API key is free. Maps are implemented
as a MapFragment widget in a layout. The Activity that implements the code to provide the
map’s behavior must be a FragmentActivity .

 Fragments
 Fragments were discussed in Chapter 4 , “Android Navigation and Interface Design.” The
 FragmentActivity is a subclass of the Activity class. An Activity that needs to imple-
ment a map must extend the FragmentActivity class rather than the Activity class. This is
required because maps are encapsulated in a MapFragment . This allows a map to be a part of a
layout rather than the only thing in a layout.

 Setting Up for Maps
 There are a few things that need to be done before you can successfully add maps to your
app. The first is to load the Google Play Services SDK into your workspace. Select Window >
Android SDK Manager. The SDK Manager window opens and shows a list of available SDKs.
Scroll through this list until you find the Extras folder. Within this folder, find and check the

97803e21947864_Book 1.indb 146 11/21/13 2:56 PM

ptg11524036

147Setting Up for Maps

box next to Google Play Services (Figure 7.1). Click the Install X Packages button. There may be
more than just the one package you selected. Some packages have dependencies on other pack-
ages, and the SDK manager will want to install any package updates.

 Figure 7.1 Android SDK Manager window.

 The Choose Packages to Install window will be displayed. Click the Accept License option
button at the bottom right of the window and then click Install (Figure 7.2). Downloading and
installation will begin. This may take a significant amount of time. Plan to have something to
do while you are waiting. After the SDKs have downloaded, you may have to restart Eclipse.

 Note
 The process of updating or adding SDKs to Eclipse is known to be “buggy.” After executing the
previous steps to set up maps, you may have errors throughout your project. If this happens,
don’t panic! It may take some time, but you’ll get it resolved. The first thing to try is a simple
clean (Project > Clean). If that does not work, check for updates (this may have been sug-
gested by Eclipse). Select Help > Check for Updates. After all the updates have been installed,
restart Eclipse and clean the project after it restarts. If this doesn’t work, open the SDK man-
ager again (Window > Android SDK manager). Find the Tools folder and make sure that Android
SDK Tools, Android SDK Platform-tools, and Android SDK Build-tools are all updated and
installed to the latest version. If not, check them and click Install Packages. Restart Eclipse
and clean again.

97803e21947864_Book 1.indb 147 11/21/13 2:56 PM

ptg11524036

148 Chapter 7 Maps and Location in Android

 If you still have errors, the task is much more difficult. One option is to open a source folder
that has an error in it (identified by a red x next to the filename). Find the error in the code
and hover your cursor over it. Open a browser and execute this search: android exact error .
Hopefully you will find a solution. A more drastic option is to copy your project to a safe location
and reinstall Eclipse.

 Figure 7.2 Choose Packages window.

 Now that the Google Play Services SDK is downloaded, it must be added to your project. To do
this, complete the following steps:

 1. Select File > Import > Android > Existing Android Code into Workspace, and press Next.

 2. Click the Browse button on the window that opens and navigate to the folder
<android-sdk>/extras/google/google_play_services/libproject/google-play-services_lib/.
You may want to search your computer for this prior to performing this operation
because although the folder path is accurate, where the android-sdk folder is on your
machine can vary, depending on the installation. Click OK with the google-play-services_
lib selected.

 3. Check the box next to the project that is displayed in the Project to Import list. Check
the box below the list of projects to Copy Projects into Workspace. Click Finish. A new
project called google-play-services_lib should show up in the Package Explorer.

 4. Right-click the name of your app (MyContactList) in the Package Explorer and select
Properties from the pop-up menu.

97803e21947864_Book 1.indb 148 11/21/13 2:56 PM

ptg11524036

149Setting Up for Maps

 5. Select Android in the left-side list (Figure 7.3). On the bottom right, click the Add button,
select the google-play-service_lib from the window that opens, and click OK. The Google
Services Library should show up in the bottom window. Click OK to close the Properties
window, and you are ready to go!

 Figure 7.3 Adding Google Play Services to project.

 Well, almost ready. To use Google Maps in an app, Google requires that the app contain an
API key. There are two types of keys: debug and release. The debug key can work only in debug
mode and is associated with your development machine. An app compiled for release with a
debug key will not run the maps portion of the app. To release the app, you need to follow a
slightly different procedure to register with Google to get a release key. The API key allows you
(and Google) to track how often the users of your app access the map functionality. For now,
you need only a debug key.

 There are several steps to getting a debug key for a maps application:

 1. Get the SHA1 fingerprint for your installation. To get the SHA1 fingerprint, select
Window > Preferences > Android > Build. Find the SHA1 fingerprint below the Default
debug keystore location (Figure 7.4). Highlight and copy it. On a Mac, the command
sequence is Eclipse > Preferences > Android > Build.

97803e21947864_Book 1.indb 149 11/21/13 2:56 PM

ptg11524036

150 Chapter 7 Maps and Location in Android

 2. Go to the Google API Console and enter the fingerprint to get the API key. Open a
browser and type this URL: https://code.google.com/apis/console/ . If you are not logged
in to Google or do not have an account, you will be prompted to get one. The first thing
you have to do is create a project.

 a. Click Create Project.

 b. Click Services. Scroll through the list until you find Google Maps Android API v2
and turn it on. You will be presented with a Terms of Service agreement that you
must agree to if you want to use the maps API.

 c. Click API Access. Click Create New Android Key at the bottom of the screen. A
window will pop up. Paste your SHA1 fingerprint into the box, followed by a
semicolon and the package name. For example:

 72:27:E9:A6:AF:85:77:C2:4C:F2:22:45:72:98:1B:2C:50:F3:08:B8;com.example.
mycontactlist

 d. Click Update or Generate Key. The API key is displayed. Highlight and copy it.

 3. Copy the API key into your app manifest file. Return to Eclipse and open the
AndroidManifest.xml file. Just before the </application> tag at the bottom of the file
enter the following:

 <meta-data
 android: name = "com.google.android.maps.v2.API_KEY"
 android:value ="YourKeyGoesHere" />

 Figure 7.4 Get SHA1 fingerprint.

97803e21947864_Book 1.indb 150 11/21/13 2:56 PM

https://code.google.com/apis/console/

ptg11524036

151Setting Up for Maps

 The process of getting a production map key so that you can release the app to other individu-
als is essentially the same. However, you have to create a new keystore and get the SHA1 finger-
print from that keystore. (see http://developer.android.com/tools/publishing/app-signing.html).

 Android Versus iOS: Maps
 Setting up your app project and development environment for using maps is significantly more
difficult in Android than it is in Xcode. In Xcode, in contrast to what you’ve seen in this chapter,
all you need to do is include the MapKit Framework in the project and you are ready to go.

 However, after setup, using maps in either Android or iOS has its own unique challenges. Some
things are easier in Android, such as zooming the map or adding annotations to the markers
put on a map. Other things are easier in Xcode, such as interacting with the map with the code.

 Passing Data Between Controllers
 To use maps in your app, you have to give the app permission to use certain device features.
These permissions are used to alert the user during installation or upgrade what the app is
allowed to access on the device. The user permits that app to use those devices, services, or
data by choosing to install the app after reviewing the permissions. Permissions are set in the
Android manifest file. If a permission is required by what you are trying to do but is not in the
manifest, the app will crash.

 Open the AndroidManifest.xml file and enter the permissions in Listing 7.1 . Put these permis-
sions after the version number and before the uses-sdk tags.

 Listing 7.1 Required Map Permissions

 < permission
 android:name= "com.example.mycontactlist.permission.MAPS_RECEIVE"
 android:protectionLevel= "signature" />

 <uses-permission
 android:name= "com.example.mycontactlist.permission.MAPS_RECEIVE" />
 <uses-permission android:name= "android.permission.INTERNET" />
 <uses- permission android:name ="android.permission.ACCESS_NETWORK_STATE" />
 <uses-permission android:name= "android.permission.WRITE_EXTERNAL_STORAGE" />
 <uses-permission android:name= "android.permission.ACCESS_COARSE_LOCATION" />
 <uses-permission android:name= "android.permission.ACCESS_FINE_LOCATION" />
 <uses-permission
 android:name= "com.google.android.providers.gsf.permission.READ_GSERVICES" />

 <uses-feature
 android:glEsVersion= "0x00020000"
 android:required= "true" />

97803e21947864_Book 1.indb 151 11/21/13 2:56 PM

http://developer.android.com/tools/publishing/app-signing.html

ptg11524036

152 Chapter 7 Maps and Location in Android

 The permissions themselves are pretty self-explanatory, with the possible exception of the
Coarse and Fine location permissions. These give permission to use the network and GPS listen-
ers, respectively. When you want to use a new device or service in your app, you will need to
look up the required permissions.

 Note
 Google Maps v2 does not play well with the emulator. You must set up a new AVD that uses
Google APIs as its target and check Use Host GPU in the Emulation options section. However,
you may still get a blank screen. There are a number of workarounds to be found on the
Internet, but we have not gotten any of these to solve the problem. If you get a blank screen
with the emulator, you will have to test some of this chapter’s code on a real device. The
instructions for running on a real device are located later in this chapter (see “Get Coordinates
from the GPS Sensor”).

 Finding Your Location
 Finding a location can be performed in two ways. The first involves using the device network
and/or GPS sensors to locate the device in real-time. The second uses a known location (for
example, an address) and looks up the GPS coordinates via the Internet. Both approaches
will be demonstrated. When working with maps, you can use the map’s getMyLocation()
method to get the device’s current GPS coordinates. If you need to get location without using
a map, there is more work involved. In this section, you build and test several versions of
 ContactMapActivity to learn different approaches to getting location before building the final
one used for the app.

 Geocoding: Get Coordinates from an Address
 In this first approach to getting location, the ContactMapActivity will take an entered address
and look up and display the GPS coordinates of the address. This process is called geocoding .
The first step is to create the layout in activity_contact_map.xml. For now, this layout will not
use a map object. Refer to Figure 7.5 to code this layout. The exact layout is up to you—you’ve
done all this before. However, to match to the code, use the following IDs for the widgets:

 Get Coordinates Button–@+id/buttonGetLocation

 Latitude output TextView–@+id/textLatitude

 Longitude output TextView–@+id/textLongitude

 Accuracy output TextView–@+id/textAccuracy

 Obviously, the easiest way to code the address portion of the layout is to copy the relevant
XML from activity_contact.xml. Some minor changes need to be made to get the Address
TextView to appear at the top left of the layout. The code for this section uses the same widget
IDs for the address EditTexts as was used in activity_contact.xml.

97803e21947864_Book 1.indb 152 11/21/13 2:56 PM

ptg11524036

153Finding Your Location

 Figure 7.5 Initial Layout for getting location.

 After the layout has been created, open the ContactMapActivity.java file to write the code that
provides the behavior for the Get Location button. The button will respond to a user tap by
retrieving the data entered into the EditTexts and format them into the form required by
address look-up service. It will then be sent to the service and the resulting location will be
displayed onscreen. Refer to Listing 7.2 to write this code.

 Listing 7.2 Code to Look Up Address Coordinates

 private void initGetLocationButton() {
 Button locationButton = (Button) findViewById(R.id. buttonGetLocation);
 locationButton.setOnClickListener(new View.OnClickListener() {

 @Override
 public void onClick(View v) {
 EditText editAddress = (EditText) findViewById(R.id. editAddress);
 EditText editCity = (EditText) findViewById(R.id. editCity);
 EditText editState = (EditText) findViewById(R.id. editState);

97803e21947864_Book 1.indb 153 11/21/13 2:56 PM

ptg11524036

154 Chapter 7 Maps and Location in Android

 EditText editZipCode = (EditText) findViewById(R.id. editZipcode);
 //1
 String address = editAddress.getText().toString() + ", " +
 editCity.getText().toString() + ", " +
 editState.getText().toString() + " " +
 editZipCode.getText().toString();

 List<Address> addresses = null ; //2
 Geocoder geo = new Geocoder(ContactMapActivity. this); //3
 try { //4
 addresses = geo.getFromLocationName(address, 1);
 }
 catch (IOException e) {
 e.printStackTrace();
 }

 TextView txtLatitude = (TextView) findViewById(R.id. textLatitude);
 TextView txtLongitude = (TextView) findViewById(R.id. textLongitude);
 //5
 txtLatitude.setText(String. valueOf (
 ➥addresses.get(0).getLatitude()));
 txtLongitude.setText(String. valueOf (
 ➥addresses.get(0).getLongitude()));
 }
 });
 }

 Remember to code the call to the initialization method in the onCreate method! This code
introduces a few new items.

 1. The proper format for a call to the Geocoding service is the street address with the
elements of the address separated by commas.

 2. A List object variable parameterized to hold an Address object is declared. The Geo
Coding service will return the result with this type of object.

 3. A Geocode variable is declared and assigned a new Geocoder object. The Geocoder
object has all the information required to contact the host service (Google) via the
Internet.

 4. The method getFromLocationName method is passed the address to look up as a
parameter. The parameter 1 tells the service that you want one response. If you are
unsure of the address, you can request more responses. If the service cannot find the
exact location, it will return several locations with the best guess as the first entry.
Because this method calls a service outside your app, it requires a try and catch to protect
the app from errors produced by the service.

 5. The latitude and longitude of the first address in the returned list are displayed in the
appropriate TextView widgets.

97803e21947864_Book 1.indb 154 11/21/13 2:56 PM

ptg11524036

155Finding Your Location

 Test your code on the emulator. If the emulator has been set up as suggested in the preceding
note, the app will run on the emulator. Click the Maps button in the navigation bar to get to
the ContactMapsActivity , enter an address, and click the Get Location button. The GPS coor-
dinates should be displayed in the TextViews . Try entering a valid and an invalid address to
see what happens. Using Geocoding is a good way to find GPS coordinates of address informa-
tion available to the app. However, it is not very useful in locating the device in real-time. For
that, you need to use the sensors.

 Get Coordinates from the GPS Sensor
 The network sensor uses cell towers and Wi-Fi access points to determine the device’s location.
It is not as accurate as the GPS sensor, but it is faster. Additionally, it is available on all devices,
whereas a GPS sensor is not. For this reason, it might make sense to begin the discussion of
getting location from sensors with the network sensor. However, the network sensor cannot be
tested on the emulator, whereas the GPS sensor can. Also, the code required to use both sensors
is almost identical. For these reasons, the GPS sensor is discussed first.

 To use the GPS sensor, you replace the Geocoding code in the Get Location button with GPS
listener code. You also add a method to turn off the location sensing when the app enters the
Paused life cycle state. First, go to ContactMapsActivity and add the following variable decla-
rations just after the class declaration:

 LocationManager locationManager ;
 LocationListener gpsListener ;

 You will have to import these classes. Use the android.location option, not the
 com.google.android.gms one. Next, go to the initGetLocationButton method and replace
all the code in the onClick method with the code in Listing 7.3 . You will also have to import
some objects after entering the code.

 Listing 7.3 Code to Get Coordinates with the GPS Sensor

 try {
 locationManager = (LocationManager)
 ➥getBaseContext().getSystemService(Context. LOCATION_SERVICE); //1
 gpsListener = new LocationListener() { //2
 public void onLocationChanged(Location location) {
 TextView txtLatitude = (TextView) findViewById(R.id. textLatitude);
 TextView txtLongitude = (TextView) findViewById(R.id. textLongitude);
 TextView txtAccuracy = (TextView) findViewById(R.id. textAccuracy);
 txtLatitude.setText(String. valueOf (location.getLatitude()));
 txtLongitude.setText(String. valueOf (location.getLongitude()));
 txtAccuracy.setText(String. valueOf (location.getAccuracy()));
 }

 public void onStatusChanged(String provider, int status, Bundle extras) {}
 public void onProviderEnabled(String provider) {}

97803e21947864_Book 1.indb 155 11/21/13 2:56 PM

ptg11524036

156 Chapter 7 Maps and Location in Android

 public void onProviderDisabled(String provider) {}
 };

 locationManager .requestLocationUpdates(//3
 ➥LocationManager. GPS_PROVIDER ,0, 0, gpsListener);
 }
 catch (Exception e) {
 Toast. makeText (getBaseContext(), "Error, Location not available" ,
 ➥Toast. LENGTH_LONG).show(); //4
 }

 When the user presses the button, the button gets a reference to the system’s location manager
and instantiates a location listener to get the GPS coordinates and accuracy from a location
object each time the sensor detects a location change. Note: location can change even if the
device does not move. The sensor will provide a location as soon as it can and then as it zeroes
in on the exact location. Everytime accuracy gets better, or worse, new GPS coordinates are
produced, and this is reported as a location change.

 1. A reference to the LocationManager object is assigned to the locationManager
variable. The getSystemService method is sent to the activity’s context with a
parameter that tells the context that you want the location service manager. In
Android, the context of any code is the parent object or method it is placed in. The
current context of the code entered in this listing is an onClickListener . The method
 getBaseContext is used to get the root context—in this case, an Activity —because an
 Activity context is required to get the system service.

 2. A new LocationListener is instantiated and assigned to the gpsListener variable.
A LocationListener requires the implementation of four methods. However, only the
 onLocationChanged method is needed for the purpose of reporting location. When
a location change is detected, it is reported to this method as a location object. The
text of the TextViews is set by getting the appropriate value from the location object.
Note the use of the String.valueOf method to convert these values into strings. They
are reported as double or float data types, which are not compatible with the setText
method of the TextView .

 3. The LocationManager is sent the message requestLocationUpdates to begin listening
for location changes. The parameters in this message tell the LocationManager to listen
to the GPS sensor with no minimum time between updates, no minimum distance
between locations, and to report those changes to the LocationListener assigned to
the gpsListener variable.

 The minimum time and distance parameters are set to zero for demonstration purposes.
These values should be set based on how much you expect the device to move during the
app’s use. Setting values higher than zero can help conserve the battery. This is especially
true of the time value. The minimum time is set in milliseconds (2*60*1000 = 120000, or
2 minutes). Minimum distance is set in meters.

97803e21947864_Book 1.indb 156 11/21/13 2:56 PM

ptg11524036

157Finding Your Location

 4. A Toast is displayed if there is an error. A Toast is an object that displays a short
message for a limited period of time on the user’s display. The Toast method, makeText ,
requires a context, a message, and a period of time to display the message (LENGTH_
SHORT and LENGTH_LONG are the only options). The show method displays the message.

 After the changes to the initGetLocationButton have been made, you need to add a method
to stop the sensors if the Activity’s life cycle state changes. To do this, you need to override the
Activity’s onPause method. Create a new method using the code in Listing 7.4 to do this.

 Listing 7.4 onPause Method

 @Override
 public void onPause() {
 try {
 locationManager .removeUpdates(gpsListener);
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 super .onPause();
 }

 The code is straightforward. The LocationManager object is sent the message removeUpdates
to end listening to the gpsListener . This code is within a try and catch block because it is
possible that the activity could pause before the user presses the Get Location button. In that
case, neither the locationManager nor the gpsListener variables would have values, and the
code would crash the app. You don’t want this to happen. The final code calls the overridden
method to execute the standard onPause routine for the activity.

 Run the code on the emulator and press the Get Coordinates button. Nothing will happen. The
button starts the location listener but until the location of the device changes, the TextViews
will not change. To change the location of the emulator, use the following steps:

 1. Change to the Debug Perspective (Window > Open Perspective > Other > Debug.

 2. Add the Emulator Controls view. Eclipse provides this view so that the developer can
simulate external events (such as location change) on the emulator.

 3. Select Window > Show View > Other > Emulator Control. A tab will be added to the
Consoles section of the perspective (usually in the lower-right pane).

 4. Click the tab and scroll down to the Location Controls, and then click the Manual tab
(Figure 7.6).

 5. Enter a new latitude and/or longitude value and click the Send button. These values
should show up on your app.

97803e21947864_Book 1.indb 157 11/21/13 2:56 PM

ptg11524036

158 Chapter 7 Maps and Location in Android

 Figure 7.6 Emulator location control.

 To test the code on a device that has a GPS, terminate the app running on the emulator (Run >
Terminate) and plug an Android device into the computer.

 1. Open Debug Configurations (Run > Debug Configurations). Select your debug
configuration and then click the Target tab.

 2. Select Always Prompt to Pick Device. Press the Apply button and then the Debug button.
The Android Device Chooser Window is displayed (Figure 7.7).

 Figure 7.7 Device Chooser window.

97803e21947864_Book 1.indb 158 11/21/13 2:56 PM

ptg11524036

159Finding Your Location

 3. Your device must be set up to Allow USB Debugging before you can test the app. The
location where you can turn this on varies widely among devices. It is usually in the
Settings app under USB Settings or Developer Options. This will usually also require the
device to be in developer mode, which is also done differently on different devices.

 4. Make sure the device is connected to the computer and is unlocked. Select Choose a
Running Android Device and then select your device. Click OK. The app will be loaded
like on the emulator and begin running when finished. Note: If your device goes to sleep
during this process, the app will be terminated.

 After the app is running on your device, you can unplug it so that you can walk around and
see the location change. If you are indoors, it may take some time to get a GPS reading. In
some buildings it will not work at all, so you will have to go outside.

 Get Coordinates from Network Sensor
 After you’ve gotten the GPS sensor working, changing or adding a network sensor is very easy.
Add the following declaration after the gpsListener declaration:

 LocationListener networkListener ;

 Copy the code that begins with gpsListener = and ends just before the locationManager.
requestLocationUpdates line, and paste it back into the method just before the location-
Manager.requestLocationUpdates line. You should now have two duplicate gpsListeners .
Change all the gpsListener variables in the code you just pasted to networkListener and
then add another requestUpdates message after the one that is used to request GPS updates.

 locationManager .requestLocationUpdates(
 ➥LocationManager. NETWORK_PROVIDER ,0, 0, networkListener);

 In the onPause method, add the following line to turn off the network listener.

 locationManager.removeUpdates(networkListener);

 That’s all there is to it! The only real change you made was to request updates from the
network sensor rather than the GPS sensor.

 To test this, you must run it on a device. The emulator will not detect network sensor changes.
This code will work indoors if you can get a Wi-Fi or cell signal on your device.

 Often it is desirable to use both sensors because at times one or the other is not available.
Although the network sensor is not as accurate as the GPS, for some applications this may
be good enough. However, if you are getting location updates from both sensors, you need
some way of determining which to use. The way to do this is to write a method to take the
current location and compare it to a new location to determine if it is better. To do this, add
another variable to hold a location object to your set of declarations at the beginning of the
 ContactMapsActivity class using this code:

 Location currentBestLocation ;

 Now create a new method called isBetterLocation using the code in Listing 7.5 .

97803e21947864_Book 1.indb 159 11/21/13 2:56 PM

ptg11524036

160 Chapter 7 Maps and Location in Android

 Listing 7.5 isBetterLocation Method

 private boolean isBetterLocation(Location location) {
 boolean isBetter = false ;
 if (currentBestLocation == null) { //1
 isBetter = true ;
 }
 else if (location.getAccuracy() <= currentBestLocation .getAccuracy()) { //2
 isBetter = true ;
 }
 else if (location.getTime() - currentBestLocation .getTime() > 5*60*1000) { //3
 isBetter = true ;
 }
 return isBetter;
 }

 This method is an example of the types of checks that can be done to determine if a new loca-
tion is better than another location.

 1. The first check determines if there is an existing location. If not, the new location is
considered better.

 2. The second check determines if the new location has better accuracy than the existing
location. If so, it is considered better.

 3. The last check determines how much newer the new location is. Each Location object
gets a time stamp when it is created. In this check, if the new location is newer than the
old location by more than five minutes, it is considered better, even though it may not
be as accurate. This type of check is especially important if you design the app to be used
when the device is in motion.

 This new method should be called in the onLocationChanged method of both sensor listen-
ers to determine whether you want to use the new location. For example, you could add the
following code:

 if (isBetterLocation(location)) {
 currentBestLocation = location;
 //display in location in TextViews.
 }
 //no else block...if not better, just ignore.

 Android Versus iOS: Location Sensors
 Working with location data on iOS is similar to Android. However, although iOS devices also
have both GPS and network sensors, iOS developers don’t have access to the specific sen-
sors. Instead, the developer specifies a desired accuracy of the location data, and the system
chooses the appropriate sensor to provide the data. This allows the system to optimize the
sensor usage for battery and performance of the device.

97803e21947864_Book 1.indb 160 11/21/13 2:56 PM

ptg11524036

161Finding Your Location

 Get Coordinates from the Map
 The final way to get the GPS coordinates of your device’s location is through the map object.
The map has built-in methods that access the sensors without writing any code to access the
sensors. This makes things easier because all sensor management is handled by the map. The
drawback is that you must display a map in the layout to use these features.

 Return to activity_contact_maps.xml and delete all the widgets you put in the layout except
the navbar . Be sure to leave the root RelativeLayout . Next, add the MapFragment . The
 MapFragment is not available in the Palette, so it must be added through XML. Refer to
 Listing 7.6 to do this.

 Listing 7.6 MapFragment XML

 < fragment
 android:id= "@+id/map"
 android:layout_width= "match_parent"
 android:layout_height= "match_parent"
 android:layout_alignParentTop= "true"
 android:layout_above= "@+id/navbar"
 class = "com.google.android.gms.maps.SupportMapFragment" />

 The map object is not coded as a standard widget. Rather, a fragment is added to the layout
with the standard set of attributes for size and positioning. The fragment has to be told
what type of object it is. That is the reason for the class attribute. In this case, you use the
 SupportMapFragment to make the map object compatible with the earlier versions of Android
targeted in this app.

 The map doesn’t display in Graphical Layout, just the positioning of the fragment. To see a
map, you have to write code. Open ContactMapActivity.java. Delete all the code you entered
for the sensors and add the code from Listing 7.7 .

 Listing 7.7 Code to get Location from Map Object

 //1
 public class ContactMapActivity extends FragmentActivity {

 GoogleMap googleMap ;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super .onCreate(savedInstanceState);
 setContentView(R.layout. activity_contact_map);
 //2
 googleMap = ((SupportMapFragment)
 ➥getSupportFragmentManager().findFragmentById(R.id. map)).getMap();
 googleMap .setMapType(GoogleMap. MAP_TYPE_NORMAL);
 //3

97803e21947864_Book 1.indb 161 11/21/13 2:56 PM

ptg11524036

162 Chapter 7 Maps and Location in Android

 googleMap .setMyLocationEnabled(true);
 //4
 googleMap .setOnMyLocationChangeListener(new
 ➥OnMyLocationChangeListener() {

 @Override
 public void onMyLocationChange(Location location) {
 LatLng point = new LatLng(location.getLatitude(),
 ➥location.getLongitude()); //5
 googleMap .animateCamera(CameraUpdateFactory.
 ➥ newLatLngZoom (point, 11)); //6
 Toast. makeText (getBaseContext(), "Lat: " +location.getLatitude()+
 ➥ "Long: " +location.getLongitude()+ " Accuracy: " +
 ➥location.getAccuracy(), Toast. LENGTH_LONG).show(); //7
 }
 });
 }

 This code uses a GoogleMap object, which is displayed in the fragment on the layout. The
 GoogleMap class provides all the functionality needed to get the GPS coordinates of a location
in real-time.

 1. The GoogleMap object is held within a fragment. To use a fragment, the super class of
 ContactMapActivity must be changed to FragmentActivity .

 2. An instance of a GoogleMap is assigned to the googleMap variable. Note the use of
 SupportMapFragment . Again, this is used to make the map compatible with earlier
versions of the Android Operating System.

 The SupportMapFragment class has to be imported. Normally, this is routine—just hover
over the underlined class and select import from the pop-up menu. However, the menu
may not find this class. In this case, the import statement must be added manually. To
do this, expand the import section above the class declaration and type in this statement:

 import com.google.android.gms.maps.SupportMapFragment;

 The map type of normal is a standard highway map. Other valid types include MAP_
TYPE_SATELLITE for satellite pictures and MAP_TYPE_TERRAIN for a map of the terrain
features.

 3. This enables the map to find the device location. This enables the display of the small
blue triangle on the map, which represents the device’s location and turns on sensor
listeners so that updates to location can be captured and displayed.

 4. An onMyLocationChanged listener is added to the map with a method,
 onMyLocationChanged , which is executed when a location change is detected.

 5. The location object received by onMyLocationChanged is used to create a point on
the map.

97803e21947864_Book 1.indb 162 11/21/13 2:56 PM

ptg11524036

163Finding Your Location

 6. The map is zoomed to the location received by the onMyLocationChanged method.
The integer 11 represents the zoom level. Zoom levels range from 2 (zoomed out) to 21
(zoomed in).

 7. A Toast is used to display the GPS coordinates and accuracy to the user.

 To use a map in an Android app, Google requires that some specific code is included in the
activity. Listing 7.8 has this code. Enter it after the onCreate method but before the last } in
the file.

 Listing 7.8 Required Google Code

 public void onPause() {
 super .onPause();
 }

 @Override
 public void onResume() {
 super .onResume();
 final String TAG_ERROR_DIALOG_FRAGMENT= "errorDialog" ;

 int status=GooglePlayServicesUtil. isGooglePlayServicesAvailable (this);

 if (status == ConnectionResult. SUCCESS) {
 //no problems just work
 }
 else if (GooglePlayServicesUtil. isUserRecoverableError (status)) {
 ErrorDialogFragment. newInstance (status).show(getSupportFragmentManager(),
 TAG_ERROR_DIALOG_FRAGMENT);
 }
 else {
 Toast. makeText (this , "Google Maps V2 is not available!" ,
 Toast. LENGTH_LONG).show();
 finish();
 }
 }

 public static class ErrorDialogFragment extends DialogFragment {
 static final String ARG_STATUS = "status" ;

 static ErrorDialogFragment newInstance(int status) {
 Bundle args= new Bundle();
 args.putInt(ARG_STATUS , status);
 ErrorDialogFragment result= new ErrorDialogFragment();
 result.setArguments(args);
 return (result);
 }

97803e21947864_Book 1.indb 163 11/21/13 2:56 PM

ptg11524036

164 Chapter 7 Maps and Location in Android

 @Override
 public Dialog onCreateDialog(Bundle savedInstanceState) {
 Bundle args=getArguments();
 return GooglePlayServicesUtil. getErrorDialog (args.getInt(ARG_STATUS),
 getActivity(), 0);
 }

 @Override
 public void onDismiss(DialogInterface dlg) {
 if (getActivity() != null) {
 getActivity().finish();
 }
 }
 }

 This code is required and should be entered as written. To test this code, you must run it on
a device. Running it on the emulator will cause a “Force Close.” Before you run it, make sure
that you have entered all the required permissions in the manifest (earlier in the chapter) and
entered your API key into the appropriate place in the manifest. When this is done, clean the
project (Project > Clean) and then run in Debug mode.

 Displaying Your Contacts’ Locations
 Now that you can find your device’s location and display the real-time location on the map,
it’s time to show your contacts’ locations on the map. The map can be accessed from any of
the three other activities through the navigation bar. If the user accesses the map from either
the contact list or the settings activities, the map should display all the contacts in the database
on the map. If the user accesses the map from the contact activity, the map should display only
that contact. Implementing the second display type requires coding the ContactActivity to
pass the current contact’s ID to the map.

 Open ContactActivity.java and locate the initMapButton method. This method is modified
to pass the contact’s ID with the intent. Modify the code in the onClick method to match
 Listing 7.9 .

 Listing 7.9 initMapButton Modified

 Intent intent = new Intent(ContactActivity. this , ContactMapActivity. class);
 if (currentContact .getContactID() == -1) {
 Toast. makeText (getBaseContext(), "Contact must be saved before it can be
 ➥mapped" , Toast. LENGTH_LONG).show();
 }

97803e21947864_Book 1.indb 164 11/21/13 2:56 PM

ptg11524036

165Displaying Your Contacts’ Locations

 else {
 intent.putExtra("contactid" , currentContact .getContactID());
 }
 intent.setFlags(Intent. FLAG_ACTIVITY_CLEAR_TOP);
 startActivity(intent);

 There is no new code here. The method checks whether the contact has an ID. If not, a
message is posted for the user. If there is an ID, that ID is passed to the ContactMapActivity .
Switch to ContactMapActivity.java. Delete the code in the onCreate method associated with
enabling the device’s location and the location changed listener. The first step is to get the data
for mapping. This is done by checking for any extras. If there are no extras, all the contacts are
retrieved. If there is an extra, just the information for one contact is retrieved. Enter the code in
 Listing 7.10 after the setMapType command.

 Listing 7.10 Getting Data for the Map

 ArrayList<Contact> contacts = new ArrayList<Contact>();
 Contact currentContact = null ;
 Bundle extras = getIntent().getExtras();
 if (extras != null){
 ContactDataSource ds = new ContactDataSource(ContactMapActivity. this);
 ds.open();
 currentContact = ds.getSpecificContact(extras.getInt("contactid"));
 ds.close();
 }
 else {
 ContactDataSource ds = new ContactDataSource(ContactMapActivity. this);
 ds.open();
 contacts = ds.getContacts("contactname" , "ASC");
 ds.close();
 }

 The next step is to place markers on the map in the location of each contact. Markers can be
standard pins or custom icons. Add the following code (Listing 7.11) after the code you just
typed in.

 Listing 7.11 Code to Put Markers on a Map

 int measuredWidth = 0;
 int measuredHeight = 0;
 Point size = new Point();
 WindowManager w = getWindowManager();
 //1
 if (Build.VERSION. SDK_INT >= Build.VERSION_CODES. HONEYCOMB){
 w.getDefaultDisplay().getSize(size);

97803e21947864_Book 1.indb 165 11/21/13 2:56 PM

ptg11524036

166 Chapter 7 Maps and Location in Android

 measuredWidth = size. x ;
 measuredHeight = size. y ;
 }
 else {
 Display d = w.getDefaultDisplay();
 measuredWidth = d. getWidth () ;
 measuredHeight = d. getHeight () -180;
 }

 if (contacts.size()>0) {
 LatLngBounds.Builder builder = new LatLngBounds.Builder(); //2
 for (int i=0; i<contacts.size(); i++) { //3
 currentContact = contacts.get(i);

 Geocoder geo = new Geocoder(this);
 List<Address> addresses = null ;

 String address = currentContact.getStreetAddress() + ", " +
 currentContact.getCity() + ", " +
 currentContact.getState() + " " +
 currentContact.getZipCode();

 try {
 addresses = geo.getFromLocationName(address, 1);
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 LatLng point = new LatLng(addresses.get(0).getLatitude(),
 ➥addresses.get(0).getLongitude()); //4
 builder.include(point);

 googleMap .addMarker(new MarkerOptions().position(point).
 ➥title(currentContact.getContactName()).snippet(address)); //5
 }
 googleMap .animateCamera(CameraUpdateFactory. newLatLngBounds (builder.build(),
 ➥measuredWidth, measuredHeight, 100)); //6
 }
 else {
 if (currentContact != null) { //7
 Geocoder geo = new Geocoder(this);
 List<Address> addresses = null ;

 String address = currentContact.getStreetAddress() + ", " +
 currentContact.getCity() + ", " +
 currentContact.getState() + " " +
 currentContact.getZipCode();

97803e21947864_Book 1.indb 166 11/21/13 2:56 PM

ptg11524036

167Displaying Your Contacts’ Locations

 try {
 addresses = geo.getFromLocationName(address, 1);
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 LatLng point = new LatLng(addresses.get(0).getLatitude(), addresses.get(0).
getLongitude());

 googleMap .addMarker(new MarkerOptions().position(point). title(currentContact.
getContactName()).snippet(address));

 googleMap .animateCamera(CameraUpdateFactory. newLatLngZoom (point, 16)); //8
 }
 else {
 AlertDialog alertDialog = new AlertDialog.Builder(
ContactMapActivity. this).create(); //9

 alertDialog.setTitle("No Data");
 alertDialog.setMessage("No data is available for the mapping function.");
 alertDialog.setButton(AlertDialog. BUTTON_POSITIVE , "OK" , new
DialogInterface.OnClickListener() {

 public void onClick(DialogInterface dialog, int which) {
 finish();
 } });
 alertDialog.show();
 }
 }

 The code to put markers on the map uses a number of classes unique to the mapping applica-
tion. These classes and their methods make up the bulk of the new code.

 1. To properly bound a group of points, the app needs to know the size of the display. This
code asks the device for the dimensions of the display. Note the methods with a strikeout
in them. This indicates that these methods are deprecated and no longer used in new
versions of Android. This requires you to test the OS that the device is running and then
use the newer methods for the newer OS and the old methods for the old OS. If the
getSize method produces an error, add this code before the @Override line just before
the onCreate method:

 @TargetApi(Build.VERSION_CODES.HONEYCOMB_MR2)

 2. A LatLngBounds.Builder is used to construct the geographic boundaries of a set of GPS
coordinates. This line instantiates the builder for use when the app is going to display all
contacts in the database.

 3. If the contacts ArrayList contains Contact objects, the Activity loops through them,
adding each one to the map.

 4. A LatLng object is instantiated with the GPS coordinates returned from the Geocoding
service. The LatLng object is a point on a map. This point is then included in the
 LatLngBounds.Builder where it is considered in creating the map boundaries.

97803e21947864_Book 1.indb 167 11/21/13 2:56 PM

ptg11524036

168 Chapter 7 Maps and Location in Android

 5. A Marker is added to the map. The marker is a standard marker in the form of a pin. The
 addMarker method is a MarkerOptions object. The MarkerOptions object is used to set
the LatLng object as the position on the map for the marker, the title of the marker that
is displayed when the marker is clicked by the user, and a snippet, which is displayed
under the title when the marker is clicked. A custom image can be added instead of
the standard marker by setting the icon attribute of the MarkerObject using this form:
 .icon(BitmapDescriptorFactory.fromResource(R.drawable. imagename)

 6. After all the contact markers have been added, the message animateCamera is sent to the
map to tell it to zoom in to the location of the markers. A CameraUpdateFactory is the
object used to set the zoom level. It is passed the boundaries of the zoom through the
 LatLngBounds.Builder , the measured sized of the device display, and the amount of
padding to put around the bounds. If the padding is set too small, some of the contact
markers will be placed so close to the edge of the screen that the user may not see all the
markers.

 7. If the contacts ArrayList does not contain any objects, the code checks whether there is
a single Contact object to map. If there is, the address is retrieved, and a LatLng object
is instantiated for the contact’s coordinates; the LatLng object is used to add a marker to
the map.

 8. The zoom level of the map is set differently with one point than with several. To zoom
to a single point, the CameraUpdateFactory is sent the message newLatLngZoom .
This message has the LatLng object and zoom level as parameters. The marker will be
centered in the map and zoomed to level 16.

 9. If no contacts are available either in the ArrayList or the Contact object, the app
displays an error message. In this case, an object called an AlertDialog is used. An
 AlertDialog displays the commonly used dialog with a title, message, and a button to
acknowledge that the user saw the message. This is used rather than a toast because the
user is expecting to see contacts on the map. The user may miss the toast and figure the
app is not working.

 Test the app on a device. Make sure you have entered valid addresses for contacts prior to
testing the mapping function.

 The map is almost complete. The final touch is to add a toolbar that allows the user to select
the type of map to display and to show the user’s present location. Switch to activity_contact_
map.xml and add a toolbar. You can do this by copying the toolbar previously created in other
layouts and modifying the XML. Refer to Listing 7.12 for the modifications.

 Listing 7.12 Map Toolbar XML

 < RelativeLayout
 android:id= "@+id/toolbar"
 android:layout_width= "match_parent"
 android:layout_height= "wrap_content"
 android:layout_alignParentLeft= "true"

97803e21947864_Book 1.indb 168 11/21/13 2:56 PM

ptg11524036

169Displaying Your Contacts’ Locations

 android:layout_alignParentTop= "true"
 android:background= "@color/toolbar_background" >

 <Button
 android:id= "@+id/buttonShowMe"
 android:layout_width= "wrap_content"
 android:layout_height= "wrap_content"
 android:layout_alignParentLeft= "true"
 android:layout_marginLeft= "20dp"
 android:text= "Location On" />

 <Button
 android:id= "@+id/buttonMapType"
 android:layout_width= "wrap_content"
 android:layout_height= "wrap_content"
 android:layout_alignParentRight= "true"
 android:layout_marginRight= "20dp"
 android:text= "Satellite View" />
 </RelativeLayout>

 You also have to modify the fragment position so it lays out below the toolbar you just added.
Next, switch to ContactMapActivity.java to add the code for the buttons. Use the code in
 Listing 7.13 .

 Listing 7.13 Toolbar Button Code

 private void initLocationButton() {
 final Button locationbtn = (Button) findViewById(R.id. buttonShowMe);
 locationbtn.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 String currentSetting = locationbtn.getText().toString();
 if (currentSetting.equalsIgnoreCase("Location On")) {
 locationbtn.setText("Location Off");
 googleMap .setMyLocationEnabled(true);
 }
 else {
 locationbtn.setText("Location On");
 googleMap .setMyLocationEnabled(false);
 }
 }
 });
 }

 private void initMapTypeButton() {
 final Button satelitebtn = (Button) findViewById(R.id. buttonMapType);
 satelitebtn.setOnClickListener(new View.OnClickListener() {

97803e21947864_Book 1.indb 169 11/21/13 2:56 PM

ptg11524036

170 Chapter 7 Maps and Location in Android

 public void onClick(View v) {
 String currentSetting = satelitebtn.getText().toString();
 if (currentSetting.equalsIgnoreCase("Satellite View")) {
 googleMap .setMapType(GoogleMap. MAP_TYPE_SATELLITE);
 satelitebtn.setText("Normal View");
 }
 else {
 googleMap .setMapType(GoogleMap. MAP_TYPE_NORMAL);
 satelitebtn.setText("Satellite View");
 }
 }
 });
 }

 Remember to call these methods in the onCreate method. The code is very simple. You are
implementing these buttons essentially as toggle buttons. When the user taps the Location
button, the code tests to see what the text for the button is. If it is Location On, myLocation is
enabled and the button’s text is changed to Location Off. If the text is Location Off, myLoca-
tion is disabled and the button text is set to Location On. The Map Type button operates in
essentially the same manner, except that it changes the map type from normal to satellite and
back again.

 Finish the code by making the navigation buttons work. Copy the code like you did for the
Settings and List Activities. Be sure to disable the Maps button and call the initialization
methods in the onCreate method. Test the code. While running the code on a device, you
should see a display similar to Figure 7.8 . If you test the Location button, be aware that the
screen may be zoomed to an area away from where you are currently located. You may have to
zoom out the display to see your location.

 Summary
 Location and maps can be very useful in some apps. A device’s location is acquired by listen-
ing to either the network or the GPS sensor. You can code the capability to acquire the device’s
location whether you use maps or not. However, if you use maps, the code for determining
your location is much simpler.

 Icons can be placed on a map based on their GPS coordinates. The map object has a large
number of classes that facilitate the manipulation of maps. Icons on a map are called markers.
Markers can use the standard pin icon or a custom item supplied by the developer. Icons can
also be made to display information about the location through the use of a title and snippets.

 Using Google Maps in an Android requires significantly more setup than other code you have
explored in this book. However, after you have set it up, you do not have to redo it for other
apps you want to develop.

97803e21947864_Book 1.indb 170 11/21/13 2:56 PM

ptg11524036

171Exercises

 Exercises
 1. Create a layout that displays the latitude, longitude, and accuracy for the network sensor

and for the GPS sensor. Add a listener for each and have it display its reported location in
the appropriate onscreen widget. Run it on a device. Walk around with the app open to
this screen and observe the differences.

 2. Modify the layout in Exercise 1 to have a third set of latitude, longitude, and accuracy
labeled best location. Code a method to test for the best location and put the values in
these widgets. Run the app and again observe the results.

 3. Modify the markers on the map to use a custom icon. You can download and use an
open source graphics program such as Gimp to create your icon. You may have to work
with the icon size to get it to display in a reasonable manner on the screen.

 Figure 7.8 Map of Contacts with marker information displayed.

97803e21947864_Book 1.indb 171 11/21/13 2:56 PM

ptg11524036

172 Chapter 7 Maps and Location in Android

 4. Add an onMyLocationChanged listener to the completed ContactMapActivity . Have
the onMyLocationChanged method add the location to the LatLngBounds.Builder
and use the animateCamera method to display your current location along with your
contacts on the map.

97803e21947864_Book 1.indb 172 11/21/13 2:56 PM

ptg11524036

 8
 Access to Hardware and

Sensors in Android

 Mobile computing devices have hardware features that significantly distinguish them from their more
stationary counterparts. Hardware features allow the device to both sense and interact with its environ-
ment. These features enable the reexamination of assumptions many developers make when develop-
ing a piece of software. The ability to sense and interact with the environment allows the developer
to rethink business processes encapsulated in software. Innovative and powerful approaches to solving
problems are possible. This suggests that the app developer needs to have a working knowledge of how
to integrate the device’s hardware features into an app. This chapter describes how to integrate several
different hardware features into an app. The chapter covers both sensors that can provide information
about the device’s internal and external environment and hardware features, such as the camera and
phone, provided by the Android platform that can be used independently or integrated into an app.
Determining the presence of a sensor on any specific device is also addressed.

 Sensors, Managers, and Other Hardware
 This section covers more sensors and managers used to access sensor data. The section also
covers other hardware on some devices that can be used to augment an app’s functionality.

 Sensors
 Android devices may have any number of sensors. Two of these, the network and GPS sensors,
were discussed in the previous chapter. However, other sensors may also be used in apps. In
all, the Android platform supports about 12 sensors. However, there is no requirement that a
manufacturer of an Android device include all of them. For this reason, it is good practice to
always check for the presence of a sensor before attempting to use it. Sensors supported range
from sensors that measure the devices’ ambient environment, including temperature, relative
humidity, atmospheric pressure, magnetic field, and light level, to sensors that detect how the
device is moving or rotating.

97803e21947864_Book 1.indb 173 11/21/13 2:56 PM

ptg11524036

174 Chapter 8 Access to Hardware and Sensors in Android

 The Sensor class represents all types of sensors. Sensors are instantiated as a system service
by the operating system and thus are not instantiated by the apps that use them. Sensors are
accessed through the SensorManager class. The SensorManager is also a system service and
not instantiated by an app. In both cases, access is through a reference created by calling the
 getSystemService method within an app.

 Two other items are needed to work with sensors, SensorEvent and SensorEventListener .
A SensorEvent is an object that is created by a Sensor when it has something to report. This
object holds information about the event, including a timestamp for when the object was
created, the sensor that produced the event, and data that represents the sensor’s measure-
ments at the time of the event. A SensorEventListener is an interface that is implemented
by any app that wants to use sensor information encapsulated in a SensorEvent .

 Managers
 Android devices are computing devices. As such, they have hardware for processing, memory,
long-term storage, and to provide power. The Android OS provides objects to facilitate the
monitoring of the status of this hardware. For example, the Android OS has a BatteryManager
that can be used to monitor the battery’s status, a StorageManager that can be used to
monitor the status of long-term storage, and a PowerManager that can be used to monitor
power consumption.

 The objects used to monitor the internal environment of the device are instantiated as system
services like the SensorManager . Just like with SensorManager , you do not instantiate these
objects. To use them in an app, you get a reference to the appropriate system service.

 Other Hardware
 Android devices also have other hardware features, such as a phone and a camera. These
devices have an app associated with them to provide access to their functionality. In contrast to
accessing the sensors and monitors, these hardware items are accessed by making calls to their
Application Program Interface (API). These apps can be opened from within an app to give
the user access to their functionality. In this case, the user leaves the app to interact with the
device and returns to the app after completing the task. The functionality of the hardware can
also be accessed by integrating the features within the app by calling the associated app’s API.
In this manner, the app developer can provide users with exactly the functionality they need
from the device. This is how the popular flashlight apps work. They access and control only the
camera’s flash from within an app to create entirely new functionality from existing hardware.

 Monitoring the Battery
 Typically, all versions of the Android OS have some sort of battery-level monitoring display
so that the user knows when to recharge the device. However, just because the battery level is
displayed to the user doesn’t mean that the user will pay attention and plug in the phone or

97803e21947864_Book 1.indb 174 11/21/13 2:56 PM

ptg11524036

175Monitoring the Battery

tablet when needed. To avoid complications from the device shutting down during app execu-
tion, you may need to monitor the battery within the app so that the app can take necessary
precautions if the level gets too low. You may also require the user to have the device plugged
in to external power to carry out certain operations that might require a significant power
drain.

 Monitoring the battery is not crucial to the MyContactList app. However, learning how to do
so is useful for understanding one approach used in Android to interact with device hardware.
The Android OS has an object that monitors important measures of battery health. Some
of these measures include battery temperature, voltage, charge level, and many others. To
examine all available measures, review the BatteryManager class on the Android Developer
site (search for “android batterymanager”). The BatteryManager produces a broadcast every
few seconds that includes the current reading on these measures. To monitor the battery, the
app has to listen for these broadcasts and respond to the measures that are important to the
app.

 To demonstrate monitoring the battery, you will put a small TextView in the toolbar on the
 ContactListActivity to display the current battery level as a percentage. Begin by adding the
 TextView to the activity_contact_list.xml layout file. Use the code in Listing 8.1 .

 Listing 8.1 XML to Add a TextView to ContactListActivity Toolbar

 < TextView
 android:id = "@+id/textBatteryLevel"
 android: layout_width = "wrap_content"
 android: layout_height = "wrap_content"
 android: layout_alignParentRight = "true"
 android:layout_marginRight = "5dp"
 android:text = "100%"
 android:textAppearance= "?android:attr/textAppearanceSmall" />

 Be sure to place this widget within the toolbar RelativeLayout . Change the layout_margin-
Right value of the buttonAdd widget from 20dp to 45dp. When complete, your toolbar should
look like Figure 8.1 .

 Figure 8.1 Toolbar with battery level TextView.

97803e21947864_Book 1.indb 175 11/21/13 2:56 PM

ptg11524036

176 Chapter 8 Access to Hardware and Sensors in Android

 The next step is to add code to listen for, and respond to, the battery manager’s broadcasts.
To do so, you have to instantiate a BroadcastReceiver object that will capture and respond
to the broadcast. A BroadcastReceiver is an object that can receive Intents sent by other
 Activities both within and outside the app. Generally, you set up a BroadcastReceiver
to respond only to specific types of broadcasts. The code in the BroadcastReceiver typically
uses the data from the broadcast Intent to perform some action. The final step is to tell the
activity to listen for broadcasts from the BatteryManager using the broadcast receiver you
defined. Enter the code in Listing 8.2 in the onCreate method of the ContactListActivity .

 Listing 8.2 Monitoring the Battery

 BroadcastReceiver batteryReceiver = new BroadcastReceiver() { //1
 @Override
 public void onReceive(Context context, Intent intent) {
 double batteryLevel= intent.getIntExtra(BatteryManager. EXTRA_LEVEL ,0); //2
 double levelScale= intent.getIntExtra(BatteryManager. EXTRA_SCALE ,0); //3
 int batteryPercent = (int) Math. floor (batteryLevel/levelScale*100); //4
 TextView textBatteryState=(TextView)findViewById(R.id. textBatteryLevel);
 textBatteryState.setText(batteryPercent+ "%");
 }
 };

 IntentFilter filter = new IntentFilter(Intent. ACTION_BATTERY_CHANGED); //5
 registerReceiver(batteryReceiver, filter); //6

 Not much code is needed to implement battery monitoring because the objects provided with
the Android SDK do much of the work. However, much of the code is new and needs some
explanation.

 1. A BroadcastReceiver variable is declared and instantiated with a new
 BroadcastReceiver . This object receives Intents and has the code used to respond to
the Intent . An Intent is broadcast from other apps or objects executing on the device.

 2. The Intent concerning battery status sent by the OS contains information about the
battery as Extras . This line gets the extra associated with the battery’s current charge
level. Although the value is retrieved as an integer, it is assigned to a double variable so
that it can be used as a double later.

 3. The extra associated with the scale used for measuring the charge is retrieved and
assigned to a double variable. Capturing the scale is important because different devices
may use different scales for measuring charge.

 4. The percentage of battery charge left is calculated by dividing the level by the scale. If
these two variables were not defined as doubles, this calculation would produce incorrect
results because a divide operation needs to produce double value. The result of the
calculation is a number between 0 and 1, which is multiplied by 100 to get a percentage.
The floor function is applied to take on the integer value of the result.

97803e21947864_Book 1.indb 176 11/21/13 2:56 PM

ptg11524036

177Using Sensors to Create a Compass

 5. A new IntentFilter variable is declared and assigned a new IntentFilter . An
 IntentFilter listens for Intents that have been broadcast by the system and only lets
through the ones the developer is looking for. In this case, the filter looks for Battery
Status changed intent. This is required because a BroadcastReceiver can respond to
any intent. However, you want it to respond only to Intents sent by the battery.

 6. The BroadcastReceiver is registered, which means that the app is told to listen for
battery status intents and handle them with the BroadcastReceiver defined in the
activity.

 Run the app. Using the emulator will always produce the same result, and in some cases will
not produce any result. However, if you test it on an actual device, you will see different
percentages as the battery charges or discharges.

 Using Sensors to Create a Compass
 The Android OS supports a number of types of sensors. Generally, the sensors are either
motion, environmental, or position sensors. Motion sensors detect how the device is moving,
environmental sensors capture various measures of the device’s ambient environment (for
example, the light level), and position sensors capture information that can be used to deter-
mine the physical position of the device. Not all devices have all the sensors that the OS
supports. This fact has implications for how you code access to the sensors.

 Accessing sensor information is not particularly important for the MyContactList app. However,
understanding how these are accessed could be important for future apps you develop. In the
case of the MyContactList app, you will use sensors to create a simple compass to show users
what direction they are headed when they have the contact map displayed. Creating a graphi-
cal compass display is beyond the scope of this book, so you will simply add a TextView to the
 ContactMapActivity toolbar to display the direction in text (E, W, N, and S).

 The first step is to add the TextView to the toolbar. Open activity_contact_map.xml and add
the TextView between the Location and MapType buttons using the code in Listing 8.3 .

 Listing 8.3 Heading TextView

 < TextView
 android:id = "@+id/textHeading"
 android:layout_width = "wrap_content"
 android:layout_height = "wrap_content"
 android:layout_centerHorizontal = "true"
 android:layout_centerVertical = "true"
 android:text = "WNW"
 android:textAppearance= "?android:attr/textAppearanceSmall" />

97803e21947864_Book 1.indb 177 11/21/13 2:56 PM

ptg11524036

178 Chapter 8 Access to Hardware and Sensors in Android

 Be sure to place this widget within the toolbar RelativeLayout . Change the
layout_marginRight and layout_marginLeft values of the button widgets from 20dp
to 10dp. When complete, your toolbar should look like Figure 8.2 .

 Figure 8.2 Toolbar with heading TextView.

 To calculate the device heading, you need to capture information from two sensors: the accel-
erometer and the magnetometer. The accelerometer reports device acceleration in three dimen-
sions. The magnetometer reports the geomagnetic field in three dimensions. The math behind
the heading calculation using these measures is beyond the scope of this book. Fortunately, the
Android SDK again does much of the work for you. However, implementing a compass using
these sensors requires a bit more work than monitoring the battery.

 Open ContactMapActivity.java and declare four variables where you declared the GoogleMap
variable (just after the class declaration). Use the following code:

 SensorManager sensorManager ;
 Sensor accelerometer ;
 Sensor magnetometer ;
 TextView textDirection ;

 To monitor sensors requires a SensorManager object and Sensor objects for each sensor used.
Next, add the code in Listing 8.4 to the onCreate method of the activity.

 Listing 8.4 Registering Sensors for Monitoring

 //1
 sensorManager = (SensorManager) getSystemService(Context. SENSOR_SERVICE);
 accelerometer = sensorManager.getDefaultSensor(Sensor. TYPE_ACCELEROMETER);
 magnetometer = sensorManager.getDefaultSensor(Sensor. TYPE_MAGNETIC_FIELD);
 //2
 if (accelerometer != null && magnetometer != null) {
 sensorManager .registerListener(mySensorEventListener, accelerometer ,
 ➥SensorManager. SENSOR_DELAY_FASTEST);
 sensorManager .registerListener(mySensorEventListener, magnetometer ,
 ➥SensorManager. SENSOR_DELAY_FASTEST);

97803e21947864_Book 1.indb 178 11/21/13 2:56 PM

ptg11524036

179Using Sensors to Create a Compass

 } else {
 Toast. makeText (this , "Sensors not found" , Toast. LENGTH_LONG).show(); //3
 }
 textDirection = (TextView) findViewById(R.id. textHeading);

 This code gets the references to the sensors and registers them to activate a
 SensorEventListener object when they report changes. The SensorEventListener
has yet to be coded.

 1. SensorManager is a system service so you get a reference to it rather than instantiate it.
The SensorManager is used to get references to the two sensors used to measure heading.

 2. As previously noted, not all devices have all sensors. Therefore, you test whether the
sensor is available so that the lack of a sensor on a device does not cause the app to
crash. If the sensors are present, the SensorManager associates each with the same event
listener and passes a parameter indicating how frequently to process sensor events.

 3. If sensors are not available, the user is informed with a Toast .

 The next step is to implement the SensorEventListener , which is the class that handles the
actual events from the sensors and takes action on them. Code this event just as you would a
method. It should be within the class body but not within any other method. Refer to Listing
 8.5 to implement the listener.

 Listing 8.5 SensorEventListener Code

 private SensorEventListener mySensorEventListener = new SensorEventListener() {

 public void onAccuracyChanged(Sensor sensor, int accuracy) { } //1

 float [] accelerometerValues ; //2
 float [] magneticValues ;

 public void onSensorChanged(SensorEvent event) { //3
 if (event. sensor .getType() == Sensor. TYPE_ACCELEROMETER)
 accelerometerValues = event. values ;
 if (event. sensor .getType() == Sensor. TYPE_MAGNETIC_FIELD)
 magneticValues = event. values ;
 if (accelerometerValues != null && magneticValues != null) { //4
 float R[] = new float [9];
 float I[] = new float [9];
 boolean success = SensorManager. getRotationMatrix (R, I,
 ➥ accelerometerValues , magneticValues);
 if (success) { //5
 float orientation[] = new float [3];
 SensorManager. getOrientation (R, orientation);

97803e21947864_Book 1.indb 179 11/21/13 2:56 PM

ptg11524036

180 Chapter 8 Access to Hardware and Sensors in Android

 float azimut = (float) Math. toDegrees (orientation[0]); //6
 if (azimut < 0.0f) { azimut+=360.0f;} //7
 String direction;
 if (azimut >= 315 || azimut < 45) { direction = "N" ; } //8
 else if (azimut >= 225 && azimut < 315) { direction = "W" ; }
 else if (azimut >= 135 && azimut < 225) { direction = "S" ; }
 else { direction = "E" ; }
 textDirection .setText(direction);
 }
 }
 }
 };

 The sensor event listener code is relatively involved, even without needing to understand the
math involved.

 1. A SensorEventListener requires the implementation of two events,
 onAccuracyChanged and onSensorChanged . To calculate a heading, you don’t need
accuracy, so its method block is empty.

 2. Sensor readings are returned as a float array. Two variables to hold the response from
each sensor are declared.

 3. The onSensorEvent first determines which sensor triggered the event and then captures
the values it provided.

 4. If there are values available for both sensors, the SensorManager is asked for two
rotational matrices used for orientation calculation. Discussion of the rotational matrices
is beyond the scope of this book.

 5. If the matrices are successfully calculated, the SensorManager is asked to calculate the
orientation of the device. Orientation is measured in three dimensions.

 6. The first orientation measure is the value used to calculate the heading. It is reported in
radians, so these are changed to degrees.

