o
A

!

PANG-NING TAN
Michigan State University

MICHAEL STEINBACH

University of Minnesota

VIPIN KUMAR
University of Minnesota

and Army High Performance
Computing Research Center

PEARSON
 mm—|

Addison
Wesley

Boston San Francisco New York
London Toronto Sydney Tokyo Singapore Madrid
Mexico City Munich Paris Cape Town Hong Kong Montreal

Contents

Preface vii
1 Introduction 1
1.1 What Is Data Mining? 2
1.2 Motivating Challenges 4
1.3 The Origins of Data Mining 6
1.4 Data Mining Tasks 7
1.5 Scope and Organization of the Book 11
1.6 Bibliographic Notes. 13
1.7 Exercises 16

2 Data 19
2.1 Typesof Data. 22
2.1.1 Attributes and Measurement 23

2.1.2 Typesof DataSets 29

2.2 DataQuality 36
2.2.1 Measurement and Data Collection Issues. 37

2.2.2 Issues Related to Applications 43

2.3 Data Preprocessing L. 44
2.3.1 Aggregationo 45

2.3.2 Sampling 47

2.3.3 Dimensionality Reduction 50

2.3.4 Feature Subset Selection 52

2.3.5 Feature Creation 55

2.3.6 Discretization and Binarization 57

2.3.7 Variable Transformation 63

2.4 Measures of Similarity and Dissimilarity 65
241 Basics 66

2.4.2 Similarity and Dissimilarity between Simple Attributes. 67

2.4.3 Dissimilarities between Data Objects 69

2.4.4 Similarities between Data Objects 72

xiv Contents

2.4.5 Examples of Proximity Measures
2.4.6 Issues in Proximity Calculation
2.4.7 Selecting the Right Proximity Measure
2.5 Bibliographic Notes.
2.6 Exercises oo

3 Exploring Data
3.1 ThelrisDataSet
3.2 Summary Statistics oL
3.2.1 Frequencies and the Mode
3.2.2 Percentiles o
3.2.3 Measures of Location: Mean and Median
3.2.4 Measures of Spread: Range and Variance
3.2.5 Multivariate Summary Statistics
3.2.6 Other Ways to Summarize the Data
3.3 Visualization L o
3.3.1 Motivations for Visualization
3.3.2 General Concepts L
3.3.3 Techniques L.
3.3.4 Visualizing Higher-Dimensional Data
335 Do’sand Don’ts
3.4 OLAP and Multidimensional Data Analysis
3.4.1 Representing Iris Data as a Multidimensional Array
3.4.2 Multidimensional Data: The General Case.
3.4.3 Analyzing Multidimensional Data
3.4.4 Final Comments on Multidimensional Data Analysis . .
3.5 Bibliographic Notes.
3.6 Exercises oo

4 Classification:

Basic Concepts, Decision Trees, and Model Evaluation

4.1 Preliminarieso Lo L oL

4.2 General Approach to Solving a Classification Problem

4.3 Decision Tree Induction
4.3.1 How a Decision Tree Works
4.3.2 How to Build a Decision Tree
4.3.3 Methods for Expressing Attribute Test Conditions . . .
4.3.4 Measures for Selecting the Best Split
4.3.5 Algorithm for Decision Tree Induction
4.3.6 An Example: Web Robot Detection

97

98

98

99
100
101
102
104
105
105
105
106
110
124
130
131

. 131

133
135
139
139
141

Contents xv

4.3.7 Characteristics of Decision Tree Induction 168
4.4 Model Overfitting 172
4.4.1 Overfitting Due to Presence of Noise 175
4.4.2 Overfitting Due to Lack of Representative Samples . . . 177
4.4.3 Overfitting and the Multiple Comparison Procedure . . 178
4.4.4 Estimation of Generalization Errors 179
4.4.5 Handling Overfitting in Decision Tree Induction 184
4.5 Evaluating the Performance of a Classifier 186
4.5.1 Holdout Method 186
4.5.2 Random Subsampling, . 187
4.5.3 Cross-Validation 187
4.5.4 Bootstrap oo 188
4.6 Methods for Comparing Classifiers 188
4.6.1 Estimating a Confidence Interval for Accuracy 189
4.6.2 Comparing the Performance of Two Models 191
4.6.3 Comparing the Performance of Two Classifiers 192
4.7 Bibliographic Notes. 193
4.8 Exercises oo 198
Classification: Alternative Techniques 207
5.1 Rule-Based Classifier 207
5.1.1 How a Rule-Based Classifier Works 209
5.1.2 Rule-Ordering Schemes 211
5.1.3 How to Build a Rule-Based Classifier 212
5.1.4 Direct Methods for Rule Extraction 213
5.1.5 Indirect Methods for Rule Extraction 221
5.1.6 Characteristics of Rule-Based Classifiers 223
5.2 Nearest-Neighbor classifiers 223
521 Algorithm 00 225
5.2.2 Characteristics of Nearest-Neighbor Classifiers 226
5.3 Bayesian Classifiers 0 0 L. 227
5.3.1 Bayes Theorem 228
5.3.2 Using the Bayes Theorem for Classification 229
5.3.3 Naive Bayes Classifier 231
5.3.4 BayesErrorRate 238
5.3.5 Bayesian Belief Networks 240
5.4 Artificial Neural Network (ANN) 246
5.4.1 Perceptron L. 247
5.4.2 Multilayer Artificial Neural Network 251
5.4.3 Characteristics of ANN 255

xvi

Contents
5.5 Support Vector Machine (SVM) 256
5.5.1 Maximum Margin Hyperplanes 256
5.5.2 Linear SVM: Separable Case 259
5.5.3 Linear SVM: Nonseparable Case 266
554 Nonlinear SVM 270
5.5.5 Characteristics of SVM 276
5.6 Ensemble Methods 276
5.6.1 Rationale for Ensemble Method 277
5.6.2 Methods for Constructing an Ensemble Classifier 278
5.6.3 Bias-Variance Decomposition 281
5.6.4 Bagging o o 283
5.6.5 Boosting. 285
5.6.6 Random Forests 290
5.6.7 Empirical Comparison among Ensemble Methods 294
5.7 Class Imbalance Problem 294
5.7.1 Alternative Metrics 295
5.7.2 The Receiver Operating Characteristic Curve 298
5.7.3 Cost-Sensitive Learning 302
5.7.4 Sampling-Based Approaches 305
5.8 Multiclass Problem o000 306
5.9 Bibliographic Notes., 309
5.10 Exercises o o 315
Association Analysis: Basic Concepts and Algorithms 327
6.1 Problem Definition 0000 328
6.2 Frequent Itemset Generation 332
6.2.1 The Apriori Principle 333
6.2.2 Frequent Itemset Generation in the Apriori Algorithm . 335
6.2.3 Candidate Generation and Pruning 338
6.2.4 Support Counting 342
6.2.5 Computational Complexity 345
6.3 Rule Generation 349
6.3.1 Confidence-Based Pruning 350
6.3.2 Rule Generation in Apriori Algorithm 350
6.3.3 An Example: Congressional Voting Records 352
6.4 Compact Representation of Frequent Itemsets 353
6.4.1 Maximal Frequent Itemsets 354
6.4.2 Closed Frequent Itemsets 355
6.5 Alternative Methods for Generating Frequent Itemsets 359
6.6 FP-Growth Algorithm 363

7

Contents xvii

6.6.1 FP-Tree Representation 363
6.6.2 Frequent Itemset Generation in FP-Growth Algorithm . 366
6.7 Evaluation of Association Patterns 370
6.7.1 Objective Measures of Interestingness 371
6.7.2 Measures beyond Pairs of Binary Variables 382
6.7.3 Simpson’s Paradox L. 384
6.8 Effect of Skewed Support Distribution 386
6.9 Bibliographic Notes., 390
6.10 Exercises 404
Association Analysis: Advanced Concepts 415
7.1 Handling Categorical Attributes 415
7.2 Handling Continuous Attributes 418
7.2.1 Discretization-Based Methods 418
7.2.2 Statistics-Based Methods 422
7.2.3 Non-discretization Methods 424
7.3 Handling a Concept Hierarchy 426
7.4 Sequential Patterns oL 429
7.4.1 Problem Formulation 429
7.4.2 Sequential Pattern Discovery 431
7.4.3 Timing Constraints 436
7.4.4 Alternative Counting Schemes 439
7.5 Subgraph Patterns Lo 442
7.5.1 Graphs and Subgraphs0 L. 443
7.5.2 Frequent Subgraph Mining 444
7.5.3 Apriori-like Method 447
7.5.4 Candidate Generation 448
7.5.5 Candidate Pruning oL 453
7.5.6 Support Counting 457
7.6 Infrequent Patterns L. 457
7.6.1 Negative Patterns, 458
7.6.2 Negatively Correlated Patterns 458
7.6.3 Comparisons among Infrequent Patterns, Negative Pat-
terns, and Negatively Correlated Patterns 460
7.6.4 Techniques for Mining Interesting Infrequent Patterns . 461
7.6.5 Techniques Based on Mining Negative Patterns 463
7.6.6 Techniques Based on Support Expectation. 465
7.7 Bibliographic Notes. 469
7.8 Exercises 473

xviii Contents

8 Cluster Analysis: Basic Concepts and Algorithms 487
8.1 Overview 490
8.1.1 What Is Cluster Analysis? 490
8.1.2 Different Types of Clusterings 491
8.1.3 Different Types of Clusters 493
82 K-means 496
8.2.1 The Basic K-means Algorithm 497
8.2.2 K-means: Additional Issues 506
8.2.3 Bisecting K-means 508
8.2.4 K-means and Different Types of Clusters 510
8.2.5 Strengths and Weaknesses 510
8.2.6 K-means as an Optimization Problem 513
8.3 Agglomerative Hierarchical Clustering 515
8.3.1 Basic Agglomerative Hierarchical Clustering Algorithm 516
8.3.2 Specific Techniques 518
8.3.3 The Lance-Williams Formula for Cluster Proximity . . . 524
8.3.4 Key Issues in Hierarchical Clustering 524
8.3.5 Strengths and Weaknesses 526
8.4 DBSCAN e 526
8.4.1 Traditional Density: Center-Based Approach 527
8.4.2 The DBSCAN Algorithm 528
8.4.3 Strengths and Weaknesses 530
8.5 Cluster Evaluation 532
85.1 Overview oo 533

8.5.2 Unsupervised Cluster Evaluation Using Cohesion and
Separation Lo o 536

8.5.3 Unsupervised Cluster Evaluation Using the Proximity
Matrix 542
8.5.4 Unsupervised Evaluation of Hierarchical Clustering . . . 544
8.5.5 Determining the Correct Number of Clusters 546
8.5.6 Clustering Tendency 547
8.5.7 Supervised Measures of Cluster Validity 548
8.5.8 Assessing the Significance of Cluster Validity Measures . 553
8.6 Bibliographic Notes. 555
8.7 Exercises o 559
9 Cluster Analysis: Additional Issues and Algorithms 569
9.1 Characteristics of Data, Clusters, and Clustering Algorithms . 570

9.1.1 Example: Comparing K-means and DBSCAN 570
9.1.2 Data Characteristics 571

Contents xix xx Contents

9.1.3 Cluster Characteristics 573 10.2.4 Strengths and Weaknesses 665
9.1.4 General Characteristics of Clustering Algorithms 575 10.3 Proximity-Based Outlier Detection 666
9.2 Prototype-Based Clustering 577 10.3.1 Strengths and Weaknesses 666
9.2.1 Fuzzy Clustering 577 10.4 Density-Based Outlier Detection 668
9.2.2 Clustering Using Mixture Models 583 10.4.1 Detection of Outliers Using Relative Density 669
9.2.3 Self-Organizing Maps (SOM) 594 10.4.2 Strengths and Weaknesses 670
9.3 Density-Based Clustering 600 10.5 Clustering-Based Techniques 671
9.3.1 Grid-Based Clustering 601 10.5.1 Assessing the Extent to Which an Object Belongs to a
9.3.2 Subspace Clustering 604 Cluster e 672
9.3.3 DENCLUE: A Kernel-Based Scheme for Density-Based 10.5.2 Impact of Outliers on the Initial Clustering 674
Clustering 608 10.5.3 The Number of Clusters to Use 674
9.4 Graph-Based Clustering 612 10.5.4 Strengths and Weaknesses 674
9.4.1 Sparsificationo oo 613 10.6 Bibliographic Notes. 675
9.4.2 Minimum Spanning Tree (MST) Clustering 614 10.7 Exercises 680
9.4.3 OPOSSUM: Optimal Partitioning of Sparse Similarities
Using METIS o i 616 Appendix A Linear Algebra 685
9.4.4 Chameleon: Hierarchical Clustering with Dynamic Al Vectors 685
Modeling 616 A.1.1 Definition o 685
9.4.5 Shared Nearest Neighbor Similarity 622 A.1.2 Vector Addition and Multiplication by a Scalar 685
9.4.6 The Jarvis-Patrick Clustering Algorithm 625 A13 Vector Spaces 687
9.4.7 SNNDensity 627 A.1.4 The Dot Product, Orthogonality, and Orthogonal
9.4.8 SNN Density-Based Clustering 629 Projectionso oo 688
9.5 Scalable Clustering Algorithms 630 A.15 Vectors and Data Analysis 690
9.5.1 Scalability: General Issues and Approaches 630 A2 Matrices 691
952 BIRCH 633 A.2.1 Matrices: Definitions 691
953 CURE 635 A.2.2 Matrices: Addition and Multiplication by a Scalar . . . 692
9.6 Which Clustering Algorithm? 639 A.2.3 Matrices: Multiplication 693
9.7 Bibliographic Notes. 643 A.2.4 Linear Transformations and Inverse Matrices 695
9.8 EXEICISES . + v v v o e 647 A.2.5 Eigenvalue and Singular Value Decomposition 697
A.2.6 Matrices and Data Analysis 699
10 Anomaly Detection 651 A.3 Bibliographic Notes 700
10.1 Preliminaries 653
10.1.1 Causes of Anomalies 653 Appendix B Dimensionality Reduction 701
10.1.2 Approaches to Anomaly Detection 654 B.1 PCAand SVD 701
10.1.3 The Use of Class Labels 655 B.1.1 Principal Components Analysis (PCA) 701
10.14 ISSUES . . o oo et 656 Bl2 SVD 706
10.2 Statistical Approaches 658 B.2 Other Dimensionality Reduction Techniques 708
10.2.1 Detecting Outliers in a Univariate Normal Distribution 659 B.2.1 Factor Analysis 708
10.2.2 Outliers in a Multivariate Normal Distribution 661 B.2.2 Locally Linear Embedding (LLE) 710

10.2.3 A Mixture Model Approach for Anomaly Detection. . . 662 B.2.3 Multidimensional Scaling, FastMap, and ISOMAP . . . 712

Contents xxi

B.2.4 CommonlIssues 715

B.3 Bibliographic Notes. 716
Appendix C Probability and Statistics 719
C.1 Probability 719
C.1.1 Expected Values 722

C.2 Statistics 723
C.2.1 Point Estimation 724

C.2.2 Central Limit Theorem 724

C.2.3 Interval Estimation 725

C.3 Hypothesis Testing 726
Appendix D Regression 729
D.1 Preliminaries, 729
D.2 Simple Linear Regression 730
D.2.1 Least Square Method 731

D.2.2 Analyzing Regression Errors 733

D.2.3 Analyzing Goodness of Fit 735

D.3 Multivariate Linear Regression 736
D.4 Alternative Least-Square Regression Methods 737
Appendix E Optimization 739
E.1 Unconstrained Optimization 739
E.1.1 Numerical Methods 742

E.2 Constrained Optimization 746
E.2.1 Equality Constraints 746

E.2.2 Inequality Constraints 747
Author Index 750
Subject Index 758
Copyright Permissions 769

Introduction

Rapid advances in data collection and storage technology have enabled or-
ganizations to accumulate vast amounts of data. However, extracting useful
information has proven extremely challenging. Often, traditional data analy-
sis tools and techniques cannot be used because of the massive size of a data
set. Sometimes, the non-traditional nature of the data means that traditional
approaches cannot be applied even if the data set is relatively small. In other
situations, the questions that need to be answered cannot be addressed using
existing data analysis techniques, and thus, new methods need to be devel-
oped.

Data mining is a technology that blends traditional data analysis methods
with sophisticated algorithms for processing large volumes of data. It has also
opened up exciting opportunities for exploring and analyzing new types of
data and for analyzing old types of data in new ways. In this introductory
chapter, we present an overview of data mining and outline the key topics
to be covered in this book. We start with a description of some well-known
applications that require new techniques for data analysis.

Business Point-of-sale data collection (bar code scanners, radio frequency
identification (RFID), and smart card technology) have allowed retailers to
collect up-to-the-minute data about customer purchases at the checkout coun-
ters of their stores. Retailers can utilize this information, along with other
business-critical data such as Web logs from e-commerce Web sites and cus-
tomer service records from call centers, to help them better understand the
needs of their customers and make more informed business decisions.

Data mining techniques can be used to support a wide range of business
intelligence applications such as customer profiling, targeted marketing, work-
flow management, store layout, and fraud detection. It can also help retailers

2 Chapter 1 Introduction

answer important business questions such as “Who are the most profitable
customers?” “What products can be cross-sold or up-sold?” and “What is the
reverue outlook of the company for next year?" Some of these questions mo-
tivated the creation of association analysis (Chapters 6 and 7), a new data
analysis technique.

Medicine, Science, and Engineering Researchers in medicine, science,
and engineering are rapidly accumulating data that is key to important new
discoveries. For example, as an important step toward improving our under-
standing of the Earth's climate system, NASA has deployed a series of Earth-
orbiting satellites that continuously generate global observations of the land
surface, oceans, and atmosphere. However, because of the size and spatio-
temporal nature of the data, traditional methods are often not suitable for
analyzing these data sets. Techniques developed in data mining can aid Earth
scientists in answering questions such as “What is the relationship between
the frequency and intensity of ecosystem disturbances such as droughts and
hurricanes to global warming?” “How is land surface precipitation and temper-
ature affected by ocean surface temperature?” and “How well can we predict
the beginning and end of the growing season for a region?”

As another example, researchers in molecular biology hope to use the large
amounts of genomic data currently being gathered to better understand the
structure and function of genes. In the past, traditional methods in molecu-
lar biology allowed scientists to study only a few genes at a time in a given
experiment. Recent breakthroughs in microarray technology have enabled sci-
entists to compare the behavior of thousands of genes under various situations.
Such comparisons can help determine the function of each gene and perhaps
isolate the genes responsible for certain diseases. However, the noisy and high-
dimensional nature of data requires new types of data analysis. In addition
to analyzing gene array data, data mining can also be used to address other
important biological challenges such as protein structure prediction, multiple
sequence alignment, the modeling of biochemical pathways, and phylogenetics.

1.1 What Is Data Mining?

Data mining is the process of automatically discovering useful information in
large data repositories. Data mining techniques are deployed to scour large
databases in order to find novel and useful patterns that might otherwise
remain unknown. They also provide capabilities to predict the outcome of a

1.1 What Is Data Mining? 3

future observation, such as predicting whether a newly arrived customer will
spend more than $100 at a department store.

Not all information discovery tasks are considered to be data mining. For
example, looking up individual records using a database management system
or finding particular Web pages via a query to an Internet search engine are
tasks related to the area of information retrieval. Although such tasks are
important and may involve the use of the sophisticated algorithms and data
structures, they rely on traditional computer science techniques and obvious
features of the data to create index structures for efficiently organizing and
retrieving information. Nonetheless, data mining techniques have been used
to enhance information retrieval systems.

Data Mining and Knowledge Discovery

Data mining is an integral part of knowledge discovery in databases
(KDD), which is the overall process of converting raw data into useful in-
formation, as shown in Figure 1.1. This process consists of a series of trans-
formation steps, from data preprocessing to postprocessing of data mining
results.

Input Data 2 Data i . ;
Data Preprocessing g Mining | Postprocessing — Information

Faaio Seleaton Filtering Patterns

Visualization
Pattern Interpretation

Dimensionality Reduction
Normalization
Data Subsetting

Figure 1.1. The process of knowledge discovery in databases (KDD).

The input data can be stored in a variety of formats (flat files, spread-
sheets, or relational tables) and may reside in a centralized data repository
or be distributed across multiple sites. The purpose of preprocessing is
to transform the raw input data into an appropriate format for subsequent,
analysis. The steps involved in data preprocessing include fusing data from
multiple sources, cleaning data to remove noise and duplicate observations,
and selecting records and features that are relevant to the data mining task
at hand. Because of the many ways data can be collected and stored, data

4 Chapter 1 Introduction

preprocessing is perhaps the most laborious and time-consuming step in the
overall knowledge discovery process.

“Closing the loop” is the phrase often used to refer to the process of in-
tegrating data mining results into decision support systems. For example,
in business applications, the insights offered by data mining results can be
integrated with campaign management tools so that effective marketing pro-
motions can be conducted and tested. Such integration requires a postpro-
cessing step that ensures that only valid and useful results are incorporated
into the decision support system. An example of postprocessing is visualiza-
tion (see Chapter 3), which allows analysts to explore the data and the data
mining results from a variety of viewpoints. Statistical measures or hypoth-
esis testing methods can also be applied during postprocessing to eliminate
spurious data mining results.

1.2 Motivating Challenges

As mentioned earlier, traditional data analysis techniques have often encoun-
tered practical difficulties in meeting the challenges posed by new data sets.
The following are some of the specific challenges that motivated the develop-
ment of data mining.

Scalability Because of advances in data generation and collection, data sets
with sizes of gigabytes, terabytes, or even petabytes are becoming common.
If data mining algorithms are to handle these massive data sets, then they
must be scalable. Many data mining algorithms employ special search strate-
gies to handle exponential search problems. Scalability may also require the
implementation of novel data structures to access individual records in an ef-
ficient manner. For instance, out-of-core algorithms may be necessary when
processing data sets that cannot fit into main memory. Scalability can also be
improved by using sampling or developing parallel and distributed algorithms.

High Dimensionality It is now common to encounter data sets with hun-
dreds or thousands of attributes instead of the handful common a few decades
ago. In bioinformatics, progress in microarray technology has produced gene
expression data involving thousands of features. Data sets with temporal
or spatial components also tend to have high dimensionality. For example,
consider a data set that contains measurements of temperature at various
locations. If the temperature measurements are taken repeatedly for an ex-
tended period, the number of dimensions (features) increases in proportion to

{
H
b

< s iday

1.2 Motivating Challenges 5

the number of measurements taken. Traditional data analysis techniques that
were developed for low-dimensional data often do not work well for such high-
dimensional data. Also, for some data analysis algorithms, the computational
complexity increases rapidly as the dimensionality (the number of features)
increases.

Heterogeneous and Complex Data Traditional data analysis methods
often deal with data sets containing attributes of the same type, either contin-
uous or categorical. As the role of data mining in business, science, medicine,
and other fields has grown, so has the need for techniques that can handle
heterogeneous attributes. Recent years have also seen the emergence of more
complex data objects. Examples of such non-traditional types of data include
collections of Web pages containing semi-structured text and hyperlinks; DNA
data with sequential and three-dimensional structure; and climate data that
consists of time series measurements (temperature, pressure, etc.) at various
Jocations on the Earth’s surface. Techniques developed for mining such com-
plex objects should take into consideration relationships in the data, such as
temporal and spatial autocorrelation, graph connectivity, and parent-child re-
lationships between the elements in semi-structured text and XML documents.

Data Ownership and Distribution Sometimes, the data needed for an
analysis is not stored in one location or owned by one organization. Instead,
the data is geographically distributed among resources belonging to multiple
entities. This requires the development of distributed data mining techniques.
Among the key challenges faced by distributed data mining algerithms in-
clude (1) how to reduce the amount of communication needed to perform the
distributed computation, (2) how to effectively consolidate the data mining
results obtained from multiple sources, and (3) how to address data security
issues.

Non-traditional Analysis The traditional statistical approach is based on
a hypothesize-and-test paradigm. In other words, a hypothesis is proposed,
an experiment is designed to gather the data, and then the data is analyzed
with respect to the hypothesis. Unfortunately, this process is extremely labor-
intensive. Current data analysis tasks often require the generation and evalu-
ation of thousands of hypotheses, and consequently, the development of some
data mining techniques has been motivated by the desire to automate the
process of hypothesis generation and evaluation. Furthermore, the data sets
analyzed in data mining are typically not the result of a carefully designed

6 Chapter 1 Introduction

experiment and often represent opportunistic samples of the data, rather than
random samples. Also, the data sets frequently involve non-traditional types
of data and data distributions.

1.3 The Origins of Data Mining

Brought together by the goal of meeting the challenges of the previous sec-
tion, researchers from different disciplines began to focus on developing more
efficient and scalable tools that could handle diverse types of data. This work,
which culminated in the field of data mining, built upon the methodology and
algorithms that researchers had previously used. In particular, data mining
draws upon ideas, such as (1) sampling, estimation, and hypothesis testing
from statistics and (2) search algorithms, modeling techniques, and learning
theories from artificial intelligence, pattern recognition, and machine learning.
Data mining has also been quick to adopt ideas from other areas, including
optimization, evolutionary computing, information theory, signal processing,
visualization, and information retrieval.

A number of other areas also play key supporting roles. In particular,
database systems are needed to provide support for efficient storage, index-
ing, and query processing. Techniques from high performance (parallel) com-
puting are often important in addressing the massive size of some data sets.
Distributed techniques can also help address the issue of size and are essential
when the data cannot be gathered in one location.

Figure 1.2 shows the relationship of data mining to other areas.

Database Technology, Parallel Computing, Distributed Computing

Figure 1.2. Data mining as a confluence of many disciplines.

b

1.4 Data Mining Tasks 7

1.4 Data Mining Tasks

Data mining tasks are generally divided into two major categories:

Predictive tasks. The objective of these tasks is to predict the value of a par-
ticular attribute based on the values of other attributes. The attribute
to be predicted is commonly known as the target or dependent vari-
able, while the attributes used for making the pred:ctlon are known as
the explanatory or independent variables.

Descriptive tasks. Here, the objective is to derive patterns (correlations,
trends, clusters, trajectories, and anomalies) that summarize the un-
derlying relationships in data. Descriptive data mining tasks are often
exploratory in nature and frequently require postprocessing techniques
to validate and explain the results.

Figure 1.3 illustrates four of the core data mining tasks that are described
in the remainder of this book.

\p, Yeme farisl Anmual Dataulied
Owner Glatuo * Incomo Borromor

H ¢

Tiigiifiz
fiiiifFEit

Figure 1.3. Four of the core data mining tasks.

8 Chapter 1 Introduction

Predictive modeling refers to the task of building a model for the target
variable as a function of the explanatory variables. There are two types of
predictive modeling tasks: classification, which is used for discrete target
variables, and regression, which is used for continuous target variables. For
example, predicting whether a Web user will make a purchase at an online
bookstore is a classification task because the target variable is binary-valued.
On the other hand, forecasting the future price of a stock is a regression task
because price is a continuous-valued attribute. The goal of both tasks is to
learn a model that minimizes the error between the predicted and true values
of the target variable. Predictive modeling can be used to identify customers
that will respond to a marketing campaign, predict disturbances in the Earth's
ecosystem, or judge whether a patient has a particular disease based on the
results of medical tests.

Example 1.1 (Predicting the Type of a Flower). Consider the task of
predicting a species of flower based on the characteristics of the flower. In
particular, consider classifying an Iris flower as to whether it belongs to one
of the following three Iris species: Setosa, Versicolour, or Virginica. To per-
form this task, we need a data set containing the characteristics of various
flowers of these three species. A data set with this type of information is
the well-known Iris data set from the UCI Machine Learning Repository at
http://wuw.ics.uci.edu/~mlearn. In addition to the species of a Hower,
this data set contains four other attributes: sepal width, sepal length, petal
length, and petal width. (The Iris data set and its attributes are described
further in Section 3.1.) Figure 1.4 shows a plot of petal width versus petal
length for the 150 flowers in the Iris data set. Petal width is broken into the
categories low, medium, and high, which correspond to the intervals [0, 0.75),
[0.75, 1.75), [1.75, 00), respectively. Also, petal length is broken into categories
low, medium, and high, which correspond to the intervals [0, 2.5), [2.5, 5), [5,
00), respectively. Based on these categories of petal width and length, the
following rules can be derived:

Petal width low and petal length low implies Setosa.
Petal width medium and petal length medium implies Versicolour.
Petal width high and petal length high implies Virginica.

While these rules do not classify all the flowers, they do a good (but not
perfect) job of classifying most of the flowers. Note that flowers from the
Setosa species are well separated from the Versicolour and Virginica species
with respect to petal width and length, but the latter two species overlap
somewhat with respect to these attributes.]

1.4 Data Mining Tasks 9

2.5¢ i e L S 4
= Setosa L '
e Versicolour preee e i
¢ Virginica L ek .o
2r hee LI]
odd ’ '
B4 4 0 4 4 @ '
’E"l 75 potmmetRa Rt Sy P e s bR S
o ' s 0 +
£ 1.5f ¥ o ses s4¢
k=l ! ® ® sve |]
= i * seocsss |
s s s s 8
o ' . e =
o 1 ! e oo ;
4 |
Qi 2G rmmiss e Y AR S i e
. :
0.5 L ¥
5 EmE » i
LTI {
B EEEREE ® :
= am .
0 4 5 e ey L n i
0 1 2 25 @ 4 B 6 7

Petal Length (cm)

Figure 1.4. Petal width versus petal length for 150 Iris flowers,

Association analysis is used to discover patterns that describe strongly as-
sociated features in the data. The discovered patterns are typically represented
in the form of implication rules or feature subsets. Because of the exponential
size of its search space, the goal of association analysis is to extract the most
interesting patterns in an efficient manner. Useful applications of association
analysis include finding groups of genes that have related functionality, identi-
fying Web pages that are accessed together, or understanding the relationships
between different elements of Earth’s climate system.

Example 1.2 (Market Basket Analysis). The transactions shown in Ta-
ble 1.1 illustrate point-of-sale data collected at the checkout counters of a
grocery store. Association analysis can be applied to find items that are fre-
quently bought together by customers. For example, we may discover the
rule {Diapers} — {Milk}, which suggests that customers who buy diapers
also tend to buy milk. This type of rule can be used to identify potential
cross-selling opportunities among related items. =

Cluster analysis seeks to find groups of closely related observations so that
observations that belong to the same cluster are more similar to each other

10 Chapter 1 Introduction

Table 1.1. Market basket data.

Transaction 1D | Items

{Bread, Butter, Diapers, Milk}
{Coffee, Sugar, Cookies, Salmon}
{Bread, Butter, Coffee, Diapers, Milk, Eggs}
{Bread, Butter, Salmon, Chicken}
{Eggs, Bread, Butter}

{Salmon, Diapers, Milk)

{Bread, Tea, Sugar, Eggs}

{Coffee, Sugar, Chicken, Eggs}
{Bread, Diapers, Milk, Salt}

{Tea, Eggs, Cookies, Diapers, Milk}

WO 00 =1 O T W O DD =

—
&5

than observations that belong to other clusters. Clustering has been used to
group sets of related customers, find areas of the ocean that have a significant
impact on the Earth's climate, and compress data.

Example 1.3 (Document Clustering). The collection of news articles
shown in Table 1.2 can be grouped based on their respective topics. Each
article is represented as a set of word-frequency pairs (w, ¢), where w is a word
and ¢ is the number of times the word appears in the article. There are two
natural clusters in the data set. The first cluster consists of the first four ar-
ticles, which correspond to news about the economy, while the second cluster
contains the last four articles, which correspond to news about health care. A
good clustering algorithm should be able to identify these two cliusters based
on the similarity between words that appear in the articles.

Table 1.2. Collection of news articles.

Article | Words

dollar: 1, industry: 4, country: 2, loan: 3, deal: 2, government: 2
machinery: 2, labor: 3, market: 4, industry: 2, work: 3, country: 1
job: &, inflation: 3, rise: 2, jobless: 2, market: 3, country: 2, index: 3
domestic: 3, forecast: 2, gain: 1, market: 2, sale: 3, price: 2

patient: 4, symptom: 2, drug: 3, health: 2, clinic: 2, doctor: 2
pharmaceutical: 2, company: 3, drug: 2, vaccine: 1, flu: 3

death: 2, cancer: 4, drug: 3, public: 4, health: 3, director: 2
medical: 2, cost: 3, increase: 2, patient: 2, health: 3, care: 1

00 =1 O Y B W By

1.5 Scope and Organization of the Book 11

Anomaly detection is the task of identifying observations whose character-
istics are significantly different from the rest of the data. Such cbservations
are known as anomalies or outliers. The goal of an anomaly detection al-
gorithm is to discover the real anomalies and avoid falsely labeling normal
objects as anomalous. In other words, a good anomaly detector must have
a high detection rate and a low false alarm rate. Applications of anomaly
detection include the detection of fraud, network intrusions, unusual patterns
of disease, and ecosystem disturbances.

Example 1.4 (Credit Card Fraud Detection). A credit card company
records the transactions made by every credit card holder, along with personal
information such as credit limit, age, annual income, and address. Since the
number of fraudulent cases is relatively small compared to the number of
legitimate transactions, anomaly detection techniques can be applied to build
a profile of legitimate transactions for the users. When a new transaction
arrives, it is compared against the profile of the user. If the characteristics of
the transaction are very different from the previously created profile, then the
transaction is flagged as potentially fraudulent. u

1.5 Scope and Organization of the Book

This book introduces the major principles and techniques used in data mining
from an algorithmic perspective. A study of these principles and techniques is
essential for developing a better understanding of how data mining technology
can be applied to various kinds of data. This book also serves as a starting
point for readers who are interested in doing research in this field.

We begin the technical discussion of this book with a chapter on data
(Chapter 2), which discusses the basic types of data, data quality, prepro-
cessing techniques, and measures of similarity and dissimilarity. Although
this material can be covered qguickly, it provides an essential foundation for
data analysis. Chapter 3, on data exploration, discusses summary statistics,
visualization techniques, and On-Line Analytical Processing (OLAP). These
techniques provide the means for quickly gaining insight into a data set.

Chapters 4 and 5 cover classification. Chapter 4 provides a foundation
by discussing decision tree classifiers and several issues that are important
to all classification: overfitting, performance evaluation, and the comparison
of different classification models. Using this foundation, Chapter 5 describes
a number of other important classification techniques: rule-based systems,
nearest-neighbor classifiers, Bayesian classifiers, artificial neural networks, sup-
port vector machines, and ensemble classifiers, which are collections of classi-

12 Chapter 1 Introduction

fiers. The multiclass and imbalanced class problems are also discussed. These
topics can be covered independently.

Association analysis is explored in Chapters 6 and 7. Chapter 6 describes
the basics of association analysis: frequent itemsets, association rules, and
some of the algorithms used to generate them. Specific types of frequent
itemsets—maximal, closed, and hyperclique—that are important for data min-
ing are also discussed, and the chapter concludes with a discussion of evalua-
tion measures for association analysis. Chapter 7 considers a variety of more
advanced topics, including how association analysis can be applied to categor-
ical and continuous data or to data that has a concept hierarchy. (A concept
hierarchy is a hierarchical categorization of objects, e.g., store items, clothing,
shoes, sneakers.) This chapter also describes how association analysis can be
extended to find sequential patterns (patterns involving order), patterns in
graphs, and negative relationships (if one item is present, then the other is
not).

Cluster analysis is discussed in Chapters 8 and 9. Chapter 8 first describes
the different types of clusters and then presents three specific clustering tech-
niques: K-means, agglomerative hierarchical clustering, and DBSCAN. This
is followed by a discussion of techniques for validating the results of a cluster-
ing algorithm. Additional clustering concepts and techniques are explored in
Chapter 9, including fuzzy and probabilistic clustering, Self-Organizing Maps
(SOM), graph-based clustering, and density-based clustering. There is also a
discussion of scalability issues and factors to consider when selecting a clus-
tering algorithm.

The last chapter, Chapter 10, is on anomaly detection. After some basic
definitions, several different types of anomaly detection are considered: sta-
tistical, distance-based, density-based, and clustering-based. Appendices A
through E give a brief review of important topics that are used in portions of
the book: linear algebra, dimensionality reduction, statistics, regression, and
optimization.

The subject of data mining, while relatively young compared to statistics
or machine learning, is already too large to cover in a single book. Selected
references to topics that are only briefly covered, such as data quality, are
provided in the bibliographic notes of the appropriate chapter. References to
topics not covered in this book, such as data mining for streams and privacy-
preserving data mining, are provided in the bibliographic notes of this chapter.

1.6 Bibliographic Notes 13
1.6 Bibliographic Notes

The topic of data mining has inspired many textbooks. Introductory text-
books include those by Dunham [10], Han and Kamber [21], Hand et al. [23],
and Roiger and Geatz [36]. Data mining books with a stronger emphasis on
business applications include the works by Berry and Linoff [2], Pyle [34], and
Parr Rud [33]. Books with an emphasis on statistical learning include those
by Cherkassky and Mulier [6], and Hastie et al. [24]. Some books with an
emphasis on machine learning or pattern recognition are those by Duda et
al. [9], Kantardzic [25], Mitchell [31], Webb [41], and Witten and Frank [42).
There are also some more specialized books: Chakrabarti [4] (web mining),
Fayyad et al. [13] (collection of early articles on data mining), Fayyad et al.
[11] (visualization), Grossman et al. 18] (science and engineering), Kargupta
and Chan [26] (distributed data mining), Wang et al. [40] (bioinformatics),
and Zaki and Ho [44] (parallel data mining).

There are several conferences related to data mining. Some of the main
conferences dedicated to this field include the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), the IEEE In-
ternational Conference on Data Mining (ICDM), the SIAM International Con-
ference on Data Mining (SDM), the European Conference on Principles and
Practice of Knowledge Discovery in Databases (PKDD), and the Pacific-Asia
Conference on Knowledge Discovery and Data Mining (PAKDD). Data min-
ing papers can also be found in other major conferences such as the ACM
SIGMOD/PODS conference, the International Conference on Very Large Data
Bases (VLDB), the Conference on Information and Knowledge Management
(CIKM), the International Conference on Data Engineering (ICDE), the ln-
ternational Conference on Machine Learning (ICML), and the National! Con-
ference on Artificial Intelligence (AAAI).

Journal publications on data mining include IEEE Trensactions on Knowl-
edge and Data Engineering, Data Mining and Knowledge Discovery, Knowl-
edge and Information Systems, Intelligent Data Analysis, Information Sys-
tems, and the Journal of Intelligent Information Systems.

There have been a number of general articles on data mining that define the
field or its relationship to other fields, particularly statistics. Fayyad et al. [12]
describe data mining and how it fits into the total knowledge discovery process.
Chen et al. [5] give a database perspective on data mining. Ramakrishnan
and Grama [35] provide a general discussion of data mining and present several
viewpoints. Hand [22] describes how data mining differs from statistics, as does
Friedman [14]. Lambert [29] explores the use of statistics for large data sets and
provides some comments on the respective roles of data mining and statistics.

14 Chapter 1 Introduction

Glymour et al. [16] consider the lessons that statistics may have for data
mining. Smyth et al. [38] describe how the evolution of data mining is being
driven by new types of data and applications, such as those involving streams,
graphs, and text. Emerging applications in data mining are considered by Han
et al. [20] and Smyth [37] describes some research challenges in data mining.
A discussion of how developments in data mining research can be turned into
practical tools is given by Wu et al. [43]. Data mining standards are the
subject of a paper by Grossman et al. [17]. Bradley (3] discusses how data
mining algorithms can be scaled to large data sets.

With the emergence of new data mining applications have come new chal-
lenges that need to be addressed. For instance, concerns about privacy breaches
as a result of data mining have escalated in recent years, particularly in ap-
plication domains such as Web commerce and health care. As a result, there
is growing interest in developing data mining algorithms that maintain user
privacy. Developing techniques for mining encrypted or randomized data is
known as privacy-preserving data mining. Some general references in this
area include papers by Agrawal and Srikant [1], Clifton et al. 7] and Kargupta
et al. [27). Vassilios et al. [39] provide a survey.

Recent years have witnessed a growing number of applications that rapidly
generate continuous streams of data. Examples of stream data include network
traffic, multimedia streams, and stock prices. Several issues must be considered
when mining data streams, such as the limited amount of memory available,
the need for online analysis, and the change of the data over time. Data
mining for stream data has become an important area in data mining. Some
selected publications are Domingos and Hulten [8] (classification), Giannella
et al. [15] (association analysis), Guha et al. [19] (clustering), Kifer et al. [28]
(change detection), Papadimitriou et al. [32] (time series), and Law et al. [30]
(dimensionality reduction).

Bibliography

[1] R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proc. of 2000 ACM-
SIGMOD Intl. Conf. on Management of Data, pages 439-450, Dallas, Texas, 2000.
ACM Press.

[2] M. J. A. Berry and G. Linoff. Data Mining Technigues: For Marketing, Sales, and
Customer Relationship Management. Wiley Computer Publishing, 2nd edition, 2004.

[3] P.S. Bradley, J. Gehrke, R. Ramakrishnan, and R. Srikant. Scaling mining algorithms
to large databases. Communications of the ACM, 45(8):38-43, 2002.

[4] S. Chakrabarti. Mining the Web: Discovering Knowledge from Hypertezt Data. Morgan
Kaufmann, San Francisco, CA, 2003.

(5]

6

(7

8

9

[10]
(1]

[12]

(13)
(14]

(15]

[16]
(17]
(28]

[19]

(20]
(21]
22)

[23]
[24]

(28]

Bibliography 15

M.-S. Chen, J. Han, and P. 8. Yu. Data Mining: An Overview from a Database
Perspective. IEEE Transactions on Knowledge abd Data Engineering, 8(6):866-883,
1996.

V. Cherkassky and F. Mulier. Learning from Daia: Concepts, Theory, and Methods.
Wiley Interscience, 1998.

C. Clifton, M. Kantarcioglu, and J. Vaidya. Defining privacy for data mining. In
National Science Foundation Workshop on Next Generation Data Mining, pages 126-
133, Baltimore, MD, November 2002.

P. Domingos and G. Hulten. Mining high-speed data streams. In Proc. of the 6th Intl
Conf. on Knowledge Discovery and Data Mining, pages 71-80, Boston, Massachusetts,
2000. ACM Press.

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John Wiley & Sons,
Inc., New York, 2nd edition, 2001.

M. H. Dunham. Data Mining: Introductory and Advanced Topics. Prentice Hall, 2002.
U. M. Fayyad, G. G. Grinstein, and A. Wierse, editors. Information Visualization in
Data Mining and Knowledge Discovery. Mergan Kaufmann Publishers, San Francisco,
CA, September 2001.

U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From Data Mining to Knowledge
Discovery: An Overview. In Advances in Knowledge Discovery and Data Mining, pages
1-34. AAAI Press, 1996.

U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors. Advances
in Knowledge Discovery and Data Mining. AAAI/MIT Press, 1996.

J. H. Friedman. Data Mining and Statistics: What’s the Connection? Unpublished.
www-stat.stanford.edu/~jhf/ftp/dm-stat.ps, 1997.

C. Giannella, J. Han, J. Pei, X. Yan, and P. 8. Yu. Mining Frequent Patterns in Data
Streams at Multiple Time Granularities. In H. Kargupta, A. Joshi, K. Sivakumar, and
Y. Yesha, editors, Next Generation Data Mining, pages 191-212, AAAI/MIT, 2003.
C. Glymour, D. Madigan, D. Pregibon, and P. Smyth. Statistical Themes and Lessons
for Data Mining. Data Mining and Knowledge Discovery, 1(1):11-28, 1997.

