
Assignment 1
This assignment cover the topic from week 1 to week 7

Purpose
To assess your ability to apply the course concepts and critical thinking skills

Due Date:
Week 9 - Saturday 31 Oct. 2015

Action Items
Q1.

Explain in details the activity life cycle of an android application with the help of

diagrams.

Activities in the system are managed as an activity stack. When a new activity is started,

it is placed on the top of the stack and becomes the running activity -- the previous

activity always remains below it in the stack, and will not come to the foreground again

until the new activity exits.

An activity has essentially four states:

 If an activity in the foreground of the screen (at the top of the stack), it

is active or running.

 If an activity has lost focus but is still visible (that is, a new non-full-sized or

transparent activity has focus on top of your activity), it is paused. A paused

activity is completely alive (it maintains all state and member information and

remains attached to the window manager), but can be killed by the system in

extreme low memory situations.

 If an activity is completely obscured by another activity, it is stopped. It still retains

all state and member information, however, it is no longer visible to the user so

its window is hidden and it will often be killed by the system when memory is

needed elsewhere.

 If an activity is paused or stopped, the system can drop the activity from memory

by either asking it to finish, or simply killing its process. When it is displayed

again to the user, it must be completely restarted and restored to its previous

state.

The following diagram shows the important state paths of an Activity. The square

rectangles represent callback methods you can implement to perform operations when

the Activity moves between states. The colored ovals are major states the Activity can be

in.

Q2.
What are Adapters in android, explain different adapter views

Adapters in Android are a bridge between the Adapter View (e.g. ListView) and the underlying
data for that view. Lists require the use of an adapter. The adapter provides access to the data items
and is responsible for creating a View for each item. A view determines how each list item is
displayed. In most cases, this display is uniform for each data item. The display does not have to
be uniform, but in that case, developers must implement their own adapters to create the different
views.
Below is a conceptual diagram which shows the high level working of the Android Adapter:

Let us now understand the internal working of an Android Adapter and how it acts as a data pump

to the adapter view. Adapters call the getView() method which returns a view for each item within

the adapter view. The layout format and the corresponding data for an item within the adapter view

is set in the getView() method

Q3.

Explain the Android location services and the classes required for getting GPS location.

Location and maps-based apps offer a compelling experience on mobile devices. You

can build these capabilities into your app using the classes of the android.location

package and the Google Maps Android API. The sections below provide an introduction

to how you can add the features

Location Services

Android gives your applications access to the location services supported by the device

through classes in the android.location package. The central component of the location

framework is the LocationManager system service, which provides APIs to determine

location and bearing of the underlying device (if available).

As with other system services, you do not instantiate a LocationManager directly. Rather,

you request an instance from the system by calling

getSystemService(Context.LOCATION_SERVICE). The method returns a handle to a new

LocationManager instance.

Once your application has a LocationManager, your application is able to do three things:

Query for the list of all LocationProviders for the last known user location.

Register/unregister for periodic updates of the user's current location from a location

provider (specified either by criteria or name).

Register/unregister for a given Intent to be fired if the device comes within a given

proximity (specified by radius in meters) of a given lat/long.

For more information about acquiring the user location, read the Location Strategies

guide.

Q4.
The following figure shows a part of Android application manifest file.

1. Discuss in details what is meant by part number //1 and //2
2. In the previous figure, what changes are required to do if you made a new

version of your application “1.1”, also a new SDK version 18 is published.

1.

1. The <manifest> component is the root element. The attributes associated with
this element define the application package, version code, and version name (as
well as others).
2. The <uses-sdk> element and its attributes define the minimum and target SDKs
for the app.

2.

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.example.helloworld"
android:versionCode="2"
android:versionName="1.1" >

<uses-sdk
android:minSdkVersion="8"
android:targetSdkVersion="18" />

Q5.
In the following activity, complete the following code in order that when a user
press ADD button the sum of the two numbers in (txtnum1, txtnum2) will appear
in (tviewresult).
 Hint: to parse String to Float use “Float.parseFloat”

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 Button displayButton = (Button) findViewById(R.id.button);
 displayButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View arg0) {
 EditText editnum1 = (EditText) findViewById(R.id.textnum1);
 EditText editnum2 = (EditText) findViewById(R.id.txtnum2);
 TextView textDisplay = (TextView) findViewById(R.id.tviewresult);
 float sum = Float.parseFloat(editnum1.getText().toString()) +
Float.parseFloat(editnum2.getText().toString()) ;
 textDisplay.setText("Result: " + sum);
 }
 });

}

Submission Instructions
Complete and submit this assignment per your professor’s instructions.

Grading Criteria

Accuracy and completion of assignment: 0 - 5 points