 7. Convert the heading reported to eliminate negative numbers.

 8. Use degree heading to get text description. These are done in 90-degree increments. You
could add more code to get finer gradations of direction, such as NW or SE.

 Test the app on a device. You’ll need to move the device around to get different readings. This
is not possible on the emulator.

 Android Versus iOS: Creating a Compass
 As you have seen in the preceding section, creating a compass in Android requires access-
ing two sensors and manipulating the data they provide. In contrast, the device’s heading
is included in the Core Location framework on iOS. Heading is reported as a function of the
device’s location, making creating a compass in iOS significantly easier than in Android.

97803e21947864_Book 1.indb 180 11/21/13 2:56 PM

ptg11524036

181Using the Phone

 Using the Phone
 An Android device not only provides hardware devices that can be used in an app to collect
information on the device’s internal and external environment, but also includes hardware
capabilities that can be accessed to provide certain functionality for an app. To access data from
a sensor, the app listens for a broadcast from a sensor. However, other hardware on an Android
device operates only when the user or an app wants to use it. In these cases, accessing the func-
tionality provided by the hardware is accessed by calling the API associated with the hardware.
One such piece of hardware provided by some devices is a telephone. In the MyContactList
app, you will code the ContactActivity so that pressing and holding one of the contact’s
phone numbers will automatically call that number. This functionality requires accessing the
phone’s API and asking it to call the number provided.

 Accessing phone functionality of an Android device requires user permission. Add the following
line with the other permissions already in the AndroidManifest.xml file:

 <uses-permission android:name = "android.permission.CALL_PHONE" />

 The next step is to add a listener to the phone number EditTexts for the press-and-hold
user action. This is done by adding a method to the ContactActivity.java file. Use the code in
 Listing 8.6 .

 Listing 8.6 Initializing the LongClickListener

 private void initCallFunction() {
 EditText editPhone = (EditText) findViewById(R.id. editHome);
 editPhone.setOnLongClickListener(new OnLongClickListener() {

 @Override
 public boolean onLongClick(View arg0) {
 callContact(currentContact .getPhoneNumber());
 return false ;
 }
 });

 EditText editCell = (EditText) findViewById(R.id. editCell);
 editCell.setOnLongClickListener(new OnLongClickListener() {

 @Override
 public boolean onLongClick(View arg0) {
 callContact(currentContact .getCellNumber());
 return false ;
 }
 });
 }

97803e21947864_Book 1.indb 181 11/21/13 2:56 PM

ptg11524036

182 Chapter 8 Access to Hardware and Sensors in Android

 The pattern in this method should be very familiar by now. A reference to the widget is
created, and an event is added to the widget. Next, the widget’s response to the event is coded.
In this case, that is a call to another method that accepts the phone number in the EditText
as a parameter. Add the callContact method using the code in Listing 8.7 .

 Listing 8.7 callContact Method

 private void callContact(String phoneNumber) {
 Intent intent = new Intent(Intent. ACTION_CALL); //1
 intent.setData(Uri. parse ("tel:" + phoneNumber)); //2
 startActivity(intent);
 }

 Using the phone requires starting the phone app. As you have seen before, all apps are made
up of activities, and to start an activity you use an intent.

 1. A new intent is instantiated with the parameter Intent.ACTION_CALL , which tells
Android that you want to use the phone to make a call.

 2. The telephone number to be called is passed to the intent as a Uniform Resource
Identifier (URI). A URI is similar to a Uniform Resource Locator (URL) except that a URL
identifies a location on the World Wide Web, whereas a URI can be used to identify a
local resource.

 That is all that is needed to make a phone call through an app! Remember to call the phone
call initialization method in the onCreate method. If you run the app now, when editing is
turned on, the call function works. However, when you are in viewing mode, it does not. This
is because you disabled the EditTexts in viewing mode because you didn’t want any acciden-
tal changes to the user’s information. To correct this, you need to modify the setForEditing
method in ContactActivity.java.

 An EditText has to be enabled to allow it to respond to a long click event. This means that
you cannot ever disable them. Delete the setEnabled lines of code associated with the edit-
Phone and editCell variables. The problem with doing this is that now the phone number
will be editable even in viewing mode. To correct this problem, you need to set the inputType
of the EditText to null when in viewing mode and set it back to accepting phone numbers
when in editing mode. To do this, modify the if (enabled) block of code to include the
following in the true block:

 editPhone.setInputType(InputType. TYPE_CLASS_PHONE);
 editCell.setInputType(InputType. TYPE_CLASS_PHONE);

 Add the following to the false block (the else block):

 editPhone.setInputType(InputType. TYPE_NULL);
 editCell.setInputType(InputType. TYPE_NULL);

97803e21947864_Book 1.indb 182 11/21/13 2:56 PM

ptg11524036

183Using the Camera

 Your app can now call your contacts by pressing and holding on a phone number. Run the
app. If you run the app in the emulator, the emulator will pretend to call a number, but
running it on an Android Device will actually make the call.

 Using the Camera
 Many Android devices have a camera, which can be used independently by the user or inte-
grated into an app. You can integrate it into an app by calling the camera API to start the
camera so that the user can take a picture using the camera app provided by Android and then
return the picture to the app. You can also do it in a more sophisticated manner in which the
camera’s API, and thus, functionality, is integrated right in the app. The former approach is
similar to the way the phone functionality was used in the previous section. The latter is much
more sophisticated and requires creating an activity and layout designed to provide the camera
functionality desired in the app. This approach is beyond the scope of this book.

 The camera will be used in the MyContactList app to capture a photo of the contact so that it
can be displayed with the contact’s data. To begin, there must be a place to show the image
on the ContactActivity’s layout. To do this, you add ImageButton to the layout. You use the
button functionality of the ImageButton to access the camera. An ImageButton must have
an image associated with it, so the first step is to import the photoicon.png file (available with
the resources provided with this book) into the drawable-hdpi folder. To import, right-click the
drawable-hdpi folder and select Import. Navigate to the location of the file and import it. Next,
open activity_contact.xml and add an ImageButton . Configure the button using the code in
 Listing 8.8 . Be sure to place the widget within the ScrollView —preferably after the TextView
that displays the label Contact.

 Listing 8.8 ImageButton Configuration

 < ImageButton
 android:id = "@+id/imageContact"
 android:layout_width = "wrap_content"
 android:layout_height = "wrap_content"
 android:layout_alignParentRight = "true"
 android:layout_marginRight = "10sp"
 android:layout_alignTop = "@+id/textContact"
 android:src = "@drawable/photoicon" />

 Modify the attributes of the editName EditText so it does not overrun the ImageButton by
adding the following attribute/value pair:

 android:layout_toLeftOf= "@+id/imageContact"

 When complete, your layout should look like Figure 8.3 .

97803e21947864_Book 1.indb 183 11/21/13 2:56 PM

ptg11524036

184 Chapter 8 Access to Hardware and Sensors in Android

 Figure 8.3 Layout with ImageButton.

 The camera is outside the app, so the app needs permission to use it. As always, this is granted
by entering a permission in the app’s manifest. Enter the following permission after the other
permissions already in the manifest:

 <uses-permission android:name = "android.permission.CAMERA" />

 Next, open ContactActivity.java to code the camera use. This requires initializing the
 ImageButton to listen for an onClick event, writing code to have the onClick method call a
routine to start the camera, and writing code to listen to get the picture after it has been taken.
Code the ImageButton initialization with the code in Listing 8.9 . Again, remember to call the
method in the activity’s onCreate method.

 Listing 8.9 ImageButton Initialization Method

 private void initImageButton() {
 ImageButton ib = (ImageButton) findViewById(R.id. imageContact);
 ib.setOnClickListener(new View.OnClickListener() {

97803e21947864_Book 1.indb 184 11/21/13 2:56 PM

ptg11524036

185Using the Camera

 public void onClick(View v) {
 takePhoto();
 }
 });
 }

 Next, add the code to access the camera and get the returned picture. The camera app is, of
course, an activity, so it must be started with an Intent . Use the code in Listing 8.10 to create
the takePhoto method and the method to capture the picture.

 Listing 8.10 Starting the Camera and Capturing the Result

 public void takePhoto(){
 Intent cameraIntent = new Intent(
 ➥android.provider.MediaStore. ACTION_IMAGE_CAPTURE); //1
 startActivityForResult(cameraIntent, CAMERA_REQUEST); //2
 }

 //3
 protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 if (requestCode == CAMERA_REQUEST) { //4
 if (resultCode == RESULT_OK) { //5
 Bitmap photo = (Bitmap) data.getExtras().get("data"); //6
 Bitmap scaledPhoto = Bitmap. createScaledBitmap (photo, 72, 72, true); //7
 ImageButton imageContact = (ImageButton)
 ➥findViewById(R.id. imageContact);
 imageContact.setImageBitmap(scaledPhoto);
 currentContact .setPicture(scaledPhoto);
 }
 }

 Not much code is required to implement camera functionality! This is because the objects in
the Android SDK do most of the work.

 1. A new intent is instantiated with a parameter that tells the system to open the camera
in image capture mode. You do not have to check whether the camera is present. The
permission you added in the manifest would not let your app run on the device if it did
not have a camera.

 2. The Activity is started in a different way than you have seen before. In this case, you
want the activity to return a value to the app after it has completed, so you use the
 startActivityForResult method. The parameters are the new Intent and a static
variable called CAMERA_REQUEST . The variable CAMERA_REQUEST is identified as an error
because it has not been defined. This variable is an integer that is used to identify the
response from the cavmera when it finishes. The value is not fixed by the SDK but

97803e21947864_Book 1.indb 185 11/21/13 2:56 PM

ptg11524036

186 Chapter 8 Access to Hardware and Sensors in Android

should be given a large integer so it is not confused with other built-in responses. Add
this line after the class declaration to fix the error:

 private static final int CAMERA_REQUEST = 1888;

 3. The onActivityResult method is declared. This method receives a request code that
was sent to the camera, a result code, and an intent that includes the data (the picture in
this case) from the intent you started. This method is executed when the camera finishes.

 4. The returned request code is checked to see if it is the one sent to the camera.

 5. Check if the camera returned with a picture.

 6. The data from the Intent is assigned to a variable declared as a Bitmap . The method
 .get("data") doesn’t specify a type of data to get from the extras, so it must be cast
into a Bitmap. After the photo is captured, it is displayed in the ImageButton , and the
contact object’s picture attribute is set to hold the photo.

 7. The picture is scaled so that a consistent-sized photo is displayed in the ImageButton .
The parameters of this method are the picture to be scaled, the height and width to
scale to in pixels, and whether a filter should be applied during the scaling operation.
Generally when scaling down, this filter has no effect but can change the result when
scaling up.

 The setPicture method must be added, along with a Bitmap variable to the Contact object.
Open Contact.java and add a variable to the class using the following code:

 private Bitmap picture ;

 Next, add the setters and getters with the code in Listing 8.11 . Save the file.

 Listing 8.11 Picture Variable Setter and Getter

 public void setPicture(Bitmap b) {
 picture = b;
 }
 public Bitmap getPicture() {
 return picture ;
 }

 Almost done. But now that you have a picture to save, the method to display a contact must
be modified to display the saved contact picture, the ContactDataSource methods to save
and retrieve contacts must be modified to store and retrieve the picture, and the database must
be modified to have a field in the table to hold the picture. First, open ContactDBHelper.java
to add the field to the database. The first step is to tell the app that the database has changed.
Locate the following line and increase the version number by 1.

 private static final int DATABASE_VERSION = 2;

97803e21947864_Book 1.indb 186 11/21/13 2:56 PM

ptg11524036

187Using the Camera

 Next, add a picture field with a data type of blob to the contact table. The blob data type can
hold any type of binary data and is typically used for picture, audio, and video objects. The
data type, blob, is an acronym for Binary Large Object. Modify the last line in the CREATE_
TABLE_CONTACT string to the following:

 + "email text, birthday text, contactphoto blob);";

 The last step is to modify the onUpgrade method. Technically, you would not have to modify
this to get the change to the database. It is currently written to delete the current table and
create a new one when the database is updated. However, there is one big drawback: all the
user’s contacts will be deleted! If you are in the development stage prior to release of the app,
this is okay. If the app has been released, this is not an option. To handle a change to the data-
base structure without losing all the user data, modify the onUpgrade method to match the
code in Listing 8.12 .

 Listing 8.12 onUpgrade Modifications

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 Log. w (ContactDBHelper. class .getName(),
 ➥ "Upgrading database from version " + oldVersion + " to "
 + newVersion + ", which will destroy all old data");
 // db.execSQL("DROP TABLE IF EXISTS contact");
 // onCreate(db);
 try {
 db.execSQL("ALTER TABLE contact ADD COLUMN contactphoto blob");
 }
 catch (Exception e) {
 //do nothing
 }
 }

 The modifications comment out the deletion and re-creation of the table and add an SQL state
to add the new field to the table. This line is surrounded by a try and catch statement so that
if the field has already been added, it doesn’t crash the app.

 After the ContactDBHelper.java file has been modified, the ContactDataSource.java file needs
to be modified to save and retrieve the picture. The code in Listing 8.13 must be added to both
the insertContact and updateContact methods. The code must be placed prior to the call to
update or insert the contact. Note that in the updateContact method, you need to use
 updateValues.put(contactphoto", photo) instead of initialValues.
put("contactphoto", photo) .

97803e21947864_Book 1.indb 187 11/21/13 2:56 PM

ptg11524036

188 Chapter 8 Access to Hardware and Sensors in Android

 Listing 8.13 Saving a Picture to the Database

 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 c.getPicture().compress(Bitmap.CompressFormat. PNG , 100, baos);
 byte [] photo = baos.toByteArray();

 initialValues.put("contactphoto" , photo);

 To store a bitmap to the database, it must first be converted to a byte array. This code uses stan-
dard objects in the Android SDK to do this conversion. After the photo is converted, it is placed
into the values to be updated like any other value. Next, modify the getSpecificContact
method to load the Contact object with the picture. This does not need to be done in the
 getContacts method because the picture is not used by any activity that uses the whole set of
contacts. Returning the picture from the database is essentially the reverse process from saving
to the database (Listing 8.14).

 Listing 8.14 Getting a Picture from the Database

if (cursor.getBlob(10)!= null) {
 byte[] photo = cursor.getBlob(10);
 if (photo != null) {
 ByteArrayInputStream imageStream = new ByteArrayInputStream(photo);
 Bitmap thePicture= BitmapFactory.decodeStream(imageStream);
 contact.setPicture(thePicture);
 }
}

 Again, the objects supplied by Android do most of the work. The byte array is retrieved
from the database and is then tested to determine if a picture has been stored. The 10 in the
 getBlob method is the index of the contactphoto field in the contact table. The conversion
from byte array to Bitmap will cause a crash if no picture is stored. After the data has been
converted, it is set in the Contact object.

 The last step is to modify ContactActivity.java to display the retrieved picture along with the
rest of the contact’s data. This is done in the initContact method. Place the code in Listing
 8.15 where appropriate in that method.

 Listing 8.15 Display the Photo

 ImageButton picture = (ImageButton) findViewById(R.id. imageContact);
 if (currentContact .getPicture() != null) {
 picture.setImageBitmap(currentContact .getPicture());
 }
 else {
 picture.setImageResource(R.drawable. photoicon);
 }

97803e21947864_Book 1.indb 188 11/21/13 2:56 PM

ptg11524036

189Summary

 The code gets a reference to the ImageButton on the layout and checks if the contact has a
picture. If there is a picture, it is set as the button’s image. If not, the default image resource is
displayed.

 Test the app on an Android device. The camera display you see will depend on the device you
are running the app on. After taking a picture, the ContactActivity should look similar to
 Figure 8.4 .

 Figure 8.4 Contact with a picture.

 Summary
 An Android device provides many hardware features that enable the creation of innovative
apps or enhance the capabilities of more traditional apps. The approach used to access these
features is dependent on the hardware device. However, regardless of the type of hardware
to be accessed, the developer must always include a permission to use the item in the app’s
manifest file. Sensors that may be used to detect the environment that the device is currently
in or how the device is moving are accessed by enabling methods in your code that listen for

97803e21947864_Book 1.indb 189 11/21/13 2:56 PM

ptg11524036

190 Chapter 8 Access to Hardware and Sensors in Android

status changes of the sensor. The app can then use those status changes to do something useful
for the user.

 Hardware features provided by the Android system that may be used through an app (such as
the phone) may also be accessed through other apps or integrated into apps. These features are
accessed via calls to the device’s API. Through API calls, the developer can ask the hardware
feature to perform functions for the app.

 Exercises
 1. Modify the toolbar of the ContactActivity to display the proximity sensor readings.

Add the proximity sensor service so that this works.

 2. Modify the app so that when the user long-clicks the cell number of a contact, the
text messaging service is opened instead of the phone service. You will have to have a
permission in the manifest to send text (SMS) messages.

 3. Modify the app to display an incoming text message as a Toast . You will have to register
your app with a permission to read text (SMS) messages and set up a listener for text
messages.

 4. Modify the compass to report NW, NE, SE, and so on in addition to the N, W, S, and E
headings.

97803e21947864_Book 1.indb 190 11/21/13 2:56 PM

ptg11524036

 Part III
 Developing the iOS App

Chapter 9 Using Xcode for iOS Development 193

Chapter 10 iOS Navigation and Interface Design 213

 Chapter 11 Persistent Data in iOS 235

 Chapter 12 Tables in iOS: Navigation and Information
Display 263

Chapter 13 Maps and Location in iOS 289

Chapter 14 Access to Hardware and Sensors in iOS 311

97803e21947864_Book 1.indb 191 11/21/13 2:56 PM

ptg11524036

This page intentionally left blank

ptg11524036

 9
 Using Xcode for iOS

Development

 This part of the book covers how to create iOS apps. You learn to use the powerful Xcode development
environment. If you need to get this installed on your computer, refer to Appendix B , “Installing Xcode
and Registering Physical Devices,” before continuing. In this first chapter, you learn to build a simple
but complete iOS app—a variation on the traditional “Hello World” app—and run it on the simulator.

 Creating the Xcode Project
 You’re no doubt eager to get started creating your first iOS app, so jump right in and launch
Xcode. You should find it in the Applications folder on your Mac. After Xcode starts, you
should see the screen shown in Figure 9.1 . Select the Create a New Xcode Project option.

 Next, you’re given a number of options for creating projects based on various templates, as
shown in Figure 9.2 . You’ll notice in the left sidebar of the window that you can create projects
for both iOS and OS X. Our focus here is on iOS applications, so choose that entry. You will
see several templates that will make creating a new app simpler. For our first app, choose Single
View Application, and click Next.

97803e21947864_Book 1.indb 193 11/21/13 2:56 PM

ptg11524036

194 Chapter 9 Using Xcode for iOS Development

 Figure 9.2 Choose the Single View template for the first project.

 Figure 9.1 Xcode’s Welcome screen.

97803e21947864_Book 1.indb 194 11/21/13 2:56 PM

ptg11524036

195Creating the Xcode Project

 On the next screen (shown in Figure 9.3), you choose a name for your app. Type “Hello
World!” The next fields are not all that important for sample projects like this, but for real
projects, you should add your company’s name, identifier (reverse web address), and class
prefix. The class prefix is at least three capital letters that are prepended to any class you create
to distinguish them from library classes. Apple has reserved two-letter prefixes for use with
the frameworks that come with the platform, so you will see these in classes like NSArray,
CLLocation, and UIButton. Although you don’t have to use prefixes or stay with three-letter
prefixes, it is a best practice that you should follow. I typically use my initials or initials of the
organization. Throughout this book, we use the initials LMA (for Learning Mobile Apps). You
can choose your own abbreviation, but it will be easier to follow the code examples if you use
LMA. On this screen you can also choose which device to target (iPhone, iPad, or Universal).
Universal creates a single app but with a different user interface for iPhone and iPad, enabling
the same app to be installed on both devices.

 Figure 9.3 Choosing options for the iOS project.

 Then click Next, and you will have to choose a location to save your project. You can navigate
to an appropriate place on the disk to create the project files. Click Create.

 Xcode Project Folder
 The Xcode project is created in a folder and consists of a file with the extension .xcodeproj and
a number of other files and folders. You can easily move the entire project between computers
by copying the directory that contains the .xcodeproj file and any subfolders as well. We have

97803e21947864_Book 1.indb 195 11/21/13 2:56 PM

ptg11524036

196 Chapter 9 Using Xcode for iOS Development

found that when we work on our regular computers (office, home, and so on), using Google
Drive or Dropbox works well to keep all the files of a project in sync. But we often find our-
selves compressing the project folder and emailing or copying to a thumb drive to make sure
we have a good copy of the project. To reopen a project that has been moved, you can double-
click the .xcodeproj file. You also have the option of using version control systems by taking
advantage of Xcode’s built-in support of Git.

 After creating the project, you’re now looking at the main Xcode workspace window. Figure 9.4
shows an overview of the Xcode workspace.

Navigation Selector Bar

Debug AreaDebug Area

Utility AreaUtility Area

Filter Bar Debug Bar Library Selector Bar

Inspector
Pane

Inspector Selector BarJump BarsToolbar

Library
Pane

Navigator AreaNavigator Area

Editor AreaEditor Area

 Figure 9.4 Overview of the Xcode workspace.

 Xcode is a very powerful development environment with a lot of functionality. If you decide to
do any serious development for iOS, you should take some time to figure out how everything
works. You can find a detailed description of the Xcode workspace in the documentation (Help
> Xcode Overview). We won’t go into a lot of detail now, but you will discover some of the
Xcode functionality as you need it. However, if you take some time to look through the docu-
mentation, you will likely save a lot of time later on.

 Project Settings
 After you’ve created the Hello World project, you should see the view of Xcode as shown in
 Figure 9.5 . In the center of the workspace is a summary of the app and several appwide settings.
The first section enables you to specify the version and build for the app. The version is used

97803e21947864_Book 1.indb 196 11/21/13 2:56 PM

ptg11524036

197Creating the Xcode Project

when the app is published to the App Store. Anytime an app with a higher version number
is published, all your users will be prompted to download a new version. The build number
is for internal use by the developer. You can choose which device types to target, as well as
which version of iOS you want to target. As of this writing, the current version of iOS is 7.0.
This setting determines the minimum version of iOS your users have to be running in order to
run your app. This is just a signal within the app store. Apps are typically built using the latest
available base SDK, so if you use features in a later SDK than your deployment target, you will
need to insert checks in your code to make sure your app doesn’t crash on devices with older
versions of iOS.

 Figure 9.5 Overview of the Xcode workspace with our newly created Hello World app.

 This is also where you can specify which device orientations are supported. By default, iPhone
apps support Portrait and Landscape Left and Right but not Upside Down (iPad default is to
support all four orientations).

 On the left, in the navigation area, you can see the files that Xcode created for you. Figure 9.6
shows what it should look like. The exact number and types of files created depends on which
choices you made when creating the project. Here’s an overview of some of the files and folders
created in this project:

 ■ AppDelegate.h and AppDelegate.m—The App Delegate files manage issues related to the
entire app and are primarily used to manage the life cycle of the app—how it is started,
what happens when it goes to the background, and so on. This life cycle is covered in
more detail in Chapter 2 , “App Design Issues and Considerations,” and in Chapter 11 ,

97803e21947864_Book 1.indb 197 11/21/13 2:56 PM

ptg11524036

198 Chapter 9 Using Xcode for iOS Development

“Persistent Data in iOS.” Objective-C programs follow the C-style and have both a header
(.h) and method (.m) file. See Appendix C , “Introduction to Objective-C” for more detail.

 Figure 9.6 Contents of the Hello World project.

 ■ Main.storyboard—The storyboard is used to design the interaction between multiple
screens in your app as well as designing the layout of the individual screens.

 ■ ViewController.h and ViewController.m—The view controller contains the code that
controls the user interactions with the app. Most of the programming we do in this book
will be in these files.

 ■ Images.xcassets—This folder contains all the images, including icons, needed for
your app.

 ■ Supporting Files—This directory contains a number of files that the app may or may not
use. Here’s a description of a few of them:

 ■ Hello World!-Info.plist—This file contains a few app-specific settings. Most of these
are controlled in other parts of Xcode.

 ■ main.m—The file that is responsible for launching the app.

 ■ Hello World! Tests—Xcode comes with a built-in Unit Test framework, which you can
use to create automated testing frameworks to ensure you deliver quality code. We
recommend using Unit Tests on all production projects, but here the focus is on learning
how to create iOS apps, so we don’t have room to also cover unit testing. You can read
more about this framework in Test-Driven iOS Development by Graham Lee.

97803e21947864_Book 1.indb 198 11/21/13 2:56 PM

ptg11524036

199Creating the Xcode Project

 ■ Frameworks—These are various libraries that you can include in your project to add
functionality to your app, such as maps or audio capabilities. The default ones that
are already included are UIKit , which is responsible for all the user interface controls,
 Foundation , which has a lot of the core functionality needed in any program, such as
object-oriented data types, and CoreGraphics , which handles low-level graphical tasks and
is used by UIKit.

 ■ Products—This is your compiled app file.

 Creating the User Interface
 To open a file for editing in Xcode, you need to click it only once. Double-clicking will open it
in a separate window. Click once on the Main.storyboard file. This opens the file in Interface
Builder (see Figure 9.7), where you can easily create the user interface for your app. With the
storyboard open, you can drag user interface elements from the utility pane on the bottom
right and control a range of settings on the top of the utility pane.

 Figure 9.7 Interface Builder.

 In the lower right of the utility area, you should see the Object Library, which contains all the
user interface elements you can use in your app. If you don’t see the Object Library, click the
cube-shaped icon highlighted in Figure 9.7 .

97803e21947864_Book 1.indb 199 11/21/13 2:56 PM

ptg11524036

200 Chapter 9 Using Xcode for iOS Development

 Start by dragging a label onto the user interface canvas (see Figure 9.8). You may have to scroll
down the list of controls to find the label. You can also use the Search bar below the controls
and type in label . Notice that you get blue dotted guidelines as you drag the label around.
Drag it to the middle left of the screen and let go when both guidelines appear. Double-click
the label to change the text of it to “Hello World!” and then press Enter. Expand the label by
clicking the right side of it and dragging it to the right side until the blue dotted guidelines
appear. Above the utility area on the right, you have a little menu bar of five items. The fourth
one from the right should be selected. This is the Attributes Inspector, which enables you to set
many properties for the currently selected user interface element. For the label, you can change
its appearance quite a bit. Feel free to play around, but you just need to center the text of
the label.

 Figure 9.8 Dragging a label onto the canvas and using guidelines for placement.

 Running the App in the Simulator
 Launching the app in the built-in simulator that comes with Xcode is quite simple. In the
top-right corner of Xcode, you will see a big Run button, and next to that, something called
a Scheme, which enables choosing which device is targeted (see Figure 9.9). Click the right
side of the scheme and choose the iPhone simulator. If you have a registered physical device
connected to your computer, it will also show up in this list. See Appendix B for how to register
physical devices to run your apps.

97803e21947864_Book 1.indb 200 11/21/13 2:56 PM

ptg11524036

201Creating the Xcode Project

 Figure 9.9 Choosing the iPhone simulator to run the app.

 Click the Run button on the top left of the Xcode toolbar and wait a few seconds for the simu-
lator to launch with your app (see Figure 9.10). You can control how the simulator looks and
behaves in the Hardware menu. If you choose a device with a high-resolution screen, it may
not fit on your computer screen comfortably. In that case, you can go to Window > Scale and
choose a zoom level.

 Figure 9.10 iOS simulator with the Hello World! App.

97803e21947864_Book 1.indb 201 11/21/13 2:56 PM

ptg11524036

202 Chapter 9 Using Xcode for iOS Development

 Adding App Behavior
 Switch back to Xcode. Next, you’ll see how to add some real functionality to your app. First,
you’ll need to set up the user interface, so make sure the storyboard is open. Then double-click
the Hello World label and change it to Please enter your name. Drag a Text Field (scroll or
search for it in the Object Library) onto the canvas and place it below the label. Then drag a
button below the text field. Double-click the button and change its text to Tap Here! Finally,
add a label below the button. Make the label as wide as the width of the screen, delete its text,
and specify its content to be centered and blue.

 Select the text field and look in the Attributes Inspector at some of the settings available.
Change the Capitalization to Words, and then look at the Keyboards option. You can specify
a keyboard that will show up on screen that is suited to the kind of data being input (for
instance, if you need to have the user input only numbers, you can specify a Number Pad. This
would be a good time to try out the different keyboards. You need to run the simulator to test
the effect each time you choose a different one. Before moving on, make sure the keyboard is
set to Default. Figure 9.11 shows the completed UI in both the Interface Designer and the iOS
simulator with the default keyboard activated.

 Figure 9.11 Completed UI in Interface Designer and the iOS simulator.

97803e21947864_Book 1.indb 202 11/21/13 2:56 PM

ptg11524036

203Creating the Xcode Project

 Having created the user interface, your next task is to add some action to the app. The action
you want is to have the app take the name entered and say Hello to the user by name.

 To do this, return to Xcode and click Stop to quit the simulator. Then make sure the storyboard
is open. Next, click the Show Assistant Editor button in the top-right corner of the Xcode
window (it’s the second button from the left; see Figure 9.12).

 Figure 9.12 Creating an outlet for a user interface element.

 This opens an extra editor that by default contains the file that best matches what is displayed
in the main window. For this user interface screen, this is the header file for the view control-
ler (LMAViewController.h). We will need to create what’s called outlets for those user interface
elements we want to be able to access from the code. This includes the two text fields, where
we need to be able to read the text the user entered and the bottom label that will be updated
to contain our own text string based on the two text fields. To create the outlets, hold down
the Control key, click the text field, and drag to the view controller between the @interface
and @end entries. Then let go, and you should see the situation as shown in Figure 9.13 .

 Figure 9.13 Creating an outlet for a user interface element.

 Enter txtName in the Name field and click Connect. You should now have this line of code in
LMAViewController:

 @property (weak, nonatomic) IBOutlet UITextField *txtName;

 For more detail on what this code means, you can look in Appendix C . For now, all you need
to know is that this has provided a name for the text field that we can reference in our code by
adding an underscore in front of the property name. Do the same for the bottom label, naming
it lblOutput . Next, you’ll add the code for the button. Switch back to the storyboard. The first
step is the same: control-drag from the button to the view controller below the properties for
the text fields and label. However, this time, in the top drop-down choose Action instead of
Outlet (See Figure 9.14). Give it the name showOutput . For the Event, we will use the default
Touch Up Inside, but take a moment and look through the list of all the possible events that

97803e21947864_Book 1.indb 203 11/21/13 2:56 PM

ptg11524036

204 Chapter 9 Using Xcode for iOS Development

this button will respond to. Touch Up Inside means that the button responds to events where
users touched the button and then released their fingers while still inside the button. The
convention in iOS is that to cancel a touch, you would drag your finger outside the target and
then let go (try it on your own device to see how it works). Leave the Arguments as Sender .

 Figure 9.14 Creating the action for the button.

 Connecting Code to UI—iOS Versus Android
 In both Android and iOS, the user interface (UI) and the code that makes the UI work are stored
in different files. This means that both types of app coding require that the code has to link to
the UI in some way. In iOS, this is often referred to as “wiring up” the user interface. However,
in Android, connecting the UI to the code is done entirely in the code itself.

 If you’ve ever created a program with a UI on a different platform, you’re probably used to hav-
ing to provide variable names for all UI elements. In iOS and Android, we just provide names to
those UI elements we will need to access in code. So, the static label at the top of our UI isn’t
given a name. The same goes for the button, where we will need to intercept the event that
happens when the user taps the button.

 In Android, whenever some code needs a reference to a control, we use a special command
that will find it by its ID. This requires extra coding but provides great flexibility. Forgetting to
connect the code to the UI widget needed in either operating system will result in a runtime
error.

 Switch the LMAViewController.m file, and notice that you now have a method at the bottom
of the file called showOutput: . Between the curly braces of this method, enter the code shown
in Listing 9.1 .

 Listing 9.1 The showOutput : Method

 - (IBAction)showOutput:(UIButton *)sender {
 NSString *name = [_ txtName text];
 NSString *output = [NSString stringWithFormat :
 @"Hello %@!" , name];
 [_ lblOutput setText :output];
 }

97803e21947864_Book 1.indb 204 11/21/13 2:56 PM

ptg11524036

205Dismissing the Keyboard

 A brief explanation: The first line is the method declaration (Appendix C has more detail on
how Objective-C methods are declared). The second line declares a string variable (NSString)
and assigns the value in the text field (_ txtName) by calling the text methods on the property.
Notice the use of the underscore to refer to the property. The third line declares an NSString
object that is initialized with a string that combines the string “Hello” with the name variable
followed by an exclamation mark. The last line calls the setText method on the label, passing
in the value of the output string. Run the app and test it by entering different names and
touching the Tap Here! button.

 UI Design—iOS Versus Android
 UI design in iOS is done through absolute positioning, where each UI item is held to a fixed
position on the screen. However, in Android, relative positioning is used. This enables creation
of UI designs that are independent of the physical screen of the device. This means that app
developers don’t have to worry (too much) about screen sizes of different devices. However,
relative positioning also means that the position of one control affects other controls. Often in
Android, moving one control changes the whole design.

 In iOS we need to provide a different UI layout for different screen sizes. If you want your app to
run on both iPad and iPhone, you have to create two separate storyboard files and correspond-
ing view controllers. These screens all run on the same code, so during design the developer
must be sure to be perfectly consistent between the different screens needed.

 Dismissing the Keyboard
 As you may have noticed, the keyboard doesn’t go away by itself when a text field loses focus.
To get the keyboard to disappear, you have to add a little code to the program. What you need
to do is change the View, which is the background of the app, so that it is able to respond to
a tap. When the view intercepts a tap, it will then send a message to the text field to resign
control. This makes the keyboard disappear. The first thing to do is set up the code to handle
the event and then tie the event to the code.

 In LMAViewController.h, add this line between the @interface line and the @end line to
define a new action method:

 - (IBAction)backgroundTap:(id)sender;

 In LMAViewController.m, add the code in Listing 9.2 to implement the method.

 Listing 9.2 The backgroundTap : Method

 -(IBAction)backgroundTap:(id)sender
 {
 [self . view endEditing : YES];

 }

97803e21947864_Book 1.indb 205 11/21/13 2:56 PM

ptg11524036

206 Chapter 9 Using Xcode for iOS Development

 This code tells the View to end editing, which will cause the keyboard to disappear. Next, you
will have to specify how this code gets called. Select the storyboard file. Make sure the Dock
is in list mode. The Dock is the vertical bar between the left and center panes. To expand it to
list view, click the triangle in a rounded rectangle (this is already done in Figure 9.15). After
the Dock is in list mode, select the top-level View (see Figure 9.15). The View is the background
canvas that all the other controls sit on. First, you will need to change this to a Control, so it
can fire events. With the View selected, show the Identity Inspector in the far-right pane (you
can also press Option-Cmd-3 to open the Identity Inspector—and the other options in that
section can be accessed by just changing the number, so Option-Cmd-4 will open the Attributes
Inspector). Change the Class field to UIControl by simply typing over UIView (see Figure
 9.16). All controls that are capable of firing events are subclasses of UIControl , so by changing
the underlying class from UIView to UIControl we make the View capable of firing events.

 Figure 9.15 Xcode with the Dock in List View.

 Figure 9.16 Changing the View class to UIControl.

97803e21947864_Book 1.indb 206 11/21/13 2:56 PM

ptg11524036

207Dismissing the Keyboard

 Select the Connections Inspector in the right pane (Option-Cmd-6). This shows all the possible
actions that can be taken for the current control and can be used to connect those actions to
methods in the code. Drag the circle by Touch Down to the View Controller in the Dock (see
 Figure 9.17). When you release it, select backgroundTap: . This will then call the background-
Tap: method every time the Touch Down event fires on the View.

 Note
 Touch Down means the event fires as soon as the user taps, in contrast to the Touch Up
Inside event that we used earlier, which fires only if the user releases the finger inside the
specified control.

 Figure 9.17 Connecting the Touch Down event for the View to File’s Owner.

 The View Controller object is the object that loads the current view controller (single screen
in an iOS app)—typically the UIViewController class itself. Connecting to View Controller
in this manner is the same as connecting to the methods in the code, so this is just a different
technique for achieving the same result. Click some of the other controls to view them in the
Connections Inspector and see how events are linked to methods (see Figure 9.18).

 Run the app and see how the keyboard disappears when you tap outside the text field.

 Note
 If you are developing iPad apps, this is not an issue, because the iPad keyboard has a key to
make it disappear, but this doesn’t exist in the iPhone keyboard.

97803e21947864_Book 1.indb 207 11/21/13 2:56 PM

ptg11524036

208 Chapter 9 Using Xcode for iOS Development

 Quick Reference: Dismiss the Keyboard
 For future reference, here are the four steps needed to have the keyboard dismissed:

 1. Make the View a control, by changing its class from UIView to UIControl .

 2. Define the backgroundTap: action method in the .h file.

 3. Implement backgroundTap: in the .m file to end editing (Listing 9.2).

 4. Control-drag from Touch Down in Connections Inspector with Control (formerly View)
selected to View Controller in the expanded Dock. Choose the backgroundTap: method.

 App Icons and Launch Images
 The images.xcassets folder is called the Asset Catalog and was introduced with Xcode 5 as a way
to manage all the images needed for your app, including app icons and launch images.

 App Icons are graphical images that are used to indicate your app on the home screen of the
iOS device your app is running on. When you create the icon for your app, you should be
prepared to create it in a number of resolutions so that it looks great on different devices, and
for various uses within the app as well. The icon is used for three places:

 ■ On the home screen, to give the user an easily recognizable image of your app.

 ■ In Spotlight results when the user is searching on the device.

 ■ In the Settings app where the user can change various settings for your app.

 In each of these three places, the icon is supplied in different resolutions, and the resolutions
also differ between iPad and iPhone as well as between whether the device is a regular display
or a retina display. There can also be differences between whether your app is targeting iOS 7

 Figure 9.18 Connection Inspector after setting up the action to dismiss the keyboard.

97803e21947864_Book 1.indb 208 11/21/13 2:56 PM

ptg11524036

209Dismissing the Keyboard

or earlier versions of iOS. In all, a Universal app targeting both iPhone and iPad and made
available for both iOS 6 and iOS 7 may have to have as many as 14 versions of the app icon.

 Fortunately, the asset catalog makes it relatively simple to find out what you need. Click the
images.xcassets folder and then AppIcon (Figure 9.19). On the right you see three spots for
icons. For this app, the icons will be supplied only for iOS 7 and iPhone. To determine the reso-
lution you need to supply, you look at the number in the last line under each spot (29pt, 40pt,
and 60pt). This is how many logical points the image takes up. However, if you look just below
each of these images, it says 2x, which means these images will be used on a retina display,
so the resolution has to be doubled because a retina display has twice as many pixels in each
direction as a regular display. This means that these three images have to be 58x58, 80x80, and
120x120 pixels, respectively.

 Figure 9.19 Asset catalog.

 To supply icons for other situations, you can right-click anywhere with a white background in
the asset catalog and select New App Icon. This will give you many more options, as shown in
 Figure 9.20 . The same principle applies, though. Use the pt number and multiply by the 1x or
2x number to get the resolution of the image.

 Test out the app icon resolutions by dragging the icons available into the appropriate spot. A
very simple icon is available in various resolutions. You can test how the icon looks by running
the app in the simulator and then clicking the Home button (Hardware > Home) to get to
the home screen where the app icon will be shown along with the app name. You can see
the Spotlight icon in the simulator if you click the home screen and drag down. This will pull
down a search field. Type Hello into the resulting search field, and the icon will show up in the
search results.

97803e21947864_Book 1.indb 209 11/21/13 2:56 PM

ptg11524036

210 Chapter 9 Using Xcode for iOS Development

 Figure 9.20 Possible app icon resolutions.

 To have your app listed in the app store, you also need to supply icons in sizes of 512x512 and
1024x1024 pixels.

 The other option that is available in the asset catalog is launch images. A launch image is
shown as the app is launching. Apple recommends that your launch image is a blank version of
the app’s first screen. This way, the user will quickly see the app and what it looks like, before it
is filled in with data. Launch images are also supplied in different resolutions depending on the
device. Table 9.1 shows the possible resolutions for launch images.

 Table 9.1 Typical Launch Image Dimensions

 Device Portrait Landscape

 iPhone and iPod touch 320 x 480 pixels

 640 x 960 pixels (@2x)

 Not supported

 iPhone 5 and iPod touch
(5th generation)

 640 x 1136 pixels (@2x) Not supported

 iPad 768 x 1004 pixels

 1536 x 2008 pixels (@2x)

 1024 x 748 pixels

 2048 x 1496 pixels (@2x)

97803e21947864_Book 1.indb 210 11/21/13 2:56 PM

ptg11524036

211Exercises

 iPhone Screen Sizes and Resolutions
 When the first iPhone was released, the resolution was set to 320x480 pixels. Programmers
would use this coordinate grid to arrange their user interface. When the iPhone 4 was released,
it sported a retina display with double the resolution (640x960). However, from the perspec-
tive of the programmer, the original 320x480 grid was still used to position everything on the
screen, so apps didn’t have to be updated to handle the higher resolution. But all the UIKit
controls were rendered in higher resolution, and all images could now be supplied in retina ver-
sions with double the resolution. If you need an image in your app, you can create a regular
file to be used on nonretina screens, as well as a version with double the resolution for retina
screens. By dragging the file into the appropriate spot in the images.xcassets container, the
system will automatically pick the right one for the device the app is running on.

 With the iPhone 5 and iPod touch 5, Apple again changed the resolution, this time increasing
the vertical size to 1136 pixels (giving a grid of 320x568). Images can now also be supplied
in this higher resolution. The iPhone 5 increased the physical size of the screen from 3.5 to 4
inches, so when you see references to a 4-inch screen, this is the screen introduced with the
iPhone 5 (and iPod touch 5).

 Summary
 Congratulations! You have built your first iOS app. You created an Xcode project, designed and
coded a user interface, and finally made the app do something. Along the way you learned the
process of iOS app development, the Xcode development environment, and the components of
an iOS app.

 Exercises
 1. Split the name field into first and last name. Then make sure both first and last names

show up when tapping the button.

 2. Change the functionality of the showOutput method so that if no text has been entered,
the output changes to Hello World!

 3. Explore the properties for the text fields, buttons, and labels within Xcode. Change the
label to green and bold text. Change the border style for the text field, and add a clear
button.

 4. Add a new button to the app, with a method that will change the lblOutput text to
Hello World!

 5. Rotate the simulator while running the app.

97803e21947864_Book 1.indb 211 11/21/13 2:56 PM

ptg11524036

212 Chapter 9 Using Xcode for iOS Development

 6. Run the app in the iPad simulator. Then change the Devices setting to Universal and run
again in the iPad simulator.

 7. Have the keyboard dismiss when the user taps the button.

 8. Add a new field to enter a number, and set the keyboard to be numeric. Be sure that the
keyboard dismisses appropriately from this new field.

97803e21947864_Book 1.indb 212 11/21/13 2:56 PM

ptg11524036

 10
 iOS Navigation and

Interface Design

 Because the screens are small on mobile devices, as a developer, you have to pay careful attention to
how you use that space and set up a logical navigation structure in your app. Many mobile apps use
multiple screens with carefully arranged navigation between these screens. In iOS, several built-in
controllers can help you create a logical flow in your app. It’s very important to understand how these
controllers work and how you can take advantage of them. In this chapter, you create the basic user
interface for the MyContactList app and learn how to use two important ways to navigate around an
iOS app: the Tab Bar Controller and the Navigation Controller. You also learn how to use many of the
built-in user interface components available for iOS apps, as well as how to create the user interface for
the app using the Storyboard feature in Xcode.

 Views and Controllers
 The user interface classes in iOS are contained in the UIKit framework. The UIKit framework
contains a large number of classes that you can take advantage of in your apps. The classes
are arranged in an inheritance hierarchy with the top class being UIView . This class describes
a basic rectangle with width, height, background color, and so on. This class can contain
subviews and may also have a parent view. One of the subclasses of UIView is UIWindow , which
has been restricted to set its origin to the top left of the screen. Each iOS app has one UIWindow
object that is created when the app launches. All other screens are subviews of UIWindow . Other
subclasses of UIView include UILabel , UIScrollView , UINavigationBar , UITableCell , and
 UIControl (which is the parent class for most of the regular controls used for creating apps,
such as UIButton , UITextField , and UISlider).

 View Controller
 When you create iOS apps, you often need to create multiple screens for each app. Each screen
is managed by an instance of the UIViewController class, where other UIView objects for the
various user interface elements are added. As you saw in the previous chapter, the screens can

97803e21947864_Book 1.indb 213 11/21/13 2:56 PM

ptg11524036

214 Chapter 10 iOS Navigation and Interface Design

be designed using Interface Builder to add the various user interface elements needed for the
app. In this situation, the View Controller is managed in three files: a .storyboard file that spec-
ifies the layout of user interface elements, a .h file that has information about any outlets and
actions needed to control the user interface, and a .m file that contains the implementation of
the user interface actions, as well as any setup needed for the user interface. In some situations
there is no storyboard file for a view controller. Instead, the user interface is described entirely
in code.

 After the View Controller has been set up, it can be added to the application in different ways.
It can be added as a root view, as you saw in the Hello World app in the previous chapter,
as one of the tabs in a tabbed interface, as a page in a page layout, or as part of a navigation
hierarchy.

 Tab Bar Controller
 The Tab Bar Controller shows up at the bottom of iPhone apps and allows the user to choose
between different screens in the app. This user interface is used in many common apps, includ-
ing the built-in GameCenter app (see Figure 10.1).

 Figure 10.1 Tab Bar Controller shown at the
bottom of the built-in GameCenter app.

97803e21947864_Book 1.indb 214 11/21/13 2:56 PM

ptg11524036

215Creating the Interface

 Navigation Controller
 The Navigation Controller is used to allow the user to drill down through multiple screens
while keeping track of the path so the user can later go back the same way. This pattern is also
used very frequently in iPhone apps, including the built-in Contacts app, as shown in Figure
 10.2 . When the user taps one of the contacts listed in the screen on the left, the app navigates
to the screen on the right, but the button at the top left allows the user to navigate back to the
list of all users.

 Figure 10.2 Navigation Controller in the built-in Contacts app.

 Creating the Interface
 In this section you see how to create the project and the user interface for the MyContactList
app that will be the example for the next few chapters.

 Creating the Project
 Create a new project in Xcode (Shift-Command-N) using the following settings in the first two
steps in the wizard:

97803e21947864_Book 1.indb 215 11/21/13 2:56 PM

ptg11524036

216 Chapter 10 iOS Navigation and Interface Design

 ■ Template: Tabbed Application

 ■ Product Name: MyContactList

 ■ Organization Name: Learning Mobile Apps

 ■ Company Identifier: com.pearson

 ■ Class Prefix: LMA

 ■ Devices: iPhone

 Creating the Views
 As described in more detail in Chapter 2 , “App Design Issues and Considerations,”
MyContactList will have three basic screens: displaying and editing the contacts, a map view
of one or more contacts, and a settings screen. The contacts screen will also have an associated
screen to edit the birthdate of the contact. Your first task is to create views for each of these
four screens. Because you chose the Tabbed template when creating the project, two of the
view controllers and the tab bar have already been created for you in the storyboard. When you
open the storyboard, you will see the Tab Bar Controller and two View Controllers (Figure 10.3)

 Figure 10.3 Tab Bar Controller and two View Controllers.

97803e21947864_Book 1.indb 216 11/21/13 2:56 PM

ptg11524036

217Creating the Interface

 Because the tab bar needs three screens, start by adding a new View Controller for the third
screen.

 1. Drag a View Controller into the Storyboard.

 2. Select the Tab Bar Controller.

 3. Hold down the control key and then drag from the Tab Bar Controller to the new View
Controller, then let go (this is called Control-dragging, and you will use this technique to
accomplish a number of tasks when building user interfaces for iOS).

 4. Choose View Controllers in the dialog that pops up (Figure 10.4). This will add an arrow
from the Tab Bar Controller to the new View Controller and add a third element to the
actual tab bar (Figure 10.5).

 Figure 10.4 Adding a new View Controller.

97803e21947864_Book 1.indb 217 11/21/13 2:56 PM

ptg11524036

218 Chapter 10 iOS Navigation and Interface Design

 If you run the app now, you will see the Contacts screen come up, and then the three tabs at
the bottom, named First, Second, and Item. Here’s how to change the tabs to have the proper
names:

 1. Open the Storyboard and select the First View Controller in the Dock.

 2. Make sure the Attributes Inspector is selected and then change the Title to Contacts
(Figure 10.6).

 Figure 10.5 Completed interface of the Tab Bar Controller.

 5. To help distinguish among the three View Controllers, copy the label that says First View
onto the new View Controller by selecting it and pressing Cmd-C; then select the new
View Controller and press Cmd-V. You may have to zoom in a little to be able to select
the label.

 6. Double-click each of the three labels and change the text to Contacts , Map , and
 Settings , as shown in Figure 10.5 .

97803e21947864_Book 1.indb 218 11/21/13 2:56 PM

ptg11524036

219Creating the Interface

 3. Select the Tab Bar item at the bottom of the Contacts View Controller (see Figure 10.5)
and change the Title in the Attributes Inspector to Contacts (Figure 10.7).

 4. Repeat for the Map and Settings screen.

 Figure 10.7 Changing the Title of the Tab Bar Item.

 Figure 10.6 Changing the title of the Contacts View Controller.

97803e21947864_Book 1.indb 219 11/21/13 2:56 PM

ptg11524036

220 Chapter 10 iOS Navigation and Interface Design

 While you are renaming, you should also rename the code files that manage each View
Controller. These were autogenerated with the Tab Bar template and are currently named
LMAFirstViewController and LMASecondViewController. The name of a View Controller
appears in many places in the project, so you have to be careful to rename in all those places.
Fortunately, Xcode has good support for refactoring, which will find and rename everything
for you:

 1. With the Dock in List View, select the First View Controller and double check that this
is the one that has the Contacts bar item. If it isn’t, go back to the previous instructions
and redo the renaming of the tab bar items.

 2. Open LMAFirstViewController.h and right-click LMAFirstViewController in the
@interface line.

 3. Select Refactor > Rename.

 4. Change the name to LMAContactsController and ensure that Rename Related Files is
checked. Click Save.

 5. You will see the screen in Figure 10.8 . This shows all the files on the left that will be
affected, and for each file you can see the current and potential changes if you carry out
the rename operation. Click through each file and preview the changes. Note that in the
Storyboard file, the code is shown as XML, as the Interface Builder generates XML code
in the background.

 Figure 10.8 Renaming a file using the Refactor option in Xcode.

 6. After you have reviewed the changes, click Save. You will see a message about taking
snapshots (Figure 10.9). If you enable this, you will be able to roll back changes like this
renaming operation. Click Enable, and the rename is carried out.

 7. Repeat for the Second View Controller, renaming it LMAMapController .

97803e21947864_Book 1.indb 220 11/21/13 2:56 PM

ptg11524036

221Creating the Interface

 Figure 10.9 Enabling automatic snapshots.

 The tab bar allows for having both a title and an image (icon). These images have to be around
20x20 pixels for regular screens and about 40x40 pixels for retina screens. iOS comes with a set
of standard icon symbols you can use, but there are only 12 of them, so chances are they won’t
cover what you need. Instead, you can design your own using a graphics program or you can
license a set of icons from someone who has already created them. One such source is Glyphish
(www.glyphish.com), which provides several sets of icons, either free or at a low cost. The paid
version provides both regular and retina sizes, whereas the free version has only a single size.

 For the MyContactList app, we have included the free set from Glyphish with the download
files for the book (www.informit.com/title/9780321947864). After you download it, open
images.xcassets in Xcode and drag the following files to the right side of the asset catalog
(where it says No Selection): 20-gear2.png, 103-map.png, and 111-user.png. The images are
inserted in the 1x spot. If you had a retina version, you would simply drag that into the 2x
spot. Because you won’t need them anymore, you can delete the images named first and
second (Figure 10.10).

 Figure 10.10 Adding images to the Asset Catalog.

97803e21947864_Book 1.indb 221 11/21/13 2:56 PM

http://www.glyphish.com
http://www.informit.com/title/9780321947864

ptg11524036

222 Chapter 10 iOS Navigation and Interface Design

 The images are now available for use anywhere in your code. The icons are licensed under a
Creative Commons attribution-only license, which means they can be used in any of your proj-
ects, as long as you put a note in your code with a reference to the Glyphish website. However,
if you intend to create an app for use with real customers, you’ll want to have the retina
versions that are available in the paid version of the icon set.

 With the images imported, you now need to have them show up in the tab bar. You probably
noticed that no image was added for the Contacts tab. That’s because there is a built-in image
for Contacts that you will use instead. This does mean that the icons will end up not having
the same look and feel, which is not something you should do for a real app. Here, it is done to
show you both approaches.

 1. Open the Storyboard and select the Tab Bar Item for the Contacts View Controller.

 2. Make sure the Attributes Inspector is open, and then change the Identifier to Contacts.
As you do that, you’ll notice the other default options that you can use, such as Search,
Bookmarks, History, and so on.

 3. Select the Tab Bar Item for the Map View Controller.

 4. In the Attributes Inspector, use the Image drop-down list to change the image to
103-map.

 5. Use the same technique to change the Settings image to 20-gear2.

 Run the app and you should see the three tabs with the text show up. Tap on each tab to make
sure the proper View Controller shows up (see Figure 10.11).

 Design the Contacts Screen
 Now it’s time to set up the user interface for the Contacts screen. Refer to Figure 10.12 as you
create the screen.

 1. Open the Storyboard and remove the Contacts label and the UITextView control by
clicking each and pressing Delete.

 2. Drag a Segmented Control to the canvas and place in the center of the screen toward
the top. A Segmented Control can have multiple segments, only one of which can be
activated at a time. This is the iOS equivalent to a radio button. Double-click the text
First and change to Edit , then change Second to View . You can also change these in the
Attributes Inspector by choosing the Segment and then changing the Title.

 3. Drag a Label to the left side of the screen below the Segmented Control and change its
text to Contact: .

97803e21947864_Book 1.indb 222 11/21/13 2:56 PM

ptg11524036

223Creating the Interface

 Figure 10.11 The completed Tab Bar with
three view controllers.

 Figure 10.12 Designing the Contacts screen.

97803e21947864_Book 1.indb 223 11/21/13 2:56 PM

ptg11524036

224 Chapter 10 iOS Navigation and Interface Design

 4. Drag a Text Field below the label, and resize to the right until the blue guideline appears.
Then continue with the remaining labels and text fields as shown in the screenshot.
To make it a little easier to add all the fields, you can easily copy an existing control by
holding down the Option key and dragging a control. If you select multiple controls,
you can use the same technique to copy multiple controls. As you work, use the blue
guidelines to place the controls.

 5. The Birthday line has two Labels and a Button.

 6. For the City, State, and Zip fields, select the Attributes Inspector and change the
Placeholder property for each of them as shown in the screenshot.

 7. Use the Attributes Inspector to change the Capitalization to Words for the Contact,
Address, and City fields. Change Capitalization for the State field to All Characters.

 8. Use the Attributes Inspector to change the Keyboard for the Zip field to Number Pad, and
for the two phone fields to Phone Pad, and for the Email field to Email Address.

 Run the app to see if things work as expected. You’ll notice that you can’t dismiss the
keyboard, and that some of the controls are hidden behind the keyboard. Both of these prob-
lems can be fixed by using a scroll view control.

 1. With the Dock in List View, select all the controls on the page except the Segmented
Control. This may be easier to do using the Dock rather than on the screen (see
 Figure 10.13).

 2. Select Editor > Embed In > Scroll View. This will embed all the controls in a Scroll View,
and if you run the app again, you will see that you can indeed scroll the controls up
from behind the keyboard.

 3. Add an outlet named scrollView for the Scroll View by using the Assistant Editor
and control-drag from the Control View (it’s easiest to use the Dock for this) to
LMAContactsController.h.

 With the Scroll View in place, you will need to set its content size. This is the size of the
container that will be scrolled, and is set in code. Listing 10.1 has the code you need to enter in
LMAContactsController.m.

 Listing 10.1 Setting the Content Size for the Scroll View

 - (void)viewDidLoad
 {
 [super viewDidLoad];
 // Do any additional setup after loading the view, typically from a nib.
 _scrollView . contentSize = CGSizeMake (320 , 500);
 }
 -(void)viewDidLayoutSubviews
 {
 _scrollView . contentSize = CGSizeMake (320 , 500);
 }

97803e21947864_Book 1.indb 224 11/21/13 2:56 PM

ptg11524036

225Creating the Interface

 This code sets the content size to a rectangle that is 320 pixels wide and 500 pixels tall. This
size means that the rectangle that will scroll will fill the screen horizontally (320 pixels wide),
and is large enough to be scrolled far enough vertically for all the content to be visible (that’s
the second number). You can experiment with using different sizes for the vertical size and see
the effect when scrolling.

 The second method, viewDidLayoutSubviews: , needs to be added to the file because of an
apparent bug in iOS 7 that sets the size of the scroll view to (0, 0) sometime after viewDidLoad :
This code was written on the iOS 7.0 SDK. You can try to remove this method to see if the bug
has been fixed in new releases of the SDK.

 Try running the app, and you should now be able to scroll the contents of the screen up and
down, but the keyboard still can’t be dismissed. However, this is easily fixed. Select the Scroll
View in the Storyboard and Keyboard setting in Attributes Inspector (Figure 10.14). There are
two ways to dismiss the keyboard. The first option, Dismiss on Drag, will dismiss the keyboard
as soon as the user starts dragging the scroll view. Dismiss Interactively will dismiss the

 Figure 10.13 Selecting the controls to embed in Scroll View.

97803e21947864_Book 1.indb 225 11/21/13 2:56 PM

ptg11524036

226 Chapter 10 iOS Navigation and Interface Design

keyboard as the user scrolls down and starts to scroll into the space where the keyboard is; the
keyboard will slide down with the scrolling, which is a very nice effect. You can try out both of
them to see which you think works best. But since the primary purpose for having the scroll-
ing is to bring controls up from underneath the keyboard, the best approach here is Dismiss
Interactively.

 Figure 10.14 Selecting the controls to embed in Scroll View.

 The scroll view is used extensively throughout iOS, and has been put to use even further in iOS
7. It would be worthwhile for you to spend some time understanding how it works to create
very powerful user interfaces for your own apps. In addition to scrolling up and down as you
have seen here, UIScrollView also allows for scrolling horizontally as well as zooming. So, for
instance, if you want to display an image and allow the user to zoom in and then scroll around
the image, you would use a UIScrollView to support both the zooming and scrolling.

 You may notice that the scroll view overlaps the bottom edge of the Segment Control. This will
cause an undesirable effect when the user starts scrolling where the Segmented Control gets
clipped. To correct this problem, you can grab the top edge of the UIScrollView control and
drag it down a little.

 Add Navigation Controller for the Date Screen
 The Birthday on the Contacts screen is changed by tapping the Change button, which will
cause a new screen to appear where the date can be chosen. This illustrates several new
elements, including the use of the DatePicker control and the use of the Navigation Controller
to move between related screens in the app. It takes a little work to get this set up, so be careful
as you go through these steps.

97803e21947864_Book 1.indb 226 11/21/13 2:56 PM

ptg11524036

227Creating the Interface

 A Navigation Controller is a special control that allows users to drill down through several
screens and then return the way they came by tapping a button in the top left of the screen
to navigate back to the previous screen. In MyContactList, you implement this by adding a
Navigation Controller to the Contacts Controller, so the Tab Bar will actually be connected to
the Navigation Controller, which in turn is connected to the View Controller.