R. L. Grossman, M. F. Hornick, and G. Meyer. Data mining standards initiatives.
Communications of the ACM, 45(8):59-61, 2002.

R. L. Grossman, C. Kamath, P. Kegelmeyer, V. Kumar, and R. Namburu, editors. Data
Mining for Scientific and Engineering Applications. Kluwer Academic Publishers, 2001.
S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O'Callaghan. Clustering Data
Streams: Theory and Practice. JEEE Transactions on Knowledge and Data Engineering,
15(3):515-528, May/June 2003.

J. Han, R. B. Altman, V. Kumar, H. Mannila, and D. Pregibon. Emerging scientific
applications in data mining. Communications of the ACM, 45(8):54-58, 2002.

J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann
Publishers, San Francisco, 2001.

D. J. Hand. Data Mining: Statistics and More? The American Statistician, 52(2):
112-118, 1998,

D. J. Hand, H. Mannila, and P. Smyth. Prinéiples of Data Mining. MIT Press, 2001.
T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statistical Learning:
Data Mining, Inference, Prediction. Springer, New York, 2001.

M. Kantardzic. Data Mining: Concepts, Models, Methods, and Algorithms. Wiley-IEEE
Press, Piscataway, NJ, 2003.

ﬁ

16

(26]

(27]

28]
29
[30]
131
132
133]
f34]
(35)
(36

137]

138
39
0

(41]
(42]

(43]

[44)

Chapter 1 Introduction

H. Kargupta and P. K. Chan, editors. Advances in Distributed and Parallel Knowledge
Discovery. AAAIT Press, September 2002.

H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar. On the Privacy Preserving Prop-
erties of Random Data Perturbation Techniques. In Proc. of the 2003 IEEE Intl. Conf.
on Data Mining, pages 99-106, Melbourne, Florida, December 2003. IEEE Computer
Society.

D. Kifer, S. Ben-David, and J. Gehrke. Detecting Change in Data Streams. In Proc. of
the 30th VLDB Conf., pages 180-191, Toronto, Canada, 2004. Morgan Kaufmann.

D. Lambert. What Use is Statistics for Massive Data? In ACM SIGMOD Workshop
on Research Issues in Data Mining and Knowledge Discovery, pages 54-62, 2000.

M., H. C. Law, N. Zhang, and A. K. Jain. Nonlinear Manifold Learning for Data
Streams. In Proc. of the SIAM Intl. Conf. on Data Mining, Lake Buena Vista, Florida,
April 2004. SIAM.

T. Mitchell. Machine Learning. McGraw-Hill, Boston, MA, 1997.

S. Papadimitriou, A. Brockwell, and C. Faloutsos. Adaptive, unsupervised stream min-
ing. VLDB Journal, 13(3):222-239, 2004.

Q. Parr Rud. Date Mining Cookbook: Modeling Data for Marketing, Risk and Customer
Relationship Management. John Wiley & Sons, New York, NY, 2001.

D. Pyle. Business Modeling and Data Mining. Morgan Kaufmann, San Francisco, CA,
2003.

N. Ramakrishnan and A. Grama. Data Mining: From Serendipity to Science—Guest
Editors’ Introduction. IEEE Computer, 32(8):34-37, 1999.

R. Roiger and M. Geatz. Data Mining: A Tutorial Based Primer. Addison-Wesley,
2002.

P. Smyth. Breaking out of the Black-Box: Research Challenges in Data Mining. In
Proc. of the 2001 ACM SIGMOD Workshop on Research Issues in Dota Mining and
Knowledge Discovery, 2001.

P. Smyth, D. Pregibon, and C. Faloutsos. Data-driven evolution of data mining algo-
rithms. Communications of the ACM, 45(8):33-37, 2002.

V. 8. Verykios, E. Bertino, 1. N. Fovino, L. P. Provenza, Y. Saygin, and Y. Theodoridis.
State-of-the-art in privacy preserving data mining. SIGMOD Record, 33(1):50-57, 2004.
J. T. L. Wang, M. J. Zaki, H. Toivonen, and D. E. Shasha, editors. Data Mining in
Bioinformatics. Springer, September 2004,

A. R. Webb. Statisticel Pattern Recognition. John Wiley & Sons, 2nd edition, 2002.

1. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Tech-
niques with Java Implementations. Morgan Kaufmann, 1999.

X. Wu, P. 8. Yu, and G. Piatetsky-Shapiro. Data Mining: How Research Meets Practical
Development? Knowledge and Information Systerns, 5(2):248-261, 2003.

M. J. Zaki and C.-T. Ho, editors. Large-Scale Parallel Data Mining. Springer, September
2002.

1.7 Exercises

1. Discuss whether or not each of the following activities is a data mining task.

1.7 Exercises 17

) Dividing the customers of a company according to their gender.
) Dividing the customers of a company according to their profitability.
(c) Computing the total sales of a company.
) Sorting a student database based on student identification numbers.
) Predicting the outcomes of tossing a (fair) pair of dice.
(f) Predicting the future stock price of a company using historical records.
(g) Monitoring the heart rate of a patient for abnormalities.
(h) Monitoring seismic waves for earthquake activities.
(i) Extracting the frequencies of a sound wave.
2. Suppose that you are employed as a data mining consultant for an Internet
search engine company. Describe how data mining can help the company by

giving specific examples of how techniques, such as clustering, classification,
association rule mining, and anomaly detection can be applied.

3. For each of the following data sets, explain whether or not data privacy is an
important issue.
(a) Census data collected from 1900-1950.
(b) IP addresses and visit times of Web users who visit your Website.
(c) Images from Earth-orbiting satellites.
(d) Names and addresses of people from the telephone book.

(e) Names and email addresses collected from the Web.

[

Data

This chapter discusses several data-related issues that are important for suc-
cessful data mining:

The Type of Data Data sets differ in a number of ways. For example, the
attributes used to describe data objects can be of different types—quantitative
or qualitative—and data sets may have special characteristics; e.g., some data
sets contain time series or objects with explicit relationships to one anocther.
Not surprisingly, the type of data determines which tools and technigues can
be used to analyze the data. Furthermore, new research in data mining is
often driven by the need to accommodate new application areas and their new
types of data.

The Quality of the Data Data is often far from perfect. While most data
mining techniques can tolerate some level of imperfection in the data, a focus
on understanding and improving data quality typically improves the quality
of the resulting analysis. Data quality issues that often need to be addressed
include the presence of noise and outliers; missing, inconsistent, or duplicate
data; and data that is biased or, in some other way, unrepresentative of the
phenomenon or population that the data is supposed to describe.

Preprocessing Steps to Make the Data More Suitable for Data Min-
ing Often, the raw data must be processed in order to make it suitable for
analysis. While one objective may be to improve data quality, other goals
focus on modifying the data so that it better fits a specified data mining tech-
nique or tool. For example, a continuous attribute, e.g., length, may need to
be transformed into an attribute with discrete categories, e.g., short, medium,
or long, in order to apply a particular technique. As another example, the

%

20 Chapter 2 Data

number of attributes in a data set is often reduced because many techniques
are more effective when the data has a relatively small number of attributes.

Analyzing Data in Terms of Its Relationships One approach to data
analysis is to find relationships among the data objects and then perform
the remaining analysis using these relationships rather than the data objects
themselves. For instance, we can compute the similarity or distance between
pairs of objects and then perform the analysis—clustering, classification, or
anomaly detection—based on these similarities or distances. There are many
such similarity or distance measures, and the proper choice depends on the
type of data and the particular application.

Example 2.1 (An Illustration of Data-Related Issues). To further il-
lustrate the importance of these issues, consider the following hypothetical sit-
uation. You receive an email from a medical researcher concerning a project
that you are eager to work on.

Hi,

I've attached the data file that] mentioned in my previous email.
Each line contains the information for a single patient and consists
of five fields. We want to predict the last field using the other fields.
I don't have time to provide any more information about the data
since I'm going out of town for a couple of days, but hopefully that
won't slow you down too much. And if you don’t mind, could we

meet when 1 get back to discuss your preliminary results? 1 might
invite a few other members of my team.

Thanks and see you in a couple of days.

Despite some misgivings, you proceed to analyze the data. The first few
rows of the file are as follows:

012 232 335 0 107
020 121 169 2 2101
027 165 24.0 0 4276

A brief look at the data reveals nothing strange. You put your doubts aside
and start the analysis. There are only 1000 lines, a smaller data file than you
had hoped for, but two days later, you feel that you have made some progress.
You arrive for the meeting, and while waiting for others to arrive, you strike

21

up a conversation with a statistician who is working on the project. When she
learns that you have also been analyzing the data from the project, she asks
if you would mind giving her a brief overview of your results.

Statistician: So, you got the data for all the patients?

Data Miner: Yes. I haven't had much time for analysis, but 1
do have a few interesting results.

Statistician: Amazing. There were so many data issues with
this set of patients that I couldn’t do much.

Data Miner: Oh? I didn’t hear about any possible problems.

Statistician: Well, first there is field 5, the variable we want to
predict. It’s common knowledge among people who analyze
this type of data that results are better if you work with the
log of the values, but I didn’t discover this until later. Was it
mentioned to you?

Data Miner: No.

Statistician: But surely you heard about what happened to field
47 It’s supposed to be measured on a scale from 1 to 10, with
0 indicating a missing value, but because of a data entry
error, all 10’s were changed into 0’s. Unfortunately, since
some of the patients have missing values for this field, it’s
impossible to say whether a 0 in this field is a real 0 or a 10.
Quite a few of the records have that problem.

Data Miner: Interesting. Were there any other problems?

Statistician: Yes, fields 2 and 3 are basically the same, but I
assume that you probably noticed that.

Data Miner: Yes, but these fields were only weak predictors of
field 5.

Statistician: Anyway, given all those problems, I'm surprised
you were able to accomplish anything.

Data Miner: True, but my results are really quite good. Field 1
is a very strong predictor of field 5. I'm surprised that this
wasn't noticed before.

Statistician: What? Field 1 is just an identification number.

Data Miner: Nonetheless, my results speak for themselves.

Statistician: Oh, no! I just remembered. We assigned 1D
numbers after we sorted the records based on field 5. There is
a strong connection, but it's meaningless. Sorry.

22 Chapter 2 Data

Although this scenario represents an extreme situation, it emphasizes the
importance of “knowing your data.” To that end, this chapter will address
each of the four issues mentioned above, outlining some of the basic challenges
and standard approaches.

2.1 Types of Data

A data set can often be viewed as a collection of data objects. Other
names for a data object are record, point, vector, pattern, event, case, sample,
observation, or entity. In turn, data objects are described by a number of
attributes that capture the basic characteristics of an object, such as the
mass of a physical object or the time at which an event occurred. Other
names for an attribute are variable, characteristic, field, feature, or dimension.

Example 2.2 (Student Information). Often, a data set is a file, in which
the objects are records (or rows) in the file and each field (or column) corre-
sponds to an attribute. For example, Table 2.1 shows a data set that consists
of student information. Each row corresponds to a student and each column
is an attribute that describes some aspect of a student, such as grade point
average (GPA) or identification number (ID).

Table 2.1. A sample data set containing student information,
Student ID | Year | Grade Point Average (GPA) | ...

1034262 Senior 3.24

1052663 Sophomore 381
1082246

Freshman 3.62

Although record-based data sets are common, either in flat files or rela-
tional database systems, there are other important types of data sets and
systems for storing data. In Section 2.1.2, we will discuss some of the types of
data sets that are commonly encountered in data mining. However, we first
consider attributes.

2.1 Types of Data 23

2.1.1 Attributes and Measurement

In this section we address the issue of describing data by considering what
types of attributes are used to describe data objects. We first define an at-
tribute, then consider what we mean by the type of an attribute, and finally
describe the types of attributes that are commonly encountered.

What Is an attribute?
We start with a more detailed definition of an attribute.

Definition 2.1. An attribute is a property or characteristic of an object
that may vary, either from one object to another or from one time to another.

For example, eye color varies from person to person, while the temperature
of an object varies over time. Note that eye color is a symbolic attribute with
a small number of possible values {brown, black, blue, green, hazel, etc.}, while
temperature is a numerical attribute with a potentially unlimited number of
values.

At the most basic level, attributes are not about numbers or symbols.
However, to discuss and more precisely analyze the characteristics of objects,
we assign numbers or symbols to them. To do this in a well-defined way, we
need a measurement scale.

Definition 2.2. A measurement scale is a rule (function) that associates
a numerical or symbolic value with an attribute of an object.

Formally, the process of measurement is the application of a measure-
ment scale to associate a value with a particular attribute of a specific object.
While this may seem a bit abstract, we engage in the process of measurement
all the time. For instance, we step on a bathroom scale to determine our
weight, we classify someone as male or female, or we count the number of
chairs in a room to see if there will be enough to seat all the people coming to
a meeting. In all these cases, the “physical value” of an attribute of an object
is mapped to a numerical or symbolic value.

With this background, we can now discuss the type of an attribute, a
concept that is important in determining if a particular data analysis technique
is consistent with a specific type of attribute.

The Type of an Attribute

It should be apparent from the previous discussion thatl, the properties of an
attribute need not be the same as the properties of the values used to mea-

24 Chapter 2 Data

sure it. In other words, the values used to represent an attribute may have
properties that are not properties of the attribute itself, and vice versa. This
is illustrated with two examples.

Example 2.3 (Employee Age and ID Number). Two attributes that
might be associated with an employee are ID and age (in years). Both of these
attributes can be represented as integers. However, while it is reasonable to
talk about the average age of an employee, it makes no sense to talk about
the average employee ID. Indeed, the only aspect of employees that we want
to capture with the ID attribute is that they are distinct. Consequently, the
only valid operation for employee IDs is to test whether they are equal. There
is no hint of this limitation, however, when integers are used to represent the
employee ID attribute. For the age attribute, the properties of the integers
used to represent age are very much the properties of the attribute. Even so,
the correspondence is not complete since, for example, ages have a maximum,
while integers do not. -

Example 2.4 (Length of Line Segments). Consider Figure 2.1, which
shows some objects—line segments—and how the length attribute of these
objects can be mapped to numbers in two different ways. Each successive
line segment, going from the top to the bottom, is formed by appending the
topmost line segment to itself. Thus, the second line segment from the top is
formed by appending the topmost line segment to itself twice, the third line
segment from the top is formed by appending the topmost line segment to
itself three times, and so forth. In a very real (physical) sense, all the line
segments are multiples of the first. This fact is captured by the measurements
on the right-hand side of the figure, but not by those on the left hand-side.
More specifically, the measurement scale on the left-hand side captures only
the ordering of the length attribute, while the scale on the right-hand side
captures both the ordering and additivity properties. Thus, an attribute can be
measured in a way that does not capture all the properties of the attribute. =

The type of an attribute should tell us what properties of the attribute are
reflected in the values used to measure it. Knowing the type of an attribute
is important because it tells us which properties of the measured values are
consistent with the underlying properties of the attribute, and therefore, it
allows us to avoid foolish actions, such as computing the average employee 1D.
Note that it is common to refer to the type of an attribute as the type of a
measurement scale.

2.1 Types of Data 25

1 =—————— = | ————————— - 1

I Tm—mm—e——— e | e ——— - 2

7 ————————— | e ———— —- 3

B Wem—emreemeEmEEE () e e - 4

il —r—ere——— it st
A mapping of lengths to numbers | A mapping of lengths to numbers
that captures only the order that captures both the order and
properties of length. additivity properties of length.

Figure 2.1. The measurement of the length of line segments on two different scales of measurement,

The Different Types of Attributes

A useful (and simple) way to specify the type of an attribute is to identify
the properties of numbers that correspond to underlying properties of the
attribute. For example, an attribute such as length has many of the properties
of numbers. It makes sense to compare and order objects by length, as well
as to talk about the differences and ratios of length. The following properties
(operations) of numbers are typically used to describe attributes.

1. Distinctness = and #
2. Order <, <, >, and >
3. Addition + and —

4. Multiplication » and /

Given these properties, we can define four types of attributes: nominal,
ordinal, interval, and ratio. Table 2.2 gives the definitions of these types,
along with information about the statistical operations that are valid for each
type. Each attribute type possesses all of the properties and operations of the
attribute types above it. Consequently, any property or operation that is valid
for nominal, ordinal, and interval attributes is also valid for ratio attributes.
In other words, the definition of the attribute types is cumulative. However,

26 Chapter 2 Data

Table 2.2. Different atlribute types.

Attribute
Type Description Examples Operations
Nominal | The values of a nominal zip codes, mode, entropy,
attribute are just different | employee ID numbers, | contingency
names; i.e., nominal values | eye color, gender correlation,
provide only enough x? test

=7 information to distinguish

2 = one object from another.

hE (=, #) : : .

+ =| Ordinal | The values of an ordinal hardness of minerals, median,

O g attribute provide enough {good, better, best}, percentiles,
information to order grades, rank correlation,
objects. street numbers run tests,

(=, >) sign tests
Interval | For interval attributes, the | calendar dates, mean,
= differences between values | temperature in Celsius | standard deviation,
= are meaningful, i.e., a unit | or Fahrenheit Pearson’s

=2 E of measurement exists. correlation,

2e (+, =) t and F tests

ZE; 2 Ratio Tor ratio variables, both temperature in Kelvin, | geometric mean,

C differences and ratios are monetary quantities, harmonic mean,
meaningful. counts, age, mass, percent.
&*.n length, variation
electrical current

this does not mean that the operations appropriate for one attribute type are
appropriate for the attribute types above it.
Nominal and ordinal attributes are collectively referred to as categorical

or qualitative attributes. As the name suggests, qualitative attributes, such
as employee 1D, lack most of the properties of numbers. Even if they are rep-
resented by numbers, i.e., integers, they should be treated more like symbols.
The remaining two types of attributes, interval and ratio, are collectively re-
ferred to as quantitative or numeric attributes. Quantitative attributes are
represented by numbers and have most of the properties of numbers. Note
that quantitative attributes can be integer-valued or continuous.

The types of attributes can also be described in terms of transformations
that do not change the meaning of an attribute. Indeed, S. Smith Stevens, the
psychologist who originally defined the types of attributes shown in Table 2.2,
defined them in terms of these permissible transformations. For example,

2.1 Types of Data 27

Table 2.3. Transformations that define attribute levels.

Attribute)
Type Transformation Comment
Nominal | Any one-toc-one mapping, e.g., a | If all employee ID numbers are
= permutation of values reassigned, it will not make any
w8 difference.
2 Z| Ordinal | An order-preserving change of | An attribute encompassing the
go % values, i.e., notion of good, better, best can
85 new.value = f(old_value), be represented equally well by
og where f is a monotonic function. | the values {1, 2,3} or by
{0.5,1,10}.
= Interval | new_value = a * old_value + b, The Fahrenheit and Celsius
& a and b constants. temperature scales differ in the
238 location of their zero value and
“E’ = the size of a degree (unit).
2 g, Ratio new-value = a * old_value Length can be measured in
= meters or feet.

the meaning of a length attribute is unchanged if it is measured in meters
instead of feet.

The statistical operations that make sense for a particular type of attribute
are those that will yield the same results when the attribute is transformed us-
ing a transformation that preserves the attribute's meaning. To illustrate, the
average length of a set of objects is different when measured in meters rather
than in feet, but both averages represent the same length. Table 2.3 shows the
permissible (meaning-preserving) transformations for the four attribute types
of Table 2.2.

Example 2.5 (Temperature Scales). Temperature provides a good illus-
tration of some of the concepts that have been described. First, temperature
can be either an interval or a ratio attribute, depending on its measurement
scale. When measured on the Kelvin scale, a temperature of 29 is, in a physi-
cally meaningful way, twice that of a temperature of 1°. This is not true when
temperature is measured on either the Celsius or Fahrenheit scales, because,
physically, a temperature of 1° Fahrenheit (Celsius) is not much different than
a temperature of 2° Fahrenheit, (Celsius). The problem is that the zero points
of the Fahrenheit and Celsius scales are, in a physical sense, arbitrary, and
therefore, the ratio of two Celsius or Fahrenheit temperatures is not physi-
cally meaningful. "

28 Chapter 2 Data

Describing Attributes by the Number of Values

An independent way of distinguishing between attributes is by the number of
values they can take.

Discrete A discrete attribute has a finite or countably infinite set of values.
Such attributes can be categorical, such as zip codes or ID numbers,
or numeric, such as counts. Discrete attributes are often represented
using integer variables. Binary attributes are a special case of dis-
crete attributes and assume only two values, e.g., true/false, yes/no,
male/female, or 0/1. Binary attributes are often represented as Boolean
variables, or as integer variables that only take the values 0 or 1.

Continuous A continuous attribute is one whose values are real numbers, Ex-
amples include attributes such as temperature, height, or weight. Con-
tinuous attributes are typically represented as floating-point variables.
Practically, real values can only be measured and represented with lim-
ited precision.

In theory, any of the measurement scale types—nominal, ordinal, interval, and
ratio—could be combined with any of the types based on the number of at-
tribute values—binary, discrete, and continuous. However, some combinations
occur only infrequently or do not make much sense. For instance, it is difficult
to think of a realistic data set that contains a continuous binary attribute.
Typically, nominal and ordinal attributes are binary or discrete, while interval
and ratio attributes are continuous. However, count attributes, which are
discrete, are also ratio attributes.

Asymmetric Attributes

For asymmetric attributes, only presence—a non-zero attribute value—is re-
garded as important. Consider a data set where each object is & student and
each attribute records whether or not a student took a particular course at
a university. For a specific student, an attribute has a value of 1 if the stu-
dent took the course associated with that attribute and a value of 0 otherwise.
Because students take only a small fraction of all available courses, most of
the values in such a data set would be 0. Therefore, it is more meaningful
and more efficient to focus on the non-zero values. To illustrate, if students
are compared on the basis of the courses they don’t take, then most students
would seem very similar, at least if the number of courses is large. Binary
attributes where only non-zero values are important are called asymmetric

2.1 Types of Data 29

binary attributes. This type of attribute is particularly important for as-
sociation analysis, which is discussed in Chapter 6. It is also possible to have
discrete or continuous asymmetric features. For instance, if the number of
credits associated with each course is recorded, then the resulting data set will
consist of asymmetric discrete or continuous attributes.

2.1.2 Types of Data Sets

There are many types of data sets, and as the field of data mining develops
and matures, a greater variety of data sets become available for analysis. In
this section, we describe some of the most common types. For convenience,
we have grouped the types of data sets into three groups: record data, graph-
based data, and ordered data. These categeries do not cover all possibilities
and other groupings are certainly possible.

General Characteristics of Data Sets

Before providing details of specific kinds of data sets, we discuss three char-
acteristics that apply to many data sets and have a significant impact on the
data mining techniques that are used: dimensionality, sparsity, and resolution.

Dimensionality The dimensionality of a data set is the number of attributes
that the objects in the data set possess. Data with a small number of dimen-
sions tends to be qualitatively different than moderate or high-dimensional
data. Indeed, the difficulties associated with analyzing high-dimensional data
are sometimes referred to as the curse of dimensionality. Because of this,
an important motivation in preprocessing the data is dimensionality reduc-
tion. These issues are discussed in more depth later in this chapter and in
Appendix B.

Sparsity For some data sets, such as those with asymmetric features, most
attributes of an object have values of 0; in many cases, fewer than 1% of
the entries are non-zero. In practical terms, sparsity is an advantage because
usually only the non-zero values need to be stored and manipulated. This
results in significant savings with respect to computation time and storage.
Furthermore, some data mining algorithms work well only for sparse data.

Resolution It is frequently possible to obtain data at different levels of reso-
lution, and often the properties of the data are different at different resclutions.
For instance, the surface of the Earth seems very uneven at a resolution of a

30 Chapter 2 Data

few meters, but is relatively smooth at a resolution of tens of kilometers. The
patterns in the data also depend on the level of resolution. If the resolution
is too fine, a pattern may not be visible or may be buried in noise; if the
resolution is too coarse, the pattern may disappear. For example, variations
in atmospheric pressure on a scale of hours reflect the movement of storms
and other weather systems. On a scale of months, such phenomena are not
detectable.

Record Data

Much data mining work assumes that the data set is a collection of records
(data objects), each of which consists of a fixed set of data fields (attributes).
See Figure 2.2(a). For the most basic form of record data, there is no explicit
relationship among records or data fields, and every record (object) has the
same set of attributes. Record data is usually stored either in flat files or in
relational databases. Relational databases are certainly more than a collection
of records, but data mining often does not use any of the additional information
available in a relational database. Rather, the database serves as a convenient
place to find records. Different types of record data are described below and
are illustrated in Figure 2.2.

Transaction or Market Basket Data Transaction data is a special type
of record data, where each record (transaction) involves a set of items. Con-
sider a grocery store. The set of products purchased by a customer during one
shopping trip constitutes a transaction, while the individual products that
were purchased are the items. This type of data is called market basket
data because the items in each record are the products in a person’s “mar-
ket basket.” Transaction data is a collection of sets of items, but it can be
viewed as a set of records whose fields are asymmetric attributes. Most often,
the attributes are binary, indicating whether or not an item was purchased,
but more generally, the attributes can be discrete or continuous, such as the
number of items purchased or the amount spent on those items. Figure 2.2(b)
shows a sample transaction data set. Each row represents the purchases of a
particular customer at a particular time.

The Data Matrix If the data objects in a collection of data all have the
same fixed set of numeric attributes, then the data objects can be thought of as
points (vectors) in a multidimensicnal space, where each dimension represents
a distinct attribute describing the object. A set of such data objects can be
interpreted as an m by n matrix, where there are m rows, one for each object,

2.1 Types of Data 31

Tid Refund Marital ~ Taxable Defaulted ;
Status Income Borrower TiD ITEMS ;
‘| Yes |Singie’ {125K Na '

1
2°[No |Maried [100k [No 111y | Bredd; Soday Milk
3 |No |Single |70k |New =3
4| Yes [Mamied [120K |No . Hea Bread
5 [No Divorced | 85K Yes
& |No Maried - | 60K No 3 Beer, Soda, Diaper, Milk
7 |Yes |Divorced |220k [No
4 Beer, B i i
A Single e Vs er, Bread, Diaper, Milk
8 '|No Married | 75K
Haric Mo 5 | Soda, Diaper, Mik

10 | No Single” ' | 90K Yes

(a) Record data. (b) Transaction data.
émjm:llnnul Projection of Distance- Load' Thicknass D8 =5 3 5 G
Xload - yLoad : 3.3 S 8
10.23 527 |1522| 27 | 1.2 Document1| 3| 0|5 |0]2|6|of2]|0]2

12,66 6.25 16.22 | 22 1.1

Document
13.54 7.23 17.34 | 23 1.2 giaceie Gl 0 R0 Kl M S))l

14.27 8.43 18.45 | 25 0.9 Document3 0 |1 |0 |01 |[2|2|0|3 |0

(c) Data matrix. (d) Document-term matrix.

Figure 2.2. Different variations of record data.

and n columns, one for each attribute. (A representation that has data objects
as columns and attributes as rows is also fine.) This matrix is called a data
matrix or a pattern matrix. A data matrix is a variation of record data,
but because it consists of numeric attributes, standard matrix operation can
be applied to transform and manipulate the data. Therefore, the data matrix
is the standard data format for most statistical data. Figure 2.2(c) shows a
sample data matrix.

The Sparse Data Matrix A sparse data matrix is a special case of a data
matrix in which the attributes are of the same type and are asymmetric; i.e.,
only non-zero values are important. Transaction data is an example of a sparse
data matrix that has only 0-1 entries. Another common example is document
data. In particular, if the order of the terms (words) in a document is ignored,

32 Chapter 2 Data

then a document can be represented as a term vector, where each term is
a component (attribute) of the vector and the value of each component is
the number of times the corresponding term occurs in the document. This
representation of a collection of documents is often called a document-term
matrix. Figure 2.2(d) shows a sample document-term matrix. The documents
are the rows of this matrix, while the terms are the columns. In practice, only
the non-zero entries of sparse data matrices are stored.

Graph-Based Data

A graph can sometimes be a convenient and powerful representation for data.
We consider two specific cases: (1) the graph captures relationships among
data objects and (2) the data objects themselves are represented as graphs.

Data with Relationships among Objects The relationships among ob-
jects frequently convey important information. In such cases, the data is often
represented as a graph. In particular, the data objects are mapped to nodes
of the graph, while the relationships among objects are captured by the links
between objects and link properties, such as direction and weight. Consider
Web pages on the World Wide Web, which contain both text and links to
other pages. In order to process search queries, Web search engines collect
and process Web pages to extract their contents. It is well known, however,
that the links to and from each page provide a great deal of information about
the relevance of a Web page to a query, and thus, must also be taken into
consideration. Figure 2.3(a) shows a set of linked Web pages.

Data with Objects That Are Graphs If objects have structure, that
is, the objects contain subobjects that have relationships, then such objects
are frequently represented as graphs. For example, the structure of chemical
compounds can be represented by a graph, where the nodes are atoms and the
links between nodes are chemical bonds. Figure 2.3(b) shows a ball-and-stick
diagram of the chemical compound benzene, which contains atoms of carbon
(black) and hydrogen (gray). A graph representation makes it possible to
determine which substructures occur frequently in a set of compounds and to
ascertain whether the presence of any of these substructures is associated with
the presence or absence of certain chemical properties, such as melting point
or heat of formation. Substructure mining, which is a branch of data mining
that analyzes such data, is considered in Section 7.5.

2.1 Typesof Data 33

Usetul Links:
I o . Knowledge Discovery and
b Data Mining Bibliography
o (Gess wpdtes frequently, 1o viti ohen!)
© ACM SICKDD
® KDwerey e
ol e e Ming. + Gensral Do Mining
1
|
Buok References In Data Mining and /
Knowledge Discavery Genersl Dats Minlng
N Froyes thgary oty o, Usama “Mining Dutshases Towards
""""’"g“"‘"“‘.‘""“";z h”:l-?‘u.:m‘.ldnﬁd
oormrog g the IEEE Computes Society Technical Commiues
Bty AARE Fromis MET frase. 1900, o0 data Engincering. vol, 31, 5. |, Masch 1998,
1. Ross Quinisa, "C4.3: Programs for Machine
I.ur:u'. Morgan Kavfmann Publishen, 1993, Chrisiopher Mathcus, Philip Chan, and Gregory
Michac! Berry and Gordon Linofl, “Data Mining Placisky-Shapiro, “Sysiera for knowledge
Techniques (For Marketing, Salcs, and Cusiomer Discovery in daisbases”, |EEE Transacuons on
Suppon). Joha Wiley & Sons, 1997, l-n-bﬁ.r.m Dats Engincering, 3(6190)-913,

(a) Linked Web pages. (b) Benzene molecule.

Figure 2.3. Different variations of graph data.

Ordered Data

For some types of data, the attributes have relationships that involve order
in time or space. Different types of ordered data are described next and are
shown in Figure 2.4.

Sequential Data Sequential data, also referred to as temporal data, can
be thought of as an extension of record data, where each record has a time
associated with it. Consider a retail transaction data set that also stores the
time at which the transaction took place. This time information makes it
possible to find patterns such as “candy sales peak before Halloween.” A time
can also be associated with each attribute. For example, each record could
be the purchase history of a customer, with a listing of items purchased at
different times. Using this information, it is possible to find patterns such as
“people who buy DVD players tend to buy DVDs in the period immediately
following the purchase.”

Figure 2.4(a) shows an example of sequential transaction data. There
are five different times—t1, t2, ¢35, t{, and t5; three different customers—Cl,

34 Chapter 2 Data

Time Customer ltems Purchased GGTTCCGCCTTCAGCCCCGCGLCC
:; g; f\ 2 CGCAGGGCCCGCCCCGCGCCGETC
= =) GAGAAGGGCCCGCCTGGCGGGCG
13 c2 A D GGGGGAGGCGGGGCCGCCCGAGC
e gf i = CCAACCGAGTCCGACCAGGTGCC

CCCTCTGCTCGGCCTAGACCTGA
Customer Time and Items Purchased GCTCATTAGGCGGCAGCGGACAG
& E:; i:?)(ﬁ’:cé?) (5:A.E) GCCAAGTAGAACACGCGAAGCGC
c2 (12: A, C) TGGGCTGCCTGCTGCGACCAGGG

(a) Sequential transaction data. (b) Genomic sequence data.

Mmnenpolls Aversge Monthly Tempersiure (1062-1993)
F—— T

T

Latitude

: T i Al b - O | M
20 ez ToRs VOB TRE 1985 15T 1368 1OBR 1R 1991 1982 1063 1994 180 196 120 80 80 -0 0 3 50 0 120 180 100 Tems
Year Longiiuse

(¢) Temperature time series. (d) Spatial temperature data.

Figure 2.4. Different variations of ordered data.

C2, and C3; and five different items—A, B, C, D, and E. In the top table,
each row corresponds to the items purchased at a particular time by each
customer. For instance, at time t5, customer C2 purchased items A and D. In
the bottom table, the same information is displayed, but each row corresponds
to a particular customer. Each row contains information on each transaction
involving the customer, where a transaction is considered to be a set of items
and the time at which those items were purchased. For example, customer C3
bought items A and C at time t2.

2.1 Types of Data 35

Sequence Data Sequence data consists of a data set that is a sequence of
individual entities, such as a sequence of words or letters. It is quite similar to
sequential data, except that there are no time stamps; instead, there are posi-
tions in an ordered sequence. For example, the genetic information of plants
and animals can be represented in the form of sequences of nucleotides that
are known as genes. Many of the problems associated with genetic sequence
data involve predicting similarities in the structure and function of genes from
similarities in nucleotide sequences. Figure 2.4(b) shows a section of the hu-
man genetic code expressed using the four nucleotides from which all DNA is
constructed: A, T, G, and C.

Time Series Data Time series data is a special type of sequential data
in which each record is a time series, i.e., a series of measurements taken
over time. For example, a financial data set might contain objects that are
time series of the daily prices of various stocks. As another example, consider
Figure 2.4(c), which shows a time series of the average monthly temperature
for Minneapolis during the years 1982 to 1994. When working with temporal
data, it is important to consider temporal autocorrelation; ie., if two
measurements are close in time, then the values of those measurements are
often very similar.

Spatial Data Some objects have spatial attributes, such as positions or ar-
eas, as well as other types of attributes. An example of spatial data is weather
data (precipitation, temperature, pressure) that is collected for a variety of
geographical locations. An important aspect of spatial data is spatial auto-
correlation; i.e., objects that are physically close tend to be similar in other
ways as well. Thus, two points on the Earth that are close to each other
usually have similar values for temperature and rainfall.

Important examples of spatial data are the science and engineering data
sets that are the result of measurements or model output taken at regularly
or irregularly distributed points on a two- or three-dimensional grid or mesh.
For instance, Earth science data sets record the temperature or pressure mea-
sured at points (grid cells) on latitude-longitude spherical grids of various
resolutions, e.g., 1° by 1°. (See Figure 2.4(d).) As another example, in the
simulation of the flow of a gas, the speed and direction of low can be recorded
for each grid point in the simulation.

36 Chapter 2 Data

Handling Non-Record Data

Most data mining algorithms are designed for record data or its variations,
such as transaction data and data matrices. Record-oriented techniques can
be applied to non-record data by extracting features from data objects and
using these features to create a record corresponding to each object. Consider
the chemical structure data that was described earlier. Given a set of common
substructures, each compound can be represented as a record with binary
attributes that indicate whether a compound contains a specific substructure.
Such a representation is actually a transaction data set, where the transactions
are the compounds and the items are the substructures.

In some cases, it is easy to represent the data in a record format, but
this type of representation does not capture all the information in the data.
Consider spatio-temporal data consisting of a time series from each point on
a spatial grid. This data is often stored in a data matrix, where each row
represents a location and each column represents a particular point in time.
However, such a representation does not explicitly capture the time relation-
ships that are present among attributes and the spatial relationships that
exist among objects. This does not mean that such a representation is inap-
propriate, but rather that these relationships must be taken into consideration
during the analysis. For example, it would not be a good idea to use a data
mining technique that assumes the attributes are statistically independent of
one another.

2.2 Data Quality

Data mining applications are often applied to data that was collected for an-
other purpose, or for future, but unspecified applications. For that reason,
data mining cannot usually take advantage of the significant benefits of “ad-
dressing quality issues at the source™ In contrast, much of statistics deals
with the design of experiments or surveys that achieve a prespecified level of
data quality. Because preventing data quality problems is typically not an op-
tion, data mining focuses on (1) the detection and correction of data quality
problems and (2) the use of algorithms that can tolerate poor data quality.
The first step, detection and correction, is often called data cleaning.

The following sections discuss specific aspects of data quality. The focus is
on measurement and data collection issues, although some application-related
issues are also discussed.

2.2 Data Quality 37

2.2.1 Measurement and Data Collection Issues

It is unrealistic to expect that data will be perfect. There may be problems due
to human error, limitations of measuring devices, or flaws in the data collection
process. Values or even entire data objects may be missing. In other cases,
there may be spurious or duplicate objects; i.e., multiple data objects that all
correspond to a single “real” object. For example, there might be two different
records for a person who has recently lived at two different addresses. Even if
all the data is present and “looks fine,” there may be inconsistencies—a person
has a height of 2 meters, but weighs only 2 kilograms.

In the next few sections, we focus on aspects of data quality that are related
to data measurement and collection. We begin with a definition of measure-
ment and data collection errors and then consider a variety of problems that
involve measurement error: noise, artifacts, bias, precision, and accuracy. We
conclude by discussing data quality issues that may involve both measurement
and data collection problems: outliers, missing and inconsistent values, and
duplicate data.

Measurement and Data Collection Errors

The term measurement error refers to any problem resulting from the mea-
surement process. A common problem is that the value recorded differs from
the true value to some extent. For continuous attributes, the numerical dif-
ference of the measured and true value is called the error. The term data
collection error refers to errors such as omitting data objects or attribute
values, or inappropriately including a data object. For example, a study of
animals of a certain species might include animals of a related species that are
similar in appearance to the species of interest. Both measurement errors and
data collection errors can be either systematic or random.

We will only consider general types of errors. Within particular domains,
there are certain types of data errors that are commonplace, and there often
exist well-developed techniques for detecting and/or correcting these errors.
For example, keyboard errors are common when data is entered manually, and
as a result, many data entry programs have techniques for detecting and, with
human intervention, correcting such errors.

Noise and Artifacts

Noise is the random component of a measurement error. It may involve the
distortion of a value or the addition of spurious objects. Figure 2.5 shows a
time series before and after it has been disrupted by random noise. If a bit

38 Chapter 2 Data

(a) Time series. (b) Time series with noise.

Figure 2.5. Noise in a time series context.

{b) With noise points (+) added.

(a) Three groups of points.

Figure 2.6. Noise in a spatial context,

more noise were added to the time series, its shape would be lost. Figure 2.6
shows a set of data points before and after some noise points (indicated by
‘4+’s) have been added. Notice that some of the noise points are intermixed
with the non-noise points.

The term noise is often used in connection with data that has a spatial or
temporal component. In such cases, techniques from signal or image process-
ing can frequently be used to reduce noise and thus, help to discover patterns
(signals) that might be “lost in the noise.” Nonetheless, the elimination of
noise is frequently difficult, and much work in data mining focuses on devis-
ing robust algorithms that produce acceptable results even when noise is
present..

s

2.2 Data Quality 39

Data errors may be the result of a more deterministic phenomenon, such
as a streak in the same place on a set of photographs. Such deterministic
distortions of the data are often referred to as artifacts.

Precision, Bias, and Accuracy

In statistics and experimental science, the quality of the measurement process
and the resulting data are measured by precision and bias. We provide the
standard definitions, followed by a brief discussion. For the following defini-
tions, we assume that we make repeated measurements of the same underlying
quantity and use this set of values to calculate a mean (average) value that
serves as our estimate of the true value.

Definition 2.3 (Precision). The closeness of repeated measurements (of the
same quantity) to one another.

Definition 2.4 (Bias). A systematic variation of measurements from the
quantity being measured.

Precision is often measured by the standard deviation of a set of values,
while bias is measured by taking the difference between the mean of the set
of values and the known value of the quantity being measured. Bias can
only be determined for objects whose measured quantity is known by means
external to the current situation. Suppose that we have a standard laboratory
weight with a mass of 1g and want to assess the precision and bias of our new
laboratory scale. We weigh the mass five times, and obtain the following five
values: {1.015,0.990,1.013,1.001,0.986}. The mean of these values is 1.001,
and hence, the bias is 0.001. The precision, as measured by the standard
deviation, is 0.013.

It is common to use the more general term, accuracy, to refer to the
degree of measurement error in data.

Definition 2.5 (Accuracy). The closeness of measurements to the true value
of the quantity being measured.

Accuracy depends on precision and bias, but since it is a general concept,
there is no specific formula for accuracy in terms of these two quantities.

One important aspect of accuracy is the use of significant digits. The
goal is to use only as many digits to represent the result of a measurement or
calculation as are justified by the precision of the data. For example, if the
length of an object is measured with a meter stick whose smallest markings are
millimeters, then we should only record the length of data to the nearest mil-
limeter. The precision of such a measurement would be & 0.5mm. We do not

40 Chapter 2 Data

review the details of working with significant digits, as most readers will have
encountered them in previous courses, and they are covered in considerable
depth in science, engineering, and statistics textbooks.

Issues such as significant digits, precision, bias, and accuracy are sometimes
overlooked, but they are important for data mining as well as statistics and
science. Many times, data sets do not come with information on the precision
of the data, and furthermore, the programs used for analysis return results
without any such information. Nonetheless, without some understanding of
the accuracy of the data and the results, an analyst runs the risk of committing
serious data analysis blunders.

Qutliers

Qutliers are either (1) data objects that, in some sense, have characteristics
that are different from most of the other data objects in the data set, or
(2) values of an attribute that are unusual with respect to the typical values
for that attribute. Alternatively, we can speak of anomalous objects or
values. There is considerable leeway in the definition of an outlier, and many
different definitions have been proposed by the statistics and data mining
communities. Furthermore, it is important to distinguish between the notions
of noise and outliers. Outliers can be legitimate data objects or values. Thus,
unlike noise, outliers may sometimes be of interest. In fraud and network
intrusion detection, for example, the goal is to find unusual objects or events
from among a large number of normal ones. Chapter 10 discusses anomaly
detection in more detail.

Missing Values

It is not unusual for an object to be missing one or more attribute values.
In some cases, the information was not collected; e.g., some people decline to
give their age or weight. In other cases, some attributes are not applicable
to all objects; e.g., often, forms have conditional parts that are filled out only
when a person answers a previous question in a certain way, but for simplicity,
all fields are stored. Regardless, missing values should be taken into account
during the data analysis.

There are several strategies (and variations on these strategies) for dealing
with missing data, each of which may be appropriate in certain circumstances.
These strategies are listed next, along with an indication of their advantages
and disadvantages.

2.2 Data Quality 41

Eliminate Data Objects or Attributes A simple and effective strategy
is to eliminate objects with missing values. However, even a partially speci-
fied data object contains some information, and if many objects have missing
values, then a reliable analysis can be difficult or impossible. Nonetheless, if
a data set has only a few objects that have missing values, then it may be
expedient to omit them. A related strategy is to eliminate attributes that
have missing values. This should be done with caution, however, since the
eliminated attributes may be the ones that are critical to the analysis.