 1. Select the Contacts Controller and then choose Editor > Embed In > Navigation
Controller. This adds a Navigation Controller between the Tab Bar Controller and the
Contacts Controller (Figure 10.15). It also adds a gray bar to the top of the Contacts
screen covering the Segmented Control and part of the scroll view. This is the navigation
bar, which will contain the title of the screen, the button for navigating back, and
possibly some other controls. You’ll need to move the Segmented Control and scroll view
down to be visible under the navigation bar.

 Figure 10.15 Adding a Navigation Controller.

 2. Select the scroll view and drag down to free up some whitespace below the navigation
bar.

 3. The Segmented Control is hidden, so select it in the Dock, and then use the Size
Inspector in the right sidebar to change the Y coordinate to 70 (Figure 10.16).

 4. Set the title of the navigation bar by selecting the Contacts Controller’s Navigation
Item in the Dock and then use the Attributes Inspector to set the Title to Contact
(Figure 10.17).

97803e21947864_Book 1.indb 227 11/21/13 2:56 PM

ptg11524036

228 Chapter 10 iOS Navigation and Interface Design

 Figure 10.16 Setting the Y placement for the Segmented Control.

 Figure 10.17 Setting the navigation bar Title.

 If you run the app, you should see the navigation bar show up on the Contact screen, but
otherwise, everything else should function as before. The next step is to add a View Controller
for the Date screen and add that to the Navigation Controller as well.

 1. Drag a new View Controller onto the Storyboard.

 2. Use the Attributes Inspector to change the new View Controller’s Title to Birthdate .

 3. Control-drag from the Change button to the Birthdate View Controller, and pick Push
in the action menu that comes up. This will push the new View Controller on to the
Navigation Stack that the Contacts screen is already part of. You should see a navigation
bar added to the new View Controller, and in the Dock you will see a Navigation Item
appear for the Birthdate Controller.

 4. Select the new Navigation Item and set its Title to Pick Birthdate (Figure 10.18).

 The connections between the various view controllers are called segues, as they define how the
various screens will transition back and forth.

97803e21947864_Book 1.indb 228 11/21/13 2:56 PM

ptg11524036

229Creating the Interface

 Figure 10.18 Setting the Navigation Bar Title for the Birthdate View Controller.

 Run the app and tap the Change button, and you should see the Date screen as shown in
 Figure 10.19 . The Contacts button will take the user back to the Contacts screen. The text
for the Contacts button is the Title setting in the Navigation Item for the Contacts View
Controller. You can set an alternative text for the button here by adding text to the Back
Button setting for the Navigation Item.

 Figure 10.19 The Date screen with the navigation controller and button to go back to Contacts.

97803e21947864_Book 1.indb 229 11/21/13 2:56 PM

ptg11524036

230 Chapter 10 iOS Navigation and Interface Design

 The last step in setting up the user interface and navigation is to add the capability to choose a
date on the Date screen. Open the Storyboard and drag in a Date Picker from the toolbox and
place it at the top of the Date View Controller. The Date Picker can be configured to work with
both time and date. However, you want to use only dates, so open the Attributes Inspector and
change the Mode to Date. As you can see, you can also set the default date as well as constrain
the picker between specific dates. You don’t have to change these settings for this app. Run the
app and make sure the Date Picker shows up as expected. Figure 10.20 shows the completed
navigation control hierarchy for the Contacts and Date View Controllers. In the next chapter
you will see how to bring the date chosen back to the Contacts screen.

 Figure 10.20 The completed navigation interface for the Contact and Date screens.

 Activating the Interface
 The next chapter is dedicated to implementing most of the functionality of saving data from
the Contacts screen, but for now, we will implement the capability to switch between view and
edit modes. The code for this is quite simple, but somewhat tedious.

 The edit mode is controlled by the Segmented Control. When the user changes to View, all the
controls will be disabled so they can’t be edited. And when the user changes back again, they
will be reactivated.

97803e21947864_Book 1.indb 230 11/21/13 2:56 PM

ptg11524036

231Activating the Interface

 1. Open the storyboard in Assistant Editor mode and control-drag from the Segmented
Control in the Contact View Controller to the @interface section of the
LMAContactsController.h file.

 2. Add an action named changeEditMode: (see Figure 10.21). Click Connect. The
 changeEditMode: method is called anytime the value of the Segmented Control is
changed, but the method call doesn’t indicate the current value of the control, so you
need to add an outlet to be able to reference and read the value.

 Figure 10.21 Adding an action to change the edit mode.

 3. Control-drag again from the Segmented Control to the @interface section of
LMAContactsConroller.h.

 4. Add an outlet named sgmtEditMode . Click Connect.

 5. You will also need to reference all the text fields and buttons in the interface. See Listing
 10.2 for the names to give the text fields, the Birthdate label, and the Change button.
If you make a mistake in connecting the fields and the outlets, you may have some
strange results when running the app. It’s always a good idea to check the connections
if something doesn’t work as expected. You can see all the connections made on a View
Controller by selecting the Connections Inspector.

 6. Implement the changeEditMode: method as shown in Listing 10.3 .

 7. Run the app and switch between view and edit modes.

97803e21947864_Book 1.indb 231 11/21/13 2:56 PM

ptg11524036

232 Chapter 10 iOS Navigation and Interface Design

 Listing 10.2 LMAContactsController.h

 #import <UIKit/UIKit.h>

 @interface LMAContactsController : UIViewController
 - (IBAction)backgroundTap:(id)sender;
 - (IBAction)changeEditMode:(id)sender;
 @property (weak , nonatomic) IBOutlet UISegmentedControl *sgmtEditMode;
 @property (weak , nonatomic) IBOutlet UITextField *txtName;
 @property (weak , nonatomic) IBOutlet UITextField *txtAddress;
 @property (weak , nonatomic) IBOutlet UITextField *txtCity;
 @property (weak , nonatomic) IBOutlet UITextField *txtState;
 @property (weak , nonatomic) IBOutlet UITextField *txtZip;
 @property (weak , nonatomic) IBOutlet UITextField *txtPhone;
 @property (weak , nonatomic) IBOutlet UITextField *txtCell;
 @property (weak , nonatomic) IBOutlet UITextField *txtEmail;
 @property (weak , nonatomic) IBOutlet UIButton *btnChange;
 @property (weak , nonatomic) IBOutlet UILabel *lblBirthdate;
 @property (weak , nonatomic) IBOutlet UIButton *btnChange;

 @end

 Listing 10.3 LMAContactsController.m

 #import "LMAContactsController.h"

 @interface LMAContactsController ()
 @end

 @implementation LMAContactsController

 [...]

 - (IBAction)changeEditMode:(id)sender {
 NSArray *textFields = @[_txtName, _txtAddress, _txtCity, _txtState, //1
 _txtZip, _txtPhone, _txtCell, _txtEmail] ;

 if (_sgmtEditMode. selectedSegmentIndex == 0){ //2
 for (UITextField *txtfield in textFields) { //3
 [txtfield setEnabled : NO]; //4
 [txtfield setBorderStyle : UITextBorderStyleNone]; //5
 }
 [_btnChange setHidden : YES]; //6
 }
 else if (_sgmtEditMode. selectedSegmentIndex == 1) //7
 {

97803e21947864_Book 1.indb 232 11/21/13 2:56 PM

ptg11524036

233Exercises

 for (UITextField *txtfield in textFields) {
 [txtfield setEnabled : YES];
 [txtfield setBorderStyle : UITextBorderStyleRoundedRect];
 }
 [_btnChange setHidden : NO];
 }
 }
 @end

 The code is relatively straightforward, but still deserves some description.

 1. All the properties are changed in the same way for each of the text fields, so you set
up a NSArray object containing all the text fields by separating the list of objects with
commas and surrounding the entire list with square brackets.

 2. Check the value of the Segmented Control. Viewing is 0 and Editing is 1.

 3. Use a fast enumeration loop to go through all the text fields in the array.

 4.–5. In view mode, the text fields are disabled, and the border is set to not be there
(UITextBorderStyleNone).

 6. The Change button should not be shown in view mode.

 7. When switching to edit mode, the code is similar, but the values are opposite. The text
fields are enabled and the border is set to the Rounded Rect mode (the default). The
button is hidden.

 Run the app and enter some data into the text fields, and then try switching back and forth
between View and Edit.

 Summary
 Creating a user interface in iOS is relatively straightforward using the Interface Builder.
However, as you saw, you still need to know how to write code to make some things work.

 Navigation between screens can be tricky to get set up right, especially when both tab bars and
navigation controllers are involved.

 Exercises
 1. Add a new tab to the tab bar with an associated view controller.

 2. Change the Segmented Control to a Switch.

 3. Split the Contact field into first and last name fields.

 4. Set the Date Picker to start on your birthday, and limit the range to be from January 1,
1980 to January 1, 2000.

97803e21947864_Book 1.indb 233 11/21/13 2:56 PM

ptg11524036

This page intentionally left blank

ptg11524036

 11
 Persistent Data in iOS

 Storing data that the user will need to run the app is an important part of developing for the mobile
platform. In addition to the regular purposes for saving data, the mobile platform also presents unique
challenges regarding the life cycle of an app that requires special consideration to saving data. Because
the app can become inactive and be closed down at any point, it’s important to save enough of the
app’s state on a regular basis to allow the user to continue working in a meaningful way when the app
becomes active again.

 In this chapter you will see several ways that you can save data on iOS. Most of the attention is going
to be on a system called Core Data that provides strong support for a database-backed persistence solu-
tion for iOS apps, but you will also see how to save to files directly, as well as how to save app settings.

 File Data Storage
 Like most other operating systems, iOS enables saving data in files, either in regular text files or
by archiving (what’s known as serialization in Java and C#). The techniques for working with
files are similar to many other programming languages, but it’s worth noting that on iOS, apps
are sandboxed, which means that each app is isolated from the other apps and from the operat-
ing system. One of the consequences is that each app has only a very simple file system that by
default consists of a few standard directories: Documents, Library, and tmp. As a developer, you
can store files in the Documents and tmp directories. The Documents folder is backed up when
the device is backed up. The tmp folder is not. By storing data in files, you can quickly store
user data and can even take advantage of Apple’s iCloud to allow the user to sync documents
between their devices. This is a powerful service, but it works only between devices for a single
user. iCloud will not allow you to let your users exchange data. Although it is useful to store
files, iCloud will not be covered further in this book.

97803e21947864_Book 1.indb 235 11/21/13 2:56 PM

ptg11524036

236 Chapter 11 Persistent Data in iOS

 User Defaults
 When you need to save a little bit of data in your app, the NSUserDefaults object is a very
simple and easy way to do so. NSUserDefaults is a front-end to a key-value file (often referred
to as Plist files because of the .plist extension) that is stored in the app’s Preferences directory.
There’s only one file, but in this file you can store as many values as you want. When storing
values in the file, you have to supply a key string to identify the value when retrieving it
later. You can store many data types in NSUserDefaults , including all scalar types as well as
 NSData , NSString , NSNumber , NSDate , NSDictionary , and NSArray . Other data types can be
archived and stored as an NSData object.

 Core Data
 Core Data is a powerful data persistence solution developed by Apple to provide object-oriented
storage. Core Data is an object-wrapper on top of a data store—typically a SQLite database. This
allows the developer to work with objects that map to entities in the database without worry-
ing too much about the underlying database design and queries. For apps that need business
data stored, Core Data is a strong solution to meet this need.

 Figure 11.1 shows an overview of the Core Data framework. The framework stores data in
files. The default is SQLite database, but you can also choose to use XML or binary data. The
Persistent Object Store wraps around the data file and presents a common interface to the rest
of the stack. You will not need to interact with the Persistent Object Store except to choose
which file format to store the data in. The Persistent Store Coordinator allows for having multi-
ple data stores in the same app, and will then coordinate access to those stores. This is very rare
for iOS apps, and you will never directly interact with the Persistent Store Coordinator.

 The Managed Object Model is the description of the layout of the data. This is where you
describe the structure of your data. The design of the data structure is similar to relational data-
base design, in that data is organized into entities that are related through relationships.

 When you need to access the data, you will not directly interact with the data store. Instead,
you will work with the Managed Object Context, which allows you to access the objects that
are stored in the data file. The Managed Object Context can keep track of multiple changes to
the objects, and will periodically, or when instructed, save the changes to the persistent store.

 Using SQLite Directly in iOS Apps
 Just like Android, iOS apps can also work with SQLite databases directly. If you are developing
an app to be available on both platforms, you might consider eschewing Core Data for shipping
a regular SQLite database with your app. You can design and populate the database outside
of the app and add it to the app bundle before shipping the app. The techniques used to work
with SQLite on iOS are quite similar to those used on Android. However, one thing to be aware
of is that the SQLite libraries used to interact with the database on iOS are written in C and not
Objective-C, so the method calls are going to look different from what you have seen here.

97803e21947864_Book 1.indb 236 11/21/13 2:56 PM

ptg11524036

237Setting Up Core Data

 Setting Up Core Data
 There’s a fair amount of setup required to add Core Data to an existing app, which is beyond
the scope of this book. For more detail, you can reference Core Data for iOS: Developing Data-
Driven Applications for the iPad, iPhone, and iPod touch by Tim Isted and Tom Harrington.
Instead, you will start a new project and add Core Data using the project creation wizard. After
creating the project, you have some work to copy the work you already did from the project
created in the previous chapter.

 Creating the Project
 Start by creating a new project in Xcode (File > New > Project). Choose the Empty Application
template and click Next. Fill in the settings on the next screen as shown in Figure 11.2 . Make
sure the Use Core Data check box is selected, then click Next and choose a place to save the
new project.

Your App

Managed Object Context
Managed Objects

Persistent Store Coordinator
Managed Object Model

Entity Descriptions

Persistent Object Store

Data File

 Figure 11.1 Overview of the Core Data framework.

97803e21947864_Book 1.indb 237 11/21/13 2:56 PM

ptg11524036

238 Chapter 11 Persistent Data in iOS

 Figure 11.2 Setting up the project to support Core Data.

 After you have created the project, you will need to add the functionality that you created in
the previous chapter.

 1. Open the new project and delete images.xcassets. Then click Move to Trash in the dialog
that pops up.

 2. Open both projects side by side and select all the files in the MyContactList folder of the
original project except LMAAppDelegate.h and LMAAppDelegate.m, because these files
contain important setup for Core Data (see the left side of Figure 11.3).

 3. Drag all the selected files into the new project (see the right side of Figure 11.3 for the
end result).

 4. In the dialog that comes up, check Copy Items into Destination Group’s Folder, as shown
in Figure 11.4 .

 Next, you will need to modify the app delegate to have the correct View Controller show up
when launching the app. First, open the Project Summary and change the Main Interface to
Main.storyboard. After making the selection, the chosen text will change to Main, as shown in
 Figure 11.5 .

97803e21947864_Book 1.indb 238 11/21/13 2:56 PM

ptg11524036

239Setting Up Core Data

 Figure 11.3 Selecting files to copy to the new project on the left. The result of the copy is
shown on the right.

 Figure 11.4 Copying files to the new project.

97803e21947864_Book 1.indb 239 11/21/13 2:56 PM

ptg11524036

240 Chapter 11 Persistent Data in iOS

 Figure 11.5 Setting the Main storyboard.

 The Core Data template inserts code into LMAAppDelegate.m that launches the app with a
blank window. You’ll need to get rid of this, so open LMAAppDelegate.m and comment out all
the code in application:didFinishLaunchingWithOptions : as shown in Listing 11.1 .

 Listing 11.1 LMAAppDelegate.m

 - (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
 {
 // self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
 // Override point for customization after application launch.
 // self.window.backgroundColor = [UIColor whiteColor];
 // [self.window makeKeyAndVisible];
 return YES ;
 }

 If you look through LMAAppDelegate you will see a lot of code that manages the Core Data
functionality. There are references to the Managed Object Context, the Managed Object Model,
and the Persistent Store Coordinator. Further down in the file, you will see a method,
 saveContext , which can be called whenever changes to the managed objects need to be saved

97803e21947864_Book 1.indb 240 11/21/13 2:56 PM

ptg11524036

241Setting Up Core Data

to disk. You don’t really need to understand the functionality of all the Core Data methods.
All you need to access is the managedObjectContext and saveContext methods. Later in the
chapter you will see how to use these methods to work with Core Data.

 Designing Data Structure
 You may have noticed that a new file, MyContactList_CoreData.xcdatamodeld, has been added
to the project. This is a representation of the Data Model and is where you can design the data
structure for the MyContactList app. The data structure for the app is very simple with just a
single entity. For the following steps, refer to Figure 11.6 .

 1. Open the data model file.

 2. Click Add Entity and name the entity Contact (entity names must begin with as
uppercase letter) by double-clicking the word Entity and typing Contact .

 3. Click Add Attribute and name the first attribute contactName and give it the type
 String .

 4. Add the remaining attributes as shown in Figure 11.7 . Each of the attributes are of type
 String except birthday, which is Date .

 Figure 11.6 Using the Core Data Model editor.

97803e21947864_Book 1.indb 241 11/21/13 2:56 PM

ptg11524036

242 Chapter 11 Persistent Data in iOS

 Figure 11.7 Attributes of the Contact entity.

 After setting up the data design, you will need to create an Objective-C class that represents the
data design.

 1. Select the Contact entity and select Editor > Create NSManagedObject Subclass.

 2. Choose the data model and click Next.

 3. Select the Contact entity and click Next.

 4. Make sure you have the MyContactList CoreData target selected and click Create.

 This adds two files to your project, Contact.h and Contact.m. The content of the two files is
very simple, with a property for each of the attributes in the data model. The Contact class is a
subclass of NSManagedObject, which means it inherits the capability to be managed and stored
by the Managed Object Context.

 Modifying the Data Model
 If you change the data model after the app has run the first time, your app is going to give an
error message that the data model no longer matches the database created for the app. Core
Data provides functionality for migrating your data model. There are several approaches to
changing the data model design, but they are all based on providing different versions of the
data model. Whenever you need to make a change, you add a new version by selecting Editor >
Add Model Version. The new version starts out as a copy of the old version, and you can then
make your changes in the new version. After you have created the new version, you create a
mapping model that lets you specify how each entity and attribute in the old version maps to
the new version.

97803e21947864_Book 1.indb 242 11/21/13 2:56 PM

ptg11524036

243Setting Up Core Data

 The mapping model is then used in code when the app starts to check for changes and migrate
the database to the new version of the model. If your changes are minor, such as adding or
removing attributes and entities, the system may be able to infer the mapping model and you
can simply ask it to do the conversion without setting up an explicit mapping model. This pro-
cess is called Lightweight Migration.

 This mapping process can be used both during development and after your app has been
released. During development you also have the option of deleting the database file from the
app’s sandbox. Then Core Data will automatically create a new blank copy of the database the
next time the app launches.

 For more detail on how to migrate between data models, you should refer to Core Data for iOS:
Developing Data-Driven Applications for the iPad, iPhone, and iPod touch by Tim Isted and Tom
Harrington, as well as the Core Data documentation on Apple’s Developer Portal.

 Passing Data Between Controllers
 The Birthday label on the Contacts screen is changed on the Date screen. When the user taps
the Change button next to the birthday, the Date screen is opened with a Date Picker, where
the user can choose the desired date. Tapping the Save button brings the user back to the
Contact screen and changes the Birthday label to what was chosen in the Date Picker.

 The standard way to pass data back from a View Controller is to use the delegate pattern. With
this pattern, you will have a reference in the Date Controller back to whatever controller
called it (allowing for the Date Controller to be used in many contexts), as well as one or more
methods that the Date Controller knows exist in the calling controller. The delegate pattern is
used widely in iOS, so you should spend some time to make sure you understand it well.

 There are several steps to set up this pattern:

 1. Define a delegate protocol in the .h file of the subview controller.

 2. Set up a property called delegate in the .h file of the subview Controller to hold a
reference to the main view controller.

 3. Specify in the @interface declaration of the main controller that it should implement
the delegate protocol.

 4. Implement the methods specified in the protocol in the .m file of the main controller.

 5. Set up the main view as a delegate of the subview.

 6. Call the delegate methods from the subview.

 In the next sections, you see how to do each of these steps in detail, but first, you need to add
a View Controller for the Date screen.

 1. Select the MyContactList Core Data folder. Then choose File > New > File, or press
Command-N.

 2. Select Objective-C Class and click Next.

97803e21947864_Book 1.indb 243 11/21/13 2:57 PM

ptg11524036

244 Chapter 11 Persistent Data in iOS

 3. Enter LMADateController for the Class name and UIViewController for the Subclass Of
field. Ensure that none of the check boxes are selected (see Figure 11.8). Click Next.

 4. Ensure that MyContactList CoreData is checked as a Target and click Create.

 You now have two new files in your project: LMAController.h and LMAController.m.

 Figure 11.8 Creating the View Controller for the Date screen.

 Step 1: Set Up Delegate Protocol

 Switch to LMADateController.h and add the lines between 1 and 2 in Listing 11.3 .

 This sets up the delegate protocol and specifies that any class implementing this method must
also implement the dateChanged: method. What the class chooses to have the dateChanged:
method do is up to the developer. This method is executed in the main view when called from
the subview. In this case, the Date Controller calls this method on its delegate anytime the date
changes. Use @optional to declare methods that aren’t required to be implemented.

 Step 2: Add Delegate Property

 For the subview to call back to the main view, it needs a reference to the main view. You
do this by setting up a property that will have a reference to the main view. Add item 3 in
 Listing 11.2 . The delegate property can be any data type (id) as long as it implements the
 LMADateControllerDelegate protocol. This will allow any kind of controller (or other object)
to take advantage of the Date Controller.

97803e21947864_Book 1.indb 244 11/21/13 2:57 PM

ptg11524036

245Setting Up Core Data

 Listing 11.2 Setting up the Delegate Pattern in LMADateController.h

 #import <UIKit/UIKit.h>

 @protocol LMADateControllerDelegate < NSObject > //1

 @required
 -(void)dateChanged:(NSDate *) date;

 @end //2

 @interface LMADateController : UIViewController
 @property (strong , nonatomic) id < LMADateControllerDelegate > delegate; //3
 @end

 Step 3: Specify That Main View Will Implement Delegate Protocol

 Switch to LMAContactsController.m and specify that the class will import
 LMADateController.h (item 1 in Listing 11.3) and implement LMADateControllerDelegate
(item 2 in Listing 11.3).

 Listing 11.3 Implementing Delegate in LMAContactsController.m

 #import "LMAContactsController.h"
 #import "LMADateController.h" //1

 @interface LMAContactsController () < LMADateControllerDelegate > //2

 @end
 [...]

 Step 4: Implement the Methods of the Delegate Protocol

 Having specified that the Contacts Controller implements the Date Controller delegate proto-
col, you now have to implement the required methods. In this case, just the dateChanged :
method, as shown in Listing 11.4 .

 Listing 11.4 Implementing the dateChanged: Method in LMAContactsController.m

 -(void)dateChanged:(NSDate *) date {
 NSDateFormatter *dateFormatter = [[NSDateFormatter alloc] init]; //1
 [dateFormatter setDateStyle : NSDateFormatterShortStyle]; //2
 [dateFormatter setTimeStyle : NSDateFormatterNoStyle]; //3
 [_ lblBirthdate setText :[dateFormatter stringFromDate :date]]; //4
 }

97803e21947864_Book 1.indb 245 11/21/13 2:57 PM

ptg11524036

246 Chapter 11 Persistent Data in iOS

 This method formats the date using the short style (DD/MM/YY in the U.S. locale—this will
format differently depending on the users’ locale).

 1. You can use NSDateFormatter to format dates in a variety of formats.

 2. Set the date formatter to use the short style for the date. You can also choose Medium
and Long, or even create a custom format.

 3. To stop the time from showing up, you can specify NSDateFormatterNoStyle . This
suppresses the time display.

 4. Format the date and set the formatted date as the text of the birthday label.

 Step 5: Set Up Main Controller as Delegate

 The delegate property in the subview needs to be set up at the time the subview is called by the
main view. In this case, the subview is called when the user taps the Change button. However,
because the segue controls make the Date screen active, no code is being called directly.
Instead, you can implement prepareForSegue:sender , which is called anytime a segue is
executed in the app. Listing 11.5 shows how this method is implemented to set the delegate of
the Date screen to be the Contact screen. You add the code to LMAContactsController.m.

 Listing 11.5 Adding the Delegate Reference in LMAContactsController.m

 - (void) prepareForSegue :(UIStoryboardSegue *)segue sender:(id)sender {
 if ([segue.identifier isEqualToString: @"segueContactDate"]) { //1
 LMADateController *dateController = segue.destinationViewController; //2
 dateController.delegate = self ; //3
 }
 }

 1. Check to see which segue initiated the call to the method. The string
 @"segueContactDate" is a unique identifier of the segue (Instructions for how to set
this are right before Figure 11.9).

 2. Get a reference to the destination View Controller, which is the Date controller in this
case.

 3. Set the delegate for the Date Controller to be the Contacts Controller (self). This allows
the Date Controller to call the dateChanged : method in the Contacts Controller.

 To set the identifier for the segue, open the Storyboard and select the Segue between the
Contact and Date screens. Use the Attributes Inspector to set the Identifier to segueContact-
Date (see Figure 11.9).

97803e21947864_Book 1.indb 246 11/21/13 2:57 PM

ptg11524036

247Setting Up Core Data

 Figure 11.9 Setting the identifier for the segue.

 Step 6: Call the Delegate Methods from the Subview

 When the date is picked, the user taps the Save button on the toolbar to save the date and be
brought back to the previous screen. The Contact button acts as a cancel, where the date will
not be changed on the main controller.

 To be able to reference the Date Picker on the Date screen, you need to add an outlet for it.
Open the Storyboard with the Assistant Editor, and Control-drag from the Date Picker to
LMADateController.h to create an outlet named dtpDate .

 Switch to LMADateController.m and implement the viewDidLoad : and saveDate : methods, as
shown in Listing 11.6 .

 Listing 11.6 Calling the Delegate Methods in LMADateController.m

 - (void)viewDidLoad
 {
 [super viewDidLoad];
 // Do any additional setup after loading the view.
 UIBarButtonItem *saveButton =
 [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem : UIBarButtonSystemItemSave //1
 target : self
 action : @selector (saveDate:)];
 [self . navigationItem setRightBarButtonItem :saveButton]; //2
 self . title = @"Pick Birthdate" ; //3
 }

97803e21947864_Book 1.indb 247 11/21/13 2:57 PM

ptg11524036

248 Chapter 11 Persistent Data in iOS

 -(IBAction)saveDate: (id)sender //4
 {
 [_delegate dateChanged :[_dtpDate date]];
 [self . navigationController popViewControllerAnimated : YES];
 }

 This code sets up the Save button and connects it to the method to save the date.

 1. This sets up a UIBarButtonItem for the Save button. Many standard system buttons can
be used. Here we used UIBarButtonSystemItemSave , but you should spend some time
looking through the list of the options using code completion. The action parameter is
important as well. This contains the method name for the method that will be called
when the button is tapped. Unfortunately, the compiler doesn’t check that the method
exists by that name, so you have to be careful in spelling it correctly.

 2. This line adds the Save button on the right in the navigation bar.

 3. Although you already set the title of the View Controller in storyboard, this line
demonstrates how to set the title of a View Controller in code. This can be useful to do
when the title might have to be determined dynamically at runtime.

 4. This method is the one that is called when the button is tapped. Remember to spell it
exactly like it is in the @selector above. The method calls the dateChanged: method
in the delegate, passing the chosen date from the date picker. Then it pops the View
Controller off the stack, which returns the user to the previous view controller, which in
this case is the contacts controller.

 You can now run the app and change the date and have it show up on the main contacts
screen.

 iOS Versus Android: Delegates Versus Listeners
 This pattern of using a delegate to pass data between controllers has a parallel in Android. In
 Chapter 4 , “Android Navigation and Interface Design,” you set up a custom dialog to capture
the birthday of a contact. That custom dialog is implemented as a class, which declared a
 SaveDateListener interface (the delegate protocol in iOS) with the didFinishDatePick-
erDialog method (required delegate method). In the ContactActivity , you tell the class
to implement the SaveDateListener (set up main controller as delegate) and implement the
 didFinishDatePickerDialog method (implement the methods of the delegate protocol). In
that method you write code to handle the new birthday. After the user changes the date in the
dialog and taps the OK button, the dialog calls the didFinishDatePickerDialog method,
passing it the selected date (call the delegate methods in main controller).

 Saving Data to Core Data
 With the data model and the managed object set up, it’s time to start saving the data from the
user interface to Core Data.

97803e21947864_Book 1.indb 248 11/21/13 2:57 PM

ptg11524036

249Setting Up Core Data

 But first, the user interface on the Contacts screen needs to be changed to add a Save button
in the navigation bar. The code to do this is very similar to the Date controller. Open
LMAContactsController.m and update the viewDidLoad : method to match Listing 11.7 .

 Listing 11.7 Adding the Save Button in LMAContactsController.m

 - (void)viewDidLoad
 {
 [super viewDidLoad];
 // Do any additional setup after loading the view, typically from a nib.
 _scrollView. contentSize = CGSizeMake (320 , 500);

 UIBarButtonItem *saveButton =
 [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem : UIBarButtonSystemItemSave
 target : self
 action : @selector (saveContact:)];
 [self . navigationItem setRightBarButtonItem :saveButton];
 self . title = @"Contact" ;

 }

 Just like in the date controller, you’ll need to implement the method specified in the
@selector . This method is the one that will do the saving of data from the form (Listing 11.8).
Before entering this code, add import statements for Contact.h and LMAAppDelegate.h.

 You also need to handle the birthdate so it can be saved into the object. The birthdate is avail-
able only in the dateChanged : method, but if you set up an instance variable it can be stored
there whenever it changes to make it available throughout the class. Add this line right after
the @implementation line:

 NSDate *birthdate;

 Then in the dateChanged : method, add this line to the end of the method:

 birthdate = date;

 Listing 11.8 The saveContact: Method in LMAContactsController.m

 -(IBAction)saveContact: (id)sender
 {
 LMAAppDelegate *appDelegate =[[UIApplication sharedApplication] delegate]; //1
 NSManagedObjectContext *context = [appDelegate managedObjectContext]; //2
 Contact *contact = [NSEntityDescription //3
 insertNewObjectForEntityForName : @"Contact"
 inManagedObjectContext :context];

97803e21947864_Book 1.indb 249 11/21/13 2:57 PM

ptg11524036

250 Chapter 11 Persistent Data in iOS

 NSError *error; //4
 [contact setValue : _txtName. text forKey : @"contactName"]; //5
 [contact setValue : _txtAddress. text forKey : @"streetAddress"];
 [contact setValue : _txtCity. text forKey : @"city"];
 [contact setValue : _txtState. text forKey : @"state"];
 [contact setValue : _txtZip. text forKey : @"zipCode"];
 [contact setValue : _txtPhone. text forKey : @"phoneNumber"];
 [contact setValue : _txtCell. text forKey : @"cellNumber"];
 [contact setValue : _txtEmail. text forKey : @"email"];
 [contact setValue : birthdate forKey : @"birthday"];

 [context save :&error]; //6
 if (error != nil) { //7
 NSLog (@"Error saving object: %@" , error. description);
 }
 else {
 NSLog (@"Object saved successfully");
 }
 }

 The saveContact: method creates the contact object, takes the values from the user interface
to populate the object, and finally saves the object.

 1. Get a reference to the application delegate, because that is where the Core Data methods
are available.

 2. Get a reference to the managed object context.

 3. Create the contact object. You need to specify the name of the Core Data entity and
the managed object context. After the object is created, it has a reference to the object
context and knows which entity it is defined by. Note that the entity name is not
checked by the compiler, so be sure to spell it correctly.

 4. The error variable will contain any errors that occur during the saving of the object.

 5. This set of statements populates the object with the values from the user interface
by calling the setValue:forKey: method on the contact object passing in the text
property from each of the text fields and the name of the Core Data attribute. Note that
just like with the entity name, the compiler does not check the attribute. The birthday
field is not included, because it requires special handling that will be shown a little later
in this chapter.

 6. This statement forces the context to save any changes, and will record any errors. If you
don’t call the save method, the data will be saved, but you will not know when, so your
app may behave erratically.

 7. Print out any errors to NSLog . These messages will not show up to the user but will
appear in Xcode in the bottom-right part of the debug section.

97803e21947864_Book 1.indb 250 11/21/13 2:57 PM

ptg11524036

251Storing the Settings

 Running the app right now will not provide any feedback as to what data was saved, but you
can check that the database was created by opening up a Finder window and navigating to the
location of the files for your app.

 1. Open a Finder window and select Go > Go To Folder.

 2. Enter ~/Library/Application Support/iPhone Simulator , and click Go.

 3. You should see a directory with directories for each version of iOS you have developed
apps for. Open the directory with the highest version number and drill into the
Applications folder. You will see a folder for each app you have created. Unfortunately,
they are only named with a long string of letters and numbers, so the only way to find
the app you’re looking for is to open each folder and look for the .app file, which will
have the name of the app (Figure 11.10).

 4. After you find the correct app, you can open up its Documents directory, and you should
see a .sqlite file. Although you can’t open it directly, you can convince yourself that it is
being modified by looking at the file size and latest modified timestamp. However, there
are many free tools available to examine SQLite files if you want to take a closer look. An
easily accessible option is a Firefox extension called SQLite Manager.

 Figure 11.10 App file structure and SQLite database for MyContactList.

 In the next chapter, you learn how to retrieve the data in the database and display it in
the app.

 Storing the Settings
 In the settings part of the app, the user is able to change the sort order of the displayed
contacts. The contacts can be sorted in either ascending or descending order by Name, City, or
Birthday (Figure 11.11). Although the user interface for this screen might more logically be set
up using Segmented Controls, you will get a chance to work with two new controls, the Picker
View and the Switch. The user’s preference for sorting will be stored in a NSUserDefaults

97803e21947864_Book 1.indb 251 11/21/13 2:57 PM

ptg11524036

252 Chapter 11 Persistent Data in iOS

object. The data will be stored in the Settings screen and read in the Contacts section of
the app.

 Figure 11.11 The completed Settings interface.

 Creating the Settings Interface
 In this section you will create the interface for the Settings screen. Use Figure 11.11 as a guide
in completing the following steps.

 1. Open the Storyboard and delete the Settings label.

 2. Drag a new label to the top left of the screen and change its text to Sort Order .

 3. Drag a Picker View and place it below the label and center it on the screen.

 4. Drag a label below the Picker and change its text to Ascending Sort:

 5. Drag a Switch and place it to the right of the label.

 Next, you need to add a View Controller for the Settings screen.

 1. Select the MyContactList CoreData folder. Then choose File > New > File, or press
Command-N.

 2. Select Objective-C Class and click Next.

97803e21947864_Book 1.indb 252 11/21/13 2:57 PM

ptg11524036

253Storing the Settings

 3. Enter LMASettingsController for the Class name and UIViewController for the Subclass
Of field. Ensure that none of the check boxes are selected. Click Next.

 4. Ensure that MyContactList CoreData is checked as a Target and click Create.

 5. Open the Settings screen in Storyboard, and change its Class to LMASettingsController
in the Identity Inspector.

 Now you need to set up outlets and actions for the Settings screen.

 1. Open Storyboard and display the Settings screen on the left and LMASettingsController.h
in the Assistant editor on the right.

 2. Control-drag from the Picker View and Switch to the @interface section of
 LMASettingsController.h to create outlets named pckSortField and swAscending
respectively.

 3. Control-drag from the switch to add an action called sortDirectionChanged .

 If you run the app now, you will get a blank Picker View, so you will need to initial-
ize it with the field names to sort by. When working with a Picker View in a screen, you
need to implement two protocols in the View Controller: UIPickerViewDataSource and
 UIPickerViewDelegate. The former has methods to specify the data source for the contents
of the Picker View, whereas the latter has methods that allow you to find out which row the
user has chosen in the Picker. Add the two protocols in LMASettingsController.h as shown in
item 1 in Listing 11.9 .

 Listing 11.9 Picker View Protocols in LMASettingsController.h

 #import <UIKit/UIKit.h>

 @interface LMASettingsController : UIViewController
 <UIPickerViewDataSource, UIPickerViewDelegate> //1
 @property (weak , nonatomic) IBOutlet UIPickerView *pckSortField;
 @property (weak , nonatomic) IBOutlet UISwitch *swAscending;
 - (IBAction)sortDirectionChanged:(id)sender;

 @end

 Now you can implement the methods to add the data to the Picker View, as shown in
Listing 11.10 .

 Listing 11.10 Implementing the Picker View Data in LMASettingsController.m

 #import "LMASettingsController.h"

 @interface LMASettingsController ()

 @end

97803e21947864_Book 1.indb 253 11/21/13 2:57 PM

ptg11524036

254 Chapter 11 Persistent Data in iOS

 @implementation LMASettingsController
 //1
 NSArray *sortOrderItems; //1

 - (id)initWithNibName:(NSString *)nibNameOrNil bundle:(NSBundle *)nibBundleOrNil
 {
 self = [super initWithNibName :nibNameOrNil bundle :nibBundleOrNil];
 if (self) {
 // Custom initialization
 }
 return self ;
 }

 - (void)viewDidLoad
 {
 [super viewDidLoad];
 // Do any additional setup after loading the view from its nib.
 sortOrderItems = @[@"Name" , @"City" , @"Birthday"]; //2
 pckSortField . dataSource = self ; //3
 pckSortField . delegate = self ; //4
 }

 - (void)didReceiveMemoryWarning
 { [...] }

 - (IBAction)sortDirectionChanged:(id)sender {
 }

 #pragma mark - UIPickerView DataSource //5
 // Returns the number of 'columns' to display.
 - (NSInteger)numberOfComponentsInPickerView:(UIPickerView *)pickerView //6
 {
 return 1;
 }

 // Returns the # of rows in the picker
 - (NSInteger)pickerView:(UIPickerView *)pickerView
➥numberOfRowsInComponent:(NSInteger)component //7
 {
 return [sortOrderItems count];
 }

 //Sets the value that is shown for each row in the picker
 - (NSString *)pickerView:(UIPickerView *)pickerView titleForRow:(NSInteger)row
➥forComponent:(NSInteger)component //8
 {
 return [sortOrderItems objectAtIndex :row];
 }

97803e21947864_Book 1.indb 254 11/21/13 2:57 PM

ptg11524036

255Storing the Settings

 //If the user chooses from the pickerview, it calls this function;
 - (void)pickerView:(UIPickerView *)pickerView didSelectRow:(NSInteger)row
➥inComponent:(NSInteger)component //9
 {
 NSLog (@"Chosen item: %@" , [sortOrderItems objectAtIndex :row]);
 }

 @end

 To have a fully functioning Picker View, you need to set up a data source, implement several
methods that display the data, and respond to the user making a selection in the Picker.

 1. Add an array to store the items that will show up in the Picker View. This needs to be
declared at the class level because it needs to be accessed in several methods in the class.

 2. Add the strings for the Picker View to the array.

 3. Set up the View Controller (LMASettingsController) as the data source for the Picker
View. This works, because the View Controller implements UIPickerViewDataSource .

 4. Set the View Controller as the delegate for the Picker View, so whenever actions are
taken on the Picker View, specific methods are called in the view controller. This works,
because the View Controller implements UIPickerViewDelegate .

 5. The #pragma notation is used for documentation. You can see this show up in Xcode if
you click the right-most item in the selector bar above the LMASettingsController.m file
(Figure 11.12). The dash right after pragma is what gives the horizontal line. Using the
pragma mark notation can be a good way to easily navigate long source files.

 Figure 11.12 Drop-down menu on the right showing the result of #pragma mark in the code.

 6. The Picker View can be configured to show multiple columns. This method returns the
number of columns to display.

 7. This method determines how many rows or elements to display in the Picker. By
returning the number of elements in the array, we allow for just that many rows in the
Picker.

97803e21947864_Book 1.indb 255 11/21/13 2:57 PM

ptg11524036

256 Chapter 11 Persistent Data in iOS

 8. This is the most crucial method for setting up the Picker View, because it is the one that
makes the data show up in the Picker View. When the Picker is displayed on the screen,
the system will make repeated calls to this method, passing in the row number and
getting the corresponding text for the row back. In this case, the method uses the row
number to return the corresponding item from the array.

 9. This method is called whenever the user chooses a row in the Picker View. For now, the
method simply prints a message to NSLog indicating which item was chosen. In the next
section, you will use this method to update the stored data.

 Run the app to make sure the Picker View shows up correctly, and the selected item is printed
to NSLog every time a selection is made.

 Working with NSUserDefaults Object
 The NSUserDefaults object is used to store data values for an app in a key-value list on the
disk. Working with NSUserDefaults is very simple. You start by getting a reference to the
standard NSUserDefaults object with this line of code:

 NSUserDefaults *settings = [NSUserDefaults standardUserDefaults];

 To store a value in the settings object, you use code like this:

 [settings setObject:@"City" forKey:@"sortField"];

 This saves the value “City” with the key “sortField”. Every value must have a unique key. In
addition to the setObject:forKey : method, there are also methods that can be used to store
scalar values such as BOOL and int . Here’s an example:

 [settings setBool: YES forKey:@"sortDirectionAscending"];

 Retrieving the data is equally simple. Using the reference called settings to the
 NSUserDefaults object, you would retrieve an object using this call:

 NSString *sortField = [settings objectForKey: @"sortField"];

 The data is periodically saved, but to force saving, you can call the synchronize method:

 [settings synchronize];

 This will save any changes you’ve made to the Plist file.

 iOS Versus Android: User Settings
 The functionality provided by NSUserDefaults in iOS is provided by SharedPreferences in
Android. In both cases, these objects are used to store single bits of information. However,
whereas Android can store only simple data types in SharedPreferences , iOS has the capa-
bility to store more complex objects.

97803e21947864_Book 1.indb 256 11/21/13 2:57 PM

ptg11524036

257Storing the Settings

 Activating the Settings Interface
 Now that the Settings screen is set up with a Picker View and a switch, it’s time to work on
storing the data for the user preferences. For the settings to work consistently, they should be
set to some default values when the app first launches. The place to do that is in the app
delegate, so open LMAAppDelegate.m and add the code in Listing 11.11 to the
application:didFinishLaunchingWithOptions : method.

 Listing 11.11 Saving Default Settings

 - (BOOL)application:(UIApplication *)application
➥didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
 {
 //Set default settings
 NSUserDefaults *settings = [NSUserDefaults standardUserDefaults]; //1
 if ([settings objectForKey : @"sortField"] == nil) { //2
 [settings setObject : @"City" forKey : @"sortField"]; //3
 }
 if ([settings objectForKey :@"sortDirectionAscending"] == nil){ //4
 [settings setBool : YES forKey :@"sortDirectionAscending"];
 }
 [settings synchronize]; //5
 NSLog (@"Sort direction: %c" , [settings //6
 boolForKey : @"sortDirectionAscending"]);
 NSLog (@"Sort field: %@", [settings objectForKey :@"sortField"]);
 return YES ;
 }

 By putting this code in LMAAppDelegate.m, it will be executed anytime the app launches.

 1. Get a reference to the standard NSUserDefaults object. In this case, it’s named
 settings .

 2. Check whether something is already stored by the sortField key.

 3. If not, store City as the value in sortField . This is to ensure there is a value in the
field, but also to avoid overwriting any existing value.

 4. Repeat the same check for the sort direction. If no value is stored, it defaults to YES.

 5. Save any changes back to the settings file.

 6. Write the values of the two settings fields to NSLog . This shows how to retrieve a Boolean
value using the boolForKey : method and retrieving a string by using objectForKey :

 Next, we need to make sure the UI controls on the Settings screen get updated when the view
is loaded. Implement viewWillAppear : in LMASettingsController.m, as shown in Listing 11.12 .

97803e21947864_Book 1.indb 257 11/21/13 2:57 PM

ptg11524036

258 Chapter 11 Persistent Data in iOS

 Listing 11.12 Setting the User Controls Based on the Stored Values

 - (void)viewVillAppear
 {
 //set the UI based on values in NSUserDefaults
 NSUserDefaults * settings = [NSUserDefaults standardUserDefaults]; //1
 [_swAscending setOn:[settings boolForKey: @"sortDirectionAscending"]]; //2
 NSString *sortField = [settings objectForKey: @"sortField"]; //3
 int i = 0 ;
 for (NSString * field in sortOrderItems) { //4
 if ([field isEqualToString:sortField]) {
 [_pckSortField selectRow: i inComponent : 0 animated: NO]; //5
 }
 i++;
 }
 [_pckSortField reloadComponent: 0]; //6
 }

 This code reads the values from the standard NSUserDefaults object and updates the UI with
those values.

 1. Just like in the previous listing, start by getting a reference to the settings object.

 2. The Switch can be changed by calling the setOn : method and passing in a Boolean. In
this case, the value is read from the settings object using the boolForKey : method.

 3. The Picker View is a little more complex to set. First, read the sortField value into a
 NSString variable.

 4. The Picker View is updated by telling it which number row to select, so this loop goes
through the sortOrderItems array, which is where you stored the items that are
displayed in the Picker View.

 5. If a match is found, the Picker View is told to select that row. There’s only one
component, or column, so that is set to 0. The selection can be animated so the Picker
View spins to the selection, but this is not appropriate here because the selection is
already made before the user opens the Selection screen, so we set animated to NO .

 6. To have the Picker View change, you call reloadComponent : (you could also have called
 reloadAllComponents : and not needed to specify which component to reload).

 To store the values chosen by the user, implement sortDirectionChanged : as shown in
 Listing 11.13 to store the value of the switch, and update the implementation of PickerView:
didSelectRow:inComponent: as shown in Listing 11.14 .

97803e21947864_Book 1.indb 258 11/21/13 2:57 PM

ptg11524036

259Storing the Settings

 Listing 11.13 Storing the Value of the Switch

 - (IBAction)sortDirectionChanged:(id)sender {
 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 [defaults setBool : _swAscending. isOn forKey : @"sortDirectionAscending"];
 }

 Listing 11.14 Setting the User Controls Based on the Stored Values

 - (void)pickerView:(UIPickerView *)pickerView didSelectRow:(NSInteger)row
➥inComponent:(NSInteger)component
 {
 NSString *sortField = [sortOrderItems objectAtIndex :row];
 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 [defaults setObject :sortField forKey : @"sortField"];
 [defaults synchronize];
 }

 If you run the app, you should be able to make a selection in the Settings screen and have
those settings stored for later. If you try stopping the execution of the app in Xcode and
relaunching the app, you should see that the settings persist.

 Global Constants
 The code you wrote previously uses literal string values to identify the key fields used in
 NSUserDefaults . This can be a problem, because if they aren’t spelled the same everywhere
you use them, you will get some very strange error messages. One solution to this problem is to
create an object to hold global constants, and then define the string keys in that object. Here’s
how to update the code to be more robust.

 1. Select File > New > File, and select Objective-C class in the Cocoa Touch category.
Click Next.

 2. Name the class Constants and enter NSObject for Subclass Of. Click Next and make sure
to save the file inside the project folder, and that the Target for MyContactList CoreData
is checked.

 3. Open the Constants.h file and add lines 1 and 2 as shown in Listing 11.15 . This declares
the two keys as constant strings that are globally available to any class that imports the
Constants.h file.

 4. Add lines 1 and 2 as shown in Listing 11.16 to Constants.m. This assigns the values to
the two strings. Make sure they are the same as you used for the keys for the settings.

 5. Open LMAAppDelegate.m and add #import Constants.h below the other import
statements.

97803e21947864_Book 1.indb 259 11/21/13 2:57 PM

ptg11524036

260 Chapter 11 Persistent Data in iOS

 6. Replace all occurrences of the literal strings with the keys to the constant variables in
 application:didFinishLaunchingWithOptions : The relevant lines of code are shown
in Listing 11.17 and marked by 1–5.

 7. Repeat steps 5 and 6 for LMASettingsController.m by importing Constants.h and
updating viewDidLoad :, sortDirectionChanged : and pickerView:didSelectRow:
inComponent : to use the constant string variables instead of the literal string values. The
two updated methods are shown in Listing 11.18 . The relevant lines are marked 1–4.

 Run the app and make sure the saving and retrieving of the settings still work as expected.

 Listing 11.15 Constants.h

 #import <Foundation/Foundation.h>

 extern NSString * const kSortField; //1
 extern NSString * const kSortDirectionAscending; //2

 @interface Constants : NSObject
 @end

 Listing 11.16 Constants.m

 #import "Constants.h"

 NSString * const kSortField = @"sortField"; //1
 NSString * const kSortDirectionAscending = @"sortDirectionAscending"; //2

 @implementation Constants
 @end

 Listing 11.17 Using the Constant Variables as Keys in the LMAAppDelegate.m

 - (BOOL)application:(UIApplication *)application
➥didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
 {
 //Set default settings
 NSUserDefaults *settings = [NSUserDefaults standardUserDefaults];
 if ([settings objectForKey : kSortField] == nil) { //1
 [settings setObject : @"City" forKey : kSortField]; //2
 }
 if ([settings objectForKey : kSortDirectionAscending] == nil){ //3
 [settings setBool : YES forKey : kSortDirectionAscending]; //4
 }
 [settings synchronize];
 NSLog (@"Sort direction: %c" , [settings

97803e21947864_Book 1.indb 260 11/21/13 2:57 PM

ptg11524036

261Storing the Settings

 boolForKey : kSortDirectionAscending]); //5
 NSLog (@"Sort field: %@" , [settings objectForKey : kSortField]); //6
 return YES ;
 }

 Listing 11.18 Using the Constant Variables as Keys in LMASettingsController.m

 - (void)viewDidLoad
 {
 [super viewDidLoad];
 // Do any additional setup after loading the view.
 sortOrderItems = @[@"Name" , @"City" , @"Birthday"] ;
 _pckSortField. dataSource = self ;
 _pckSortField. delegate = self ;
 //set the UI based on values in NSUserDefaults
 NSUserDefaults *settings = [NSUserDefaults standardUserDefaults];

 BOOL sortAscending =[settings boolForKey : kSortDirectionAscending]; //1
 [_swAscending setOn :sortAscending];
 NSString *sortField = [settings objectForKey : kSortField]; //2
 int i = 0 ;
 for (NSString *field in sortOrderItems) {
 if ([field isEqualToString :sortField]) {
 [_pckSortField selectRow :i inComponent : 0 animated : NO];
 }
 i++;
 }
 [_pckSortField reloadComponent : 0];
 }

 - (IBAction)sortDirectionChanged:(id)sender {
 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 [defaults setBool : _swAscending. isOn forKey : kSortDirectionAscending]; //3
 }

 //If the user chooses from the pickerview, it calls this function;
 - (void)pickerView:(UIPickerView *)pickerView didSelectRow:(NSInteger)row
➥inComponent:(NSInteger)component
 {
 NSString *sortField = [sortOrderItems objectAtIndex :row];

 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 [defaults setObject :sortField forKey : kSortField]; //4
 [defaults synchronize];
 }

97803e21947864_Book 1.indb 261 11/21/13 2:57 PM

ptg11524036

262 Chapter 11 Persistent Data in iOS

 Summary
 Being able to store data in an app is very important to almost all apps. You have seen two
important ways to do this in this chapter. Core Data is a very powerful object-oriented wrapper
around a persistent data store (SQLite by default), which allows you to store any kind of data in
a relatively simple way. In the next chapter, you will see how to retrieve the data and display
multiple contact records. You also saw how to store simple pieces of data like that used for the
settings in the app. It is common for both these approaches to coexist in the same app.

 Along the way you gained some experience with additional user interface controls, allowing
you to learn how to use a Picker View and a Switch. Finally, you saw how to set up a class
with global constants to reduce possible errors from using literal strings to access keys in the
 NSUserDefaults object.

 Exercises
 1. Add a few more items to the Picker View for sort fields.

 2. Store the array with the values for the Picker View in NSUserDefaults .

 3. Experiment with adding #pragma mark notations to a few more of the source code files
and observe the effects.

 4. Change the Picker View and the Switch on the Settings screen to segmented controls.

 5. Add an additional attribute to the Core Data model to store a home email address.

97803e21947864_Book 1.indb 262 11/21/13 2:57 PM

ptg11524036

 12
 Tables in iOS: Navigation
and Information Display

 One of the big innovations on the small screen is the introduction of structured content that can be
scrolled up and down and that allows for drilling down for more detailed content. On Android, this
pattern of navigation is called Lists, as described in Chapter 6 , “Lists in Android: Navigation and
Information Display.” On iOS, it is called Tables and has a number of built-in but very customizable
layouts and controls. The Tables layout is used in many apps you use every day and in many of the
built-in apps that come with iOS devices.

 Anytime you see data presented in a single-column format, whether it’s in the Settings app, the list of
Music in the iTunes app, or the list of emails in the Mail app, those are examples of using a TableView
configured in different ways.

 There are project templates in Xcode that have table views included, but because the data for
MyContactsApp is from a database, it is just as easy to generate the table and associated view program-
matically. MyContactList doesn’t have a way to show all the contacts in the database. It can only save
contacts right now. In this chapter you will see how to set up a table and populate it with data from
MyContactList. You will also learn how to use the table features to modify the data directly from the
table, such as deleting records.

 Overview of Tables
 A table in iOS is a single-column table where each cell contains data to be displayed to the user.
The user can scroll-flick through the content by flicking a finger up and down the screen. The
individual cell objects are reused when they scroll off the screen, and then they show up at
the other end of the screen. This saves tremendous amounts of memory on the device by not
having to create an object for every entry in potentially very long tables.

 Tables are often used as navigation controllers to allow users to select content in a cell in the
table and get more detailed information and/or take action on the data on a separate view

97803e21947864_Book 1.indb 263 11/21/13 2:57 PM

ptg11524036

264 Chapter 12 Tables in iOS: Navigation and Information Display

controller. You will see the important role that navigation controllers play when you are
working with tables.

 The cells in a table can be set up with several standard style options.
 UITableViewCellStyleDefault has a single title and an optional image, whereas
 UITableViewCellStyleSubtitle adds the option of a subtitle below the title (Figure 12.1 uses
the subtitle style). UITableViewCellStyleValue1 does not permit images and right-aligns the
subtitle in blue, and UITableViewCellStyleValue2 puts the title in blue and aligns the title
and subtitle against each other down the middle.

 Table cells can also be adorned with various accessories on the right edge of the cell to indicate
what functionality is available when the user taps the cell. You can choose from three standard
accessories, as shown in Figure 12.1 , in addition to supplying your own image as an accessory.
In this chapter, you work with standard layout options for the cells, but you can also provide a
complete customized experience.

 Figure 12.1 Cell Accessory Views.

97803e21947864_Book 1.indb 264 11/21/13 2:57 PM

ptg11524036

265Setting Up Tables

 Setting Up Tables
 Open your project from Chapter 11, “Persistent Data in iOS,” or open this chapter’s project.
The first step is to create a new View Controller to hold the table. For the table to show up,
you need to insert it in the tab controller. It replaces the controller that allows for editing and
viewing a single Contact, which is then called from the Table Controller instead of directly
from the Tab Controller.

 1. Open the Storyboard and drag a Table View Controller onto the canvas.

 2. Select the Navigation Controller and control-drag from the yellow Navigation Controller
icon in the bar below the Navigation Controller screen to the new Table View Controller.
Select Rootview Controller in the menu that pops up when you release the mouse. This
makes the new Table View Controller the first controller in the Navigation Controller,
and it shows the Table View instead of the Contact editing screen. Later in the chapter,
you will connect the Contact screen to the Table View.

 3. To create the code file used to control the Table View Controller, right-click the yellow
MyContactList CoreData folder in the left navigator area in Xcode and select New File.
Choose Objective-C class in the Cocoa Touch category, and click Next.

 4. Change the Subclass Of field to UITableViewController , and change the Class to
 LMAContactsTableController . Make sure both check boxes are unchecked, and click
Next. On the next screen, verify that the file is being saved in the top-level folder of the
project and that the Target for MyContactList Core Data is checked. Click Create.

 5. Switch back to Storyboard and select the Table View Controller. Use the Identity
Inspector to change the Class to LMAContactsTableController . This ties the code file to
the screen.

 Try running the app. You should see a lined screen above the tab bar, as shown in Figure 12.2 .
If you click and drag on the screen in the simulator, you will notice that you can drag the lines
up and down, as you would with a regular table.

 Populate the Table with Data
 A table without data isn’t very exciting, so the next task is to have some data show up in the
table. Switch to LMAContactsTableController.m and scroll down until you see several premade
methods related to the table. These are all methods that are declared in UITableViewDelegate
and UITableViewDataSource . The Table Controller is a subclass of UITableViewController ,
which conforms to these two protocols, so the template added all the required methods from
those protocols.

 The system will make calls to the delegate methods as it needs to work with the table, so
most of your work in setting up a table is to implement the methods in the two protocols.
Throughout the rest of this chapter, you see how to use several of the delegate methods.
To see the rest of them, you can look up the documentation on the two protocols by
opening the Documentation (Help > Documentation and API reference), and searching for
 UITableViewDelegate and UITableViewDataSource .

97803e21947864_Book 1.indb 265 11/21/13 2:57 PM

ptg11524036

266 Chapter 12 Tables in iOS: Navigation and Information Display

 Before you can get started using these methods, you need to create some data. Initially, the
data is stored in a simple array, so you can easily see what’s going on.

 Declare an array to hold the data by adding this line in LMAContactsTAbleController.m
between @end and @implementation :

 NSArray *contacts;

 As a quick demonstration of how the table works, you can add some static data to the contacts
array and display it in the table. Later, you can switch to working with the full Contact objects.
At that point, the contact data will be editable as well.

 To populate the array with data, add these lines to the end of the viewDidLoad :

 contacts = @[@"Jim", @"John", @"Dana", @"Rosie", @"Justin", @"Jeremy",
 @"Sarah", @"Matt", @"Joe", @"Donald", @"Jeff"];

 To have the data actually show up in the table, you modify some of the autogenerated
methods. Locate the numberOfSectionsInTableView : method. This method returns the

 Figure 12.2 App with empty table.

97803e21947864_Book 1.indb 266 11/21/13 2:57 PM

ptg11524036

267Setting Up Tables

number of sections (or groupings) in a table. For this table, there’s a single section. (See the
built-in Settings app for an example of multiple sections in a table.) Change the method to
return a value of 1 and remove the line that begins with #warning .

 Just below is the tableView:numberOfRowsInSection : method. This returns the number of
data rows a particular section has. In this case, the number of rows will equal how many names
are in the array above (later, it will return how many Contact objects are in the database).
Replace the return line with this line:

 return [contacts count];

 This returns the number of elements in the contacts array. Then remove the #warning line.

 The tableView:cellForRowAtIndexPath: method is the workhorse method when it comes
to tables. This method is called by the system to generate the data for a particular cell, so it is
passed the section and row as the indexPath parameter. You use this to configure the actual
cell. Listing 12.1 shows the content for this method.

 Listing 12.1 Populating the Table with Data

 - (UITableViewCell *)tableView:(UITableView *)tableView
➥cellForRowAtIndexPath:(NSIndexPath *)indexPath
 {
 static NSString *CellIdentifier = @"ContactsCell" ; //1
 UITableViewCell *cell = [tableView
➥dequeueReusableCellWithIdentifier:CellIdentifier forIndexPath:indexPath];

 // Configure the cell...

 // if (cell== nil){ //2
 // cell = [[UITableViewCell alloc]
 // initWithStyle :UITableViewCellStyleDefault
 // reuseIdentifier:CellIdentifier];
 // }
 cell.textLabel. text = [contacts objectAtIndex:[indexPath row]]; //3
 return cell;
 }

 This code is fairly standard when working with tables, so it’s important to understand what’s
going on.

 1. The CellIdentifier is a unique identifier for all cells in the table that are set up in the
same way so the objects can be reused when the cell scrolls off the screen. If you created
an app where some rows need to look different, you would also use different reuse
identifiers for the different types of cells. In all, only about a dozen cell objects will end
up being created in the system. Change the existing string, Cell , to ContactsCell . This
string also needs to be entered in Storyboard (see below).

97803e21947864_Book 1.indb 267 11/21/13 2:57 PM

ptg11524036

268 Chapter 12 Tables in iOS: Navigation and Information Display

 2. These lines need to be commented out because we use Storyboard, where the method call
in the line above (dequeueReusableCellWithIdentifier:forIndexPath :) is always
guaranteed to not return a nil.

 3. You use the textLabel property of the cell to set the text that will show up. The data is
pulled from the contacts array using the requested row number as the index.

 As mentioned in item 1, the table cell needs to be identified in Storyboard as well. Open
Storyboard and select the Table View Controller, and then use the Attributes Inspector to
change the Identifier to ContactsCell (see Figure 12.3).

 Figure 12.3 Setting the reuse Identifier.

 Now you can run the app and see the names from the Contacts array show up in the table.
You can scroll up and down and see the cells scroll off the screen. One thing missing, though,
is the title of the screen. It should say Contacts in the navigation bar at the top. This is an easy
fix. You select the Navigation Item under the Table View Controller and change the Title to
 Contacts . Figure 12.4 shows the app with the title set.

97803e21947864_Book 1.indb 268 11/21/13 2:57 PM

ptg11524036

269Setting Up Tables

 Figure 12.4 Table with static data.

 Now that you’ve seen how to work with the table using the delegate methods to configure the
table and populate the table cells, it’s time to retrieve the data from the database and display
real Contacts objects.

 Retrieve Data from Core Data
 In the previous chapter, you saw how to save data to Core Data by inserting a Contact object
into the managed object context. Retrieving data is similar, but instead of inserting objects,
you will fetch them, and then specify some action to take on the retrieved objects. Listing 12.2
shows the changes you need to make in LMAContactsTableController.m to have the data show
up from the database.

97803e21947864_Book 1.indb 269 11/21/13 2:57 PM

ptg11524036

270 Chapter 12 Tables in iOS: Navigation and Information Display

 Listing 12.2 Retrieving Data from Core Data in LMAContactsTableController.m

 #import "LMAContactsTableController.h"

 #import "LMAAppDelegate.h" //1
 #import "Contact.h"

 @interface LMAContactsTableController ()
 @end

 NSArray *contacts;
 LMAAppDelegate *appDelegate; //2
 NSManagedObjectContext *context;

 @implementation LMAContactsTableController

 - (void)viewDidLoad
 {
 [super viewDidLoad];

 // Uncomment the following line to preserve selection between presentations.
 // self.clearsSelectionOnViewWillAppear = NO;

 // Uncomment the following line to display an Edit button in the navigation bar
for this view controller.
 // self.navigationItem.rightBarButtonItem = self.editButtonItem;
 // contacts = @[@"Jim", @"John", @"Dana", @"Rosie", @"Justin", @"Jeremy",
 // @"Sarah", @"Matt", @"Joe", @"Donald", @"Jeff"];
 [self loadDataFromDatabase]; //3
 }
 [...]

 #pragma mark - Core Data methods
 - (void) loadDataFromDatabase
 {
 appDelegate = [[UIApplication sharedApplication] delegate]; //4
 context = [appDelegate managedObjectContext];
 NSEntityDescription *entityDescription = [NSEntityDescription //5
 entityForName : @"Contact"
 inManagedObjectContext : context];
 NSFetchRequest *request = [[NSFetchRequest alloc] init]; //6
 [request setEntity :entityDescription]; //7
 NSError *error;

 contacts = [[NSArray alloc] //8
 initWithArray :[context executeFetchRequest :request
 error :&error]];
 }

97803e21947864_Book 1.indb 270 11/21/13 2:57 PM

ptg11524036

271Setting Up Tables

 #pragma mark - Table view data source
 [...]
 - (UITableViewCell *)tableView:(UITableView *)tableView
➥cellForRowAtIndexPath:(NSIndexPath *)indexPath
 {
 static NSString *CellIdentifier = @"ContactsCell" ;
 UITableViewCell *cell = [tableView
➥dequeueReusableCellWithIdentifier:CellIdentifier forIndexPath:indexPath];

 // Configure the cell...

 Contact * contact = [contacts objectAtIndex :[indexPath row]]; //9
 cell.textLabel.text = [contact contactName];
 return cell;
 }

 [...]

 The code is relatively simple, but spread out over several places in the file.

 1. Import the Contact and App Delegate classes.

 2. Eventually, it will be necessary to access the context from multiple places in the code, so
these two lines set up class variables for the app delegate and context.

 3. When the view controller is first loaded into memory, the contacts array is populated
with data by calling the loadDataFromDatabase : method.

 4. The loadDataFromDatabase: method starts by setting up the app delegate and context
variables.

 5. This line specifies that objects from the Contacts entity will be retrieved.

 6. Create a NSFetchRequest object, which describes the search criteria used to retrieve
objects from the store.

 7. Relate the fetch request and the entity.

 8. Execute the fetch request and return the results as an array, which is stored in the
contacts array.

 9. To have the data show up in the table, you still get the correct object from the array, but
instead of having just a string to show, you can now work with the entire object. In this
case, the cell’s text label is set to the Contact Name for the contact.

 If you run the app, you should see whatever data you entered and saved when testing the app
in the previous chapter. If the table shows up blank, the most likely explanation is that you
didn’t save any data in the previous chapter. You will enable the app to save data again a little
later in this chapter.

97803e21947864_Book 1.indb 271 11/21/13 2:57 PM

ptg11524036

272 Chapter 12 Tables in iOS: Navigation and Information Display

 Adding Contact Data
 To be able to add a new Contact, you need to add the Contact editing screen back in to the
Storyboard. You will add a special Add button with a plus sign that will display the Contact
editing screen.

 1. Open Storyboard and select the Table View Controller.

 2. Drag a Bar Button item from the Object Library to the navigation bar and drop it to the
right of the text Contacts. Before dropping it, you should see a blue rectangle appear on
the navigation bar. Drop it into this rectangle.

 3. Use the Attributes Inspector to change the Identifier to Add. This changes the button to a
plus sign.

 4. Control-drag from the Bar Button item to the Contact editing screen and select Push.
This sets up a segue between the Table View Controller and the Contact editing screen
and pushes the Contact editing screen onto the navigation stack, so the proper
buttons for navigating back to the table view will be set up in the navigation bar
(see Figure 12.5).

 Figure 12.5 Setting up the navigation from the table view to the Contact screen.

 You can run the app now and click the plus button on the table to have the Contact editing
screen show up with the proper navigation buttons on it.

 You’ll notice that the Contact editing screen shows up with View selected in the segmented
control, but all the text fields are active. To set the controls to a consistent state, add this line
of code to the end of viewDidLoad : in LMAContactsController.m:

 [self changeEditMode: self];

 This calls the method that checks the value of the segmented control and hides/shows fields
accordingly.

97803e21947864_Book 1.indb 272 11/21/13 2:57 PM

ptg11524036

273Setting Up Tables

 Display Detailed Data
 The next step is to allow the user to select an entry in the table and have the full Contact
object displayed on the Contact screen.

 For the Contact screen to receive a Contact object to display, you need to set up a property
to hold the Contact object. Add this line to LMAContactsController.h, along with the other @
property declarations:

 @property (strong, nonatomic) Contact *contact;

 Next, you’ll need to set up a segue from the Prototype cell to the Contact screen.

 1. Control-drag from the Prototype cell to the Contact screen and select Selection Segue >
Push (see Figure 12.6). This creates a second segue between the two screens.

 2. Select the new segue and use the Attributes Inspector to change the Identifier to
 EditContact (see Figure 12.7). This identifier will be used to uniquely identify the segue.

 Figure 12.6 Setting up the navigation from the table view to the Contact screen.

 Figure 12.7 Setting up the navigation from the table view to the Contact screen.

97803e21947864_Book 1.indb 273 11/21/13 2:57 PM

ptg11524036

274 Chapter 12 Tables in iOS: Navigation and Information Display

 To pass data from the table view to the Contact screen, you need to set up a property
in the Contact screen to hold the current Contact object being edited. To do this, open
LMAContactsController.h and add an import statement to import Contact.h , and then add
this property line:

 @property (strong, nonatomic) Contact * contact;

 Switch to LMAContactsController.m and remove the import statement for Contact.h .

 To pass the selected Contact from the table, you implement the prepareForSegue:sender:
method in LMAContactsTableController.m, as shown in Listing 12.4 .

 The first step is to implement the action to take when a row is selected in the table. The table
controller has a delegate method, tableView:didSelectRowAtIndexPath: that is already
stubbed out toward the bottom of LMAContactsTableController.m. This method is called
whenever the user selects a row in the table. All you have to do is provide the implementation
that will create an instance of the detail view controller and open it, passing in the Contact
object from the selected row. Listing 12.3 shows the code you have to enter.

 Listing 12.3 Retrieving Data from Core Data in LMAContactsTableController.m

 - (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender
 {
 if ([segue. identifier isEqualToString : @"EditContact"]) { //1
 LMAContactsController *contactController =
➥segue. destinationViewController ; //2
 NSIndexPath *selectedPath = [self . tableView indexPathForSelectedRow]; //3
 Contact *selectedContact = [contacts objectAtIndex :[selectedPath row]]; //4
 contactController. contact = selectedContact; //5
 }
 }

 This is similar to the code you saw previously for passing data from the Contact editing screen
to the Date screen.

 1. Check to see if the segue matches the identifier we set up in Storyboard.

 2. Get a reference to the Contact editing screen view controller, because that is the
destination for the segue.

 3. Find out which row was selected in the table.

 4. Get a reference to the corresponding Contact object.

 5. Pass the selected Contact object to a property in the Contacts Controller.

 If you run the app now, you will be able to select a row in the table and have the detailed view
controller show up. But the data from the Contact object doesn’t show up. Listing 12.4 shows
the code you need to add to the viewDidLoad : method in LMAContactsController.m to popu-
late the fields in the user interface.

97803e21947864_Book 1.indb 274 11/21/13 2:57 PM

ptg11524036

275Setting Up Tables

 Listing 12.4 Populating the User Interface

 - (void)viewDidLoad
 {
 [super viewDidLoad];
 // Do any additional setup after loading the view, typically from a nib.
 _scrollView . contentSize = CGSizeMake (320 , 500);

 UIBarButtonItem *saveButton =
 [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem : UIBarButtonSystemItemSave
 target : self
 action : @selector (saveContact:)];
 [self . navigationItem setRightBarButtonItem :saveButton];
 self . title = @"Contact" ;
 [self changeEditMode : self];

 if (_contact){ //1
 _txtName . text = _contact . contactName ;
 _txtAddress . text = _contact . streetAddress ;
 _txtCity . text = _contact . city ;
 _txtState . text = _contact . state ;
 _txtZip . text = _contact . zipCode ;
 _txtPhone . text = _contact . phoneNumber ;
 _txtCell . text = _contact . cellNumber ;
 _txtEmail . text = _contact . email ;
 [self dateChanged : _contact . birthday]; //2
 [_sgmtEditMode setSelectedSegmentIndex : 0]; //set to view mode //3
 [self changeEditMode : self];
 }
 }

 This code should be fairly self-explanatory, but a few notes are necessary.

 1. The if statement checks to make sure the contact object is instantiated. In Objective-C,
if the contact object is nil, it will return NO where a Boolean is expected. The following
statements populate all the text fields.

 2. This statement calls the dateChanged : method in order to format the birthdate label
consistently.

 3. The last two statements ensure that the controller is in view mode, initially by first
setting the selected segment index to 0 , which corresponds to View, and then calling
 changeEditMode :, which makes the actual changes to the user interface.

 With these changes, if you run the app, the Contact controller interface will populate when the
user selects a row.

97803e21947864_Book 1.indb 275 11/21/13 2:57 PM

ptg11524036

276 Chapter 12 Tables in iOS: Navigation and Information Display

 Save Changes to Records
 There are some significant issues with the app at this point when it comes to saving data. If you
have been running the app, you may have noticed a few things. First, when saving a Contact
on the detail editing screen and going back to the table screen, the contact isn’t updated.
Second, when the app is launched again, the changed Contact shows up as a new row in the
table. There are two issues that cause these problems. The first is in the table view control-
ler where we load the database data in the viewDidLoad : method. This method is executed
once when the controller is first instantiated. Moving to the detail screen to make changes
and back again to the table doesn’t execute the viewDidLoad : method again. However, view-
WillAppear : is executed just before the view is displayed (see Chapter 2 , “App Design Issues
and Considerations,” for more detailed description of the app life cycle and the order these
methods are called in).

 For the data to be loaded reliably every time the view becomes active again, we will use view-
WillAppear : to load the data from the database. Listing 12.5 shows the method, which you
will need to type in after the viewDidLoad : method in LMAContactsTableController.m. As you
start typing, you may notice that code completion in Xcode is smart enough to also help you
write an entire method header.

 Listing 12.5 Reloading the Data for the Table

 -(void)viewWillAppear:(BOOL)animated{
 [super viewWillAppear:animated];
 [self loadDataFromDatabase];
 [self . tableView reloadData];
 }

 The code should be obvious, except for the last line. This method call reloads the data in the
table itself. It basically redraws all the visible cells for the table, so that the data from the data-
base is also displayed in the table after being refreshed. After adding this method, you can
comment out the call to loadDataFromDatabase: in viewDidLoad: .

 If you test the app, you will see that every time you tap Save on the detail editing screen, a new
record is added to the database. This isn’t exactly desirable, but the fix is very simple.

 Open LMAContactsController.m and find the saveContact: method. This method creates
a new Contact object, inserts it into the managed object context, populates the object with
values from the user interface, and then saves the object context, causing the new object to be
inserted into the database. The problem is that when the user picks a row in the table view,
the Contact object is already populated and exists in the database. To avoid creating a new
object every time, you switch to using the contact property instead of a locally created Contact
object by commenting out lines 1–3 in Listing 12.6 , and then add an underscore to change
from using the local contact variable to the _ contact property. Line 4 shows how you check
to see whether the contact object is nil. If it is, you create a new object in the managed object
context. Otherwise, you change the existing object.

97803e21947864_Book 1.indb 276 11/21/13 2:57 PM

ptg11524036

277Setting Up Tables

 Listing 12.6 Avoid Inserting New Objects When Editing

 -(IBAction)saveContact: (id)sender
 {
 LMAAppDelegate *appDelegate = [[UIApplication sharedApplication] delegate];
 NSManagedObjectContext *context = [appDelegate managedObjectContext];
 // Contact *contact = [NSEntityDescription //1
 // insertNewObjectForEntityForName:@"Contact" //2
 // inManagedObjectContext:context]; //3
 if (! _contact){ //4
 _contact = [NSEntityDescription
 insertNewObjectForEntityForName: @"Contact"
 inManagedObjectContext:context];
 }
 NSError * error ;
 [_contact setValue : _txtName . text forKey : @"contactName"];
 [_contact setValue : _txtAddress . text forKey: @"streetAddress"];
 [_contact setValue : _txtCity .text forKey: @"city"];
 [_contact setValue : _txtState . text forKey : @"state"];
 [_contact setValue : _txtZip . text forKey : @"zipCode"];
 [_contact setValue : _txtPhone . text forKey : @"phoneNumber"];
 [_contact setValue : _txtCell . text forKey: @"cellNumber"];
 [_contact setValue:_txtEmail.text forKey: @"email"];
 [_contact setValue:birthdate forKey: @"birthday"];

 [context save:&error];
 if (error != nil) {
 NSLog(@"Error saving object: %@" , error.description);
 }
 else {
 NSLog(@"Object saved successfully");
 }
 }

 Deleting Records
 If you’ve been running the app to test it along the way, you probably have a long list of
contacts that cannot be deleted. This is not an ideal situation, so now it’s time to add the capa-
bility to delete records from both the table and the database.

 The pattern here is slightly different from what you did to be able to add records. You still need
to create a button for the navigation bar that will put the table in edit mode. In edit mode, the
user can tap a row to delete it from both the table and data source. This requires implement-
ing a UITableViewDataSource delegate method that is called when the user selects a row for
deletion.

97803e21947864_Book 1.indb 277 11/21/13 2:57 PM

ptg11524036

278 Chapter 12 Tables in iOS: Navigation and Information Display

 Start by adding this line to the end of viewDidLoad : in LMAContactsTableController.m:

 self .navigationItem.leftBarButtonItem = self . editButtonItem ;

 This will put a button with the word Edit in the left part of the navigation bar. If you run the
app now, and tap the Edit button, each row will get a Delete icon in front of it. If you tap that,
a red Delete button will show up on the right side of the row. Tapping this button would delete
the row without further warning, which isn’t necessary because the user has already confirmed
the intent by tapping three distinctly different areas of the screen (see Figure 12.8). You might
be tempted to use Storyboard to add the Edit button, but doing so doesn’t set up the three-step
process of deleting the row.

 Figure 12.8 Deleting records.

 If you run the app now, nothing happens when the Edit button is tapped. For this, you need
to implement tableView:commitEditingStyle:forRowAtIndexPath: , which is already
included in LMAContactsTableController.m. You just need to add the lines of code shown in
 Listing 12.7

97803e21947864_Book 1.indb 278 11/21/13 2:57 PM

ptg11524036

279Setting Up Tables

 Listing 12.7 Deleting Rows from the Table

 - (void)tableView:(UITableView *)tableView
➥commitEditingStyle:(UITableViewCellEditingStyle)editingStyle
➥forRowAtIndexPath:(NSIndexPath *)indexPath
 {
 if (editingStyle == UITableViewCellEditingStyleDelete) { //1
 // Delete the row from the data source
 Contact *contactToDelete = [contacts objectAtIndex :[indexPath row]]; //2
 [context deleteObject :contactToDelete]; //3
 NSError *error;
 [context save :&error]; //4
 [self loadDataFromDatabase]; //5
 [tableView deleteRowsAtIndexPaths : @[indexPath] //6
 ➥withRowAnimation : UITableViewRowAnimationFade];
 }
 else if (editingStyle == UITableViewCellEditingStyleInsert) {
 // Create a new instance of the appropriate class, insert it
 // into the array, and add a new row to the table view
 }
 }

 The code in this method is similar to code you have seen already.

 1. This method is called for both insert and delete operations; however, in this app you use
only the delete operation here, because the insert was already coded in a different way.

 2. Retrieve the object for the row that the user tapped on.

 3. Delete the object from the context.

 4. Force the context to save changes, forcing the object to be deleted from the data store
immediately.

 5. Reload the data from the database into the contacts array. You could also redefine the
contacts variable to be of type NSMutableArray , in which case you would be able to
delete the individual object directly from the array.

 6. Remove the row from the table. In this case, it is done with an animation. You can
Option-click the method name to see more options for fading the row out.

 You can now run the app and delete records by tapping the Edit button. However, after you
have implemented tableView:commitEditingStyle:forRowAtIndexPath: you get an addi-
tional way to delete rows by swiping across the row. To try this in the simulator, use the mouse
and click one end of a row and drag toward the other, and you will get a Delete button for that
row. This way, you don’t even need the Edit button set up.

97803e21947864_Book 1.indb 279 11/21/13 2:57 PM

ptg11524036

280 Chapter 12 Tables in iOS: Navigation and Information Display

 Accessory Buttons
 When you added the segue to the Prototype cell to allow for navigation to the detail screen,
a gray arrow was added to the right side of the cell. This is a Disclosure Indicator, which tells
the user that more detail will show up when the row is tapped. You can choose from several
Accessory buttons to add to the row, and you have the option of taking different actions
whether the Accessory buttons or the row itself is tapped.

 To illustrate how this works, you show the user an Alert View when the row itself is tapped,
and the detailed editing screen when a Detail Disclosure Accessory Button is tapped.

 1. Change the Accessory button in the Attributes Inspector for the Prototype Cell to a Detail
Disclosure. The typical functionality of iOS apps for the Detail Disclosure button is to
show the detailed controller.

 2. Delete the segue between the table view and the Contacts screen.

 3. Control-drag from the Prototype Cell to the Contact screen and select Accessory Action
> Push in the pop-up menu. This will ensure that when the user taps the Disclosure
Indicator, the Contacts screen is pushed onto the navigation stack.

 4. Change the Identifier for the new segue to EditContact .

 5. Add the following line of code between @end and @implementation in
LMAContactsController.m:

 LMAContactsController *contactController;

 This sets up a reference to a view controller that you will use a little later.

 6. Implement the tableView:accessoryButtonTappedForRowWithIndexPath : method
shown in Listing 12.8 . This method is called whenever an accessory button is tapped,
and allows you to know which row was selected.

Listing 12.8 Determining the Selected Row

-(void) tableView:(UITableView *)tableView accessoryButtonTappedForRowWithIndexPath:
(NSIndexPath *)indexPath

{
 Contact *selectedContact = [contacts objectAtIndex:[indexPath row]];
 contactController.contact = selectedContact;
}

97803e21947864_Book 1.indb 280 11/21/13 2:57 PM

ptg11524036

281Setting Up Tables

 7. Change the prepareForSegue:sender: method as shown in Listing 12.9 . This method
now provides a reference to the destination view controller. Be sure that the reference
gets assigned to the variable declared in step 5.

 The code changes in steps 5–7 above are necessary because we need to know both which view
controller will be shown and the row that the selected Disclosure Indicator is in, but neither
method will provide both.

 Listing 12.9 Setting Up the Segue with a Reference to the Destination Controller

 - (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender
 {
 if ([segue. identifier isEqualToString : @"EditContact"]) {
 contactController = segue. destinationViewController ;
 }
 }

 -(void) tableView:(UITableView *)tableView
accessoryButtonTappedForRowWithIndexPath:(NSIndexPath *)indexPath
 {
 Contact *selectedContact = [contacts objectAtIndex :[indexPath row]];
 contactController . contact = selectedContact;

 }

 Alert View
 An Alert View is used as a common way to provide feedback to a user of an iOS device. An Alert
View (UIAlertView) pops up a message on the screen with one or more buttons for the user
to click. It’s quite simple to set up. In this example, the message displays the row number the
user selected and the name of the contact for that row. In this case, an OK button dismisses the
alert, and the Show Details button takes the user to the Contacts Controller to see all the data
for the contact (Figure 12.9).

97803e21947864_Book 1.indb 281 11/21/13 2:57 PM

ptg11524036

282 Chapter 12 Tables in iOS: Navigation and Information Display

 Figure 12.9 Displaying an Alert View.

 Implement tableView:didSelectRowAtIndexPath: as shown in Listing 12.10 to show the
Alert View when a row is tapped.

 Listing 12.10 Showing an Alert View When User Selects a Row

 - (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:(NSIndexPath
➥*)indexPath
 {
 int selectedRow = [indexPath row];
 selectedContact = [contacts objectAtIndex :selectedRow];
 UIAlertView *alert = [[UIAlertView alloc] //1
 initWithTitle : @"Contact Selected" //2
 message :[NSString //3
 stringWithFormat : @"Selected row: %d (%@)" ,
 selectedRow, selectedContact . contactName]
 delegate : self //4
 cancelButtonTitle : @"OK" //5

97803e21947864_Book 1.indb 282 11/21/13 2:57 PM

ptg11524036

283Setting Up Tables

 otherButtonTitles : @"Show Details" , nil]; //6
 [alert show]; //7
 }

 The method starts by getting the selected row and the contact object associated with that row.
Then it sets up the Alert View.

 1. Create the Alert View object.

 2. Pass in a title for the Alert View.

 3. The message is shown below the title. This uses the stringWithFormat: method to
concatenate a string based on the selected row and the name of the selected contact.

 4. Set the Alert View’s delegate to the table view controller. This enables the table view
controller to take action when a button is pressed in the alert view, as you will see a little
later.

 5. The default button is called the Cancel button. This statement sets the title for that
button to OK.

 6. Additional buttons can be set up by giving them a title. In this case, there’s just one
other button. If you needed more buttons, you can list their titles separated by commas
before the nil.

 7. Show the alert view on the screen.

 To distinguish between the buttons and take appropriate action, implement the
 UIAlertViewDelegate protocol by adding <UIAlertViewDelegate> to the @interface line
in LMAContactsTableController.h, like this:

 @interface LMAContactsTableController : UITableViewController <UIAlertViewDelegate>

 Then you can implement the delegate method alertView:clickedButtonAtIndex: in
LMAContactsTableController.m, as shown in Listing 12.11 .

 Listing 12.11 Taking Action When User Selects a Button in Alert View

 -(void) alertView:(UIAlertView *)alertView
 ➥clickedButtonAtIndex:(NSInteger)buttonIndex{
 if (buttonIndex == 1){ //1
 LMAContactsController * controller = [self . storyboard //2
 ➥instantiateViewControllerWithIdentifier: @"contactController"];
 NSIndexPath *selectedPath = [self . tableView indexPathForSelectedRow];
 Contact *selectedContact = [contacts objectAtIndex:[selectedPath row]];
 controller .contact = selectedContact ;
 [self . navigationController pushViewController:controller animated: YES]; //3
 }
 }

97803e21947864_Book 1.indb 283 11/21/13 2:57 PM

ptg11524036

284 Chapter 12 Tables in iOS: Navigation and Information Display

 This method is executed whenever the user taps a button in the Alert View. It will then create
the View Controller object, determine the object that was selected, and then push the View
Controller onto the navigation stack.

 1. Check the buttonIndex , which is passed to the delegate method from the Alert View.
The buttonIndex indicates which button was pressed. The cancelButton is index 0 (in
this case, the OK button is the cancel button), and the rest of the buttons are numbered
as they are listed in otherButtonTitles . That means that the Show Details button has
index 1. When this button is tapped, the method sets up the Contacts Controller and
populates with the currently selected contact object.

 2. This line creates an instance of LMAContactsController based on an identifier
entered in Storyboard. You will see in the following section how to set the identifier in
Storyboard.

 3. Push the view controller onto the navigation stack in an animated fashion.

 To set the identifier for the Contact Controller, open Storyboard and select the Contact screen’s
view. In the Identity Inspector, set the Storyboard ID to contactController and check Use
Storyboard ID (see Figure 12.10).

 Now you can run the app, and the alert view should work as expected.

 Figure 12.10 Setting the Storyboard ID for the view controller.

97803e21947864_Book 1.indb 284 11/21/13 2:57 PM

ptg11524036

285Setting Up Tables

 Show Subtitles in the Table
 With the full object available in the table, you can now add a subtitle to the table display. To
do this, you need to change the cell style and specify what text to show as the subtitle.

 1. Select the Prototype Cell in Storyboard and change the Style in Attributes Inspector to
Subtitle.

 2. Add line 1 in tableView:cellForRowAtIndexPath: in LMATableContactsController, as
shown in Listing 12.12 .

 Listing 12.12 Setting the Subtitle for the Table

 - (UITableViewCell *)tableView:(UITableView *)tableView
 ➥cellForRowAtIndexPath:(NSIndexPath *)indexPath
 {
 static NSString *CellIdentifier = @"ContactsCell" ;
 UITableViewCell *cell = [tableView
 ➥ dequeueReusableCellWithIdentifier :CellIdentifier forIndexPath :indexPath];

 // Configure the cell...
 Contact *contact = [contacts objectAtIndex :[indexPath row]];
 cell. textLabel . text = [contact contactName];
 cell. detailTextLabel . text = [contact city]; //1
 return cell;
 }

 Running the app will now show the city as well as the name of the contact.

 iOS Versus Android: Creating Tables
 Creating a table like the one shown in this chapter takes quite a bit more work on Android,
because much more of the design and coding has to be done manually. On Android, there isn’t
a ready-made table with editing capability as you have seen here. Instead, the Android devel-
oper needs to design and create similar functionality from scratch.

 Although the iOS controls provide a lot of functionality, and can be customized, you do have
less freedom than what is available in Android.

 Sort the Table
 One of the features of MyContactList is to be able to sort the table by different criteria as speci-
fied on the Settings screen. The code changes to enable sorting are relatively minor because the
Core Data framework handles the heavy lifting. You need to import Constants.h and then
make changes to loadDataFromDatabase : in LMAContactsTableController.m, as shown in
 Listing 12.13 .

97803e21947864_Book 1.indb 285 11/21/13 2:57 PM

ptg11524036

286 Chapter 12 Tables in iOS: Navigation and Information Display

 Listing 12.13 Enable Sorting of the Table

 - (void) loadDataFromDatabase
 {
 //read settings to enable sorting
 NSUserDefaults *settings = [NSUserDefaults standardUserDefaults]; //1
 NSString *sortField = [settings stringForKey : kSortField]; //2
 bool sortAscending = [settings boolForKey : kSortDirectionAscending]; //3

 //Set up App delegate and Core Data Context
 appDelegate = [[UIApplication sharedApplication] delegate];
 context = [appDelegate managedObjectContext];
 //Set up Request
 NSEntityDescription *entityDescription = [NSEntityDescription
 entityForName : @"Contact"
 inManagedObjectContext : context];
 NSFetchRequest *request = [[NSFetchRequest alloc] init];
 [request setEntity :entityDescription];
 //Specify sorting
 NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc] //4
 initWithKey :sortField
 ascending :sortAscending];
 NSArray *sortDescriptors = [[NSArray alloc] //5
 initWithObjects : sortDescriptor, nil] ;
 request.s ortDescriptors = sortDescriptors]; //6
 NSError *error;
 //Execute request
 contacts = [[NSArray alloc]
 initWithArray :[context executeFetchRequest :request
 error :&error]];
 }

 Before making these changes, you also need to import Constants.h .

 1. Get a reference to the default settings file.

 2. Retrieve the sort field from the settings file using the key defined in the Constants file.

 3. Retrieve the sort direction field from the settings file using the key defined in the
Constants file.

 4. NSSortDescriptor is a class that contains instructions on how to order objects. By
passing in the sort field and whether to sort in ascending or descending order, the fetch
request will use these instructions to do the actual sorting.

 5. You can create multiple sort descriptors, which will then be applied in the order listed
in this array. This would allow for sorting by one field first and then another field (for
example, sort by name within city). In this case, there’s only one sort field, so the array
contains only one object.

97803e21947864_Book 1.indb 286 11/21/13 2:57 PM

ptg11524036

287Setting Up Tables

 6. Add the sort descriptors to the array.

 7. Execute the fetch request as before to populate the contacts array.

 This is all the code we need to be able to sort the data based on the user selections on the
Settings screen. However, if you run the app now, it will promptly crash with a message
like this:

 *** Terminating app due to uncaught exception 'NSInvalidArgumentException', reason:
'keypath City not found in entity <NSSQLEntity Contact id=1>'

 The reason for this is that when we stored the sort fields in the previous chapter, they were
stored with uppercase initial letters (hence ‘City’ in the error message). However, attributes in
Core Data are always stored with lowercase. To fix this, you need to make sure that everywhere
there’s code to store the sort fields that they are stored in lowercase. There are two places to
make the fix: First, in viewDidLoad : in LMASettingsController.m the sort fields are added to
the sortOrderItem array. Change these to lowercase, like this:

 sortOrderItems = @[@"contactName", @"city", @"birthday"] ;

 Second, in application:didFinishLaunchingWithOptions: in LMAAppDelegate.m, there’s
a check for whether the sort field is nil, and if not, the sort field is stored as City . Change this
to lowercase:

 if ([settings objectForKey : kSortField] == nil) {
 [settings setObject : @"city" forKey : kSortField];
 }

 These are all the code changes needed. However, the app still crashes with the same error
message, because the value in the Plist file wasn’t changed.

 There are a couple of ways to fix it:

 1. Delete the Plist file from the app’s directory in the simulator (~/Library/Application
Support/iPhone Simulator/...). This causes it to be re-created with default values on the
next launch.

 2. Edit the Plist file and change the value of the sort field. The file is in the app’s /Library/
Preferences folder and can be edited by right-clicking in Finder and selecting Open With
> Xcode. Then you can click the sortField entry and change its value.

 3. Comment out the line of code in loadDataFromDatabase : that applies the sort
descriptor to the fetch request (item 6 in Listing 12.12). Then run the app and change
the settings so the proper value is stored in the file. Then uncomment the sorting again
in code and launch the app again.

 You can choose whichever approach you prefer. Run the app and check that the sorting works
as intended.

97803e21947864_Book 1.indb 287 11/21/13 2:57 PM

ptg11524036

288 Chapter 12 Tables in iOS: Navigation and Information Display

 Summary
 Congratulations! You have mastered one of the most important parts of developing apps for
the iPhone: Navigation using tables. In addition, you saw how to integrate tables with data
stored in Core Data. Like so many other aspects of iOS development, it is crucial to know
which methods to override to make the built-in functionality work to do what you want
it to do.

 Exercises
 1. Change the cell layout to use the other two styles.

 2. Expand the settings screen to allow for specifying two sort fields. Then have the sorting
be done by first one and then the other field.

 3. Choose different fields from the Contact class to display in the table.

 4. Change the display in the table to be on this form:

 Main label: Superman from Metropolis. Detail Label: Born on: April 18, 1938.

 5. Find a way to have the picker for the sort field display the fields with uppercase words
and the name as Contact Name, rather than contactName.

97803e21947864_Book 1.indb 288 11/21/13 2:57 PM

ptg11524036

 13
 Maps and Location in iOS

 To truly realize the benefits of mobile computing, you will often want to take advantage of the device’s
capability to know where it is located and display maps of information to the user. Knowing the loca-
tion of the device can be useful to many types of apps, but the precision needed for the location will be
very different for various types of apps. For instance, an app used to let users track the route of their
exercise run will need much more detailed location data than an app showing a user the nearest movie
theater.

 This chapter examines some of the powerful tools that the iOS platform provides to help you work with
location and map data. The chapter covers how to expand My Contact List to find the current location
of the user, do both forward and reverse geocoding (translate between coordinates and addresses), and
plot multiple locations on a map.

 Overview of Location and Mapping
 iOS has very strong and integrated support for location and mapping. This support includes
several hardware sensors, such as GPS, Wi-Fi and cellular radios, as well as software frameworks
that make it easy for you as a programmer to access the information from the hardware.

 Hardware and Sensors
 Different devices running iOS will have different hardware sensors to provide location data.
The most accurate sensor for outdoor use is the GPS, which can provide accuracy down to a
few meters, but it isn’t available on iPod touch or the Wi-Fi iPad versions. The iPhone and 3G
iPad can also take advantage of cell tower triangulation, and all devices can use the location of
Wi-Fi access points to provide location data. Some devices also have a GPS and altimeter built
in to provide data on where the device is headed and how high it is above or below sea level.
Whenever a location or heading is reported, it also reports an accuracy that you can use to
understand the quality of the data received.

97803e21947864_Book 1.indb 289 11/21/13 2:57 PM

ptg11524036

290 Chapter 13 Maps and Location in iOS

 As a developer, you don’t decide which sensors to use, but you should understand that differ-
ent devices may not provide the same level of accuracy, which may impact the way your app
works. Further, the user also has the option of turning off location services entirely. And,
because this is a device setting that can be controlled by Parental Controls, some users may not
be able to turn on location services. You should design your app to take all these things into
account and provide a good experience to the user.

 Core Location
 Apple provides two frameworks for working with location: Core Location and MapKit. Core
Location allows for finding and working with current location and heading information. In
addition, Core Location also lets you set up geographic regions (called geo fences) to help you
take action when the device enters or leaves a region. The framework uses the available hard-
ware sensors to provide location data as close as possible to the accuracy you have requested.
In addition, Core Location also handles geocoding, which allows for translation between a
geographic point and an address, or vice versa. Geocoding requires an active Internet connec-
tion because the lookup between address and coordinate is done by Apple’s servers. All Core
location classes are prefixed with CL.

 MapKit
 For displaying a map, Apple provides the MapKit framework, which uses Apple’s mapping
service and lets you very easily display a map, detect the user’s location, add overlays, and plot
any location on the map using different kinds of pins and callouts. The map can also perform
reverse geocoding. All the MapKit classes are prefixed with MK.

 iOS Versus Android: Setting Up to Use Maps
 There’s quite a bit more work in setting up to work with maps on Android. Whereas iOS comes
bundled with all the necessary frameworks and libraries, on Android, the developer needs to
download the Google Play SDK and register for a Google Maps API key.

 By registering for an API key, any hits to the Google Maps API can be associated with a par-
ticular app. With its integrated set of offerings, Apple has made it simpler for developers to
get started with development. However, in the end, the result is the same, because all iOS
apps have to be digitally signed, and thus Apple can associate any hits to its map API to a
particular app.

 To take advantage of this ease of use, you have to use the Apple Maps data, which was often
criticized after its initial launch, but has improved significantly since then. If you would rather
use Google Maps as the engine for mapping in your apps, you can download the Google Maps
SDK for iOS and sign up for an API key in the same way as described in Chapter 7 , “Maps and
Location in Android.”

97803e21947864_Book 1.indb 290 11/21/13 2:57 PM

ptg11524036

291Adding Location Information to the App

 Adding Location Information to the App
 Working with location data and maps on iOS is relatively simple. By tapping into the provided
frameworks, you can build powerful apps very quickly that take location data into account. You
expand the MyContactList app with a map that shows all your contacts as well as the user’s
location on a map.

 To better understand the capabilities available when working with location, the first step is to
build a temporary screen to explore the location functions before building the final app. The
Map Screen controller is used to provide the location information until it is replaced later in
the chapter with an actual map.

 Finding Location
 When working with maps, you need to use coordinates, expressed in latitude and longitude
degrees. You can find the device’s location from the sensors (GPS, cell towers, and Wi-Fi),
which give you coordinates directly. However, the coordinates are not very people-friendly, so
it’s important to be able to convert an address into coordinates. This process is called geocoding ,
and it lets you take a human-readable address and convert it to a coordinate.

 Forward Geocoding

 To demonstrate how geocoding works, you add a screen to show location data in the
MyContactList app you worked on in the previous screen. Open the project from the previous
chapter or the project for this chapter that comes with the book. Then open the Storyboard
and drag a new View Controller into the Storyboard. Change the UI to match that shown in
 Figure 13.1 . The text fields enable the user to type in a street, city, and state. When the user
taps the Address to Coordinates button, the address information will be converted to a coor-
dinate and the latitude and longitude will be output to the corresponding labels. Tapping the
Device Coordinates button will get the location of the device and output the information to
all the labels. The output labels have been given a gray background so they are visible without
content. To set up this user interface, first set up one control the way it should be, then hold
down the Option key on the keyboard and drag the control to a new location. This copies the
location with all its properties intact. You can use this to quickly create the output labels after
one is set up with the correct length and background.

 After building the UI in Interface builder, you need to add a code file for the view controller.

 1. Right-click the yellow MyContactList folder and select New File.

 2. Choose the Cocoa Touch Category and then select Objective-C Class. Click Next.

 3. For Class, enter LMALocationDemoController , and for Subclass Of enter
 UIViewController . Make sure none of the check boxes are checked, and click Next.

 4. Make sure the Target for MyContactList is selected. Click Create.

97803e21947864_Book 1.indb 291 11/21/13 2:57 PM

ptg11524036

292 Chapter 13 Maps and Location in iOS

 5. In Storyboard, select the new location view controller, and change the Class in the
Identity Inspector from UIViewController to LMALocationDemoController . Be careful
to select the top-level view controller, and not the View inside that. You should see the
entire screen has a blue frame.

 6. To add the new view controller into the Tab Bar, control-drag from the Tab Bar
Controller to the new Location View Controller and select Relationship Segue > View
Controllers in the pop-up dialog.

 7. Find the Glyphish icons you used in Chapter 10 , “iOS Navigation and Interface Design,”
and drag 71-compass.png into the images.xcassets folder.

 8. Select the Tab Bar item underneath the new Location View Controller and use the
Attributes Inspector to change the title to Location and the image to 71-compass.

 Figure 13.1 User interface for exploring Core Location.

 Now you can wire up the screen. Use the Assistant Editor to control-drag from the controls on
the screen to LMALocationDemoController.h to add outlets for the three text fields with these
names: txtStreet , txtCity , and txtState . Then add outlets for the labels with these names

97803e21947864_Book 1.indb 292 11/21/13 2:57 PM

ptg11524036

293Adding Location Information to the App

(from top to bottom): lblLatitude , lblLongitude , lblLocationAccuracy , lblHeading ,
 lblHeadingAccuracy , lblAltitude , and lblAltitudeAccuracy .

 Next, add actions for the two buttons named addressToCoordinates and deviceCoordi-
nates . Before you leave Interface Builder, you’ll need to prepare for being able to dismiss the
keyboard, so change the UIView to a UIControl and declare the dismissKeyboard : method
marked by 1 in Listing 13.1 .

 Listing 13.1 Outlets and Actions in LMALocationDemoController.h

 #import <UIKit/UIKit.h>

 @interface LMALocationDemoController : UIViewController
 @property (weak , nonatomic) IBOutlet UITextField *txtStreetAddress;
 @property (weak , nonatomic) IBOutlet UITextField *txtCity;
 @property (weak , nonatomic) IBOutlet UITextField *txtState;
 @property (weak , nonatomic) IBOutlet UILabel *lblLatitude;
 @property (weak , nonatomic) IBOutlet UILabel *lblLongitude;
 @property (weak , nonatomic) IBOutlet UILabel *lblLocationAccuracy;
 @property (weak , nonatomic) IBOutlet UILabel *lblHeading;
 @property (weak , nonatomic) IBOutlet UILabel *lblHeadingAccuracy;
 @property (weak , nonatomic) IBOutlet UILabel *lblAltitude;
 @property (weak , nonatomic) IBOutlet UILabel *lblAltitudeAccuracy;

 - (IBAction)addressToCoordinates:(id)sender;
 - (IBAction)deviceCoordinates:(id)sender;
 - (IBAction)dismissKeyboard:(id)sender; //1
 @end

 Select the Control for the Map screen in the Dock, and use the Connections Inspector to drag
from Touch Down to the icon with a white square inside a yellow circle beneath the Map
screen. Select dismissKeyboard : from the menu that pops up.

 Next, switch to LMALocationDemoController.m and implement the dismissKeyboard:
method by adding this line:

 [self . view endEditing : YES];

 Now the user interface is set up and it’s time to start work on geocoding the address. The Core
Location framework first needs to be added to your project. There are two elements to this.
First, you need to import the framework in the .m file where you will use it, by adding this
line:

 #import <CoreLocation/CoreLocation.h>

 Notice how the frameworks are imported using angle brackets, whereas your own files are
imported using quotation marks. The next step is to add the actual library files to the project.
This is done in the General settings for the project. Click the blue icon with the project name

97803e21947864_Book 1.indb 293 11/21/13 2:57 PM

ptg11524036

294 Chapter 13 Maps and Location in iOS

in the navigation pane, and then click the General tab and scroll all the way to the bottom,
where you will see a list of Linked Frameworks and Libraries. Click the + to bring up a window
where you can find the Framework you need to add. You can start typing in the search box to
narrow the list. Figure 13.2 shows the process for adding a framework.

 Figure 13.2 Adding the Core Location framework to the project.

 Note
 One of the common mistakes the beginner iOS developer makes is to add an import statement
for a framework in the code, but then forget to also add the framework file to the project. If
you do forget, your app will compile and run just fine until the user tries to access some of the
objects that use the framework. At that point, it is likely that an exception will be thrown. The
error messages can be less than helpful.

 The best recommendation, therefore, is to remember to add the framework to the project as
soon as you import the framework in the code, and test your app extensively.

 With the framework imported and added, open LMALocationDemoController.m again and
implement addressToCoordinates : as shown in Listing 13.2 .

 Listing 13.2 Forward Geocoding

 - (IBAction)addressToCoordinates:(id)sender {
 NSString *address = [NSString stringWithFormat : @"%@, %@ %@" , //1
 _ txtStreetAddress . text , _txtCity . text , _txtState . text];

97803e21947864_Book 1.indb 294 11/21/13 2:57 PM

ptg11524036

295Adding Location Information to the App

 CLGeocoder *geoCoder = [[CLGeocoder alloc] init]; //2
 [geoCoder geocodeAddressString :address completionHandler :^(NSArray //3
 *placemarks, NSError *error) {
 CLPlacemark *bestMatch = [placemarks objectAtIndex : 0]; //4
 CLLocationCoordinate2D coordinate = bestMatch. location . coordinate ; //5
 _lblLatitude . text = [NSString stringWithFormat : @"%g\u00B0" , //6
 coordinate. latitude];
 _lblLongitude . text = [NSString stringWithFormat : @"%g\u00B0" ,
 coordinate. longitude];
 }];
 }

 This code shows several interesting things, not only about location data, but also about multi-
threaded programming in iOS.

 1. This line constructs a single string containing the address information from the three
text fields. The geocoding can handle strings similar to what you would type into an
online mapping website like Google Maps. It is also possible to create a more structured
entry, called a Dictionary, to use for the lookup, but for many situations, a simple string
will do just fine.

 2. CLGeocoder is a class that is used to do both forward and reverse geocoding. This line
instantiates it.

 3. Call the method geoCodeAddressString:completionHandler: to do the actual
geocoding. This method sends the string to an Apple service across the Internet. The
results come back in an NSArray containing CLPlacemark objects. Since this method can
take a while to complete depending on Internet speeds, a completion handler will finish
the work of dealing with the results while the rest of the program continues. This ensures
that the app remains responsive during the call to the geocoding service.

 4. The result from the geocoding call is returned in an NSArray . Sometimes results can be
ambiguous and multiple results are returned. You could set up a loop to go through all
the results, but here we keep it simple and assume that the first result is good enough.

 5. The CLPlacemark object contains a large amount of information, such as state, city, and
points of interest for the location, but the actual coordinates are also stored in there.
Here, they are pulled out and stored in a CLLocationCoordinate2D , which is a simple
 struct containing latitude and longitude.

 6. The last two statements put the coordinate values in the corresponding labels. The code
 \u00B0 is the Unicode for a degree symbol that is added to the end of the numerical
value.

 If you run the app now, you can type in an address, tap the Address To Coordinates button
and get a set of coordinates. You can check the accuracy by typing the coordinates into Google
Maps to get a map of the point.

97803e21947864_Book 1.indb 295 11/21/13 2:57 PM

ptg11524036

296 Chapter 13 Maps and Location in iOS

 Note
 If your primary programming experience is from a modern object-oriented language like Java
and C#, the notion of a struct may be unfamiliar to you. The struct is in a way a precur-
sor to objects, because it is a data structure that you can define and that acts as a data
type. However, unlike objects, structs don’t have methods and are much lighter weight than
objects. They are, therefore, used in many places throughout the Cocoa framework, especially
in areas where performance is important. As an example of a struct, here is the definition of
CLLocationCoordinate2D:

 typedef struct {
 CLLocationDegrees latitude;
 CLLocationDegrees longitude;
 } CLLocationCoordinate2D;

 This defines the struct to have two data members, latitude and longitude, which are essen-
tially doubles that have been given another type name.

 Finding the Device Location

 It can be very useful in many apps to find the location of the device. The location is available
through a CLLocationManager object, which acts as an interface to the sensors that measure
both location and heading (compass) information.

 1. Open LMALocationDemoController.h and use the assistant editor to move the import
statement for CoreLocation from the .m file to the .h file.

 2. Change the @interface line in LMALocationDemoController.h by specifying it should
implement CLLocationManagerDelegate:

 @interface LMALocationDemoController : UIViewController
 <CLLocationManagerDelegate>

 3. Switch to the .m file and add a class variable between @end and @implementation to
hold a reference to a CLLocationManager object:

 CLLocationManager *locationManager;

 4. To start and stop the location manager, implement the deviceCoordinates : and
 viewDidDisappear : methods as shown in Listing 13.3 .

 Listing 13.3 Starting the Location Manager

 - (IBAction)deviceCoordinates:(id)sender {
 if (locationManager == nil) //1
 locationManager = [[CLLocationManager alloc] init];
 locationManager . delegate = self ; //2
 locationManager . desiredAccuracy = kCLLocationAccuracyHundredMeters ; //3
 locationManager . distanceFilter = 100 ; //4

97803e21947864_Book 1.indb 296 11/21/13 2:57 PM

ptg11524036

297Adding Location Information to the App

 [locationManager startUpdatingLocation]; //5
 [locationManager startUpdatingHeading]; //6
 }

 -(void)viewDidDisappear:(BOOL)animated{ //7
 [locationManager stopUpdatingLocation];
 [locationManager stopUpdatingHeading];
 }

 The Location Manager is started when the user presses the Device Coordinates button and is
stopped anytime the view disappears, to conserve battery.

 1. If the location manager object has already been created, no need to create a new object.

 2. Set the location manager’s delegate to the view controller. Later, you will see several of
the delegate methods implemented.

 3. Set the desired accuracy. Table 13.1 lists the possible values to choose from. It’s always
best to choose the least accurate option your app can use and still do what it needs to do.
This lets the system conserve battery power as much as possible.

 4. Another battery saving feature is to set up a distance filter. This indicates the distance in
meters the device has to move before an update location event is generated. Here, the
device has to move 100 meters before an update happens.

 5. This starts the location manager running and updating the location.

 6. This last statement tells the location manager to also report on changes to heading
(compass) information.

 7. The viewDidDisappear : method is called when another view moves to the foreground.
There’s no need to keep the Location Manager running when the view is no longer
visible.

 Table 13.1 Overview of Accuracy Options for Location Services. All Indicators Are Prefaced
with 'kCLLocationAccuracy'.

 Distance Indicator Precision

 BestForNavigation Use for navigation apps. Combines the highest level of accuracy with addi-
tional sensor data. Intended for use only when the device is plugged in.

 Best Highest level of accuracy.

 NearestTenMeters 10 meters.

 HundredMeters 100 meters.

 Kilometer 1 kilometer.

 ThreeKilometer 3 kilometers.

97803e21947864_Book 1.indb 297 11/21/13 2:57 PM

ptg11524036

298 Chapter 13 Maps and Location in iOS

 To take advantage of the Location Manager, you need to implement some of its delegate
methods. The first will be called whenever the device location is updated and is shown in
 Listing 13.4 .

 iOS Versus Android: Access to Hardware Location Sensors
 Android developers can choose which specific location sensor to use (GPS or network sensor),
giving some additional flexibility. In iOS, by contrast, you have seen how you can specify an
accuracy and a distance filter, but you can’t request that location data has to come from the
GPS. Instead, the operating system decides how to best achieve the desired accuracy while
balancing performance and battery usage.

 In both systems you have to be mindful of how much you use the location sensors and remem-
ber to turn off location services when not needed anymore, because they do use extra battery.

 Listing 13.4 Getting Location Updates

 -(void) locationManager:(CLLocationManager *)manager didUpdateLocations:(NSArray
 ➥*)locations{
 CLLocation *location = [locations lastObject]; //1
 NSDate * eventDate = location. timestamp ; //2
 NSTimeInterval howRecent = [eventDate timeIntervalSinceNow]; //3
 if (abs (howRecent) < 15.0) { //4
 CLLocationCoordinate2D coordinate= location. coordinate ;
 _lblLongitude . text = [NSString stringWithFormat : @"%g\u00B0" ,
 ➥coordinate. longitude]; //5
 _lblLatitude . text = [NSString stringWithFormat : @"%g\u00B0" ,
 ➥coordinate. latitude];
 _ lblLocationAccuracy. text = [NSString stringWithFormat : @"%gm" ,
 ➥location. horizontalAccuracy]; //6
 _ lblAltitude. text = [NSString stringWithFormat : @"%gm" ,
 ➥location. altitude]; //7
 _ lblAltitudeAccuracy. text = [NSString stringWithFormat : @"%gm" ,
 ➥location. verticalAccuracy];
 }
 }

 Whenever the Location Manager updates the location of the device, it calls the
locationManager:didUpdateLocations : method. Because some time may have passed since
the last call to the method, several locations may be available in the locations array. The most
recent location is in the last position in the array.

 1. Get the most recent location from the array.

 2. Get the timestamp for the most recent location.

 3. Find out how old the location is in seconds.

97803e21947864_Book 1.indb 298 11/21/13 2:57 PM

ptg11524036

299Adding Location Information to the App

 4. Take action only if the location is less than 15 seconds old. This ensures that old data
isn’t used to update the UI. How old of data you can live with, of course, depends on the
purpose of the app.

 5. Update the labels in the UI with the coordinates.

 6. Accuracy is reported in much the same way as the coordinates. It gives you the radius in
meters of the circle within which the device may be found. The coordinates indicate the
center of the circle.

 7. The Location Manager also reports altitude in meters above or below sea level, as well as
vertical accuracy in meters to this number.

 To get the heading (compass) information for the device, you implement the
locationManager:didUpdateHeading : method, as shown in Listing 13.5 .

 Listing 13.5 Getting Heading Updates

 -(void)locationManager:(CLLocationManager *)manager
 ➥didUpdateHeading:(CLHeading *)newHeading
 {
 if (newHeading. headingAccuracy > 0){ //1
 CLLocationDirection theHeading = newHeading. trueHeading ; //2
 _ lblHeading . text = [NSString stringWithFormat : @"%g\u00B0" , theHeading]; //3
 _ lblHeadingAccuracy . text = [NSString stringWithFormat : @"%g\u00B0" ,
 ➥newHeading. headingAccuracy];
 }
 }

 This method works in the same way as the location updates and is called whenever the heading
information for the device is updated.

 1. In this case, the accuracy is checked to see if it’s valid. The heading information can be
invalid if the device isn’t calibrated or if there is strong interference from local magnetic
fields.

 2. The CLHeading object contains information about both the magnetic heading and the
true heading. In this case, we use the true heading.

 3. The last two lines update the labels with the heading and accuracy. The accuracy is
reported as the number of degrees the heading may be off in either direction (for
example, if the heading is reported as 300 degrees and accuracy as 10 degrees, the actual
heading may be anywhere from 290 to 310 degrees.

 The last delegate method to implement deals with error conditions and is shown in
 Listing 13.6 .

97803e21947864_Book 1.indb 299 11/21/13 2:57 PM

ptg11524036

300 Chapter 13 Maps and Location in iOS

 Listing 13.6 Handling Errors from the Location Manager

 -(void) locationManager:(CLLocationManager *)manager didFailWithError:(NSError
 ➥*)error{
 NSString *errorType = (error. code == kCLErrorDenied) ? @"Access Denied" : //1
 ➥@"Unknown Error" ;
 UIAlertView *alert = [[UIAlertView alloc] //2
 initWithTitle : @"Error Getting Location"
 message :errorType
 delegate : nil
 cancelButtonTitle : @"OK"
 otherButtonTitles : nil];
 [alert show]; //3
 }

 The locationManager:didFailWithError : method is called if the location manager encoun-
ters an error situation. In this case, the app shows an Alert View, but in a more realistic app,
you would want to deal with this in a more intelligent way.

 1. The most common error situation is that the user has turned off Location Services. You
can check for this by looking at error.code . If this is set to kCLErrorDenied , then
Location Services is turned off for the app or the entire device. This statement uses a
conditional assignment statement to assign one of two literal strings to the errorType
variable.

 2. Create the alert view with the error type as the message.

 3. Show the Alert View.

 Now you can run the app and test that it can find the location of the device. The location
information can be tested in the simulator by selecting Debug > Location and choosing one of
the options for locations. The default is Apple, which is the location of Apple’s headquarters
in Cupertino, CA. Custom Location lets you enter a set of coordinates yourself. The remain-
ing options simulate a moving device at various speeds. Try them out and see what they do.
Unfortunately, none of the options provide heading or altitude information. These need to be
tested on an actual device.

 This section showed the standard Location Services, but you can also use the significant-change
location service, which relies only on cell tower placement to provide location updates when
the user has moved a significant distance. This option uses much less battery and also allows
the app to monitor locations in the background.

 Adding a Map
 Next, you see how to add a map and get location information directly from the map, as well as
how to display the location of the contacts in the database on the map.

97803e21947864_Book 1.indb 300 11/21/13 2:57 PM

ptg11524036

301Adding Location Information to the App

 1. Select the Map View Controller in Storyboard and delete the Label and UITextView .

 2. Add a new view controller to hold the map by dragging a View Controller from the
Object Library to the Storyboard.

 3. Drag a Map View from the Object Library to the Map View Controller. It should expand
to fill the entire space available. Use the blue guidelines to center the Map View inside
the View Controller.

 4. Open LMASecondViewController.h and right-click LMASecondViewController in the
@ interface line. Select Refactor > Rename.

 5. Change the name to LMAMapController , and make sure Rename Related Files is
checked. Click Preview. If you’re asked, click OK to Enable Snapshots.

 6. The next screen shows all the files that will be changed (see Figure 13.3). Click Save.

 Figure 13.3 Renaming the map controller.

 Next, add the MapKit framework to the project following the instructions earlier in the chapter
for adding the CoreLocation framework (Figure 13.2). You can now run the app, and the map
shows up in the map screen, but it is zoomed out very far. However, you can interact with the
map just like the regular Maps app by zooming, scrolling, and the like.

 If you want to show the user’s location on the map, you can go back into the Attributes
Inspector for the map and check the box to Show User Location. If you run the app again, you
will see a blue dot where the user is located (by default at Apple in California). Try zooming
in close enough to see city streets and then select Debug > Location > Freeway Drive. You will
now see the blue dot moving as the device movements are simulated. To zoom in, using the
Simulator, hold down the Option key while clicking on the map, and you will get two gray
dots that simulate a user with two fingers on the screen.

97803e21947864_Book 1.indb 301 11/21/13 2:57 PM

ptg11524036

302 Chapter 13 Maps and Location in iOS

 Although it is very easy to show the user’s location on the map like this, it is also very limited,
because you won’t be able to do anything with it beyond showing the location. For instance,
later in the chapter you learn how to add a description of the user’s location to the map. To do
this, and other more sophisticated operations with the map, you need to add an outlet for the
map. Just control-drag as usual to the .h file and add an outlet named mvMap . You also need to
import the MapKit framework in the .h file.

 There are a few ways to display the user’s location on the map. The simplest is to enable user
tracking. This is one line of code that will show the user’s location and keep the map centered
and zoomed in on that location:

 [_ mvMap setUserTrackingMode: YES];

 This could go in viewWillAppear : and then as soon as the map is displayed, it will zoom in on
the user’s location.

 For more sophisticated operations, you need to implement the MKMapViewDelegate protocol,
which allows you to be notified of updates to the map, including the user’s location. To display
a map that’s zoomed in on the user’s current location, follow these steps:

 1. Specify that LMAMapController should implement MKMapViewDelegate
protocol by adding <MKMapViewDelegate> to the end of the @interface line in
LMAMapController.h.

 2. In viewDidLoad :, set the map to show the user’s location and set the delegate of the map
view to be the map view controller:

 _mvMap.showsUserLocation = YES ;
 _mvMap.delegate = self ;

 3. In LMAMapController.m, implement mapView:didUpdateUserLocation : as shown in
 Listing 13.7 .

 When running the app, you can see that it shows the user’s location and zooms in to where
you can see the city level. If it doesn’t seem to be working, go to Debug > Location in the
Simulator and make sure it isn’t set to None .