Estimate Missing Values Sometimes missing data can be reliably esti-
mated. For example, consider a time series that changes in a reasonably
smooth fashion, but has a few, widely scattered missing values. In such cases,
the missing values can be estimated (interpolated) by using the remaining
values. As another example, consider a data set that has many similar data
points. In this situation, the attribute values of the points closest to the point
with the missing value are often used to estimate the missing value. If the
attribute is continuous, then the average attribute value of the nearest neigh-
bors is used; if the attribute is categorical, then the most commonly occurring
attribute value can be taken. For a concrete illustration, consider precipitation
measurements that are recorded by ground stations. For areas not containing
a ground station, the precipitation can be estimated using values observed at
nearby ground stations.

Ignore the Missing Value during Analysis Many data mining approaches
can be modified to ignore missing values. For example, suppose that objects

are being clustered and the similarity between pairs of data objects needs to

be calculated. If one or both objects of a pair have missing values for some

attributes, then the similarity can be calculated by using only the attributes

that do not have missing values. It is true that the similarity will only be

approximate, but unless the total number of attributes is small or the num-

ber of missing values is high, this degree of inaccuracy may not matter much.

Likewise, many classification schemes can be modified to work with missing

values.

Inconsistent Values

Data can contain inconsistent values. Consider an address field, where both a
zip code and city are listed, but the specified zip code area is not contained in
that city. It may be that the individual entering this information transposed
two digits, or perhaps a digit was misread when the information was scanned

42 Chapter 2 Data

from a handwritten form. Regardless of the cause of the inconsistent values,
it is important to detect and, if possible, correct such problems.

Some types of inconsistences are easy to detect. For instance, a person’s
height should not be negative. In other cases, it can be necessary to consult
an external source of information. For example, when an insurance company
processes claims for reimbursement, it checks the names and addresses on the
reimbursement, forms against a database of its customers.

Once an inconsistency has been detected, it is sometimes possible to correct
the data. A product code may have “check” digits, or it may be possible to
double-check a product code against a list of known product codes, and then
correct the code if it is incorrect, but close to a known code. The correction
of an inconsistency requires additional or redundant information.

Example 2.6 (Inconsistent Sea Surface Temperature). This example
illustrates an inconsistency in actual time series data that measures the sea
surface temperature (SST) at various points on the ocean. SST data was origi-
nally collected using ocean-based measurements from ships or buoys, but more
recently, satellites have been used to gather the data. To create a long-term
data set, both sources of data must be used. However, because the data comes
from different sources, the two parts of the data are subtly different. This
discrepancy is visually displayed in Figure 2.7, which shows the correlation of
SST values between pairs of years. If a pair of years has a positive correlation,
then the location corresponding to the pair of years is colored white; otherwise
it is colored black. (Seasonal variations were removed from the data since, oth-
erwise, all the years would be highly correlated.) There is a distinct change in
behavior where the data has been put together in 1983. Years within each of
the two groups, 1958-1982 and 1983-1999, tend to have a positive correlation
with one another, but a negative correlation with years in the other group.
This does not mean that this data should not be used, only that the analyst
should consider the potential impact of such discrepancies on the data mining
analysis. =

Duplicate Data

A data set may include data objects that are duplicates, or almost duplicates,
of one another. Many people receive duplicate mailings because they appear
in a database multiple times under slightly different names. To detect and
eliminate such duplicates, two main issues must be addressed. First, if there
are two objects that actually represent a single object, then the values of
corresponding attributes may differ, and these inconsistent values must be

2.2 Data Quality 43

Year

Year

Figure 2.7. Correlation of SST dala between pairs of years. White areas indicate positive correlation.
Black areas indicate negative correlation.

resolved. Second, care needs to be taken to avoid accidentally combining data
objects that are similar, but not duplicates, such as two distinct people with
identical names. The term deduplication is often used to refer to the process
of dealing with these issues.

In some cases, two or more objects are identical with respect to the at-
tributes measured by the database, but they still represent different objects.
Here, the duplicates are legitimate, but may still cause problems for some al-
gorithms if the possibility of identical objects is not specifically accounted for
in their design. An example of this is given in Exercise 13 on page 91.

2.2.2 Issues Related to Applications

Data quality issues can also be considered from an application viewpoint as
expressed by the statement “data is of high quality if it is suitable for its
intended use.” This approach to data quality has proven quite useful, particu-
larly in business and industry. A similar viewpoint is also present in statistics
and the experimental sciences, with their emphasis on the careful design of ex-
periments to collect the data relevant to a specific hypothesis. As with quality

44 Chapter 2 Data

issues at the measurement and data collection level, there are many issues that
are specific to particular applications and fields. Again, we consider only a few
of the general issues.

Timeliness Some data starts to age as soon as it has been collected. In
particular, if the data provides a snapshot of some ongoing phenomenon or
process, such as the purchasing behavior of customers or Web browsing pat-
terns, then this snapshot represents reality for only a limited time. If the data
is out of date, then so are the models and patterns that are based on it.

Relevance The available data must contain the information necessary for
the application. Consider the task of building a model that predicts the acci-
dent rate for drivers. If information about the age and gender of the driver is
omitted, then it is likely that the model will have limited accuracy unless this
information is indirectly available through other attributes.

Making sure that the objects in a data set are relevant is also challenging.
A common problem is sampling bias, which occurs when a sample does not
contain different types of objects in proportion to their actual occurrence in
the population. For example, survey data describes only those who respond to
the survey. (Other aspects of sampling are discussed further in Section 2.3.2.)
Because the results of a data analysis can reflect only the data that is present,
sampling bias will typically result in an erroneous analysis.

Knowledge about the Data Ideally, data sets are accompanied by doc-
umentation that describes different aspects of the data; the quality of this
documentation can either aid or hinder the subsequent analysis. For example,
il the documentation identifies several attributes as being strongly related,
these attributes are likely to provide highly redundant information, and we
may decide to keep just one. (Consider sales tax and purchase price.) If the
documentation is poor, however, and fails to tell us, for example, that the
missing values for a particular field are indicated with a -9999, then our analy-
sis of the data may be faulty. Other important characteristics are the precision
of the data, the type of features (nominal, ordinal, interval, ratio), the scale
of measurement (e.g., meters or feet for length), and the origin of the data.

2.3 Data Preprocessing

In this section, we address the issue of which preprocessing steps should be
applied to make the data more suitable for data mining. Data preprocessing

2.3 Data Preprocessing 45

is a broad area and consists of a number of different strategies and techniques
that are interrelated in complex ways. We will present some of the most
important ideas and approaches, and try to point out the interrelationships
among them. Specifically, we will discuss the following topics:

s Apggregation

e Sampling

e Dimensionality reduction

e [eature subset selection

e Feature creation

¢ Discretization and binarization
e Variable transformation

Roughly speaking, these items fall into two categories: selecting data ob-
jects and attributes for the analysis or creating/changing the attributes. In
both cases the goal is to improve the data mining analysis with respect to
time, cost, and quality. Details are provided in the following sections.

A quick note on terminology: In the following, we sometimes use synonyms
for attribute, such as feature or variable, in order to follow common usage.

2.3.1 Aggregation

Sometimes “less is more” and this is the case with aggregation, the combining
of two or more objects into a single object. Consider a data set consisting of
transactions (data objects) recording the daily sales of products in various
store locations (Minneapolis, Chicago, Paris, ...) for different days over the
course of a year. See Table 2.4. One way to aggregate transactions for this data
set is to replace all the transactions of a single store with a single storewide
transaction. This reduces the hundreds or thousands of transactions that occur
daily at a specific store to a single daily transaction, and the number of data
objects is reduced to the number of stores.

An obvious issue is how an aggregate transaction is created; i.e., how the
values of each attribute are combined across all the records corresponding to a
particular location to create the aggregate transaction that represents the sales
of a single store or date. Quantitative attributes, such as price, are typically
aggregated by taking a sum or an average, A qualitative attribute, such as
item, can either be omitted or summarized as the set of all the items that were
sold at that location.

The data in Table 2.4 can also be viewed as a multidimensional array,
where each attribute is a dimension. From this viewpoint, aggregation is the

[,:

rl‘l

46 Chapter 2 Data

Table 2.4. Dala set containing information about customer purchases.

Transaction ID | Item | Store Location | Date | Price | ... |
101123 Watch Chicago | 09/06/04 | $25.09
101123 Battery Chicago 09/06/04 | $5.99

101124 Shoes Minneapolis | 09/06/04 | $75.00

process of eliminating attributes, such as the type of item, or reducing the
number of values for a particular attribute; e.g., reducing the possible values
for date from 365 days to 12 months. This type of aggregation is commonly
used in Online Analytical Processing (OLAP), which is discussed further in
Chapter 3.

There are several motivations for aggregation. First, the smaller data sets
resulting from data reduction require less memory and processing time, and
hence, aggregation may permit the use of more expensive data mining algo-
rithms. Second, aggregation can act as a change of scope or scale by providing
a high-level view of the data instead of a low-level view. In the previous ex-
ample, aggregating over store locations and months gives us a monthly, per
store view of the data instead of a daily, per item view. Finally, the behavior
of groups of objects or attributes is often more stable than that of individual
objects or attributes. This statement reflects the statistical fact that aggregate
quantities, such as averages or totals, have less variability than the individ-
nal objects being aggregated. For totals, the actual amount of variation is
larger than that of individual objects {on average), but the percentage of the
variation is smaller, while for means, the actual amount of variation is less
than that of individual objects {(on average). A disadvantage of aggregation is
the potential loss of interesting details. In the store example aggregating over
months loses information about which day of the week has the highest sales.

Example 2.7 (Australian Precipitation). This example is based on pre-
cipitation in Australia from the period 1982 to 1993. Figure 2.8(a) shows
a histogram for the standard deviation of average monthly precipitation for
3,030 0.5° by 0.5° grid cells in Australia, while Figure 2.8(b) shows a histogram
for the standard deviation of the average yearly precipitation for the same lo-
cations. The average yearly precipitation has less variability than the average
monthly precipitation. All precipitation measurements (and their standard
deviations) are in centimeters.

2.3 Data Preprocessing 47

160,
w 140
% 120 g‘m
Em) g
T 80| 5
g B0 gw !
aob
20/
o i v—. |

8 12 3 4
Standacd Deviation Standard Deviatian

(a) Histogram of standard deviation of
average monthly precipitation

(b) Histogram of standard deviation of
average yearly precipitation

Figure 2.8. Histograms of standard deviation for monthly and yearly precipitation in Australia for the
period 1982 to 1993.

2.3.2 Sampling

Sampling is a commonly used approach for selecting a subset of the data
objects to be analyzed. In statistics, it has long been used for both the pre-
liminary investigation of the data and the final data analysis. Sampling can
also be very useful in data mining. However, the motivations for sampling
in statistics and data mining are often different. Statisticians use sampling
because obtaining the entire set of data of interest is too expensive or time
consuming, while data miners sample because it is too expensive or time con-
suming to process all the data. In some cases, using a sampling algorithm can
reduce the data size to the point where a better, but more expensive algorithm
can be used.

The key principle for effective sampling is the following: Using a sample
will work almost as well as using the entire data set if the sample is repre-
sentative. In turn, a sample is representative if it has approximately the
same property (of interest) as the original set of data. If the mean (average)
of the data objects is the property of interest, then a sample is representative
if it has a mean that is close to that of the original data. Because sampling is
a statistical process, the representativeness of any particular sample will vary,
and the best that we can do is choose a sampling scheme that guarantees a
high probability of getting a representative sample. As discussed next, this
involves choosing the appropriate sample size and sampling techniques.

48 Chapter 2 Data

Sampling Approaches

There are many sampling techniques, but only a few of the most basic ones
and their variations will be covered here. The simplest type of sampling is
simple random sampling. For this type of sampling, there is an equal prob-
ability of selecting any particular item. There are two variations on random
sampling (and other sampling techniques as well): (1) sampling without re-
placement—as each item is selected, it is removed from the set of all objects
that together constitute the population, and (2) sampling with replace-
ment—objects are not removed from the population as they are selected for
the sample. In sampling with replacement, the same object can be picked more
than once. The samples produced by the two methods are not much different
when samples are relatively small compared to the data set size, but sampling
with replacement is simpler to analyze since the probability of selecting any
object remains constant during the sampling process.

When the population consists of different types of objects, with widely
different numbers of objects, simple random sampling can fail to adequately
represent those types of objects that are less frequent. This can cause prob-
lems when the analysis requires proper representation of all object types. For
example, when building classification models for rare classes, it is critical that
the rare classes be adequately represented in the sample. Hence, a sampling
scheme that can accommodate differing frequencies for the items of interest is
needed. Stratified sampling, which starts with prespecified groups of ob-
jects, is such an approach. In the simplest version, equal numbers of objects
are drawn from each group even though the groups are of different sizes. In an-
other variation, the number of objects drawn from each group is proportional
to the size of that group.

Example 2.8 (Sampling and Loss of Information). Once a sampling
technique has been selected, it is still necessary to choose the sample size.
Larger sample sizes increase the probability that a sample will be representa-
tive, but they also eliminate much of the advantage of sampling. Conversely,
with smaller sample sizes, patterns may be missed or erroneous patterns can be
detected. Figure 2.9(a) shows a data set that contains 8000 two-dimensional
points, while Figures 2.9(b) and 2.9(c) show samples from this data set of size
2000 and 500, respectively. Although most of the structure of this data set is
present in the sample of 2000 points, much of the structure is missing in the
sample of 500 points. =

2.3 Data Preprocessing 49

(a) 8000 points (b) 2000 points (¢) 500 points

Figure 2.9. Example of the loss of structure with sampling.

Example 2.9 (Determining the Proper Sample Size). To illustrate that
determining the proper sample size requires a methodical approach, consider
the following task.

Given a set of data that consists of a small number of almost equal-
sized groups, find at least one representative point for each of the
groups. Assume that the objects in each group are highly similar
to each other, but not very similar to objects in different groups.
Also assume that there are a relatively small number of groups,
e.g., 10. Figure 2.10(a) shows an idealized set of clusters (groups)
from which these points might be drawn.

This problem can be efficiently solved using sampling. One approach is to
take a small sample of data points, compute the pairwise similarities between
points, and then form groups of points that are highly similar. The desired
set of representative points is then obtained by taking one point from each of
these groups. To follow this approach, however, we need to determine a sample
size that would guarantee, with a high probability, the desired outcome; that
is, that at least one point will be obtained from each cluster. Figure 2.10(b)
shows the probability of getting one object from each of the 10 groups as the
sample size runs from 10 to 60. Interestingly, with a sample size of 20, there is
little chance (20%) of getting a sample that includes all 10 clusters. Even with
a sample size of 30, there is still a moderate chance (almost 40%) of getting a
sample that doesn't contain objects from all 10 clusters. This issue is further
explored in the context of clustering by Exercise 4 on page 559.

50 Chapter 2 Data

.
o ‘ T - ¥
Z 06 ‘
el
)
e o £
a 0.4
® @ 1
e @ % 1620 30 40 50 60 70
Sample Size
(a) Ten groups of points. (b) Probability a sample contains points

from each of 10 groups.

Figure 2.10. Finding representative points from 10 groups.

Progressive Sampling

The proper sample size can be difficult to determine, so adaptive or progres-
sive sampling schemes are sometimes used. These approaches start with a
small sample, and then increase the sample size until a sample of sufficient
size has been obtained. While this technique eliminates the need to determine
the correct sample size initially, it requires that there be a way to evaluate the
sample to judge if it is large enough.

Suppose, for instance, that progressive sampling is used to learn a pre-
dictive model. Although the accuracy of predictive models increases as the
sample size increases, at some point the increase in accuracy levels off. We
want, to stop increasing the sample size at this leveling-off point. By keeping
track of the change in accuracy of the model as we take progressively larger
samples, and by taking other samples close to the size of the current one, we
can get, an estimate as to how close we are to this leveling-off point, and thus,
stop sampling.

2.3.3 Dimensionality Reduction

Data sets can have a large number of features. Consider a set of documents,
where each document is represented by a vector whose components are the
frequencies with which each word occurs in the document. In such cases,

2.3 Data Preprocessing 51

there are typically thousands or tens of thousands of attributes (components),
one for each word in the vocabulary. As another example, consider a set of
time series consisting of the daily closing price of various stocks over a period
of 30 years. In this case, the attributes, which are the prices on specific days,
again number in the thousands.

There are a variety of benefits to dimensionality reduction. A key benefit
is that many data mining algorithms work better if the dimensionality—the
number of attributes in the data—is lower. This is partly because dimension-
ality reduction can eliminate irrelevant features and reduce noise and partly
because of the curse of dimensionality, which is explained below. Another ben-
efit is that a reduction of dimensionality can lead to a more understandable
model because the model may involve fewer attributes. Also, dimensionality
reduction may allow the data to be more easily visualized. Even if dimen-
sionality reduction doesn’t reduce the data to two or three dimensions, data
is often visualized by looking at pairs or triplets of attributes, and the num-
ber of such combinations is greatly reduced. Finally, the amount of time and
memory required by the data mining algorithm is reduced with a reduction in
dimensionality.

The term dimensionality reduction is often reserved for those techniques
that reduce the dimensionality of a data set by creating new attributes that
are a combination of the old attributes. The reduction of dimensionality by
selecting new attributes that are a subset of the old is known as feature subset
selection or feature selection. It will be discussed in Section 2.3.4.

In the remainder of this section, we briefly introduce two important topics:
the curse of dimensionality and dimensionality reduction techniques based on
linear algebra approaches such as principal components analysis (PCA). More
details on dimensionality reduction can be found in Appendix B.

The Curse of Dimensionality

The curse of dimensionality refers to the phenomenon that many types of
data analysis become significantly harder as the dimensionality of the data
increases. Specifically, as dimensionality increases, the data becomes increas-
ingly sparse in the space that it occupies. For classification, this can mean
that there are not enough data objects to allow the creation of a model that
reliably assigns a class to all possible objects. For clustering, the definitions
of density and the distance between points, which are critical for clustering,
become less meaningful. (This is discussed further in Sections 9.1.2, 9.4.5, and
9.4.7.) As a result, many clustering and classification algorithms (and other

52 Chapter 2 Data

data analysis algorithms) have trouble with high-dimensional data—reduced
classification accuracy and poor quality clusters.

Linear Algebra Techniques for Dimensionality Reduction

Some of the most common approaches for dimensionality reduction, partic-
ularly for continuous data, use techniques from linear algebra to project the
data from a high-dimensional space into a lower-dimensional space. Principal
Components Analysis (PCA) is a linear algebra technique for continuous
attributes that finds new attributes (principal components) that (1) are linear
combinations of the original attributes, (2) are orthogonal (perpendicular) to
each other, and (3) capture the maximum amount of variation in the data. For
example, the first two principal components capture as much of the variation
in the data as is possible with two orthogonal attributes that are linear combi-
nations of the original attributes. Singular Value Decomposition (SVD)
is a linear algebra technique that is related to PCA and is also commonly used
for dimensionality reduction. For additional details, see Appendices A and B.

2.3.4 Feature Subset Selection

Another way to reduce the dimensionality is to use only a subset of the fea-
tures. While it might seem that such an approach would lose information, this
is not the case if redundant and irrelevant features are present. Redundant
features duplicate much or all of the information contained in one or more
other attributes. For example, the purchase price of a product and the amount
of sales tax paid contain much of the same information. Irrelevant features
contain almost no useful information for the data mining task at hand. For
instance, students’ ID numbers are irrelevant to the task of predicting stu-
dents’ grade point averages. Redundant and irrelevant features can reduce
classification accuracy and the quality of the clusters that are found.

While some irrelevant and redundant attributes can be eliminated imme-
diately by using common sense or domain knowledge, selecting the best subset
of features frequently requires a systematic approach. The ideal approach to
feature selection is to try all possible subsets of features as input to the data
mining algorithm of interest, and then take the subset that produces the best
results. This method has the advantage of reflecting the objective and bias of
the data mining algorithm that will eventually be used. Unfortunately, since
the number of subsets involving n attributes is 2", such an approach is imprac-
tical in most situations and alternative strategies are needed. There are three
standard approaches to feature selection: embedded, filter, and wrapper.

2.3 Data Preprocessing 53

Embedded approaches Feature selection occurs naturally as part of the
data mining algorithm. Specifically, during the operation of the data mining
algorithm, the algorithm itself decides which attributes to use and which to
ignore. Algorithms for building decision tree classifiers, which are discussed in
Chapter 4, often operate in this manner.

Filter approaches Features are selected before the data mining algorithm
is run, using some approach that is independent of the data mining task. For
example, we might select sets of attributes whose pairwise correlation is as low
as possible.

‘Wrapper approaches These methods use the target data mining algorithm
as a black box to find the best subset of attributes, in a way similar to that
of the ideal algorithm described above, but typically without enumerating all
possible subsets.

Since the embedded approaches are algorithm-specific, only the filter and
wrapper approaches will be discussed further here.

An Architecture for Feature Subset Selection

It is possible to encompass both the filter and wrapper approaches within a
common architecture. The feature selection process is viewed as consisting of
four parts: a measure for evaluating a subset, a search strategy that controls
the generation of a new subset of features, a stopping criterion, and a valida-
tion procedure. Filter methods and wrapper methods differ only in the way
in which they evaluate a subset of features. For a wrapper method, subset
evaluation uses the target data mining algorithm, while for a filter approach,
the evaluation technique is distinct from the target data mining algorithm.
The following discussion provides some details of this approach, which is sum-
marized in Figure 2.11.

Conceptually, feature subset selection is a search over all possible subsets
of features. Many different types of search strategies can be used, but the
search strategy should be computationally inexpensive and should find optimal
or near optimal sets of features. It is usually not possible to satisfy both
requirements, and thus, tradeoffs are necessary.

An integral part of the search is an evaluation step to judge how the current
subset of features compares to others that have been considered. This requires
an evaluation measure that attempts to determine the goodness of a subset of
attributes with respect to a particular data mining task, such as classification

54 Chapter 2 Data

Selecled Stopping

Attributes Criterion Evaluation
Not
\ Done
Validation
Procedure
Search | Subset of
Strategy Altributes

Figure 2.11. Flowchart of a feature subset selection process.

or clustering. For the filter approach, such measures attempt to predict how
well the actual data mining algorithm will perform on a given set of attributes.
For the wrapper approach, where evaluation consists of actually running the
target data mining application, the subset evaluation function is simply the
criterion normally used to measure the result of the data mining.

Because the number of subsets can be enormous and it is impractical to
examine them all, some sort of stopping criterion is necessary. This strategy is
usually based on one or more conditions involving the following: the number
of iterations, whether the value of the subset evaluation measure is optimal or
exceeds a certain threshold, whether a subset of a certain size has been ob-
tained, whether simultaneous size and evaluation criteria have been achieved,
and whether any improvement can be achieved by the options available to the
search strategy.

Finally, once a subset of features has been selected, the results of the
target data mining algorithm on the selected subset should be validated. A
straightforward evaluation approach is to run the algorithm with the full set
of features and compare the full results to results obtained using the subset of
features. Hopefully, the subset of features will produce results that are better
than or almost as good as those produced when using all features. Another
validation approach is to use a number of different feature selection algorithms
to obtain subsets of features and then compare the results of running the data
mining algorithm on each subset.

e R

i

2.3 Data Preprocessing 55

Feature Weighting

Feature weighting is an alternative to keeping or eliminating features. More
important features are assigned a higher weight, while less important features
are given a lower weight. These weights are sometimes assigned based on deo-
main knowledge about the relative importance of features. Alternatively, they
may be determined automatically. For example, some classification schemes,
such as support vector machines (Chapter 5), produce classification models in
which each feature is given a weight. Features with larger weights play a more
important role in the model. The normalization of objects that takes place
when computing the cosine similarity (Section 2.4.5) can also be regarded as
a type of feature weighting.

2.3.5 Feature Creation

It is frequently possible to create, from the original attributes, a new set of
attributes that captures the important information in a data set much more
effectively. Furthermore, the number of new attributes can be smaller than the
number of original attributes, allowing us to reap all the previously described
benefits of dimensionality reduction. Three related methodologies for creating
new attributes are described next: feature extraction, mapping the data to a
new space, and feature construction.

Feature Extraction

The creation of a new set of features from the original raw data is known as
feature extraction. Consider a set of photographs, where each photograph
is to be classified according to whether or not it contains a human face. The
raw data is a set of pixels, and as such, is not suitable for many types of
classification algorithms. However, if the data is processed to provide higher-
level features, such as the presence or absence of certain types of edges and
areas that are highly correlated with the presence of human faces, then a much
broader set, of classification techniques can be applied to this problem.

Unfortunately, in the sense in which it is most commonly used, feature
extraction is highly domain-specific. For a particular field, such as image
processing, various features and the techniques to extract them have been
developed over a period of time, and often these techniques have limited ap-
plicability to other fields. Consequently, whenever data mining is applied to a
relatively new area, a key task is the development of new features and feature
extraction methods.

56 Chapter 2 Data

250
200/
150
100]
%
0 20 30 40 S B 70 B0 SO
Frequency
(a) Two time series. (b) Noisy time series. (c) Power spectrum

Figure 2.12, Application of the Fourier transform to identity the underlying frequencies in lime series
data.

Mapping the Data to a New Space

A totally different view of the data can reveal important and interesting fea-
tures. Consider, for example, time series data, which often contains periodic
patterns. If there is only a single periodic pattern and not much noise, then
the pattern is easily detected. If, on the other hand, there are a number of
periodic patterns and a significant amount of noise is present, then these pat-
terns are hard to detect. Such patterns can, nonetheless, often be detected
by applying a Fourier transform to the time series in order to change to a
representation in which frequency information is explicit. In the example that
follows, it will not be necessary to know the details of the Fourier transform.
1t is enough to know that, for each time series, the Fourier transform produces
a new data object whose attributes are related to frequencies.

Example 2.10 (Fourier Analysis). The time series presented in Figure
2.12(b) is the sum of three other time series, two of which are shown in Figure
2.12(a) and have frequencies of 7 and 17 cycles per second, respectively. The
third time series is random noise. Figure 2.12(c) shows the power spectrum
that can be computed after applying a Fourier transform to the original time
series. (Informally, the power spectrum is proportional to the square of each
frequency attribute.) In spite of the noise, there are two peaks that correspond
to the periods of the two original, non-noisy time series. Again, the main point
is that better features can reveal important aspects of the data. =

2.3 Data Preprocessing 57

Many other sorts of transformations are also possible. Besides the Fourier
transform, the wavelet transform has also proven very useful for time series
and other types of data.

Feature Construction

Sometimes the features in the original data sets have the necessary information,
but it is not in a form suitable for the data mining algorithm. In this situation,
one or more new features constructed out of the original features can be more
useful than the original features.

Example 2.11 (Density). To illustrate this, consider a data set consisting
of information about historical artifacts, which, along with other information,
contains the volume and mass of each artifact. For simplicity, assume that
these artifacts are made of a small number of materials (wood, clay, bronze,
gold) and that we want to classify the artifacts with respect to the material
of which they are made. In this case, a density feature constructed from the
mass and volume features, i.e., density = mass/volume, would most directly
yield an accurate classification. Although there have been some attempts to
automatically perform feature construction by exploring simple mathematical
combinations of existing attributes, the most common approach is to construct
features using domain expertise. N

2.3.6 Discretization and Binarization

Some data mining algorithms, especially certain classification algorithms, re-
quire that the data be in the form of categorical attributes. Algorithms that
find association patterns require that the data be in the form of binary at-
tributes. Thus, it is often necessary to transform a continuous attribute into
a categorical attribute (discretization), and both continuous and discrete
attributes may need to be transformed into one or more binary attributes
(binarization). Additionally, if a categorical attribute has a large number of
values (categories), or some values occur infrequently, then it may be beneficial
for certain data mining tasks to reduce the number of categories by combining
some of the values.

As with feature selection, the best discretization and binarization approach
is the one that “produces the best result for the data mining algorithm that
will be used to analyze the data.” It is typically not practical to apply such a
criterion directly. Consequently, discretization or binarization is performed in

58 Chapter 2 Data

Table 2.5, Conversion of a categorical attribute fo three binary attributes.

Categorical Value | Integer Value | z7 | 22 | 23
awful 0 ojofo

poar 1 01 0(1

OK 2 0 1 0

good 3 011

greal 4 1 0] 0

Table 2.6. Conversion of a categorical attribute to five asymmetric binary atfributes.

Categorical Value | Integer Value | =y | =3 | z3 | 74 | T5
awful 0 1 o000
poor 1 glalole|la
OK 2 (o |1]|]06|0
good 3 go|(o|0]|31]|8
great 4 0|J]o|)0]| O 1

a way that satisfies a criterion that is thought to have a relationship to good
performance for the data mining task being considered.

Binarization

A simple technique to binarize a categorical attribute is the following: If there
are m categorical values, then uniquely assign each original value to an integer
in the interval [0,m — 1]. If the attribute is ordinal, then order must be
maintained by the assignment. (Note that even if the attribute is originally
represented using integers, this process is necessary if the integers are not in the
interval [0, m—1].) Next, convert each of these m integers to a binary number.
Since n = [logy{m)] binary digits are required to represent these integers,
represent these binary numbers using n binary attributes. To illustrate, a
categorical variable with 5 values {awful, poor, OK, good, great} would require
three binary variables z,, T2, and z3. The conversion is shown in Table 2.5.
Such a transformation can cause complications, such as creating unin-
tended relationships among the transformed attributes. For example, in Table
2.5, attributes =3 and z3 are correlated because information about the good
value is encoded using both attributes. Furthermore, association analysis re-
quires asymmetric binary attributes, where only the presence of the attribute
(value = 1) is important. For association problems, it is therefore necessary to
introduce one binary attribute for each categorical value, as in Table 2.6. If the

2.3 Data Preprocessing 59

number of resulting attributes is too large, then the techniques described below
can be used to reduce the number of categorical values before binarization.

Likewise, for association problems, it may be necessary to replace a single
binary attribute with two asymmetric binary attributes. Consider a binary
attribute that records a person’s gender, male or female. For traditional as-
sociation rule algorithms, this information needs to be transformed into two
asymmetric binary attributes, one that is a 1 only when the person is male
and one that is a 1 only when the person is female. (For asymmetric binary
attributes, the information representation is somewhat inefficient in that two
bits of storage are required to represent each bit of information.)

Discretization of Continuous Attributes

Discretization is typically applied to attributes that are used in classification
or association analysis. In general, the best discretization depends on the algo-
rithm being used, as well as the other attributes being considered. Typically,
however, the discretization of an attribute is considered in isolation.

Transformation of a continuous attribute to a categorical attribute involves
two subtasks: deciding how many categories to have and determining how to
map the values of the continuous attribute to these categories. In the first step,
after the values of the continuous attribute are sorted, they are then divided
into n intervals by specifying n — 1 split points. In the second, rather trivial
step, all the values in one interval are mapped to the same categorical value.
Therefore, the problem of discretization is one of deciding how many split
points to choose and where to place them. The result can be represented
either as a set of intervals {(zg,z1], (z1,Z2],.. ., (Tn—-1,Zx)}, Where zo and z,
may be +0o or —oo, respectively, or equivalently, as a series of inequalities
g € WYy o o= 20 LBy,

Unsupervised Discretization A basic distinction between discretization
methods for classification is whether class information is used (supervised) or
not (unsupervised). If class information is not used, then relatively simple
approaches are common. For instance, the equal width approach divides the
range of the attribute into a user-specified number of intervals each having the
same width. Such an approach can be badly affected by outliers, and for that
reason, an equal frequency (equal depth) approach, which tries to put
the same number of objects into each interval, is often preferred. As another
example of unsupervised discretization, a clustering method, such as K-means
(see Chapter 8), can also be used. Finally, visually inspecting the data can
sometimes be an effective approach.

60 Chapter 2 Data

Example 2.12 (Discretization Techniques). This example demonstrates
how these approaches work on an actual data set. Figure 2.13(a) shows data
points belonging to four different groups, along with two outliers—the large
dots on either end. The techniques of the previous paragraph were applied
to discretize the z values of these data points into four categorical values.
(Points in the data set have a random y component to make it easy to see
how many points are in each group.) Visually inspecting the data works quite
well, but is not automatic, and thus, we focus on the other three approaches.
The split points produced by the techniques equal width, equal frequency, and
K-means are shown in Figures 2.13(b), 2.13(c), and 2.13(d), respectively. The
split points are represented as dashed lines. If we measure the performance of
a discretization technique by the extent to which different objects in different
groups are assigned the same categorical value, then X-means performs best,
followed by equal frequency, and finally, equal width. =

Supervised Discretization The discretization methods described above
are usually better than no discretization, but keeping the end purpose in mind
and using additional information (class labels) often produces better results.
This should not be surprising, since an interval constructed with no knowledge
of class labels often contains a mixture of class labels. A conceptually simple
approach is to place the splits in a way that maximizes the purity of the
intervals. In practice, however, such an approach requires potentially arbitrary
decisions about the purity of an interval and the minimum size of an interval.
To overcome such concerns, some statistically based approaches start with each
attribute value as a separate interval and create larger intervals by merging
adjacent intervals that are similar according to a statistical test. Entropy-
based approaches are one of the most promising approaches to discretization,
and a simple approach based on entropy will be presented.

First, it is necessary to define entropy. Let k be the number of different
class labels, m; be the number of values in the 7*? interval of a partition, and
m;; be the number of values of class j in interval i. Then the entropy e; of the
it* interval is given by the equation

k
ei =) pijlogy pij,
i=1
where pi; = mjj/m; is the probability (fraction of values) of class 7 in the i

interval. The total entropy, e, of the partition is the weighted average of the
individual interval entropies, i.e.,

2.3 Data Preprocessing 61
g :. o T -_;'- . | _'_;'
"'-J. BN .-.‘. i :‘ LA 4 s
S I o s - g o
A ¥ * g W B 3 Yo
I L - N e & i (v
DELICEN . vl 3 i ‘r.._
ki . e o L S
o, o B s e 1
. B s ot - . . RO % '
e e N s W, g4 %A ‘i
CRCE < A '.l" M
..’:- . r. & '_.-'. -.4._\ . _" 1- _..‘":-
& g - " e 2 te o8
¥ O L ()) -
5 e tis.s v ot
Lo 0 . w7 .. . [a
. = o B 2 £y "
: N " ' 1 § fl H s e A T .
0 5 10 15 20 0 5 10 15 20
(a) Original data. (b) Equal width discretization.
- : e o v
: v . L .
i of i RTPR e
g -0 g a Tty =g 1 o
A] o 1. . ¥ ,:- [] % .
S s Lt s W e bk
ek v Vg ", TS T e L oy
o s b]
= ‘:. Yol e ‘_'.. P orea R
L & 2 ot |
* L o = Heati b3 . *
"l i R ety :-_ e [
-I:']:. i : . 1:." .-l... H : A : . : ' -
- v w o
s S5 o L P
R ~hal e fen) y Sha
e, [N a . S HER 1w
o b 3" ol Loy 1 ::""
L i PR W il 3 v " Loz 1 3 ' k3)
0 5 10 15 20 0 5 10 15 20

{¢) Equal frequency discretization.

(d) K-means discretization.

Figure 2.13. Different discretization lechniques.

n
€= Z Wi€i,
i=1
where m is the number of values, w; = m;/m is the fraction of values in the
i*" interval, and n is the number of intervals. Intuitively, the entropy of an
interval is a measure of the purity of an interval. If an interval contains only
values of one class (is perfectly pure), then the entropy is 0 and it contributes

62 Chapter 2 Data

nothing to the overall entropy. If the classes of values in an interval occur
equally often (the interval is as impure as possible), then the entropy is a
maximuin.

A simple approach for partitioning a continuous attribute starts by bisect-
ing the initial values so that the resulting two intervals give minimum entropy.
This technique only needs to consider each value as a possible split point, be-
cause it is assumed that intervals contain ordered sets of values. The splitting
process is then repeated with another interval, typically choosing the interval
with the worst (highest) entropy, until a user-specified number of intervals is
reached, or a stopping criterion is satisfied.

Example 2.13 (Discretization of Two Attributes). This method was
used to independently discretize both the z and y attributes of the two-
dimensional data shown in Figure 2.14. In the first discretization, shown in
Figure 2.14(a), the © and y attributes were both split into three intervals. (The
dashed lines indicate the split points.) In the second discretization, shown in
Figure 2.14(b), the z and y attributes were both split into five intervals. w

This simple example illustrates two aspects of discretization. First, in two
dimensions, the classes of points are well separated, but in one dimension, this
is not so. In general, discretizing each attribute separately often guarantees
suboptimal results. Second, five intervals work better than three, but six
intervals do not improve the discretization much, at least in terms of entropy.
(Entropy values and results for six intervals are not shown.) Consequently,
it is desirable to have a stopping criterion that automatically finds the right
number of partitions.

Categorical Attributes with Too Many Values

Categorical attributes can sometimes have too many values. If the categorical
attribute is an ordinal attribute, then techniques similar to those for con-
tinuous attributes can be used to reduce the number of categories. If the
categorical attribute is nominal, however, then other approaches are needed.
Consider a university that has a large number of departments. Consequently,
a department name attribute might have dozens of different values. In this
situation, we could use our knowledge of the relationships among different
departments to combine departments into larger groups, such as engineering,
social sciences, or biological sciences. If domain knowledge does not serve as
a useful guide or such an approach results in poor classification performance,
then it is necessary to use a more empirical approach, such as grouping values

2.3 Data Preprocessing 63

5 H ooy a 1 5 18 i Ly R =
:Du ‘nponu B 1 |°n ‘:ﬂ4 =‘I : 1
J‘:ﬁe a0 f "% n":u E -i:_ nnnolv"u_::_:l i_
;s o o g W F s, Py Y e L 7 IR, -
‘ ‘ri’e O ;1’% F*?i‘f?“ |e$u';il%;:-u:v: f"?a%?g
: o
Rl e B 19°% T e g S M%E
3 PO o do P S a [IR 1 11 WG B D R Lygde 2o
| ! 1280 %2 | 1 i 12 5o G
= 1 e?& > | | i go 0
i it | | i | Yook
o
o L it A iR N S s A
L I o ¢ | i |
@ o 1 . & 1 | |
2 0g%tm .----——.:rJ _____ :P cglml 1 __{_ " —
T °E‘g,:&ud§;n}~ s FEms s Tt
o w{ & oou%u 33{ 3% = il 5 fn.:"n 2% %l
ég;\:ib{ Bt ol R’g;::: ﬂa g; "03“’, ﬂ Hiid : q&n?%ﬂ;; qg ;
% 1 2 a 4 5 % 1 2 3 4 5
X X
(a) Three intervals (b) Five intervals

Figure 2.14. Discrelizing = and y attributes for four groups (classes) of points.

together only if such a grouping results in improved classification accuracy or
achieves some other data mining objective.

2.3.7 Variable Transformation

A variable transformation refers to a transformation that is applied to all
the values of a variable. (We use the term variable instead of attribute to ad-
here to common usage, although we will also refer to attribute transformation
on occasion.) In other words, for each object, the transformation is applied to
the value of the variable for that object. For example, if only the magnitude
of a variable is important, then the values of the variable can be transformed
by taking the absolute value. In the following section, we discuss two impor-
tant types of variable transformations: simple functional transformations and
normalization.

Simple Functions

For this type of variable transformation, a simple mathematical function is
applied to each value individually. If z is a variable, then examples of such
transformations include z*, log z, €%, /T, 1/z, sinz, or |z|. In statistics, vari-
able transformations, especially sqri, log, and 1/z, are often used to transform
data that does not have a Gaussian (normal) distribution into data that does.
While this can be important, other reasons often take precedence in data min-

o

64 Chapter 2 Data

ing. Suppose the variable of interest is the number of data bytes in a session,
and the number of bytes ranges from 1 to 1 billion. This is a huge range, and
it may be advantageous to compress it by using a log), transformation. In
this case, sessions that transferred 108 and 109 bytes would be more similar
to each other than sessions that transferred 10 and 1000 bytes (9 - 8 = 1
versus 3 — 1 = 2). For some applications, such as network intrusion detection,
this may be what is desired, since the first two sessions most likely represent
transfers of large files, while the latter two sessions could be two quite distinct
types of sessions.

Variable transformations should be applied with caution since they change
the nature of the data. While this is what is desired, there can be problems
if the nature of the transformation is not fully appreciated. For instance, the
transformation 1/z reduces the magnitude of values that are 1 or larger, but
increases the magnitude of values between 0 and 1. To illustrate, the values
{1,2,3} go to {1,%,%], but the values {1,%,% go to {1,2,3}. Thus, for
all sets of values, the transformation 1/z reverses the order. To help clarify
the effect of a transformation, it is important to ask questions such as the
following: Does the order need to be maintained? Does the transformation
apply to all values, especially negative values and 0?7 What is the effect of
the transformation on the values between 0 and 17 Exercise 17 on page 92
explores other aspects of variable transformation.

Normalization or Standardization

Another common type of variable transformation is the standardization or
normalization of a variable. (In the data mining community the terms are
often used interchangeably. In statistics, however, the term normalization can
be confused with the transformations used for making a variable normal, i.e.,
Gaussian.) The goal of standardization or normalization is to make an en-
tire set of values have a particular property. A traditional example is that
of “standardizing a variable” in statistics. If T is the mean (average) of the
attribute values and s, is their standard deviation, then the transformation
2! = (z — I)/s, creates a new variable that has a mean of 0 and a standard
deviation of 1. If different variables are to be combined in some way, then
such a transformation is often necessary to avoid having a variable with large
values dominate the results of the calculation. To illustrate, consider compar-
ing people based on two variables: age and income. For any two people, the
difference in income will likely be much higher in absolute terms (hundreds or
thousands of dollars) than the difference in age (less than 150). If the differ-
ences in the range of values of age and income are not taken into account, then

2.4 Measures of Similarity and Dissimilarity 65

the comparison between people will be dominated by differences in income. In
particular, if the similarity or dissimilarity of two people is calculated using the
similarity or dissimilarity measures defined later in this chapter, then in many
cases, such as that of Euclidean distance, the income values will dominate the
calculation.

The mean and standard deviation are strongly affected by outliers, so the
above transformation is often modified. First, the mean is replaced by the
median, i.e., the middle value. Second, the standard deviation is replaced by
the absolute standard deviation. Specifically, if z is a variable, then the
absolute standard deviation of z is given by o4 = 3 7o, |z — pf, where z; is
the 7" value of the variable, m is the number of objects, and p is either the
mean or median, Other approaches for computing estimates of the location
(center) and spread of a set of values in the presence of outliers are described
in Sections 3.2.3 and 3.2.4, respectively. These measures can also be used to
define a standardization transformation.

2.4 Measures of Similarity and Dissimilarity

Similarity and dissimilarity are important because they are used by a number
of data mining techniques, such as clustering, nearest neighbor classification,
and anomaly detection. In many cases, the initial data set is not needed once
these similarities or dissimilarities have been computed. Such approaches can
be viewed as transforming the data to a similarity (dissimilarity) space and
then performing the analysis.

We begin with a discussion of the basics: high-level definitions of similarity
and dissimilarity, and a discussion of how they are related. For convenience,
the term proximity is used to refer to either similarity or dissimilarity. Since
the proximity between two objects is a function of the proximity between the
corresponding attributes of the two objects, we first describe how to measure
the proximity between objects having only one simple attribute, and then
consider proximity measures for objects with multiple attributes. This in-
cludes measures such as correlation and Euclidean distance, which are useful
for dense data such as time series or two-dimensional points, as well as the
Jaccard and cosine similarity measures, which are useful for sparse data like
documents. Next, we consider several important issues concerning proximity
measures. The section concludes with a brief discussion of how to select the
right proximity measure.