 Listing 13.7 Display the User’s Location on the Map

 -(void)mapView:(MKMapView *)mapView didUpdateUserLocation:(MKUserLocation *)
 ➥userLocation
 {
 CLLocationCoordinate2D location; //1
 location = userLocation. coordinate ;
 MKCoordinateSpan span; //2
 span. latitudeDelta = .5 ;
 span. longitudeDelta = .5 ;
 MKCoordinateRegion viewRegion = MKCoordinateRegionMake (location, span); //3
 [_ mvMap setRegion :viewRegion animated : YES]; //4
 }

97803e21947864_Book 1.indb 302 11/21/13 2:57 PM

ptg11524036

303Adding Location Information to the App

 1. The first few lines convert the location data in the MKUserLocation object that the map
passes in to a CLLocationCoordinate2D that is needed to provide the center point for
the visible region of the map.

 2. The span is used to indicate how many degrees are visible on the map. This is used to
specify the zoom level. The lower the span numbers, the farther the map is zoomed in.
You may very well need small fractional numbers to see a city-street level map. There are
several other ways you can use to set the zoom level of the map. One common approach
is to use a statement like this to define the visible region:

 viewRegion = MKCoordinateRegionMakeWithDistance(location, 10000, 10000);

 This sets the view region to 10,000 meters on either side of the user’s location. You can
read Apple’s Location Awareness Programming Guide for more detail on how to work
with location data.

 3. The region is the rectangle that indicates the visible area on the map. This line creates
the region based on the center location and the span.

 4. Finally, the region is applied to the map.

 Adding Annotations to the Map

 One of the nice features of Map Kit is the capability to show an exact location on the map with
a pin. These pins are called annotations, and you can add as many as you need to the map.
Annotations are created in a class that implements the MKAnnotation protocol, so start by
adding a new Objective-C class called LMAMapPoint as a subclass of NSObject . Open the new
.h file and change it as shown in Listing 13.8 .

 Listing 13.8 LMAMapPoint.h

 #import <Foundation/Foundation.h>
 #import <MapKit/MapKit.h>

 @interface LMAMapPoint : NSObject < MKAnnotation > //1
 @property (nonatomic , readonly) CLLocationCoordinate2D coordinate; //2
 @property (nonatomic , readonly , copy) NSString *title;
 @property (nonatomic , readonly , copy) NSString *subtitle;
 -(id) initWithCoordinate:(CLLocationCoordinate2D) location //3
 title:(NSString *) contactName
 subtitle:(NSString *) address;
 @end

 This sets up the interface for the MapPoint class, which will be used to store the annotation for
a single point on the map.

 1. The last item in this line specifies that the class implements the MKAnnotation protocol.
This protocol specifies three properties used to describe the annotation.

97803e21947864_Book 1.indb 303 11/21/13 2:57 PM

ptg11524036

304 Chapter 13 Maps and Location in iOS

 2. The three properties are coordinate , title , and subtitle . It’s important to spell the
names of the properties correctly, as they are defined in the protocol. The only required
property is coordinate, so this is the only one the compiler will complain about if you
misspell it. If either of the other two are misspelled, the annotation just won’t show up.

 3. This method will be used to initialize the MapPoint with data for the three properties.
Because the properties are read-only, they cannot be changed after they have been set.

 Next, implement the .m file as shown in Listing 13.9 .

 Listing 13.9 LMAMapPoint.m

 #import "LMAMapPoint.h"

 @implementation LMAMapPoint

 - (id) init
 {
 self = [super init];
 if (self){
 //Initialization code
 }
 return self ;
 }

 -(id) initWithCoordinate:(CLLocationCoordinate2D)location title:(NSString
 ➥*)contactName subtitle:(NSString *)address
 {
 self = [self init];
 if (self)
 {
 _ coordinate = location;
 _ title = contactName;
 _ subtitle = address;
 }
 return self ;
 }

 @end

 Most of the code in this file is very straightforward and shouldn’t require any explanation.
There are two simple methods for initializing the object.

 Now, to have the annotation for the user’s location show up on the map, you need to add an
import statement for LMAMapPoint.h to LMAMapController.m and add a few lines of code to
 mapView:didUpdateUserLocation : as shown in Listing 13.10 .

97803e21947864_Book 1.indb 304 11/21/13 2:57 PM

ptg11524036

305Adding Location Information to the App

 Listing 13.10 Adding an Annotation for the User’s Location to the Map

 -(void)mapView:(MKMapView *)mapView didUpdateUserLocation:(MKUserLocation
 ➥*)userLocation
 {
 CLLocationCoordinate2D location;
 location = userLocation. coordinate ;
 MKCoordinateSpan span;
 span. latitudeDelta = .5 ;
 span. longitudeDelta = .5 ;
 MKCoordinateRegion viewRegion = MKCoordinateRegionMake (location, span);
 [_ mvMap setRegion :viewRegion animated : YES];
 LMAMapPoint *mp = [[LMAMapPoint alloc] initWithCoordinate :location //1
 title : @"You"
 subtitle : @"Are here"];
 [_ mvMap addAnnotation :mp]; //2
 }

 You need to add the last two lines in the method.

 1. Create the LMAMapPoint object with the user’s location and two literal string values for
title and subtitle.

 2. Add the annotation to the map.

 You can run the app, and you should see the result in Figure 13.4 (with the simulated location
set to Apple, and after clicking the pin).

 Display Contacts on the Map

 The last piece of functionality to add to the app is the capability to plot the contacts on the
map. To do this, you will need to add a property to the map controller to hold the array of all
the contacts in the database, populate the array from the database, and then use a loop to look
up the location of each contact and annotate locations for them on the map. This section goes
through each of those steps.

 First, open LMAMapController.h and add the following line after the other @property
statement:

 @property (nonatomic) NSArray *contacts;

 This creates the property to hold an NSArray of all the contacts to be displayed. To popu-
late the array, add import statements to import LMAAppDelegate.h and Contact.h in
LMAMapController.m, then add the viewWillAppear : method as shown in Listing 13.11 .

97803e21947864_Book 1.indb 305 11/21/13 2:57 PM

ptg11524036

306 Chapter 13 Maps and Location in iOS

 Listing 13.11 Adding Annotations for All Contacts

 -(void)viewWillAppear:(BOOL)animated{

 LMAAppDelegate *appDelegate = [[UIApplication sharedApplication] delegate]; //1
 NSManagedObjectContext *context = [appDelegate managedObjectContext];
 //Set up request
 NSEntityDescription *entityDescription = [NSEntityDescription
 ➥ entityForName : @"Contact"
 ➥inManagedObjectContext :context];
 NSFetchRequest *request = [[NSFetchRequest alloc] init];
 [request setEntity :entityDescription];
 NSError *error;

 _contacts = [[NSArray alloc]
 initWithArray :[context executeFetchRequest :request
 ➥ error :&error]];

 Figure 13.4 Map with an annotation for the user’s current location.

97803e21947864_Book 1.indb 306 11/21/13 2:57 PM

ptg11524036

307Adding Location Information to the App

 //find location for all contacts
 for (Contact *contact in _contacts) { //2
 NSString *address = [NSString stringWithFormat : @"%@, %@ %@" ,
 ➥contact. streetAddress , contact. city , contact. state];
 //geocoding
 CLGeocoder *geoCoder = [[CLGeocoder alloc] init]; //3
 [geoCoder geocodeAddressString :address completionHandler :^(NSArray
 ➥*placemarks, NSError *error) {
 CLPlacemark *bestMatch = [placemarks objectAtIndex :0];
 //set up annotation
 CLLocationCoordinate2D coordinate = bestMatch. location . coordinate ;
 LMAMapPoint *mp = [[LMAMapPoint alloc] //4
 initWithCoordinate :coordinate
 title :contact. contactName
 subtitle :contact. streetAddress];
 [_mvMap addAnnotation :mp];
 }];
 }
 }

 There’s no new code here. You’ve seen all of it in previous listings, so just a high level descrip-
tion of what’s going on here follows.

 1. This section pulls in all the contacts from the database.

 2. Set up a loop to go through all the contacts in the array, and set up an address string for
each of them.

 3. Use CLGeocoder to look up the location of each address.

 4. Create a map point for each contact, and send it the location of the contact, the name,
and the street address to use for the annotation, and then display the annotation on the
map.

 If you run the app, be sure to have a few contacts in the database with address, city, and state
included. You should then see a pin for each contact on the map, and tapping the pin should
bring up the contact’s name and street address.

 Switch Between Map Types

 You can display the map as standard, satellite, or hybrid. To demonstrate how to set the map
type, you add a segmented control to the top of the display to allow the user to choose which
map type to display.

 1. Open Storyboard and add a segmented control to the top of the map screen. You can
add it right on top of the map, which would allow you to programmatically hide it at
some point and then have the map take up more of the screen. You should make sure it
is added below the status bar. Stretch the control to go across the entire screen and then

97803e21947864_Book 1.indb 307 11/21/13 2:57 PM

ptg11524036

308 Chapter 13 Maps and Location in iOS

rename the segments, Standard, Hybrid, and Satellite, as shown in Figure 13.5 . To add
a third segment, select the segmented control in Interface Builder, then go to Attributes
Inspector and set the Segments attribute to 3.

 Figure 13.5 Segmented control to choose map type.

 2. Add an outlet for the segmented control, named sgmtMapType .

 3. Add an action for the segmented control named mapTypeChanged .

 4. Implement the mapTypeChanged : method in LMAMapController.m as shown in
Listing 13.12 .

 Listing 13.12 Changing the Map Type

 - (IBAction)mapTypeChanged:(id)sender {
 switch (_ sgmtMapType . selectedSegmentIndex) {
 case 0 :
 mvMap . mapType = MKMapTypeStandard ;

97803e21947864_Book 1.indb 308 11/21/13 2:57 PM

ptg11524036

309Exercises

 break ;
 case 1 :
 mvMap . mapType = MKMapTypeHybrid ;
 break ;
 case 2 :
 mvMap . mapType = MKMapTypeSatellite ;
 break ;
 default :
 break ;
 }
 }

 Summary
 Maps and location are very important for many mobile applications, so having a solid under-
standing of how to integrate these features into your apps is crucial to becoming a professional
mobile developer. In this chapter you saw many of the techniques and learned the skills neces-
sary to create location-aware apps. However, there’s much more to learn in this area, so you
should keep studying Apple’s documentation on maps and location programming.

 Exercises
 1. Add a control to allow the user to change the accuracy setting for the sensor and notice

how the output changes when moving about using different settings.

 2. The app now has database access code in several view controllers. To support a cleaner
design, add a database access class that controls all access to Core Data and provides
useful methods and properties to the rest of the app.

 3. Turn off the user’s permission to access location for the App (in the Simulator, go to
Settings > Privacy > Location). Run the app again and observe what happens. Is this
appropriate behavior? How could it be improved?

 4. What would happen if the code in Listing 13.10 was placed in viewDidLoad : instead of
 viewWillAppear :?

 5. Change the text displayed on the pin to include the City for the contact.

97803e21947864_Book 1.indb 309 11/21/13 2:57 PM

ptg11524036

This page intentionally left blank

ptg11524036

 14
 Access to Hardware and

Sensors in iOS

 A big part of the promise of mobile computing is that the mobile devices today offer features that aren’t
available in any other general-purpose computing devices. Besides mobility, the availability of hardware
sensors on the device is what makes it possible to create truly innovative solutions that would not be
possible otherwise.

 This chapter demonstrates several approaches to interacting with the hardware on the device.

 ■ You can use UIDevice to get basic information about the device, including OS Version and its
current orientation (Landscape, Portrait, and so on).

 ■ The Notification Center can be used to get regular updates on the state of the battery, including
charge level and whether the device is plugged in.

 ■ A simple approach to taking a picture is to use a ready-made view controller that allows for
taking still pictures or videos.

 ■ The phone and messaging (SMS) system can be opened using a URL that will send data to a
default app for a variety of functions on the phone (including the browser and email).

 ■ Finally, you can use the powerful Core Motion framework to detect and work with a range of
sensors on the device, including accelerometer, magnetometer, and gyroscope.

 Knowing how to interact with the hardware on the device is an important step toward being able to
create apps that take advantage of the full promise of mobile computing. This will allow you to create
systems that could not have been possible without a capable mobile device.

 Getting Device Information
 One of the basic ways to interact with the hardware on the device is to retrieve data about the
device itself. In iOS, the device is represented by the UIDevice class, which contains informa-
tion about the device itself, such as its assigned name, operating system version, and device

97803e21947864_Book 1.indb 311 11/21/13 2:57 PM

ptg11524036

312 Chapter 14 Access to Hardware and Sensors in iOS

model (iPad, iPhone, iPod touch). The class also can tell you the orientation of the device
(portrait and landscape) and provide status on the battery and the proximity sensor (whether
the phone is close to the face of the user).

 Listing 14.1 shows some of the ways you can use the UIDevice class. Later sections in this
chapter contain other examples of interacting with this data.

 Listing 14.1 Getting Information About the Current Device

 - (void)viewWillAppear:(BOOL)animated
 {
 UIDevice *device = [UIDevice currentDevice]; //1
 NSLog (@"Device Info:");
 NSLog (@"Name: %@" , device. name); //2
 NSLog (@"Model: %@" , device. model); //3
 NSLog (@"System Name: %@" , device. systemName); //4
 NSLog (@"System Version: %@" , device. systemVersion); //5
 NSLog (@"Identifier: %@" , device. identifierForVendor); //6
 NSString *orientation;
 switch (device. orientation) { //7
 case UIDeviceOrientationFaceDown :
 orientation = @"Face Down" ;
 break ;
 case UIDeviceOrientationLandscapeLeft :
 orientation = @"Landscape Left" ;
 break ;
 case UIDeviceOrientationPortrait :
 orientation = @"Portrait" ;
 break ;
 case UIDeviceOrientationFaceUp :
 orientation = @"Face Up" ;
 break ;
 case UIDeviceOrientationLandscapeRight :
 orientation = @"Landscape Right" ;
 break ;
 case UIDeviceOrientationPortraitUpsideDown :
 orientation = @"Portrait Upside Down" ;
 break ;
 case UIDeviceOrientationUnknown :
 orientation = @"Unknown" ;
 break ;
 default :
 break ;
 }
 NSLog (@"Orientation: %@" , orientation);
 }

97803e21947864_Book 1.indb 312 11/21/13 2:57 PM

ptg11524036

313Getting Device Information

 You can add this code to viewDidAppear: in LMASettingsController.m, so it runs every time
the Settings screen is selected. The code gets several pieces of information about the device and
prints it to the console to demonstrate what you can find out about the user’s device.

 1. Get a reference to the device object. Notice that you can’t instantiate the object; you just
get a reference to it.

 2. This is the name the user has given to the device. You could use this if your app might
run on several of the user’s devices and you need to provide an easy way for the user to
distinguish among them.

 3. The model of the device, such as iPhone and iPad.

 4. The name of the OS, such as iPhone OS.

 5. OS Version number.

 6. Unique identifier of the app for the vendor. All apps from the same vendor running on
one device will have the same value. But the same app on different devices owned by the
same user will have different values. You can use this identifier to uniquely identify the
devices your app is running on. If a user deletes all your apps and then installs one again,
the value will change.

 7. The orientation of the device. A switch statement is used to identify all the ways the
device can be oriented. Note that the value of this property is of the physical device,
regardless of whether your app supports a given orientation.

 If you run the app with the code in one of the view controllers, you will likely get output like
this for running on the Simulator (time stamps removed for better readability):

 Device Info:
 Name: iPhone Simulator
 Model: iPhone Simulator
 System Name: iPhone OS
 System Version: 7.0
 Identifier: <__NSConcreteUUID 0x9a91cd0> 18F70308-D3DF-478F-9584-DF4CE5E96157
 Orientation: Unknown

 The simulator doesn’t have a physical orientation, so the orientation is reported as Unknown

 And here’s an example from running it on one of the authors’ iPhone:

 Device Info:
 Name: Jakob's iPhone
 Model: iPhone
 System Name: iPhone OS
 System Version: 7.0
 Identifier: <__NSConcreteUUID 0x2089cec0> 01FB524E-AFDC-4E6E-935A-452578FFF9C4
 Orientation: Face Up

97803e21947864_Book 1.indb 313 11/21/13 2:57 PM

ptg11524036

314 Chapter 14 Access to Hardware and Sensors in iOS

 Monitoring Battery Status
 One of the hardware devices available through UIDevice is the battery. Although the user
always has a battery meter in the status bar of the device, you can use access to the battery
information in various ways in your app, such as not starting certain operations if the battery is
really low or requiring the device to be plugged in to execute something that is likely to drain
the battery significantly.

 The pattern for checking the battery is instructive and is used in other situations when develop-
ing for iOS. To access the battery information, you set up an NSNotificationCenter object,
which provides a mechanism for broadcasting information within a program. In this case,
you will set up a view controller to be an observer to changes in either the charge level of the
battery or its charging state (full, plugged in, or unplugged). When either of these events occur,
a method is called in the view controller and you can take appropriate action.

 It isn’t particularly relevant to MyContactList to monitor the battery status, but to demon-
strate how it works you will add a simple battery indicator to the Settings screen, showing the
battery charge level and state (see Figure 14.1). You will need a physical device to test this code,
because the simulator doesn’t simulate a battery. When you run the app, the battery percentage
doesn’t always match the one listed in the status bar. This is because of limitations in the API
available to developers limiting updates to every few minutes and to increments of 5%.

 Figure 14.1 Battery monitor.

97803e21947864_Book 1.indb 314 11/21/13 2:57 PM

ptg11524036

315Monitoring Battery Status

 Start by setting up the user interface. Open Storyboard and add a label to the top-right corner
of the Settings screen. Use the Attributes Inspector to right-align the text in the label, and the
Size Inspector to set the width to 100 pixels. Add an outlet for the label called lblBattery . To
start monitoring the battery and update the label with the battery information, add the code in
 Listing 14.2 to the end of viewDidLoad: in LMASettingsController.m.

 Listing 14.2 Start Monitoring the Battery Status

 UIDevice *device = [UIDevice currentDevice]; //1
 device. batteryMonitoringEnabled = YES ; //2
 [[NSNotificationCenter defaultCenter] //3
 addObserver : self
 selector : @selector (batteryChanged:)
 name : @"UIDeviceBatteryLevelDidChangeNotification"
 object :device];
 [[NSNotificationCenter defaultCenter] //4
 addObserver : self
 selector : @selector (batteryChanged:)
 name : @"UIDeviceBatteryStateDidChangeNotification"
 object :device];
 _ lblBattery . text = [self batteryStatus]; //5

 This is the core piece of code in keeping track of the battery.

 1. Get a reference to the device.

 2. Start monitoring the battery. You have to do this to get the battery data.

 3. To be notified on an ongoing basis, you set up a notification as shown here. Each of the
four parameters is important to understand.

 ■ addObserver: This adds the view controller (the current object is referred to as
‘self’ in Objective-C) as an observer to the notification center.

 ■ selector: This has the name of the method that will be called when the event
occurs. The method is shown in Listing 14.3 .

 ■ name: The name of the event being observed. In this case it is the notification that
the battery level changed.

 ■ object: This indicates the object where the notification is coming from.

 Taken together, this method sets up a notification that when the level of the battery
changes in the device, an event is generated that calls the batteryChanged method in
the current class.

 4. Monitoring for changes in the battery charging status (full, plugged in, or unplugged) is
set up in the same way. Notice that the method to be called is the same, but the name of
the notification object is different.

97803e21947864_Book 1.indb 315 11/21/13 2:57 PM

ptg11524036

316 Chapter 14 Access to Hardware and Sensors in iOS

 5. Set the text on the label by calling the method batteryStatus (Listing 14.3).
Notifications about changes in battery level occur about every minute, so rather than
relying only on the notification to update the status, this call updates it immediately.

 After you have entered the code in Listing 14.2 , you will see several warnings and errors in
Xcode, because you still need to code the two methods referenced that actually handle the
changes to the status. These are both shown in Listing 14.3 .

 Listing 14.3 Handling Changes to the Battery Status

 - (void)batteryChanged:(NSNotification *)notification //1
 {
 _ lblBattery . text = [self batteryStatus];
 }

 -(NSString *) batteryStatus
 {
 UIDevice *device = [UIDevice currentDevice]; //2

 NSString *batteryState;
 switch (device. batteryState) { //3
 case UIDeviceBatteryStateCharging :
 batteryState = @"+" ;
 break ;
 case UIDeviceBatteryStateFull :
 batteryState = @"!" ;
 break ;
 case UIDeviceBatteryStateUnplugged :
 batteryState = @"-" ;
 break ;
 default :
 batteryState = @"?" ;
 break ;
 }
 float batteryLevelPercent = device. batteryLevel * 100; //4
 NSString *batteryLevel = [NSString stringWithFormat : @"%.0f%%" , //5
 batteryLevelPercent];
 NSString *batteryStatus = [NSString stringWithFormat : @"%@ (%@)" , //6
 batteryLevel, batteryState];
 return batteryStatus;
 }

 The batteryChanged: method is called whenever notification is sent for either a change in
battery level or battery state. The batteryStatus: method is called by both viewDidLoad:
and batteryChanged: to actually get the values from the battery and create a formatted
display for the label.

97803e21947864_Book 1.indb 316 11/21/13 2:57 PM

ptg11524036

317Controlling the Camera

 1. The batteryChanged: method is very simple. Whenever a notification occurs, it calls
 batteryStatus: and updates lblBattery with the result. The method can be called
with two notifications, but in this case, the label is updated with the results, regardless of
which notification occurs. If you need to distinguish between notifications, you can use
the name attribute of the notification object.

 2. In the batteryStatus: method, the first step is to get a reference to the device that we
can use to get the battery information.

 3. The battery state is reported as an integer, so to turn it into a string symbol, you can use
a switch statement. The switch statement shows all the possible values for the battery
state.

 4. The battery level is reported as a float between 0 and 1, so it is multiplied with 100 to
turn it into a percentage value.

 5. Format the numerical float value as a string with no decimal places followed by a percent
sign (use two percent symbols to get a percent sign included in the string).

 6. Concatenate the level and state strings into the final string to be returned.

 If you run the app, you should see the battery information on the Settings screen. If you have
turned on the option in your device to show the battery percentage in the status bar (Settings
> General Usage > Battery Percentage), you’ll notice that the number doesn’t necessarily match
what the battery indicator in the status bar shows. This is because the notification is sent, at
most, once a minute and is reported in 5% increments, whereas the system supplied percent-
age in the status bar is far more accurate. If you ran the app in the Simulator, the display would
show -100% (?), because the Simulator doesn’t include battery simulation.

 If you want to just check the battery status to see if an operation can proceed rather than
monitor the status, you don’t need to set up the notifications, but you do need to enable
battery monitoring as shown by item 2 in Listing 14.2 . When you are done checking the
battery, you should turn off the monitoring.

 Controlling the Camera
 There are a couple different ways to capture images within an iOS app. The simplest method
involves using a built-in navigation controller that contains all the necessary controls to take a
picture and return it to your app.

 To expand the MyContactList app to allow for taking a picture, you have to carry out the
following steps:

 1. Make room in the UI for the image and a button to take/choose an image.

 2. Implement code to bring up camera control.

 3. Change Core Data design to make room for the picture (and control migration of
existing data).

97803e21947864_Book 1.indb 317 11/21/13 2:57 PM

ptg11524036

318 Chapter 14 Access to Hardware and Sensors in iOS

 4. Save the image to Core Data.

 5. Make sure the image is brought back to UI when view control is loaded.

 The first step is to change the UI layout in the Contacts editing screen. If you make the Contact
field a little shorter, you can then drag a UIImage view and place in the top-right corner of the
screen. Then drag a button and place it to the left of the image toward the top. To make the
button easier to interpret and smaller, you can add an image icon to the button.

 1. Use the same Glyphish icons you used previously, but this time drag 86-camera.png to
the images.xcassets folder in the project.

 2. Select the button and in the Attributes Inspector in the right pane in Xcode, delete the
Title text and use the drop-down by Image to choose 86-camera.

 3. Drag the button to reposition, as shown in Figure 14.2 .

 Figure 14.2 User interface for adding an image to a Contact.

 Set up an outlet for the image named imgContactPicture and wire the button
to an action called changePicture . Specify that the controller should implement
 UIImagePickerControllerDelegate and UINavigationControllerDelegate by adding the
two delegates to the end of the @interface line in LMAContactsController.h:

97803e21947864_Book 1.indb 318 11/21/13 2:57 PM

ptg11524036

319Controlling the Camera

 @interface LMAContactsController : UIViewController
 ➥<UIImagePickerControllerDelegate, UINavigationControllerDelegate>

 Next, switch to LMAContactsController.m and add this line inside the @implementation
section at the top, right next to the definition of birthdate:

 BOOL atLeastIOS6;

 Add this line to the end of viewDidLoad: to give the variable a value:

 atLeastIOS6 = [[[UIDevice currentDevice] systemVersion] floatValue] >= 6.0 ;

 This uses the information about the device the app is running on to check the version of the
operating system. You will see a little further down how this information is used to avoid the
app crashing on devices running older versions of the operating system.

 Next, you implement the button’s action method, as shown in Listing 14.4 .

 Listing 14.4 Launching the Image Picker

 - (IBAction)changePicture:(id)sender {
 if ([UIImagePickerController isSourceTypeAvailable : //1
 ➥UIImagePickerControllerSourceTypeCamera]){
 UIImagePickerController *cameraController =[[UIImagePickerController //2
 ➥alloc] init];
 cameraController. sourceType = UIImagePickerControllerSourceTypeCamera ; //3
 cameraController. delegate = self ; //4
 cameraController. allowsEditing = YES ; //5
 if (atLeastIOS6){ //6
 [self presentViewController :cameraController
 animated : YES
 completion : nil];
 }
 else { //deprecated from iOS 6 //7
 [self presentModalViewController :cameraController
 animated : YES];
 }
 }
 }

 This code is executed when the user taps the camera button to bring up the camera controller.

 1. Not all iOS devices have a camera, so to avoid the app crashing if the camera isn’t
present, you should always check for the presence of hardware sensors. It doesn’t seem
very logical to ask UIImagePickerController whether a camera is available, but that is
the recommended pattern.

 2. This statement creates the controller for the camera.

97803e21947864_Book 1.indb 319 11/21/13 2:57 PM

ptg11524036

320 Chapter 14 Access to Hardware and Sensors in iOS

 3. The controller can be used to capture video as well as stills. The sourceType property can
be used to restrict to only one of them, as it is done here because only the still camera
option will work for this app. If this is not set, the camera control will include a toggle to
allow the user to choose.

 4. Set the camera delegate to the view controller, so any method calls from the camera
controller can be handled (Listing 14.5 is a delegate method).

 5. If you set the allowsEditing property to YES , the user will be allowed to move and scale
the image after it has been taken.

 6. With iOS 6, the approach to presenting a view controller changed, and the old method
was deprecated. This statement illustrates how to handle this situation by checking the OS
version number. The actual presenting of the view controller is completely standard, as
you’ve seen before.

 7. This line is used for older devices and shows the old way of presenting a view controller.
You will see a warning in this line, because the code has been deprecated, but this is
expected and intentional; the line was added to support older devices that can’t use the
approach in the previous line.

 With changePicture: implemented, the camera control now comes up when the camera
button is tapped, and the user can take a picture. Figure 14.3 shows the camera user interface for
taking the picture and editing after it has been taken. However, nothing happens with the image
when the user returns to the app. The picture was supposed to show up in the image view.

 Figure 14.3 Camera controller interface.

97803e21947864_Book 1.indb 320 11/21/13 2:57 PM

ptg11524036

321Controlling the Camera

 To actually do something with the image, you need to implement a delegate method,
imagePickerController:didFinishPickingMediaWithInfo : that the camera controller will
call when it’s done with its work (see Listing 14.5).

 Listing 14.5 Handling the Image Picker Returned

 -(void) imagePickerController:(UIImagePickerController *)picker
 ➥didFinishPickingMediaWithInfo:(NSDictionary *)info
 {
 UIImage *image = [info objectForKey : UIImagePickerControllerEditedImage]; //1
 _ imgContactPicture . image = image; //2
 if (atLeastIOS6){ //3
 [self dismissViewControllerAnimated : YES completion : nil];
 }
 else {
 [self dismissModalViewControllerAnimated : YES];
 }
 }

 The camera controller is a UIImagePickerController that returns its data in an
 NSDictionary called info .

 1. Get the image that was taken after the user edited it and store it in a UIImage
variable. Even if the user didn’t move or scale the image, the image is still available
in this variable. If you want to disregard any edits made by the user, you can retrieve
 UIImagePickerControllerOriginalImage instead.

 2. In either case, the image that was returned is assigned to the image control’s image
property so it shows up in the user interface.

 3. Using the proper method for the OS version, dismiss the camera controller so the regular
app becomes visible again. If you forget this step, the camera control won’t disappear
when the user taps Use, so this is very important.

 Now you can run the app, take a picture, and see how it shows up in the user interface in the
proper place, as shown in Figure 14.4 .

 To save the image to the database, you first have to make a few changes to the Core Data
Model to include the image in the Contact entity.

 1. Open MyContactList_CoreData.xcdatamodeld in the project, and click the + under the
list of attributes.

 2. Add a property named image with a type of Binary Data . Be careful if you use the mouse
to add the data type in, because the list of attributes is automatically sorted as soon as
you enter the name, so you may end up changing the type of the birthday attribute and
leaving the image type as undefined. If this happens, you will get compiler errors when
you try to run or build it, but they can be fixed by making the birthday a Date type and
the image a Binary Data type.

97803e21947864_Book 1.indb 321 11/21/13 2:57 PM

ptg11524036

322 Chapter 14 Access to Hardware and Sensors in iOS

 3. Go to Editor > Create NSManagedObject Subclass to re-create the Contact class. Go
through the wizard. Be sure to check the box next to the data model, and then next to
the Contact entity. On the last screen, be sure to check the box next to the Targets for
MyContactList to add the file to the project. Accept the option to replace the existing
Contact.h and Contact.m. Open Contact.h and check that image was added. You’ll note
that the data type for image is NSData . This is the Objective-C data type corresponding
to binary data.

 4. You have now changed the data model design, and if you try to launch the app now, it
will crash with an error message about an incompatible version of the data model. This
can be fixed by deleting the database files or, for simple changes like this, by requesting
that the Persistent Store Coordinator make a lightweight migration of the data model. To
do that, start by opening LMAppDelegate.m.

 5. Locate the persistentStoreCoordinator: method toward the bottom of the file.
Add the code in Listing 14.6 after the long block comment, and just before the NSLog
statement. The details of the code are beyond the scope of this book, but it is the code

 Figure 14.4 Image showing up in the user interface.

97803e21947864_Book 1.indb 322 11/21/13 2:57 PM

ptg11524036

323Controlling the Camera

that runs if there is a problem setting up Core Data. This code requests that an attempt
be made to do a lightweight migration from the old data model to the new one. This
may succeed in certain situations where the changes are not too significant.

 6. Make sure that the image is saved and retrieved from the database. To save the image,
you add these two lines to saveContact: in LMAContactsController.m:

 NSData *imageData = UIImagePNGRepresentation(_ imgContactPicture . image);
 [contact setValue:imageData forKey: @"image"];

 Add after all the other fields are added to the contact. The first line converts the image to
 NSData , and the second line adds it to the contact object.

 7. To retrieve the image from the database, add this line along with the other lines for
populating the user interface with data from the contact object in viewDidLoad ::

 _imgContactPicture. image = [UIImage imageWithData :_contact.image];

 This takes an image that’s stored as NSData and turns it into a UIImage that can be
displayed, and assigns it to the image property of the Image View control.

 Try running the app on a device with a camera. If the app crashes with an error message that
includes this line:

 reason = "Can't find model for source store";

 something went wrong with the lightweight migration. This is prone to happen in develop-
ment environments. One simple solution is to uninstall the app and launch it again. This will,
of course, remove the entire database of contacts, so it isn’t a good solution in production
environments. However, in production, you should be sure to migrate your users’ data using
the lightweight migration shown in Listing 14.6 or another approach. You can find more detail
about migrating Core Data models in Apple’s Core Data Model Versioning and Data Migration
Programming Guide.

 Listing 14.6 Requesting Lightweight Migration of Core Data

 NSDictionary *options = [NSDictionary dictionaryWithObjectsAndKeys:
 [NSNumber numberWithBool: YES], N SMigratePersistentStoresAutomaticallyOption ,
 [NSNumber numberWithBool: YES], NSInferMappingModelAutomaticallyOption , nil];
 BOOL success = [_persistentStoreCoordinator
 addPersistentStoreWithType: NSSQLiteStoreType
 configuration: nil
 URL:storeURL
 options:options
 error:&error];
 if (success)
 {
 NSLog(@"Core Data Model converted successfully");
 return _persistentStoreCoordinator ;

97803e21947864_Book 1.indb 323 11/21/13 2:57 PM

ptg11524036

324 Chapter 14 Access to Hardware and Sensors in iOS

 }
 else
 {
 NSLog(@"Error Converting Core Data: %@, %@" , error, [error userInfo]);
 abort();
 }

 You should now be able to add a picture to a contact and have it be saved to the database and
show up again in the user interface.

 As you have seen, taking a picture is quite easy (Listing 14.4 and 14.5), but handling the image
takes a little more work. The controller used to take pictures here is easy to use but not very
flexible; it uses a lot of memory and is rather slow. But if you don’t need a lot of sophistication,
it works well. If you do require more power, you can look at the AVFoundation framework,
which allows for very customizable and powerful image solutions.

 Calling a Phone Number
 One of the most important hardware features of most mobile devices is the phone. You can
also integrate the phone functionality into your app by letting the user call relevant numbers
from within the app. Calling a phone number launches the Phone app on the phone, but
control is returned to your app when the call is done.

 Calling a phone number from within your app is very simple and requires only a single line of
code:

 [[UIApplication sharedApplication]openURL:
 [NSURL URLWithString: @"telprompt://1234567894"]];

 This tells the phone to launch the URL. Any URL starting with telprompt:// will be treated like
a phone number. Other URL schemes open other apps. For instance, http:// opens Safari, and
sms:// opens the Message app.

 Long Press Gesture
 In MyContactList, calling a phone number is a very useful feature. It will be implemented to
allow the user to long press on the phone number on the Contact screen to call the number. A
 long press means that the user holds a little longer than a regular tap—about one second. To set
this up, you need to add these two lines to viewDidLoad: in LMAContactsController.m:

 UILongPressGestureRecognizer *longPress = [[UILongPressGestureRecognizer alloc]
 initWithTarget : self
 action : @selector (callPhone:)];
 [_ txtPhone addGestureRecognizer:longPress];

 The first line sets up a gesture recognizer, which is a special object that is designed to recog-
nize a long press. The gesture recognizer is given the view controller as a target meaning that

97803e21947864_Book 1.indb 324 11/21/13 2:57 PM

ptg11524036

325Calling a Phone Number

any long presses will be sent to the view controller, and the action to take when that happens
is specified in the action selector. In this case, the callPhone: method is called. The second
line adds the gesture recognizer to the txtPhone field so that long presses on this field are
recognized. It would be convenient to also add the gesture recognizer to the cell phone field;
however, only one view can be associated with a gesture recognizer at a time. If you want to
have multiple controls recognize a long press, you would have to create a gesture recognizer for
each of them.

 Next, you need to implement callPhone: , which is shown in Listing 14.7 .

 Listing 14.7 Method to Call Phone Number on Long Press

 - (void)callPhone:(UILongPressGestureRecognizer*)gesture {
 if (gesture.state == UIGestureRecognizerStateBegan) { //1
 NSLog (@"Long Press"); //2
 NSString *phoneURL = [NSString //3
 stringWithFormat : @"telprompt://%@" , _ txtPhone .text];
 [[UIApplication sharedApplication] openURL :[NSURL URLWithString :phoneURL]]; //4
 }
 }

 This method illustrates several important features.

 1. The long press gesture is recognized many times by the system as long as the user keeps
holding the finger, so to avoid handling all those events, you should always use an if
statement to check the state of the gesture. UIGestureRecognizerStateBegan is only
called once for an entire gesture press, and this statement will be true only the first time
through this method.

 2. The simulator doesn’t show the phone call, so the NSLog statement is included to give
some feedback that the long press gesture was recognized.

 3. This line of code sets up the string that holds the phone number to call by concatenating
the protocol prefix (telprompt://) with the phone number from the txtPhone field.

 4. The final statement opens the phone number URL using the sharedApplication object,
which launches the Phone app, which calls the number.

 Now you can run the app. If you have an iPhone to run this on, it will prompt you with an
Alert View asking you to call the number (see Figure 14.5). If you run the app on the simulator,
you need to watch the console for the Long Press message when you click and hold the phone
number. One thing to note is that the long press currently works only when the Contacts
screen is in edit mode, because the Text Field is disabled in view mode.

 Fixing this requires a few careful changes to make sure the app still works as intended.

97803e21947864_Book 1.indb 325 11/21/13 2:57 PM

ptg11524036

326 Chapter 14 Access to Hardware and Sensors in iOS

 Adding Long Press to Enabled Text Field
 The UIResponder class is responsible for all the events that happen in the user inter-
face of iOS apps. It is the superclass of UIApplication and UIView , and thus, all
of their subclasses, including UITextField . One of the methods in UIResponder
is canPerformAction:withSender: , which is implemented in the subclasses of
 UIResponder to allow them to specify whether they can perform a particular action. In
 UITextField , the action that is relevant to be carried out is to begin editing the text
field. Normally, canPerformAction:withSender: will return YES for UITextField .
However, if the txtPhone field would return NO when it is in view mode, it could be kept
enabled but still not allow editing. By creating a subclass of UITextField that overrides
 canPerformAction:withSender: , you can control more precisely whether the field can be
edited or not. This subclass can then have a Boolean variable that specifies whether the text
field is in edit mode, which is then what canPerformAction:withSender: will return.

 Figure 14.5 Calling phone number after long press gesture is recognized.

97803e21947864_Book 1.indb 326 11/21/13 2:57 PM

ptg11524036

327Calling a Phone Number

 Here’s how to set it up:

 1. Add a new Objective-C class named LMAPhoneTextField that is a subclass of
 UITextField .

 2. Add a property to the .h file with this definition:

 @property (nonatomic) BOOL editMode;

 This sets up a Boolean to specify whether the text field can be edited.

 3. Implement canPerformAction:withSender: in LMAPhoneTextField.m with this code,
to return the value of the editMode property that you just set up:

 -(BOOL)canPerformAction:(SEL)action withSender:(id)sender
 {
 return _ editMode ;
 }

 4. The next steps then change the implementation of the txtPhone field to use the new
subclass. Open Storyboard and select the txtPhone field on the Contact screen.

 5. Go to the Identity Inspector in the right pane in Xcode and change Class to
 LMAPhoneTextField .

 6. Add an import statement for LMAPhoneTextField.h to LMAContactsController.h and
then change the data type of the txtPhone outlet in LMAContactsController.h, like this:

 @property (weak, nonatomic) IBOutlet LMAPhoneTextField *txtPhone;

 7. The last step is to make a few changes to changeEditMode: in LMAContactsController.m
as shown in Listing 14.8 .

 Listing 14.8 Setting the Editing Mode for the txtPhone Field

 - (IBAction)changeEditMode:(id)sender {
 NSArray *textFields = @[_txtName , _txtAddress , _txtCity , _txtState ,
 _txtZip , _txtPhone , _txtCell , _txtEmail] ;
 if (_sgmtEditMode . selectedSegmentIndex == 0){
 for (UITextField *txtfield in textFields) {
 [txtfield setEnabled : NO];
 [txtfield setBorderStyle : UITextBorderStyleNone];
 }
 [_btnChange setHidden : YES];
 [_txtPhone setEnabled : YES]; //1
 _txtPhone . editMode = NO ; //2
 }
 else if (_sgmtEditMode . selectedSegmentIndex == 1)
 {
 for (UITextField *txtfield in textFields) {
 [txtfield setEnabled : YES];

97803e21947864_Book 1.indb 327 11/21/13 2:57 PM

ptg11524036

328 Chapter 14 Access to Hardware and Sensors in iOS

 [txtfield setBorderStyle : UITextBorderStyleRoundedRect];
 }
 [_btnChange setHidden : NO];
 _txtPhone . editMode = YES ; //3
 }
 }

 The three numbered lines are what you need to add to the method to properly set the edit
mode on the txtPhone field.

 1. When View mode is selected, the edit mode is set to NO . The loop above has disabled the
field along with all the other text fields. However, the txtPhone field needs to be kept
enabled.

 2. But the editMode property is set to NO to avoid the user editing the field.

 3. When Edit mode is selected, all the text fields are enabled in the loop, and now the
 editMode property is also set to YES , so editing is allowed.

 Run the app again and make sure the phone field behaves as it’s supposed to while still recog-
nizing the long-press gesture.

 Using Core Motion for Accelerometer Data
 Included in iOS is a framework called Core Motion, which provides access to several sensors,
including gyroscope, magnetometer, and accelerometer. In this section, you learn how to access
the data from the accelerometer to move an object around the screen of the device by tilting
the device.

 The accelerometer provides data about the velocity that the device is moving in in three
dimensions. If the device is held vertically in front of you, the X-axis measures movement left
and right, the Y-axis measures movement away from and toward you, and the Z-axis measures
movement up and down. When working with the accelerometer, you create an object of the
class CMMotionManager . It’s important to create only a single instance of this class in your app
to avoid performance issues. After the CMMotionManager is created, you set up a block of code
to execute asynchronously anytime motion data is updated. You can set an update interval to
make sure the app receives all the data it needs without causing too much performance drain.
To keep battery drain to a minimum, it’s important to also remember to stop the accelerometer
updates when they are no longer needed.

 Device movement is not relevant to MyContactList, so you will do something a little silly and
have the battery display you added previously move around the Settings screen when the user
tilts the device.

 To make sure that only a single instance of CMMotionManager is created, the instantiation is
handled in the application delegate, and any other class that needs accelerometer data will
then get a reference to the single object. Here’s how to set up the app delegate:

97803e21947864_Book 1.indb 328 11/21/13 2:57 PM

ptg11524036

329Using Core Motion for Accelerometer Data

 1. Add the CoreMotion framework to the project by clicking the blue project icon in the
left navigation pane and scrolling down in the General tab to the Linked Frameworks
and Libraries and clicking the plus button.

 2. Add an import statement for <CoreMotion/CoreMotion.h> to LMAAppDelegate.h.

 3. Add this property:

 @property (readonly) CMMotionManager *motionManager;

 4. Synthesize the property in LMAAppDelegate.m by adding this line of code:

 @synthesize motionManager;

 Then implement the method in Listing 14.9 for any clients to call when they need the
motion manager object.

 Listing 14.9 Creating the CMMotionManager Object

 - (CMMotionManager *)motionManager
 {
 if (! motionManager) motionManager = [[CMMotionManager alloc] init];
 return motionManager ;
 }

 The method is very simple. It checks whether the motionManager property is nil, and if so,
it creates a new CMMotionManager object. Otherwise, it just returns the existing object.

 Next, open LMASettingsController.m and add an import statement for
 <CoreMotion/CoreMotion.h> and the method in Listing 14.10 to retrieve the motion
manager from the app delegate as needed.

 Listing 14.10 Retrieving the Motion Manager from the App Delegate

 -(CMMotionManager *)motionManager
 {
 CMMotionManager *motionMManager = nil ; //1
 id appDelegate = [[UIApplication sharedApplication] delegate]; //2
 if ([appDelegate respondsToSelector : @selector (motionManager)]) { //3
 motionMManager = [appDelegate motionManager];
 }
 return motionMManager;
 }

 This method shows an alternative approach to getting a reference to the app delegate that
doesn’t require importing the delegate code.

97803e21947864_Book 1.indb 329 11/21/13 2:57 PM

ptg11524036

330 Chapter 14 Access to Hardware and Sensors in iOS

 1. Set up a variable to hold the CMMotionManager reference.

 2. Get a reference to the app delegate. By using id as the data type, there is no need to add
an import statement for LMAAppDelegate.h.

 3. Instead, this line asks whether the app delegate retrieved contains the method
 motionManager: . If it does, the method is called to get a reference to the motion
manager object.

 Next, add the method in Listing 14.11 to start the detection of motion.

 Listing 14.11 Start Motion Detection

 -(void) startMotionDetection
 {
 CMMotionManager *mManager = [self motionManager]; //1
 [mManager setAccelerometerUpdateInterval : 0.05]; //2
 [mManager startAccelerometerUpdatesToQueue :[[NSOperationQueue alloc] init] //3
 withHandler :^(CMAccelerometerData *data, NSError *error)
 {
 dispatch_async (dispatch_get_main_queue (),^{ //4
 [self updateLabel :data]; //5
 });
 }
];
 }

 Several of the elements in this method are beyond the scope of this book, so the explanations
are not intended to be a full exploration.

 1. Call the motionManager method in Listing 14.10 to get the motion manager object from
the app delegate.

 2. Set the update interval for the accelerometer in seconds. This interval corresponds to
updates 20 times per second. The interval of updates can be set for updates as frequently
as 100 times per second.

 3. Start the updates to the accelerometer with a completion handler that will be executed
each time the accelerometer’s update interval occurs. The accelerometer provides its
results in the data parameter as a CMAcceleromterData object, which contains the x, y,
and z velocities.

 4. To avoid blocking the main thread in the program, this statement sends the updates of
the UI to be executed asynchronously.

 5. Call the updateLabel method (Listing 14.12) to update the label’s movements around
the screen.

97803e21947864_Book 1.indb 330 11/21/13 2:57 PM

ptg11524036

331Using Core Motion for Accelerometer Data

 Next, add the updateLabel: method as shown in Listing 14.12 .

 Listing 14.12 Update Label to Be Moved Around the Screen

 -(void) updateLabel: (CMAccelerometerData *) data
 {
 float moveFactor = 15; //1
 CGRect rect = _ lblBattery . frame ; //2
 float moveToX = rect. origin . x + (data. acceleration . x * moveFactor); //3
 float moveToY = (rect. origin . y + rect. size . height) – (data. acceleration . y *
moveFactor); //4

 float maxX = self . view . frame . size . width - rect. size . width ; //5
 float maxY = self . view . frame . size . height ; //6
 if (moveToX > 0 && moveToX < maxX){ //7
 rect. origin . x += (data. acceleration . x * moveFactor);
 }
 if (moveToY > rect. size . height && moveToY < maxY){ //8
 rect. origin . y -= (data. acceleration . y * moveFactor);
 }
 [UIView animateWithDuration :0 delay :0 //9
 options : UIViewAnimationOptionCurveEaseInOut
 animations :^{ _ lblBattery . frame = rect; }
 completion : nil];
 }

 This method is called 20 times per second with new accelerometer data and moves the label to
its new position based on data in the accelerometer. In this case, only movement along the x
and y axes are used, and not the z-axis.

 1. The moveFactor is a multiplier that decides how far the label is moved with each update.

 2. Get a rectangle based on the frame around the label. The rectangle is used in the
calculations of where to move the label.

 3. Calculate the next position along the x-axis by multiplying the moveFactor with the
acceleration along the x-axis and adding it to the original x-axis location of the label. The
accelerometer data is reported between -1 and 1, with 0 being at rest.

 4. Repeat for the y-axis.

 5–6. To keep the label from moving off the screen, the dimensions of the screen are
calculated, taking the width of the label into account.

 7. Check to see if the new position will move the label off the screen along the x-axis, and
if not, update the x value for the position of the label.

 8. Repeat for the y-axis. This time you have to take the height of the label into account.

97803e21947864_Book 1.indb 331 11/21/13 2:57 PM

ptg11524036

332 Chapter 14 Access to Hardware and Sensors in iOS

 9. Update the display by animating the movement from the old to the new location. By
setting duration and delay to 0, the animation is carried out immediately (and thus
not really animated), but if you had an object you wanted to animate from one location
to another, you could set the duration to some value in seconds and it will then be
animated from one place to another on the screen. The options parameter is a way
to specify how the animation is done. In this case, the label is moved a small distance
each time, so no transition is needed. The animations parameter is where you specify
the code that will run to update the display. In this case, it is the animation of moving
the label from its original location to the newly calculated one. If you wanted to run
code after the animation was done, you could add a similar block in the completion
parameter.

 The only thing left is to start the collection of accelerometer data and then stop it again. In this
case, the animation should keep going as long as the user is viewing the Settings screen, but
stop as soon as the user leaves it. The ideal place to achieve this is to start in viewDidAppear:
and stop in viewDidDisappear: Add the following line to the end of viewDidAppear: to start
the motion detection:

 [self startMotionDetection];

 Then add the viewDidDisappear: method, as shown in Listing 14.13 , to stop the motion
detection when the user leaves the Settings screen.

 Listing 14.13 Stop Motion Detection

 -(void)viewDidDisappear:(BOOL)animated
 {
 [[self motionManager] stopAccelerometerUpdates];
 }

 The method is very simple; it gets the motion manager and stops the updates of accelerometer
data.

 If you run the app, you should now be able to tilt the device and have the label move around
the screen. You may notice that the app doesn’t handle rotation particularly well, sending
the label offscreen. To keep your app in portrait mode, you can open the General tab on the
project information screen in Xcode and uncheck all but Portrait for the supported Device
Orientations. Being able to support both landscape and portrait modes is important, but it is
beyond the scope of this book to discuss the details of how to make sure the user interface
works in both modes.

97803e21947864_Book 1.indb 332 11/21/13 2:57 PM

ptg11524036

333Exercises

 Summary
 With the skills you have learned in this chapter, you have the foundation to start taking advan-
tage of using the hardware features of the user’s device in your own apps. When you do so,
be careful to check for the availability of sensors on the device and turn off sensors when not
needed to avoid draining the battery. For most of the examples in this chapter, it is necessary
to have a physical device for testing, because the Simulator doesn’t simulate most of the hard-
ware sensors.

 Exercises
 1. Make sure the camera button shows up only on devices that support a camera.

 2. Make sure the camera button is shown and hidden appropriately when the user changes
between edit and view modes.

 3. Implement a long-press recognizer for the cell phone field, but instead of calling the
number, send a message.

 4. Create a new Single-View project and use the accelerometer data to create a simple game
where the player gets points by tapping a button that can be moved around the screen
by tilting the device.

 5. Add three sliders and use them to display the accelerometer data in all three dimensions
in real-time.

97803e21947864_Book 1.indb 333 11/21/13 2:57 PM

ptg11524036

This page intentionally left blank

ptg11524036

 Part IV
 Business Issues

 Chapter 15 Monetizing Apps 337

 Chapter 16 Publishing Apps 347

97803e21947864_Book 1.indb 335 11/21/13 2:57 PM

ptg11524036

This page intentionally left blank

ptg11524036

 15
 Monetizing Apps

 The market for apps is big and getting bigger. Vision Mobile has estimated the mobile app economy
to be worth $53 billion in 2012 and growing to $143 billion in 2013. How do you get a piece of that
pie? You’ve created and tested a great app. Now you want your efforts to pay off. What is the best way
to do this? What options do you have to make money from apps? What do you have to do to start? In
this chapter you explore the various avenues for monetizing apps.

 App Monetization Strategies
 Making money from apps is possible but difficult. There are hundreds of thousands of apps
available. The revenue generated from an individual app is typically very small, and the app
stores take a 30% cut of all the revenue that your app generates. How do you get people to
pay you to use yours? What are the different ways you can collect money for the use of your
apps? More importantly, how can you get a lot of people to pay you to use the app so that the
revenue generated is enough to fund further development or expansion? These are some of the
questions that many developers are asking. Some questions have concrete answers. Others are
still very much open for debate.

 Paid Apps
 The simplest approach to monetizing an app is to charge for the download. The price is adver-
tised in the app store and the user decides, based on your description of the app, whether to
buy it. If the user buys the app, you get the money. No need to worry about getting clicks or
designing features to be purchased. The problem is getting enough customers to generate signif-
icant income. One approach to solving this problem is to raise the price of the app. However,
as the price of the app goes up, the number of downloads goes down. As mentioned before,
the market is very price sensitive. You will need a very enticing description of your app to get
downloads. Additionally, after users have purchased the app, future updates are free. You would
need to add a new app to charge again.

97803e21947864_Book 1.indb 337 11/21/13 2:57 PM

ptg11524036

338 Chapter 15 Monetizing Apps

 A significant problem for all strategies, which is exacerbated with paid apps, is getting the
potential customer to find your app among the thousands of apps in the app stores. If the user
searches the app store using keywords, and your app is displayed along with a number of free
apps, the user will often not even read your app’s description, focusing only on the free ones.
To attempt to remedy this, you need to advertise. Advertising is a double-edged sword. It costs
money! Even a limited Google ad campaign where you pay Google to display an ad whenever
someone searches on a set of keywords costs hundreds of dollars. It takes a lot of $.99 app sales
to cover this cost.

 An up-and-coming approach to the paid app approach is to build apps for business use. An app
such as Bossy (described in Chapter 1 , “Why Mobile Apps?”) is designed to solve a business
problem. A Bossy download costs $24.99. However, if your app solves a business problem, a
business will be happy to pay the cost. This approach does require marketing. It is unlikely that
businesses will search the Play Store for a solution to their business problems. This approach
requires a much larger commitment than is typical for many app developers. It requires a busi-
ness plan, establishing a target market, and directly contacting the market with information
about your product. It also requires a potentially significant monetary investment.

 Ad Supported Apps
 The app market is very price sensitive. Free apps get downloaded at a much greater rate than
any paid app. However, a totally free app is hard to make money with. That is why although
many apps appear to be free, they often have a way to make money built within the app. The
most common approach to making money from a free app is to embed ads within the app
screens. Ads take up screen real-estate, so you will have to plan and code the user interface with
this in mind.

 Because setting up for supporting ads in your app mostly involves registering for the ads with
either Google or Apple, as well as submitting bank account information (so you can be paid)
and a W-9 tax form (so you can pay taxes on your ad revenue), it isn’t feasible to have a tuto-
rial in this chapter on setting up ads. Instead, here are the basic steps you need to follow to
embed ads in an Android app, after you have properly registered for AdMob with Google:

 1. Download the Google AdMob Ads SDK using the SDK manager. You will find it under
the extras folder in the SDK manager.

 2. Copy the downloaded GoogleAdMobAds file to the libs folder of your application. If the
folder is not present, create it.

 3. Right-click the GoogleAdMobAds jar file in the libs folder and select Build Path > Add to
build the path.

 4. Open a layout file and add the xml in Listing 15.1 to place the ad widget to the layout.

97803e21947864_Book 1.indb 338 11/21/13 2:57 PM

ptg11524036

339App Monetization Strategies

 Listing 15.1 Ad Widget XML

<com.google.ads.AdView
 xmlns:ads=”http://schemas.android.com/apk/lib/com.google.ads”
 android:id=”@+id/adView”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:textStyle=”normal”
 ads:adSize=”BANNER”
 ads:adUnitId=”your ad mob id” />

 5. Add the code in Listing 15.2 to the onCreate or onResume method of the activity
that uses the layout. This code can be added to any method you want. It retrieves a
new ad each time it is executed. The line that is commented out is for testing. To test,
uncomment the line, find your testing device ID, and enter it. Unfortunately, finding
your ID is not simple. It must be accessed by downloading an app (search for device ID),
or you can look at the logcat in Eclipse when your device is attached. There is no way to
get it directly from the device.

 Listing 15.2 Code to Retrieve an Ad

 AdView adview = (AdView)findViewById(R.id. adView);
 AdRequest re = new AdRequest();
 // re.addTestDevice("test device id");
 adview.loadAd(re);

 6. The final step is to add the ad activity to the manifest file. Add the code in Listing 15.3
after all other activity declarations in the manifest file.

Listing 15.3 Add Ad Activity to Manifest

<activity
 android:name=”com.google.ads.AdActivity”
 android:configChanges=”keyboard|keyboardHidden|orientation|
 screenLayout|uiMode|screenSize|smallestScreenSize”>
</activity>

 You can also use AdMob in an iOS app. Download the SDK from https://developers.google.
com/mobile-ads-sdk/download#downloadios . The process to add an ad to an iOS project is a
bit lengthy to discuss here, but in essence you add the Objective-C files and the AdSupport
Framework from the unzipped download file to your project and then add the ad view where
needed to your xib files. A complete description of the process is located at https://developers.
google.com/mobile-ads-sdk/docs/ .

 To use AdMob to make money from ads on your app, as well as test the ads, you need to
sign up with AdMob (www.google.com/ads/admob/). Ads generate money for you only when

97803e21947864_Book 1.indb 339 11/21/13 2:57 PM

http://www.google.com/ads/admob/
https://developers.google.com/mobile-ads-sdk/download#downloadios
https://developers.google.com/mobile-ads-sdk/download#downloadios
https://developers.google.com/mobile-ads-sdk/docs/
https://developers.google.com/mobile-ads-sdk/docs/

ptg11524036

340 Chapter 15 Monetizing Apps

they are clicked. Each click generates only a few cents, so you need a lot of clicks to make
any real income. For example, we have a free card game on Android that is ad supported. It
has been downloaded by almost a thousand people. The money it generates is measured in
dollars per month. In contrast, we have an app that costs $1.99. It gets only a couple of down-
loads per month but generates as much money as the more frequently downloaded and used
ad-supported app.

 Apple also offers its own ad network, called iAd, which provides the same features as AdMob,
and is built in to the iOS platform. To enable iAd support in your app, you need to sign up for
the iAd Network on iTunes Connect and explicitly enable it for each app that will have
iAd support. Then you can import the iAd framework and add an ADBannerView control to the
view controller. Unlike Google’s ad service, iAd pays both for clicks on the ad and per impres-
sion (displays of ad in your app). However, the rate per impression is very small.

 In-App Purchases
 Making enough money from ad-supported apps to support a business is difficult. You need a
very popular app to generate a significant amount of money. Another approach for moneti-
zation is to release a free app that is supported by in-app purchases. The basic theory for an
in-app purchase monetization strategy is that you generate downloads with the free app, get
the users hooked, and then allow them to add features by advertising the feature in the app.
The sale is made during use of the app. This is a very popular approach among app developers.
In fact, more than 75% of the revenue going to iPhone developers in February 2013 came from
in-app purchases. Another advantage over the basic paid app is that in-app purchasing opens
up the possibility of a regular revenue stream from the same user, instead of relying on a single
purchase up front.

 In-app purchasing is one way to establish a freemium business model, where most of your users
use the free version, but a small percentage becomes heavily invested in your app and service
and convert to paying for the service, thus underwriting the free experience for everyone else.

 You can use several approaches to create products for in-app purchase. Most are dependent
on the type of app and its designed use. Game apps often limit the user to only a few game
levels and then provide an in-app purchase option for moving to the next level. Other games
have consumables that can be purchased during game use. For example, a number of lives are
purchased and used up. If users want to continue playing, they have to buy more. Other apps
include features that can be unlocked with an in-app purchase. For example, an app may have
a mapping feature, such as in the MyContactList app. The button opens the map screen but
rather than display the contact, it presents the user with a message that the feature needs to
be purchased before the contacts will be displayed. Another approach is to limit the amount
of data that can be saved or the number of times the app can be used before the user needs to
pay for it. Finally, if your app includes access to content, that content could be purchased on
a subscription basis. For example, services that provide weather information cost the developer
money, depending on the number of times the weather service is accessed. If the user wants
that information in the app, the developer could charge a subscription fee to cover the cost
and generate revenue for themselves. Often an in-app purchase strategy is combined with

97803e21947864_Book 1.indb 340 11/21/13 2:57 PM

ptg11524036

341App Monetization Strategies

an ad-supported strategy. The free version includes ads that are eliminated as a bonus for an
in-app purchase.