66 Chapter 2 Data

2.4.1 DBasics
Definitions

Informally, the similarity between two objects is a numerical measure of the
degree to which the two objects are alike. Consequently, similarities are higher
for pairs of objects that are more alike. Similarities are usually non-negative
and are often between 0 (no similarity) and 1 (complete similarity).

The dissimilarity between two objects is a numerical measure of the de-
gree to which the two objects are different. Dissimilarities are lower for more
similar pairs of objects. Frequently, the term distance is used as a synonym
for dissimilarity, although, as we shall see, distance is often used to refer to
a special class of dissimilarities. Dissimilarities sometimes fall in the interval
[0,1], but it is also common for them to range from 0 to co.

Transformations

Transformations are often applied to convert a similarity to a dissimilarity,
or vice versa, or to transform a proximity measure to fall within a particular
range, such as [0,1]. For instance, we may have similarities that range from 1
to 10, but the particular algorithm or software package that we want to use
may be designed to only work with dissimilarities, or it may only work with
similarities in the interval [0,1]. We discuss these issues here because we will
employ such transformations later in our discussion of proximity. In addi-
tion, these issues are relatively independent of the details of specific proximity
measures.

Frequently, proximity measures, especially similarities, are defined or trans-
formed to have values in the interval [0,1]. Informally, the motivation for this
is to use a scale in which a proximity value indicates the fraction of similarity
(or dissimilarity) between two objects. Such a transformation is often rela-
tively straightforward. For example, if the similarities between objects range
from 1 (not at all similar) to 10 (completely similar), we can make them fall
within the range [0, 1] by using the transformation s’ = (s —1)/9, where s and
s' are the original and new similarity values, respectively. In the more general
case, the transformation of similarities to the interval [0,1] is given by the
expression s' = (s —man_s)/(maz_s — min_s), where maz_s and min_s are the
maximum and minimum similarity values, respectively. Likewise, dissimilarity
measures with a finite range can be mapped to the interval [0,1] by using the
formula d' = (d — min_d)/{maz_.d — min_d).

There can be various complications in mapping proximity measures to the
interval [0, 1], however. If, for example, the proximity measure originally takes

2.4 Measures of Similarity and Dissimilarity 67

values in the interval [0,00], then a non-linear transformation is needed and
values will not have the same relationship to one another on the new scale.
Consider the transformation d' = d/(1 + d) for a dissimilarity measure that
ranges from 0 to co. The dissimilarities 0, 0.5, 2, 10, 100, and 1000 will be
transformed into the new dissimilarities 0, 0.33, 0.67, 0.90, 0.99, and 0.999,
respectively. Larger values on the original dissimilarity scale are compressed
into the range of values near 1, but whether or not this is desirable depends on
the application. Another complication is that the meaning of the proximity
measure may be changed. For example, correlation, which is discussed later,
is a measure of similarity that takes values in the interval [-1,1]. Mapping
these values to the interval [0,1] by taking the absolute value loses information
about the sign, which can be important in some applications. See Exercise 22
on page 94.

Transforming similarities to dissimilarities and vice versa is also relatively
straightforward, although we again face the issues of preserving meaning and
changing a linear scale into a non-linear scale. If the similarity (or dissimilar-
ity) falls in the interval [0,1], then the dissimilarity can be defined asd =1—s
(s = 1 —d). Another simple approach is to define similarity as the nega-
tive of the dissimilarity (or vice versa). To illustrate, the dissimilarities 0, 1,
10, and 100 can be transformed into the similarities 0, —1, —10, and —100,
respectively.

The similarities resulting from the negation transformation are not re-
stricted to the range [0, 1], but if that is desired, then transformations such as
5= ﬁ. s=e % ors=1- ﬁ% can be used. For the transformation
= E—%= the dissimilarities 0, 1, 10, 100 are transformed into 1, 0.5, 0.09, 0.01,
respectively. For s = e~%, they become 1.00, 0.37, 0.00, 0.00, respectively,
while for s =1 — ;ﬂ%‘iﬁ they become 1.00, 0.99, 0.00, 0.00, respectively.
In this discussion, we have focused on converting dissimilarities to similarities.
Conversion in the opposite direction is considered in Exercise 23 on page 94.

In general, any monotonic decreasing function can be used to convert dis-
similarities to similarities, or vice versa. Of course, other factors also must
be considered when transforming similarities to dissimilarities, or vice versa,
or when transforming the values of a proximity measure to a new scale. We
have mentioned issues related to preserving meaning, distortion of scale, and
requirements of data analysis tools, but this list is certainly not exhaustive.

2.4.2 Similarity and Dissimilarity between Simple Attributes

The proximity of objects with a number of attributes is typically defined by
combining the proximities of individual attributes, and thus, we first discuss

68 Chapter 2 Data

proximity between cbjects having a single attribute. Consider objects de-
scribed by one nominal attribute. What would it mean for two such objects
to be similar? Since nominal attributes only convey information about the
distinctness of objects, all we can say is that two objects either have the same
value or they do not. Hence, in this case similarity is traditionally defined as 1
if attribute values match, and as 0 otherwise. A dissimilarity would be defined
in the opposite way: 0 if the attribute values match, and 1 if they do not.

For objects with a single ordinal attribute, the situation is more compli-
cated because information about order should be taken into account. Consider
an attribute that measures the quality of a product, e.g., a candy bar, on the
scale {poor, fair, OK, good, wonderful}. It would seem reasonable that a prod-
uct, P1, which is rated wonderful, would be closer to a product P2, which is
rated good, than it would be to a product P3, which is rated OK. To make this
observation quantitative, the values of the ordinal attribute are often mapped
to successive integers, beginning at 0 or 1, e.g., {poor=0, fair=1, OK=2,
good=3, wonderful=4}. Then, d(P1,P2) =3 -2 =1 or, if we want the dis-
similarity to fall between 0 and 1, d(P1,P2) = '3%-2- = 0.25. A similarity for
ordinal attributes can then be defined as s = 1 — d.

This definition of similarity (dissimilarity) for an ordinal attribute should
make the reader a bit uneasy since this assumes equal intervals, and this is not
so. Otherwise, we would have an interval or ratio attribute. Is the difference
between the values fair and good really the same as that between the values
OK and wonderful? Probably not, but in practice, our options are limited,
and in the absence of more information, this is the standard approach for
defining proximity between ordinal attributes.

For interval or ratio attributes, the natural measure of dissimilarity be-
tween two objects is the absolute difference of their values. For example, we
might compare our current weight and our weight a year ago by saying “I am
ten pounds heavier.” In cases such as these, the dissimilarities typically range
from 0 to oo, rather than from 0 to 1. The similarity of interval or ratio at-
tributes is typically expressed by transforming a similarity into a dissimilarity,
as previously described.

Table 2.7 summarizes this discussion. In this table, z and y are two objects
that have one attribute of the indicated type. Also, d(z,y) and s(z,y) are the
dissimilarity and similarity between z and y, respectively. Other approaches
are possible; these are the most common ones.

The following two sections consider more complicated measures of prox-
imity between objects that involve multiple attributes: (1) dissimilarities be-
tween data objects and (2) similarities between data objects. This division

2.4 Measures of Similarity and Dissimilarity 69

Table 2.7. Similarity and dissimilarity for simple attributes

[CAttribute Dissimilarity Similarity
Type
’ _ |0 ifz=y _J 1 ifz=y
Nosinal d_{l ifx#y 3_{0 fa#y
d=lzr-y|/(n-1)
Ordinal (values mapped to integers Oton-1, | s=1-d
where n is the number of values)
Interval or Ratio | d = |z — y| s=—d,s=q15,8=¢7",
g=1— d—min.d
maz_d=1min_d

allows us to more naturally display the underlying motivations for employing
various proximity measures. We emphasize, however, that similarities can be
transformed into dissimilarities and vice versa using the approaches described
earlier.

2.4.3 Dissimilarities between Data Objects

In this section, we discuss various kinds of dissimilarities. We begin with a
discussion of distances, which are dissimilarities with certain properties, and
then provide examples of more general kinds of dissimilarities.

Distances

We first present some examples, and then offer a more formal description of
distances in terms of the properties common to all distances. The Euclidean
distance, d, between two points, x and y, in one-, two-, three-, or higher-
dimensional space, is given by the following familiar formula:

n

>z — w2, (2.1)

k=1

dix,y) =

where n is the number of dimensions and zx and y are, respectively, the k**
attributes (components) of = and y. We illustrate this formula with Figure
2.15 and Tables 2.8 and 2.9, which show a set of points, the = and y coordinates
of these points, and the distance matrix containing the pairwise distances
of these points.

70 Chapter 2 Data

The Euclidean distance measure given in Equation 2.1 is generalized by
the Minkowski distance metric shown in Equation 2.2,

n 1/r
d(x,y) = (Z |2k — ykr) ; (22)
k=1

where 7 is a parameter. The following are the three most common examples
of Minkowski distances.

e r = 1. City block (Manhattan, taxicab, L; norm) distance. A common
example is the Hamming distance, which is the number of bits that
are different between two objects that have only binary attributes, i.e.,
between two binary vectors.

e 7 =2. Euclidean distance (L norm).

e 7=00. Supremum (Ljaz or Lo norm) distance. This is the maximum
difference between any attribute of the objects. More formally, the Ly,
distance is defined by Equation 2.3

n 1/r
d(x,y) = lim (Z |z — ykr) : (2.3)
k=1

The r parameter should not be confused with the number of dimensions (at-
tributes) n. The Euclidean, Manhattan, and supremum distances are defined
for all values of n: 1,2,3,..., and specify different ways of combining the
differences in each dimension (attribute) into an overall distance.

Tables 2.10 and 2.11, respectively, give the proximity matrices for the L;
and Lo distances using data from Table 2.8. Notice that all these distance
matrices are symmetric; i.e., the ij*" entry is the same as the ji*" entry. In
Table 2.9, for instance, the fourth row of the first column and the fourth
column of the first row both contain the value 5.1.

Distances, such as the Euclidean distance, have some well-known proper-
ties. If d(x,y) is the distance between two points, x and y, then the following
properties hold.

1. Positivity

(a) d(x,x) >0 for all x and y,
(b) d(x,y)=0only if x =y.

l
i

b s i

i
!

|

2.4 Measures of Similarity and Dissimilarity 71

3
29 pi
y p3 p4
1 ® ®
p2
0 T = T T T 1
1 2 3 4 & 6

X

Figure 2,15. Four two-dimensional points.

Table 2.8. = and y coordinates of four points. Table 2.9. Euclidean distance matrix for Table 2.8.

point | z coordinate | y coordinate pl | p2 | p3 | p4
pl 0 2 pl |00 | 28 ([32]51
p2 2 0 p2 (2800|1432
p3 3 1 P3| 32| 14 |00] 20
pd 5 1 pd [61]32(20]00

Table 2.10. L, distance matrix for Table 2.8. Tablx_a 2.11. L, distance matrix for Table 2.8.

Ly | pl | p2 | p3 | p4 Lo | Pl | p2 | p3 | p4
pl |00 40|40 6.0 pl [00[20[30]50
p2 |40 |00 |20 4.0 p2 [20[00]10]30
p3 |40 [20[0020 p3 [30|10] 0020
pd | 6.0 | 40 | 20| 0.0 pd |5.0[30[20]00

2. Symmetry
d(x,y) = d(y,x) for all x and y.

3. Triangle Inequality
d(x,z) < d(x,y) + d(y,z) for all points x, y, and z.

Measures that satisfy all three properties are known as metrics. Some
people only use the term distance for dissimilarity measures that satisfy these
properties, but that practice is often violated. The three properties described
here are useful, as well as mathematically pleasing. Also, if the triangle in-
equality holds, then this property can be used to increase the efficiency of tech-
niques (including clustering) that depend on distances possessing this property.
(See Exercise 25.) Nonetheless, many dissimilarities do not satisfy one or more
of the metric properties. We give two examples of such measures.

72 Chapter 2 Data

Example 2.14 {(Non-metric Dissimilarities: Set Differences). This ex-
ample is based on the notion ol the difference of two sets, as defined in set
theory. Given two sets A and B, A — B is the set of elements of A that are
not in B. For example, if A= {1,2,3,4} and B = {2,3,4}, then A— B = {1}
and B — A = {}, the empty set. We can define the distance d between two
sets A and B as d(A, B) = size(A — B), where size is a function returning
the number of elements in a set. This distance measure, which is an integer
value greater than or equal to 0, does not satisfy the second part of the pos-
itivity property, the symmetry property, or the triangle inequality. However,
these properties can be made to hold if the dissimilarity measure is modified
as follows: d(A, B) = size(A — B) + size(B — A). See Exercise 21 on page
94, m

Example 2.15 (Non-metric Dissimilarities: Time). This example gives
a more everyday example of a dissimilarity measure that is not a metric, but
that is still useful. Define a measure of the distance between times of the day

as follows:
to—1 ift; <ty
d(ty, t2) = - . s

(t1,22) { 24+(i2—t1) ift; >ty (24)
To illustrate, d(1PM, 2PM) = 1 hour, while d(2PM, 1PM) = 23 hours.
Such a definition would make sense, for example, when answering the question:
“If an event occurs at 1PM every day, and it is now 2PM, how long do [have
to wait for that event to occur again?” =

2.4.4 Similarities between Data Objects

For similarities, the triangle inequality (or the analogous property) typically
does not hold, but symmetry and positivity typically do. To be explicit, if
5(x,y) is the similarity between points x and y, then the typical properties of
similarities are the following:

Los(x,y)=1lonlyifx=y. (0<s<1)
2. s(x,y) = s{y,x) for all x and y. (Symmetry)

There is no general analog of the triangle inequality for similarity mea-
sures. It is sometimes possible, however, to show that a similarity measure
can easily be converted to a metric distance. The cosine and Jaccard similarity
measures, which are discussed shortly, are two examples. Also, for specific sim-
ilarity measures, it is possible to derive mathematical bounds on the similarity
between two objects that are similar in spirit to the triangle inequality.

2.4 Measures of Similarity and Dissimilarity 73

Example 2.16 (A Non-symmetric Similarity Measure). Consider an
experiment in which people are asked to classify a small set of characters as
they flash on a screen. The confusion matrix for this experiment records how
often each character is classified as itself, and how often each is classified as
another character. For instance, suppose that “0" appeared 200 times and was
classified as a “0" 160 times, but as an “o” 40 times. Likewise, suppose that
‘0" appeared 200 times and was classified as an “0” 170 times, but as “0" only
30 times. If we take these counts as a measure of the similarity between two
characters, then we have a similarity measure, but one that is not symmetric.
In such situations, the similarity measure is often made symmetric by setting
s'(x,y) = §'(y,x) = (s(x,y)+s(y,x))/2, where s’ indicates the new similarity
measure. =

2.4.5 Examples of Proximity Measures

This section provides specific examples of some similarity and dissimilarity
measures.

Similarity Measures for Binary Data

Similarity measures between objects that contain only binary attributes are
called similarity coefficients, and typically have values between 0 and 1. A
value of 1 indicates that the two objects are completely similar, while a value
of 0 indicates that the objects are not at all similar. There are many rationales
for why one coefficient is better than another in specific instances.

Let x and y be two objects that consist of n binary attributes. The com-
parison of two such objects, i.e., two binary vectors, leads to the following four
quantities (frequencies):

foo = the number of attributes where x is 0 and y is 0
for = the number of attributes where x is 0 and y is 1
f10 = the number of attributes where x is 1 and y is 0
f11 = the number of attributes where x is 1 and y is 1

Simple Matching Coefficient One commonly used similarity coefficient is
the simple matching coefficient (SMC), which is defined as

number of matching attribute values S+ foo

SR number of attributes " for+ fiot+ fu+ foo

(2.5)

74 Chapter 2 Data

This measure counts both presences and absences equally. Consequently, the
SMC could be used to find students who had answered questions similarly on
a test that consisted only of true/false questions.

Jaccard Coefficient Suppose that x and y are data objects that represent
two rows (two transactions) of a transaction matrix (see Section 2.1.2). If each
asymmetric binary attribute corresponds to an item in a store, then a 1 indi-
cates that the item was purchased, while a 0 indicates that the product was not
purchased. Since the number of products not purchased by any customer far
outnumbers the number of products that were purchased, a similarity measure
such as SMC would say that all transactions are very similar. As a result, the
Jaccard coefficient is frequently used to handle objects consisting of asymmet-
ric binary attributes. The Jaccard coefficient, which is often symbolized by
J, is given by the following equation:

_ number of matching presences fu

= = : 2.6
number of attributes not involved in 00 matches fo1 + fio + /11 L

Example 2.17 (The SMC and Jaccard Similarity Coefficients). To
illustrate the difference between these two similarity measures, we calculate
SMC and J for the following two binary vectors.

x=(1,0,0,0,0,0,0,0,0,0)
¥y =1(0,0,0,0,0,0,1,0,0,1)

for =2 the number of attributes where x was 0 and y was 1
fio =1 the number of attributes where x was 1 and y was 0
foo =7 the number of attributes where x was 0 and y was 0
fi1 =0 the number of attributes where x was 1 and y was 1

11+ - 047 =07
o1+ fio+hiitfoo T 2H1H04T T

SMC =

J 0]

= W, - e B
Jor+hotfna 2+1+0

Cosine Similarity

Documents are often represented as vectors, where each attribute represents
the frequency with which a particular term (word) occurs in the document. It
is more complicated than this, of course, since certain common words are ig-

2.4 Measures of Similarity and Dissimilarity 75

nored and various processing techniques are used to account for different forms
of the same word, differing document lengths, and different word frequencies.

Even though documents have thousands or tens of thousands of attributes
(terms), each document is sparse since it has relatively few non-zero attributes.
(The normalizations used for documents do not create a non-zero entry where
there was a zero entry; i.e., they preserve sparsity.) Thus, as with transaction
data, similarity should not depend on the number of shared 0 values since
any two documents are likely to “not contain” many of the same words, and
therefore, if 0-0 matches are counted, most documents will be highly similar to
most other documents. Therefore, a similarity measure for documents needs
to ignores 0-0 matches like the Jaccard measure, but also must be able to
handle non-binary vectors. The cosine similarity, defined next, is one of the
most common measure of document similarity. If x and y are two document
vectors, then

cos(x,¥) = (2.7)

Xy
[l 1l
where - indicates the vector dot product, x -y = Y p_; Tk¥k, and [|x|| is the
length of vector x, ||x|| = /Y 5y 22 = VX x.

Example 2.18 (Cosine Similarity of Two Document Vectors). This
example calculates the cosine similarity for the following two data objects,
which might represent document vectors:

x = (3,2,0,5,0,0,0,2,0,0)
y =(1,0,0,0,0,0,0,1,0,2)

X y=3%142+04+0+0+5+0+0+040+*04+0+0+2+14+0+0+0*2=5
x| =v3+3+2+2+0+0+5*5+0+0+0+0+0+0+2x2+0+x0+0+0=6.48
lyl=vI*1+0+0+0+0+0%0+0+0+0+0+0+0+1*1+0%042+2=224
cos(x,y) = 0.31

As indicated by Figure 2.16, cosine similarity really is a measure of the
(cosine of the) angle between x and y. Thus, if the cosine similarity is 1, the
angle between x and y is 0°, and x and y are the same except for magnitude
(length). If the cosine similarity is 0, then the angle between x and y is 90°,
and they do not share any terms (words).

76 Chapter 2 Data

Figure 2.16. Geometric illustration of the cosine measure.

Equation 2.7 can be written as Equation 2.8.

X

x =—-L=x'i' /
cosCaY) = I Tyl = XY 28)

where x' = x/||x|| and y’ = y/|ly||. Dividing x and y by their lengths normal-
izes them to have a length of 1. This means that cosine similarity does not take
the magnitude of the two data objects into account when computing similarity.
(Euclidean distance might be a better choice when magnitude is important.)
For vectors with a length of 1, the cosine measure can be calculated by taking
a simple dot product. Consequently, when many cosine similarities between
objects are being computed, normalizing the objects to have unit length can
reduce the time required.

Extended Jaccard Coefficient (Tanimoto Coefficient)

The extended Jaccard coefficient can be used for document data and that re-
duces to the Jaccard coefficient in the case of binary attributes. The extended
Jaccard coefficient is also known as the Tanimoto coefficient. (However, there
is another coefficient that is also known as the Tanimoto coefficient.) This co-
efficient, which we shall represent as EJ, is defined by the following equation:

st - B
B = R ==y i

Correlation

The correlation between two data objects that have binary or continuous vari-
ables is a measure of the linear relationship between the attributes of the
objects. (The calculation of correlation between attributes, which is more
common, can be defined similarly.) More precisely, Pearson’s correlation

2.4 Measures of Similarity and Dissimilarity 77

coefficient between two data objects, x and y, is defined by the following
equation:

covariance(x, y) Sy
corr(x,y) = =
(x,¥) standard_deviation(x) * standard_deviation(y) sy s, (2.10)

where we are using the following standard statistical notation and definitions:

) 1 T
covariance(X,y) = sgy = = Z(a‘k - Z)(yk ~ 7) (2.11)
k=1

standard_deviation(x) = s, = - Z(xk -3)2

standard_deviation(y) =

sl
Il

1 T
- E T is the mean of x
n

k=1

<
Il

1 n
= Zyk is the mean of y
k=1

Example 2.19 (Perfect Correlation). Correlation is always in the range
—1to 1. A correlation of 1 (—1) means that x and y have a perfect positive
(negative) linear relationship; that is, =y = ayk + b, where a and b are con-
stants. The following two sets of values for x and y indicate cases where the
correlation is —1 and +1, respectively. In the first case, the means of x and y
were chosen to be 0, for simplicity.

x=(=3, 6,0, 3,-6)
y:(l|"2: D|_]'| 2)
x = (3,6,0,3,6)
y:(1|2:0|112)

78 Chapter 2 Data

Figure 2.17. Scatler plots illustrating correlations from —1 to 1.

Example 2.20 (Non-linear Relationships). If the correlation is 0, then
there is no linear relationship between the attributes of the two data objects.
However, non-linear relationships may still exist. In the following example,
T = Y2, but their correlation is 0.

=(-3,-2,-1,0, 1, 2, 3)
(9, 4, 1,0,1,4,9)

Il

X
¥

]
Example 2.21 (Visualizing Correlation). It is also easy to judge the cor-
relation between two data objects x and y by plotting pairs of corresponding
attribute values. Figure 2.17 shows a number of these plots when x and y
have 30 attributes and the values of these attributes are randomly generated
(with a normal distribution) so that the correlation of x and y ranges from —1
to 1. Each circle in a plot represents one of the 30 attributes; its z coordinate
is the value of one of the attributes for x, while its y coordinate is the value
of the same atiribute for y.]

If we transform x and y by subtracting off their means and then normaliz-
ing them so that their lengths are 1, then their correlation can be calculated by

2.4 Measures of Similarity and Dissimilarity 79

taking the dot product. Notice that this is not the same as the standardization
used in other contexts, where we make the transformations, zj = (zx — T)/s:
and i = (yx — 7)/sy-

Bregman Divergence® This section provides a brief description of Breg-
man divergences, which are a family of proximity functions that share some
common properties. As a result, it is possible to construct general data min-
ing algorithms, such as clustering algorithms, that work with any Bregman
divergence. A concrete example is the K-means clustering algorithm (Section
8.2). Note that this section requires knowledge of vector calculus.

Bregman divergences are loss or distortion functions. To understand the
idea of a loss function, consider the following. Let x and y be two points, where
y is regarded as the original point and x is some distortion or approximation
of it. For example, x may be a point that was generated, for example, by
adding random noise to y. The goal is to measure the resulting distortion or
loss that results if y is approximated by x. Of course, the more similar x and
y are, the smaller the loss or distortion. Thus, Bregman divergences can be
used as dissimilarity functions.

More formally, we have the following definition.

Definition 2.6 (Bregman Divergence). Given a strictly convex function
¢ (with a few modest restrictions that are generally satisfied), the Bregman
divergence (loss function) D(x,y) generated by that function is given by the
following equation:

D(x,y) = ¢(x) — ¢(y) = (Vo(¥), (x — y)) (2.12)

where V¢(y) is the gradient of ¢ evaluated at y, x —y, is the vector difference
between x and y, and (Vé(y),(x — y)) is the inner product between V¢(x)
and (x —y). For points in Euclidean space, the inner product is just the dot
product.

D(x,y) can be written as D(x,y) = ¢(x) — L(x), where L{x) = ¢(y) +
(Vo(y), (x —y)) and represents the equation of a plane that is tangent to the
function ¢ at y. Using calculus terminology, L(x) is the linearization of ¢
around the point y and the Bregman divergence is just the difference between
a function and a linear approximation to that function. Different Bregman
divergences are obtained by using different choices for ¢.

Example 2.22. We provide a concrete example using squared Euclidean dis-
tance, but restrict ourselves to one dimension to simplify the mathematics. Let

a1

80 Chapter 2 Data

z and y be real numbers and ¢(t) be the real valued function, ¢(t) = t?. In
that case, the gradient reduces to the derivative and the dot product reduces
to multiplication. Specifically, Equation 2.12 becomes Equation 2.13.

D(z,y) = z* =y’ - y(z -y} = (z — y)? (2.13)
The graph for this example, with y = 1, is shown in Figure 2.18. The
Bregman divergence is shown for two values of 2: © = 2 and z = 3. B

10

o) = 2
o i BOWOR W B), . |
=2x -1
D2, 1) 4
3 \ / '
2 /
1
0 I 1 1 1L Il]
—4 -3 -2 =1 0 1 2 < 4
X

Figure 2.18. lllustration of Bregman divergence.

2.4.6 Issues in Proximity Calculation

This section discusses several important issues related to proximity measures:
(1) how to handle the case in which attributes have different scales and/or are
correlated, (2) how to calculate proximity between objects that are composed
of different types of attributes, e.g., quantitative and qualitative, (3) and how
to handle proximity calculation when attributes have different weights; i.e.,
when not all attributes contribute equally to the proximity of objects.

2.4 Measures of Similarity and Dissimilarity 81

Standardization and Correlation for Distance Measures

An important issue with distance measures is how Lo handle the situation
when attributes do not have the same range of values. (This situation is
often described by saying that “the variables have different scales.”) Earlier,
Euclidean distance was used to measure the distance between people based on
two attributes: age and income. Unless these two attributes are standardized,
the distance between two people will be dominated by income.

A related issue is how to compute distance when there is correlation be-
tween some of the attributes, perhaps in addition to differences in the ranges of
values. A generalization of Fuclidean distance, the Mahalanobis distance,
is useful when attributes are correlated, have different ranges of values (dif-
ferent variances), and the distribution of the data is approximately Gaussian
(normal). Specifically, the Mahalanobis distance between two objects (vectors)
x and y is defined as

mahalanobis(x,y) = (x — y) T} (x — y)7, (2.14)

where £ is the inverse of the covariance matrix of the data. Note that the
covariance matrix ¥ is the matrix whose ij** entry is the covariance of the it
and j** attributes as defined by Equation 2.11.

Example 2.23. In Figure 2.19, there are 1000 points, whose = and ¥ at-
tributes have a correlation of 0.6. The distance between the two large points
at the opposite ends of the long axis of the ellipse is 14.7 in terms of Euclidean
distance, but only 6 with respect to Mahalanobis distance. In practice, com-
puting the Mahalanobis distance is expensive, but can be worthwhile for data
whose attributes are correlated. If the attributes are relatively uncorrelated,
but have different ranges, then standardizing the variables is sufficient.

Combining Similarities for Heterogeneous Attributes

The previous definitions of similarity were based on approaches that assumed
all the attributes were of the same type. A general approach is needed when the
attributes are of different types. One straightforward approach is to compute
the similarity between each attribute separately using Table 2.7, and then
combine these similarities using a method that results in a similarity between
0 and 1. Typically, the overall similarity is defined as the average of all the
individual attribute similarities.

82 Chapter 2 Data

-5 i i i I i i L i

Figure 2.19. Set of two-dimensional points. The Mahalanobis distance between the two points repre-
sented by large dots is 6; their Euclidean distance is 14.7.

Unfortunately, this approach does not work well if some of the attributes
are asymmetric attributes. For example, if all the attributes are asymmetric
binary attributes, then the similarity measure suggested previously reduces to
the simple matching coefficient, a measure that is not appropriate for asym-
metric binary attributes. The easiest way to fix this préblem is to omit asym-
metric attributes from the similarity calculation when their values are 0 for
both of the objects whose similarity is being computed. A similar approach
also works well for handling missing values.

In summary, Algorithm 2.1 is effective for computing an overall similar-
ity between two objects, x and y, with different types of attributes. This
procedure can be easily modified to work with dissimilarities.

Using Weights

In much of the previous discussion, all attributes were treated equally when
computing proximity. This is not desirable when some attributes are more im-
portant to the definition of proximity than others. To address these situations,

2.4 Measures of Similarity and Dissimilarity 83

Algorithm 2.1 Similarities of heterogeneous objects.

1: For the k" attribute, compute a similarity, sx(x,¥), in the range [0, 1].

2: Define an indicator variable, dx, for the k" attribute as follows:

0 if the kt* attribute is an asymmetric attribute and
both objects have a value of 0, or if one of the objects
has a missing value for the k" attribute

1 otherwise

3: Compute the overall similarity between the two objects using the following for-
mula:

O =

n
)]
similarity(x, y) = 2= (6) (2.15)

Zk:l b

the formulas for proximity can be modified by weighting the contribution of
each attribute.
If the weights wy sum to 1, then (2.15) becomes

k=1 WhOksk(x,y)

similarity(x,y) = = : (2.16)
) Zk:] ‘5#:
The definition of the Minkowski distance can also be modified as follows:
n]/7'
d(x,y) = (Zwkizk - yk|r) z (2.17)
k=1

2.4.7 Selecting the Right Proximity Measure

The following are a few general observations that may be helpful. First, the
type of proximity measure should fit the type of data. For many types of dense,
continuous data, metric distance measures such as Euclidean distance are of-
ten used. Proximity between continuous attributes is most often expressed
in terms of differences, and distance measures provide a well-defined way of
combining these differences into an overall proximity measure. Although at-
tributes can have different scales and be of differing importance, these issues
can often be dealt with as described earlier.

For sparse data, which often consists of asymmetric attributes, we typi-
cally employ similarity measures that ignore 0-0 matches. Conceptually, this
reflects the fact that, for a pair of complex objects, similarity depends on the
number of characteristics they both share, rather than the number of charac-
teristics they both lack. More specifically, for sparse, asymmetric data, most

84 Chapter 2 Data

objects have only a few of the characteristics described by the attributes, and
thus, are highly similar in terms of the characteristics they do not have. The
cosine, Jaccard, and extended Jaccard measures are appropriate for such data.

There are other characteristics of data vectors that may need to be consid-
ered. Suppose, for example, that we are interested in comparing time series.
If the magnitude of the time series is important (for example, each time series
represent total sales of the same organization for a different year), then we
could use Euclidean distance. If the time series represent different quantities
(for example, blood pressure and oxygen consumption), then we usually want
to determine if the time series have the same shape, not the same magnitude.
Correlation, which uses a built-in normalization that accounts for differences
in magnitude and level, would be more appropriate.

In some cases, transformation or normalization of the data is important
for obtaining a proper similarity measure since such transformations are not
always present in proximity measures. For instance, time series may have
trends or periodic patterns that significantly impact similarity. Also, a proper
computation of similarity may require that time lags be taken into account.
Finally, two time series may only be similar over specific periods of time. For
example, there is a strong relationship between temperature and the use of
natural gas, but only during the heating season.

Practical consideration can also be important. Sometimes, a one or more
proximity measures are already in use in a particular field, and thus, others
will have answered the question of which proximity measures should be used.
Other times, the software package or clustering algorithm being used may
drastically limit the choices. If efficiency is a concern, then we may want to
choose a proximity measure that has a property, such as the triangle inequality,
that can be used to reduce the number of proximity calculations. (See Exercise
25.)

However, if common practice or practical restrictions do not dictate a
choice, then the proper choice of a proximity measure can be a time-consuming
task that requires careful consideration of both domain knowledge and the
purpose for which the measure is being used. A number of different similarity
measures may need to be evaluated to see which ones produce results that
make the most sense.

2.5 Bibliographic Notes

1t is essential to understand the nature of the data that is being analyzed,
and at a fundamental level, this is the subject of measurement theory. In

2.5 Bibliographic Notes 85

particular, one of the initial motivations for defining types of attributes was
to be precise about which statistical operations were valid for what sorts of
data. We have presented the view of measurement theory that was initially
described in a classic paper by S. S. Stevens [79]. (Tables 2.2 and 2.3 are
derived from those presented by Stevens [80].) While this is the most common
view and is reasonably easy to understand and apply, there is, of course,
much more to measurement theory. An authoritative discussion can be found
in a three-volume series on the foundations of measurement theory [63, 69,
81]. Also of interest is a wide-ranging article by Hand [55], which discusses
measurement theory and statistics, and is accompanied by comments from
other researchers in the field. Finally, there are many books and articles that
describe measurement issues for particular areas of science and engineering.

Data quality is a broad subject that spans every discipline that uses data.
Discussions of precision, bias, accuracy, and significant figures can be found
in many introductory science, engineering, and statistics textbooks. The view
of data quality as “fitness for use” is explained in more detail in the book by
Redman [76]. Those interested in data quality may also be interested in MIT’s
Total Data Quality Management program (70, 84]. However, the knowledge
needed to deal with specific data quality issues in a particular domain is often
best obtained by investigating the data quality practices of researchers in that
field.

Aggregation is a less well-defined subject than many other preprocessing
tasks. However, aggregation is one of the main techniques used by the database
area of Online Analytical Processing (OLAP), which is discussed in Chapter 3.
There has also been relevant work in the area of symbolic data analysis (Bock
and Diday [47]). One of the goals in this area is to summarize traditional record
data in terms of symbolic data objects whose attributes are more complex than
traditional attributes. Specifically, these attributes can have values that are
sets of values (categories), intervals, or sets of values with weights (histograms).
Another goal of symbolic data analysis is to be able to perform clustering,
classification, and other kinds of data analysis on data that consists of symbolic
data objects.

Sampling is a subject that has been well studied in statistics and related
fields. Many introductory statistics books, such as the one by Lindgren [65),
have some discussion on sampling, and there are entire books devoted to the
subject, such as the classic text by Cochran [49]. A survey of sampling for
data mining is provided by Gu and Liu [54], while a survey of sampling for
databases is provided by Olken and Rotem [72]. There are a number of other
data mining and database-related sampling references that may be of interest,

86 Chapter 2 Data

including papers by Palmer and Faloutsos [74], Provost et al. [75], Toivonen
[82], and Zaki et al. [85].

In statistics, the traditional techniques that have been used for dimension-
ality reduction are multidimensional scaling (MDS) (Borg and Groenen [48],
Kruskal and Uslaner [64]) and principal component analysis (PCA) (Jolliffe
[58]), which is similar to singular value decomposition (SVD) (Demmel [50]).
Dimensionality reduction is discussed in more detail in Appendix B.

Discretization is a topic that has been extensively investigated in data
mining. Some classification algorithms only work with categerical data, and
association analysis requires binary data, and thus, there is a significant moti-
vation to investigate how to best binarize or discretize continuous attributes.
For association analysis, we refer the reader to work by Srikant and Agrawal
(78], while some useful references for discretization in the area of classification
include work by Dougherty et al. [51], Elomaa and Rousu [52], Fayyad and
ITrani [53], and Hussain et al. [56].

Feature selection is another topic well investigated in data mining. A broad
coverage of this topic is provided in a survey by Molina et al. [71] and two
books by Liu and Motada [66, 67]. Other useful papers include those by Blum
and Langley [46], Kohavi and John [62], and Liu et al. [68].

It is difficult to provide references for the subject of feature transformations
because practices vary from one discipline to another. Many statistics books
have a discussion of transformations, but typically the discussion is restricted
to a particular purpose, such as ensuring the normality of a variable or making
sure that variables have equal variance. We offer two references: Osborne [73]
and Tukey [83).

While we have covered some of the most commonly used distance and
similarity measures, there are hundreds of such measures and more are being
created all the time. As with so many other topics in this chapter, many of
these measures are specific to particular fields; e.g., in the area of time series see
papers by Kalpakis et al. [59) and Keogh and Pazzani [61]. Clustering books
provide the best general discussions. In particular, see the books by Anderberg
[45], Jain and Dubes [57], Kaufman and Rousseeuw [60], and Sneath and Sokal
[77).

Bibliography
[45] M. R. Anderberg. Cluster Analysis for Applications. Academic Press, New York, De-
cember 1973.

[46] A. Blum and P. Langley. Selection of Relevant Features and Examples in Machine
Learning. Artificial Intelligence, 97(1-2):245-271, 1997.

AL il Al Al e S

|4
4

Bibliography 87

[47) H. H. Bock and E. Diday. Analysis of Symbolic Data: Ezploratory Methods for Eztract-
ing Statistical Information from Complez Data (Studies in Classification, Data Analysis,
and Knowledge Organization). Springer-Verlag Telos, January 2000.

[48] 1. Borg and P. Groenen. Modern Multidimensional Scaling— Theory and Applications.
Springer-Verlag, February 1997.

[49] W. G. Cochran. Sampling Techniques. John Wiley & Sons, 3rd edition, July 1977.

[50] J. W. Demmel. Applied Numerical Linear Algebra. Society for Industrial & Applied
Mathematics, September 1997.

[51] J. Dougherty, R. Kohavi, and M. Sahami. Supervised and Unsupervised Discretization
of Continuous Features. In Proc. of the 12th Inil. Conf. on Machine Learning, pages
194-202, 1995.

[52] T. Elomaa and J. Rousu. General and Efficient Multisplitting of Numerical Attributes.
Machine Learning, 36(3):201-244, 1999.

(53] U. M. Fayyad and K. B. Irani. Multi-interval discretization of continuousvalued at-
tributes for classification learning. In Proc. 13th Int. Joint Conf. on Artificial Intelli-
gence, pages 1022-1027. Morgan Kaufman, 1993.

[54] F. H. Gachua Gu and H. Liu. Sampling and Its Application in Data Mining: A Survey.
Technical Report TRAG/00, National University of Singapore, Singapore, 2000.

[85) D.J. Hand. Statistics and the Theory of Measurement. Journal of the Royal Slatistical
Society: Series A (Statistics in Society), 159(3):445-492, 1996.

[56] F. Hussain, H. Liu, C. L. Tan, and M. Dash. TRC6/99: Discretization: an enabling
technique. Technical report, National University of Singapore, Singapore, 1999.

[57] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall
Advanced Reference Series. Prentice Hall, March 1988. Book available online at
http://www.cse.msu.edu/~jain/Clustering.Jain Dubes.pdf.

[58] L. T. Jolliffe, Principal Component Analysis. Springer Verlag, 2nd edition, October
2002.

[59) K. Kalpakis, D. Gada, and V. Puttagunta. Distance Measures for Effective Clustering
of ARIMA Time-Series. In Proc. of the 2001 IEEE Intl. Conjf. on Data Mining, pages
273-280. IEEE Computer Society, 2001.

[60] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Iniroduction to Cluster
Analysis. Wiley Series in Probability and Statistics. John Wiley and Sons, New York,
November 1990.

[61] E. J. Keogh and M. J. Pazzani. Scaling up dynamic time warping for datamining
applications. In KDD, pages 285-289, 2000.

[62] R. Kohavi and G. H. John. Wrappers for Feature Subset Selection. Artificial Intelligence,
97(1-2):273-324, 1997.

[63] D. Krantz, R. D. Luce, P. Suppes, and A. Tversky. Foundations of Measurements:
Volume 1: Additive and polynomial representations. Academic Press, New York, 1971.

[64] J. B. Kruskal and E. M. Uslaner. Multidimensional Scaling. Sage Publications, August
1978,

[65] B. W. Lindgren. Statistical Theory. CRC Press, January 1993.

[66] H. Liu and H. Motoda, editors. Feature Extraction, Construction and Selection: A Data
Mining Perspective. Kluwer International Series in Engineering and Computer Science,
453. Kluwer Academic Publishers, July 1998.

[67] H. Liu and H. Motoda. Feature Selection for Knowledge Discovery and Dala Min-

ing. Kluwer International Series in Engineering and Computer Science, 454. Kluwer

Academic Publishers, July 1998.

88

(68]

[69]

(70]
)
(72)
(73]
(74]
(75]
(76]
[77)
(78]
(79]
80]

1]

82)
(83]

84]

(89]

Chapter 2 Data

H. Liu, H. Motoda, and L. Yu. Feature Extraction, Selection, and Construction. In
N. Ye, editor, The Handbook of Data Mining, pages 22-41. Lawrence Erlbaum Asso-
ciates, Inc., Mahwah, NJ, 2003.

R. D. Luce, D. Krantz, P. Suppes, and A. Tversky. Foundations of Measurements:
Volume 3: Representation, Aziomatization, and Invariance. Academic Press, New York,
1990.

MIT Total Data Quality Management Program. web.mit.edu/tdgm/www /index.shtml,
2003.

L. C. Molina, L. Belanche, and A. Nebot. Feature Selection Algorithms: A Survey and
Experimental Evaluation. In Proe. of the 2002 IEEE Intl. Conf. on Data Mining, 2002.
F. Olken and D. Rotem. Random Sampling from Databases—A Survey. Statistics &
Computing, 5(1):25-42, March 1995.

J. Osborne. Notes on the Use of Data Transformations. Practical Assessment, Research
& Evaluation, 28(6), 2002.

C. R. Palmer and C. Faloutsos. Density biased sampling: An improved method for data
mining and clustering. ACM SIGMOD Record, 29(2):82-92, 2000.

F. J. Provost, D. Jensen, and T. Oates. Efficient Progressive Sampling. In Proc. of the
5th Intl. Conf. on Knowledge Discovery and Data Mining, pages 23-32, 1999.

T. C. Redman. Data Quality: The Field Guide. Digital Press, January 2001.

P. H. A. Sneath and R. R. Sokal. Numerical Tezonomy. Freeman, San Francisco, 1971.
R. Srikant and R. Agrawal. Mining Quantitative Association Rules in Large Relational
Tables. In Proc. of 1996 ACM-SIGMOD Intl. Conf. on Managemnent of Data, pages
1-12, Montreal, Quebec, Canada, August 1996.

§. S. Stevens. On the Theory of Scales of Measurement. Science, 103(2684):677-680,
June 1946.

§. S. Stevens. Measurement. In G. M. Maranell, editor, Scaling: A Sourcebook for
Behavioral Scientists, pages 22-41. Aldine Publishing Co., Chicago, 1974.

P. Suppes, D. Krantz, R. D. Luce, and A. Tversky. Foundations of Measurements:
Volume £: Geometrical, Threshold, and Probabilistic Representations. Academic Press,
New York, 1989.

H. Toivonen. Sampling Large Databases for Association Rules. In VLDBY6, pages
134-145. Morgan Kaufman, September 1996.

J. W. Tukey. On the Comparative Anatomy of Transformations. Annals of Mathemnatical
Statistics, 28(3):602-632, September 1957.

R. Y. Wang, M. Ziad, Y. W. Lee, and Y. R. Wang. Data Quality. The Kluwer In-
ternational Series on Advances in Database Systems, Volume 23. Kluwer Academic
Publishers, January 2001.

M. J. Zaki, S. Parthasarathy, W. Li, and M. Ogihara. Evaluation of Sampling for Data
Mining of Association Rules. Technical Report TR617, Rensselaer Polytechnic Institute,
1996.

2.6 Exercises

1. In the initial example of Chapter 2, the statistician says, “Yes, fields 2 and 3
are basically the same.” Can you tell from the three lines of sample data that
are shown why she says that?

2.6 Exercises 89

2. Classify the following attributes as binary, discrete, or continuous. Also clussify
them as qualitative (nominal or ordinal) or quantitative (interval or ratio).
Some cases may have more than one interpretation, so briefly indicate your
reasoning if you think there may be some ambiguity.

Example: Age in years. Answer: Discrete, quantitative, ratio

(a) Time in terms of AM or PM.

(b) Brightness as measured by a light meter.

(c) Brightness as measured by people’s judgments.

(d) Angles as measured in degrees between 0 and 360.

(e) Bronze, Silver, and Gold medals as awarded at the Olympics.

(f) Height above sea level.

) Number of patients in a hospital.

(h) ISBN numbers for books. (Look up the format on the Web.)
)

Ability to pass light in terms of the following values: opaque, translucent,
transparent.

(j) Military rank.
(k) Distance from the center of campus.
(1) Density of a substance in grams per cubic centimeter.

(m) Coat check number. (When you attend an event, you can often give your
coat to someone who, in turn, gives you a number that you can use to
claim your coat when you leave.)

3. You are approached by the marketing director of a local company, who believes
that he has devised a foolproof way to measure customer satisfaction. He
explains his scheme as follows: “It's so simple that [can’t believe that no one
has thought of it before. I just keep track of the number of customer complaints
for each product. I read in a data mining book that counts are ratio attributes,
and so, my measure of product satisfaction must be a ratio attribute. But
when I rated the products based on my new customer satisfaction measure and
showed them to my boss, he told me that I had overlooked the obvious, and
that my measure was worthless. I think that he was just mad because our best-
selling product had the worst satisfaction since it had the most complaints.
Could you help me set him straight?”

(a) Who is right, the marketing director or his boss? If you answered, his
boss, what would you do to fix the measure of satisfaction?

(b) What can you say about the attribute type of the original product satis-
faction attribute?

90 Chapter 2 Data

4. A few months later, you are again approached by the same marketing director

as in Exercise 3. This time, he has devised a better approach to measure the
extent to which a customer prefers one product over other, similar products. He
explains, “When we develop new products, we typically create several variations
and evaluate which one customers prefer. Our standard procedure is to give
our test subjects all of the product variations at one time and then ask them to
rank the product variations in order of preference. However, our test subjects
are very indecisive, especially when there are more than two products. As a
result, testing takes forever. I suggested that we perform the comparisons in
pairs and then use these comparisons to get the rankings. Thus, if we have
three product variations, we have the customers compare variations 1 and 2,
then 2 and 3, and finally 3 and 1. Our testing time with my new procedure
is a third of what it was for the old procedure, but the employees conducting
the tests complain that they cannot come up with a consistent ranking from
the results. And my boss wants the latest product evaluations, yesterday. 1
should also mention that he was the person who came up with the old product
evaluation approach. Can you help me?”

(a) Is the marketing director in trouble? Will his approach work for gener-
ating an ordinal ranking of the product variations in terms of customer
preference? Explain.

(b) Is there a way to fix the marketing director’s approach? More generally,
what can you say about trying to create an ordinal measurement scale
based on pairwise comparisons?

(c) For the original product evaluation scheme, the overall rankings of each
product variation are found by computing its average over all test subjects.
Comment on whether you think that this is a reasonable approach. What
other approaches might you take?

. Can you think of a situation in which identification numbers would be useful
for prediction?

. An educational psychologist wants to use association analysis to analyze test
results. The test consists of 100 questions with four possible answers each.

(a) How would you convert this data into a form suitable for association
analysis?

(b) In particular, what type of attributes would you have and how many of
them are there?

. Which of the following quantities is likely to show more temporal autocorrela-
tion: daily rainfall or daily temperature? Why?

. Discuss why a document-term matrix is an example of a data set that has
asymmetric discrete or asymmetric continuous features.

10.

11.

12.

13,

2.6 Exercises 91

. Many sciences rely on observation instead of (or in addition to) designed ex-

periments. Compare the data quality issues involved in observational science
with those of experimental science and data mining.

Discuss the difference between the precision of a measurement and the terms
single and double precision, as they are used in computer science, typically to
represent floating-point numbers that require 32 and 64 bits, respectively.

Give at least two advantages to working with data stored in text files instead
of in a binary format.

Distinguish between noise and outliers. Be sure to consider the following ques-
tions.

(a) Is noise ever interesting or desirable? Outliers?

(b) Can noise objects be outliers?

(¢) Are noise objects always outliers?

(d) Are outliers always noise objects?

(e) Can noise make a typical value into an unusual one, or vice versa?

Consider the problem of finding the K nearest neighbors of a data object. A
programmer designs Algorithm 2.2 for this task.

Algorithm 2.2 Algorithm for finding K nearest neighbors.

1: for i =1 to number of data objects do

2. Find the distances of the i** object to all other objects.
3: Sort these distances in decreasing order.
(Keep track of which object is associated with each distance.)
4: return the objects associated with the first K distances of the sorted list
5: end for

(a) Describe the potential problems with this algorithm if there are duplicate
objects in the data set. Assume the distance function will only return a
distance of 0 for objects that are the same.

(b) How would you fix this problem?

14. The following attributes are measured for members of a herd of Asian ele-

phants: weight, height, tusk length, irunk length, and ear area. Based on these
measurements, what sort of similarity measure from Section 2.4 would you use
to compare or group these elephants? Justify your answer and explain any
special circumstances.

92 Chapter 2 Data

15.

16.

1%

18.

You are given a set of m objects that is divided into K groups, where the i*"
group is of size m;. If the goal is to obtain a sample of size n < m, what is
the difference between the following two sampling schemes? (Assume sampling
with replacement.)

(a) We randomly select n * m; /m elements from each group.

(b) We randomly select n elements from the data set, without regard for the
group to which an object belongs.

Consider a document-term matrix, where tf;; is the frequency of the ith word
(term) in the j** document and m is the number of documents. Consider the
variable transformation that is defined by

m
tfiy = thijlog FTA (2.18)

where df; is the number of documents in which the #** term appears, which
is known as the document frequency of the term. This transformation is
known as the inverse document frequency transformation.

(2) What is the effect of this transformation if a term occurs in cne document?
In every document?

(b) What might be the purpose of this transformation?

Assume that we apply a square root transformation to a ratio attribute z to
obtain the new attribute =*. As part of your analysis, you identify an interval
(a,b) in which z* has a linear relationship to another attribute y.

(a) What is the corresponding interval (a,b) in terms of =7
(b) Give an equation that relates y to .

This exercise compares and contrasts some similarity and distance measures.

(a) For binary data, the L1 distance corresponds to the Hamming distance;
that is, the number of bits that are different between two binary vectors.
The Jaccard similarity is a measure of the similarity between two binary
vectors. Compute the Hamming distance and the Jaccard similarity be-
tween the following two binary vectors.

x = 0101010001
y = 0100011000

{b) Which approach, Jaccard or Hamming distance, is more similar to the
Simple Matching Coefficient, and which approach is more similar to the
cosine measure? Explain. (Note: The Hamming measure is a distance,
while the other three measures are similarities, but don’t let this confuse
you.)

2.6 Exercises 93

(c) Suppose that you are comparing how similar two organisms of different
species are in terms of the number of genes they share. Describe which
measure, Hamming or Jaccard, you think would be more appropriate for
comparing the genetic makeup of two organisms. Explain. (Assume that
each animal is represented as a binary vector, where each attribute is 1 if
a particular gene is present in the organism and 0 otherwise.)

—
o
~

If you wanted to compare the genetic makeup of two organisms of the same
species, e.g., two human beings, would you use the Hamming distance,
the Jaccard coefficient, or a different measure of similarity or distance?
Explain. (Note that two human beings share > 99.9% of the same genes.)

19. For the following vectors, x and y, calculate the indicated similarity or distance

measures.

(a) x=(1,1,1,1), y = (2,2,2,2) cosine, correlation, Euclidean

(b) x=(0,1,0,1), y = (1,0,1,0) cosine, correlation, Euclidean, Jaccard
(¢) x=1(0,-1,0,1), y = (1,0,—1,0) cosine, correlation, Euclidean

(d) x=(1,1,0,1,0,1), ¥y =(1,1,1,0,0,1) cosine, correlation, Jaccard
(e) x=(2,-1,0,2,0,-3), y =(-1,1,-1,0,0,-1) cosine, correlation

20. Here, we further explore the cosine and correlation measures.

(a) What is the range of values that are possible for the cosine measure?
(b) If two objects have a cosine measure of 1, are they identical? Explain.

(c) What is the relationship of the cosine measure to correlation, if any?
(Hint: Look at statistical measures such as mean and standard deviation
in cases where cosine and correlation are the same and different.)

(d

~—

Figure 2.20(a) shows the relationship of the cosine measure to Euclidean
distance for 100,000 randomly generated points that have been normalized
to have an L2 length of 1. What general observation can you make about
the relationship between Euclidean distance and cosine similarity when
vectors have an L2 norm of 17

(e

—

Figure 2.20(b) shows the relationship of correlation to Euclidean distance
for 100,000 randomly generated points that have been standardized to
have a mean of 0 and a standard deviation of 1. What general observa-
tion can you make about the relationship between Euclidean distance and
correlation when the vectors have been standardized to have a mean of 0
and a standard deviation of 17

(f) Derive the mathematical relationship between cosine similarity and Eu-
clidean distance when each data object has an L, length of 1.

(g) Derive the mathematical relationship between correlation and Euclidean
distance when each data point has been been standardized by subtracting
its mean and dividing by its standard deviation.

94

21.

22.

23.

4.

25.

Chapter 2 Data

Euclidean Distance

0 02z 04 06 08 1 0 o0z 04, 08 08 1
Cosine Similarity Correlation

(a) Relationship between Euclidean
distance and the cosine measure.

(b) Relationship between Euclidean
distance and correlation.

Figure 2.20. Graphs for Exercise 20.

Show that the set difference metric given by
d(A, B) = size(A — B) + size(B — A) (2.19)

satisfies the metric axioms given on page 70. A and B are sets and A — B is
the set difference.

Discuss how you might map correlation values from the interval [—1,1] to the
interval [0,1]. Note that the type of transformation that you use might depend
on the application that you have in mind. Thus, consider two applications:
clustering time series and predicting the behavior of one time series given an-
other.

Given a similarity measure with values in the interval [0,1] describe two ways to
transform this similarity value into a dissimilarity value in the interval [0,00].

Proximity is typically defined between a pair of objects.

(a) Define two ways in which you might define the proximity among a group
of objects.

(b) How might you define the distance between two sets of points in Euclidean
space?

(¢) How might you define the proximity between two sets of data objects?
(Make no assumption about the data objects, except that a proximity
measure is defined between any pair of objects.)

You are given a set of points S in Euclidean space, as well as the distance of
each point in S to a point x. (It does not matter if x € S.)

26.

27.

28.

2.6 Exercises 95

(a) If the goal is to find all points within a specified distance € of point y,
y # x, explain how you could use the triangle inequality and the already
calculated distances to x to potentially reduce the number of distance
calculations necessary? Hint: The triangle inequality, d(x,z) < d(x,y} +
d(y,x), can be rewritten as d(x,y) > d(x,z) — d(y, z).

{(b) In general, how would the distance between x and y affect the number of
distance calculations?

Suppose that you can find a small subset of points S from the original
data set, such that every point in the data set is within a specified distance
e of at least one of the points in S and that you also have the pairwise
distance matrix for §. Describe a technique that uses this information to
compute, with a minimum of distance calculations, the set of all points
within a distance of # of a specified point from the data set.

(c

—

Show that 1 minus the Jaccard similarity is a distance measure between two data
objects, x and y, that satisfies the metric axioms given on page 70. Specifically,

d(x!Y) =1- .](X, Y)

Show that the distance measure defined as the angle between two data vectors,
x and y, satisfies the metric axioms given on page 70. Specifically, d(x,y) =
arccos(cos(x, y)).

Explain why computing the proximity between two attributes is often simpler
than computing the similarity between two objects.

Exploring Data

The previous chapter addressed high-level data issues that are important in
the knowledge discovery process. This chapter provides an introduction to
data exploration, which is a preliminary investigation of the data in order
to better understand its specific characteristics. Data exploration can aid in
selecting the appropriate preprocessing and data analysis techniques. It can
even address some of the questions typically answered by data mining. For
example, patterns can sometimes be found by visually inspecting the data.
Also, some of the technigues used in data exploration, such as visualization,
can be used to understand and interpret data mining results.

This chapter covers three major topics: summary statistics, visualization,
and On-Line Analytical Processing (OLAP). Summary statistics, such as the
mean and standard deviation of a set of values, and visualization techniques,
such as histograms and scatter plots, are standard methods that are widely
employed for data exploration. OLAP, which is a more recent development,
consists of a set of techniques for exploring multidimensional arrays of values.
OLAP-related analysis functions focus on various ways to create summary
data tables from a multidimensional data array. These techniques include
aggregating data either across various dimensions or across various attribute
values. For instance, if we are given sales information reported according
to product, location, and date, OLAP techniques can be used to create a
summary that describes the sales activity at a particular location by month
and product category.

The topics covered in this chapter have considerable overlap with the area
known as Exploratory Data Analysis (EDA), which was created in the
1970s by the prominent statistician, John Tukey. This chapter, like EDA,
places a heavy emphasis on visualization. Unlike EDA, this chapter does not
include topics such as cluster analysis or anomaly detection. There are two

98 Chapter 3 Exploring Data

reasons for this. First, data mining views descriptive data analysis techniques
as an end in themselves, whereas statistics, from which EDA originated, tends
to view hypothesis-based testing as the final goal. Second, cluster analysis
and anomaly detection are large areas and require full chapters for an in-
depth discussion. Hence, cluster analysis is covered in Chapters 8 and 9, while
anomaly detection is discussed in Chapter 10.

3.1 The Iris Data Set

In the following discussion, we will often refer to the Iris data set that is
available from the University of California at Irvine (UCI) Machine Learn-
ing Repository. It consists of information on 150 Iris flowers, 50 each from
one of three Iris species: Setosa, Versicolour, and Virginica. Each flower is
characterized by five attributes:

1. sepal length in centimeters
2. sepal width in centimeters
3. petal length in centimeters
4. petal width in centimeters
5. class (Setosa, Versicolour, Virginica)

The sepals of a flower are the outer structures that protect the more fragile
parts of the flower, such as the petals. In many flowers, the sepals are green,
and only the petals are colorful. For Irises, however, the sepals are also colorful.
As illustrated by the picture of a Virginica Iris in Figure 3.1, the sepals of an
Iris are larger than the petals and are drooping, while the petals are upright.

3.2 Summary Statistics

Summary statistics are quantities, such as the mean and standard deviation,
that capture various characteristics of a potentially large set of values with a
single number or a small set of numbers. Everyday examples of summary
statistics are the average household income or the fraction of college students
who complete an undergraduate degree in four years. Indeed, for many people,
summary statistics are the most visible manifestation of statistics. We will
concentrate on summary statistics for the values of a single attribute, but will
provide a brief description of some multivariate summary statistics.

3.2 Summary Statistics 99

Figure 3.1. Picture of Iris Virginica. Robert H. Mohlenbrock @ USDA-NRCS PLANTS Database/
USDA NRCS. 1995. Northeast wetland flora: Field office guide lo plant species. Northeast National
Technical Center, Chester, PA. Background removed.

This section considers only the descriptive nature of summary statistics.
However, as described in Appendix C, statistics views data as arising from an
underlying statistical process that is characterized by various parameters, and
some of the summary statistics discussed here can be viewed as estimates of
statistical parameters of the underlying distribution that generated the data.

3.2.1 Frequencies and the Mode

Given a set of unordered categorical values, there is not much that can be done
to further characterize the values except to compute the frequency with which
each value occurs for a particular set of data. Given a categorical attribute z,
which can take values {vy,...,w;,... v} and a set of m objects, the frequency
of a value v; is defined as

number of objects with attribute value v; (3.1)

frequency(v;) =
m

The mode of a categorical attribute is the value that has the highest frequency.

100 Chapter 3 Exploring Data

Example 3.1. Consider a set of students who have an attribute, class, which
can take values from the set { freshman, sophomore, junior, senior}. Table
3.1 shows the number of students for each value of the class attribute. The
mode of the class attribute is freshran, with a frequency of 0.33. This may
indicate dropouts due to attrition or a larger than usual freshman class.

Table 3.1. Class size for students in a hypothetical college.

Class Size | Frequency
freshman 140 0.33
sophomore | 160 0.27
Jjunior 130 0.22
senior 170 0.18

Categorical attributes often, but not always, have a small number of values,
and consequently, the mode and frequencies of these values can be interesting
and useful. Notice, though, that for the Iris data set and the class attribute,
the three types of flower all have the same frequency, and therefore, the notion
of a mode is not interesting.

For continuous data, the mode, as currently defined, is often not useful
because a single value may not occur more than once. Nonetheless, in some
cases, the mode may indicate important information about the nature of the
values or the presence of missing values. For example, the heights of 20 people
measured to the nearest millimeter will typically not repeat, but if the heights
are measured to the nearest tenth of a meter, then some people may have the
same height. Also, if a unique value is used to indicate a missing value, then
this value will often show up as the mode.

3.2.2 Percentiles

For ordered data, it is more useful to consider the percentiles of a set of
values. In particular, given an ordinal or continuous attribute z and a number
p between 0 and 100, the p** percentile zp is a value of x such that p% of the
observed values of = are less than z,. For instance, the 50" percentile is the
value 50y such that 50% of all values of z are less than zgyy,. Table 3.2 shows
the percentiles for the four quantitative attributes of the Iris data set.

I

i}
3
4
£
4

3.2 Sumunary Statistics 101

Table 3.2. Percentiles for sepal length, sepal width, petal length, and petal width. (All values are in
centimeters.)

Percentile | Sepal Length | Sepal Width | Petal Length | Petal Width

0 4.3 2.0 1.0 0.1

10 4.8 2.5 14 0.2

20 5.0 2.7 1.5 0.2

30 5.2 2.8 1.7 0.4

40 5.6 3.0 3.9 1.2

50 5.8 3.0 44 1.3

60 6.1 3.1 4.6 1.5

70 6.3 3.2 5.0 1.8

80 6.6 3.4 5.4 1.9

90 6.9 3.6 5.8 2.2

100 7.9 4.4 6.9 2.5
Example 3.2. The percentiles, Tgo, T10%, - - - » Too%, L100% of the integers from
1 to 10 are, in order, the following: 1.0, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5,
10.0. By tradition, min(z) = zgg, and max(z) = z;00%. =

3.2.3 Measures of Location: Mean and Median

For continuous data, two of the most widely used summary statistics are the
mean and median, which are measures of the location of a set of values.
Consider a set of m objects and an attribute z. Let {z1,...,zm} be the
attribute values of = for these m objects. As a concrete example, these values
might be the heights of m children. Let {a:(l), s ,z(m)} represent the values
of z after they have been sorted in non-decreasing order. Thus, z(;) = min(z)
and &(n,) = max(z). Then, the mean and median are defined as follows:

o B
mean(z) =7 = = ZI,- (3.2)

i=1

——p { T(r1) if m is odd, i.e., m = 2r + 1 (33)

%(I(T) + Z(pyyy) if mis even, ie, m=2r

To summarize, the median is the middle value if there are an odd number
of values, and the average of the two middle values if the number of values
is even. Thus, for seven values, the median is x(4), while for ten values, the

median is (z(s) + ().

102 Chapter 3 Exploring Data

Although the mean is sometimes interpreted as the middle of a set of values,
this is only correct if the values are distributed in a symmetric manner. If the
distribution of values is skewed, then the median is a better indicator of the
middle. Also, the mean is sensitive to the presence of outliers. For data with
outliers, the median again provides a more robust estimate of the middle of a
set of values.

To overcome problems with the traditional definition of a mean, the notion
of a trimmed mean is sometimes used. A percentage p between 0 and 100
is specified, the top and bottom (p/2)% of the data is thrown out, and the
mean is then calculated in the normal way. The median is a trimmed mean
with p = 100%, while the standard mean corresponds to p = 0%.

Example 3.3. Consider the set of values {1,2,3,4,5,90}. The mean of these
values is 17.5, while the median is 3.5. The trimmed mean with p = 40% is
also 3.5. l

Example 3.4. The means, medians, and trimmed means (p = 20%) of the
four quantitative attributes of the Iris data are given in Table 3.3. The three
measures of location have similar values except for the attribute petal length.

Table 3.3. Means and medians for sepal length, sepal width, petal length, and petal width, (All values
are in centimeters.)

Measure Sepal Length | Sepal Width | Petal Length | Petal Width
mean 5.84 3.05 3.76 1.20
median 5.80 3.00 4.35 1.30
trimmed mean (20%) 5.79 3.02 3.72 1.12
[

3.2.4 Measures of Spread: Range and Variance

Another set of commonly used summary statistics for continuous data are
those that measure the dispersion or spread of a set of values. Such measures
indicate if the attribute values are widely spread out or if they are relatively
concentrated around a single point such as the mean.

The simplest measure of spread is the range, which, given an attribute z
with a set of m values {z1,...,2Zm}, is defined as

range(z) = max(z) — min(z) = T¢m) —). (3.4)

3.2 Summary Statistics 103

Table 3.4. Range, standard deviation (std), absolute average difference (AAD), median absolute differ-
ence (MAD), and Iinterquartile range {IQR) for sepal length, sepal width, petal length, and petal width.
{All values are in centimeters.)

Measure | Sepal Length | Sepal Width | Petal Length | Petal Width
range 3.6 2.4 5.9 2.4
std 0.8 0.4 1.8 0.8
AAD 0.7 0.3 1.6 0.6
MAD 0.7 0.3 1.2 0.7
IQR 1.3 0.5 38 1.5

Although the range identifies the maximum spread, it can be misleading if
most, of the values are concentrated in a narrow band of values, but there are
also a relatively small number of more extreme values. Hence, the variance
is preferred as a measure of spread. The variance of the (observed) values of
an attribute z is typically written as s2 and is defined below. The standard
deviation, which is the square root of the variance, is written as s; and has
the same units as z.

variance(z) = s = e Z('r., -7)* (3.5)

The mean can be distorted by outliers, and since the variance is computed
using the mean, it is also sensitive to outliers. Indeed, the variance is particu-
larly sensitive to outliers since it uses the squared difference between the mean
and other values. As a result, more robust estimates of the spread of a set
of values are often used. Following are the definitions of three such measures:
the absolute average deviation (AAD), the median absolute deviation
(MAD), and the interquartile range(IQR). Table 3.4 shows these measures
for the Iris data set.

1 m
AD(z) = — —% :
AAD(z) = — ; |z; — 7| (3.6)
MAD(z) = median ({{ml —Byss B — E[}) (3.7)
interquartile range(z) = 75y — Tasy (3.8)

104 Chapter 3 Exploring Data

3.2.5 Multivariate Summary Statistics

Measures of location for data that consists of several attributes (multivariate
data) can be obtained by computing the mean or median separately for each
attribute. Thus, given a data set the mean of the data objects, X, is given by

x=(E1-"rTn)l (39)

where T is the mean of the i** attribute z;.

For multivariate data, the spread of each attribute can be computed in-
dependently of the other attributes using any of the approaches described in
Section 3.2.4. However, for data with continuous variables, the spread of the
data is most commonly captured by the covariance matrix S, whose ijt"
entry sq; is the covariance of the i** and j* attributes of the data. Thus, if z;
and z; are the ¢*" and j** attributes, then

si; = covariance(z;, z;). (3.10)

In turn, covariance(z;, z;) is given by

: 1 %
covariance(z;, ;) = — Z{mk,- - T)(zki — F5)s (3.11)
k=1

where z; and z; are the values of the i** and j*h attributes for the k*® object.
Notice that covariance(z;, z;) = variance(z;). Thus, the covariance matrix has
the variances of the attributes along the diagonal.

The covariance of two attributes is a measure of the degree to which two
attributes vary together and depends on the magnitudes of the variables. A
value near 0 indicates that two attributes do not have a (linear) relationship,
but it is not possible to judge the degree of relationship between two variables
by looking only at the value of the covariance. Because the correlation of two
attributes immediately gives an indication of how strongly two attributes are
(linearly) related, correlation is preferred to covariance for data exploration.
(Also see the discussion of correlation in Section 2.4.5.) The i7" entry of the
correlation matrix R, is the correlation between the i** and j** attributes
of the data. If z; and z; are the i** and j* attributes, then

i covariance(z;, T;
T4 = correlation(z;, ;) = —_ss(—uj)' (3.12)
5]

3.3 Visualization 105

where s; and s; are the variances of z; and x;, respectively. The diagonal
entries of R are correlation{z;, z;) = 1, while the other entries are between
—1 and 1. It is also useful to consider correlation matrices that contain the
pairwise correlations of objects instead of attributes.

3.2.6 Other Ways to Summarize the Data

There are, of course, other types of summary statistics. For instance, the
skewness of a set of values measures the degree to which the values are sym-
metrically distributed around the mean. There are also other characteristics
of the data that are not easy to measure quantitatively, such as whether the
distribution of values is multimodal; i.e., the data has multiple “bumps” where
most of the values are concentrated. In many cases, however, the most effec-
tive approach to understanding the more complicated or subtle aspects of how
the values of an attribute are distributed, is to view the values graphically in
the form of a histogram. (Histograms are discussed in the next section.)

3.3 Visualization

Data visualization is the display of information in a graphic or tabular format.
Successful visualization requires that the data (information) be converted into
a visual format so that the characteristics of the data and the relationships
among data items or attributes can be analyzed or reported. The goal of
visualization is the interpretation of the visualized information by a person
and the formation of a mental model of the information.

In everyday life, visual techniques such as graphs and tables are often the
preferred approach used to explain the weather, the economy, and the results
of political elections. Likewise, while algorithmic or mathematical approaches
are often emphasized in most technical disciplines—data mining included—
visual techniques can play a key role in data analysis. In fact, sometimes the
use of visualization techniques in data mining is referred to as visual data
mining.

3.3.1 Motivations for Visualization

The overriding motivation for using visualization is that people can quickly
absorb large amounts of visual information and find patterns in it. Consider
Figure 3.2, which shows the Sea Surface Temperature (SST) in degrees Celsius
for July, 1982. This picture summarizes the information from approximately
250,000 numbers and is readily interpreted in a few seconds. For example, it

106 Chapter 3 Exploring Data

90

Latitude

-80 oot . § g 4 g . Bl G i
-180 =150 -120 -80 —60 -30 0 30 60 90 120 150 180 Temp
Longitude

Figure 3.2. Sea Surface Temperature (SST) for July, 1882.

is easy to see that the ocean temperature is highest at the equator and lowest
at the poles.

Another general motivation for visualization is to make use of the domain
knowledge that is “locked up in people’s heads.” While the use of domain
knowledge is an important task in data mining, it is often difficult or impossible
to fully utilize such knowledge in statistical or algorithmic tools. In some cases,
an analysis can be performed using non-visual tools, and then the results
presented visually for evaluation by the domain expert. In other cases, having
a domain specialist examine visualizations of the data may be the best way
of finding patterns of interest since, by using domain knowledge, a person can
often quickly eliminate many uninteresting patterns and direct the focus to
the patterns that are important.

3.3.2 General Concepts

This section explores some of the general concepts related to visualization, in
particular, general approaches for visualizing the data and its attributes. A
number of visualization techniques are mentioned briefly and will be described
in more detail when we discuss specific approaches later on. We assume that
the reader is familiar with line graphs, bar charts, and scatter plots.

3.3 Visunalization 107

Representation: Mapping Data to Graphical Elements

The first step in visualization is the mapping of information to a visual format;
i.e., mapping the objects, attributes, and relationships in a set of information
to visual objects, attributes, and relationships. That is, data objects, their at-
tributes, and the relationships among data objects are translated into graphical
elements such as points, lines, shapes, and colors.

Objects are usually represented in one of three ways. First, if only a
single categorical attribute of the object is being considered, then objects
are often lumped into categories based on the value of that attribute, and
these categories are displayed as an entry in a table or an area on a screen,
(Examples shown later in this chapter are a cross-tabulation table and a bar
chart.) Second, if an object has multiple attributes, then the object can be
displayed as a row (or column) of a table or as a line on a graph. Finally,
an object is often interpreted as a point in two- or three-dimensional space,
where graphically, the point might be represented by a geometric figure, such
as a circle, cross, or box.

For attributes, the representation depends on the type of attribute, i.e.,
nominal, ordinal, or continuous (interval or ratio). Ordinal and continuous
attributes can be mapped to continuous, ordered graphical features such as
location along the z, ¥, or z axes; intensity; color; or size (diameter, width,
height, ete.). For categorical attributes, each category can be mapped to
a distinct position, color, shape, orientation, embellishment, or column in
a table. However, for nominal attributes, whose values are unordered, care
should be taken when using graphical features, such as color and position that
have an inherent ordering associated with their values. In other words, the
graphical elements used to represent the ordinal values often have an order,
but ordinal values do not.

The representation of relationships via graphical elements occurs either
explicitly or implicitly. For graph data, the standard graph representation—
a set of nodes with links between the nodes—is normally used. If the nodes
(data objects) or links (relationships) have attributes or characteristics of their
own, then this is represented graphically. To illustrate, if the nodes are cities
and the links are highways, then the diameter of the nodes might represent
population, while the width of the links might represent the volume of traffic.

In most cases, though, mapping objects and attributes to graphical el-
ements implicitly maps the relationships in the data to relationships among
graphical elements. To illustrate, if the data object represents a physical object
that has a location, such as a city, then the relative positions of the graphical
objects corresponding to the data objects tend to naturally preserve the actual

108 Chapter 3 Exploring Data

relative positions of the objects. Likewise, if there are two or three continuous
attributes that are taken as the coordinates of the data points, then the result-
ing plot often gives considerable insight into the relationships of the attributes
and the data points because data points that are visually close to each other
have similar values for their attributes.

In general, it is difficult to ensure that a mapping of objects and attributes
will result in the relationships being mapped to easily observed relationships
among graphical elements. Indeed, this is one of the most challenging aspects
of visualization. In any given set of data, there are many implicit relationships,
and hence, a key challenge of visualization is to choose a technique that makes
the relationships of interest easily observable.

Arrangement

As discussed earlier, the proper choice of visual representation of objects and
attributes is essential for good visualization. The arrangement of items within
the visual display is also crucial. We illustrate this with two examples.

Example 3.5. This example illustrates the importance of rearranging a table
of data. In Table 3.5, which shows nine objects with six binary attributes,
there is no clear relationship between objects and attributes, at least at first
glance. If the rows and columns of this table are permuted, however, as shown
in Table 3.6, then it is clear that there are really only two types of objects in
the table—one that has all ones for the first three attributes and one that has
only ones for the last three attributes. m

Table 3.5. A table of nine objects (rows) with Table 3.6. A table of nine objects (rows) with six
slx binary attributes (columns). binary attributes {columns) permuted so that the
relationships of the rows and columns are clear.

1 2 3 4. 5 B 6 1 3 2 5 4
P18 2 6 L 1 8 201 1T 1T & 6 0
211 0 X 0 0 1 @9 5 F O W 8
310 1 0 1 1 0O g1 1 1 0 0o 0O
411 9 1 & 8 1 g8]l1 1 1 0 0 0
03 8 L 1 @ eldg 0 8 1 4 i
6y1 0 1 0 0 1 3(00 0 1 1 1
7010 1 10 90 0 0 1 1 1
g1 01 0 01 1{0 001 1 1
910 1 01 1 0 7@ 0 b % i 4

3.3 Visualization 109

Example 3.6. Consider Figure 3.3{a), which shows a visualization of a graph.
If the connected components of the graph are separated, as in Figure 3.3(h),
then the relationships between nodes and graphs become much simpler to
understand. "

(a) Original view of a graph. (b) Uncoupled view of connected components
of the graph.

Figure 3.3. Two visualizations of a graph.

Selection

Another key concept in visualization is selection, which is the elimination
or the de-emphasis of certain objects and attributes. Specifically, while data
objects that only have a few dimensions can often be mapped to a two- or
three-dimensional graphical representation in a straightforward way, there is
no completely satisfactory and general approach to represent data with many
attributes. Likewise, if there are many data objects, then visualizing all the
objects can result in a display that is too crowded. If there are many attributes
and many objects, then the situation is even more challenging.

The most common approach to handling many attributes is to choose a
subset of attributes—usually two—for display. If the dimensionality is not too
high, a matrix of bivariate (two-attribute) plots can be constructed for simul-
taneous viewing. (Figure 3.16 shows a matrix of scatter plots for the pairs
of attributes of the Iris data set.) Alternatively, a visualization program can
automatically show a series of two-dimensional plots, in which the sequence is
user directed or based on some predefined strategy. The hope is that visualiz-
ing a collection of two-dimensional plots will provide a more complete view of
the data.

110 Chapter 3 Exploring Data

The technique of selecting a pair (or small number) of attributes is a type of
dimensionality reduction, and there are many more sophisticated dimension-
ality reduction techniques that can be employed, e.g., principal components
analysis (PCA). Consult Appendices A (Linear Algebra) and B (Dimension-
ality Reduction) for more information.

When the number of data points is high, e.g., more than a few hundred,
or if the range of the data is large, it is difficult to display enough information
about each object. Some data points can obscure other data points, or a
data object may not occupy enough pixels to allow its features to be clearly
displayed. For example, the shape of an object cannot be used to encode a
characteristic of that object if there is only one pixel available to display it. In
these situations, it is useful to be able to eliminate some of the objects, either
by zooming in on a particular region of the data or by taking a sample of the
data points.

3.3.3 Techniques

Visualization techniques are often specialized to the type of data being ana-
lyzed. Indeed, new visualization techniques and approaches, as well as special-
ized variations of existing approaches, are being continuously created, typically
in response to new kinds of data and visualization tasks.

Despite this specialization and the ad hoc nature of visualization, there are
some generic ways to classify visualization techniques. One such classification
is based on the number of attributes involved (1, 2, 3, or many) or whether the
data has some special characteristic, such as a hierarchical or graph structure.
Visualization methods can also be classified according to the type of attributes
involved. Yet another classification is based on the type of application: scien-
tific, statistical, or information visualization. The following discussion will use
three categories: visualization of a small number of attributes, visualization of
data with spatial and/or temporal attributes, and visualization of data with
many attributes.

Most of the visnalization techniques discussed here can be found in a wide
variety of mathematical and statistical packages, some of which are freely
available. There are also a number of data sets that are freely available on the
World Wide Web. Readers are encouraged to try these visualization techniques
as they proceed through the following sections.

3.3 Visualization 111

Visualizing Small Numbers of Attributes

This section examines techniques for visualizing data with respect to a small
number of attributes. Some of these techniques, such as histograms, give
insight into the distribution of the observed values for a single attribute. Other
techniques, such as scatter plots, are intended to display the relationships
between the values of two attributes.

Stem and Leaf Plots Stem and leaf plots can be used to provide insight
into the distribution of one-dimensional integer or continuous data. (We will
assume integer data initially, and then explain how stem and leaf plots can be
applied to continuous data.) For the simplest type of stem and leaf plot, we
split the values into groups, where each group contains those values that are
the same except for the last digit. Each group becomes a stem, while the last
digits of a group are the leaves. Hence, if the values are two-digit integers,
e.g., 35, 36, 42, and 51, then the stems will be the high-order digits, e.g., 3,
4, and 5, while the leaves are the low-order digits, e.g., 1, 2, 5, and 6. By
plotting the stems vertically and leaves horizontally, we can provide a visual
representation of the distribution of the data.

Example 3.7. The set of integers shown in Figure 3.4 is the sepal length in
centimeters (multiplied by 10 to make the values integers) taken from the Iris
data set. For convenience, the values have also been sorted.

The stem and leaf plot for this data is shown in Figure 3.5. Fach number in
Figure 3.4 is first put into one of the vertical groups—4, 5, 6, or 7—according
to its ten’s digit. Its last digit is then placed to the right of the colon. Often,
especially if the amount of data is larger, it is desirable to split the stems.
For example, instead of placing all values whose ten’s digit is 4 in the same
“bucket,” the stem 4 is repeated twice; all values 40-44 are put in the bucket
corresponding to the first stem and all values 45-49 are put in the bucket
corresponding to the second stem. This approach is shown in the stem and
leaf plot of Figure 3.6. Other variations are also possible.]

Histograms Stem and leaf plots are a type of histogram, a plot that dis-
plays the distribution of values for attributes by dividing the possible values
into bins and showing the number of objects that fall into each bin. For cate-
gorical data, each value is a bin. If this results in too many values, then values
are combined in some way. For continuous attributes, the range of values is di-
vided into bins—typically, but not necessarily, of equal width—and the values
in each bin are counted.

112 Chapter 3 Exploring Data

43 44 44 44 45 46 46 46 46 47 AT 48 48 48 48 48 49 49 49 49 49 49 50
50 50 50 ‘50 59 B0 50 50 50 ‘51 51 51 .51 51 51 51 51 51 52 52 52 52 68
54 54 54 54 54 54 55 55 55 55 55 55 55 56 56 56 56 56 56 57 57 57 57
57 57 57 57 58 58 58 58 58 58 58 59 59 59 60 60 60 60 60 60 61 61 61
61 61 61 62 62 62 62 63 63 63 63 63 63 63 63 63 64 64 64 64 64 64 64
65 65 65 65 65 66 66 67 67 67 67 67 67 67 67 68 68 68 69 69 69 69 70
oL 72 T2 T2 3 AT T AT R TR T8

Figure 3.4. Sepal length data from the Iris data set.

34444566667788888999999
0000000000111111111222234444445555555666666777777778888888999
000000111111222233333333344444445655566777777778889999
0122234677779

~N D U

Figure 3.5. Stem and leaf plot for the sepal length from the Iris data set.

3444

566667788888999999
000000000011111111122223444444
5555555666666777777778888888999
00000011111122223333333334444444
5555666777777778889999

0122234

677778

~N =~ DU ;B s

Figure 3.6. Stem and leaf plot for the sepal length from the Iris data set when buckets corresponding
to digits are split.

Once the counts are available for each bin, a bar plot is constructed such
that each bin is represented by one bar and the area of each bar is proportional
to the number of values (objects) that fall into the corresponding range. If all
intervals are of equal width, then all bars are the same width and the height
of a bar is proportional to the number of values in the corresponding bin.

Example 3.8. Figure 3.7 shows histograms (with 10 bins) for sepal length,
sepal width, petal length, and petal width, Since the shape of a histogram
can depend on the number of bins, histograms for the same data, but with 20
bins, are shown in Figure 3.8. L

There are variations of the histogram plot. A relative (frequency) his-
togram replaces the count by the relative frequency. However, this is just a

3.3 Visualization 113

“ —
“ ni " l
«| - sl |
w > i £ |
§ 5” H Zn
3" o 8= Y 1] {
19 1) N 5
" il e
s)
i s s I
L} al o o -
ATy as & es 7 78 I SR I L} LI 3 4y 1§ O
Sapai Leagth Sepat Width Betal Langin Patal Width

(a) Sepal length. (b) Sepal width. (c) Petal length. (d) Petal width.

Figure 3.7. Histograms of four Iris attributes (10 bins).

ES
™ x
1
=
£ et H
3 j .
o n o " B
o)
| 0 W
H ¥ s s
o
XD 4 7
‘Sepai Langs

] i ™ 3 3§ 34 -k B T N T RN DO RN
h Sepai wicth Petal Langth Petal Wiatn

¥ DM Y

Count

(a) Sepal length. (b) Sepal width. (c) Petal length. (d) Petal width.

Figure 3.8. Histograms of four Iris attributes (20 bins).

change in scale of the y axis, and the shape of the histogram does not change.
Another common variation, especially for unordered categorical data, is the
Pareto histogram, which is the same as a normal histogram except that the
categories are sorted by count so that the count is decreasing from left to right.

Two-Dimensional Histograms Two-dimensional histograms are also pos-
sible. Each attribute is divided into intervals and the two sets of intervals define
two-dimensional rectangles of values.

Example 3.9. Figure 3.9 shows a two-dimensional histogram of petal length
and petal width. Because each attribute is split into three bins, there are nine
rectangular two-dimensional bins. The height of each rectangular bar indicates
the number of objects (flowers in this case) that fall into each bin. Most of
the flowers fall into only three of the bins—those along the diagonal. It is not
possible to see this by looking at the one-dimensional distributions. m

114 Chapter 3 Exploring Data

Count

T e iy i 5
Petal Width 05 ~—"5 Petal Length

Figure 3.9. Two-dimensional histogram of petal length and width in the Iris data set.

While two-dimensional histograms can be used to discover interesting facts
about how the values of two attributes co-occur, they are visually more com-
plicated. For instance, it is easy to imagine a situation in which some of the
columns are hidden by others.

Box Plots Box plots are another method for showing the distribution of the
values of a single numerical attribute. Figure 3.10 shows a labeled box plot for
sepal length. The lower and upper ends of the box indicate the 25" and 75
percentiles, respectively, while the line inside the box indicates the value of the
50" percentile. The top and bottom lines of the tails indicate the 10t* and
90t percentiles. Outliers are shown by “+” marks. Box plots are relatively
compact, and thus, many of them can be shown on the same plot. Simplified
versions of the box plot, which take less space, can also be used.

Example 3.10. The box plots for the first four attributes of the Iris data
set are shown in Figure 3.11. Box plots can also be used to compare how
attributes vary between different classes of objects, as shown in Figure 3.12.

"

Pie Chart A pie chart is similar to a histogram, but is typically used with
categorical attributes that have a relatively small number of values. Instead of
showing the relative frequency of different values with the area or height of a
bar, as in a histogram, a pie chart uses the relative area of a circle to indicate
relative frequency. Although pie charts are common in popular articles, they

+ «—— Qutlier

+
+
SN «—— 90™ percentile

«+—— 75" percentile

<«—— 50 percentile

<«—— 25t percentile

. «—— 10" percenlile

4+

Figure 3.10. Description of
box plot for sepal length.

n

3.3 Visualization 115

! +
i
i
i —_

Tl
+ v

= O

=i

|

Figure 3.11. Box plot for Iris attributes.

Sepal Length Sepal Widih Petal Lengih Patal Width

IS
=

-
d =

=

é 2|

3

Seoa! Langih Sapel Wicsh Fatal Lengi Peisl Wik

(a) Setosa.

Seowl Langh Bepal Wi Prinl Langm Petal Wik

(b) Versicolour.

Sapsl Lange: Seps! WD Peab Lengh Peinl Wiom

(¢) Virginica.

Figure 3.12. Box plots of atiributes by Iris species.

are used less frequently in technical publications because the size of relative
areas can be hard to judge. Histograms are preferred for technical work.

Example 3.11. Figure 3.13 displays a pie chart that shows the distribution
of Iris species in the Iris data set. In this case, all three flower types have the
same frequency. =

Percentile Plots and Empirical Cumulative Distribution Functions
A type of diagram that shows the distribution of the data more quantitatively
is the plot of an empirical cumulative distribution function. While this type of
plot may sound complicated, the concept is straightforward. For each value of
a statistical distribution, a cumulative distribution function (CDF) shows

116 Chapter 3 Exploring Data

Selosa Virginica

Versicolour

Figure 3.13. Distribution of the types of Iris flowers.

the probability that a point is less than that value. For each observed value, an
empirical cumulative distribution function (ECDF) shows the fraction
of points that are less than this value. Since the number of points is finite, the
empirical cumulative distribution function is a step function.