 To implement in-app purchases in Android, you have to get the Google Play Billing Library
from the Android SDK Manager. It is found in the extras folder in the SDK manager. Import the
 IInAppBillingService.aidl file into the src folder of your project. Also import the files in
the util folder of the example app included in the library. Complete information on imple-
menting in-app purchases in Android is available here: http://developer.android.com/google/
play/billing/index.html .

 Implementing in-app purchases in iOS is easier because all you have to do to get the code
is add the StoreKit framework to your project. The complete process is too detailed for
coverage here, but complete information is available at http://developer.apple.com/library/
ios/#documentation/NetworkingInternet/Conceptual/StoreKitGuide/Introduction/
Introduction.html .

 Understanding the Economics of App Stores
 Often developers are surprised that they have to pay Google and Apple 30% of any sales made
in the app stores (whether from paid apps or in-app purchases). We have often heard from
clients that paying 30% to Google and Apple makes it impossible to do business, because they
don’t have 30% margins in the rest of their business to give away. To the extent that a mobile
app sale replaces a regular sale of the same product, this argument makes sense. However, if
the sales of the mobile apps are often incremental to the rest of the business, the additional
revenue could be lower.

 You have to remember that you pay Apple and Google to set up an entirely new sales channel.
They run and operate the stores, so you don’t have to worry about setting up a new infrastruc-
ture to handle sales of mobile apps.

 If you wanted to avoid giving 30% of your sales to Google and Apple, you can carry out the
sales outside of the app stores. For instance, you could set up your own website where users
register for an account and then any sales made on your website could be made accessible to
the app with a login in the app. This is the model that Amazon uses with the Kindle app. If
you want to read a Kindle book on a mobile device, you buy the book on Amazon’s website,
and then you log in to the Kindle app and your content from Amazon is available to you.

 Apple is particularly strict about restrictions on the purchasing of content outside the app store,
so Amazon isn’t even allowed to have a link in its app that takes users to their store where they
can buy the books.

 If you wanted to avoid the need to register users, you could also create a system where you
email an unlock code to users who have made a purchase. The app could then unlock specific
functionality based on the unlock code. However, you have to be careful in designing the
system for the unlock codes, both technically and because of the workload involved. You might
find that the work involved makes in-app purchasing more appealing.

97803e21947864_Book 1.indb 341 11/21/13 2:57 PM

http://developer.android.com/google/play/billing/index.html
http://developer.android.com/google/play/billing/index.html
http://developer.apple.com/library/ios/#documentation/NetworkingInternet/Conceptual/StoreKitGuide/Introduction/Introduction.html
http://developer.apple.com/library/ios/#documentation/NetworkingInternet/Conceptual/StoreKitGuide/Introduction/Introduction.html
http://developer.apple.com/library/ios/#documentation/NetworkingInternet/Conceptual/StoreKitGuide/Introduction/Introduction.html

ptg11524036

342 Chapter 15 Monetizing Apps

 Owning Your Own Business
 If you are going to sell apps, you should have a business. This is not an absolute requirement.
The Play and App Stores will let you sell apps as an individual. However, it is good practice
because you can cleanly separate your individual life, income, and assets from your business
income and assets. This is important for both tax and liability purposes. The vehicle for setting
up your own business is in most cases a Limited Liability Corporation, or LLC.

 Create an LLC
 An LLC is a legal entity that is organized by registering the business with a state. The process
should take no more than an hour or so and cost under $200. The basic process is as follows:

 1. Establish the business name. Some form of Limited Liability Corporation, or LLC, should
be in the name. Check your proposed name against the database of names maintained by
your state to make sure it has not been used.

 2. Download the Articles of Organization form from your state and fill it out.

 3. Identify a registered agent. This is the individual who will receive legal documents for the
business. It can be you.

 4. Create an Operating Agreement that details the financial and management
responsibilities of the members of the LLC (owners are called members). This is not
required by every state but is good practice.

 5. File the forms with your state and pay the registration fee.

 That’s it. You now own a business! The LLC shields your personal assets in the event your app
causes a problem that you get sued for. If you are found liable, they can take your business
assets but not touch your personal assets. An LLC is also useful for tax purposes. The expenses
you have incurred during app development, distribution, and marketing can be subtracted from
the revenue you receive. The final number, whether it is positive or negative, is then trans-
ferred to your personal income taxes. If the number is positive, you will pay taxes through your
personal income. If the number is negative, it reduces the amount of personal income taxes
you pay.

 Plan Your Business
 If you plan to sell your app, you should get an LLC. However, you do not necessarily have to
plan your business. If the app is a passion for you and you don’t necessarily want to run a busi-
ness, don’t worry about it. Just put it on the market and keep it up to date. However, if you
want to try to make real money in the app development business, you should develop a busi-
ness plan.

 The details of developing a business plan are not covered here. There are many resources avail-
able on the Web to help you do this. The Small Business Administration (www.sba.gov) is an
excellent resource. The purpose here is to encourage you to do so. There are many benefits

97803e21947864_Book 1.indb 342 11/21/13 2:57 PM

http://www.sba.gov

ptg11524036

343Choosing a Platform

to the act of developing a business plan. Developing the plan will help you think about what
the mission of your organization is, who the market is, who the competitors are, and how you
want to run your business. Making a significant amount of money from apps requires money
for marketing and development. A good business plan is a necessary condition for attracting
enough capital to develop and test the app and begin establishing demand for your products.

 Other Income Possibilities
 Making money from selling apps or advertising in apps is possible. However, your income is
very dependent on how successful your app is in terms of number of downloads. In fact, only
a limited number of app development organizations get the lion’s share of the billion dollar
market place described earlier in this chapter. The rest of the market is divided up by thousands
of developers. Even so, you should create, publish, and attempt to monetize an app in at least
one of the markets. This will give the knowledge and “street cred” to make money in other
ways from app development. Although the authors of this book have several apps available in
both markets, we make far more money doing training and consulting than we do from the
monetization of our apps.

 One of the surest ways to make money from app development is to get paid to do it for
someone else. This way, you get paid whether the app sells or not. App developers are a very
hot commodity in the business world. The average salary for an app developer employed by an
organization is around $100K/year. You have to sell a lot of $.99 apps each year to make this
kind of money. If you establish your ability by publishing apps for both iOS and Android, you
can greatly increase your marketability. This is true if you are willing to work for a corporation
or if you want to work for yourself as an independent developer.

 You can approach independent development as a consultant or a contract developer.
Developing a consulting business requires business planning. You need to identify your poten-
tial market, get your business name out to potential customers, and develop marketing materi-
als to sell your ability to perform the job they need done. Another approach is to become a
freelancer. There are sites that post small jobs that businesses need done (for example, www.
elance.com). You find a job that you are interested in and place a bid. If the organization
accepts your bid, you develop the app for them and get paid when you’re done. The advantage
to this approach is that you can do it as a sideline business to pick up extra income. The disad-
vantage is that most projects have fairly small price tags, so it is much more difficult to make a
significant income as your only business.

 Choosing a Platform
 Should you develop for Android or iOS? Both? There are advantages and disadvantages to all
three options. You will have to consider your app audience, market size, how committed you
are to making a successful app, and what your goals are in publishing an app. Each of the three
options will be considered in this section.

97803e21947864_Book 1.indb 343 11/21/13 2:57 PM

http://www.elance.com
http://www.elance.com

ptg11524036

344 Chapter 15 Monetizing Apps

 What About Windows Phone and Blackberry?
 You may have seen the ads for some great handsets from Nokia running Windows Phone 8 and
you’re a whiz at ASP.NET development, or you really enjoy the experience of a great physical
keyboard available on a Blackberry. Why not develop for these platforms as well? Although it
may be easy to start developing apps for Windows Phone if you’re very comfortable with Visual
Studio, C#, and .NET, the market share of the Windows Phone operating system means that
you will not have very many potential customers for your apps. Blackberry and Windows Phone
are both below 5% market share, so your efforts are likely better spent making sure you have
developed great iOS and Android apps.

 Android has the biggest market share in terms of devices sold. Therefore, it also has the biggest
potential for app sales. However, much of the market growth is outside the United States. Your
app would have to have universal appeal to take advantage of the growth. A second problem
with the Android smartphone market is that although the market is big, many of the owners of
these phones primarily use them as dumb phones. They are not a likely market for your app.
Finally, Android app users are much less willing to pay for an app than their iPhone compa-
triots are. Studies have shown that each iOS user spends about three times as much on apps
as an Android user. On the other hand, some industry segments you might target may have a
tendency to use Android devices at a much greater rate than iOS devices. In particular, small
businesses, such as the fence builder industry discussed in Chapter 1 , are primarily Android
users, and the potential to develop apps for these industries is very big.

 Android has an advantage in that the barrier to entry is lower for the casual developer than it is
for iOS. The fee to be a developer is a one-time fee, and all the tools are free. You can develop
Android apps on either Windows or Mac computers. Finally, publishing an app is relatively
easy. If you want to publish apps for fun, bragging rights, or to demonstrate your credentials as
a developer, Android is a good choice.

 Although the iOS market is smaller than the Android market, people get iPhones because they
want to use the apps. They are much more likely to look for apps to use, and iPhone users are
also much more willing to pay for an app. This makes selling an app using the simple paid
approach as well as in-app purchase discussed earlier much more feasible. On the other hand,
Apple charges a higher annual fee to be a developer, the publishing process is more compli-
cated, and is in no way guaranteed. Finally, you must have a Mac to use Xcode to create your
app. You cannot create an iOS app on a Windows machine.

 Why not publish on both? If you are trying to make money from apps, this is probably the
way to go. You get access to a larger market and thus more potential revenue generation.
Additionally, after you’ve gone through the effort of designing a user experience, user interface,
and logic to create an app for one market, you can leverage that effort by creating an app for
the other environment. You will have to completely recode the app, but coding is much easier
if you already know what you want the app to do. Additionally, many of the control structures
are almost identical on the two platforms (for example, a for loop) so much of the code struc-
ture can be copied directly between the code files. You will have to learn both development
environments in-depth, but you’ve got a good start from what you have learned by completing
this book. The primary problem with targeting both markets is that you will have to keep your
app current on both platforms. This means more work just to keep the lights on.

97803e21947864_Book 1.indb 344 11/21/13 2:57 PM

ptg11524036

345Exercises

 Summary
 You can make money from mobile apps in several ways. Revenue can be generated through
monetization of the app itself using ads, in-app purchase, or charging for the download. If you
choose to generate revenue from your apps, you should create a Limited Liability Corporation
for both tax and liability purposes. You can also make money by coding apps for other people
or organizations as a consultant or freelancer. Finally, money can be made by getting hired as
an app developer in a larger company. This is a much more reliable source of income than any
of the other approaches.

 Exercises
 1. Add an ad to the ContactListActivity in the Android version of MyContactList. Be sure to

set the test device ID if you want to test it. Try this in the iOS version as well.

 2. Write a brief business plan for MyContactList. How would you monetize the app? Who is
the market?

 3. What kind of app do you want to make? Who is the target audience? How will you
monetize it? Why would somebody want your app? How difficult would it be to make?

97803e21947864_Book 1.indb 345 11/21/13 2:57 PM

ptg11524036

This page intentionally left blank

ptg11524036

 16
 Publishing Apps

 Creating an app can be a fun and challenging exercise, but for most developers this is not enough. The
finished app has to be available for someone to use to complete the process. Apps are made available to
their audience by publishing them. The manner of publication is dependent on the target audience and
the platform. The two primary audiences are typically the employees of an organization for which the
app was developed or the public. Many aspects of publishing are the same for both audiences. However,
some important differences exist that the developer needs to be aware of. Likewise, publishing Android
and iOS apps have many similarities and some significant differences. One of the most important
differences from publishing traditional desktop software is that the ways to publish mobile apps are
much more restricted. For consumer apps, there are gatekeepers in the form of app stores that you will
have to interact with to distribute your app. In this chapter you learn the basics of publishing apps for
both consumer and enterprise audiences and both platforms.

 App Distribution Through the App/Play Stores
 Both Apple and Google provide a marketplace where developers can sell their apps. To
publish an app in either of these stores, a developer must configure the app and conform to
the requirements established by their sponsors. A significant amount of the work required to
publish the app should be done during development. Both Google and Apple have require-
ments and guidelines for apps that should be incorporated during development. You should
read through these guidelines prior to development so that you are not doing a lot of rework
just to get the app published. Apple is especially meticulous about these rules. Every app is
reviewed before it is published, and if your app does not conform, it will be rejected. Google
will publish an application that does not meet its store requirements, but will remove the app
from the store later if it finds that the app violates its rules.

 When you are confident your app meets publication requirements of the market you are target-
ing, the process of publishing requires several steps in either market and is greatly facilitated
by preparing prior to beginning the process. The preparation is similar for both stores. You will
need to prepare an icon for your app. Android requires an app icon sized to 512 x 512, whereas

97803e21947864_Book 1.indb 347 11/21/13 2:57 PM

ptg11524036

348 Chapter 16 Publishing Apps

iOS requires the icon to be 1024 x 1024 pixels. Both platforms require at least one screenshot
of your app for each targeted screen size. If you are targeting Android phones, the required size
of the screen shot is 320 x 480. If you are targeting iPhone, you must provide a screenshot for
the regular size phone (640 x 960) and the 4-inch display phone (640 x 1136). If you are target-
ing tablets, you also will need to provide screenshots. You can provide up to eight screenshots
for each targeted Android device and up to four screenshots for each targeted iOS device. For
iOS apps, you also have to supply a launch image that matches the resolution for the devices
that the app will run on (for example, 640 x 1136 for 4-inch phone and 1536 x 2008 for high-
resolution iPad). The launch image is displayed while the app is loading and is typically a blank
image of what the first screen looks like or a splash screen.

 In addition to preparing screenshots, you should also prepare a description of your app. This
narrative is presented to potential customers, so you should be as clear as possible in describ-
ing exactly what the app is designed to do and why it is advantageous for the customer to buy
the app. For iOS apps, you will also have to provide a description of any specific conditions or
requirements that the tester will need to know to adequately review your app.

 Other considerations prior to beginning the publication process include determining what price
you want to charge for the app. In Android, you enter this price. In iOS you will be prompted
to select from a set of pricing tiers. You should also determine what general category best
describes the app (for example, game, sports, tool, and so on) because you will have to indicate
this during the publishing process. Finally, you will need to determine in which countries your
app should be made available.

 After you have completed the previous steps, you are ready to publish. Although there are
many similarities, each store has its own process and requirements. You may want to look at
the specific description of the procedure online. To get access to these resources for iOS, go to
 http://developer.apple.com . You will need to have a developer ID to access these resources. To
access Android resources go to http://developer.android.com/distribute/index.html . You do not
have to sign in to access this information.

 Android Play Store Distribution
 The Google Play Store does not provide any copy protection for your app. Instead, Google
provides a Licensing Library, which allows developers to add copy protection to their apps. The
Licensing Library needs to be added to the workspace just like the Google Play Services library
was added (Chapter 7 , “Maps and Location in Android”). After the library is added, search the
developer site for detailed instructions for adding licensing to your app. When you add licens-
ing to an app, each time the user opens the app, the Play Store is queried to determine whether
the user bought the app. If the user did not buy the app, the developer can have the app close
or take whatever action is deemed appropriate. If you do not use licensing, your app can be
copied to other devices quite easily.

 After you have added licensing (if you want to), the app needs to be compiled into a signed
Android application package (APK) file. Prior to compiling the app, you need to go through the
code and remove any logging operations, all debug breakpoints, and address as many of the

97803e21947864_Book 1.indb 348 11/21/13 2:57 PM

http://developer.apple.com
http://developer.android.com/distribute/index.html

ptg11524036

349App Distribution Through the App/Play Stores

warnings identified by Eclipse as you think necessary. To create a signed APK (which is required
by the Play Store) you need to set a private key. Fortunately, you can do this using the Export
Wizard at the same time you are creating the APK.

 1. Right-click the app name in the Package Explorer and select Android Tools > Export
Signed Application Package from the pop-up menu. If the export fails because of errors
or warnings, you should fix those errors or turn off Lint Error Checking. For an app that
you want to put on the market, you should focus on correcting errors before turning off
the error checking. If you try this with MyContactList, it will fail because the strings.xml
file was not translated into other languages. If you are targeting only English-speaking
countries, you can turn off this specific warning by changing your Android preferences
(Window > Preferences > Android > Lint Error Checking). Enter Correctness:Messages
in the Issues: text box and click Missing Translation. Click the Severity: button at the
bottom right and select Ignore. Click OK.

 2. In the window that opens, make sure that your project name is displayed. If it is, click
Next. Otherwise, use the Browse button to select it and then click Next.

 3. In the next window, click the Create New Keystore option button, choose a name and
location for the keystore, and enter a password (see Figure 16.1). Click Next. Be sure to
note the location of the keystore and back it up because after the app is published you
will need it for many years.

 Figure 16.1 Creating a new keystore.

97803e21947864_Book 1.indb 349 11/21/13 2:57 PM

ptg11524036

350 Chapter 16 Publishing Apps

 4. On the next window, for alias use the keystore name you entered concatenated
with alias. For example, the alias for the keystore named mykeystore would be
mykeystorealias. Enter another password for the alias. Enter the number of years you
want this key to be valid. Google requires that it be valid past October 22, 2033. Finally,
fill in any company information you want and click Next (see Figure 16.2).

 Figure 16.2 Key configuration.

 5. In the next window, you select where you want the APK to be created. Select a location
and click Finish. The signed APK will be created and stored in the specified location. This
APK will be uploaded to the Play Store during the publishing process.

 An app is published through the Developer Console (https://play.google.com/apps/publish/).
To publish apps, you need to sign up as a Google developer. The cost is a one-time fee of $25,
which must be paid from a Google Wallet account. If you are going to sell your apps, you will
need this account for payments. The account can be set up through the console. After you have
set up all your accounts, you are ready to publish!

 After setup, the Developer Console displays all the apps you have published. To start, click the
+ Add New Application button at the top of the screen. You will be prompted to choose the
default language and title of your app. Then you can choose to either Upload APK or Prepare
Store Listing. It doesn’t matter which one you do first. You have to do both eventually.

97803e21947864_Book 1.indb 350 11/21/13 2:57 PM

https://play.google.com/apps/publish/

ptg11524036

351App Distribution Through the App/Play Stores

 The left side of the console has a menu with five choices: APK, Store Listing, Pricing and
Distribution, In-app Products, and Services & APIs. You have to complete the first three to
publish your app. The steps in each are fairly self-explanatory but very detailed, so we will not
explain them line by line. The APK menu item is where you upload your app APK. You can
upload it for production, or for alpha or beta testing. Alpha testing is usually done by your
developers, and beta testing is performed after alpha test by real users. To use either of these
features you have to set up a Google Group or Google+ Community. If you upload for testing,
it will not be available to the public, but you, your developers, or selected users can test its
performance as a user would experience it. The Store Listing menu item is where you provide
product details, such as its description and screenshots. You must also categorize the app and
provide contact details for you or your company. Finally, in the Pricing and Distribution area,
you provide the price for the app and specify the countries where you want to sell it.

 When you’ve completed all three of these items, a green check mark will appear next to each
one. You can publish it using the button at the top right of the console. The publishing process
takes a few hours before your app appears in the Play Store. Congratulations! You are now in
the Android business.

 iOS App Store Distribution
 The Apple App Store provides strong controls over illegal copying of your app. As a developer,
unlike in Android, you don’t have to worry about setting up any licensing. However, the built-
in copy protection requires other additional work to get your app published. The first step
is to set up your Distribution Certificate and Distribution Provisioning Profile (explained in
 Appendix B , “Installing Xcode and Registering Physical Devices”). The next step is to set up
an entry for your app in iTunes Connect (https://itunesconnect.apple.com). You will have to
use your developer ID to sign in. iTunes Connect is the website that is used to manage many
aspects of your app, including seeing reports on how the app is performing.

 In iTunes Connect you provide information about the app, pricing, and screenshots prior to
being able to upload the app. To start, click Manage Your Apps in the console. In this section
you can add iOS or Mac OS X apps, depending on your developer license. Click Add New App.
If you have a Mac Developer account, you will be asked to select either iOS App or Mac OS X
app. Select iOS app.

 The App Information screen requires selecting the default language of the app, entering the
app name, entering a SKU number, and selecting the Bundle ID. The SKU number is a unique
number used to identify your app. A standard approach is to concatenate the year of publica-
tion, the number of the app in your stock, and the version number. For example your first
app could be 201300010001. For Bundle ID, it is best to select Xcode iOS Wildcard AppID and
then enter the app name in Bundle ID Suffix. The Bundle ID Suffix must match the name
that’s entered as the last part of the Bundle Identifier in the Project Summary in Xcode. For the
MyContactList app, the Bundle ID you used was com.pearson.MyContactList. The Bundle ID
Suffix is MyContactList for this app. When it’s complete, click the Continue button.

97803e21947864_Book 1.indb 351 11/21/13 2:57 PM

https://itunesconnect.apple.com

ptg11524036

352 Chapter 16 Publishing Apps

 The next section is too detailed to go through in depth here. In this section you provide an app
description, screenshots, icon, rating and categorization, and specific review information, much
like you did for your Android app. Once it is complete and you click the Save button, you
will get a summary screen for the app. The app status should be listed as Prepare for Upload.
Click View Details below the app icon, and then click Ready to Upload Binary at the top right
of the next screen. You will be asked to verify that your app is compliant with export laws if
it contains any cryptography. Choose the answer that fits your app and click Save, and then
Continue. Your app status is now Waiting for Upload. Open your app in Xcode to complete the
process.

 When your app is open in Xcode, do the following to upload the app to iTunes Connect.

 1. Change the active scheme from the simulator to iOS Device in the upper-left corner of
Xcode (see Figure 16.3).

 Figure 16.3 Changed scheme to iOS Device.

 2. Select Product > Archive from the menu. An archive file will be compiled and the
Organizer opens (see Figure 16.4).

 3. In the Organizer, make sure the latest archive file is selected and click the Validate
button. If you have not set up the app correctly in iTunes Connect, you will get an error
and will have to go back to the website to correct any problems. Otherwise, it asks you
to log in with your developer ID, and validation will begin. This may take a while. If you
get a message that there are no issues, you are ready to submit to the App Store.

 4. Click the Distribute button. Click the Submit to App Store option button. Click Next.

 5. Enter your developer login information (it may already be there). Select an identity. The
identity is your Distribution Profile you created earlier (Appendix B) . The identity may
already be filled in. If so, check to make sure that it is your Distribution Profile. Click the
Next button. You will get a message “Your application is being uploaded.” This may take
a while. When it is complete, you will get a success message. Your app is now waiting to
be reviewed by Apple.

 The app review process is very thorough and may take several weeks to complete. After the app
is accepted, it will be available for purchase. If it is rejected, Apple will inform you of the reason
and give you a chance to correct the problems. Generally, your first app takes the longest to get
reviewed. Future apps typically get a less-thorough review because you have demonstrated that
you can conform to the App Store requirements. Congratulations! You are now in the iOS app
business.

97803e21947864_Book 1.indb 352 11/21/13 2:57 PM

ptg11524036

353App Distribution for the Enterprise

 App Distribution for the Enterprise
 App distribution within an organization differs between iOS and Android. Generally, distribu-
tion is easier because you are not required to conform to the specifications of the Play or
App stores.

 Android Enterprise Distribution
 Distributing Android apps within an organization is very easy. You prepare an APK just like
you did for the Play Store, and then you give it to your users. The easiest way to do this is by
sending users an email with the APK attached. If users open the email on an Android device,
the device automatically asks if they want to install it. However, for this to occur, users must
have set their device to accept apps from unknown sources. To do this, go to the Settings app
on the Android device and check the box next to Unknown Sources. Unfortunately, this item is
not located in exactly the same spot in Settings on every Android device. Some common loca-
tions are under Applications or Security.

 Another approach would be to set up an internal website to distribute the app. Again, accept-
ing apps from unknown sources must be checked. Although these are the two most common

 Figure 16.4 Xcode Archive Organizer.

97803e21947864_Book 1.indb 353 11/21/13 2:57 PM

ptg11524036

354 Chapter 16 Publishing Apps

approaches, because Android is open, you can choose whatever method works for your
organization.

 Many organizations also implement Mobile Device Management (MDM) solutions to manage
their mobile devices and app distribution. These systems can help organizations implement
security controls on both devices owned by employees as well as devices owned by the enter-
prise. In addition, they can also be used to distribute both in-house and purchased apps to
users. A detailed discussion of MDM is well beyond the scope of this book.

 iOS Enterprise Distribution
 Distribution of iOS apps within the organization is a bit more complicated in iOS than it is in
Android. The first step is to get an iOS Enterprise Developer license. The cost of the license is
$299 per year but allows unlimited distribution of apps within the organization. You cannot
sell apps in the App Store with this license. Organizations that want to do both internal and
public development need both an Enterprise Developer license and an iOS Developer license.

 Distributing within the organization requires setting up both an enterprise distribution certifi-
cate and an enterprise distribution provisioning profile. These are then packaged with the app
using Xcode. There is no need to use iTunes Connect with in-house apps. However, the provi-
sioning profile expires after a year. Prior to that time, a new profile must be created, packaged
with the app, and redistributed, or the app will stop working.

 After an app is compiled with the appropriate certificate and profile, it can be distributed
through iTunes, using the iPhone Configuration Utility, or wirelessly from a secure server.

 Testing and Fragmentation
 Testing is a critical component of app development. This is especially true for Android because
of the wide array of devices that the operating system is installed on. However, it is critical that
apps developed on either platform be tested on real devices prior to release. However, testing
an app is very much like testing any other piece of software in that a comprehensive test plan
must be established and followed. Testing should also be performed by individuals outside the
development team.

 A comprehensive test plan should include thorough black box unit testing, including equiva-
lence partitioning, boundary value analysis, and cause-effect graphing. Fortunately, the innate
organization of apps into individual screens makes it easy to test each screen as a unit. To use
equivalence partitioning in a screen, identify all the possible outcomes of the user interac-
tion with the screen and identify the input or other data that would lead to that outcome. For
example, in the ContactActivity screen in the MyContactList app, there would be nine possible
outcomes (refer back to Figure 2.5). Each navigation button opens the corresponding screen,
the toggle button enables and disables editing, the Save button saves the contact, the Picture
button opens the camera and returns a photo, the Phone buttons open the phone app and
dial the correct number, the Change Birth Date button changes the birthday. Each of these
outcomes should be tested in every iteration of the app.

97803e21947864_Book 1.indb 354 11/21/13 2:57 PM

ptg11524036

355Testing and Fragmentation

 In boundary value analysis, the limits for each input should be identified, and each side of the
limit should be tested. Again, using the ContactActivity screen as an example, one limit might
be that the app shouldn’t store birthdays that are a future date. A test for this limit would enter
a date equal to the date the app is being tested and the next day. The today’s date test should
be displayed; the next day’s date should result in an error message. Other boundary values for
this screen might include entering too many and too few digits for a telephone number.

 Finally, in cause-effect graphing, each outcome identified in equivalence partitioning is exam-
ined to identify the possible paths that could lead to the expected outcome. For example, the
Save button on the ContactActivity screen should either save the contact or alert the user to
any errors that may have caused the save to fail. Should the contact be saved only if all the
inputs on the screen have data, or is some subset acceptable? Will the app save only a name? If
a street address is entered, are the city and state required? All possible combinations that lead
to either a saved contact or an error message should be tested.

 The testing just described may initially be performed on the Android Emulator or the iOS
Simulator, but it should also be performed on an actual device. This is especially true for apps
that access the hardware features of the device. Apps that use location or other sensors cannot
be adequately tested in either Eclipse’s Android emulator or Xcode’s iOS simulator.

 After all the unit tests have been passed successfully, the app should be tested for usability. The
ability to provide help and/or training in the use of your app is extremely limited. Users should
be able to figure out how to use it with relative ease. This requires testing by someone unfamil-
iar with the app. Developers have a relatively difficult time testing this themselves because they
are too familiar with the way the app should work.

 The final set of tests requires access to a variety of devices. Because of the large number of
manufacturers that provide Android devices this is a much more difficult problem in Android
than in iOS. For Android, you should have at least one device that runs the minimum SDK and
one that runs the target SDK. You also should have one device for each screen size supported
by your app. (You can limit screen size in the manifest like you did for minimum and target
SDK.) This set of devices should be considered the minimum number required. If possible, you
should also test devices from different manufacturers. There are differences, and these can cause
interesting problems.

 Why Did that Happen?
 One of our Android apps uses a standard list similar to what you have seen in Chapter 6 , “Lists
in Android: Navigation and Information Display.” The app worked fine. Then we started getting
complaints from users who had a new phone from a specific manufacturer. The manufacturer
had made some changes that required a specific attribute value in the ListItem to display
properly. Although this change couldn’t have been foreseen by us, it does illustrate the need to
test on multiple devices.

 The iOS world has a much more limited set of devices, and the platform is more standardized
between devices. However, each device class (iPod touch, iPad, and iPhone) should still be used
in testing your app.

97803e21947864_Book 1.indb 355 11/21/13 2:57 PM

ptg11524036

356 Chapter 16 Publishing Apps

 Keeping Up with the Platform
 Both Apple and Google make changes to their respective operating systems on a regular basis.
This can be challenging for developers with apps “in the wild.” Updates to the operating
system can, and although infrequently, do disrupt apps that previously ran fine. To avoid prob-
lems with users of your app or to prevent getting bad reviews in the app stores, it pays to keep
on top of platform changes.

 Keeping up with changes to the OS is not rocket science, but it does require diligence. At a
minimum, as soon as the new OS is released, you should recompile your app to include the
new version as a target. Correct any errors that occur when you do this until you get a new
version that can be tested on an actual device. Next, get a device with the updated OS installed
and run through your complete test plan to ensure that it works on that device. Finally, test
the new version of your app on a device running an older version of the OS. When you are
satisfied that your app works, release an upgrade to the app through the appropriate app store.

 Beyond the bare minimum previously outlined, as a registered developer you also have access
to prerelease software so you can test your app in advance of the general release to the public.
For instance, Apple typically releases the first beta version of a new version of iOS and Xcode at
its WWDC conference in June, several months before the public release in September. Because
most iOS users update their devices very quickly after the public release, it’s very important that
you have tested your app thoroughly before the release.

 Why Did That Happen?—Continued
 One of our Android apps uses GPS coordinates from the device to record information. After a
new release to the OS, any app that was running on an updated device would “Force Close”
almost immediately after the app opened. A “Force Close” is a cardinal sin in the Android
world, and users will quickly come to hate your app if it happens even infrequently. This was a
difficult problem because the app ran on the emulator and on many devices, but not those with
the updated OS! The only way we could figure it out was to run debug with Eclipse connected to
a phone with the updated OS and step through the code line by line. It turned out that the new
OS was reporting the GPS coordinates in a slightly different manner than older versions did.
We had to modify the code to handle both situations to get the app to run on both the new and
older OS. This problem was not detectable by just recompiling the app to use the new SDK.

 Summary
 Publishing apps has both similarities and differences in Android and iOS. They both require
the same type of information to be entered for the app that is to be sold. However, the exact
procedure is different. Prior to publication of an app, thorough testing is required. An app that
crashes frequently or does not do what it says it does will not pass the Apple review process. An
Android app that has the same problems may be allowed to be published, but it will get bad

97803e21947864_Book 1.indb 356 11/21/13 2:57 PM

ptg11524036

357Exercises

reviews and may be eventually removed by Google. After you have published apps it is impera-
tive that you keep up with platform changes. New versions of the OS can create problems for
apps that currently run perfectly.

 Exercises
 1. Compile the Android version of MyContactList for release. Send an email to yourself or a

friend with the APK attached. Install it on the Android device.

 2. Write a test plan for the ContactList screen for both the Android and iOS platforms. How
are they similar? Different?

 3. Look up the app publication policies for Android and iOS. Describe any similarities and
differences between them. (Note: you will have to log in as a developer to get the iOS
guidelines).

97803e21947864_Book 1.indb 357 11/21/13 2:57 PM

ptg11524036

This page intentionally left blank

ptg11524036

 Part V
 Appendixes

Appendix A Installing Eclipse and Setup for Android
Development 361

Appendix B Installing Xcode and Registering Physical
Devices 371

Appendix C Introduction to Objective-C 383

97803e21947864_Book 1.indb 359 11/21/13 2:57 PM

ptg11524036

This page intentionally left blank

ptg11524036

 A
Installing Eclipse and Setup

for Android Development

 The Integrated Development Environment (IDE) used most often for Android development is
Eclipse. Eclipse is open source software available for free download for both the Windows and
Mac operating systems. Setting up Eclipse for Android development is relatively easy but does
require some time. Eclipse, like most IDEs, makes the basic assumption of one developer, one
machine, which is not an issue for individuals developing on their own machine but can pose
problems for the classroom environment. This appendix covers installing Eclipse and Android
on a Windows machine and setting up the classroom environment to work effectively when
you can’t assume that the same person will be using the same machine all the time.

 Android development requires installing several individual pieces of software, including Java SE
SDK, the Eclipse IDE, and the Android SDK. The following sections show you where to down-
load the relevant pieces of software and how to set them up. The instructions can be used for
both Mac and PC environments.

 Setting up Java and Eclipse
 Eclipse is available for download at www.eclipse.org/downloads/ . The version of Eclipse used
in this book is Keplar (Eclipse 4.3). Android development uses the Java programming language,
which means the Java Development Kit (JDK) must also be installed on the development
machine.

97803e21947864_Book 1.indb 361 11/21/13 2:57 PM

http://www.eclipse.org/downloads/

ptg11524036

362 Appendix A Installing Eclipse and Setup for Android Development

 Download and Install Java SE SDK
 The first step is to download and install the JDK from Oracle. You can use Java from other
sources if you want. However, be sure to select the most recent release that matches your
machine. To install Java, follow these steps:

 1. Open a web browser and navigate to the site www.oracle.com/technetwork/java/javase/
downloads/index.html . Find the area titled Java SE Downloads. You may have to click
the download tab. Select the Java Platform (JDK) button.

 2. On the page that opens, locate the section titled Java SE Development Kit and accept
the license agreement. Select the version that best matches the machine you will be
installing on.

 3. Choose to save the file. The download will take a couple of minutes depending on your
Internet connection.

 4. After the file has downloaded, double-click it to begin installation (see Figure A.1).

 Figure A.1 Begin the installation process.

 5. The installation will go through several steps. If you are using Windows, you need to
make a note of the destination path that Java is installed in, because you will need that
during the Eclipse installation. This is available on the Select Destination screen. Be sure
to note the destination path, because you will need this later. Accept all the defaults
on each screen by selecting the Next button until you complete the installation (see
 Figure A.2). Click Close. If you are installing on a Mac, open the DMG file and double-
click the package inside. Then follow the installation wizard. There is no destination path
to record on the Mac.

97803e21947864_Book 1.indb 362 11/21/13 2:57 PM

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

ptg11524036

363Setting up Java and Eclipse

 Figure A.2 Java installation complete.

 Downloading Eclipse
 Now that Java is installed you can install Eclipse. Follow the next steps to download the proper
package:

 1. Navigate your browser to www.eclipse.org/downloads/ . Find Eclipse Standard and select
the version that matches your machine on the right. The website will detect the basic
type of OS you are using, so you should be able to click the proper version on the right.

 2. After you select a version of Eclipse, a new page asks you to select a mirror site to
download from. You can select the default at the top of the page or navigate down
the page to a mirror site closer to where you are located. The download is large
(around 190MB) and can take a long time, so selecting a site closer to your location is
advantageous.

 3. After you choose a download site, a new page asks for a donation to the Eclipse project
and you will be asked to open or save the file. Choose Save and click OK.

 Installing Eclipse on Windows
 1. Eclipse downloads as a zip file. It does not need to be installed like Java. However, you do

have to extract the files to a new folder. Double-click the downloaded file.

 2. A Windows Explorer window opens. Click the Extract All Files button located just above
the Eclipse folder (see Figure A.3). Choose a location to extract to. By default, the file
extracts to the Downloads folder. It is better to install to a folder on the C: drive. If
you don’t have administrative privileges on the machine, use the Desktop. Click Next.

97803e21947864_Book 1.indb 363 11/21/13 2:57 PM

http://www.eclipse.org/downloads/

ptg11524036

364 Appendix A Installing Eclipse and Setup for Android Development

The files will be extracted to the folder. This operation will also take some time. When
completed, the folder with the extracted files will be displayed.

 Figure A.3 Extract Eclipse files.

 3. Double-click the Eclipse folder in the newly opened window. Find eclipse.exe and right-
click it. Select Create Shortcut. Place the shortcut where it is useful to you.

 4. Double-click the shortcut. If you were successful, Eclipse will ask you for a location for
the workspace. The workspace is where all code projects are stored. You can accept the
default location. If this doesn’t work for your setup, enter a new location.

 A successful install will conclude with the screen in Figure A.4 .

 Figure A.4 Eclipse Welcome after successful install.

 If you were not successful, it is probably due to an error in the finding Java Virtual Machine
(VM). To correct the error “Can’t find a Java virtual machine,” do the following:

 Right-click the shortcut and select Properties. In the Properties window locate the target input
box (see Figure A.5). The target shows the eclipse executable. You need to append the Java

97803e21947864_Book 1.indb 364 11/21/13 2:57 PM

ptg11524036

365Setting up Java and Eclipse

virtual machine command to the end of this line so that Eclipse knows where Java is located.
The completed entry for target should look something like this:

 "C:\Users\<User Name>\EclipseKeplar\eclipse\eclipse.exe" eclipse -vm "c:\Program
Files\Java\jre7\bin\javaw"

 Figure A.5 Modifying the shortcut target.

 The eclipse –vm command tells eclipse to use the Java virtual machine at the location where
you installed it (this is the path you recorded in step 5 during the Java installation). Your path
will be different depending on where you installed Java. However, the line should end with
\jre7\bin\javaw regardless of the location of Java.

 Click Apply and then OK. You are now ready to run Eclipse.

 Installing Eclipse on Mac
 The Mac version of Eclipse is downloaded as a .tar.gz archive.

 1. Double-click the file to extract it. This gives you an Eclipse folder that you can drag to
the Applications folder. If you need to run or keep multiple versions of Eclipse, you can
rename them by version number, as needed.

97803e21947864_Book 1.indb 365 11/21/13 2:57 PM

ptg11524036

366 Appendix A Installing Eclipse and Setup for Android Development

 2. You launch Eclipse by double-clicking the Eclipse.app file inside the Eclipse folder. If
your Mac doesn’t have a Java runtime installed, you may get the message in Figure A.6
about needing to install it. This is fairly common because Apple tries to avoid Java due to
some security concerns.

 Figure A.6 Installing Java runtime on Mac.

 3. If needed, click Install to install the Java runtime.

 4. After installation completes, Eclipse will launch. You may see the message in Figure A.7
about not being able to launch Eclipse because it comes from an unidentified developer.
To get around this restriction, you can open the app by right-clicking the Eclipse.app file
and selecting Open. When you have done this once, the setting will be remembered, and
the app will always open.

 Figure A.7 Unable to open Eclipse.

 5. Similar to Windows, Eclipse asks for the location of a workspace. You can select the
default or specify another location.

 Successful installation of Eclipse on the Mac will complete with a screen similar to Figure A.5 .

 Installing Android
 After you have successfully installed Eclipse, you have to set it up to have the capability to
create Android apps. This requires downloading the Android Software Development Kit (SDK)

97803e21947864_Book 1.indb 366 11/21/13 2:57 PM

ptg11524036

367Installing Android

and installing the Android Development Tools (ADT) plug-in. Both the ADT plug-in and
Android SDK are downloaded and installed through Eclipse.

 Follow these steps to install the plug-in:

 1. Open Eclipse and select Help > Install New Software.

 2. The Install New Software window opens (Figure A.8). Click the Add button.

 Figure A.8 Install new software window.

 3. The Add Repository window opens (see Figure A.9). Enter the following information:

 a. Name: Android Plugin

 b. Location: https://dl-ssl.google.com/android/eclipse/

 Click OK.

 4. The window closes and the original window will display Pending in the Name section
that says There Is No Site Selected in Figure A.8 while information on the plug-in is
downloaded. When the information is downloaded, you should see two items listed (see
 Figure A.10). Select Developer Tools and click the Next button.

97803e21947864_Book 1.indb 367 11/21/13 2:57 PM

https://dl-ssl.google.com/android/eclipse/

ptg11524036

368 Appendix A Installing Eclipse and Setup for Android Development

 Figure A.10 Available Software.

 5. The Install window will open, listing the software to be installed. Click Next.

 6. The Review License window opens. Click the Accept License agreements option button
and click Finish. The ADT plug-in will begin downloading and installing. You may get a
security warning that the software to be installed contains unsigned content. If you do,
accept the installation. The download and installation will take a few minutes. When it is
complete, you will have to restart Eclipse.

 Figure A.9 Add Repository window.

97803e21947864_Book 1.indb 368 11/21/13 2:57 PM

ptg11524036

369Setting Up the Classroom

 Note
 The ADT installation is known to have problems. In most cases it works without a hitch.
However, if you do experience problems, the first step is to repeat the preceding steps
but change the location of the plug-in from https to http. If that doesn’t work, review the
Troubleshooting ADT Installation tips at http://developer.android.com/sdk/installing/
installing-adt.html .

 When Eclipse restarts, it will open to the Welcome to Android Development window. That
window will likely display an error message stating that the location of the Android SDK has
not been set up in preferences. Fortunately, you can set it up from the Welcome window.

 1. Close the Error window and click the Install New SDK (may be already clicked).

 2. Mark the check box before both Install the Latest Available and Install Android 2.2. If
you want, you can change the location where the SDK is installed. Otherwise, click the
Next button.

 3. The next page asks if you want to send usage statistics to Google. It’s up to you what you
choose. Click Finish.

 4. The next screen displays the license agreement. Click Accept License and then click Next.
The Android SDK will begin downloading. This will take quite a bit of time to complete,
so plan to do something else while you are waiting.

 After the SDK finishes downloading and installing, you are done! You can now begin develop-
ing Android apps with Eclipse.

 Setting Up the Classroom
 The classroom violates the one developer, one machine paradigm most IDEs assume. This
provides some challenges for the students and instructor. When Eclipse opens, it asks for the
folder where the projects are located. The default location for Eclipse projects is a folder called
workspace. Eclipse creates this folder in the folder that is the root folder of the Eclipse installa-
tion. This is not likely to work in the classroom because students can move between machines
and they will want their work to move with them. Many classroom and lab settings also freeze
the machines so any changes made are deleted when the machine reboots. Nothing will frus-
trate a student more than logging off before they store their work and subsequently losing it.

 There are several potential solutions:

 1. Instruct students to create a folder called Workspace on a flash drive. When they run
Eclipse they can tell it to use that folder; all their work will be automatically saved to
the folder, and they can take it to a different machine or take it home to work on it. The
drawback is that the student has the responsibility to back up the work, keep track of the
flash drive, and remember to bring the drive to class.

97803e21947864_Book 1.indb 369 11/21/13 2:57 PM

http://developer.android.com/sdk/installing/installing-adt.html
http://developer.android.com/sdk/installing/installing-adt.html

ptg11524036

370 Appendix A Installing Eclipse and Setup for Android Development

 2. Another option is to instruct students to use a service such as Google Drive or Dropbox.
Students can create a folder called Workspace on either of these and then instruct Eclipse
to use that location when it starts. The advantage is that students can’t forget the work,
and it is automatically backed up. However, they must have an Internet connection, and
in most lab situations, it isn’t feasible to have the desktop sync clients of Google Drive
and Dropbox installed.

 3. Ask students to save their work to a network drive. This ensures that data is backed up
according to your organization’s backup scheme, and students will have easy access to
their workspace from any computer within the lab. However, shared drives are often not
available outside the campus, making it difficult for students to work remotely. If the
drive is available, it will likely be very slow to work outside. There is work in progress to
enable Eclipse workspaces to reside on FTP and WebDAV servers.

 4. Use version control software to allow students to upload their work to a version control
server, and then download when they get to a new computer. Eclipse supports several
version control systems, including CVS and git out of the box. Subversion can also be
added through an Eclipse plug-in. To use version control, you would need to set up a
version control server, which is beyond the scope of this book. Within Eclipse you can
share your project to version control by right-clicking the project in Project Explorer
and selecting Team > Share Project, and then selecting the appropriate version control
solution for your scenario.

 Getting Eclipse to work in a classroom setting is similar to setting up many other types of soft-
ware in that kind of restricted environment, so you will have to rely on your IT administrators
to help you determine the best option for your situation. You will also have to provide detailed
instructions for students to follow to be successful in the classroom.

97803e21947864_Book 1.indb 370 11/21/13 2:57 PM

ptg11524036

 B
Installing Xcode and

Registering Physical Devices

 When developing for iOS, Xcode is the primary tool. This is a very capable Integrated
Development Environment (IDE) that is available for free through the Mac App Store. The free
version lets you develop apps and test them on the iOS Simulator. However, if you want to
load your software on an actual device, or submit an app to the App Store, you need to have a
developer account.

 This appendix shows you how to set up Xcode, get a Developer Account, and set up for testing
your apps on real devices.

 Download and Install Xcode
 Getting Xcode installed is simple. You just launch the Mac App Store on your Mac and search
for Xcode (see Figure B.1). Then you click Free, which turns the button green and changes to
Install App. Click again to install Xcode. This takes a while because Xcode is several gigabytes
large.

 After it is downloaded, Xcode will be automatically installed. You launch Xcode from the
Applications folder, like any other program on the Mac. When updates are released, they will
show up as updates in the Mac App Store. One of the requirements for running Xcode 5 is that
you need a Mac running OS.X version 10.8 (Mountain Lion). If you have Macs that cannot
be upgraded, you can download older versions of Xcode from the Apple Developer Site. For
instance, Xcode 4.6 can run on OS X 10.7 and later. Most of the material in this book can be
easily adapted to work with Xcode 4.6.

97803e21947864_Book 1.indb 371 11/21/13 2:57 PM

ptg11524036

372 Appendix B Installing Xcode and Registering Physical Devices

 Apple Developer Programs
 As mentioned earlier, Xcode is free to download and use, but you can only test your apps
on the iOS Simulator. To test on a device or submit to the App Store, you need a developer
account. Apple offers four developer programs for iOS development: iOS Developer Program
(individual), iOS Developer Program (Company), iOS Developer Enterprise Program, and iOS
Developer University Program.

 Table B.1 outlines some of the significant differences among the programs. In short, the biggest
differences are that the iOS Developer program lets you distribute apps through the App Store,
Enterprise program lets you distribute apps to users within your company without having to
go through Apple, and the University program allows for up to 200 instructors, professors, and
students to develop and test apps on real devices.

 Table B.1 Comparison of Apple Developer Programs

 Feature iOS Developer
 iOS Developer
Enterprise

 iOS Developer
University

 iOS SDK Yes Yes Yes

 Beta versions of SDK and Xcode Yes Yes No

 Test apps on iOS devices Yes Yes Yes

 Number of test devices per year 100 N/A 200

 App Store distribution Yes No No

 iAd Network Yes No No

 In-house Distribution No Yes No

 Cost $99 / year $299 / year Free

 Figure B.1 Finding Xcode in the Mac App Store.

97803e21947864_Book 1.indb 372 11/21/13 2:57 PM

ptg11524036

373Deploying Apps to Real Devices

 The process for registering for each program can be a bit cumbersome. The University and
Enterprise programs require several levels of approval within your organization, and you also
have to submit documentation to Apple. The whole process can take a few weeks to complete.

 Setting Up the Classroom
 Developing apps on iOS in the classroom is relatively simple. You do need Macs in your lab
with Xcode installed. Project files are stored in a directory that can easily be moved to other
places, such as a thumb drive or a network location. See Appendix A , “Installing Eclipse and
Setup for Android Development,” for a fuller discussion of options for storing files in different
locations. Xcode supports both git and Subversion for source control.

 Deploying Apps to Real Devices
 The iOS Simulator is very powerful and allows for doing most of the testing you need for
most business apps. In a classroom situation you can do a lot of interesting and worthwhile
things without using real devices. However, students get excited about seeing their creations
running on a real device, and there are certain features where it is necessary to test on a device.
Following are some limitations of the simulator where you need to test on a real device:

 ■ No phone or messaging. The Simulator can toggle the in-call status bar, but doesn’t make
or receive calls.

 ■ Access to camera.

 ■ Realistic access to network (perhaps to test for network coverage in a specific location).

 ■ Access to gyroscope and altimeter (perhaps for developing game controls).

 ■ Realistic user touch interactions.

 Because of the nature of the iOS ecosystem, it is a challenge to configure for deployment to real
devices. Apple requires that every app be digitally signed to enhance the end users’ confidence
that apps are reliable and developers are held accountable. This means that every developer
must have a digital certificate that can be used for signing apps before they can be submitted
to the App Store. There are two different kinds of certificates: one for debugging and one for
releasing apps.

 To ensure that all apps are distributed either through the App Store or through controlled
enterprise means, Apple also requires every device used for testing to be registered with Apple
and have a provisioning profile installed. The provisioning profile is a digital file that links the
developers that are allowed to deploy to the devices listed in the profile. As you saw in Table
 B.1 , each developer program has a maximum number of devices that can be used for testing.

 To simplify the explanation, the following assumes that an instructor is responsible for inviting
students in his/her class to join the developer program and will use a set of classroom devices
for testing apps. Here is a brief overview of the steps involved:

97803e21947864_Book 1.indb 373 11/21/13 2:57 PM

ptg11524036

374 Appendix B Installing Xcode and Registering Physical Devices

 To set up students as developers:

 1. Instructor must be set up with the Admin role in the iOS Developer University Program.

 2. Instructor sends invitations by email to each of the students who will get the Member
role in the program.

 3. Students accept the invitation and register as developers.

 4. Students add their account to Xcode, which generates a request for a developer
certificate.

 5. Instructor logs in to the Apple Developer Site and approves each request.

 6. Students refresh their account in Xcode to get the certificate (which will be listed under
Signing Identities).

 To set up devices:

 1. Instructor registers devices for development.

 2. Student connects device to Mac and opens the Organizer and clicks Use for
Development.

 3. Student checks to make sure that provisioning profile is valid on the device. If not, the
student downloads the provisioning profile from the Apple Developer Site.

 Important Terms
 Registering developers and setting up devices involves a large number of terms that can be dif-
ficult to keep track of. Here’s a brief definition of some of the major concepts to understand.

 ■ Team Agent—The person who originally signed up for the iOS Developer Program and is
responsible for agreeing to the legal terms of the contract. The team agent has all the
same rights as a Team Admin.

 ■ Team Admin—A person who can register devices and manage members in the iOS
Developer Program.

 ■ Team Member—A registered developer who has accepted an invitation to join the team
(note that registered developers can be members of multiple teams).

 ■ Developer Certificate—A digital certificate issued to a developer that he/she can use to
sign apps before submitting to the app store or deploying to a test device.

 ■ Provisioning Profile—A digital file that specifies which developers can deploy specific
apps to a specified device. The same provisioning profile can contain information about
multiple apps, developers, and devices. Provisioning profiles are stored on devices that
are used for testing apps.

 ■ Team Provisioning Profile—A provisioning profile is one that includes all developers and
devices on a team. Apps are specified by a wildcard App ID.

97803e21947864_Book 1.indb 374 11/21/13 2:57 PM

ptg11524036

375Deploying Apps to Real Devices

 ■ App ID—A unique identification of a particular app. Used in provisioning profiles to
specify which apps the profile is valid for. You can generate a wildcard App ID that covers
multiple apps.

 ■ UDID—A unique identifier for each device. Used when registering devices to be used for
development.

 Creating Developer Accounts
 The iOS Developer University program allows for up to 200 people to be added as developers to
your account. This allows you to add both students and faculty as developers who are able to
run apps on a device and get access to the support resources in the iOS Development Center.
Note that it isn’t necessary to be registered to develop apps that are going to be tested only on
the simulator.

 To register developers, the administrator for the program needs to log in to the Member Center
on the Apple Developer Site (developer.apple.com); along the top of the screen, choose the
People tab (see Figure B.2). Developers can be invited individually or in bulk. Each person
invited will receive an email with a link to register as a developer or sign in with an existing
developer account. The same developer account can be associated with multiple develop-
ment programs (that is, you may be in both the iOS University Program and an Enterprise
Development program).

 Figure B.2 Click People to add developers to an iOS University Developer Program.

 When registering as a developer, students and faculty may choose to use an existing Apple
ID (any iTunes account has an Apple ID), which would be the simplest way to get started.
However, they can also create a new one if they choose. Getting registered and accepting the
invitation to join the team can take a bit of time—and can be a confusing process. If you have
the option, you may choose to use some time in the classroom for students to set up accounts
and register. An administrator of the program can monitor the status of the invitations sent to
see when they move to the accepted state.

 After the developer account has been created, it can be added to Xcode by selecting Xcode
> Preferences > Accounts. Then click the + sign at the bottom and choose Add Apple ID (see
 Figure B.3). The developer will then have to log in, and if successful, the developer’s Apple ID
should be shown in the Accounts pane.

97803e21947864_Book 1.indb 375 11/21/13 2:57 PM

ptg11524036

376 Appendix B Installing Xcode and Registering Physical Devices

 Figure B.3 Adding Apple ID to Xcode.

 After students have added the account to Xcode, they should click View Details, click the +
under Signing Identity, and choose iOS Development. This generates a request for a certificate
to be generated. The certificate has to be approved by a Team Agent (class instructor) on the
Apple Developer Site. After approval, students can click the Refresh button on the View Details
screen under their account in Xcode to fetch the certificate to the Mac.

 Backing Up the Development Certificate
 When you start development, Xcode will generate a public/private key pair that is installed in
the Keychain Access app on the Mac you develop on. When moving to a different Mac, you
will need to bring this public/private key pair along. So, as soon as the development certifi-
cate is set up, be sure to take a backup to use on other Macs. This is especially important for
students working in labs. If you don’t have your students do this, they will have to revoke
their existing certificate and request a new one, because the private key would be only on the
machine where it was generated.

 To back up the certificate, in Xcode, choose Xcode > Settings > Accounts, click the gear icon in
the lower left, and then select Export Accounts (see Figure B.4). You will then have to supply

97803e21947864_Book 1.indb 376 11/21/13 2:57 PM

ptg11524036

377Deploying Apps to Real Devices

a name for the exported file and a password (see Figure B.5). The exported file will contain
all your credentials, including certificates and provisioning profiles. To set the profile up on
a different Mac, you go back to Accounts, choose Import Accounts, and pick the file you
exported.

 Figure B.4 Export Accounts from Xcode for backup.

 Figure B.5 Saving the Developer Profile.

97803e21947864_Book 1.indb 377 11/21/13 2:57 PM

ptg11524036

378 Appendix B Installing Xcode and Registering Physical Devices

 Registering Devices
 Each device that is used for testing must be registered with Apple. This can be done in several
ways.

 If you have a classroom set of devices to be used for development, the simplest option is to use
the iOS Developer Center website and choose Certificates, Identifiers & Profiles. Then choose
Devices, which will give you an option to add new devices. You can add devices individually or
as a batch of up to 100 devices at a time. You need to supply the UDID for each device. These
are very long strings of letters and numbers that uniquely identify each iOS device. To find the
UDID of a device, you can connect the device to iTunes and then open the Summary tab for
the device. This is where you will see the serial number. If you click this, it will change to show
the UDID. At this point you can right-click the UDID to copy it to the clipboard. The UDID will
look something like this: 5e28157c1c7c49ae61549bee50d5dfc85aed7f4d (this is not an actual
UDID). You can also find the UDID in the Organizer in Xcode (see Figure B.6). If your devices
are managed by Apple Configurator, you can also export all the UDIDs from there. Some
mobile device management systems put the devices in a Supervised mode (which also installs
a profile on the device). These devices cannot be used for development, and you have to reset
such devices. To do this, on the device go to Settings > General > Reset > Erase All Content and
Settings. Note that this will delete all apps, data, and settings on the device.

 Figure B.6 Register a device for development using the Organizer.

97803e21947864_Book 1.indb 378 11/21/13 2:57 PM

ptg11524036

379Deploying Apps to Real Devices

 Another way to register devices is to connect them to Xcode one by one; then, using the Device
Organizer, click Use for Development (see Figure B.6), and then choose the development team
to register the device with (see Figure B.7). This does require being signed in with an account
with the Admin role.

 Figure B.7 Choose a Development Team to use for provisioning of a device.

 If a device has already been used for development under a different developer account, the Use
for Development option will not be present. Instead, you can click Add to Member Center,
which will register the device and download the provisioning profiles.

 Checking the Development Environment
 To ensure that the environment is set up properly, you can open Organizer and check that the
device has a valid provisioning profile (see Figure B.8). You also need to ensure that the devel-
oper’s account is added to Xcode (Xcode > Preferences > Accounts > View Details) and has a
valid certificate (see Figure B.9).

 The most frequent problem that occurs in deploying to a device is that the device doesn’t
have a valid provisioning profile. If this happens, you can download the provisioning profile
from the Developer Site under Certificates, Identifiers & Profiles, click the provisioning profile,
and then click Download (see Figure B.10). The downloaded file can then be dragged into the
Organizer.

 If you find that you have problems with the Team Provisioning Profiles and get a Valid Signing
Identify Not Found error, you can also create a new provisioning profile manually on the devel-
oper site and add all the devices and developers that are allowed to use that profile. Developers
will then be able to download this profile and add to the Organizer on their machine.

97803e21947864_Book 1.indb 379 11/21/13 2:57 PM

ptg11524036

380 Appendix B Installing Xcode and Registering Physical Devices

 Figure B.8 Checking that the device has a valid provisioning profile.

 Figure B.9 Checking that the developer has a valid signing identity and provisioning profile.

97803e21947864_Book 1.indb 380 11/21/13 2:57 PM

ptg11524036

381Deploying Apps to Real Devices

 Figure B.10 Downloading a provisioning profile from the Apple Developer Site.

 After a device is registered, the provisioning profile is properly installed, and the device is
connected to the Mac, you can then run an app on the device by switching the scheme in
Xcode to the device (Figure B.11).

 Figure B.11 Changing the scheme to an actual device.

 If a developer wants to use his/her own personal device for development, it has to be registered
by a Team Admin. The developer will need to send the UDID to the admin who can then regis-
ter the device. If you need to register many devices for a class, you may want to set up a survey
for students to submit their device UDIDs.

97803e21947864_Book 1.indb 381 11/21/13 2:57 PM

ptg11524036

This page intentionally left blank

ptg11524036

 C
Introduction to Objective-C

 One of the biggest obstacles in learning to develop mobile apps for iOS is the need to use
Objective-C as the language for native development. This language is not taught in many
schools and is used only for Mac and iOS development, so you likely don’t know how to
develop in Objective-C. On top of that, at first glance, Objective-C code can look very intimi-
dating to developers used to more common languages like Java and C#. However, it’s not as
bad as you might think. Although the syntax includes many elements that are unfamiliar,
the basic object-oriented model is very similar to Java and C#. So, if you know either of those
languages, you should be able to pick up the syntax of Objective-C pretty easily. For those who
are familiar with Java, this appendix contains numerous references and comparisons to that
language. Most of those comparisons are also valid for C#.

 A Brief History of Objective-C
 It might seem odd to you that Apple chose such an obscure language as the basis for its smart-
phone platform. Why didn’t they pick a language that more developers knew about so as to
have more developers able to develop apps for the platform? The answer to that question goes
back to the initial creation of the language. Objective-C was created in 1986 by Tom Love and
Brad Cox as a way to add object-oriented principles to the C language. At the time, C was one
of the most popular computer programming languages, so this was an important development.
The object-oriented principles they chose were based on the Smalltalk language, which was one
of the first truly object-oriented languages. By combining the two, C-programmers could add
object-oriented extensions to their programs. In fact, to this day, Objective-C is a strict superset
of C, which means that any properly written C program can be compiled and run within an
Objective-C program.