Example 3.12. Figure 3.14 shows the ECDFs of the Iris attributes. The
percentiles of an attribute provide similar information. Figure 3.15 shows the
percentile plots of the four continuous attributes of the Iris data set from
Table 3.2. The reader should compare these figures with the histograms given
in Figures 3.7 and 3.8. n

Scatter Plots Most people are familiar with scatter plots to some extent,
and they were used in Section 2.4.5 to illustrate linear correlation. Each data
object is plotted as a point in the plane using the values of the two attributes
as z and y coordinates. It is assumed that the attributes are either integer- or
real-valued.

Example 3.13. Figure 3.16 shows a scatter plot for each pair of attributes
of the Iris data set. The different species of Iris are indicated by different
markers. The arrangement of the scatter plots of pairs of attributes in this
type of tabular format, which is known as a scatter plot matrix, provides
an organized way to examine a number of scatter plots simultanecusly.]

3.3 Visualization

(a) Sepal Length. (b) Sepal Width.

(c) Petal Length. (d) Petal Width.

Figure 3.14. Empirical CDFs of four lris attributes.

—s~ sepal lengin

Figure 3.15. Percentile plots for sepal length, sepal width, petal length, and petal width.

117

118 Chapter 3

Exploring Data

gl

sepal width

x
x
x
X%
o (s]e] oo
o .
o8t 2000
Slay
3 00
= #
O
o = Ot
@D ++
x e-l- x
+
=
3
D @
m g L
0 2 e
¥ 5,
n > > 2
x
x 4+ 0O

W M~ W N WY 0 MmN N O s o
hd m o

bua| jedas

yipim [edas

wbue) |ejed

yipim [ejad

82

petal width

petal length

sepal length

Figure 3.16. Matrix of scatter plots for the Iris data set.

3.3 Visualization 119

There are two main uses for scatter plots. First, they graphically show
the relationship between two attributes. In Section 2.4.5, we saw how scatter
plots could be used to judge the degree of linear correlation. (See Figure 2.17.)
Scatter plots can also be used to detect non-linear relationships, either directly
or by using a scatter plot of the transformed attributes.

Second, when class labels are available, they can be used to investigate the
degree to which two attributes separate the classes. If is possible to draw a
line (or a more complicated curve) that divides the plane defined by the two
attributes into separate regions that contain mostly objects of one class, then
it is possible to construct an accurate classifier based on the specified pair of
attributes. If not, then more attributes or more sophisticated methods are
needed to build a classifier. In Figure 3.16, many of the pairs of attributes (for
example, petal width and petal length) provide a moderate separation of the
Iris species.

Example 3.14. There are two separate approaches for displaying three at-
tributes of a data set with a scatter plot. First, each object can be displayed
according to the values of three, instead of two attributes. Figure 3.17 shows a
three-dimensional scatter plot for three attributes in the Iris data set. Second,
one of the attributes can be associated with some characteristic of the marker,
such as its size, color, or shape. Figure 3.18 shows a plot of three attributes
of the Iris data set, where one of the attributes, sepal width, is mapped to the
size of the marker. =

Extending Two- and Three-Dimensional Plots As illustrated by Fig-
ure 3.18, two- or three-dimensional plots can be extended to represent a few
additional attributes. For example, scatter plots can display up to three ad-
ditional attributes using color or shading, size, and shape, allowing five or six
dimensions to be represented. There is a need for caution, however. As the
complexity of a visual representation of the data increases, it becomes harder
for the intended audience to interpret the information. There is no benefit in
packing six dimensions’ worth of information into a two- or three-dimensional
plot, if doing so makes it impossible to understand.

Visualizing Spatio-temporal Data

Data often has spatial or temporal attributes. For instance, the data may
consist of a set. of observations on a spatial grid, such as observations of pres-
sure on the surface of the Earth or the modeled temperature at various grid
points in the simulation of a physical object. These observations can also be

120 Chapter 3 Exploring Data 3.3 Visualization 121

e + Selosa
] * Versicolour
= Virginica

Sepal Length

5 4
2 5 6 Petal Width

Figure 3.17. Three-dimensional scatter plot of sepal width, sepal length, and petal width.

Figure 3.19. Contour plot of SST for December 1998.

2.5r 8 i
« Setosa ;
. \S;::zicc,.our G mw . A made at various points in time. In addition, data may have only a temporal
] + Virginica & : compounent, such as time series data that gives the daily prices of stocks.
g Ty SRR 3 Contour Plots For some three-dimensional data, two attributes specify a
2 4l O : i position in a plane, while the third has a continuous value, such as temper-
s OH T ¢ ' ; ature or elevation. A useful visualization for such data is a contour plot,
B AR ! which breaks the plane into separate regions where the values of the third
ot T T g attribute (temperature, elevation) are roughly the same. A common example
of a contour plot is a contour map that shows the elevation of land locations.
el 3 Example 3.15. Figure 3.19 shows a contour plot of the average sea surface
N temperature (SST) for December 1998. The land is arbitrarily set to have a
suase 5 ; temperature of 0°C. In many contour maps, such as that of Figure 3.19, the
01' = - 3 4 z .] contour lines that separate two regions are labeled with the value used to
Patal Lengll separate the regions. For clarity, some of these labels have been deleted. =

Figure 3.18. Scatier plot of petal length versus petal width, with the size of the marker indicating sepal
width, i Surface Plots Like contour plots, surface plots use two attributes for the
z and y coordinates. The third attribute is used to indicate the height above

122 Chapter 3 Exploring Data

* . v e ik
L
. . T il
B ¢

(a) Set of 12 points.

(b) Overall density function—surface
plot.

Figure 3.20. Density of a set of 12 points.

the plane defined by the first two attributes. While such graphs can be useful,
they require that a value of the third attribute be defined for all combinations
of values for the first two attributes, at least over some range. Also, if the
surface is too irregular, then it can be difficult to see all the information,
unless the plot is viewed interactively. Thus, surface plots are often used to
describe mathematical functions or physical surfaces that vary in a relatively
smooth manner.

Example 3.16. Figure 3.20 shows a surface plot of the density around a set
of 12 points. This example is further discussed in Section 9.3.3. L]

Vector Field Plots In some data, a characteristic may have both a mag-
nitude and a direction associated with it. For example, consider the flow of a
substance or the change of density with location. In these situations, it can be
useful to have a plot that displays both direction and magnitude. This type
of plot is known as a vector plot.

Example 3.17. Figure 3.21 shows a contour plot of the density of the two
smaller density peaks from Figure 3.20(b), annotated with the density gradient
vectors. u

Lower-Dimensional Slices Consider a spatio-temporal data set that records
some quantity, such as temperature or pressure, at various locations over time.
Such a data set has four dimensions and cannot be easily displayed by the types

3.3 Visualization 123

A __A_\—-'l"l‘ I-’ & \--\ : sk R | J.{ .

NG 5 B b Ay
SN AN
T O
SERRWELD VIR
ittt il & L B 1 F
REFSTN ran s EV NS CauL L VN
- /‘./-'.ﬁ‘/-";/i';'::\\;.‘\j?\ e //‘M\\\ g 4
vy B LT RNNF Pa PEIRK s
e R /I'ft\\\ R T O O €
Mot T By L S T o R T

Figure 3.21. Vector plot of the gradient (change) in density for the botiomn two density peaks of Figure
3.20.

of plots that we have described so far. However, separate “slices” of the data
can be displayed by showing a set of plots, one for each month. By examining
the change in a particular area from one month to another, it is possible to
notice changes that occur, including those that may be due to seasonal factors.

Example 3.18. The underlying data set for this example consists of the av-
erage monthly sea level pressure (SLP) from 1982 to 1999 on a 2.5° by 2.5°
latitude-longitude grid. The twelve monthly plots of pressure for one year are
shown in Figure 3.22. In this example, we are interested in slices for a par-
ticular month in the year 1982. More generally, we can consider slices of the
data along any arbitrary dimension. "

Animation Another approach to dealing with slices of data, whether or not
time is involved, is to employ animation. The idea is to display successive
two-dimensional slices of the data. The human visual system is well suited to
detecting visual changes and can often notice changes that might be difficult
to detect in another manner. Despite the visual appeal of animation, a set of
still plots, such as those of Figure 3.22, can be more useful since this type of
visualization allows the information to be studied in arbitrary order and for
arbitrary amounts of time.

124 Chapter 3 Exploring Data

February

Figure 3.22. Monthly plots of sea level pressure over the 12 months of 1982.

3.3.4 Visualizing Higher-Dimensional Data

This section considers visualization techniques that can display more than the
handful of dimensions that can be observed with the techniques just discussed.
However, even these techniques are somewhat limited in that they only show
some aspects of the data.

Matrices An image can be regarded as a rectangular array of pixels, where
each pixel is characterized by its color and brightness. A data matrix is a
rectangular array of values. Thus, a data matrix can be visualized as an image
by associating each entry of the data matrix with a pixel in the image. The
brightness or color of the pixel is determined by the value of the corresponding
entry of the matrix.

3.3 Visualization 125

Smoss

Vareicolow

o e Condtation
Setosa Verslcomu Virginica

Figure 3.23. Plot of the Iris data matrix where Figure 3.24. Plot of the Iris correlation matrix.
columns have been standardized to have a mean
of 0 and standard deviation of 1.

There are some important practical considerations when visualizing a data
matrix. If class labels are known, then it is useful to reorder the data matrix
so that all objects of a class are together. This makes it easier, for example, to
detect if all objects in a class have similar attribute values for some attributes.
If different attributes have different ranges, then the attributes are often stan-
dardized to have a mean of zero and a standard deviation of 1. This prevents
the attribute with the largest magnitude values from visually dominating the
plot.

Example 3.19. Figure 3.23 shows the standardized data matrix for the Iris
data set. The first 50 rows represent Iris flowers of the species Setosa, the next
50 Versicolour, and the last 50 Virginica. The Setosa flowers have petal width
and length well below the average, while the Versicolour flowers have petal
width and length around average. The Virginica flowers have petal width and
length above average. u

It can also be useful to look for structure in the plot of a proximity matrix
for a set of data objects. Again, it is useful to sort the rows and columns of
the similarity matrix (when class labels are known) so that all the objects of a
class are together. This allows a visual evaluation of the cohesiveness of each
class and its separation from other classes.

Example 3.20. Figure 3.24 shows the correlation matrix for the Iris data
set. Again, the rows and columns are organized so that all the flowers of a
particular species are together. The flowers in each group are most similar

126 Chapter 3 Exploring Data

to each other, but Versicolour and Virginica are more similar to one another
than to Setosa. ™

If class labels are not known, various techniques (matrix reordering and
seriation) can be used to rearrange the rows and columns of the similarity
matrix so that groups of highly similar objects and attributes are together
and can be visually identified. Effectively, this is a simple kind of clustering.
See Section 8.5.3 for a discussion of how a proximity matrix can be used to
investigate the cluster structure of data.

Parallel Coordinates Parallel coordinates have one coordinate axis for
each attribute, but the different axes are parallel to one other instead of per-
pendicular, as is traditional. Furthermore, an object is represented as a line
instead of as a point. Specifically, the value of each attribute of an object is
mapped to a point on the coordinate axis associated with that attribute, and
these points are then connected to form the line that represents the object.

It might be feared that this would yield quite a mess. However, in many
cases, objects tend to fall into a small number of groups, where the points in
each group have similar values for their attributes. If so, and if the number of
data objects is not too large, then the resulting parallel coordinates plot can
reveal interesting patterns.

Example 3.21. Figure 3.25 shows a parallel coordinates plot of the four nu-
merical attributes of the Iris data set. The lines representing objects of differ-
ent classes are distinguished by their shading and the use of three different line
styles—solid, dotted, and dashed. The parallel coordinates plot shows that the
classes are reasonably well separated for petal width and petal length, but less
well separated for sepal length and sepal width. Figure 3.25 is another parallel
coordinates plot of the same data, but with a different ordering of the axes. =

One of the drawbacks of parallel coordinates is that the detection of pat-
terns in such a plot may depend on the order. For instance, if lines cross a
lot, the picture can become confusing, and thus, it can be desirable to order
the coordinate axes to obtain sequences of axes with less crossover. Compare
Figure 3.26, where sepal width (the attribute that is most mixed) is at the left
of the figure, to Figure 3.25, where this attribute is in the middle.

Star Coordinates and Chernoff Faces

Another approach to displaying multidimensional data is to encode objects
as glyphs or icons—symbols that impart information non-verbally. More

3.3 Visualization 127

- — -Setosa
— — =Versicolour
-+« Virginica

0
2
@
£
E
o
&
@
=
m
>
o L s
Sepal Length Sepal Width Petal Lenglh Petal Width
Figure 3.25. A parallel coordinates plot of the four Iris attributes.
8
— — — Setosa
7 — — — Versicolour
+ov-e0n - Virginica
?
2
@
E
=
o
)
[
£
[
>
0 i i
Sepal Width Sepal Length Petal Length Petal Width

Figure 3.26. A parallel coordinates plot of the four Iris attributes with the attributes reordered to
emphasize similarities and dissimilarities of groups.

128 Chapter 3 Exploring Data

specifically, each attribute of an object is mapped to a particular feature of a
glyph, so that the value of the attribute determines the exact nature of the
feature. Thus, at a glance, we can distinguish how two objects differ.

Star coordinates are one example of this approach. This technique uses
one axis for each attribute. These axes all radiate from a center point, like the
spokes of a wheel, and are evenly spaced. Typically, all the attribute values
are mapped to the range [0,1].

An object is mapped onto this star-shaped set of axes using the following
process: Each attribute value of the object is converted to a fraction that
represents its distance between the minimum and maximum values of the
attribute, This fraction is mapped to a point on the axis corresponding to
this attribute. Each point is connected with a line segment to the point on
the axis preceding or following its own axis; this forms a polygon. The size
and shape of this polygon gives a visual description of the attribute values of
the object. For ease of interpretation, a separate set of axes is used for each
object. In other words, each object is mapped to a polygon. An example of a
star coordinates plot of flower 150 is given in Figure 3.27(a).

It is also possible to map the values of features to those of more familiar
objects, such as faces. This technique is named Chernoff faces for its creator,
Herman Chernoff. In this technique, each attribute is associated with a specific
feature of a face, and the attribute value is used to determine the way that
the facial feature is expressed. Thus, the shape of the face may become more
elongated as the value of the corresponding data feature increases. An example
of a Chernoff face for flower 150 is given in Figure 3.27(b).

The program that we used to make this face mapped the features to the
four features listed below. Other features of the face, such as width between
the eyes and length of the mouth, are given default values.

Data Feature | Facial Feature

sepal length | size of face
sepal width forehead /jaw relative arc length
petal length | shape of forehead

petal width shape of jaw

Example 3.22. A more extensive illustration of these two approaches to view-
ing multidimensional data is provided by Figures 3.28 and 3.29, which shows
the star and face plots, respectively, of 15 flowers from the Iris data set. The
first 5 flowers are of species Setosa, the second 5 are Versicolour, and the last
5 are Virginica. m

b
b |
4
4
3yl
b |
5

3. T e g e Y

3.3 Visualization 129

epal width

petal length

(a) Star graph of Iris 150.

(b) Chernoff face of Iris 150.

Figure 3.27. Star coordinates graph and Chernoff face of the 150t flower of the Iris data set.

boow

b

§

b

P
PP

Figure 3.28. Plot of 15 Iris flowers using star coordinates.

[@
1 2
8,8 g8
.“;'I 52
B8 @
10 102

®,®
53
9,8

103

54
6,8

104

@

)

55
9]9

105

Figure 3.29. A plot of 15 Iris flowers using Chernoff faces.

130 Chapter 3 Exploring Data

Despite the visual appeal of these sorts of diagrams, they do not scale well,
and thus, they are of limited use for many data mining problems. Nonetheless,
they may still be of use as a means to quickly compare small sets of objects
that have been selected by other techniques.

3.3.5 Do’s and Don’ts

To conclude this section on visualization, we provide a short list of visualiza-
tion do’s and don’ts. While these guidelines incorporate a lot of visualization
wisdom, they should not be followed blindly. As always, guidelines are no
substitute for thoughtful consideration of the problem at hand.

ACCENT Principles The following are the ACCENT principles for ef-
fective graphical display put forth by D. A. Burn (as adapted by Michael
Friendly):

Apprehension Ability to correctly perceive relations among variables. Does
the graph maximize apprehension of the relations among variables?

Clarity Ability to visually distinguish all the elements of a graph. Are the
most important elements or relations visually most prominent?

Consistency Ability to interpret a graph based on similarity to previous
graphs. Are the elements, symbol shapes, and colors consistent with
their use in previous graphs?

Efficiency Ability to portray a possibly complex relation in as simple a way
as possible. Are the elements of the graph economically used? Is the
graph easy to interpret?

Necessity The need for the graph, and the graphical elements. Is the graph
a more useful way to represent the data than alternatives (table, text)?
Are all the graph elements necessary to convey the relations?

Truthfulness Ability to determine the true value represented by any graph-
ical element by its magnitude relative to the implicit or explicit scale.
Are the graph elements accurately positioned and scaled?

Tufte’s Guidelines Edward R. Tufte has also enumerated the following
principles for graphical excellence:

3.4 OLAP and Multidimensional Data Analysis 131

o Graphical excellence is the well-designed presentation of interesting data—
a matter of substance, of statistics, and of design.

e Graphical excellence consists of complex ideas communicated with clar-
ity, precision, and efficiency.

e Graphical excellence is that which gives to the viewer the greatest num-
ber of ideas in the shortest time with the least ink in the smallest space.

o Graphical excellence is nearly always multivariate.

e And graphical excellence requires telling the truth about the data.

3.4 OLAP and Multidimensional Data Analysis

In this section, we investigate the techniques and insights that come from
viewing data sets as multidimensional arrays. A number of database sys-
tems support such a viewpoint, most notably, On-Line Analytical Processing
(OLAP) systems. Indeed, some of the terminology and capabilities of QLAP
systems have made their way into spreadsheet programs that are used by mil-
lions of people. OLAP systems also have a strong focus on the interactive
analysis of data and typically provide extensive capabilities for visualizing the
data and generating summary statistics. For these reasons, our approach to
multidimensional data analysis will be based on the terminology and concepts
common to OLAP systems.

3.4.1 Representing Iris Data as a Multidimensional Array

Most data sets can be represented as a table, where each row is an object and
each column is an attribute. In many cases, it is also possible to view the data
as a multidimensional array. We illustrate this approach by representing the
Iris data set as a multidimensional array.

Table 3.7 was created by discretizing the petal length and petal width
attributes to have values of low, medium, and high and then counting the
number of flowers from the Iris data set that have particular combinations
of petal width, petal length, and species type. (For petal width, the cat-
egories low, medium, and high correspond -to the intervals [0, 0.75), [0.75,
1.75), [1.75, oa), respectively. For petal length, the categories low, medium,
and high correspond to the intervals [0, 2.5), [2.5, §), [5, o0), respectively.)

132 Chapter 3 Exploring Data

Table 3.7. Number of flowers having a particular combination of petal width, petal length, and species

type.
Petal Length | Petal Width | Species Type | Count
low low Setosa 46
low medium Setosa 2
medium low Setosa 2
medium medium Versicolour 43
medium high Versicolour 3
medium high Virginica 3
high medium Versicolour 2
high medium Virginica 3
high high Versicolour 2
high high Virginica 44
A Petal
Width
Virginica 7 i
Versicolour / 7 7
L2171 (o: G ORI (P R v
high 0 0] 0 /]
medium A i R (e L ///1
“&
T i P RPN o /00\
low 0 2 46 L/ eR

Petal _-5,
Width -

low

medium

Figure 3.30. A multidimensional data representation for the Iris data setl.

3.4 OLAP and Multidimensional Data Analysis 133

Table 3.8. Cross-tabulation of flowers accord- Table 3.9. Cross-tabulation of flowers accord-
ing to petal length and width for flowers of the ing to petal length and width for flowers of the
Setosa species. Versicolour species.
Width Width
| low medium high | low medium high

= low 46 2 0 £ low 0 0 0

¥ medium | 2 0 0 ¥ medium | 0 43 3

& high 0 0 0 2 high 0 2 2

Table 3.10. Cross-tabulation of flowers ac-
cording to petal length and width for flowers of
the Virginica species.

Width
| low medium high
= low 0 0 0
¥ medium | 0 0 3
2 high 0 3 44

Empty combinations—those combinations that do not correspond to at least
one flower—are not shown.

The data can be organized as a multidimensional array with three dimen-
sions corresponding to petal width, petal length, and species type, as illus-
trated in Figure 3.30. For clarity, slices of this array are shown as a set of
three two-dimensional tables, one for each species—see Tables 3.8, 3.9, and
3.10. The information contained in both Table 3.7 and Figure 3.30 is the
same. However, in the multidimensional representation shown in Figure 3.30
(and Tables 3.8, 3.9, and 3.10), the values of the attributes—petal width, petal
length, and species type—are array indices.

What is important are the insights can be gained by looking at data from a
multidimensional viewpoint. Tables 3.8, 3.9, and 3.10 show that each species
of Iris is characterized by a different combination of values of petal length
and width. Setosa flowers have low width and length, Versicolour flowers have
medium width and length, and Virginica flowers have high width and length.

3.4.2 Multidimensional Data: The General Case

The previous section gave a specific example of using a multidimensional ap-
proach to represent and analyze a familiar data set. Here we describe the
general approach in more detail.

134 Chapter 3 Exploring Data

The starting point is usually a tabular representation of the data, such
as that of Table 3.7, which is called a fact table. T'wo steps are necessary
in order to represent data as a multidimensional array: identification of the
dimensions and identification of an attribute that is the focus of the analy-
sis. The dimensions are categorical attributes or, as in the previous example,
continuous attributes that have been converted to categorical attributes. The
values of an attribute serve as indices into the array for the dimension corre-
sponding to the attribute, and the number of attribute values is the size of
that dimension. In the previous example, each attribute had three possible
values, and thus, each dimension was of size three and could be indexed by
three values. This produced a 3 x 3 x 3 multidimensional array.

Each combination of attribute values (one value for each different attribute)
defines a cell of the multidimensional array. To illustrate using the previous
example, if petal length = low, petal width = medium, and species = Setosa,
a specific cell containing the value 2 is identified. That is, there are only two
flowers in the data set that have the specified attribute values. Notice that
each row (object) of the data set in Table 3.7 corresponds to a cell in the
multidimensional array.

The contents of each cell represents the value of a target quantity (target
variable or attribute) that we are interested in analyzing. In the Iris example,
the target quantity is the number of flowers whose petal width and length
fall within certain limits. The target attribute is quantitative because a key
goal of multidimensional data analysis is to look aggregate quantities, such as
totals or averages. :

The following summarizes the procedure for creating a multidimensional
data representation from a data set represented in tabular form. First, identify
the categorical attributes to be used as the dimensions and a quantitative
attribute to be used as the target of the analysis. Each row (object) in the
table is mapped to a cell of the multidimensional array. The indices of the cell
are specified by the values of the attributes that were selected as dimensions,
while the value of the cell is the value of the target attribute. Cells not defined
by the data are assumed to have a value of 0.

Example 3.23. To further illustrate the ideas just discussed, we present a
more traditional example involving the sale of products.The fact table for this
example is given by Table 3.11. The dimensions of the multidimensional rep-
resentation are the product ID, location, and date attributes, while the target
attribute is the revenue. Figure 3.31 shows the multidimensional representa-
tion of this data set. This larger and more complicated data set will be used
to illustrate additional concepts of multidimensional data analysis. =

s Sttt FLa LT

3.4 OLAP and Multidimensional Data Analysis 135

3.4.3 Analyzing Multidimensional Data

In this section, we describe different multidimensional analysis techniques. In
particular, we discuss the creation of data cubes, and related operations, such
as slicing, dicing, dimensionality reduction, roll-up, and drill down.

Data Cubes: Computing Aggregate Quantities

A key motivation for taking a multidimensional viewpoint of data is the im-
portance of aggregating data in various ways. In the sales example, we might
wish to find the total sales revenue for a specific year and a specific product.
Or we might wish to see the yearly sales revenue for each location across all
products. Computing aggregate totals involves fixing specific values for some
of the attributes that are being used as dimensions and then summing over
all possible values for the attributes that make up the remaining dimensions.
There are other types of aggregate quantities that are also of interest, but for
simplicity, this discussion will use totals (sums).

Table 3.12 shows the result of summing over all locations for various com-
binations of date and product. For simplicity, assume that all the dates are
within one year. If there are 365 days in a year and 1000 products, then Table
3.12 has 365,000 entries (totals), one for each product-data pair. We could
also specify the store location and date and sum over products, or specify the
location and product and sum over all dates.

Table 3.13 shows the marginal totals of Table 3.12. These totals are the
result of further summing over either dates or products. In Table 3.13, the
total sales revenue due to product 1, which is obtained by summing across
row 1 (over all dates), is $370,000. The total sales revenue on January 1,
2004, which is obtained by summing down column 1 (over all products), is
$527,362. The total sales revenue, which is obtained by summing over all rows
and columns (all times and products) is $227,352,127. All of these totals are
for all locations because the entries of Table 3.13 include all locations.

A key point of this example is that there are a number of different totals
(aggregates) that can be computed for a multidimensional array, depending on
how many attributes we sum over. Assume that there are n dimensions and
that the i* dimension (attribute) has s; possible values. There are n different
ways to sum only over a single attribute. If we sum over dimension j, then we
obtain sy ««+ % 851 % 8541 * -+ * 5n totals, one for each possible combination
of attribute values of the n — 1 other attributes (dimensions). The totals that
result from summing over one attribute form a multidimensional array of n—1
dimensions and there are n such arrays of totals. In the sales example, there

136 Chapter 3

Exploring Data

Table 3.11. Sales revenue of products (in dallars) for varicus locations and times.

Product 1D Location Date Revenue
1 Minneapolis Oct. 18, 2004 $250
1 Chicago Oct. 18, 2004 879
1 Paris Oct. 18,2004 301
27 Minneapolis Oct. 18, 2004 §2,321
27 Chicago Oct. 18, 2004 $3,278
27 Paris Oct. 18,2004 $1,325
1\
Date
vl Pl ra y
F el
Qo
‘a,:\\o
. (¥}
$ $ $ O
e
Product ID

Figure 3.31. Multidimensional data representation for sales data.

|

3.4 OLAP and Multidimensional Data Analysis 137

Table 3.12. Totals that result from summing over all locations for a fixed time and product.

date
Jan 1, 2004 Jan 2, 2004 Dec 31, 2004
1 $1,001 3987 ... $891
a . p .
=
42
3
= Ay $10,265 810,225 ... $9,325
Table 3.13. Table 3.12 with marginal totals.
date
Jan 1, 2004 Jan 2, 2004 Dec 31, 2004 | total
1 $1,001 8987 ... $891 | §370,000
8 . ; o .
+2
3
G- ¢4 $10,265 $10225 o $9,325 | $3,800,020
. : o b
total ~ $527,362 $532,953 $631,221 | $227,352,127

are three sets of totals that result from summing over only one dimension and
each set of totals can be displayed as a two-dimensional table.

If we sum over two dimensions (perhaps starting with one of the arrays
of totals obtained by summing over one dimension), then we will obtain a
multidimensional array of totals with n — 2 dimensions. There will be (3)
distinct arrays of such totals. For the sales examples, there will be (2) =3
arrays of totals that result from summing over location and product, location
and time, or product and time. In general, summing over k dimensions yields
(:) arrays of totals, each with dimension n — k.

A multidimensional representation of the data, together with all possible
totals (aggregates), is known as a data cube. Despite the name, the size of
each dimension—the number of attribute values—does not need to be equal.
Also, a data cube may have either more or fewer than three dimensions. More
importantly, a data cube is a generalization of what is known in statistical
terminology as a cross-tabulation. If marginal totals were added, Tables
3.8, 3.9, or 3.10 would be typical examples of cross tabulations.

138 Chapter 3 Exploring Data

Dimensionality Reduction and Pivoting

The aggregation described in the last section can be viewed as a form of
dimensionality reduction. Specifically, the j* dimension is eliminated by
summing over it. Conceptually, this collapses each “column” of cells in the j**
dimension into a single cell. For both the sales and Iris examples, aggregating
over one dimension reduces the dimensionality of the data from 3 to 2. If s;
is the number of possible values of the 7™ dimension, the number of cells is
reduced by a factor of s;. Exercise 17 on page 143 asks the reader to explore
the difference between this type of dimensionality reduction and that of PCA.

Pivoting refers to aggregating over all dimensions except two. The result
is a two-dimensional cross tabulation with the two specified dimensions as the
only remaining dimensions. Table 3.13 is an example of pivoting on date and
product.

Slicing and Dicing

These two colorful names refer to rather straightforward operations. Slicing is
selecting a group of cells from the entire multidimensional array by specifying
a specific value for one or more dimensions. Tables 3.8, 3.9, and 3.10 are
three slices from the Iris set that were obtained by specifying three separate
values for the species dimension. Dicing involves selecting a subset of cells by
specifying a range of attribute values. This is equivalent to defining a subarray
from the complete array. In practice, both operations can also be accompanied
by aggregation over some dimensions.

Roll-Up and Drill-Down

In Chapter 2, attribute values were regarded as being “atomic” in some sense.
However, this is not always the case. In particular, each date has a number
of properties associated with it such as the year, month, and week. The data
can also be identified as belonging to a particular business quarter, or if the
application relates to education, a school quarter or semester. A location
also has various properties: continent, country, state (province, etc.), and
city. Products can also be divided into various categories, such as clothing,
electronics, and furniture.

Often these categories can be organized as a hierarchical tree or lattice.
For instance, years consist of months or weeks, both of which consist of days.
Locations can be divided into nations, which contain states (or other units
of local government), which in turn contain cities. Likewise, any category

o R L AT A A A

aserap s k.|

3.5 Bibliographic Notes 139

of products can be further subdivided. For example, the product category,
furniture, can be subdivided into the subcategories, chairs, tables, sofas, etc.

This hierarchical structure gives rise to the roll-up and drill-down opera-
tions. To illustrate, starting with the original sales data, which is a multidi-
mensional array with entries for each date, we can aggregate (roll up) the
sales across all the dates in a month. Conversely, given a representation of the
data where the time dimension is broken into months, we might want to split
the monthly sales totals (drill down) into daily sales totals. Of course, this
requires that the underlying sales data be available at a daily granularity.

Thus, roll-up and drill-down operations are related to aggregation. No-
tice, however, that they differ from the aggregation operations discussed until
now in that they aggregate cells within a dimension, not across the entire
dimension.

3.4.4 Final Comments on Multidimensional Data Analysis

Multidimensional data analysis, in the sense implied by OLAP and related sys-
tems, consists of viewing the data as a multidimensional array and aggregating
data in order to better analyze the structure of the data. For the Iris data,
the differences in petal width and length are clearly shown by such an anal-
ysis. The analysis of business data, such as sales data, can also reveal many
interesting patterns, such as profitable (or unprofitable) stores or products.

As mentioned, there are various types of database systems that support
the analysis of multidimensional data. Some of these systems are based on
relational databases and are known as ROLAP systems. More specialized
database systems that specifically employ a multidimensional data represen-
tation as their fundamental data model have also been designed. Such systems
are known as MOLAP systems. In addition to these types of systems, statisti-
cal databases (SDBs) have been developed to store and analyze various types
of statistical data, e.g., census and public health data, that are collected by
governments or other large organizations. References to OLAP and SDBs are
provided in the bibliographic notes.

3.5 Bibliographic Notes

Summary statistics are discussed in detail in most introductory statistics
books, such as [92]. References for exploratory data analysis are the classic
text by Tukey [104] and the book by Velleman and Hoaglin [105].

The basic visnalization techniques are readily available, being an integral
part. of most spreadsheets (Microsoft EXCEL [95]), statistics programs (SAS

140 Chapter 3 Exploring Data

[99], SPSS [102], R [96], and S-PLUS [98]), and mathematics software (MAT-
LAB [04] and Mathematica [93]). Most of the graphics in this chapter were
generated using MATLAB. The statistics package R is freely available as an
open source software package from the R project.

The literature on visualization is extensive, covering many fields and many
decades. One of the classics of the field is the book by Tufte [103]. The book
by Spence [101], which strongly influenced the visualization portion of this
chapter, is a useful reference for information visualization—both principles and
techniques. This book also provides a thorough discussion of many dynamic
visualization techniques that were not covered in this chapter. Two other
books on visualization that may also be of interest are those by Card et al.
[87) and Fayyad et al. [89].

Finally, there is a great deal of information available about data visualiza-
tion on the World Wide Web. Since Web sites come and go frequently, the best
strategy is a search using “information visualization,” “data visualization,” or
“statistical graphics.” However, we do want to single out for attention “The
Gallery of Data Visualization,” by Friendly [90]. The ACCENT Principles for
effective graphical display as stated in this chapter can be found there, or as
originally presented in the article by Burn [86].

There are a variety of graphical techniques that can be used to explore
whether the distribution of the data is Gaussian or some other specified dis-
tribution. Also, there are plots that display whether the observed values are
statistically significant in some sense. We have not covered any of these tech-
niques here and refer the reader to the previously mentioned statistical and
mathematical packages.

Multidimensional analysis has been around in a variety of forms for some
time. One of the original papers was a white paper by Codd (88|, the father
of relational databases. The data cube was introduced by Gray et al. [91],
who described various operations for creating and manipulating data cubes
within a relational database framework. A comparison of statistical databases
and OLAP is given by Shoshani [100]. Specific information on OLAP can
be found in documentation from database vendors and many popular books.
Many database textbooks also have general discussions of OLAP, often in the
context of data warehousing. For example, see the text by Ramakrishnan and
Gehrke [97).

Bibliography

|86] D. A. Burn. Designing Effective Statistical Graphs. In C. R. Rao, editor, Handbook of
Statistics 9. Elsevier/North-Holland, Amsterdam, The Netherlands, September 1993.

LS R b i

3.6 Exercises 141

[87] 8. K. Card, J. D. MacKinlay, and B. Shneiderman, editors. Readings in Information
Visualization: Using Visien to Think. Morgan Kaufmann Publishers, San Francisco,
CA, January 1999.

[88] E. F. Codd, S. B. Codd, and C. T. Smalley. Providing OLAP (On-line Analytical
Processing) to User- Analysts: AnIT Mandate. White Paper, E.F. Codd and Associates,
1993.

[89] U. M. Fayyad, G. G. Grinstein, and A. Wierse, editors. Information Visualization in
Data Mining and Knowledge Discovery. Morgan Kaufmann Publishers, San Francisco,
CA, September 2001.

[90] M. Friendly. Gallery of Data Visualization. http://www.math.yorku.ca/SCS/Gallery/,
2005.

[91] J. Gray, 8. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow,
and H. Pirahesh. Data Cube: A Relational Aggregation Operator Generalizing Group-
By, Cross-Tab, and Sub-Totals. Journal Date Mining and Knowledge Discovery, 1(1):
29-53, 1997.

[92] B. W. Lindgren. Statistical Theory. CRC Press, January 1993,

[93] Mathematica 5.1. Wolfram Research, Inc. http://www.wolfram.com/, 2005,

[94] MATLAB 7.0. The MathWorks, Inc. http://www.mathworks.com, 2005.

[95] Microsoft Excel 2003. Microsoft, Inc. http://www.microsoft.com/, 2003.

[96] R: A language and environment for statistical computing and graphics. The R Project
for Statistical Computing. http://www.r-project.org/, 2005.

[97] R. Ramakrishnan and J. Gehrke. Database Management Systems. McGraw-Hill, 3rd
edition, August 2002.

|98] S-PLUS. Insightful Corporation. http://www.insightful.com, 2005.

[99] SAS: Statistical Analysis System. SAS Institute Inc. http://www.sas.com/, 2005.

[100] A. Shoshani. OLAP and statistical databases: similarities and differences. In Proc,
of the Sizxteenth ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database
Systemns, pages 185-196. ACM Press, 1997.

[101) R. Spence. Information Visualization. ACM Press, New York, December 2000.

[102) SPSS: Statistical Package for the Social Sciences. SPSS, lnc. http://www.spss.com/,
2005.

[103] E.R. Tufte. The Visual Display of Quantitative Informetion. Graphics Press, Cheshire,
CT, March 1986.

[104] J. W. Tukey. Ezploratory data analysis. Addison-Wesley, 1977.

(105] P. Velleman and D. Hoaglin. The ABC’s of EDA: Applicetions, Basics, and Computing
of Ezploratory Data Analysis. Duxbury, 1981.

3.6 Exercises

1. Obtain one of the data sets available at the UCI Machine Learning Repository
and apply as many of the different visualization techniques described in the
chapter as possible. The bibliographic notes and book Web site provide pointers
to visualization software.

Chapter 3 Exploring Data

. Tdentify at least two advantages and two disadvantages of using color to visually

represent information.

. What are the arrangement issues that arise with respect to three-dimensicnal

plots?

. Discuss the advantages and disadvantages of using sampling to reduce the num-

ber of data objects that need to be displayed. Would simple random sampling
(without replacement) be a good approach to sampling? Why or why not?

. Describe how you would create visualizations to display information that de-

scribes the following types of systems.

(a) Computer networks. Be sure to include both the static aspects of the
network, such as connectivity, and the dynamic aspects, such as traffic.

(b) The distribution of specific plant and animal species around the world for
a specific moment in time.

(¢) The use of computer resources, such as processor time, main memory, and
disk, for a set of benchmark database programs.

(d) The change in occupation of workers in a particular country over the last
thirty years. Assume that you have yearly information about each person
that also includes gender and level of education.

Be sure to address the following issues:

« Representation. How will you map objects, attributes, and relation-
ships to visual elements?

e Arrangement. Are there any special considerations that need to be
taken into account, with respect to how visual elements are displayed? Spe-
cific examples might be the choice of viewpoint, the use of transparency,
or the separation of certain groups of objects.

e Selection. How will you handle a large number of attributes and data
objects?

. Describe one advantage and one disadvantage of a stem and leaf plot with

respect to a standard histogram.

. How might you address the problem that a histogram depends on the number

and location of the bins?

. Describe how a box plot can give information about whether the value of an

attribute is symmetrically distributed. What can you say about the symmetry
of the distributions of the attributes shown in Figure 3.117

. Compare sepal length, sepal width, petal length, and petal width, using Figure

3:12,

= o

3.6 Exercises 143

. Comment on the use of a box plot to explore a data set with four attributes:

age, weight, height, and income.

. Give a possible explanation as to why most of the values of petal length and

width fall in the buckets along the diagonal in Figure 3.9.

. Use Figures 3.14 and 3.15 to identify a characteristic shared by the petal width

and petal length attributes.

. Simple line plots, such as that displayed in Figure 2.12 on page 56, which

shows two time series, can be used to effectively display high-dimensional data.
For example, in Figure 2.12 it is easy to tell that the frequencies of the two
time series are different. What characteristic of time series allows the effective
visualization of high-dimensional data?

. Describe the types of situations that produce sparse or dense data cubes. Illus-

trate with examples other than those used in the book.

. How might you extend the notion of multidimensional data analysis so that the

target variable is a qualitative variable? In other words, what sorts of summary
statistics or data visualizations would be of interest?

. Construct a data cube from Table 3.14. Is this a dense or sparse data cube? If

it is sparse, identify the cells that empty.

Table 3.14. Fact table for Exercise 16.
Product ID | Location ID | Number Sold

1 1 10
i 3 6
2 1 5
2 2 22

17. Discuss the differences between dimensionality reduction based on aggregation

and dimensionality reduction based on techniques such as PCA and SVD.

.

Classification:
Basic Concepts,
Decision Trees, and
Model Evaluation

Classification, which is the task of assigning objects to one of several predefined
categories, is a pervasive problem that encompasses many diverse applications.
Examples include detecting spam email messages based upon the message
header and content, categorizing cells as malignant or benign based upon the
results of MR scans, and classifying galaxies based upon their shapes (see
Figure 4.1).

(a) A spiral galaxy. (b) An elliptical galaxy.

Figure 4.1. Classification of galaxies. The images are from the NASA website.

146 Chapter 4 Classification

Input QOutput

. Classification
Attribute set |:{> model :{) Class label

x) »

Figure 4.2. Classification as the task of mapping an input attribute set x into its class label y.

This chapter introduces the basic concepts of classification, describes some
of the key issues such as model overfitting, and presents methods for evaluating
and comparing the performance of a classification techmqne. While it focnses
mainly on a technique known as decision tree induction, most of the discussion
in tbis chapter is also applicable to other classification techniques, many of
which are covered in Chapter 5.

4.1 Preliminaries

The input data for a classification task is a collection of records. Eacb record,
also known as an instance or example, is characterized by a tople (x, y), where
X is the attribute set and y is a special attribute, designated as the class label
(also known as category or target attribute). Table 4.1 shows a sample data set
used for classifying vertebrates into one of the following categories: mammal,
bird, fish, reptile, or ampbibian. The attribute set includes properties of a
vertebrate such as its body temperature, skin cover, method of reproduction,
abihity to fly, and ability to live in water. Although the attributes presented
in Table 4.1 are mostly discrete, the attribute set can also contain continuous
features. The class label, on tbe otber hand, must be a discrete attribute.
This is a key characteristic that distinguishes classification from regression,
a predictive modeling task in which y is a continuous attribute. Regression
techniques are covered in Appendix D.

Definition 4.1 (Classification). Classification is the task of learning a tar-
get function f that maps each attribute set x to one of the predefined class
labels y.

The target function is also known informally as a classification model.
A classification model is useful for the following purposes.

Descriptive Modeling A classification model can serve as an explanatory
tool to distinguish between objects of different classes. For example, it would
be useful—for both biologists and others—to have a descriptive model that

4.1 Preliminaries 147
Table 4.1. The vertebrate data set.

Name Body Skin Gives | Aquatic Aerial Has | Hiber- Class

Temperature Cover Birth | Creature | Creature | Legs nates Label
human warm-blooded hair yes no no yes no mammal
python cold-blooded scales no no no no yes reptile
salmon cold-blooded scales no yes no no ne fish
whale warm-bleoded hair yes yes no no no mammal
frog cold-blooded none no semi no yes ves amphibian
komodo cold-blooded scales no no no yes no reptile
dragon
bat warm-blooded hair yes no yes yes yes mammal
pigeon warm-blooded | feathers no no yes. yes no bird
cat warm-blooded fur yes no no yes ne mammal
leopard cold-blooded scales yes yes ne no no fish
shark
turtle cold-blooded scales no serni no yes no Teptile
penguin warm-blooded | feathers no semi no yes no bird
porcupine warm-blooded quills yes no no yes yes mammal
eel cold-blooded scales no ves no no no fish
salamander | cold-blooded none no semi no yes yes amphibian

summarizes the data shown in Table 4.1 and explains what features define a

vertebrate as a mammal, reptile, bird, fish, or amphibian.

Predictive Modeling A classification model can also be used to predict
the class label of unknown records. As shown in Figure 4.2, a classification
model can be treated as a black box tbat automatically assigns a class label
when presented with the attribute set of an unknown record. Suppose we are
given the following characteristics of a creature known as a gila monster:

Name Body Skin Gives | Aquatic Aerial Has | Hiber- | Class
Temperature | Cover | Birth | Creature | Creature | Legs nates Label
gila monster | cold-blooded | scales no no no yes Yes T

We can use a classification model built from the data set sbown in Table 4.1
to determine the class to which the creature belongs.

Classification techmques are most suited for predicting or describing data
sets with binary or nominal categories. They are less effective for ordinal

categories (e.g., to classify a person as a member of high-, medium-, or low-
income group) because they do not consider the implicit order among the
categories. Other forms of relationships, such as the subclass—superclass re-
lationships among categories (e.g., humans and apes are primates, which in

148 Chapter 4 Classification

turn, is a subclass of mammals) are also ignored. The remainder of this chapter
focuses only on binary or nominal class labels.