 When Steve Jobs was forced out of Apple in 1988, he went on to found a small company called
NeXT, which licensed the Objective-C language from Cox and Love as the basis for the operat-
ing system, NeXTStep, which would power their NeXT computer workstations. Later, when
Steve Jobs returned to Apple, he brought back NeXTStep, which became the basis for OS X, and
along came Objective-C as the primary language used to develop OS X programs.

97803e21947864_Book 1.indb 383 11/21/13 2:57 PM

ptg11524036

384 Appendix C Introduction to Objective-C

 Objective-C has been very influential among programming languages, in part due to a partner-
ship between NeXT and SUN that resulted in the development of an open source version of
NeXTStep called OpenStep. The engineers at SUN who worked on this project later went on
to create the Java programming language and brought along many of the best features from
Objective-C. In particular, this means that the object-oriented model of classes, objects, single
inheritance, interfaces (called protocols in Objective-C), and polymorphism is largely the same
in Java and Objective-C, as well as C#.

 Two Languages in One
 Objective-C was designed as a strict superset of C, which means that any C program is also a
valid Objective-C program. The Objective-C designers decided to keep the C language intact
and add special syntax for object-oriented features to make it easy to distinguish between the
two. Also retained from C is division of the code for each class into two files: a header file with
a .h extension that defines publicly available interface of methods and properties for the class
and a method file with a .m extension that defines the implementation of the methods. If you
have read any of the iOS chapters, you have already seen these files in your project.

 The following is a brief overview of some of the coding constructs that the C language is used
for when you are programming in Objective-C. Most of these should be familiar to you if you
are comfortable with Java or C#.

 ■ Primitive data types, such as integers, real numbers, and characters.

 ■ Variable declarations, which are similar to Java. You specify the data type followed by the
variable name and an optional initialization, like this:

 int age;
 char initial = 'a';
 BOOL editMode = YES;

 ■ All the usual mathematical operators, such as plus and minus.

 ■ Conditional operators, such as if-then-else and switch statements.

 ■ Loops, including for, do-while, and while.

 ■ Functions can be declared in C-style, which is similar to Java, listing first a return type,
then the method name, and finally an optional list of parameters in parentheses, like
this:

 float average(float num1, double num2, BOOL round) { ... }

 This method, named average, takes a float, a double, and a boolean, and returns a float.
As this shows, function bodies are in curly braces in C.

 ■ Pointer operators. In C, variables can be declared to be either a value stored directly in
the memory location referenced by the variable, or they can be declared in a memory
location referenced by the variable. In Java, primitive values always work in the former

97803e21947864_Book 1.indb 384 11/21/13 2:57 PM

ptg11524036

385Objects and Classes

way, whereas objects always are referenced. In C, an asterisk is used to denote referenced
variables, like this:

 int *b = 20;

 This notation becomes especially important when working with objects, because they are
always referenced in Objective-C. If you are used to writing Java programs, it will likely
take some time to get used to adding the asterisk to most of the variables you declare.

 The Objective-C functionality is added to the previously mentioned C features and is used
for anything that is object-oriented, including instantiating objects and calling methods on
objects. The rest of this chapter will focus on the object-oriented features of Objective-C.

 Objects and Classes
 Just like in Java, Objective-C uses a concept of classes that describe a real-world phenomenon,
such as a Customer, a Book, or an Account. Classes are written in code and form the blueprint
for instantiation of multiple objects from the same class. Each object is then a representation
of a single real-world instance from the class. For instance, if you were to write an application
to keep track of all the books you own, you would likely instantiate an object for every one of
those books.

 For the examples in the rest of this chapter, create a project in Xcode (File > New > Project). Use
the Single View Application template under iOS Application. Name the product Objective-C
Examples, and limit Devices to just target iPhone.

 You will begin exploring the structure of Objective-C by creating a class.

 1. Create a new class by right-clicking the yellow top-level folder in the project and
selecting New File.

 2. Choose the Cocoa Touch category under iOS and select Objective-C Class.

 3. Click Next and name the new class LMABook . Make sure the Subclass Of is set to
 NSObject , and then click Next.

 4. On the next screen you have to be sure to choose a Target for your new class. This
should at least be the project (Objective-C Examples, in this case), but if you’re using unit
testing, you should also choose that target. Click Create, and two new files are added to
your project, LMABook.h and LMABook.m. You can use the Assistant Editor to see them
side by side.

97803e21947864_Book 1.indb 385 11/21/13 2:57 PM

ptg11524036

386 Appendix C Introduction to Objective-C

 Listings C.1 and C.2 show the two files that together define the Book class.

 Listing C.1 LMABook.h

 #import <Foundation/Foundation.h> //1

 @interface LMABook : NSObject //2

 @end //3

 The .h file is often called the interface file because it defines the public interface for the class.

 1. Import statements are used to add additional functionality to a class and make it aware
of features in other classes. Here, the Foundation framework, which includes a lot of the
basic data structures such as strings, is imported. Frameworks are always in angle brackets
in import statements.

 2. The class starts with the @interface keyword followed by the class name. After the
colon is the name of the super class for the class. In this case, LMABook inherits from
 NSObject . This is similar to Java, which inherits from Object, except the inheritance is
explicit in Objective-C.

 3. The class interface ends with the @end keyword.

 Listing C.2 LMABook.m

 #import "LMABook.h" //1

 @implementation LMABook //2

 @end //3

 The interface is implemented in an implementation file with a .m extension.

 1. For the implementation file to know about the interface, you have to import it. Notice
that classes in your project are imported using double quotes around the filename.

 2. The @implementation directive tells the compiler that this is the implementation for
the class.

 3. The class implementation is concluded with the @end directive.

 Now that the class is added, you will add a few relevant properties and methods to the class.
Start by modifying LMABook.h as shown in Listing C.3 .

97803e21947864_Book 1.indb 386 11/21/13 2:57 PM

ptg11524036

387Objects and Classes

 Listing C.3 Completed LMABook.h

 #import <Foundation/Foundation.h>

 @interface LMABook : NSObject

 @property (nonatomic , strong) NSString *title; //1
 @property (nonatomic , weak) NSString *author;
 @property (nonatomic , readonly, strong) NSString *lender;
 @property (getter = isOut, readonly) BOOL out ; //2
 @property int pages;

 - (id) initWithTitle: (NSString *)aTitle; //3
 + (id) bookWithTitle: (NSString *)aTitle andAuthor:(NSString *)anAuthor; //4
 - (void) lendOut: (NSString *)lenderName; //5
 - (void) returnBook; //6
 @end

 This shows several important elements of how to define a class. v

 1. The properties are the class variables that contain the data and are declared with the
 @property directive. To access the properties, an accessor method is also needed. In
Java, these are the set and get methods that you have to declare for every class variable.
In Objective-C, this is streamlined, so you can declare how you want the accessors to be
generated, and then the compiler will automatically generate them for you.

 Properties are declared with a data type and name as regular variables. Note the asterisk
used for NSString properties, because these are objects, but not for BOOL and int ,
because these are primitives. The parentheses contain various attributes for the property.
These are described in more detail later in this appendix.

 2. You have an option to specify the name of the getter (and setter) method by using getter
= method name. The default is that the getter is given the same name as the property,
and the setter is named setPropertyName . For booleans in particular, the convention is
to prepend the property name with ‘is’ as shown here.

 3.–6. Four methods are declared. The method syntax is one of the most difficult aspects of
Objective-C to wrap your head around when coming from Java, so these are explained in
more detail later in this appendix.

 One thing to note is that several of the methods have a return type of id . This is kind
of a wildcard type that can be used in place of any kind of return type. This allows for
implementing something akin to dynamic types where at runtime, any object can be
returned from the method. The id type can be very useful, but it also means that the
compiler can’t typecheck your code, so you should use it sparingly.

97803e21947864_Book 1.indb 387 11/21/13 2:57 PM

ptg11524036

388 Appendix C Introduction to Objective-C

 Before delving into some of the deeper explanations of methods and properties, go ahead and
implement the class methods by adding the code in Listing C.4 to LMABook.m.

 Listing C.4 Completed LMABook.m

 #import "LMABook.h"

 @implementation LMABook

 - (id) init //1
 {
 self = [super init];
 if (self) {
 // Initialization code here.
 }
 return self ;
 }

 -(id) initWithTitle:(NSString *)aTitle //2
 {
 self = [super init];
 if (self) {
 _title = [aTitle copy];
 }
 return self ;
 }

 +(id) bookWithTitle:(NSString *)aTitle //3
 {
 LMABook *book = [[self alloc] initWithTitle :aTitle];
 return book;
 }

 +(id) bookWithTitle:(NSString *)aTitle andAuthor:(NSString *)anAuthor //4
 {
 LMABook *book = [[self alloc] initWithTitle :aTitle];
 book. author = anAuthor;
 //or: [book setAuthor:anAuthor];
 return book;
 }

 -(void) lendOut:(NSString *)lenderName //5
 {
 _lender = lenderName;
 _out = YES ;
 }

97803e21947864_Book 1.indb 388 11/21/13 2:57 PM

ptg11524036

389Objects and Classes

 -(void) returnBook //6
 {
 _lender = nil ;
 _out = NO ;
 }

 @end

 There are quite a few things going on in this file, which has all the implementation of the
methods that you declared in the .h file.

 1. This is a standard method used to create an object. Every class has an init method that
initializes variables. The init method is similar to a constructor in Java. However, the
 init method explicitly calls the super class version of init (in Java, this call is implicit).
After the call to the super class init completes, the init method checks to see if an
object actually was created, in which case, any initialization can be done. Creating an
object using this method would look like this:

 LMABook *book = [[LMABook alloc] init];

 This pattern is very common when creating objects. It calls the alloc method on the
 LMABook class, which allocates memory space for the object. The init method then
initializes the variables. This two-stage process is functionally equivalent to a Java
constructor call, like this:

 Book book = new Book();

 2. Instead of overloading constructors as you would in Java, Objective-C classes contain
multiple methods whose names starts with init and then use the rest of the name to
specify which parameters are being passed in. This method takes a title, which is passed
into the property title. Notice the use of _title to refer to the property here (see the
section, “Properties in Detail” for explanation).

 3. An alternative to creating an object with an init method is to use a class factory method
as shown here. A class factory method is a method that creates and returns a new object
from a class by both doing allocation and initialization, so a client doesn’t have to worry
about that. These methods are very common in the various standard frameworks you will
use to create your iOS apps and are declared as static methods (indicated by the plus in
front). The method here gets a title for the book and then a local variable is set up and
initialized with an object created using alloc and the initWithTitle: method. Finally,
the completed object is returned to the caller.

 4. This method is similar to the one in item 3, except it also takes an author as a parameter.
Because there is no init method that takes both an author and a title, the object is first
created with the title only, and then the author property is set. Note that the property
value can be set using either dot notation or by calling setAuthor.

97803e21947864_Book 1.indb 389 11/21/13 2:57 PM

ptg11524036

390 Appendix C Introduction to Objective-C

 5–6. These two methods manage lending out and returning books. Because the lender and
 out properties are set to readonly (refer to Listing C.3), they can be set using only these
two methods.

 With the LMABook class declared, the next step is to look at how to create and work with
objects of the class. To keep things simple, all the work on this will be done in a single method,
and all output will be done to the console.

 Open LMAAppDelegate.m and add this import statement after the other import statement:

 #import "LMABook.h"

 This makes the LMABook class available to use within LMAAppDelegate.m. Objective-C doesn’t
have a concept of namespace, like in C#, or packages, as in Java, that allow for resolving names
within a single app, so you have to explicitly import the classes you want to reference—even
within your own app. You can add the import to either the .h or .m file, but unless you need to
reference it in the .h file, the recommended approach is to import in the .m file. This is because
the imported file is essentially copied into the target file by the compiler, and thus any declared
properties and methods in the imported file become available from the target file as well.

 Change application:didFinishLaunchingWithOptions: as shown in Listing C.5 .

 Listing C.5 Declaring and Manipulating Objects

 - (BOOL)application:(UIApplication *)application
➥didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
 {
 // Override point for customization after application launch.

 LMABook *book1 = [[LMABook alloc] init]; //1
 book1. title = @"Moby Dick" ;
 book1. author = @"Herman Melville" ;
 book1. pages = 899;

 LMABook *book2 = [LMABook bookWithTitle : @"To Kill A Mockingbird" //2
 andAuthor : @"Harper Lee"];
 [book2 setPages :359]; //3

 [book1 lendOut : @"Jim Smith"]; //4
 [book2 lendOut : @"Mary Jane"];
 [book2 returnBook];

 if ([book1 isOut]){ //5
 NSLog (@"%@ is lent out to %@" , book1. title , book1. lender); //6
 }
 else {
 NSLog (@"%@ is not lent out" , book1. title);
 }

97803e21947864_Book 1.indb 390 11/21/13 2:57 PM

ptg11524036

391Objects and Classes

 NSArray *books = @[book1, book2]; //7
 for (LMABook *book in books) { //8
 NSLog (@"%@, %d pages." , book. title , book. pages);
 }

 return YES ;
 }

 This code demonstrates several ways to interact with objects in Objective-C.

 1. This is the standard way of creating an object using alloc and init . Because no
properties are initialized, the following lines use dot notation to set each of the three
properties to specific values. The @ sign in front of the string values is used to signify
that it is a literal string value and is an instance of NSString . If you omitted the @ sign,
the string would be a C string literal, which would not be able to be used anywhere an
 NSString is expected. So, in practice, anytime you need a string literal, you need to
include the @ sign in front of it.

 2. The second book object is created using bookWithTitle:andAuthor: to populate two of
the parameters.

 3. This illustrates the alternative way to set a property by calling the accessor method using
square bracket notation.

 4. These three lines illustrate calling methods on the two book objects. First, book1 is lent
out to Jim Smith, then book2 is lent out to Mary Jane, and finally book2 is returned.

 5. This if statement checks whether book1 is lent out by calling the isOut accessor
method. It then uses the NSLog method to print to the console.

 6. NSLog prints any strings passed to it, to the console, and is frequently used for debugging
purposes. The console is not available to users running your app on an iOS device, so you
cannot use this for messages to the user. The string here is a concatenation where the
two instances of %@ inside the string are placeholders to be replaced by the two values
following the string—in this case, the title and lender of book1 .

 7. This line creates an array with book1 and book2 as entries. An alternative approach to
declaring and initializing an array is this:

 NSArray *books = [NSArray arrayWithObjects :book1, book2, nil];

 This is more verbose, but perhaps a little clearer about what is going on in the code.
 NSArray has a number of methods to create arrays based on different starting points
(another array, contents of a file, and contents of a URL). Note that NSArray cannot be
modified after it has been created. If you wanted to add or remove entries, you would
need to declare an NSMutableArray , which is a subclass of NSArray , so it has all the
same features of NSArray , in addition to capabilities to insert and delete objects.

 8. This is the fast enumeration loop to go through all the elements in a collection. It
works in the same way as the foreach loop in C# and the enhanced for loop in Java

97803e21947864_Book 1.indb 391 11/21/13 2:57 PM

ptg11524036

392 Appendix C Introduction to Objective-C

by declaring a local variable of the class that is in the collection and then iterating over
all the elements in the collection, assigning them to the local variable one by one, and
executing the body of the loop on each element. In this case, it is used to print the title
and number of pages for all the books.

 Try running the app now, and you should see the following output in the console in Xcode
(time stamps removed for readability):

 Objective-C Examples[5447:a0b] Moby Dick is lent out to Jim Smith
 Objective-C Examples[5447:a0b] Moby Dick, 899 pages.
 Objective-C Examples[5447:a0b] To Kill A Mockingbird, 359 pages.

 To Dot or Not to Dot?
 There is some debate in the Objective-C community as to whether dot notation is the best way
to write code, but it largely comes down to personal choice. Dot notation leads to more concise
code that is easier to read, especially for new Objective-C programmers. However, it may also
be confusing to try to remember when dot notation is okay and when it isn’t. Apple uses dot
notation in all its examples, and in this book we generally follow that approach. The dot-
notation is newer (available from Objective-C version 2.0, released in 2006). You can use the
dot notation to call an accessor method, but not to call a regular method, in which case you
have to use square bracket notation.

 For easy comparison to Java, Listing C.6 has the Book class as it would be implemented in Java,
and Listing C.7 is a main method with the same functionality as Listing C.5 .

 Listing C.6 The Book Class Implemented Using Java

 class Book {
 private String title;
 private String author;
 private int pages;
 private String lender;
 private boolean out;

 public Book() {
 }

 public Book(String title) {
 this.title = title;
 this.author = author;
 }

 public static Book createBook(String title) {
 Book book = new Book(title);
 return book;
 }

97803e21947864_Book 1.indb 392 11/21/13 2:57 PM

ptg11524036

393Objects and Classes

 public static Book createBook(String title, String author) {
 Book book = new Book(title);
 book.author = author;
 return book;
 }

 public String getTitle() {
 return title;
 }
 public void setTitle(String title) {
 this.title = title;
 }

 public String getAuthor() {
 return author;
 }
 public void setAuthor(String author) {
 this.author = author;
 }
 public int getPages () {
 return pages;
 }
 public void setPages(int pages) {
 this.pages = pages;
 }

 public String getLender() {
 return lender;
 }

 public boolean isOut() {
 return out;
 }

 public void lendout(String lenderName) {
 this.lender = lenderName;
 out = true;
 }

 public void returnBook() {
 lender = null;
 out = false;
 }

 }

97803e21947864_Book 1.indb 393 11/21/13 2:57 PM

ptg11524036

394 Appendix C Introduction to Objective-C

 Listing C.7 Main Method in Java

 public static void main(String[] args) {
 Book book1 = new Book();
 book1.setTitle("Moby Dick");
 book1.setAuthor("Herman Melville");
 book1.setPages(899);

 Book book2 = Book.createBook("To Kill a Mockingbird", "Harper Lee");
 book2.setPages(359);

 book1.lendout("Jim Smith");
 book2.lendout("Mary Jane");
 book1.returnBook();

 if(book1.isOut()) {
 System.out.println(book1.getTitle() + " is lent out to " +
➥book1.getLender());
 }
 else {
 System.out.println(book1.getTitle() + " is not lent out");
 }

 ArrayList<Book> books = new ArrayList<>();
 books.add(book1);
 books.add(book2);
 for(Book book : books) {
 System.out.println(book.getTitle() + ", " + book1.getPages() + "
➥pages.");
 }

 }

 Properties in Detail
 When getting into Objective-C programming, the declaration of properties is sometimes
confusing. In Java, you declare some private variables in the class, and then create getters and
setters as needed. Things seem much more involved in Objective-C, so a more detailed look
at the properties is warranted. The properties in Objective-C are very similar to the automatic
properties available in C#.

 When you declare a property like this in Objective-C:

 @property (nonatomic, strong) NSString *title;

97803e21947864_Book 1.indb 394 11/21/13 2:57 PM

ptg11524036

395Objects and Classes

 you actually tell the compiler to do several things in a single line:

 ■ Declare a class variable called title of type NSString .

 ■ Create an accessor method called title that will return NSString .

 ■ Create an accessor method called setTitle that will take an NSString and assign it to
the title variable.

 ■ Do not ensure thread-safe access to the title variable by specifying nonatomic (this is less
safe in multiuser and multithreaded environments, but is faster).

 This makes the code much more streamlined and faster to write. The biggest problem in under-
standing the properties is how you can customize the implementation of the accessor methods
by using various keywords in the parentheses. Table C.1 gives an overview of the options avail-
able for property attributes.

 Table C.1 Property Attributes

 Attribute Purpose

 getter=<name> ,
 setter=<name>

 Specifies name of the accessor methods that will be used for
this property.

 readwrite or readonly Which accessor methods are created. Default: readwrite.

 strong , weak , assign , retain ,
or copy

 How will data be assigned to the attribute? Strong: Keep own-
ership of object after assignment. Use with ARC and objects.
Weak: Keep the object until it is otherwise discarded. Use with
ARC and objects. Assign: Regular assign. Similar to weak. Use
for nonobjects.

 Copy: Makes a copy of the data and assigns. Any changes to
original object will not be reflected in assigned object, and vice
versa. Retain: Retains argument. Similar to strong. Use for
objects.

 Default: assign.

 nonatomic If specified nonatomic, the attribute is not threadsafe. Default:
atomic. Note: nonatomic is faster, but use only in single-
threaded situations.

 Most of these shouldn’t require more explanation, but the difference between strong and
weak can be quite confusing. A strong reference is the most common and is how most object
assignments are made in Java and C#. A reference is made to the object, and even if all other
references to the object are discarded, the object will not be discarded. However, with a weak
reference, if the only reference left is the weak reference assigned through the property, the
object will be discarded. Weak references are most often used for delegate properties and for
subviews of a main view, because there is already a strong reference from the main view.

97803e21947864_Book 1.indb 395 11/21/13 2:57 PM

ptg11524036

396 Appendix C Introduction to Objective-C

 After the properties are declared, to use them in the .m file, you can use an underscore followed
by the name of the property. For instance, the title property could be referenced like this in
LMABook.m:

 _title = aTitle;

 When the properties are referenced outside the class, you can use either dot notation or bracket
notation to call the accessor methods as discussed earlier.

 Declaring and Calling Methods
 As you have already seen, method declarations are very different from what you’re used to
seeing in Java and C#. Objective-C instead uses SmallTalk method syntax. Figure C.1 shows
a breakdown of the declaration of a static method that takes two parameters and returns an
object of type id .

Method signature keywords
Method name:
bookWithTitle:andAuthor:

Parameter names

Parameter types

Instance method

Return type

+ (id) bookWithTitle: (NSString *)aTitle andAuthor:(NSString *)anAuthor;

 Figure C.1 Method signature.

 There are two types of methods in Objective-C: instance and class methods. Instance methods
work on specific objects, whereas class methods are similar to static methods in Java and can be
invoked using the class name. Class methods do not have access to any data stored in the class
properties.

 The return type in this example is id , which is a wildcard type that allows for any type to be
returned from the method. This is similar to declaring a method to return Object in Java.

 Rather than list parameters in parentheses, Objective-C lists parameters following a colon with
the type of the parameter in parentheses before the parameter name. If there are multiple
parameters, a word is added to describe subsequent parameters. These method keywords are
part of the method name and are also listed when calling the method, making it easier to

97803e21947864_Book 1.indb 396 11/21/13 2:57 PM

ptg11524036

397Objects and Classes

understand what role a particular parameter plays. The method in Figure C.1 is thus called
 bookWithTitle:andAuthor: (notice the colons separating each keyword). In contrast, the
method signature in Java would look like this (although the method name would typically not
be so long in Java):

 public static Object bookWithTitleAndAuthor(String title, String author);

 You may be wondering how to specify which properties and methods are private and public in
Objective-C. There is no designation of public and private as there is in Java and C#. However,
only those properties and methods listed in the .h file are part of the public interface. You can
declare private variables, properties, and methods in the .m file, and they will not be visible
outside the file which, in essence, makes them private.

 Inheritance and Protocols
 One of the important concepts of object-oriented programming is inheritance, which allows
for creating simpler and more efficient code by allowing one class to inherit all the properties
of another class. This gives the benefit of polymorphism, where a variable can be declared to
hold a particular type in the code, but at runtime, any object declared of that class or any of its
subclasses can be assigned to the variable.

 Inheritance in Objective-C works exactly like it does in Java and C#. Only the syntax is slightly
different. To specify inheritance, you add a colon and the super class name to the @interface
line in the .h file. For instance, the Book class you created earlier could form the basis for a
PhotoBook class, which would then be declared like this:

 @interface LMAPhotoBook : LMABook

 You do have to remember to import the super class.

 Objective-C allows only for single inheritance and has a class, NSObject , which plays the same
role as Object in Java of being the top-most class in the inheritance hierarchy.

 To allow for a class to have multiple identities, object-oriented programmers turn to interfaces
in Java and C#. The same concept is called a protocol in Objective-C, and rather than imple-
ment an interface, Objective-C classes are said to conform to a protocol. But the concepts are
the same: A protocol defines a set of methods and properties, and when a class conforms to the
protocol, any variable declared to hold a type of the protocol will be able to hold an object of
any class that conforms to the protocol. Specifying that a class conforms to a protocol is also
done in the @interface line by putting the protocols in angle brackets like this:

 @interface MyClass : NSObject <MyProtocol, AnotherProtocol, YetAnotherProtocol>

 As you can see, classes can conform to multiple protocols. A protocol can declare that some
methods are optional, but otherwise, the class will need to implement all methods declared in
all the protocols.

97803e21947864_Book 1.indb 397 11/21/13 2:57 PM

ptg11524036

398 Appendix C Introduction to Objective-C

 When declaring variables that conform to delegates, you have to specify a regular data type as
well as the protocol, so you will often see code like this to specify that a variable must conform
to a particular protocol:

 id <protocolName> variable;

 This specifies that the object assigned to variable can be of any type (id) as long as it
conforms to protocolName .

 Memory Management
 It used to be that memory management was one of the most challenging aspects of learning
Objective-C. Fortunately, that is no longer the case because Apple has introduced a system
called Automatic Reference Counting (ARC) that hides most of the complexity of memory
management. However, although you don’t need to know all the intricacies of managing
memory in your apps, it’s still important to understand what’s going on and how it works.

 In object-oriented programming, it’s always a problem to reclaim the memory left behind when
all references to an object are removed. For instance, imagine you create two objects and assign
them to variables a and b, respectively. But then later, you assign variable a to point to vari-
able b. Now both variables point to the same object. But what happens with the second object?
With no references pointing to it, there is no way to retrieve that object from anywhere in your
program, so the memory it occupies should be reclaimed, but how?

 Many object-oriented languages implement a garbage collection process that periodically scans
the objects in the system and removes any that aren’t referenced anymore. This is a simple
solution for us programmers because we don’t have to think about it—it just happens in the
background. However, a garbage collection process uses processing power, which reduces
battery life, so Apple decided to not implement a garbage collector for iOS. Instead, they used a
system of reference counting where each object has an internal counter of the number of refer-
ences to the object. Anytime a new reference is added, this counter is incremented. Anytime a
reference is removed (for instance, if a variable goes out of scope), the counter is decremented.
When the counter reaches zero, the object is deallocated and the memory reclaimed.

 It used to be that programmers would have to add statements in their code to explicitly
manage these counters, calling retain if they wanted to increment the counter when making a
reference to an object, and release when dereferencing.

 Fortunately, as of iOS 5, Apple introduced a system called ARC, which alleviates the need to
manually retain and release objects. Instead, the compiler analyzes the code and inserts those
method calls as needed. You will, therefore, rarely need to worry about the memory manage-
ment aspects of Objective-C. However, if you intend to do professional programming in
Objective-C, you still need to learn in detail what’s going on, because there are times when
ARC needs a little help. However, it is beyond this appendix to examine those situations.
Instead, you should study this issue by reading Programming in Objective-C by Stephen G.
Kochan.

97803e21947864_Book 1.indb 398 11/21/13 2:57 PM

ptg11524036

Index

 A
 absolute positioning, 48 , 205

 accelerometer, 178 , 328

 data collection, starting/stopping, 332

 label movements, updating, 331 - 332

 motion detection

 starting, 330

 stopping, 332

 motion manager

 creating, 328 - 329

 retrieving from app delegate,
 329 - 330

 accessing hardware components, 20

 accessory buttons, 280 - 281

 accuracy (hardware), 21

 actions

 Alert View button selection, 283

 changeEditMode, 231

 geocoding, 293

 map types, changing, 308

 Settings interface, configuring, 253

 activities

 Activity class, 56

 declaring, 52

 FragmentActivity subclass, 56

 ListActivity subclass, 56

 onCreate() method, 52

 onCreateOptions() method, 52

 adding to projects, 58 - 59

 camera intent, 185

97803e21947864_Book 1.indb 399 11/21/13 2:57 PM

ptg11524036

400 activities

 custom dialogs, implementing, 85

 default, setting, 141 - 142

 empty database default, 142 - 143

 fragments, 56

 lists, 56

 displaying, 118 - 120

 layout population with retrieved
contents, 137 - 138

 responding to item clicks, 120 - 121

 sorting according to user
preferences, 139 - 141

 specific data, retrieving, 135 - 136

 ListView widget, adding, 118 - 119

 overview, 56

 phone app, starting, 182

 Activity class, 56

 declaring, 52

 onCreate() method, 52

 onCreateOptions() method, 52

 subclasses

 FragmentActivity, 56

 ListActivity, 56

 adapters, 116

 AdapterView class, 115

 Add button (lists), 138 - 139

 addressToCoordinates: method, 294

 AdMob

 ads, embedding in apps

 Android, 338 - 339

 iOS, 339

 registration, 340

 SDK, downloading, 338

 ad supported apps, 338 - 340

 ADT (Android Development Tools) plug-in,
installing, 367 - 369

 advertising paid apps, 338

 afterTextChanged() method, 100

 AlertDialog object, 168

 alertView:clickedButtonAtIndex:
method, 283

 Alert View, 281 - 284

 Android

 activities. See activities

 ads, embedding in apps, 338 - 339

 app behaviors, coding

 activities, creating, 52

 Activity class, 52

 button press, 52 - 53

 initial activity code, 50 - 52

 menu, 52

 source code, importing, 51

 application package (APK) files,
creating, 349 - 350

 batteries, monitoring, 175 - 177

 current level, displaying, 175

 status broadcasts, listening/
responding, 176 - 177

 cameras, 174

 displaying pictures with contacts,
 188 - 189

 functionality, implementing,
 185 - 186

 permission, 184

 retrieving pictures from
database, 188

 saving pictures to database,
 187 - 188

 setters/getters, 186

 custom dialogs, creating

 Change button, 85 - 86

 class, creating, 83 - 84

 implementing in activities, 85

 data persistence

 files, 90

 iOS, compared, 91

 SharedPreferences, 89 - 90

 SQLite databases. See SQLite
databases

97803e21947864_Book 1.indb 400 11/21/13 2:57 PM

ptg11524036

401Android

 Development Tools (ADT) plug-in,
installing, 367 - 369

 devices. See devices (Android)

 dialog boxes, creating, 75 - 78

 Eclipse. See Eclipse

 emulator, 39 - 42

 AVD, 40 - 41

 Google Maps v2 compatibility, 152

 Hello World! app, running, 49

 initial launch, 41

 location control, 157

 run configurations, 42

 fragments

 FragmentActivity class, 56

 maps, 146 , 161

 in-app purchases, 341

 installing, 367 - 369

 ADT plug-in, 367 - 369

 SDK, 369

 intents

 battery status, 176

 camera, 185

 overview, 57

 phone app, starting, 182

 layouts. See layouts

 life cycles, 14 - 15

 lists

 activity to open if database empty,
 142 - 143

 adapters, 116

 Add button, 138 - 139

 data retrieval method, 116 - 117

 default activity, setting, 141 - 142

 displaying, 118 - 120

 layout population with retrieved
content, 137 - 138

 ListView widget, 116 , 118 - 119

 responding to item clicks, 120 - 121

 sorting data according to user
preferences, 139 - 141

 specific data, retrieving, 135 - 136

 locations

 choosing best, 159 - 160

 contacts. See locations, contacts
map

 emulator, 157

 geocoding, 152 - 155

 GPS sensors, 155 - 159

 map object, 161 - 164

 network sensors, 159 - 160

 managers

 overview, 174

 sensor, 178 - 179

 manifest file

 components, 38 - 39

 overview, 37 - 38

 maps. See maps (Android)

 market, 344

 method signatures, 53

 navigation bars, creating, 60 - 64

 button activities, 78 - 80

 color resources, creating, 61

 copying and pasting, 64

 image buttons, positioning, 61

 images, adding, 60

 XML code, 62 - 64

 phone calling, 174

 EditText widget long click event
response, 182

 phone app, starting, 182

 phone number, accepting, 182

 press-and-hold user action
listener, 181

 user permission, 181

97803e21947864_Book 1.indb 401 11/21/13 2:57 PM

ptg11524036

402 Android

 projects

 adding activities, 58 - 59

 choosing activities, 34

 creating, 58

 default settings, 34

 Google Play Services SDK, adding,
 148 - 149

 icon configuration, 34

 importing, 57

 navigation, 35

 new Android application
window, 32

 project/package names, 33

 SDK requirements, 33 - 34

 themes, 34

 publishing apps

 app descriptions, 348

 audiences, 347

 enterprise distribution, 353 - 354

 Google Play Store, 348 - 351

 market requirements, 347

 operating system updates, 356

 pricing, 348

 resources, 348

 screenshots, preparing, 348

 testing, 354 - 355

 requirements , xiv-xvi

 SDK download, xiv

 sensors

 accelerometer/magnetometer, 178

 compass, creating, 177 - 180

 event listener, implementing,
 179 - 180

 iOS sensors, compared, 298

 location, 145 - 146

 overview, 173 - 174

 registering for monitoring, 178 - 179

 SharedPreferences

 displaying upon page access
behavior, 109 - 112

 layout, creating, 107 - 110

 saving, 112 - 113

 tables, 285

 toggle buttons, 80 - 82

 data entry widgets, enabling/
disabling, 81 - 82

 initializing, 80 - 81

 toolbars, creating, 65 - 66

 user interfaces

 associating code with button on
layout, 53

 attributes, 43 - 44

 code, connecting, 54

 EditText widgets. See EditText
widgets

 form widgets, 45

 properties, 45

 relative positioning, 48 , 205

 root element, 42

 structure, 45

 TextView widgets. See TextView
widgets

 Virtual Device (AVD), 40 - 41

 annotations (maps), 303 - 306

 contacts, plotting, 305 - 307

 LMAMapPoint class, creating, 303 - 304

 user location, adding, 304 - 306

 API keys, 149

 APK (Android application package) files,
creating, 349 - 350

 app delegates

 files, 198

 MKMapViewDelegate protocol,
implementing, 302

 motion manager, retrieving, 329 - 330

 Objective-C classes, 390

 View Controller, launching, 238

97803e21947864_Book 1.indb 402 11/21/13 2:57 PM

ptg11524036

403apps

 provisioning profiles, 374

 students as developers, setting
up, 374

 team admins, 374

 team agents, 374

 team members, 374

 team provisioning profiles, 374

 UDID, 375

 Fence Builder Pro, 7

 GoFishing! app, 10

 icons (Android), 34

 icons (iOS), 208 - 210

 asset catalog, 209

 placement, 208

 resolutions, 209 - 210

 monetizing, 9 - 10 , 337

 Android versus iOS, 344

 ad supported apps, 338 - 340

 advertising apps, 338

 app store economics, 341

 Blackberry, 344

 business LLCs, creating, 342

 business planning, 342 - 343

 business use apps, 338

 corporate app developers, 343

 in-app purchases, 340 - 341

 independent developers/
freelancers, 343

 paid apps, 337 - 338

 selling apps outside an app
store, 341

 Windows, 344

 MyContactList. See MyContactList app

 publishing

 Android enterprise distribution,
 353 - 354

 app descriptions, 348

 audiences, 347

 Google Play Store, 348 - 351

 iOS enterprise distribution, 354

 Apple University Program , xv

 application:didFinishLaunchingWithOptions:
method, 15

 applicationWillResignActive: method, 15

 apps

 ads, embedding, 338 - 340

 behaviors (Android)

 activities, creating, 52

 Activity class, 52

 button press, 52 - 53

 displaying preferences, 109 - 112

 initial activity code, 50 - 52

 menu, 52

 saving preferences, 112 - 113

 source code, importing, 51

 behaviors (iOS), 202 - 204

 button actions, creating, 203 - 204

 outlets, creating, 203

 output, displaying, 204 - 205

 Bossy, 7 - 8

 customer reach advantages, 4 - 6

 availability, 5

 brand loyalty/awareness, 5

 device hardware/software
capabilities, 6

 payment industry, 6

 data values, storing in key-value
list, 256

 deploying to real devices

 App ID, 375

 challenges, 373

 developer accounts, creating,
 375 - 376

 developer certificates, 374

 development certificates, backing
up, 376 - 377

 development environment,
checking, 379 - 381

 device registration, 378 - 379

 devices, setting up, 374

97803e21947864_Book 1.indb 403 11/21/13 2:57 PM

ptg11524036

404 apps

 layout_toRightOf, 69

 nextFocusDown, 69

 Objective-C properties, 395

 phone widgets, 70

 relative layouts, locking, 65 - 66

 user interface widgets, 45

 autofocus, stopping, 82

 Automatic Reference Counting (ARC), 398

 availability (hardware components), 20

 AVD (Android Virtual Device), configuring,
 40 - 41

 B
 Back Button (navigation), 229

 backgroundTap: method

 defining, 205

 implementing, 205

 BaseAdapter class, 116

 batteries

 conserving, 297

 design issues, 19

 status, monitoring, 175 - 177 , 314 - 317

 changes, handling, 316 - 317

 current level, displaying, 175

 status bar percentage discrepancies,
 317

 status broadcasts, listening/
responding, 176 - 177

 user interface, configuring, 315 - 316

 batteryChanged: method, 317

 BatteryManager, 175 - 177

 current battery level, displaying, 175

 status broadcasts, listening/responding,
 176 - 177

 batteryStatus: method, 317

 beforeTextChanged() method, 100

 iTunes Store, 351 - 352

 market requirements, 347

 operating system updates, 356

 pricing, 348

 resources, 348

 screenshots, preparing, 348

 testing, 354 - 355

 Square, 6

 State Farm Pocket Agent, 9

 states, 14

 stores, 341

 testing, 354 - 355

 boundary value analysis, 355

 cause-effect graphing, 355

 equivalence partitioning, 354

 usability, 355

 variety of devices, 355

 ARC (Automatic Reference Counting), 398

 ArrayAdapter class, 116

 ArrayList objects, 117

 array.xml file, 37

 asset catalog

 app icons, 209

 images, adding, 221

 launch images, 210

 attributes

 birthday widgets, 74

 city, state, zip code EditText
widgets, 71

 email widgets, 73 - 74

 ems, 68

 imeOptions="actionNext," 68

 inputType, 68

 layout_alignBottom, 69

 layouts, 43 - 44

 blank space padding, 44

 size, 44

 text, displaying, 44

97803e21947864_Book 1.indb 404 11/21/13 2:57 PM

ptg11524036

405buttons

 processes, changing, 7 - 9

 automation, 7

 business process reengineering, 7

 internal processes, 9

 scheduling/communication, 7

 process reengineering (BPR), 7

 buttons

 accessory, 280 - 281

 actions, creating, 203 - 204

 Add (lists), 138 - 139

 Back, 229

 Change, 85 - 86

 Get Location, 153 - 154

 ImageButtons

 adding to layouts, 183

 images, importing, 60

 initialization, 184

 positioning, 61

 navigation

 activities, coding, 78 - 80

 contacts map, 170

 image, 60

 press behaviors, 52 - 53

 associating code with button on
layout, 53

 listeners, 53

 method, declaring, 53

 results, 53

 Save

 hiding keyboards when
pressed, 103

 initializing, 101 - 103

 toggle, 80 - 82

 data entry widgets, enabling/
disabling, 81 - 82

 initializing, 80 - 81

 behaviors (apps)

 Android

 activities, creating, 52

 Activity class, 52

 button press, 52 - 53

 initial activity code, 50 - 52

 menu, 52

 preferences, 109 - 113

 source code, importing, 51

 iOS, 202 - 204

 button actions, creating, 203 - 204

 outlets, creating, 203

 output, displaying, 204 - 205

 birthday widgets, 74 - 75

 Blank Activity window, 34

 blank space, padding, 44

 Book class

 app delegate availability, 390

 completing, 387

 creating, 385 - 387

 Java implementation, 392 - 394

 LMABook.h file, 386

 LMABook.m file, 386

 methods, implementing, 388 - 390

 objects, declaring/manipulating,
 390 - 392

 Bossy app, 7 - 8

 boundary value analysis, 355

 BPR (business process reengineering), 7

 brand loyalty/awareness, 5

 breakpoints, setting, 105 - 106

 BroadcastReceiver objects, 176 - 177

 businesses

 business use apps, 338

 creating

 business plan, 342 - 343

 LLC, creating, 342

97803e21947864_Book 1.indb 405 11/21/13 2:57 PM

ptg11524036

406 callContact() method

 BaseAdapter, 116

 Book

 app delegate availability, 390

 completing, 387

 creating, 385 - 387

 Java implementation, 392 - 394

 LMABook.h file, 386

 LMABook.m file, 386

 methods, implementing, 388 - 390

 objects, declaring/manipulating,
 390 - 392

 CLGeocoder, 295

 Contact, creating, 94 - 96

 ContactActivity, 99

 ContactDataSource, creating, 93 - 98

 insert/update methods, adding,
 96 - 98

 required code, 94

 ContactDBHelper, 91 - 93

 CursorAdapter, 116

 database helper, creating, 91 - 93

 data source, creating, 93 - 98

 insert/update methods, adding,
 96 - 98

 required code, 94

 DatePickerDialog, 83 - 84

 FragmentActivity, 56 , 146

 Intent, 57

 iOS user interface, 213

 ListActivity, 56

 LMAMapPoint, 303 - 304

 NSSortDescriptor, 286

 Objective-C

 app delegate availability, 390

 creating, 385 - 387

 inheritance, 397

 methods, implementing, 388 - 390

 Sensor, 174

 SensorManager, 174

 C
 callContact() method, 182

 CAMERA_REQUEST variable, 186

 cameras (Android), 4 , 174

 functionality, implementing, 185 - 186

 permission, 184

 pictures

 displaying, 188 - 189

 retrieving from database, 188

 saving to database, 187 - 188

 setters/getters, 186

 cameras (iOS), 4 , 317

 controller, creating, 319 - 320

 lightweight migration of Core Data,
 323 - 324

 outlet, 318

 pictures

 handling, 321 - 322

 saving to database, 321 - 323

 user interfaces, configuring, 318

 cause-effect graphing, 355

 cells (tables)

 accessories, 264

 styles, 264

 Change buttons (custom dialogs), 85 - 86

 changeEditMode action, 231

 changeEditMode: method, 327

 changePicture: method, 319

 classes

 Activity, 56

 declaring, 52

 FragmentActivity subclass, 56

 ListActivity class, 56

 onCreate() method, 52

 onCreateOptionsMenu() method,
 52

 AdapterView, 115

 ArrayAdapter, 116

97803e21947864_Book 1.indb 406 11/21/13 2:57 PM

ptg11524036

407ContactActivity

 Eclipse workspaces, 32

 emulator, 39 - 42

 AVD, 40 - 41

 initial launch, 41

 Google Play Store accounts, 350

 run configurations, 42

 txtPhone field editing modes, 327 - 328

 connectivity

 design issues, 18 - 19

 user interfaces to code

 Android, 54 , 204

 iOS, 204

 Constants.h file, 260

 Constants.m file, 260

 ContactActivity

 birthday input, 75 - 74

 class, 99

 contact locations, displaying on
map, 164

 data entry forms, 66

 addresses, 68 - 69

 city, state, zip code fields, 69 - 71

 input screen structure, 66 - 67

 labels, aligning, 72

 names, 67 - 68

 phone information fields, 70

 DatePicker dialog, 82 - 86

 Change button, 85 - 86

 DatePickerDialog class, 83 - 84

 implementing in activities, 85

 email input, 73 - 74

 ImageButton initialization, 184

 layout with ImageButton, 183

 LongClickListener, 181

 navigation bar, coding, 78 - 80

 pictures, displaying, 188 - 189

 setting as default for empty database,
 142 - 143

 SharedPreferences, 89

 SimpleAdapter, 116

 UIDevice, 312

 UIResponder, 326

 UITextField, 326

 UIView, 213

 UIViewController, 214

 UIWindow, 213

 classrooms, configuring

 Eclipse, 369 - 370

 Xcode, 373

 CLGeocoder class, 295

 CLHeading object, 299

 CLLocationCoordinate2D struct, 296

 CLPlacemark objects, 295

 CMMotionManager object

 creating, 328 - 329

 retrieving from app delegate, 329 - 330

 color resources

 navigation bars, 61

 toolbars, 65

 color.xml file, 37

 commit() method, 113

 communication

 business process change, 7

 mobile devices, 4

 compass, creating, 177 - 180

 Android versus iOS, 180

 event listener, implementing, 179 - 180

 heading widget, 177 - 178

 registering sensors for monitoring,
 178 - 179

 Configure Launcher Icon window, 34

 Configure Project window, 34

 configuring

 AVD, 40 - 41

 Core Data support, 237 - 241

 data structure design, 241

97803e21947864_Book 1.indb 407 11/21/13 2:57 PM

ptg11524036

408 ContactActivity

 ContactSettings activity, 107 - 110

 displaying user preferences, 109 - 112

 layout, creating, 107 - 110

 saving user preferences, 112 - 113

 control-dragging, 217

 controls

 camera, creating, 319 - 320

 Navigation

 adding, 227

 adding to View Controllers, 228

 navigating back to previous
screen, 229

 overview, 215

 Picker View, 253 - 255

 data sources, 255

 displaying data, 255 - 256

 implementing, 253 - 255

 protocols, adding, 253

 user selections, responding, 256

 Scroll View

 adding, 224 - 225

 content size, 224 - 225

 keyboards, dismissing, 226

 moving, 227

 Segmented Control, overlapping,
 226

 Segmented

 map types, changing, 307 - 309

 moving, 227

 multiple segments, 222

 switching between view and edit
modes, 230 - 233

 Tab Bar, 214 , 217

 Table, 265

 View

 adding, 217

 code files, renaming, 220

 displaying at launch, configuring,
 238

 toggle buttons, 80 - 82

 data entry widgets, enabling/
disabling, 81 - 82

 initializing, 80 - 81

 toolbars, creating, 65 - 66

 Contact class, creating, 94 - 96

 ContactDataSource class, creating, 93 - 98

 insert/update methods, adding, 96 - 98

 required code, 94

 ContactDBHelper class, 91 - 93

 ContactListActivity

 Add Contact button, 138 - 139

 battery level TextView, 175

 BroadcastReceiver objects, 176 - 177

 as default activity, setting, 141 - 142

 displaying lists, 118 - 121

 item click responses, 120 - 121

 layout population with retrieved
contacts, 137 - 138

 sorting contact list according to user
preferences, 139 - 141

 getContacts() modifications, 139

 list not re-sorting with Back
button, 140 - 141

 sorting preferences, retrieving, 139

 specific contacts, retrieving, 136

 contact list screen (MyContactList app),
 24 - 25

 ContactMapActivity

 contact locations, displaying on
map, 165

 heading TextView, adding, 177 - 178

 locations, finding

 addresses, 152 - 154

 GPS sensors, 155 - 159

 map object, 161 - 164

 network sensors, 159 - 160

 map toolbars, adding, 168 - 170

 contact screen (MyContactList app), 24

97803e21947864_Book 1.indb 408 11/21/13 2:57 PM

ptg11524036

409data persistence (Android)

 corporate app developers, 343

 Cox, Brad, 383

 Create Activity window, 34

 Create New Android Virtual Device (AVD)
window, 40

 currentContact variable association, 99

 CursorAdapter class, 116

 customer reach advantages, 4 - 6

 app availability, 5

 brand loyalty/awareness, 5

 device hardware/software capabilities, 6

 payment industry, 6

 D
 dairy farmer app (Bossy), 7 - 8

 database helper class, creating, 91 - 93

 data entry widgets, 4 , 66

 addresses, 68 - 69

 birthdays, 75 - 74

 city, state, zip code, 69 - 71

 email, 73 - 74

 enabling/disabling, 81 - 82

 input screen structure, 66 - 67

 labels, aligning, 72

 names, 67 - 68

 phone information, 70

 data models, migrating, 242 - 243

 data persistence (Android)

 files, 90

 iOS, compared, 91

 SharedPreferences

 displaying upon page access
behavior, 109 - 112

 layout, creating, 107 - 110

 overview, 89 - 90

 saving, 112 - 113

 SQLite databases

 capturing user-entered data, 99 - 101

 database helper class, creating,
 91 - 93

 keyboards, dismissing, 205 - 208

 Location, adding, 291 - 292

 Map, renaming, 300 - 301

 navigation bar, adding, 228

 overview, 213 - 214

 segues, 228

 Settings interface, adding, 252 - 253

 switching between view and edit
modes, 231

 title names, changing, 218 - 219

 Core Data

 data models, migrating, 242 - 243

 data structure design

 configuring, 241

 Objective-C class, 242

 framework, 237

 images, saving, 321 - 323

 lightweight migration, 323 - 324

 Managed Object Context, 236

 Managed Object Model, 236

 overview, 236

 Persistent Object Store, 236

 project support, setting up, 237 - 241

 table data, retrieving, 269 - 271

 Core Data for iOS: Developing Data-Driven
Applications for the iPad, iPhone, and
iPod touch (Isted/Harrington), 237

 Core Location framework

 adding to projects, 293 - 294

 overview, 290

 Core Motion framework, 328

 data collection, starting/stopping, 332

 label movements, updating, 331 - 332

 motion detection

 starting, 330

 stopping, 332

 motion manager

 creating, 328 - 329

 retrieving from app delegate,
 329 - 330

97803e21947864_Book 1.indb 409 11/21/13 2:57 PM

ptg11524036

410 data persistence (Android)

 development

 certificates, 374 - 377

 environment, checking, 379 - 381

 devices

 registration, 378 - 379

 devices, setting up, 374

 provisioning profiles, 374

 students as developers, setting up, 374

 teams

 admins, 374

 agents, 374

 members, 374

 provisioning profiles, 374

 UDIDs, 375

 design

 app life cycles, 14

 Android, 14 - 15

 iOS, 15 - 17

 batteries, 19

 connectivity, 18 - 19

 data structure

 configuring, 241

 Objective-C class, 242

 hardware, 20 - 21

 accuracy, 21

 component availability, 20

 time delays, 20

 screens

 orientation, 18

 size, 17

 user interaction buttons

 Android, 22 - 23

 iOS, 23

 user interfaces, 205

 Developer Console (Google), 350 - 351

 developers (iOS)

 accounts, creating, 375 - 376

 programs, 372 - 373

 data source class, creating, 93 - 98

 debugging, 105 - 107

 overview, 90 - 91

 retrieving data, 104 - 105

 saving user-entered data, 101 - 105

 data persistence (iOS)

 Android, compared, 91

 Core Data. See Core Data

 file storage, 235

 user defaults, 236

 data source class, creating, 93 - 98

 insert/update methods, adding, 96 - 98

 required code, 94

 data structure design

 configuring, 241

 Objective-C class, 242

 DatePickerDialog class, 83 - 84

 DatePickers (Android), 75 , 82 - 86

 Change button, 85 - 86

 DatePickerDialog class, creating, 83 - 84

 displaying, 78

 implementing in activities, 85

 DatePickers (iOS), 230

 debugging

 breakpoints, setting, 105 - 106

 log statements, 107

 SQLite databases, 105 - 107

 stepping through code, 106

 stopping, 107

 toolbar control buttons, 105 - 106

 variable inspection, 106 - 107

 debug keys (maps), 149 - 150

 Debug toolbar buttons, 105 - 106

 deleting records, 277 - 279

 deploying apps to real devices

 App IDs, 375

 challenges, 373

 developer accounts, creating, 375 - 376

97803e21947864_Book 1.indb 410 11/21/13 2:57 PM

ptg11524036

411 devices (iOS)

 hardware buttons, 22

 managers, 174

 phone calling, 174

 EditText widget long click event
response, 182

 phone app, starting, 182

 phone number, accepting, 182

 user permission, 181

 sensors, 173 - 174

 accelerometer/magnetometer, 178

 compass, creating, 177 - 180

 event listeners, implementing,
 179 - 180

 location, 145 - 146

 registering for monitoring, 178 - 179

 user interaction buttons, 22 - 23

 virtual buttons, 22 - 23

 devices (iOS)

 batteries

 conserving, 297

 monitoring, 314 - 317

 business processes, changing, 7 - 9

 automation, 7

 business process reengineering, 7

 internal processes, 9

 scheduling/communication, 7

 capabilities for innovations, 10

 customer reach advantages, 4 - 6

 app availability, 5

 brand loyalty/awareness, 5

 device hardware/software
capabilities, 6

 payment industry, 6

 features

 communication capabilities, 4

 computing platform similarities, 4

 environment awareness sensors, 3

 technological capabilities dramatic
changes, 4

 development

 certificates, 374 - 377

 device capabilities innovations, 10

 environment, checking, 379 - 381

 deviceCoordinates: method, 296

 devices (Android)

 batteries, monitoring, 175 - 177

 current level, displaying, 175

 status broadcasts, listening/
responding, 176 - 177

 business processes, changing, 7 - 9

 automation, 7

 business process reengineering, 7

 internal processes, 9

 scheduling/communication, 7

 cameras, 174

 displaying pictures with contacts,
 188 - 189

 functionality, implementing,
 185 - 186

 permission, 184

 retrieving pictures from database,
 188

 saving pictures to database,
 187 - 188

 setters/getters, 186

 capabilities for innovations, 10

 customer reach advantages, 4 - 6

 app availability, 5

 brand loyalty/awareness, 5

 device hardware/software
capabilities, 6

 payment industry, 6

 features

 communication capabilities, 4

 computing platform similarities, 4

 environment awareness sensors, 3

 technological capabilities dramatic
changes, 4

97803e21947864_Book 1.indb 411 11/21/13 2:57 PM

ptg11524036

412 devices (iOS)

 Dock, list view, 206

 dot notation (Objective-C), 392

 drawable folders (Eclipse), 36

 E
 Eclipse

 Android

 installing, 367 - 369

 manifest file, 37 - 39

 classroom, configuring, 369 - 370

 downloading, 361 , 363

 Editor, 35

 emulator, 39 - 42

 AVD, 40 - 41

 Google Maps v2 compatibility, 152

 Hello World! app, running, 49

 initial launch, 41

 location control, 157

 run configurations, 42

 folders

 drawable, 36

 Ihdp, 37

 layout, 37

 res, 36

 values, 37

 installing

 Mac, 365 - 366

 Windows, 363 - 365

 new projects, creating, 32 - 36

 activities, choosing, 34

 default settings, 34

 icon configuration, 34

 navigation, 35

 new Android application
window, 32

 project/package names, 33

 SDK requirements, 33 - 34

 themes, 34

 information, retrieving, 312 - 313

 model, 313

 name of device, 313

 name of OS, 313

 orientation, 313

 OS version number, 313

 simulator test, 313

 testing on device, 313

 vendor app unique identifier, 313

 locations, finding, 296 - 300

 accuracy options, 297

 battery conservation, 297

 distance filters, 297

 error handling, 299 - 300

 heading updates, 299

 Location Manager, starting/
stopping, 296 - 297

 location updates, 298 - 299

 testing, 300

 movement. See accelerometer

 registering, 378 - 379

 screen sizes/resolutions, 211

 user interaction buttons, 23

 dialog windows

 creating, 75 - 78

 custom, 82 - 86

 Change button, 85 - 86

 class, creating, 83 - 84

 implementing in activities, 85

 New Android Application, 32

 Workspace Launcher, 32

 didFailWithError: method, 300

 didFinishDatePickerDialog() method, 85

 didUpdateHeading: method, 299

 didUpdateLocations: method, 298

 dimens.xml file, 37

 disabling data entry widgets, 81 - 82

 distance filters, 297

97803e21947864_Book 1.indb 412 11/21/13 2:57 PM

ptg11524036

413focus

 F
 features (mobile devices)

 communication capabilities, 4

 computing platform similarities, 4

 environment awareness sensors, 3

 technological capabilities dramatic
changes, 4

 feedback (Alert View), 281 - 284

 Fence Builder Pro app, 7

 files

 Android manifest, 37 - 39

 AppDelegate, 198

 Constants.h, 260

 Constants.m, 260

 data persistence, 90

 IInAppBillingService.aidl, 341

 LMAAppDelegate.m, 260

 LMABook.h, 386

 LMABook.m, 386

 LMAContactsController.h, 232

 LMAContactsController.m, 232

 LMAContactsTableConroller.m,
 269 - 271

 LMAMapPoint.h, 303

 LMAMapPoint.m, 304

 LMASettingsController.m, 261

 renaming, 220

 resource, 36

 values, 37

 Xcode supporting, 198

 filters (distance), 297

 findViewById() method, 53

 focus

 top of screen in viewing mode, 103

 widgets, clearing, 82

 Package Explorer, 36

 projects, importing, 57

 SDKs, adding, 147

 workspaces, setting up, 32

 Editor (Eclipse), 35

 EditText widgets, 49

 contacts

 addresses, 69

 birthday input, 75 - 74

 city, state, zip code, 69 - 71

 email, 73 - 74

 names, 68

 phone information, 70

 hiding keyboards upon button
press, 103

 listeners, adding, 100 - 101

 long click event response, 182

 phone number, 101

 email widgets, 73 - 74

 ems attribute (EditText widget), 68

 emulator

 Google Maps v2 compatibility, 152

 Hello World! app, running, 49

 location control, 157

 setting up, 39 - 42

 AVD, 40 - 41

 initial launch, 41

 run configurations, 42

 enabling data entry widgets, 81 - 82

 enterprise app distribution

 Android, 353 - 354

 iOS, 354

 environmental sensors, 177

 equivalence partitioning, 354

 error handling

 database updates, 104 - 105

 device locations, finding, 299 - 300

 Toast messages, 157

97803e21947864_Book 1.indb 413 11/21/13 2:57 PM

ptg11524036

414 folders

 retrieving motion manager from
app delegate, 329 - 330

 starting motion detection, 330

 stopping motion detection, 332

 iOS, 199

 MapKit

 adding, 301

 overview, 290

 UIKit, 213

 freelance developers, 343

 G
 geoCodeAddressString:completionHandler:

method, 295

 Geocode variable, 154

 geocoding (Android), 152 - 155

 address coordinates, looking up, 153

 layout, creating, 152

 testing, 155

 geocoding (iOS), 291 - 295

 Core Location framework, adding,
 293 - 294

 implementing, 294 - 295

 user interface

 button actions, 293

 keyboard, dismissing, 293

 outlets, 293

 user interface, creating, 291 - 293

 view controller code files, adding,
 291 - 292

 gesture recognizer, 325

 getBaseContext() method, 156

 getContactName() method, 116 - 117

 getContacts() method, 139

 getFromLocationName() method, 154

 getLastContactId() method, 104

 Get Location button, 153 - 154

 getMyLocation() method, 152

 getPicture() method, 186

 folders

 Eclipse

 drawable, 36

 Ihdp, 37

 layout, 37

 res, 36

 values, 37

 Images.xcassets, 198

 Xcode project, 196

 formatting EditText widgets as typed, 101

 form widgets (Android), 45

 FragmentActivity class, 56 , 146

 fragments

 FragmentActivity class, 56

 maps, 146 , 161

 frameworks

 adding to projects, 294

 Core Data, 237

 data models, migrating, 242 - 243

 data structure design, 241 - 242

 framework, 237

 images, saving, 321 - 323

 lightweight migration, 323 - 324

 Managed Object Context, 236

 Managed Object Model, 236

 overview, 236

 Persistent Object Store, 236

 project support, setting up,
 237 - 241

 table data, retrieving, 269 - 271

 Core Location

 adding to projects, 293 - 294

 overview, 290

 Core Motion, 328

 data collection, starting/stopping,
 332

 label movements, updating,
 331 - 332

 motion manager, creating, 328 - 329

97803e21947864_Book 1.indb 414 11/21/13 2:57 PM

ptg11524036

415hardware (Android)