4.2 General Approach to Solving a Classification
Problem

A classification technique (or classifier) is a systematic approach to building
classification models from an input data set. Examples include decision tree
classifiers, rule-based classifiers, neural networks, support vector machines,
and naive Bayes classifiers. Each technique employs a learning algorithm
to identify a model that best fits the relationship between the attribnte set and
class label of the input data. The model generated by a learning algorithm
should both fit the input data well and correctly predict the class labels of
records it has never seen before. Therefore, a key objective of the learning
algorithm is to build models with good generalization capability: i.e., models
that accurately predict the class labels of previonsly unknown records.
Figure 4.3 shows a general approach for solving classification problems.
First, a training set consisting of records whose class labels are known must

Training Set

—_—
1 Yes Large 128K No Algorithm
2 No Medium | 100K No
3 No Small 70K No
& (Yes |Medim | 120K Mo Induction
5 No Large 95K Yes
6 |No |Medium [60K |No 3
7 Yes Large 220K No Learn
8 No Small 85K Yes Model
9 |No Medium | 75K No
10 | No Small 0K Yes \ ||

Test Set Apply
Tid Atirib1 Attrib2 Attrib3 Class Model

11 |Ne Small 55K
12 |Yes Medium | 80K
13 |Yes Large 110K
14 | No Small 95K
15 |No Large 67K

%‘:n

W W

Figure 4.3. General approach for building a classification model.

4.2 General Approach to Solving a Classification Problem 149

Table 4.2. Confusion matrix for a 2-class preblem.
Predicted Class
Class =1 | Clasgs =10
Actual | Class = 1 fu fio
Class [Class =0 fo1 foo

be provided. The training set is used to build a classification model, which is
subsequently applied to the test set, which consists of records with unknown
class labels.

Evaluation of the performance of a classification model is based on the
counts of test records correctly and incorrectly predicted by the model. These
counts are tabulated in a table known as a confusion matrix. Table 4.2
depicts the confusion matrix for a binary classification problem. Each entry
fij in this table denotes the number of records from class ¢ predicted to be
of class j. For instance, fo; is the number of records from class 0 incorrectly
predicted as class 1. Based on the entries in the confusion matrix, the total
number of correct predictions made by the model is {11 + foo) and the total
number of incorrect predictions is (fi0 + fo1).

Although a confusion matrix provides the information needed to determine
how well a classification model performs, summarizing this information with
a single number would make it more convenient. to compare the performance
of different models. This can be done using a performance metric such as
accuracy, which is defined as follows:

Number of correct predictions S+ foo
Total number of predictions i i+ fio + fou + foo©

Accuracy = (4.1)

Equivalently, the performance of a model can be expressed in terms of its
error rate, which is given by the following equation:

Number of wrong predictions Jio+ fou
Total number of predictions fi; + fio + fo1 + foo'

Error rate = (4.2)

Most classification algorithms seek models that attain the highest accuracy, or
equivalently, the lowest error rate when applied to the test set. We will revisit
the topic of model evaluation m Section 4.5.

150 Chapter 4 Classification
4.3 Decision Tree Induction

This section introduces a decision tree classifier, which is a simple yet widely
used classification technique.

4.3.1 How a Decision Tree Works

To illustrate how classification with a decision tree works, consider a simpler
version of the vertebrate classification problem described in the previons sec-
tion. Instead of classifying the vertebrates into five distinct groups of species,
we assign them to two categories: mammals and non-mammals.

Suppose a new species is discovered by scientists. How can we tell whether
it is a mammal or a non-mammal? One approach is to pose a series of questions
ahout the characteristics of the species. The first question we may ask is
whether the species is cold- or warm-blooded. If it is cold-blooded, then it is
definitely not a mammal. Otherwise, it is either a bird or & mammal. In the
latter case, we need to ask a follow-up question: Do the females of the species
give birth to their young? Those that do give birth are definitely mammals,
while those that do not are likely to be non-mammals (with the exception of
egg-laying mammals such as the platypus and spiny anteater).

The previous example illustrates how we can solve a classification problem
by asking a series of carefully crafted gnestions abont the attributes of the
test record. Each time we receive an answer, a follow-up question is asked
nntil we reach a conclnsion about the class label of the record. The series of
questions and their possible answers can be organized in the form of a decision
tree, which is a hierarchical structure consisting of nodes and directed edges.
Figure 4.4 shows the decision tree for the mammal classification problem. The
tree has three types of nodes:

e A root node that has no incoming edges and zero or more outgoing
edges.

e Internal nodes, each of which has exactly one incoming edge and two
or more outgoing edges.

e Leaf or terminal nodes, each of which has exactly one incoming edge
and no outgoing edges.

In a decision tree, each leaf node is assigned a class label. The non-
terminal nodes, which include the root and other internal nodes, contain
attribute test conditions to separate records that have different characteris-
tics. For example, the root node shown in Figure 4.4 uses the attribute Body

4.3 Decision Tree Induction 151

T T
/Emgzzture\(""»r—— __.Roat
\\7 _// “node

Internal Warm Cold
nods
) . Non-
Gives BID mammals

e
Non- nodes

Mammals
mammals

Figure 4.4, A decision tree for the mammal classification problem.

Temperature to separate warm-blooded from cold-blooded vertebrates. Since
all cold-blooded vertebrates are non-mammals, a leaf node labeled Non-mammals
is created as the right child of the root node. If the vertebrate is warm-blooded,
a subsequent attribute, Gives Birth, is used to distinguish mammals from
other warm-blooded creatures, which are mostly birds.

Classifying a test record is straightforward once a decision tree has been
constructed. Starting from the root node, we apply the test condition to the
record and follow the appropriate branch based on the outcome of the test.
This will lead us either to another internal node, for which a new test condition
is applied, or to a leaf node. The class label associated with the leaf node is
then assigned to the record. As an illustration, Figure 4.5 traces the path in
the decision tree that is used to predict the class label of a lamingo. The path
terminates at a leaf node labeled Non-mammals.

4.3.2 How to Build a Decision Tree

In principle, there are exponentially many decision trees that can be con-
structed from a given set of attributes. While some of the trees are more accu-
rate than others, finding the optimal tree is computationally infeasible because
of the exponential size of the search space. Nevertheless, efficient algorithms
have been developed to induce a reasonably accurate, albeit suboptimal, de-
cision tree in a reasonable amount of time. These algorithms nsnally employ
a greedy strategy that grows a decision tree by making a series of locally op-

152 Chapter 4 Classification

Unlabeled [Name | Bodytemperature | Gives Birth |... [Class |
data [Flamingo | Warm 1 Bo. Jaf %
N

\\Tempera\ure/f mammals

Nor-
mammals

ry

¥ =% |
(Bedy ™\ | Non-

i

1

1

|

1

1

1

I

1

i

)

/

‘ Mammals
Figure 4.5. Classifying an unlabeled veriebrate. The dashed lines represent the outcomes of applying
various attribute test conditions on the unlabeled vertebrate. The vertebrate is eventually assigned to
the Non-mammal class.

timum decisions about which attribute to use for partitioning the data. One
such algorithm is Hunt’s algorithm, which is the basis of many existing de-
cision tree induction algorithms, including ID3, C4.5, and CART. This section
presents a higb-level discussion of Hunt’s algorithm and illustrates some of its
design issues.

Hunt’s Algorithm

In Hunt’s algorithm, a decision tree is grown in a recursive fashion by parti-
tioning the training records into successively purer subsets. Let D, be the set
of training records that are associated with node ¢t and y = {y1,y2,..., ¥} be
the class labels. The following is a recursive definition of Hunt’s algorithm.

Step 1: If all the records in D; belong to the same class y, then ¢ is a leaf
node labeled as y;.

Step 2: If D, contains records that belong to more than one class, an at-
tribute test condition is selected to partition the records into smaller
subsets. A child node is created for each outcome of the test condi-
tion and the records in D; are distributed to the children based on the
outcomes. The algorithm is then recnrsively applied to each child node.

4.3 Decision Tree Induction 153

N]
& Ny
& R
< & o8 o
& & £
Tid Home Marital Annual Defaulted
Owner Status Income Borrower

1 Yes Single 125K No
2 No Married | 100K |No
3 No Single 70K No
4 Yes Married | 120K No
5 No Divorced | 95K Yes
6 No Married | 60K No
7 Yes Divorced | 220K No
8 No Single 85K Yes
9 No Married | 75K No
10 |Ne Single 90K Yes

Figure 4.6. Training set for predicting borrowers who will default on loan payments.

To illustrate how the algorithm works, consider the problem of predicting
whether a loan applicant will repay her loan obligations or become delingnent,,
subsequently defaulting on her loan. A training set for this problem can be
constructed by examining the records of previous borrowers. In the example
shown in Figure 4.6, each record contains the personal information of a bor-
rower along with a class label indicating whetber the borrower has defaulted
on loan payments.

The initial tree for the classification problem contains a single node with
class label Defaulted = Ne (see Figure 4.7(a)), which means that most of
the borrowers successfully repaid their loans. The tree, however, needs to be
refined since the root node contains records from both classes. The records are
subsequently divided into smaller subsets based on the cutcomes of the Home
Owner test condition, as shown in Figure 4.7(b). The justification for choosing
this attribute test condition will be discussed later. For now, we will assume
that this is the best criterion for splitting the data at this point. Hunt's
algorithm is then applied recursively to each child of the root node. From
the training set given in Figure 4.6, notice that all borrowers who are home
owners successfully repaid their loans. The left child of the root is therefore a
leaf node laheled Defaulted = No (see Figure 4.7(b}). For the right child, we
need to continue applying the recursive step of Hunt's algorithm until all the
records belong to the same class. The trees resnlting from each recursive step
are shown in Figures 4.7{c) and (d).

154 Chapter 4 Classification

ﬁoimh
. Qwner /

Yes No
Defaulted = No

Defaulted = No ‘ ‘ Defaufted = No |
@ (o)

Home™,

Owner
Yes No
Home Detfaulted = No marilal
Owner _Status
Single, = .
Yes No Divérced Married

Defaulied = No Marital ¢ Annual Defaited = No
\ Status \ncome
Single, i PR e
Dlrcreey Married < 80K >= 80K
| Defaulted =Yes ‘ | Defaulied = No ‘ | Defaulted = No ‘ ‘ Defaulted = Yes. |
(c) (@

Figure 4.7. Hunt's algorithm for inducing decision trees.

Hunt’s algorithm will work if every comhination of attribute values is
present in the training data and each combination has a unique class label.
These assumptions are too stringent for use in most practical situations. Ad-
ditional conditions are needed to handle the following cases:

1. It is possible for some of the child nodes created in Step 2 to be empty;
i.e., there are no records associated with these nodes. This can happen
if none of the training records have the combination of attribute values
associated with such nodes. In this case the node is declared a leaf
node with the same class label as the majority class of training records
associated with its parent node.

2. In Step 2, if all the records associated with [); have identical attribute
values (except for the class label), then it is not possible to split these
records any further. In this case, the node is declared a leaf node with
the same class label as the majority class of training records associated
with this node.

4.3 Decision Tree Induction 155

Design Issues of Decision Tree Induction

A learning algorithm for inducing decision trees must address the following
two issues,

1. How should the training records be split? FEach recursive step
of the tree-growing process must select an attribute test condition to
divide the records into smaller subsets. To implement this step, the
algorithm must provide a method for specifying the test condition for
different attribute types as well as an objective measure for evaluating
the goodness of each test condition.

2. How should the splitting procedure stop? A stopping condition is
needed to terminate the tree-growing process. A possible strategy is to
continue expanding a node until either all the records belong to the same
class or all the records have identical attribute values. Although both
conditions are sufficient to stop any decision bree induction algorithm,
other criteria can be imposed to allow the tree-growing procedure to
terminate earlier. The advantages of early termination will be discussed
later in Section 4.4.5.

4.3.3 Methods for Expressing Attribute Test Conditions

Decision tree induction algorithms must provide a method for expressing an
attribute test condition and its corresponding outcomes for different attribute

types.

Binary Attributes The test condition for a binary attribute generates two
potential outcomes, as shown in Figure 4.8.

Body
Temperature

Warm- Cold-
blooded blooded

Figure 4.8. Test condition for binary atfributes.

156 Chapter 4 Classification

Marital
Status.

Single Divorced Married
(a) Multiway split

Marital Marital Marital
Status Status Status
OR OR
{Married} {Single, {Single} {Married, {Single, {Dworced}
Divorced} Divorced} Married}

(b} Binary split {by grouping attribute values}

Figure 4.9. Test conditions for nominal attributes.

Nominal Attributes Since a nominal attribute can have many values, its
test condition can be expressed in two ways, as sbhown m Figure 4.9. For
a multiway split (Figure 4.9(a)), the number of outcomes depends on the
number of distinct values for the corresponding attribute. For example, if
an attribute such as marital status has three distinct values—single, married,
or divorced—its test condition will produce a three-way split. On the other
hand, some decision tree algorithms, such as CART, produce only binary splits
by considering all ok-1_1 ways of creating a binary partition of k attribute
values. Figure 4.9(b) illnstrates three different ways of grouping the attribute
values for marital status into two subsets.

Ordinal Attributes Ordinal attributes can also produce binary or multiway
splits. Ordinal attribute values can be grouped as loug as the grouping does
not violate the order property of the attrihute values. Figure 4.10 illustrates
various ways of splitting training records based on the Shirt Size attribute.
The groupings shown in Figures 4.10(a) and (b) preserve the order among
the attribute values, whereas the grouping shown in Figure 4.10{c) violates
this property because it comhines the attribnte valnes Small and Large into

4.3 Decision Tree Induction 157

{Small, {Large, {Small} {Medium, Large, {Small, {Medium,
Medium} Extra Large} Extra Large} Large} Extra Large}

(@) (b} (c)
Figure 4.10. Different ways of grouping ordinal atiribute values.

the same partition while Medium and Extra Large are combined into another
partition.

Continuous Attributes For continuous attributes, the test condition can
be expressed as a comparison test (A < v) or (A > v) with binary outcomes, or
a range query with outcomes of the form v; < A < vy, fori=1,.... k. The
difference between these approaches is shown in Figure 4.11. For the binary
case, the decisiou tree algorithm must consider all possible split positions v,
and it selects the one that produces the best partition. For the multiway
split, the algorithm must consider all possible ranges of continuous values.
One approach is to apply the discretization strategies described in Section
2.3.6 on page 57. After discretization, a uew ordinal value will be assigned to
each discretized interval. Adjacent intervals can also be aggregated into wider
ranges as long as the order property is preserved.

(10K, 25K} {25K, 50K} (50K, 80K}
(a} (b}

Figure 4.11. Test condition for continuous attributes.

158 Chapter 4 Classification

7 Car ™ e L; o:ner
° S

Figure 4.12. Multiway versus binary splits.

4.3.4 Measures for Selecting the Best Split

There are many measures that can be used to determine the best way to split
the records. These measures are defined in terms of tbhe class distribution of
the records before and after splitting.

Let p(i|t) denote the fraction of records belonging to class i at a given node
t. We sometimes omit the reference to node ¢ and express the fraction as p;.
In a two-class problem, the class distribution at any node can be written as
(po,m), where py =1 —pp. To illustrate, consider the test conditions shown
in Figure 4.12. The class distribution before splitting is (0.5,0.5) because
there are an equal number of records from each class. If we split the data
using the Gender attribute, then the class distributions of the child nodes are
(0.6,0.4) and (0.4,0.6), respectively. Although tbe classes are no longer evenly
distributed, the child nodes still contain records fromn both classes. Splitting
ou the second attribute, Car Type, will resnlt in purer partitious.

The measures developed for selecting the hest split are often based on the
degree of impurity of the child nodes. The smaller the degree of impurity, the
more skewed the class distribution. For example, a node with class distribu-
tion (0,1) has zero impurity, whereas a node with uniforin class distribution
(0.5,0.5) has the highest impurity. Examples of impurity measures include

c=1
Entropy(t) = — 3 p(ilt)logzp(ilt), (4.3)
i=0
=1
Gini(t) = 1- [p(ilt)]*, (4.4)
=0
Classificatiou error(t) = lfmlgm([p(ﬂt)], (4.5)

where ¢ is the number of classes and Olog, 0 = 0 in entropy calculations.

4.3 Decision Tree Induction 159

Entropy
08 g

0.7+ B
08~ i

0.5F

02} i

0l

Figure 4.13. Comparison among the impurity measures for binary classification problems.

Figure 4.13 compares tbe values of tbe impurity measures for binary classi-
fication problems. p refers to the fraction of records that belong to one of the
two classes. Observe that all tbree measures attain their maximum value when
the class distribution is uniform (i.e., when p = 0.5). The minimum values for
the measures are attained when all the records belong to the same class (i.e.,
when p equals 0 or 1). We next provide several examples of computing the
different impurity measures.

Node N; [Count | Gini=1-(0/6)2—(6/6)2=0
Class=0 0 Entropy = —(0/6)log,(0/6) — (6/6)log,(6/6) =0
Class=1 6 Error = 1 — max[0/6,6/6] = 0

Node Ny | Count | Gini =1-(1/6)2 — (5/6)? = 0.278
Class=0 1 Entropy = —(1/6)loga(1/6) — (5/6) log,(5/6) = 0.650
Class=1 5 Error = 1 — max[1/6,5/6] = 0.167

Node N3 | Count | Gini =1-(3/6)%— (3/6)* =05
Class=0 3 Entropy = —(3/6) log,(3/6) — (3/6)log,(3/6) =1
Class=1 3 Error = 1 — max[3/6,3/6] = 0.5

160 Chapter 4 Classification

The preceding examples, along with Figure 4.13, illustrate the consistency
among different impurity measures. Based on these caleulations, node N; has
the lowest impurity value, followed by No and N3. Despite their consistency,
the attribute chosen as the test condition may vary depending on the choice
of impurity measure, as will be shown in Exercise 3 on page 198.

To determine how well a test condition performs, we need to compare the
degree of impurity of the parent node (before sphitting) with the degree of
impurity of the child nodes (after splitting). The larger their difference, the
better the test condition. The gain, A, is a criterion that can be used to
determine the goodness of a split:

k
A = I(parent) — Y N](\’[’J)I(u,), (4.6)

Jj=1

where I(.) is the impurity measure of a given node, N is the total number of
records at the parent node, k is the number of attribute valnes, and N (v;)
is the number of records associated with the child node, v;. Decision tree
induction algorithms often choose a test condition that maximizes the gain
A. Since I(parent) is the same for all test conditions, maximizing the gain is
egnivalent to minimizing the weighted average impurity measures of the child
nodes. Finally, when entropy is used as the impurity measure in Equation 4.6,
the difference in entropy is known as the information gain, A,.

Splitting of Binary Attributes

Consider the diagram shown in Figure 4.14. Snppose there are two ways to
split the data into smaller subsets. Before splitting, the Gini index is 0.5 since
there are an equal number of records from both classes. If attribute A is chosen
to split the data, the Gini index for node N1 is 0.4898, and for node N2, it
is 0.480. The weighted average of the Gini index for the descendent nodes is
(7/12) x 0.4898 + (5/12) x 0.480 = 0.486. Similarly, we can show that the
weighted average of the Gini index for attribute B is 0.375. Since the subsets
for attribnte B have a smaller Gini index, it is preferred over attribnte A.

Splitting of Nominal Attributes

As previously noted, a nominal attribute can produce either binary or multi-
way splits, as shown in Figure 4.15. The computation of the Gini index for a
binary split is similar to that shown for determining binary attributes. For the
first binary grouping of the Car Type attribute, the Gini index of {Sports,

4.3 Decision Tree Induction 161

Parent
co 6
cl| 6
B Gini = 0.500
il
e
Yes K No Yes
[Node N1] [Node N2| [Node N1] [Node N2|
N1 || N2 N1 || N2
co| 4 2 co|1 5
c1|3]s ci|afz2
Gini = 0.486 Gini= 0.375

Figure 4.14, Splitting binary attributes.

E&?::}' {Family} {Sporis} (L?:::_'yyi Family | Sports | Luxury
co| 9 1 co| 8 2 | [eo] 1 8 | 1
C1 b 3 c1 0 10 c1 (e |)
Gini 0.468 Gini 0.167 Gini 0.163
(a) Binary split (b) Multiway split

Figure 4.15. Splitting nominal attributes.

Luxury} is 0.4922 and the Gini index of {Family} is 0.3750. The weighted
average (Gini index for the grouping is equal to

16/20 x 0.4922 + 4/20 x 0.3750 = 0.468.
Similarly, for the second binary grouping of {Sports} and {Family, Luxury},

the weighted average Gini index is 0.167. The second grouping has a lower
Gini index because its corresponding subsets are much purer.

162 Chapter 4 Classification

Class No No No Yes Yes Yes No

Annual Income

Sorted Values — [

Split Positions —»|_ 55 | | 72 | &0 } | 4 172 |
<=|> <=| > > <= > <= | >

ves |o(afolalolalola[1]2]z]1]alofafofa]o]alo]a]0

No |o|7|1|6]|2[5|ala|alelalalalafala]s|2z]6|1]7 0]

Gini |0.4200.400]0.3750.343 |0.417 | 0.400| 0.900 | 0.343 | 0375 | 0.400 | 0.420

Figure 4.16. Splitting continuous aftributes.

For the multiway split, the Gini index is computed for every attribute value.
Since Gini({Family}) = 0.375, Gini({Sperts}) = 0, and Gini({Luxury}) =
0.219, the overall Gini index for the multiway split is equal to

4/20 % 0.375 4 8/20 x 0+ 8/20 x 0.219 = 0.163.

The multiway split has a smaller Gini index compared to both two-way splits.
This result is not surprising because the two-way split actually merges some
of the outcomes of a multiway split, and thus, results in less pure subsets.

Splitting of Continuous Attributes

Consider the example shown in Figure 4.16, in which the test condition Annual
Income < v is used to split the traiming records for the loan default classifica~
tion problem. A brute-force method for finding v is to consider every value of
the attribute in the N records as a candidate split position. For each candidate
v, the data set is scanned once to count the number of records with annual
income less than or greater than v. We then compute the Gini index for each
candidate and choose the one that gives the lowest value. This approach is
computationally expensive because it requires O(N) operations to compute
the Gini index at each candidate split position. Since there are N candidates,
the overall complexity of this task is @Q(N?). To reduce the complexity, the
training records are sorted based on their annual income, a computation that
requires O(N log N) timne. Candidate split positions are identified by taking
the midpoints between two adjacent sorted values: 55, 65, 72, and so on. How-
ever, unlike the brute-force approach, we do not have to examine all N records
when evaluating the Gini index of a candidate split position.

For the first candidate, v = 55, none of the records has annual income less
than $55K. As a result, the Gini index for the descendent node with Annual

4.3 Decision Tree Induction 163

Income < $55K is zero. On the other hand, the number of records with annual
income greater than or equal to $55K is 3 (for class Yes) and 7 (for class No),
respectively. Thus, the Gini index for this node is 0.420. The overall Gini
index for this candidate split position is equal to 0 x 041 x 0.420 = 0.420.

For the second candidate, v = 65, we can determine its class distribution
by updating the distribution of the previous candidate. More specifically, the
new distribution is obtained by examining the class label of the record with
the lowest annual income (i.e., $60K). Since the class label for this record is
No, the count for class No is increased from 0 to 1 (for Annual Income < $65K)
and is decreased from 7 to 6 (for Annual Income > $65K). The distribution
for class Yes remains unchanged. The new weighted-average Gini index for
this candidate split position is 0.400.

This procedure is repeated until the Gini index values for all candidates are
computed, as shown in Figure 4.16. The best split position corresponds to the
one that produces the smallest Gini index, i.e., v = 97. This procedure is less
expensive because it requires a constant amount of time to update the class
distribution at each candidate split position. It can be further optimized by
considering only caudidate split positions located between two adjacent records
with different class labels. For example, because the first three sorted records
(with annual incomes $60K, §70K, and §75K) have identical class labels, the
best split position should not reside between $60K and 375K. Therefore, the
candidate split positions at v = $55K, $65K, 872K, $87K, $92K, $110K, $122K,
$172K, and $230K are ignored because they are located between two adjacent
records with the same class labels. This approach allows us to reduce the
number of candidate split positions from 11 to 2.

Gain Ratio

Impurity measures such as entropy and Gini index tend to favor attributes that
have a large number of distinct values. Figure 4.12 shows three alternative
test conditions for partitioning the data set given in Exercise 2 on page 198.
Comparing the first test condition, Gender, with the second, Car Type, it
is easy to see that Car Type seems to provide a better way of splitting the
data since it produces purer descendent nodes. However, if we compare both
conditions with Customer ID, the latter appears to produce purer partitions.
Yet Customer ID is not a predictive attribute because its value is unique for
each record, Even in a less extreme situation, a test condition that results in a
large number of outcomes may not be desirable because the number of records
associated with each partition is too small to enable us to make any reliable
predictions.

164 Chapter 4 Classification

There are two strategies for overcoming this problem. The first strategy is
to restrict the test conditions to binary splits only. This strategy is employed
by decision tree algorithms such as CART. Another strategy is to modify the
splitting criterion to take into account the number of outcomes produced by
the attribute test condition. For example, in the C4.5 decision tree algorithm,
a sphitting criterion known as gain ratio is used to determine the goodness
of a sphit. This criterion is defined as follows:

Ainft:u
Split Info’

Gain ratio =

(47

Here, Split Info = — ELl P(vi)logy P(v;) and k is the total number of splits.
For example, if each attribute value has the same number of records, then
Vi : P(v;) = 1/k and the split information would be equal to log,k. Thbis
example suggests that if an attribute produces a large number of splits, its
split information will also be large, which in turn reduces its gain ratio.

4.3.5 Algorithm for Decision Tree Induction

A skeleton decision tree induction algorithm called TreeGrowth is shown
in Algorithm 4.1. The input to this algorithm consists of tbhe training records
E and the attribute set F. The algorithm works by recursively selecting the
hest attribute to split the data (Step 7) and expanding the leaf nodes of the

Algorithm 4.1 A skeleton decision tree induction algorithm.
TreeGrowth (E, F')

1: if svopping cond{E F} = true then

2: leaf = createNode().

3 leaflabel = Classify(E).

4 return leaf.

5 else

6: root = createNode().

7. roottest_cond = find best_split(E, F').

8 let V = {v|v is a possible outcome of root.test_cond }.
9. foreachwvcV do
10: E, = {e| root.test.cond(e) = v and e € E}.
b child = TreeGrowth(E,, F).
12 add child as descendent of root and label the edge (root — child) as v.
13: end for
14: end if

15: return root.

4.3 Decision Tree Induction 165

tree (Steps 11 and 12) until the stopping criterion is met (Step 1). The details
of this algorithm are explained below:

1. The createNode() function extends the decision tree by creating a new
node. A node in the decision tree has either a test condition, denoted as
node.test_econd, or a class label, denoted as node.label.

2. The find best_split() function determines which attribute should be
selected as the test condition for splitting the training records. As pre-
viously noted, the choice of test condition depends on which impurity
measure is nsed to determine tbe goodness of a split. Some widely nsed
measures include entropy, the Gini index, and the x? statistic.

3. The Classify() function determines the class label to be assigned to a
leaf node. For each leaf node ¢, let p(i|t) denote the fraction of training
records from class i associated with the node t. In most cases, the leaf
node is assigned to the class that has the majority number of training
records:

lea f.label = argmax p(i|t), (4.8)
i

where the argmax operator returns the argument ¢ that maximizes the
expression p(i|t). Besides providing the information needed to determine
the class label of a leaf node, the fraction p{i[t} can also be used to es-
timate the probability that a record assigned to the leaf node ¢ belongs
to class i. Sections 5.7.2 and 5.7.3 describe how such prohability esti-
mates can be used to determine the performance of a decision tree under
different cost functions.

4, The stopping-cond() function is used to terminate the tree-growing pro-
cess by testing whether all the records have either the same class label
or the same attribute values. Another way to terminate the recursive
funetion is to test whether the number of records have fallen below some
mimmum threshold.

After building the decision tree, a tree-pruning step can be performed
to reduce the size of the decision tree. Decision trees that are too large are
susceptible to a phenomenon known as overfitting. Pruning helps by trim-
ming the branches of the initial tree in a way that unproves the generalization
capability of the decision tree. The issues of overfitting and tree pruning are
discussed in more detail in Section 4.4.

166 Chapter 4 Classification

[Request ‘Number
Session| IP Address | Timeslamp [Method Requested Web Page | Protocol (Status of Bytes Referrer User Agent
1 [160.11.11.11 | 08/AUG/2004 | GET |hittpuAwww.cs.umn.edu/ [HTTP/1.1| 200 | 6424 Mozil/4.0
10:45:21 ~kumar (compatible; MSIE 6.0;
Windows NT 5.0
1 [160.11.11.11 | 08/Aug/2004 | GET |hitp:/iwww.cs.umn.edw/ [HTTP/1.1| 200 | 41378 [http:/Awww.cs.umn.edu/ | Mozil/d.0
10:15:34 ~lumarMINDS ~kumar {compatible; MSIE 8.0;
Windows NT 5.0)
T [160.11.11.11 | 08/AUQI2004 | GET | hipJ/waw.cs.umn.edul | HTTP/1.1| 200 | 1018516 |NtipJAwww.cs.umn.edu | Moziia/d.0
10:15:41 ~kumar/MINDSMINDS I~kumar/MINDS (compatible; MSIE 6.0;
papers.htm Windows NT 5.0)
1 [160.11.11.11 | 08/Aug/2004 | GET | httpZ/waw.cs.umn.edu/ |HTTP/1.1| 200 | 7463 |htipJAwww.cs.umn.edul | Mozil/d 0
10:16:11 ~Kumaripapersipapers. ~kumar % ible; MSIE 6.0;
himl NT50)
2 | 35922 |08/Augl2004| GET |hitps/www.cs.umn.edw/ [HTTP/1.0| 200 | 3149 Mozil@/5.0 (Windows; U;
10:16:15 ~steinbac ‘Windows NT 5.1; en-US;
1'1.7) Gecko/20040616

{a) Example of a Web server log.

Aftribte Name Desoription
i totalPages Total number of pages retrieved in a Web session
hitp:iwww.cs.umn.edu/~Kumar ImagePages Tolal number ofimage pages refrieved in a Web session
TotalTime Total amount of time spent by Web site visitor

RepestedAccess | The same page requested more than once in a Web session
EnorRequest Errors in requesting for Web pages

MINDS GET Percentage of requests made using GET method
POST Percentage of requests mede using POST method
papstsipaparshumil HEAD Percentage of requests made using HEAD method
Breadh | Breadth of Web traversal
Depth Depth of Web traversal
MultilP Session with multiple IP addresses.
MINDSMINDS_papers.htm Mitiger Soasio wil ulile ueer agarta
(b) Graph of a Web session. (c) Derived attributes for Web robot detection.

Figure 4.17. Input data for Web robot detection.

4.3.6 An Example: Web Robot Detection

Web usage mining is the task of applying data mining techniques to extract
useful patterns from Web access logs. These patterns can reveal interesting
characteristics of site visitors; e.g., people who repeatedly visit a Web site and
view the same product description page are more likely to buy the product if
certain incentives such as rebates or free shipping are offered.

In Web usage mining, it is important to distingnish accesses made by hu-
man users from those due to Web robots. A Web robot (also known as a Web
crawler) is a software program that automatically locates and retrieves infor-
mation from the Internet by following the hyperlinks embedded in Web pages.
These programs are deploved by search engine portals to gather the documents
necessary for indexing the Web. Web robot accesses must be discarded before
applying Web mining techniques to analyze human browsing behavior.

4.3 Decision Tree Induction 167

This section describes how a decision tree classifier can be used to distin-
guish between accesses by human users and those by Web robots. The input
data was obtained from a Web server log, a sample of which is shown in Figure
4.17(a). Each line corresponds to a single page request made by a Web client
(a user or a Web robot). The fields recorded in the Web log include the TP
address of the client, timestamp of the request, Web address of the requested
document, size of the document, and the client’s identity (via the user agent
field). A Web session is a sequence of requests made by a client during a single
visit to a Web site. Each Web session can be modeled as a directed graph, in
which the nodes correspond to Web pages and the edges correspond to hyper-
links connecting one Web page to another. Figure 4.17(b) shows a graphical
representation of the first Web session given in the Web server log.

To classify the Web sessions, features are constructed to describe the char-
acteristics of each session. Figure 4.17(c) shows some of the features used
for the Web robot detection task. Among tbe notable features include the
depth and breadth of the traversal. Depth determines the maximum dis-
tance of a requested page. where distance is measured in terms of the num-
ber of hyperlinks away from the entry point of the Web site. For example,
the home page http://www.cs.umn.edu/~kumar is assumed to be at depth
0, whereas http://www.cs.unn. edu/kunar/MINDS/MINDS papers.htn is lo-
cated at depth 2. Based on the Web graph shown in Figure 4.17(b), the depth
attribute for the first sessiou is equal to two. The breadth attribute measures
the width of the corresponding Web graph. For example, the breadth of the
Web session shown in Figure 4.17(b) is equal to two.

The data set for classification contains 2916 records, with equal numbers
of sessions due to Weh robots (class 1) and human users (class 0). 10% of the
data were reserved for training while the remaining 90% were used for testing.
The induced decision tree model is shown in Figure 4.18. The tree has an
error rate equal to 3.8% on the training set and 5.3% on the test set.

The model suggests that Web robots can be distinguished from human
users in the following way:

1. Accesses by Web robots tend to be broad but shallow, whereas accesses
by human users tend to be more focused (narrow but deep).

2. Unlike human users, Web robots seldom retrieve the image pages asso-
ciated with a Weh document.

3. Sessions due to Web robots tend to be long and contain a large number
of requested pages.

168 Chapter 4 Classification

Decision Tree:

depth =1:

brsadth> 7: class 1

breadthe= 7:

breadth <= 3;

ImagePages> 0.375: class 0
ImagePages<= :
| totalPages<=
| totalPages> 6:
|| breadth <=1: clags 1

I | breadih > 1: class 0

width > 3:

MultilP = 0;

| ImagePages«<= 0.1333: class 1
| ImagePages> 0.1333:

| breadth <= 6: class 0

| breadth > 6: class 1

MultilP = 1:

| TotalTime <= 381: class 0

| TotalTime > 361: class1
depth> 1:

MultiAgent = O:

depth>2: class 0

depth < 2:

| MultilP = 1; clags 0

| MultilP = 0

| | breadth<= 6: class 0
| | breadth > 6:
11
|

class 1

g "I CC

| RepeatedAccess <= 0.322: class 0
| | RepeatedAccess > 0.322: class 1
MuliiAgent = 1:
| totalPages <= 81: class 0
| totalPages > 81: class 1

Figure 4.18. Decision tree model for Web robot detection.

4. Web robots are more likely to make repeated requests for the same doc-
umnent since the Web pages retrieved by human users are often cached
by the browser.

4.3.7 Characteristics of Decision Tree Induction

The following is a summary of the important characteristics of decision tree
induction algorithms.

1. Decision tree induction is a nonparametric approach for huilding classifi-
cation models. In other words, it does not require any prior assumptions
regarding the type of probability distributions satisfied by the class and
other attributes (unlike some of the techniques described in Chapter 5).

4.3 Decision Tree Induction 169

. Finding an optimal decision tree is an NP-complete problem. Many de-

cision tree algorithms employ a heuristic-based approach to guide their
search in the vast hypothesis space. For example, the algorithm pre-
sented in Section 4.3.5 uses a greedy, top-down, recursive partitioning
strategy for growing a decision tree.

. Techniques developed for constrncting decision trees are computationally

inexpensive, making it possible to quickly construct models even when
the training set size is very large. Furthermore, once a decision tree has
been built, classifying a test record is extremely fast, with a worst-case
complexity of O(w), where w is the maxinum depth of the tree.

. Decision trees, especially smaller-sized trees, are relatively easy to inter-

pret. The accuracies of the trees are also comparable to other classifica-
tion techniques for many simple data sets.

. Decision trees provide an expressive representation for learning discrete-

valued functions. However, they do not generalize well to certain types
of Boolean problems. One notable example is the parity function, whose
value is 0 (1) when there is an odd (even) number of Boolean attributes
with the value True. Accurate modeling of sucb a function requires a full
decision tree with 24 nodes, where d is the number of Boolean attributes
(see Exercise 1 on page 198}).

. Decision tree algorithms are quite robust to the presence of noise, espe-

cially when methods for avoiding overfitting, as described in Section 4.4,
are employed.

. The presence of redundant attributes does not adversely affect the ac-

curacy of decision trees. An attribute is redundant if it is strongly cor-
related with another attribnte in the data. One of the two redundant
attributes will not be used for splitting once the other attribute bas been
chosen. However, if the data set contains many irrelevant attributes, i.e.,
attributes that are not useful for the classification task, then some of the
irrelevant attributes may be accidently chosen during the tree-growing
process, which results in a decision tree that is larger than necessary.
Feature selection techniques can help to improve the accuracy of deci-
sion trees by eliminating the irrelevant attributes dnring preprocessing.
We will investigate the issue of too many irrelevant attributes in Section
4.4.3.

170 Chapter 4 Classification

8. Since most decision tree algorithins emnploy a top-down, recursive parti-
tioning approach, the number of records becomes smaller as we traverse
down the tree. At the leaf nodes, the number of records may be too
small to make a statistically significant decision about the class rep-
resentation of the nodes. This is known as the data fragmentation
problem. One possible solution is to disallow further splitting when the
number of records falls below a certain threshold.

9. A subtree can be replicated multiple times in a decision tree, as illus-
trated in Figure 4.19. This makes the decision tree more complex than
necessary and perhaps more difficult to interpret. Such a situation can
arise from decision tree implementations that rely on a single attribute
test condition at each internal node. Since most of the decision tree al-
gorithms use a divide-and-conquer partitioning strategy, the same test
condition can be applied to different parts of the attribute space, thus
leading to the subtree replication problem.

Figure 4.19. Tree replication problem. The same subtree can appear at different branches.

10. The test conditions described so far in this chapter involve using only a
single attribute at a time. As a consequence, the tree-growing procedure
can be viewed as the process of partitioning the attribute space into
disjoint regions until each region contains records of the same class (see
Figure 4.20). The border between two neighboring regions of different
classes is known as a decision boundary. Since the test condition in-
volves only a single attribute, the decision boundaries are rectilinear; i.e.,
parallel to the “coordinate axes.” This limits the expressiveness of the

1
0.9
08
0.7
0.6

0.5
04
0.3
0.2
01

0

Figu

4.3 Decision Tree Induction 171

I ® J

0 01 02 03 04 O.XS 06 07 08 09 1

re 4.20. Example of a decision tree and its decision boundaries for a two-dimensional data set.

09 ".‘:l‘. u e A T
2%
08

+
o7l &

06
05 &
0df 4 at?,
o3l * tr

.

02+ + ¥ ooy o
.
¥

+
DAY +

Figure 4.21. Example of data set that cannot be partitioned optimally using test conditions involving
single aftributes.

decision tree representation for modeling complex relationships among
continuous attributes. Figure 4.21 illustrates a data set that cannot be
classified effectively by a decision tree algorithm that uses test conditions
involving only a single attribute at a time.

172 Chapter 4 Classification

An oblique decision tree can be used to overcome this limitation
because it allows test conditions that involve more than one attribute.
The data set given in Figure 4.21 can be easily represented by an oblique
decision tree containing a single node with test condition

r+y <1

Although such techniques are more expressive and can produce more
compact trees, finding the optimal test condition for a given node can
be computationally expensive.

Constructive induction provides another way to partition the data
into homogeneous, nonrectangular regions {see Section 2.3.5 on page 57).
This approach creates composite attributes representing an arithmetic
or logical combination of the existing attributes. The new attributes
provide a better discrimination of tbe classes and are augmented to the
data set prior to decision tree induction. Unlike the oblique decision tree
approach, constructive induction is less expensive because it identifies all
the relevant combinations of attributes once, prior to constructing the
decision tree. In contrast, an oblique decision tree must determine the
right attribute combination dynamically, every time an internal node is
expanded. However, constructive induction can introduce attribute re-
dundancy in the data since the new attribnte is a combination of several
existing attributes.

11. Studies have shown that the choice of imipurity measure has little effect
on the performance of decision tree indnction algorithms. This is because
many impurity measures are quite consistent with each other, as shown
in Figure 4.13 on page 159. Indeed, the strategy used to prune the
tree has a greater impact on the final tree than the choice of impurity
measure.

4.4 Model Overfitting

The errors committed by a classification model are generally divided into two
types: training errors and generalization errors. Training error, also
known as resubstitution error or apparent error, is the number of misclas-
sification errors committed on training records, whereas generalization error
is the expected error of the model on previously unseen records.

Recall from Section 4.2 that a good classification model must not only fit
the training data well, it must also accurately classify records it has never

4.4 Model Overfitting 173

Training set
20 - g PR L 3 — 6 T
C ee oS o, Lt o
18| ok & a0 * ry .?0.04 +

-+ °
+ Qi P O “ °3 0p
12 o0 00,0 % L0 Bos o Fetal K 'QN%' ¥l
&t o LY ‘e e o+ S
K Pt - o r e Nt Sy
10 f * .p."nr E . + ‘;"‘"'ﬁ ol
+ - -
RS T T 6.. Ory gar® 5§+ %
sp * + of P o+t R
LI S L - 4 [T
6’1- - oh‘ ! L] +
+ +%+ 4 Fe AL Y 9 -
o * %° -3 - * 4
+ T - G0+ © * *
4+ & * o L Bt] t+ o
o Ed LI ¥]
o s B e +
3 -+ * } o L= e AR) %
2h ¥ W & o 480 o' * . V' 4
3 + e e
+ o ¢ +
ol L it e e dwt a e a™
0 2 4 6 8 10 12 14 16 18 20
x
1

Figure 4.22, Example of a data set with binary classes.

seen before. In other words, a good model must have low training error as
well as low generalization error. This is important because a model that fits
the training data too well can have a poorer generalization error than a model
with a higher training error. Such a situation is known as model overfitting.

Qverfitting Example in Two-Dimensional Data For a more concrete
example of the overfitting problem, consider the two-dimensional data set
shown in Figure 4.22. The data set contains data points that belong to two
different classes, denoted as class o and class +, respectively. The data points
for the o class are generated from a mixture of three Gaussian distributions,
while a uniform distribution is used to generate the data points for the + class.
There are altogether 1200 points belonging to the o class and 1800 points be-
longing to the + class. 30% of tbe points are cbosen for training, while the
remaining 70% are used for testing. A decision tree classifier that uses the
Gini index as its impnrity measure is then applied to the training set. To
investigate the effect of overfitting, different levels of pruning are applied to
the initial, fully-grown tree. Figure 4.23(h) shows the training and test error
rates of the decision tree.

174 Chapter 4 Classification

0.4 : 2 3

0.351-

034

0.25

Emor Rate

| .
0 50 100 180 200 280 300
Number of Nodes

Figure 4.23. Training and test errcr rates.

Notice that the training and test error rates of the model are large when the
size of the tree is very small. This situation is known as model underfitting.
Underfitting occurs because the niodel has yet to learn the true structure of
the data. As a result, it performs poorly on hoth the training and the test
sets. As the numher of nodes in the decision tree increases, the tree will have
fewer training and test errors. However, once the tree becomes too large, its
test error rate begins to increase even though its training error rate continues
to decrease. This phenomenon is known as model overfitting.