 H
 hardware (Android)

 batteries, monitoring, 175 - 177

 current level, displaying, 175

 status broadcasts, listening/
responding, 176 - 177

 buttons, 22

 cameras, 174

 displaying pictures with contacts,
 188 - 189

 functionality, implementing,
 185 - 186

 permission, 184

 retrieving pictures from
database, 188

 saving pictures to database,
 187 - 188

 setters/getters, 186

 design issues, 20 - 21

 accuracy, 21

 component availability, 20

 time delays, 20

 managers, 174

 phone calling, 174

 EditText widget long click event
response, 182

 phone app, starting, 182

 phone number, accepting, 182

 press-and-hold user action listener,
 181

 user permission, 181

 sensors

 accelerometer/magnetometer, 178

 compass, creating, 177 - 180

 event listener, implementing,
 179 - 180

 location, 298

 overview, 173 - 174

 registering for monitoring, 178 - 179

 getPreferences() method, 90 , 111 , 113

 getSharedPreferences() method, 90

 getSpecificContact() method, 136

 getString() method, 111

 getSystemService() method, 156

 getters, picture variable, 186

 global constants, 259 - 261

 Glyphish, 221

 GoFishing! app, 10

 Google

 AdMob Ads SDK, downloading, 338

 Developer Console website, 150

 Maps

 debug key, 149 - 150

 emulator compatibility, 152

 required code, 163 - 164

 Play Services SDK

 adding, 148 - 149

 downloading, 147 - 148

 Play Store, 348 - 351

 accounts, setting up, 350

 Android application package (APK)
files, creating, 349 - 350

 Billing Library, 341

 Developer Console, 350 - 351

 economics, 341

 licensing, 348

 publication requirements, 347

 GoogleMap object, 146 , 162 - 163

 GPS coordinates. See locations

 gpsListener variable, 156

 GPS sensors

 emulator, 157

 locations, finding, 155 - 159

 with network sensors, 159 - 160

 stopping, 157

 testing on devices, 158 - 159

97803e21947864_Book 1.indb 415 11/21/13 2:57 PM

ptg11524036

416 hardware (iOS)

 location sensors, 298

 locations. See locations (iOS)

 phone calling, 324

 long press gesture, 324 - 325

 txtPhone field editing mode,
setting, 327 - 328

 heading TextView widget, 177 - 178

 heading updates, 299

 Hello World! app (Android)

 activities, choosing, 34

 default settings, 34

 Display button, 52 - 53

 icon configuration, 34

 layouts

 attributes, 43 - 44

 EditText widgets, 49

 form widgets, 45

 properties, 45

 root element, 42

 running in emulator, 49

 structure, 45

 TextView widget, adding, 46 - 47

 navigation, 35

 new Android application window, 32

 project/package names, 33

 run configurations, setting up, 42

 SDK requirements, 33 - 34

 themes, 34

 Hello World! app (iOS)

 button actions, creating, 203 - 204

 outlets, creating, 203

 output, displaying, 204 - 205

 user interface, creating, 202

 hideKeyboard() method, 103

 hiding keyboards, 103

 hardware (iOS)

 accelerometer, 328

 data collection, starting/stopping,
 332

 label movements, updating,
 331 - 332

 motion detection, starting, 330

 motion detection, stopping, 332

 motion manager, creating, 328 - 329

 retrieving motion manager from
app delegate, 329 - 330

 battery status, monitoring, 314 - 317

 changes, handling, 316 - 317

 status bar percentage discrepancies,
 317

 user interface, configuring, 315 - 316

 buttons, 22 , 23

 cameras, 317

 controller, creating, 319 - 320

 handling the picture, 321 - 322

 lightweight migration of Core
Data, 323 - 324

 outlet, 318

 saving pictures to database,
 321 - 323

 user interfaces, configuring, 318

 design issues, 20 - 21

 accuracy, 21

 component availability, 20

 time delays, 20

 device information, retrieving, 312 - 313

 model, 313

 name of device, 313

 name of OS, 313

 orientation, 313

 OS version number, 313

 simulator test, 313

 testing on device, 313

 vendor app unique identifier, 313

97803e21947864_Book 1.indb 416 11/21/13 2:57 PM

ptg11524036

417iOS

 initAddContactButton() method, 138 - 139

 initChangeDateButton() method, 86

 initContact() method, 137

 initGetLocationButton() method, 153

 initMapButton() method, 164

 initSettings() method, 111 - 112

 initTextChangedEvents() method, 99 - 101

 inputType attribute, 68

 insertContact() method, 98

 installing

 Android, 367 - 369

 ADT plug-in, 367 - 369

 SDK, 369

 Eclipse

 Mac, 365 - 366

 Windows, 363 - 365

 Java SE SDK, 362

 Xcode, 371

 Intent class, 57

 IntentFilter variable, 177

 intents, 57

 battery status, 176

 camera, starting, 185

 phone app, starting, 182

 Interface Builder, 199

 iOS

 accelerometer, 328

 data collection, starting/stopping,
 332

 label movements, updating,
 331 - 332

 motion manager, creating, 328 - 329

 retrieving motion manager from
app delegate, 329 - 330

 starting motion detection, 330

 stopping motion detection, 332

 ads, embedding in apps

 AdMob, 339

 iAd, 340

 I
 iAd, 340

 icons

 Android, configuring, 34

 iOS, 208 - 210

 asset catalog, 209

 Glyphish, 221

 placement, 208

 resolutions, 209 - 210

 ids.xml file, 37

 Ihdp folder (Eclipse), 37

 IInAppBillingService.aidl file, 341

 ImageButtons

 adding to layouts, 183

 images, importing, 60

 initialization, 184

 positioning, 61

 Image Picker

 handling, 321 - 322

 launching, 319

 images. See also pictures

 adding to asset catalog, 221

 app icons (iOS)

 asset catalog, 209

 Glyphish, 221

 placement, 208

 resolutions, 209 - 210

 Glyphish, 221

 launch, 210

 navigation bar buttons, 60

 tab bars, 221 - 222

 Images.xcassets folder, 198

 imeOptions="actionNext" attribute, 68

 importing projects, 57

 in-app purchases, 340 - 341

 independent developers, 343

 inheritance (Objective-C), 397

97803e21947864_Book 1.indb 417 11/21/13 2:57 PM

ptg11524036

418 iOS

 Core Data

 configuring data structure
design, 241

 data models, migrating, 242 - 243

 data structure design, 241 - 242

 framework, 237

 images, saving, 321 - 323

 lightweight migration, 323 - 324

 Managed Object Context, 236

 Managed Object Model, 236

 overview, 236

 Persistent Object Store, 236

 project support, setting up,
 237 - 241

 table data, retrieving, 269 - 271

 data persistence, 91

 deployment to real devices

 App ID, 375

 challenges, 373

 developer accounts, creating,
 375 - 376

 developer certificates, 374

 development certificates, backing
up, 376 - 377

 development environment,
checking, 379 - 381

 device registration, 378 - 379

 devices, setting up, 374

 provisioning profile, 374

 students as developers, setting up,
 374

 team admin, 374

 team agents, 374

 team members, 374

 team provisioning profile, 374

 UDID, 375

 developers

 accounts, creating, 375 - 376

 programs, 372 - 373

 app behaviors, adding, 202 - 204

 button actions, creating, 203 - 204

 outlets, creating, 203

 output, displaying, 204 - 205

 app delegates, 198

 files, 198

 MKMapViewDelegate protocol,
implementing, 302

 motion manager, retrieving,
 329 - 330

 Objective-C classes, 390

 View Controller, launching, 238

 app icons, 208 - 210

 asset catalog, 209

 placement, 208

 resolutions, 209 - 210

 ARC (Automatic Reference
Counting), 398

 asset catalog

 app icons, 209

 images, adding, 221 - 222

 launch images, 210

 batteries

 conserving, 297

 status, monitoring, 314 - 317

 cameras, 317

 controller, creating, 319 - 320

 handling the picture, 321 - 322

 lightweight migration of Core
Data, 323 - 324

 outlet, 318

 saving pictures to database,
 321 - 323

 user interfaces, configuring, 318

 compass, creating, 180

 controllers

 Navigation, 215

 Tab Bar, 214

 View, 213 - 214

97803e21947864_Book 1.indb 418 11/21/13 2:57 PM

ptg11524036

419iOS

 user tracking, 302

 zooming in on user locations,
 302 - 303

 market, 344

 Navigation Controllers, 227

 Objective-C

 app delegate availability, 390

 C language coding constructs
supported, 384 - 385

 classes. See Objective-C, classes

 dot notation, 392

 history, 383 - 384

 inheritance, 397

 memory management, 398

 methods. See Objective-C,
methods

 objects, declaring/manipulating,
 390 - 392

 properties, 394 - 396

 protocols, 397 - 398

 Object Library, 199

 phone calling, 324 - 328

 long press gesture, 324 - 325

 txtPhone field editing mode,
setting, 327 - 328

 projects

 class prefixes, 195

 Core Data support, adding,
 237 - 241

 Core Location framework, adding,
 293 - 294

 folder, 196

 frameworks, adding, 294

 Main storyboard setting, 238

 MapKit framework, adding, 301

 MyContactList app (iOS), creating,
 215 - 216

 new, creating, 58

 saving, 195

 settings, 197 - 199

 development certificates, backing up,
 376 - 377

 devices. See devices (iOS)

 Dock, list view, 206

 Enterprise Developer license, 354

 file storage, 235

 frameworks, 199

 global constants, 259 - 261

 in-app purchases, 341

 iPhone screen sizes/resolutions, 211

 keyboards, dismissing, 205 - 208

 actions, connecting to
methods, 207

 backgroundTap: method, 205

 geocoding user interface, 293

 process overview, 208

 Scroll View control, 226

 View, changing to UIControl, 206

 launch images, 210

 life cycles, 15 - 17

 apps, 15

 views, 16 - 17

 locations. See locations (iOS)

 MapKit framework, 301

 maps

 Android maps, compared, 151 , 290

 annotations, 303 - 306

 contacts, plotting, 305 - 307

 Core Location framework, 290 - 294

 device locations, finding. See maps
(iOS), device locations, finding

 displaying user locations, 301

 geocoding, 291 - 295

 hardware/sensors, 289 - 290

 MapKit framework, 290 , 301

 Map View Controller, renaming,
 300 - 301

 outlets, 302

 types, changing, 307 - 309

97803e21947864_Book 1.indb 419 11/21/13 2:57 PM

ptg11524036

420 iOS

 overview, 263 - 264

 populating with data, 265 - 269

 retrieving data from Core Data,
 269 - 271

 saving record changes, 276 - 277

 sorting, 285 - 287

 subtitles, displaying, 285

 user interface, populating, 275

 UIKit framework, 213

 unit tests, 198

 user interfaces

 absolute positioning, 48 , 205

 app data values, storing in
key-value list, 256

 battery monitoring, configuring,
 315 - 316

 classes, 213

 code connectivity, 54 , 204

 code files, renaming, 220

 Contacts screen, 222 - 226

 control-dragging, 217

 creating, 199 - 200

 Date Pickers, 230

 default settings, saving, 257

 design, 205

 geocoding, creating, 291 - 293

 global constants, 259 - 261

 labels, dragging on canvas, 200

 navigation. See Navigation
Controllers

 outlets, creating, 203

 Picker View, 253 - 255

 populating, 275

 scrolling, adding, 224 - 225

 Settings interface, 252 - 255

 switching between view and edit
modes, 230 - 233

 UI controls based on stored values,
setting, 257 - 258

 View Controllers. See View
Controllers

 target device, choosing, 195

 templates, 193

 publishing apps

 app descriptions, 348

 audiences, 347

 enterprise distribution, 354

 iTunes Store, 351 - 352

 market requirements, 347

 operating system updates, 356

 pricing, 348

 resources, 348

 screenshots, preparing, 348

 testing, 354 - 355

 requirements , xv-xvi

 sensors

 Android sensors, compared, 298

 location, 160 , 289 - 290

 simulator

 apps, running, 200 - 201

 device information, retrieving, 313

 limitations, 373

 location services, 300

 SQLite database support, 236

 storyboard, 198

 structs, 296

 tab bars, creating, 216

 files, renaming, 220

 images, 221 - 222

 tab names, changing, 218 - 219

 View Controller, adding, 217

 tables

 accessory buttons, 280 - 281

 Alert view, 281 - 284

 Android tables, compared, 285

 cells, 264

 contact data, adding, 272

 creating, 265 - 266

 deleting records, 277 - 279

 detailed data, displaying, 273 - 275

97803e21947864_Book 1.indb 420 11/21/13 2:57 PM

ptg11524036

421layouts (Android)

 backgroundTap: method, 205

 geocoding user interface, 293

 process overview, 208

 Scroll View control, 226

 View, changing to UIControl, 206

 Kochan, Stephen G., 398

 L
 labels

 dragging onto canvas, 200

 widgets, aligning, 72

 LatLng object, 167

 launch images, 210

 layout_alignBottom attribute, 69

 layout_alignParentLeft attribute, 66

 layout_alignParentRight attribute, 66

 layout_alignParentTop attribute, 66

 layout folder (Eclipse), 37

 layouts (Android)

 associating code with button on
vlayout, 53

 attributes, 43 - 44

 blank space padding, 44

 size, 44

 text, displaying, 44

 contact activity. See ContactActivity

 dialog boxes, creating, 75 - 78

 EditText widgets. See EditText widgets

 form widgets, 45

 ImageButtons

 adding to layouts, 183

 images, importing, 60

 initialization, 184

 positioning, 61

 ListView widget, 116 , 118 - 119

 View

 changing to UIControl, 206

 connecting actions to methods,
 207

 Xcode. See Xcode

 iPhones/iPads

 requirements, xv-xvi

 screen sizes/resolutions, 211

 isBetterLocation() method, 159 - 160

 iTunes Connect

 App Information screen, 351

 apps, uploading, 352

 overview, 351

 website, 351

 iTunes Store, 351 - 352

 app review process, 352

 economics, 341

 iTunes Connect

 App Information screen, 351

 apps, uploading, 352

 overview, 351

 website, 351

 publication requirements, 347

 J
 Java

 Objective-C classes, implementing,
 392 - 394

 SE SDK, installing, 362

 Jobs, Steve, 383

 K
 keyboards, dismissing

 Android, 103

 iOS, 205 - 208

 actions, connecting to
methods, 207

97803e21947864_Book 1.indb 421 11/21/13 2:57 PM

ptg11524036

422 layouts (Android)

 listings

 address EditText widget, 69

 address TextView widget, 69

 ads, embedding in apps, 339

 AndroidManifest.xml file, 38

 annotation for user location, 305

 app behaviors, coding, 50

 backgroundTap: method, 205

 batteries

 levels (TextView), 175

 monitoring, 176 , 315- 316

 Book class Java implementation,
 392 - 394

 callContact() method, 182

 camera, starting/capturing results, 185

 Change Birthday button, 86

 color resources, 61

 compass, creating, 177

 completed LMABook.h, 387

 completed LMABook.m, 388

 Contact class, 94

 ContactDataSource class, 94

 contact name EditText widget, 68

 contacts map

 data retrieval, 165

 markers, placing, 165 - 168

 plotting contacts on map, 306

 toolbar, adding, 168 - 170

 database helper class, 92

 data retrieval from Core Data, 274

 date entry forms, enabling/disabling,
 81

 DatePickerDialog class code, 83

 declaring/manipulating objects, 390

 default activity, setting, 141

 default settings, saving, 257

 device information, retrieving, 312

 displaying retrieved data code, 138

 geocoding (iOS), 293- 294

 navigation bars, creating, 60 - 64

 color resources, creating, 61

 copying and pasting, 64

 image buttons, positioning, 61

 images, adding, 60

 XML code, 62 - 64

 overview, 56

 padding, removing, 63

 populating with retrieved content,
 137 - 138

 properties, 45

 relative

 locking, 65 - 66

 positioning, 48

 root element, 42

 structure, 45

 TextView widget. See TextView widgets

 toolbar, creating, 65 - 66

 layout_toRightOf attribute, 69

 licensing

 Google Play Store, 348

 iOS Enterprise Developer license, 354

 life cycles, 14

 Android, 14 - 15

 iOS, 15 - 17

 apps, 15

 views, 16 - 17

 Lightweight Migration, 243

 Limited Liability Corporations (LLCs),
creating, 342

 LinearLayouts, 76

 ListActivity class, 56

 listeners

 button press, 53

 dialogs, 84

 location, 146 , 156

 press-and-hold user action, 181

 sensor event, 174 , 179 - 180

 text changes, 99 - 101

97803e21947864_Book 1.indb 422 11/21/13 2:57 PM

ptg11524036

423listings

 LMABook.m file, 386

 LMAMapPoint.h, 303

 LMAMapPoint.m, 304

 Location Manager

 error handling, 300

 heading updates, 299

 location updates, 298

 starting/stopping, 296

 LongClickListener, 181

 MapFragment, 161

 maps

 location retrieval from map
object, 161

 permissions, 151

 types, changing, 308

 user locations, displaying, 302

 motion detection

 starting, 330

 stopping, 332

 motion manager

 creating, 329

 retrieving from app delegate,
 329 - 330

 navigation bar XML code, 62

 onResume() method, 140

 onUpgrade() method for database
structure changes, 187

 Picker View

 implementing, 253 - 255

 protocols, adding, 253

 pictures

 displaying with contacts, 188

 retrieving from database, 188

 saving to database, 188

 variable setters/getters, 186

 RadioButton widget, 108 , 112

 registering sensors for monitoring,
 178 - 179

 retrieving data from Core Data, 270

 Save button, 102

 getContactName() method, 117

 getLastContactId() method, 104

 getSpecificContact() method, 136

 global constants, 260 - 261

 Google required map code, 163

 GPS coordinates, retrieving

 addresses, 153

 GPS sensor, 155

 GPS sensors, stopping, 157

 Hello World! app

 Display button code, 52

 TextView, 46

 hideKeyboard() method, 103

 ImageButtons

 configuration, 183

 initialization, 184

 Image Picker

 handling, 321

 launching, 319

 initAddContactButton() method, 138

 initContact() method, 137

 initMapButton() method, 164

 initSettings() method, 111

 initTextChangedEvents() method, 99

 inserting new objects when editing,
avoiding, 277

 insert/update contact methods, 97

 isBetterLocation() method, 159 - 160

 label movements, updating, 331

 layout element attributes, 43

 lightweight migration of Core
Data, 323

 List ImageButton, 79

 lists

 displaying, 119

 item click responses, 120 - 121

 ListView widget, 118

 LMAAppDelegate.m file, 240

 LMABook.h file, 386

97803e21947864_Book 1.indb 423 11/21/13 2:57 PM

ptg11524036

424 listings

 sorting data according to user
preferences, 139 - 141

 getContacts() method
modifications, 139

 list not re-sorting with Back
button, 140 - 141

 sorting preferences, retrieving, 139

 specific data, retrieving, 135 - 136

 ListView widget, 116 , 118 - 119

 LLCs (Limited Liability Corporations),
creating, 342

 LMAAppDelegate.m, 260

 LMABook.h file, 386

 LMABook.m file, 386

 LMAContactsController.h file, 232

 LMAContactsController.m file, 232

 LMAContactsTableConroller.m, 269 - 271

 LMAMapPoint class, 303 - 304

 LMAMapPoint.h file, 303

 LMAMapPoint.m file, 304

 LMASettingsController.m file, 261

 loadDataFromDatabase: method, 271

 LocationListeners, 146 , 156

 Location Manager, 146

 accuracy options, 297

 distance filters, 297

 error handling, 299 - 300

 starting/stopping, 296 - 297

 testing, 300

 updates

 headings, 299

 locations, 298 - 299

 locations (Android)

 contacts map, 164

 contact IDs, passing with intent,
 164

 data retrieval, 165

 markers, placing, 165 - 168

 navigation buttons, 170

 toolbar, adding, 168 - 170

 Scroll View

 content size, 224

 XML, 66

 SensorEventListener, 179

 showOutput: method, 204

 switching between view and edit
modes

 changeEditMode: method,
implementing, 232

 text fields/buttons, referencing,
 232

 switch values, storing, 259

 tables

 Alert View, 282 - 283

 data, reloading, 276

 populating, 267

 rows, deleting, 279 , 281

 sorting, 286

 subtitles, displaying, 285

 toggle button initialization, 80

 toolbar XML, 65

 txtPhone field editing modes,
configuring, 327

 UI controls based on stored values,
setting, 258 - 259

 user interface, populating, 275

 lists (Android)

 activity to open if database empty,
 142 - 143

 adapters, 116

 Add button, 138 - 139

 data retrieval method, 116 - 117

 default activity, setting, 141 - 142

 displaying, 118 - 120

 layout population with retrieved
content, 137 - 138

 ListView widgets, 116 , 118 - 119

 responding to item clicks, 120 - 121

97803e21947864_Book 1.indb 424 11/21/13 2:57 PM

ptg11524036

425maps (Android)

 Location View Controller, 291 - 292

 locking relative layouts, 65 - 66

 logging debugging method, 107

 LongClickListener, 181

 long press gestures (phone), 324 - 325

 calling the phone number, 325

 callPhone: method, 324 - 325

 gesture recognizer, 325

 Love, Tom, 371

 M
 magnetometer, 178

 Managed Object Context, 236

 Managed Object Model, 236

 managers (Android)

 BatteryManager, 175 - 177

 overview, 174

 sensor, 178 - 179

 manifest file (Android)

 components, 38 - 39

 overview, 37 - 38

 MapFragment, 161

 MapKit framework

 adding, 301

 overview, 290

 maps (Android), 146

 API key, 149

 debug keys, 149 - 150

 fragments, 146 , 161

 Google

 Maps v2 emulator compatibility,
 152

 Play Services SDK, 147 - 149

 requirements, 163 - 164

 GPS coordinates, retrieving, 161 - 164

 iOS maps, compared, 151 , 290

 locations, finding, 161 - 164

 choosing best, 159 - 160

 geocoding, 152 - 155

 emulator, 157

 finding, 145 - 146

 choosing best locations, 159 - 160

 geocoding, 152 - 155

 GPS, 155 - 159

 map object, 161 - 164

 network sensors, 159 - 160

 iOS locations, compared, 160 , 298

 locations (iOS)

 Android locations, compared, 160 , 298

 Core Location framework

 adding to projects, 293 - 294

 overview, 290

 devices, finding, 296 - 300

 accuracy options, 297

 battery conservation, 297

 distance filters, 297

 error handling, 299 - 300

 heading updates, 299

 Location Manager, starting/
stopping, 296 - 297

 location updates, 298 - 299

 testing, 300

 geocoding, 291 - 296

 button actions, 293

 Core Location framework, adding,
 293 - 294

 implementing, 294 - 295

 keyboard, dismissing, 293

 outlets, 293

 user interface, creating, 291 - 293

 view controller code file, adding,
 291 - 292

 hardware, 289 - 290

 MapKit framework, 290

 sensors, 289 - 290

 user locations, displaying on map, 301

 annotation, adding, 304 - 306

 user tracking, 302

 zooming in, 302 - 303

97803e21947864_Book 1.indb 425 11/21/13 2:57 PM

ptg11524036

426 maps (Android)

 outlets, 293

 user interface, creating, 291 - 293

 view controller code files,
adding, 291 - 292

 hardware, 289 - 290

 MapKit framework, 290 , 301

 Map View Controller, renaming,
 300 - 301

 outlets, 302

 sensors, 289 - 290 , 298

 types, changing, 307 - 309

 user locations, displaying, 301

 annotation, adding, 304 - 306

 user tracking, 302

 zooming in, 302 - 303

 map screen (MyContactList app), 25 - 26

 mapTypeChanged: method, 308

 Map View Controller, renaming, 300 - 301

 mapView:didUpdateUserLocation:
method, 302

 markers (map), adding, 165 - 168

 markets

 Android, 344

 iOS, 344

 money, making, 9 - 10

 MDM (Mobile Device Management), 354

 memory management (Objective-C), 398

 methods

 addressToCoordinates:, 294

 afterTextChanged(), 100

 alertView:clickedButtonAtIndex:, 283

 application:didFinishLaunching
WithOptions:, 15

 applicationWillResignActive:, 15

 backgroundTap:

 defining, 205

 implementing, 205

 batteryChanged:, 317

 batteryStatus:, 317

 Google code required, 163 - 164

 GPS sensors, 155 - 159

 MapFragment, 161 - 164

 network sensors, 159 - 160

 markers, placing, 165 - 168

 navigation buttons, 170

 permissions, 151 - 152

 sensors

 iOS sensors, compared, 298

 location, 145 - 146

 toolbars, adding, 168 - 170

 zoom levels, 168

 maps (iOS)

 Android maps, compared, 151 , 290

 annotations, 303 - 306

 contacts, plotting, 305 - 307

 LMAMapPoint class, creating,
 303 - 304

 user location, adding, 304 - 306

 contacts, plotting, 305 - 307

 Core Location framework

 adding to projects, 293 - 294

 overview, 290

 device locations, finding, 296 - 300

 accuracy options, 297

 battery conservation, 297

 distance filters, 297

 error handling, 299 - 300

 heading updates, 299

 Location Manager, starting/
stopping, 296 - 297

 location updates, 298 - 299

 testing, 300

 geocoding, 291 - 295

 button actions, 293

 Core Location framework, adding,
 293 - 294

 implementing, 294 - 295

 keyboard, dismissing, 293

97803e21947864_Book 1.indb 426 11/21/13 2:57 PM

ptg11524036

427methods

 numberOfSectionsInTableView:, 267

 Objective-C

 declaring, 396

 parameters, 397

 private/public, 397

 return types, 396

 types, 396

 onActivityResult(), 186

 onClick(), 53

 onCreate(), 14

 Activity class, 52

 ContactDBHelper class, 93

 onCreateOptionsMenu(), 52

 onDestroy(), 15

 onPause(), 15 , 157

 onResume()

 database, checking, 142

 lists, resorting, 140 - 141

 onStart(), 14

 onStop(), 15

 onUpgrade(), 93

 persistentStoreCoordinator:, 323

 prepareForSegue:, 274

 putString(), 113

 saveContact:, 276

 setForView(), 82

 setForViewing(), 82

 setPicture(), 186

 setToEditing(), 81

 showOutput:, 204

 signatures, 53

 startActivityForResult(), 186

 updateContact(), 98

 updateLabel:, 331

 viewDidDisappear:, 297

 viewDidLayoutSubviews:, 225

 viewDidLoad:, 16 , 275

 viewWillAppear:, 276 , 302

 viewWillDisappear:, 17

 beforeTextChanged(), 100

 callContact(), 182

 changeEditMode:, 327

 changePicture:, 319

 commit(), 113

 deviceCoordinates:, 296

 didFailWithError:, 300

 didFinishDatePickerDialog(), 85

 didUpdateHeading:, 299

 didUpdateLocations:, 298

 findViewById(), 53

 geoCodeAddressString:completion
Handler:, 295

 getBaseContext(), 156

 getContactName(), 116 - 117

 getContacts(), 139

 getFromLocationName(), 154

 getLastContactId(), 104

 getMyLocation(), 152

 getPicture(), 186

 getPreferences(), 90 , 111 , 113

 getSharedPreferences(), 90

 getSpecificContact(), 136

 getString(), 111

 getSystemService(), 156

 hideKeyboard(), 103

 initAddContactButton(), 138 - 139

 initChangeDateButton(), 86

 initContact(), 137

 initGetLocationButton(), 153

 initMapButton(), 164

 initSettings(), 111 - 112

 initTextChangedEvents(), 99 - 101

 insertContact(), 98

 isBetterLocation(), 159 - 160

 loadDataFromDatabase:, 271

 mapTypeChanged:, 308

 mapView:didUpdateUserLocation:, 302

 numberOfRowsInSection:, 267

97803e21947864_Book 1.indb 427 11/21/13 2:57 PM

ptg11524036

428 MKMapViewDelegate protocol, implementing

 managers

 creating, 328 - 329

 retrieving from app delegate,
 329 - 330

 sensors, 177

 MyContactList app (Android)

 activities, adding, 58 - 59

 Add Contact button, 138 - 139

 birthday selection

 dialog box, creating, 75 - 78

 storing, 99

 calling contacts by pressing/holding
phone number, 181 - 183

 ContactActivity. See ContactActivity

 Contact class, creating, 94 - 96

 contact data

 capturing, 99 - 101

 saving, 101 - 105

 ContactDataSource class, creating,
 93 - 98

 insert/update methods, adding,
 96 - 98

 required code, 94

 ContactDBHelper class, creating, 91 - 93

 contact locations, displaying on
map, 164

 contact IDs, passing with intent,
 164

 data retrieval, 165

 markers, placing, 165 - 168

 toolbar, adding, 168 - 170

 contact name list

 data retrieval from database,
 116 - 117

 displaying, 118 - 121

 ListView widget, adding, 118 - 119

 responding to item click, 120 - 121

 MKMapViewDelegate protocol,
implementing, 302

 MKUserLocation object, 303

 Mobile Device Management (MDM), 354

 mobile devices. See devices

 monetizing apps, 9 - 10 , 337

 Android versus iOS, 344

 ad supported apps, 338 - 340

 advertising, 338

 app store economics, 341

 Blackberry, 344

 businesses, creating

 business plans, 342 - 343

 LLCs, creating, 342

 business use apps, 338

 corporate app developers, 343

 in-app purchases, 340 - 341

 independent developers/freelancers,
 343

 paid apps, 337 - 338

 selling apps outside an app store, 341

 Windows, 344

 monitoring

 batteries, 175 - 177 , 314 - 317

 changes, handling, 316 - 317

 current level, displaying, 175

 status bar percentage discrepancies,
 317

 status broadcasts, listening/
responding, 176 - 177

 user interface, configuring, 315 - 316

 sensors

 event listener, implementing,
 179 - 180

 registering sensors for monitoring,
 178 - 179

 motion

 detection

 starting, 330

 stopping, 332

97803e21947864_Book 1.indb 428 11/21/13 2:57 PM

ptg11524036

429MyContactList app (iOS)

 locations, finding

 geocoding, 152 - 155

 GPS sensor, 155 - 159

 map object, 161 - 164

 network sensors, 159 - 160

 navigation bar, creating, 60 - 64

 button activities, coding, 78 - 80

 color resources, creating, 61

 copying/pasting, 64

 image buttons, positioning, 61

 images, adding, 60

 XML code, 62 - 64

 project

 creating, 58

 importing, 57

 screens

 contact, 24

 contact list, 24 - 25

 map, 25 - 26

 settings, 26 - 27

 sorting contact list according to user
preferences, 139 - 141

 getContacts() modifications, 139

 list not re-sorting with Back
button, 140 - 141

 sorting preferences, retrieving, 139

 specific contacts, retrieving, 136

 toggle button, 80 - 82

 data entry widgets, enabling/
disabling, 81 - 82

 initializing, 80 - 81

 toolbar, creating, 65 - 66

 MyContactList app (iOS)

 app data values, storing in key-value
list, 256

 contact activity layout, 66

 addresses, 68 - 69

 birthday input, 74 - 75

 city, state, zip code fields, 69 - 71

 contact photos

 camera functionality,
implementing, 185 - 186

 camera permission, 184

 database picture field, adding,
 186 - 187

 database structure change without
losing all user data, handling, 187

 displaying, 188 - 189

 ImageButton initialization, 184

 layout space, creating, 183

 retrieving pictures from
database, 188

 saving pictures to database,
 187 - 188

 ContactSettings activity

 displaying user preferences,
 109 - 112

 layout, creating, 107 - 110

 saving user preferences, 112 - 113

 contacts map

 compass, 177 - 180

 navigation buttons, 170

 currentContact variable association, 99

 DatePicker dialog, 82 - 86

 Change button, 85 - 86

 creating DatePickerDialog class,
 83 - 84

 implementing in activities, 85

 debugging, 105 - 107

 breakpoints, setting, 105 - 106

 log statements, 107

 stepping through code, 106

 stopping, 107

 toolbar control buttons, 105 - 106

 variable inspection, 106 - 107

 default activity, setting, 141 - 142

 empty database activity default,
setting, 142 - 143

 layout population with retrieved
contacts, 137 - 138

97803e21947864_Book 1.indb 429 11/21/13 2:57 PM

ptg11524036

430 MyContactList app (iOS)

 project, creating, 215 - 216

 records, saving changes, 276 - 277

 retrieving data from Core Data,
 269 - 271

 Settings interface, 252

 actions, configuring, 253

 default settings, saving, 257

 outlets, configuring, 253

 Picker View, 253 - 255

 UI controls based on stored values,
setting, 257 - 258

 user preferences, storing, 257 - 259

 View Controllers, adding, 252 - 253

 switching between view and edit
modes, 231

 changeEditMode: method,
implementing, 232

 text fields/buttons, referencing,
 232

 tab bar, creating, 216

 images, 221 - 222

 tab names, changing, 218 - 219

 View Controller, adding, 217

 View Controller code files,
renaming, 220

 tables

 accessory buttons, 280 - 281

 Alert View, 281 - 284

 contact data, adding, 272

 deleting records, 277 - 279

 populating with data, 265 - 268

 retrieving data from Core Data,
 269 - 271

 sorting, 285 - 287

 subtitles, displaying, 285

 views, 216 - 223

 email input, 73 - 74

 input screen structure, 66 - 67

 labels, aligning, 72

 names, 67 - 68

 phone information fields, 70

 contact pictures, adding

 handling the picture, 321 - 322

 lightweight migration of Core
Data, 323 - 324

 outlets, 318

 saving images to database, 321 - 323

 taking the picture, 319 - 320

 user interface, 318

 Contacts screen user interface

 design, 222 - 226

 scrolling, adding, 224 - 225

 Core Data support, adding, 238 - 241

 data structure design

 configuring, 241

 Objective-C class, 242

 Date screen

 Birthdate View Controller
navigation bar title, setting, 228

 date selection, 230

 navigating back to Contacts
screen, 229

 Navigation Controller, adding, 227

 detailed contact data, displaying,
 273 - 275

 passing data between table views
and Contact screens, 274

 Prototype cell segue to Contact
screen, 273

 user interface, populating, 274 - 275

 global constants, 259 - 261

 phone calling contacts, 324 - 328

 plotting contacts on map, 305 - 307

97803e21947864_Book 1.indb 430 11/21/13 2:57 PM

ptg11524036

431objects

 numberOfRowsInSection: method, 267

 numberOfSectionsInTableView:
method, 267

 O
 Objective-C

 C language coding constructs
supported, 384 - 385

 classes

 app delegate availability, 390

 creating, 385 - 387

 Java implementation, 392 - 394

 methods, implementing, 388 - 390

 dot notation, 392

 history, 383 - 384

 inheritance, 397

 memory management, 398

 methods

 declaring, 396

 parameters, 397

 private/public, 397

 return types, 396

 types, 396

 objects, declaring/manipulating,
 390 - 392

 properties, 394 - 396

 attributes, 395

 declaring, 394

 strong/weak references, 395

 protocols, 397 - 398

 Objective-C (Kochan), 398

 Object Library, 199

 objects

 AlertDialog, 168

 ArrayList, 117

 BroadcastReceiver, 176 - 177

 CLHeading, 299

 CLPlacemark, 295

 N
 names

 Android

 projects/packages, 33

 resource files, 36

 contacts, 67 - 68

 devices, retrieving, 313

 methods, 53

 tab bar tabs, 218 - 219

 values, 46

 View Controller code files,
changing, 220

 navigation (Android), 35

 bars, creating, 60 - 64

 background color, 63

 button activities, coding, 78 - 80

 color resources, creating, 61

 image buttons, 60 - 61 , 63

 padding, removing, 63

 positioning, 63

 XML code, 62 - 64

 buttons, 170

 Navigation Controllers

 adding to View Controllers, 228

 navigating back to previous screen, 229

 overview, 215 , 227

 network sensors

 with GPS sensors, 159 - 160

 locations, finding, 159 - 160

 testing, 159

 New Android Application dialog window, 32

 nextFocusDown attribute, 69

 NFC (Near Field Communication), 4

 notifications (battery status), 315

 NSFetchRequest objects, 271

 NSNotificationCenter object, 314

 NSSortDescriptor class, 286

 NSUserDefaults object, 236 , 256

97803e21947864_Book 1.indb 431 11/21/13 2:57 PM

ptg11524036

432 objects

 operating systems

 life cycles, 14

 Android, 14 - 15

 iOS, 15 - 17

 publishing apps, 356

 orientation (screens), 18

 outlets

 camera, 318

 creating, 203

 geocoding, 293

 maps, 302 , 308

 Settings interface, configuring, 253

 P
 Package Explorer (Eclipse), 36

 padding attributes, 44

 paid apps, 337 - 338

 payment industry, 6

 permissions

 camera, 184

 maps, 151 - 152

 phone, 181

 persistent data (Android)

 files, 90

 iOS, compared, 91

 SharedPreferences

 displaying upon page access
behavior, 109 - 112

 layout, creating, 107 - 110

 overview, 89 - 90

 saving, 112 - 113

 SQLite databases

 capturing user-entered data, 99 - 101

 database helper class, creating,
 91 - 93

 data source class, creating, 93 - 98

 debugging, 105 - 107

 overview, 90 - 91

 CMMotionManager

 creating, 328 - 329

 retrieving from app delegate,
 329 - 330

 gesture recognizer, 325

 GoogleMap, 146 , 162 - 163

 LocationManager, 146

 map. See maps

 MKUserLocation, 303

 NSFetchRequest, 271

 NSNotificationCenter, 314

 NSUserDefaults, 236 , 256

 Objective-C, declaring/manipulating,
 390 - 392

 PhoneNumberFormattingTextWatcher,
 101

 SensorManager, 178 - 179

 TextWatcher, 100

 Toast, 157

 onAccuracyChanged event, 180

 onActivityResult() method, 186

 onClickListener() method, 53

 onClick() method, 53

 onCreate() method, 14

 Activity class, 52

 ContactDBHelper class, 93

 onCreateOptionsMenu() method, 52

 onDestroy() method, 15

 onPause() method, 15 , 157

 onResume() method

 database, checking, 142

 lists, resorting, 140 - 141

 onSensorEvent event, 180

 onStart() method, 14

 onStop() method, 15

 onUpgrade() method, 93

97803e21947864_Book 1.indb 432 11/21/13 2:57 PM

ptg11524036

433projects (Xcode)

 saving to database, 187 - 188

 taking, 185 - 186

 pictures (iOS). See also images

 handling, 321 - 322

 saving to database, 321 - 323

 taking, 319 - 320

 populating tables, 265 - 269

 position sensors, 177

 power. See batteries

 preferences (user), storing, 257 - 259

 prepareForSegue: method, 274

 pricing apps, 348

 productivity paradox, 7

 projects (Eclipse)

 activities

 adding, 58 - 59

 choosing, 34

 creating, 58

 default settings, 34

 Google Play Services SDK, adding,
 148 - 149

 icon configuration, 34

 importing, 57

 navigation, 35

 new Android application window, 32

 project/package names, 33

 SDK requirements, 33 - 34

 themes, 34

 projects (Xcode)

 class prefixes, 195

 Core Data support, adding, 237 - 241

 Core Location framework, adding,
 293 - 294

 folder, 196

 frameworks, adding, 294

 Main storyboard setting, 238

 MapKit framework, adding, 301

 MyContactList app (iOS), creating,
 215 - 216

 pictures. See SQLite database,
pictures

 retrieving data, 104 - 105

 saving user-entered data, 101 - 105

 structure changes without losing all
user data, handling, 187

 user-entered data. See SQLite database,
user-entered data

 persistent data (iOS)

 Android, compared, 91

 Core Data. See Core Data

 file storage, 235

 user defaults, 236

 Persistent Object Store, 236

 persistentStoreCoordinator: method, 323

 phone (Android), 174

 EditText widget long click event
response, 182

 phone app, starting, 182

 phone number accepting, 182

 press-and-hold user action listener, 181

 user permission, 181

 phone (iOS), 324

 long press gesture, 324 - 325

 calling the phone number, 325

 callPhone: method, 324 - 325

 gesture recognizer, 325

 txtPhone field editing mode, setting,
 327 - 328

 PhoneNumberFormattingTextWatcher
object, 101

 Picker View control, 253 - 255

 data sources, 255

 displaying data, 255 - 256

 implementing, 253 - 255

 protocols, adding, 253

 user selections, responding, 256

 pictures (Android). See also images

 displaying with contacts, 188 - 189

 retrieving from database, 188

97803e21947864_Book 1.indb 433 11/21/13 2:57 PM

ptg11524036

434 projects (Xcode

 R
 RadioGroup widget, 107 - 109

 displaying current preference activity,
 111 - 112

 user preferences for each option,
storing, 112 - 113

 records (tables)

 deleting, 277 - 279

 insert new objects when editing,
avoiding, 276 - 277

 saving changes, 276 - 277

 refactoring (Xcode), 220

 reference books , xvi

 RelativeLayout element, 42 - 44

 relative layouts, locking, 66

 relative positioning, 48 , 205

 requirements

 Android , 33 - 34

 iPhone/iPad, xv-xvi

 res folder (Eclipse), 36

 resolutions (iOS)

 app icons, 209 - 210

 iPhone screens, 211

 launch images, 210

 resource files (Android), 36

 resources

 Core Data for iOS: Developing
Data-Driven Applications for the
iPad, iPhone, and iPod touch (Isted/
Harrington), 237

 Objective-C (Kochan), 398

 reference books , xvi

 StackOverflow.com , xvi

 retrieving data (databases), 104 - 105

 getContactName() method, 116 - 117

 specific criteria, 135 - 136

 run configurations, 42

 Run Configurations window, 42

 new, creating, 58

 saving, 195

 settings, 197 - 199

 target device, choosing, 195

 templates, 193

 properties (Objective-C), 394 - 396

 attributes, 395

 declaring, 394

 strong/weak references, 395

 protocols (Objective-C), 397 - 398

 publishing apps

 audiences, 347

 enterprise distribution

 Android, 353 - 354

 iOS, 354

 Google Play Store, 348 - 351

 accounts, setting up, 350

 Android application package (APK)
files, creating, 349 - 350

 licensing, 348

 iTunes Store, 351 - 352

 market requirements, 347

 operating system updates, 356

 preparations

 app descriptions, 348

 pricing, 348

 resources, 348

 screenshots, 348

 testing, 354 - 355

 boundary value analysis, 355

 cause-effect graphing, 355

 equivalence partitioning, 354

 usability, 355

 variety of devices, 355

 putString() method, 113

97803e21947864_Book 1.indb 434 11/21/13 2:57 PM

ptg11524036

435sensors (Android)

 Google Play Services

 adding, 148 - 149

 downloading, 147 - 148

 Java SE, installing, 362

 Segmented Controls

 map types, changing, 307 - 309

 moving, 227

 multiple segments, 222

 switching between view and edit
modes, 230 - 233

 changeEditMode: method,
implementing, 232

 text fields/buttons, referencing,
 232

 segues, 228

 Sensor class, 174

 SensorEventListeners, 174 , 179 - 180

 SensorEvents, 174

 SensorManager class, 174

 SensorManager object, 178 - 179

 sensors (Android), 3 , 173 - 174

 accelerometer/magnetometer, 178

 compass, creating, 177 - 180

 event listener, implementing,
 179 - 180

 heading widget, 177 - 178

 iOS, compared, 180

 registering sensors for monitoring,
 178 - 179

 location, 145 - 146

 Android versus iOS, 160 , 298

 best locations, choosing, 159 - 160

 GPS. See GPS sensors

 monitoring

 event listeners, implementing,
 179 - 180

 registering, 178 - 179

 network, 159 - 160

 S
 Save button

 hiding keyboards when pressed, 103

 initializing, 101 - 103

 saveContact: method, 276

 saving

 default settings, 257

 pictures to database

 Android, 187 - 188

 iOS, 321 - 323

 records, 276 - 277

 user-entered data, 101 - 105

 hiding keyboards upon Save
button press, 103

 Save button, initializing, 101 - 103

 screen focus in viewing mode, 103

 update errors, handling, 104 - 105

 Xcode projects, 195

 scheduling business process change, 7

 screens

 iPhones, 211

 orientation, 18

 size, 17

 Scroll View control

 adding, 224 - 225

 content size, 224 - 225

 data entry form, configuring, 66 - 67

 keyboards, dismissing, 226

 moving, 227

 Segmented Control, overlapping, 226

 top of screen focus, 103

 SDKs (Software Development Kits)

 AdMob Ads, downloading, 338

 Android

 app requirements, 33 - 34

 installing, 369

 Eclipse, adding, 147

97803e21947864_Book 1.indb 435 11/21/13 2:57 PM

ptg11524036

436 sensors (iOS)

 data retrieval method, 116 - 117

 ListView widget, adding, 118 - 119

 simulator

 apps, running, 200 - 201

 device information, retrieving, 313

 limitations, 373

 location services, 300

 size

 layouts, 44

 screens, 17 , 211

 Small Business Administration website,
 343

 Software Development Kit. See SDKs

 sorting tables, 285 - 287

 source code website, xix

 SQLite databases

 database helper class, creating, 91 - 93

 data source class, creating, 93 - 98

 insert/update methods, adding,
 96 - 98

 required code, 94

 debugging, 105 - 107

 breakpoints, setting, 105 - 106

 logging, 107

 stepping through code, 106

 stopping, 107

 toolbar control buttons, 105 - 106

 variable inspection, 106 - 107

 iOS support, 236

 overview, 90 - 91

 pictures

 field, adding, 186 - 187

 retrieving, 188

 saving, 187 - 188

 retrieving data, 104 - 105 , 116 - 117

 structure changes without losing all
user data, handling, 187

 user-entered data

 capturing, 99 - 101

 savivng, 101 - 105

 sensors (iOS), 3

 accelerometer. See accelerometer

 location, 289 - 290

 setForView() method, 82

 setForViewing() method, 82

 setPicture() method, 186

 setters (picture variable), 186

 Settings interface

 creating, 253 - 255

 actions, configuring, 253

 outlets, configuring, 253

 View Controllers, adding, 252 - 253

 default settings, saving, 257

 Picker View, 253 - 255

 data source, 255

 displaying data, 255 - 256

 implementing, 253 - 255

 protocols, adding, 253

 user selections, responding, 256

 UI controls based on stored values,
setting, 257 - 258

 user preferences, storing, 257 - 259

 settings screen (MyContactsList app),
 26 - 27

 setToEditing() method, 81

 SHA1 fingerprint, 149 , 151

 SharedPreferences

 class, 89

 displaying, 109 - 112

 layout, creating, 107 - 110

 overview, 89 - 90

 saving, 112 - 113

 showOutput: method, 204

 signatures (methods), 53

 SimpleAdapter class, 116

 simple lists

 activities

 displaying, 118 - 120

 responding to item clicks, 120 - 121

97803e21947864_Book 1.indb 436 11/21/13 2:57 PM

ptg11524036

437TextView widgets

 Prototype cell segue to Contact
screen, 273

 user interface, populating, 274 - 275

 overview, 263 - 264

 populating with data, 265 - 269

 records

 deleting, 277 - 279

 saving changes, 276 - 277

 retrieving data from Core Data,
 269 - 271

 sorting, 285 - 287

 subtitles, displaying, 285

 user interface, populating, 275

 templates (Xcode), 193

 testing

 apps, 354 - 355

 boundary value analysis, 355

 cause-effect graphing, 355

 equivalence partitioning, 354

 usability, 355

 variety of devices, 355

 devices

 GPS sensors, 158 - 159

 information retrieval, 313

 locations, finding, 300

 network sensors, 159

 text, displaying, 44

 TextChangedListener, 100 - 101

 TextView widgets, 44

 adding, 46 - 47

 attributes, 45

 battery level, 175

 contacts

 addresses, 68 - 69

 birthdays, 75 - 74

 email, 73 - 74

 phone information fields, 70

 settings layout, 107 - 109

 heading, 177 - 178

 Square, 6

 StackOverflow.com , xvi

 startActivityForResult() method, 186

 Start Android Emulator window, 41

 starting phone apps, 182

 State Farm Pocket Agent App, 9

 stepping through code, 106

 stopping

 debugger, 107

 GPS sensors, 157

 storyboard, 198 , 268

 strings.xml file, 37

 structs (iOS), 296

 subtitles (tables), displaying, 285

 switches, 259

 T
 Tab Bar Controller, 214 , 217

 tab bars, 216

 files, renaming, 220

 images, 221 - 222

 tab names, changing, 218 - 219

 View Controller, adding, 217

 Table Controller, 265

 TableLayout, 76

 tables (Android), 285

 tables (iOS)

 accessory buttons, 280 - 281

 Alert View, 281 - 284

 Android tables, compared, 285

 cells

 accessories, 264

 styles, 264

 contact data, adding, 272

 creating, 265 - 266

 detailed data, displaying, 273 - 275

 passing data between table views
and Contact screens, 274

97803e21947864_Book 1.indb 437 11/21/13 2:57 PM

ptg11524036

438 TextWatcher objects

 user-entered data

 capturing, 99 - 101

 saving, 101 - 105

 hiding keyboards upon Save
button press, 103

 Save button, initializing, 101 - 103

 screen focus in viewing mode, 103

 update errors, handling, 104 - 105

 user interfaces (Android)

 associating code with button on
layout, 53

 attributes, 43 - 44

 code, connecting, 54

 EditText widgets. See EditText widgets

 form widgets, 45

 properties, 45

 relative positioning, 48 , 205

 root element, 42

 structure, 45

 TextView widget. See TextView widgets

 user interfaces (iOS)

 absolute positioning, 48 , 205

 app data values, storing in key-value
list, 256

 battery monitoring, configuring,
 315 - 316

 classes, 213

 code connectivity, 54 , 204

 code files, renaming, 220

 Contacts screen, 222 - 226

 control-dragging, 217

 creating, 199 - 200

 Date Pickers, 230

 default settings, saving, 257

 design, 205

 geocoding, creating, 291 - 293

 global constants, 259 - 261

 labels, dragging on canvas, 200

 TextWatcher objects, 100

 tilting devices. See accelerometer

 time delays (hardware), 20

 time objects, 84

 Toast messages, 157

 toggle buttons, 80 - 82

 data entry widgets, enabling/disabling,
 81 - 82

 initializing, 80 - 81

 toolbars

 creating, 65 - 66

 maps, adding, 168 - 170

 txtPhone field editing mode, 327 - 328

 U
 UIDevice class, 312

 UIImagePickerController, 321

 UIKit framework, 213

 UIResponder class, 326

 UITextField class, 326

 UIView class, 213

 UIViewController class, 214

 UIWindow class, 213

 unit tests, 198

 updateContact() method, 98

 updateLabel: method, 331

 updates

 database entries, error handling,
 104 - 105

 label movements (accelerometer),
 331 - 332

 Location Manager

 heading, 299

 location, 298 - 299

 operating systems, 356

 URI (Uniform Resource Identifier), 182

 usability testing (apps), 355

97803e21947864_Book 1.indb 438 11/21/13 2:57 PM

ptg11524036

439View Controllers

 users

 defaults (iOS), 236

 interaction buttons

 Android, 22 - 23

 iOS, 23

 locations, displaying on map, 301

 annotations, adding, 304 - 306

 user tracking, 302

 zooming in, 302 - 303

 permissions

 camera, 184

 phone, 181

 preferences, storing, 257 - 259

 tracking, 302

 V
 values folders (Eclipse), 37

 variables

 CAMER_REQUEST, 186

 currentContact, 99

 Geocode, 154

 gpsListener, 156

 inspecting, 106 - 107

 IntentFilter, 177

 View (iOS)

 changing to UIControl, 206

 connecting actions to methods, 207

 View Controllers, 213 - 214

 adding, 217

 code files, renaming, 220

 displaying at launch, configuring, 238

 keyboards, dismissing, 205 - 208

 Location, adding, 291 - 292

 Map, renaming, 300 - 301

 navigation bar, adding, 228

 overview, 198

 Navigation Controllers

 adding to View Controllers, 228

 navigating back to previous
screen, 229

 overview, 215 , 227

 outlets, creating, 203

 Picker View, 253 - 255

 data source, 255

 displaying data, 255 - 256

 implementing, 253 - 255

 protocols, adding, 253

 user selections, responding, 256

 populating, 275

 scroll view

 adding, 224 - 225

 content size, 224 - 225

 keyboards, dismissing, 226

 Segmented Control, overlapping,
 226

 Settings interface, 252 - 255

 switching between view and edit
modes, 230 - 233

 changeEditMode: method,
implementing, 232

 text fields/buttons, referencing,
 232

 tab bars, creating, 216

 files, renaming, 220

 images, 221 - 222

 tab names, changing, 218 - 219

 View Controller, adding, 217

 UI controls based on stored values,
setting, 257 - 258

 View Controllers

 adding, 217

 code files, renaming, 220

 titles, changing, 218 - 219

97803e21947864_Book 1.indb 439 11/21/13 2:57 PM

ptg11524036

440 View Controllers

 widgets

 DatePickers, 75 , 78

 Change button, 85 - 86

 DatePickerDialog class, creating,
 83 - 84

 displaying, 78

 implementing in activities, 85

 EditText, 49

 addresses, 69

 autoformatting as typed, 101

 birthdays, 75 - 74

 city, state, zip code, 69 - 71

 contact names, 68

 email, 73 - 74

 hiding keyboards upon button
press, 103

 listeners, adding, 100 - 101

 long click event response, 182

 phone information, 70

 focus, clearing, 82

 form, 45

 labels, aligning, 72

 ListView, 116

 overview, 56

 RadioGroup, 107 - 109

 displaying current preference
activity, 111 - 112

 user preferences for each option,
storing, 112 - 113

 TextView

 adding, 46 - 47

 attributes, 45

 battery level, 175

 birthday input, 75 - 74

 contact addresses, 68 - 69

 Contact settings layout, 107 - 109

 email input, 73 - 74

 heading, 177 - 178

 phone information, 70

 settings layout, 107 - 109

 segues, 228

 Settings interface, adding, 252 - 253

 switching between view and edit
modes, 231

 changeEditMode: method,
implementing, 232

 text fields/buttons, referencing,
 232

 title names, changing, 218 - 219

 viewDidDisappear: method, 297

 viewDidLayoutSubviews: method, 225

 viewDidLoad: method, 16 , 275

 view life cycle (iOS), 16 - 17

 viewWill Appear: method, 276 , 302

 viewWillDisappear: method, 17

 virtual buttons (Android), 22 - 23

 W
 websites

 AdMob, 339 - 340

 ADT plug-in troubleshooting, 369

 Android

 in-app purchases, 341

 SDK download , xiv

 Apple University Program, xv

 Developer Console, 350

 Eclipse download, 361 , 363

 freelance jobs, 343

 Glyphish, 221

 Google Developer Console website, 150

 iOS in-app purchases, 341

 iTunes Connect, 351

 Java SE SDK download, 362

 publishing apps, 348

 SHA1 fingerprint, 151

 Small Business Administration, 343

 source code website , xix

 StackOverflow.com, xvi

 Xcode download , xv, 371

97803e21947864_Book 1.indb 440 11/21/13 2:57 PM

ptg11524036

441Xcode

 saving, 195

 settings, 197 - 199

 target device, choosing, 195

 templates, 193

 refactoring, 220

 simulator, 200 - 201

 storyboard, 198

 supporting files, 198

 unit tests, 198

 user interfaces, creating, 199 - 200

 View

 changing to UIControl, 206

 connecting actions to methods,
 207

 View Controllers. See View Controllers

 welcome screen, 194

 workspace, 196 - 197

 Windows Eclipse installation, 363 - 365

 Workspace Launcher dialog, 32

 workspaces

 Xcode , 196 - 197

 Eclipse, configuring, 32

 X
 Xcode

 app behaviors, adding, 202 - 204

 AppDelegate files, 198

 app icons, 208 - 210

 asset catalog, 209

 placement, 208

 resolutions, 209 - 210

 classrooms, configuring, 373

 development environment, checking,
 379 - 381

 Dock, 206

 downloading, 371

 frameworks, 199

 Images.xcassets folder, 198

 installing, 371

 keyboards, dismissing, 205 - 208

 actions, connecting to methods,
 207

 backgroundTap: method, 205

 process overview, 208

 View, changing to UIControl, 206

 launch images, 210

 Object Library, 199

 projects

 class prefixes, 195

 Core Data support, adding,
 237 - 241

 folder, 196

 Main storyboard setting, 238

 MyContactList app, creating,
 215 - 216

97803e21947864_Book 1.indb 441 11/21/13 2:57 PM

	Contents
	Preface
	Part I: Overview of Mobile App Development
	1 Why Mobile Apps?
	Transformative Devices
	Reaching Customers
	Changing Business Process
	Making Money
	Summary
	Exercises

	2 App Design Issues and Considerations
	App Design
	Device Differences
	Introducing Your First App
	Summary
	Exercises

	Part II: Developing the Android App
	3 Using Eclipse for Android Development
	Starting a New Project
	Coding the Interface
	Coding App Behavior
	Summary
	Exercises

	4 Android Navigation and Interface Design
	Activities, Layouts, and Intents
	Creating the Interface
	Activating the Interface
	Summary
	Exercises

	5 Persistent Data in Android
	Preferences, Files, and Database
	Creating the Database
	Using the Database
	Using Preferences
	Summary
	Exercises

	6 Lists in Android: Navigation and Information Display
	Lists and Adapters
	Simple Lists
	Complex Lists
	Completing the ContactList Activity
	Summary
	Exercises

	7 Maps and Location in Android
	Location Sensors, Maps, and Fragments
	Setting Up for Maps
	Finding Your Location
	Displaying Your Contacts’ Locations
	Summary
	Exercises

	8 Access to Hardware and Sensors in Android
	Sensors, Managers, and Other Hardware
	Monitoring the Battery
	Using Sensors to Create a Compass
	Using the Phone
	Using the Camera
	Summary
	Exercise

	Part III: Developing the iOS App
	9 Using Xcode for iOS Development
	Creating the Xcode Project
	Dismissing the Keyboard
	Summary
	Exercises

	10 iOS Navigation and Interface Design
	Views and Controllers
	Creating the Interface
	Activating the Interface
	Summary
	Exercises

	11 Persistent Data in iOS
	File Data Storage
	User Defaults
	Core Data
	Setting Up Core Data
	Storing the Settings
	Summary
	Exercises

	12 Tables in iOS: Navigation and Information Display
	Overview of Tables
	Setting Up Tables
	Summary
	Exercises

	13 Maps and Location in iOS
	Overview of Location and Mapping
	Adding Location Information to the App
	Summary
	Exercises

	14 Access to Hardware and Sensors in iOS
	Getting Device Information
	Monitoring Battery Status
	Controlling the Camera
	Calling a Phone Number
	Using Core Motion for Accelerometer Data
	Summary
	Exercises

	Part IV: Business Issues
	15 Monetizing Apps
	App Monetization Strategies
	Owning Your Own Business
	Other Income Possibilities
	Choosing a Platform
	Summary
	Exercises

	16 Publishing Apps
	App Distribution Through the App/Play Stores
	App Distribution for the Enterprise
	Testing and Fragmentation
	Keeping Up with the Platform
	Summary
	Exercises

	Part V: Appendixes
	A: Installing Eclipse and Setup for Android Development
	Setting up Java and Eclipse
	Installing Android
	Setting Up the Classroom

	B: Installing Xcode and Registering Physical Devices
	Download and Install Xcode
	Apple Developer Programs
	Setting Up the Classroom
	Deploying Apps to Real Devices

	C: Introduction to Objective-C
	A Brief History of Objective-C
	Two Languages in One
	Objects and Classes
	Memory Management

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