To nnderstand the overfitting phenomenon, note that the training error of
a model can be reduced by increasing the model complexity. For example, the
leaf nodes of the tree can be expanded until it perfectly fits the training data.
Although the training error for such a complex tree is zero, the test error can
he large hecause the tree may contain nodes that accidently fit some of the
noise points in the training data. Such nodes can degrade the performance
of the tree because they do not generalize well to the test examples. Figure
4.24 shows the structure of two decision trees with different number of nodes.
The tree that contains the smaller number of nodes has a higher training error
rate, but a lower test error rate compared to the more complex tree.

Overfitting and underfitting are two pathologies that are related to the
model complexity. The remainder of this section examines some of the poten-
tial causes of model overfitting.

4.4 Model Overfitting 175

sy

- L mawm
enmg LA
sy s i T PO
A " faaid Fd Trmerw g
s : N <200) et
A momeT s ~, #
. . - -, -ezerzee ,
<0, SFam<ATs 4 SEvT Loy R o <1ams
S ‘ X! 5 v 4 X
neem L e . 5 poan 2SR ey
, - D et E & Y eyl
% a2 +) P
: . S amenm
<18 < 5 Axisizn oo
’/»—\ + ; Py
+ o g e wowmg
c] o
(a) Decision tree with 11 leaf (b) Decision tree with 24 leaf nodes.

nodes.

Figure 4.24. Decision trees with different mode| complexities.

4.4.1 Overfitting Due to Presence of Noise

Consider the training and test sets shown in Tables 4.3 and 4.4 for the mammal
classification problem. Two of the ten training records are mislabeled: bats
and whales are classified as non-mammals instead of mammals.

A decision tree that perfectly fts the training data is shown in Figure
4.25(a). Although the training error for the tree is zero, its error rate on

Table 4.3. An example fraining set for classifying mammals. Class labels with asterisk symbols repre-
sent mislabeled records.

Name Body Gives | Four- | Hibernates | Class
Temperature Birth | legged Label
porcupine warm-blooded yes ves yes yes
cat warm-blooded yes yes no yes
bat warm-blooded ves no yes no*
whale warm-blooded yes no no no”
salamander cold-blooded no ves yes no
komodo dragon cold-blooded no ves no no
python cold-blooded o no yes ne
salmon cold-blooded no no no no
eagle warm-blooded no no no no
guppy cold-blooded yes no ne ne

176 Chapter 4 Classification

Table 4.4, An example test set for ¢lassifying mammals,

Name Body Gives | Four- | Hibernates | Class
Temperature Birth | legged Label
human warm-blooded yes no no yes
pigeon warm-blooded no no no no
elephant warm-blooded yes yes no yes
leopard shark cold-blooded yes no no no
turtle cold-blooded no yes no no
penguin cold-blooded no no no no
eel cold-blooded no no no no
dolphin warm-blooded yes no no yes
spiny anteater | warm-blooded no yes yes yes
gila monster cold-blooded no yes yes no

< rBod;k\ vl -rBody\\\‘
Temperalure/ \Iempera!ure/

‘Warm-blooded

Cold-blooded Warm-blocded Cold-blooded

mammals

Yes
Mammals ‘ Non:
mammals

(a) Model M1 {b} Model M2

Figure 4.25. Decision tree induced from the data set shown in Table 4.3.

the test set is 30%. Both humans and dolphins were misclassified as non-
mammals because their attribute values for Body Temperature, Gives Birth,
and Four-legged are identical to the mislabeled records in the training set.
Spiny anteaters, on the other hand, represent an exceptional case in which the
class label of a test record contradicts the class labels of other similar records
in the training set. Errors due to exceptional cases are often unavoidable and
establish the minimum error rate achievable by any classifier.

4.4 Model Overfitting 177

In contrast, the decision tree M2 shown in Figure 4.25(b) has a lower test
error rate (10%) even though its training error rate is somewhat bigher (20%).
It is evident that the first decision tree, A1, has overfitted the training data
because there is a simpler model with lower error rate on the test set. The
Four-legged attribute test condition in model M1 is spurious because it fits
the mislabeled training records, which leads to the misclassification of records
in the test set.

4.4.2 Overfitting Due to Lack of Representative Samples

Models that make their classification decisions based on a small number of
training records are also susceptible to overfitting. Such models can be gener-
ated because of lack of representative samples in the training data and learnming
algorithms tbat continue to refine their models even when few training records
are available. We illustrate these effects in the example below.

Consider the five training records shown in Table 4.5. All of tbese training
records are labeled correctly and the corresponding decision tree is depicted
in Figure 4.26. Although its training error is zero, its error rate on the test
set is 30%.

Table 4.5. Anexample fraining set for classifying mammals.

Name Body Gives | Four- | Hibernates | Class
Temperature | Birth | legged Label
salamander | cold-blooded no ves Yes no
BUpRY cold-blooded yes no no o
eagle warm-blooded no no no 10
poorwill warm-blooded no no yes no
platypus warm-blooded no ves ves yes

Humans, elephants, and dolphins are misclassified because the decision tree
classifies all warm-blooded vertebrates that do not hibernate as non-mammals.
The tree arrives at this classification decision because there is only one training
record, which is an eagle, witb such characteristics. This example clearly
demonstrates the danger of making wrong predictions when there are not
enough representative examples at the leaf nodes of a decision tree.

178 Chapter 4 Classification
,BOdY,
\Ternperature

@)ernal@s\
ot
Yes No

Non.

Figure 4.26. Decision free induced from the data set shawn in Table 4.5.

4.4.3 Overfitting and the Multiple Comparison Procedure

Model overfitting may arise in learning algorithms that employ a methodology
known as multiple comparison procedure. To understand multiple comparison
procedure, consider the task of predicting whether the stock market will rise
or fall in the next ten trading days. If a stock analyst simply makes random
gnesses, the probability that her prediction is correct on any trading day is
0.5. However, the probability that she will predict correctly at least eight out

of the ten times is - - "
() + (09 _ gonar
210
which seems quite unlikely.

Suppose we are interested in choosing an investment advisor from a pool of
fitty stock analysts. Our strategy is to select the analyst who makes the most
correct predictions in the next ten trading days. The flaw in this strategy is
that even if all the analysts had made their predictions in a random fashion, the
probability that at least one of them makes at least eight correct predictions

18
1— (1 -0.0547)%° = 0.9399,

which is very high. Although each analyst bas a low probability of predicting
at least eight times correctly, putting them together, we have a high probability
of finding an analyst who can do so. Furthermore, there is no guarantee in the

4.4 Model Overfitting 179

future that such an analyst will continue to make accurate predictions through
random guessing.

How does the multiple comparison procedure relate to model overfitting?
Many learning algorithms explore a set of independent alternatives, {+;}, and
then choose an alternative, V. that maximizes a given criterion function.
The algorithm will add 4mac to the current model in order to improve its
overall performance. This procedure is repeated until no further improvement
is observed. As an example, during decision tree growing, multiple tests are
performed to determine which attribute can best split the training data. The
attribute that leads to the best spht is chosen to extend the tree as long as
the observed improvement is statistically significant.

Let T}, be the initial decision tree and T, be the new tree after inserting an
internal node for attribute r. In principle, & can be added to tbe tree if the
observed gain, A(Ty.T), is greater than some predefined threshold «. If there
is only one attribute test condition to be evaluated, tben we can avoid inserting
spurious nodes by choosing a large enough value of o. However, in practice,
more than one test condition is available and the decision tree algorithm must
choose the best attribute rma from a set of candidates, {r1,z2,..., 1%}, to
partition the data. In this situation, the algorithm is actually using a multiple
comparison procedure to decide whether a decision tree should be extended.
More specifically, it is testing for A(Tp. Ty,,..) > « instead of A(Tp, T:) > a.
As the number of alternatives, k, increases, so does our chance of finding
AT, Ty,..) > o Unless the gain function A or threshold « is modified to
account for k, the algorithm1 may inadvertently add spurious nodes to the
model, which leads to model overfitting.

Tbis effect becomes more pronounced when the number of training records
from which wmax is chosen is small, because the variance of A(Ty, Ty,) 1s high
when fewer examples are available for training. As a result, the probability of
finding A(Ty, Trp,,) > @ increases when there are very few training records.
This often happens when the decision tree grows deeper, which in turn reduces
the number of records covered by the nodes and increases the likebhood of
adding unnecessary nodes into the tree. Failure to compensate for the large
number of alternatives or the small number of training records will therefore
lead to model overfitting.

4.4.4 Estimation of Generalization Errors

Although the primary reason for overfitting is still a subject of debate, it
is generally agreed that the complexity of a model has an impact on model
overfitting, as was illustrated in Figure 4.23. The question is, how do we

180 Chapter 4 Classification

determine the tight model complexity? The ideal complexity is that of a
model that produces the lowest generalization error. The prohlem is that the
learning algorithm has access only to the training set during model huilding
(see Figure 4.3). It has no knowledge of the test set, and thus, does not know
how well the tree will perform on records it has never seen hefore. The hest it
can do is to estimate the generalization error of the induced tree. This section
presents several methods for doing the estimation.

Using Resubstitution Estimate

The resubstitution estimate approach assumes that the training set is a good
representation of the overall data. Consequently, the training error, otherwise
known as resubstitution error, can be used to provide an optimistic estimate
for the generahzation error. Under this assumption, a decision tree induction
algorithm simply selecis the model that produces the lowest training error rate
as its final model. However, the training error is usually a poor estimate of
generalization error.

Example 4.1. Consider the binary decision trees shown in Figure 4.27. As-
sume that both trees are generated from the same training data and both
make their classification decisions at each leaf node according to the majority
class. Note that the left tree, T, is more complex because it expands some
of the leaf nodes in the right tree, Tg. The training error rate for the left
tree is e(T) = 4/24 = 0.167, while the training error rate for the right tree is

CO

Decision Tree, T Decision Tree, Ty

Figure 4.27. Example of two decision trees generated from the same training data.

4.4 Model Overfitting 181

e(Tp) = 6/24 = 0.25. Based on their resubstitution estimate, the left tree is
considered hetter than the right tree.]

Incorporating Model Complexity

As previously noted, the chance for model overfitting increases as the model
becomes more complex. For this reason, we should prefer simpler models, a
strategy that agrees with a well-known principle known as Occam’s razor or
the principle of parsimony:

Definition 4.2. Occam’s Razor: Given two models with the same general-
ization errors, the simpler model is preferred over the more complex model.

Occam’s razor is intuitive hecause the additional components in a complex
model stand a greater chance of being fitted purely by chance. 1n the words of
Einstein, “Everything should be made as simple as possible, but not simpler.”
Next, we present two methods for incorporating model complexity into the
evaluation of classification models.

Pessimistic Error Estimate The first approach explicitly computes gener-
alization error as the sum of training error and a penalty term for model com-
plexity. The resulting generalization error can be considered its pessimistic
error estimate. For instance, let n(t) be the number of training records classi-
fied by node t and ¢(t) be the number of misclassified records. The pessimistic
error estimate of a decision tree I', ¢4(T'), can be computed as follows:

_ T lelt) + Q)] _ (1) +9(T)
Eionlts) Ne

Cy(T)

4

where k is the number of leaf nodes, €(T') is the overall traiming error of the
decision tree, N; is the number of training records, and (#;) is the penalty
term associated with each node ¢;.

Example 4.2. Consider the binary decision trees shown in Figure 4.27. If
the penalty term is equal to 0.5, then the pessimistic error estimate for the
left tree is

447x05 75

Ty="""""" " —g
eo(T1) o 5, = 03125

and the pessimistic error estimate for the right tree is

182 Chapter 4 Classification

- Unlabeled

Figure 4.28. The minimum description lkength (MDL) principle.

Thus, the left tree has a hetter pessimistic error rate than the right tree. For
binary trees, a penalty term of 0.5 means a node should always he expanded
into its two child nodes as long as it improves the classification of at least one
training record because expanding a node, which is equivalent to adding 0.5
to the overall error, is less costly than committing one training error.

If Q(t) = 1 for all the nodes ¢, the pessimistic error estimate for the left
tree is eg(Tr) = 11/24 = 0.458, while the pessimistic error estimate for the
right tree is e (Tr) = 10/24 = 0.417. The right tree therefore has a better
pessimistic error rate than the left tree. Thus, a node should not be expanded
into its child nodes unless it reduces the misclassification error for more than
one training record. [

Minimum Description Length Principle Another way to incorporate
model comnplexity is based on an information-theoretic approach known as the
minimnm description length or MDL principle. To illustrate this principle,
consider the example shown in Figure 4.28. In this example, both A and B are
given a set of records with known attrihute values x. In addition, person A
knows the exact class label for each record, while person B knows none of this
information. B can obtain the classification of each record by requesting that
A transmits the class labels sequentially. Such a message would require 8(n)
bits of information, where n is the total number of records.

Alternatively, A may decide to build a classification model that summarizes
the relationship between x and y. The model can be encoded in a compact

4.4 Model Overfitting 183

form hefore being transmitted to B. If the model is 100% accurate, then the
cost of transmission is equivalent to the cost of encoding the model. Otherwise,
A must also transmit information about which record is classified incorrectly
by the model. Thus, the overall cost of transmission is

Cost(model, data) = Cost{model) + Cost(data|model), (4.9)

where the first term on the right-hand side is the cost of encoding the model,
while the second term represents the cost of encoding the mislabeled records.
According to the MDL principle, we shonld seek a model that minimizes the
overall cost function. An example showing how to compute the total descrip-
tion length of a decision tree is given by Exercise 9 on page 202.

Estimating Statistical Bounds

The generalization error can also be estimated as a statistical correction to
the training error. Since generalization error tends to be larger than training
error, the statistical correction is usually computed as an upper bound to the
training error, taking into account the numher of training records that reach
a particular leaf node. For instance, in the C4.5 decision tree algorithm, the
number of errors committed by each leaf node is assumed to follow a binomial
distribution. To comnpute its generalization error, we mnst determnine the upper
bound hmit to the observed training error, as illustrated in the next example.

Example 4.3. Consider the left-most hranch of the binary decision trees
shown in Figure 4.27. Observe that the left-most leaf node of Tr has been
expanded into two child nodes in T},. Before splitting, the error rate of the
node is 2/7 = 0.286. By approximating a binomial distribution with a normal
distribution, the following upper bound of the error rate ¢ can be derived:

22 — 22
o+ Bz S+ B

Eupper(N7 e a)= B (4'10)

z
*a/2

1+-%

where a is the confidence level, 243 is the standardized value from a standard
normal distribution, and N is the total nunber of training records used to
compute e. By replacing a =25%, N =7, and e = 2/7, the upper bound for
the error rate is eupper(7,2/7,0.25) = 0.503, which corresponds to 7 x 0.503 =
3.521 errors. If we expand the node into its child nodes as shown in T}, the
training error rates for the child nodes are 1/4 = 0.250 and 1/3 = 0.333,

184 Chapter 4 Classification

respectively. Using Equation 4.10, the upper bounds of these error rates are
eupper(4, 1/4,0.25) = 0.537 and eypper(3,1/3,0.25) = 0.650, respectively. The
overall training error of the child nodes is 4 x 0.537 43 x 0.650 = 4.098, which
is larger than the estimated error for the corresponding node in Tg.]

Using a Validation Set

In this approach, instead of using the training set to estimate the generalization
error, the original training data is divided into two smaller subsets. One of
the snbsets is used for training, while the other, known as the validation set,
is used for estimating the generahization error. Typically, two-thirds of the
training set is reserved for model building, while the remaining one-third is
used for error estimation.

This approach is typically used with classification techmiques that can be
parameterized to obtain models with different levels of complexity. The com-
plexity of the best model can he estimated by adjusting the parameter of the
learning algorithm (e.g., the pruning level of a decision tree) until the empir-
ical model produced by the learning algorithm attains the lowest error rate
on the validation set. Although this approach provides a better way for esti-
mating how well the model performs on previously unseen records, less data
is available for training.

4.4.5 Handling Overfitting in Decision Tree Induction

In the previous section, we described several methods for estimating the gen-
eralization error of a classification model. Having a reliable estimate of gener-
alization error allows the learning algorithm to search for an accurate model
without overfitting the training data. This section presents two strategies for
avoiding model overfitting in the context of decision tree induction.

Prepruning (Early Stopping Rule) In this approach, the tree-growing
algorithin is halted before generating a fully grown tree that perfectly fits the
entire training data. To do this, a more restrictive stopping condition must
be used; e.g.. stop expanding a leaf node when the observed gain in impurity
measure (or improvement in the estimated generalization error) falls below a
certain threshold. The advantage of this approach is that it avoids generating
overly complex subtrees tbat overfit the training data. Nevertheless, it is
difficult to choose the right threshold for early termination. Too high of a
thresbold will result in underfitted models, while a threshold that is set too low
may not be suflicient to overcome the model overfitting problem. Furthermore,

4.4 Model Overfitting 185

Decision Tree:
depth = 1:
breadth-7: class 1
breadthe=7:
breadth <=3:
| ImagePages> 0.375: class 0

|
I
I
I 11 ImagePages<=0.375: " - o
NEE :fo:lpggesa clagad Simplified Decision Tree:
| 111 malPagess
111 breadthe=1: class1 gepth=1:
11 1)1 breadth>1: class 0 I:ImagePaga «<=0.1333: class1 |
|1 width > 3: Subtree IimagePages »0.1333: |
PhrMitiP=0: Raising ||l breadth <=6: class 0 |
: : : ngegagﬁcoo{;gﬂt cless 1 | / 11l breadth > 6:_class 1 |
gePages> 0. 3 >

111 1|breadth <= 8- class 0 = depho 1)
|11 libreadth »6: class1 g =l
111 MultiP= 1
11 1) ToklTime <= 361; class 0
1111 TotalTime > 351: class 1 I | wtalPages »81: claes 1
deptte= 1:

MultiAgent = 0:

naaAgg; Chssd Subtres

|}depm< 5 | Replacement

11l MuliiiP=1: clasg 0 Y

11 MultilP = 0: !

11 | breadth <=6: class 0]

1111 breadth >6 |

1 I

]

MultiAgent = 1:

| btalPages > 81: class 1

Figure 4.29. Post-pruning of the decision tree for Web robot detection.

even if no significant gain is obtained using one of the existing attribute test
conditions, subsequent splitting may result in better subtrees.

Post-pruning In this approach, the decision tree is initially grown to its
maximum size. This is followed by a tree-pruning step, which proceeds to
trim the fully grown tree in a bottomn-up fashion. Trimming can be done by
replacing a snbtree with (1) a new leaf node whose class label is determined
from the majority class of records affiliated with the subtree, or (2) the most
frequently used branch of the subtree. The tree-pruning step terminates when
no further improvement is observed. Post-pronmng tends to give better resnlts
than prepruning because it inakes pruning decisions based on a fully grown
tree, unlike prepruning, which can suffer from premature termination of the
tree-growing process. However, for post-pruning, the additional computations
needed to grow the full tree may be wasted when the subtree is pruned.
Figure 4.29 illustrates the simplified decision tree model for the Web robot
detection example given in Section 4.3.6. Notice that the subtrees rooted at

186 Chapter 4 Classification

depth = 1 have been replaced by one of the branches involving the attribute
ImagePagea. This approach is also known as subtree raising. The depth >
1 and MultiAgent = O subtree has been replaced by a leaf node assigned to
class 0. This approach is known as subtree replacement. The subtree for
depth > 1 and MultiAgent = 1 remains intact.

4.5 Evaluating the Performance of a Classifier

Section 4.4.4 described several methods for estimating the generalization error
of a model during training. The estimated error helps the learning algorithm
to do model selection; i.e., to find a model of the right complexity that is
not susceptible to overfitting. Ouce the model bas been constructed, it can be
applied to the test set to predict the class lahels of previously unseen records.

It is often useful to measure the performance of the model on tbe test set
because such a measure provides an unbiased estimate of its generalization
error. The accuracy or error rate computed from tbe test set can also be
used to compare the relative performance of different classifiers on the same
domain. However, iu order to do this, the class labels of the test records
must be knowu. This sectiou reviews some of the methods commonly used to
evaluate the performance of a classifier.

4.5.1 Holdout Method

In the holdout method, the original data with labeled examples is partitioned
into two disjoint sets, called the training and the test sets, respectively. A
classification model is tben indnced from the training set and its performance
is evaluated on the test set. The proportion of data reserved for training and
for testing is typically at the discretion of tbe aualysts (e.g., 50-50 or two-
thirds for training and one-third for testing). The accuracy of the classifier
can be estimated based on the accuracy of the induced model on the test set.

The holdout method has several well-known limitations. First, fewer la-
beled examples are available for training because some of the records are with-
held for testing. As a result, the induced niodel may not be as good as when all
the labeled examples are used for training. Second, the model may be highly
dependent on the composition of the training and test sets. The smaller the
training set size, the larger the variance of the model. On the other hand, if
the training set is too large, then the estimated accuracy computed from the
smaller test set is less reliable. Such an estimate is said to have a wide con-
fidence iuterval. Finally, the training and test sets are no longer independent

4.5 Ewvaluating the Performance of a Classifier 187

of each other. Because the training and test sets are subsets of the original
data, a class that is overrepresented in one subset will be underrepresented in
the other, and vice versa.

4.5.2 Random Subsampling

The holdout method can be repeated several times to improve the estimation
of a classifier’s performance. This approach is known as random subsampling.
Let ace; be the model accuracy during the it* iteration. The overall accuracy
is given by acceun = Ef=1 acc;f/k. Random subsampling still encounters some
of the problems associated with the holdout method because it does not utihze
as much data as possible for training. It also has no coutrol over the number of
times each record is used for testing and traiing. Consequently, somne records
might be used for training more often than others.

4.5.3 Cross-Validation

An alternative to random subsampling is cross-validation. In this approach,
each record is used the same number of times for training and exactly once
for testing. To illustrate this method, suppose we partition the data into two
equal-sized subsets. First, we choose one of the subsets for training and the
other for testing. We then swap the roles of the subsets so that the previous
training set becomes the test set and vice versa. This approach is called a two-
fold cross-validation. The total error is obtained by summing up the errors for
both runs. In this example, each record is used exactly once for traiming and
once for testing. The k-fold cross-validation method generalizes this approach
by segmenting the data into k& equal-sized partitions. During each run, one of
the partitious is choseu for testing, while the rest of them are used for trainiug.
This procedure is repeated % times so that each partition is used for testing
exactly once. Again, the total error is found by sumining up the errors for
all k runs. A special case of the k-fold cross-validation method sets k = N,
the size of the data set. In this so-called leave-one-out approach, each test
set contains only one record. This approach has the advantage of utilizing
as much data as possible for training. In addition, the test sets are mutually
exclusive and they effectively cover the entire data set. The drawback of this
approach is that it is computationally expensive to repeat the procedure N
times. Furthermore, since each test set contains only one record, the variance
of the estimated performance metric tends to be high.

188 Chapter 4 Classification

4.5.4 Bootstrap

The methods presented so far assume that the training records are sampled
without replacement. As a result, there are no duplicate records in the training
and test sets. In the bootstrap approach, the training records are sampled
with replacement; i.e., a record already chosen for training is put back into
the original pool of records so that it is equally likely to be redrawn. If the
original data has IV records, it can be shown that, on average, a bootstrap
sample of size N contains about 63.2% of the records in the original data. This
approximation follows from the fact that the probability a record is chosen by
a bootstrap samiple is 1 — (1 — 1/N)¥. When N is sufficiently large, the
probability asymptotically approaches 1 — ¢! = 0.632. Records that are not
included in the bootstrap sample become part of the test set. The model
induced from the training set is then applied to the test set to obtain an
estimate of the accuracy of the bootstrap sample, €;. The sampling procedure
is then repeated b times to generate & bootstrap samples.

There are several variations to the bootstrap sampling approach in terms
of how tbe overall accuracy of the classifier is computed. One of the more
widely used approaches is the .632 bootstrap, which computes the overall
accuracy by combining the accuracies of each bootstrap sample (¢;) with the
accuracy computed from a training set that contains all the labeled examples
in the original data {acc,):

b
1
Accuracy, accpog = 3 2(0.632 % € +0.368 x accy). (4.11)
i=1

4.6 Methods for Comparing Classifiers

It is often useful to compare the performance of different classifiers to deter-
mine which classifier works better on a given data set. However, depending
on the size of the data, the ohserved difference in accuracy between two clas-
sifiers may not be statistically significant. This section examines some of the
statistical tests available to compare the performance of different models and
classifiers.

For illustrative purposes, consider a pair of classification models, M4 and
Mpg. Suppose M4 achieves 85% accuracy when evaluated on a test set con-
taining 30 records, while Mg achieves 756% accuracy on a different test set
contaiming 5000 records. Based on this inforniation, is A4 a better model
than Mp?

4.6 Methods for Comparing Classifiers 189

The preceding example raises two key questions regarding the statistical
significance of the performance metrics:

1. Although A4 has a higher accuracy than Mg, it was tested on a smaller
test set. How mucb confidence can we place on the accuracy for A4?

2. Is it possible to explain the difference in accuracy as a result of variations
in the composition of the test sets?

The first question relates to the issue of estimating the confidence interval of a
given model accuracy. The second question relates to the issue of testing the
statistical significance of the observed deviation. These issues are investigated
in the remainder of this section.

4.6.1 Estimating a Confidence Interval for Accuracy

To determine the confidence interval, we need to establish the probability
distribution that governs the accuracy measure. This section describes an ap-
proach for deriving the confidence interval by modeling the classification task
as a binomial experiment. Following is a list of characteristics of a binomial
experiment:

1. The experiment consists of N independent trials, where each trial has
two possible outcomes: success or failure.

2. The probability of success, p, in each trial is constant,

An example of a binomial experiment is counting the number of heads that
turn up when a coin is flipped N times. If X is the number of successes
observed in N trials, then the probability tbat X takes a particular value is
given by a binomial distribution with mean Np and variance Np(1 — p}):

px = = (5) -

For example, if the coin is fair (p = 0.5) and is flipped fifty times, then the
probability that the head shows up 20 times is

50

P(X =20) = (20

)0.520(1 —0.5)% = 0.0419.

If the experiment is repeated many times, then the average number of heads
expected to show up is 50 x 0.5 = 25, while its variance i 50 x 0.5 x 0.5 = 12.5.

190 Chapter 4 Classification

The task of predicting the class labels of test records can also be consid-
ered as a binomial experiment. Given a test set that contains N records, let
X be the number of records correctly predicted by a model and p be the true
accuracy of the model. By modeling the prediction task as a binomial experi-
ment, X has a binomial distribution with mean Np and variance Np(1 — p).
It can be shown that the empirical accuracy, ace = X/N, also has a binomial
distribution with mean p and variance p(1 —p)/N (see Exercise 12). Although
the binomial distribution can be used to estimate the confidence interval for
aee, it is often approximated by a normal distribution when NV is sufficiently
large. Based on the normal distribution, the following confidence interval for
acc can be derived:

acc—p
P(—Z 2 < ——ouo—<Z,_ z)zl—a. (4.12)
AN
where Z, /5 and Z,_, /9 are the upper and lower bounds obtained from a stan-
dard normal distribution at confidence level (1 — a). Since a standard normal
distribution is symmetric around Z = 0, it follows that Z,, = Z;_,/,. Rear-
ranging this inequality leads to the following confidence interval for p:

2x N x a.cc-l—Zg/Q:i:Za/z\/Zi/z +4Nace — 4N ace?
AN +25))

(4.13)

The following table shows the values of Z, /5 at different confidence levels:

1-a|099 098 09| 09| 08 | 07| 0.5
Zayp | 258233 196 | 1.65 | 1.28 | 1.04 | 0.67

Example 4.4. Consider a model that has an accuracy of 80% when evaluated
on 100 test records. What is the confidence interval for its true accuracy at a
95% confidence level? The confidence level of 95% correspouds to Z,/, = 1.96
according to the table given above. Inserting this term into Equation 4.13
yields a confidence interval hetween 71.1% and 86.7%. The following table
shows the confidence interval when the number of records, N, increases:

N 20 50 100 500 1000 5000
Confidence 0.584 0.670 0.711 0.763 0.774 0.789
Interval — 0919 | — 0888 | —0.867 [—0.833 | — 0.824 | — 0.811

Note that the confidence interval becomes tighter when N increases. []

4.6 Methods for Comparing Classifiers 191

4.6.2 Comparing the Performance of Two Models

Consider a pair of models, M; and Afg, that are evaluated on two independent
test sets, Dy and Dy, Let 7y denote the number of records in D1 and ns denote
the number of records in Dy. In addition, suppose the error rate for Af; on
Dy is e1 and the error rate for Mg on Do is ea. Our goal is to test whether the
observed difference between e; and e; is statistically significant.

Assuming that n; aud na are sufficiently large, the error rates ey and ey
can be approximated using normal distributions. If the observed difference in
the error rate is denoted as d = e; — es, then d is also normally distributed
with mean d;, its true difference, and variance, ¢3. The variance of d can be
computed as follows:

2 2

1 = 1-—
e ¢21=“—’1(@) , ell-e)

4.14
- - (4.14)
where e1(1 — €1)/n1 and eg(l — ep}/ne are the variances of the error rates.
Finally, at the (1 — a)% confidence level, it can be shown that the confidence
interval for the true difference d; is given by the following equation:

dy = dk 2,050 (4.15)

Example 4.5. Consider the problem described at the begmning of this sec-
tion. Model M4 has an error rate of e; = 0.15 when applied to N; = 30
test records, while model Mp has an error rate of es = 0.25 wheu applied
to Ny = 5000 test records. The observed difference in their error rates is
d =|0.15 — 0.25]| = 0.1. In this example, we are performing a two-sided test
to check whether di = 0 or d; # 0. The estimated variance of the observed
difference in error rates can be computed as follows:

= 0.0043

» 015(1—0.15) 0.25(1 —0.25)
%= 30 5000

or 4 = 0.0655. Inserting this value into Equation 4.15, we obtain the following
confidence interval for d; at 95% confidence level:

dy =0.1£1.96 x 0.0655 = 0.1 +0.128.

As the interval spans the value zero, we can conclude that the observed differ-
ence is not statistically significant at a 95% confidence level.]

192 Chapter 4 Classification

At what confidence level can we reject the hypothesis that d; = 0?7 To do
this, we need to determine the value of Z,/; such that the confidence interval
for d; does not span the value zero. We can reverse the preceding computation
and look for the value Z,/; such that d > Z,,34. Replacing the values of d
and 54 gives Z, s < 1.527. This value first occurs when (1 —a) S 0.936 (for a
two-sided test). The result suggests that the null hypothesis can be rejected
at confidence level of 93.6% or lower.

4.6.3 Comparing the Performance of Two Classifiers

Suppose we want to compare the performance of two classifiers using the k-fold
cross-validation approach. Initially, tbe data set D is divided into k equal-sized
partitions. We then apply each classifier to construct a model from &k — 1 of
the partitions and test it on the remaining partition. This step is repeated k
times, each time using a different partition as the test set.

Let M;; denote the model induced by classification technique L; during the
7™ iteration. Note that each pair of models M, and My, are tested on the
same partition j. Let e1; and ea; be their respective error rates. The difference
between their error rates during the j fold can he written as d; = e1j — e;.
If k is sufficiently large, then d; is normally distributed with mean d;*, whicb
is the true difference in their error rates, and variance ¢. Unlike the previous
approach. the overall variance in the observed differences is estimated using
the following formula:

& -
_{d; — d)?
3§w = 21*1(7]) (4.16)
k(k-1)
where d is the average difference. For this approach, we need to use a t-
distribution to compute the confidence interval for df*:

a7 = d Lt _ay i1

The coefficient t(;_q) %1 is obtained from a probability table with two input
parameters, its confidence level (1 — o) and the number of degrees of freedom,

k — 1. The probability table for the t-distribution is shown i Table 4.6.

Example 4.6. Suppose the estimated difference in the accuracy of models
generated by two classification techniques has a mean equal to 0.05 and a
standard deviation equal to 0.002. If the accuracy is estimated using a 30-fold
cross-validation approach, then at a 95% confidence level, the true accuracy
difference is

d5 = 0.05 £ 2.04 x 0.002. (4.17)

4.7 Bibliographic Notes 193

Table 4.6. Probability table for t-distribution.

0o

k—1]099 098|095 | 0.9 0.8
1 3.08 | 6.31 | 12.7 | 31.8 | 63.7
2 1.89 | 2.92 | 4.30 | 6.96 | 9.92
4 1.53 | 213 | 2.78 | 3.75 | 4.60
9 1.38 | 1.83 | 2.26 | 2.82 | 3.25
14 1.34 | 1.76 | 2.14 | 2.62 | 2.98
19 1.33 | 1.73 | 2.09 | 2.54 | 2.86
24 1.32 | 1.71 | 2.06 | 2.49 | 2.80
29 1.31 | 1.70 | 2.04 | 2,46 | 2.76

Since the confidence interval does not span the value zero, the observed dif
ference between the techniques is statistically significant. []

4.7 Bibliographic Notes

Early classification systems were developed to organize a large collection of
objects. For example, the Dewey Decimal and Library of Congress classifica-
tion systems were designed to catalog and index the vast number of library
books. The categories are typically identified in a manual fashion, with the
help of domain experts.

Automated classification has been a subject of intensive research for many
years. The study of classification in classical statistics is sometimes known as
discriminant analysis, where the objective is to predict the group member-
ship of an object based on a set of predictor variables. A well-known classical
method is Fisher's linear discriminant analysis [117], which seeks to find a lin-
ear projection of the data tbat produces the greatest discrimination between
objects that belong to different classes.

Many pattern recognition problems also require the discrimination of ob-
jects from different classes. Examples include speech recognition, handwritten
character identification, and image classification. Readers who are interested
in the apphlication of classification techniques for pattern recognition can refer
to the survey articles by Jain et al. [122] and Kulkarni et al. [128] or classic
pattern recognition books by Bishop [107], Duda et al. [114], and Fukunaga
[118]. The subject of classification is also a major research topic in the fields of
neural networks, statistical learning, and machine learning. An m-deptb treat-

194 Chapter 4 Classification

ment of various classification techniques is given in the books by Cherkassky
and Mulier [112], Hastie et al. [120], Michie et al. [133], and Mitchell [136].

An overview of decision tree induction algorithms can be found in the
survey articles by Buntine [110], Moret [137], Murthy [138], and Safavian et
al. [147]. Examples of some well-known decision tree algorithms include CART
[108], ID3 [143], C4.5 [145], and CHAID [125]. Both ID3 and C4.5 employ the
entropy measure as their splitting function. An in-depth discussion of the
C4.5 decision tree algorithm is given by Quinlan [145]. Besides explaining the
methodology for decision tree growing and tree pruning, Quinlan [145] also
described how the algorithm can be modified to handle data sets with missing
values. The CART algorithm was developed by Breiman et al. [108] and uses
the Gini index as its splitting function. CHAID [125] uses the statistical x>
test to determine the best split during the tree-growing process.

The decision tree algorithm presented in this chapter assumes that the
splitting condition is specified one attribute at a time. An oblique decision tree
can use multiple attributes to form the attribute test condition in the internal
nodes [121, 152]. Breiman et al. [108] provide an option for using linear
combinations of attributes in their CART implementation. Other approaches
for indueing oblique decision trees were proposed by Heath et al. [121], Murthy
et al. [139], Canti#-Paz and Kamath [111], and Utgoff and Brodley [152].
Although oblique decision trees help to improve the expressiveness of a decision
tree representatiou, leaning the appropriate test condition at each node is
computationally challenging. Another way to improve the expressiveness of a
decision tree without using oblique decisiou trees is to apply a method known
as constructive induction [132]. This method simplifies the task of learning
complex splitting functions by creating compound features from the original
attributes.

Besides the top-down approach, other strategies for growing a decision tree
include the bottom-up approach by Landeweerd et al. [130] and Pattipati and
Alexandridis [142], as well as the bidirectional approach by Kim and Landgrebe
[126]. Schuermann and Doster [150] and Wang and Suen [154] proposed using
a soft splitting criterion to address the data fragmentation problem. In
this approach, each record is assigned to different branches of the decision tree
with different probabilities.

Model overfitting is an important issne that must be addressed to ensure
that a decision tree classifier performs equally well on previously unknown
records. The mnodel overfitting problemn has been investigated by many authors
including Breiman et al. [108], Schaffer [148]. Mingers [135], and Jensen and
Cohen [123]. While tbe presence of noise is often regarded as one of the

Bibliography 195

primary reasons for overfitting [135. 140|, Jensen and Cohen [123] argued
that overfitting is the result of using incorrect hypothesis tests in a multiple
comparison procedure.

Schapire [149] defined generalization error as “the probability of misclas-
sifying a new example” and test error as “the fraction of mistakes on a newly
sampled test set.” Generalization error can therefore be considered as the ex-
pected test error of a classifier. Generalization error may sometimes refer to
the true error [136] of a model, i.e.. its expected error for randomly drawn
data points from the same population distribution where the training et is
sampled. These definitions are in fact equivalent if both the training and test
sets are gathered from the same population distrihutiou, which is often the
case in many data mining and machine learning applications.

Thbe Occam’s razor priuciple is often attributed to the philosopher William
of Occam. Domingos [113] cautioned against the pitfall of misinterpreting
Occam’s razor as comparing models witb similar training errors, instead of
generalization errors. A survey on decision tree-pruning methods to avoid
overfitting is given by Breslow and Aha [109] and Esposito et al. [L16]. Some
of the typical pruning methods include reduced error pruning [144], pessimistic
error pruning [144], minimum error pruning [141], critical value pruning [134],
cost-complexity pruning [108], and error-based pruning [145]. Quinlan and
Rivest proposed using the minimum description length principle for decision
tree pruning in [146].

Kohavi [127] had performed an extensive empirical study to compare the
performance metrics obtained using different estimation methods such as ran-
dom subsampling, bootstrapping, and k-fold cross-validation. Their results
suggest that the best estimation method is based on the ten-fold stratified
cross-validation. Efron and Tibshirani [115] provided a theoretical and empir-
ical comparison between cross-validation and a bootstrap method known as
the 632+ rnle.

Current techniques such as C4.5 require that the entire training data set fit
into main memory. There has been considerable effort to develop parallel and
scalable versious of decision tree induction algorithms. Some of the proposed
algorithms include SLIQ by Mehta et al. [131], SPRINT by Shafer et al. [151],
CMP by Wang and Zaniolo [153], CLOUDS by Alsabtiet al. [106], RainForest
by Gehrke et al. [119]. and ScalParC by Joshi et al. [124]. A general survey
of parallel algorithms for data mining is available in [129].

196 Chapter 4 Classification

Bibliography

[106] K. Alsabti, S. Ranka, and V. Singh. CLOUDS: A Decision Tree Classifier for Large
Datasets. In Proc. of the fth Intl. Conf. on Knowledge Discovery and Data Mining,
pages 2-8, New York, NY. August 1098.

[107] €. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,
Oxford, UK., 1995,

[108] L. Breiman, J. H. Friedman, R. Olshen, and C. J. Stone. Classification and Regression
Trees. Chapman & Hall, New York, 1084.

[100] L. A. Breslow and D. W. Aha. Simplifying Decision Trees: A Survey. Knowledge
Engineering Review, 12(1):1 40, 1097.

[110] W. Buntine. Learning classification trees. In Artificial Intelligence Frontiers in Statis-
tics, pages 182-201. Chapman & Hall, London, 1993.

[111] E. Cantii-Paz and C. Kamath. Using evolutionary algorithms to induce oblique decision
trees. In Proc. of the Genetic and Evolutionary Computation Conf.. pages 1053-1060,
San Francisco. CA, 2000,

[112] V. Cherkassky and F. Mulier. Learning from Data: Concepts, Theory, and Methods.
Wiley Interscience, 1908.

[113] P. Domingos. The Role of Occam'’s Razor in Knowledge Discovery. Data Mining and
Knowledge Discovery, 3{41):409-425. 1999.

[114] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John Wiley & Sons,
Inc., New York. 2nd edition, 2001.

[115] B. Efron and R. Tibshirani. Cross-validation and the Bootstrap: Estimating the Error
Rate of a Prediction Rule. Technical report. Stanford University, 1995.

[116] F. Esposito. D. Malerba, and G. Semeraro. A Comparative Analysis of Methods for
Pruning Decision Trees. [EEE Trans. Pattern Analysis and Machine Intelligence, 19
(5):476—401, May 1007.

[117] R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of
Eugenics, T:170 188, 1930,

[118] K. Fuknnaga. Introduction to Statistical Pattern Recognition. Academic Press, New
York. 1890.

[119] J. Gebrke. R. Ramakrishnan, and V. Ganti, RainForest A Framework for Fast De-
cision Tree Construction of Large Datasets. Data Mining and Knowledge Discovery, 4
(2/3):127-162, 2000.

[120] T. Hastie, R. Tihshirani, and J. H. Friedinan. The Elemenis of Statistical Learning:
Data Mining. Inference, Prediction. Springer, New York, 2001.

[121] D. Heath, S. Kasif. and S. Salzberg. Induction of Obligne Decision Trees. In Proc. of
the 13th Intl. Joint Con/. on Artificial Intelligence. pages 1002-1007, Chambery. France,
August 1993.

[122] A. K. Jain. R. P. W. Duin, and J. Mao. Statistical Pattern R ition: A Review,
IEEE Tran. Patt. Anal. and Mach. Intellig.. 22(1):4 37, 2000.

[123] D. Jensen and P. R. Cohen. Multiple Comparisons in Induction Algorithms. Aachine
Learning, 38(3):309-338, March 2000.

[124] M. V. Joshi, G. Karypis, and V. Kumar. ScalParC: A New Scalable and Efficient
Parallel Classification Algorithm for Mining Large Datasets. In Proc. of 12th Intl.
Parallel Processing Symp. (IPPS/SPDP), pages 573-579, Orlando. FL, April 1998,

[125] G. V. Kass. An Exploratory Technique for 1 igating Large Q) ities of Categor-
ical Data. Applied Statistics, 20:110-127, 1980,

Bibliography 197

[126] B. Kim and D. Landgrebe. Hierarchical decision classifiers in high-di ional and
large class data. JEEE Trans. on Geoscience and Remote Sensing, 29(4):518-528, 1001,

[127] R. Kohavi. A Study on Cross-Validation and Bootstrap for Accuracy Estimation and
Model Selection. In Proc. of the 15th Intl. Joint Conf. on Artificial Inteiligence, pages
1137-1145, Montreal. Canada. A ugust 1995,

[128] S. R. Kulkarni, G. Lngosi, and S. S. Venkatesh. Learning Pattern Classification A
Survey. IEEE Tran. Inf. Theory, 44(6):2178-2206, 1008,

[120] V. Kumar, M. V. Joshi. E.-H. Han, P. N. Tan, and M. Steinbach. High Performance

Data Mining. In High Performance Computing for Computational Sei (VECPAR
2002), pages 111-125. Springer. 2002,
[130] G. Land d, L. “Fi E. G M. Bins, and M. Halic. Binary tree versus

single level tree classification of white blood eells. Pattern Recognition, 16:571-577,
1983,

[131] M. Mehta. R. Agrawal. and J. Rissanen. SLIQ: A Fast Scalable Classifier for Data
Mining. In Proc. of the 5th Intl. Conf. on Extending Database Technology. pages 18 32,
Avignon, France, March 1906.

[132] R.S. Michalski. A theory and methodology of inductive learning. Artificial Intelligence.
20:111-116, 1933,

[133] D. Michie. D. J. Spiegelhalter, and C. C. Taylor. Machine Learning, Neural and
Statistical Classification. Ellis Horwood. Upper Saddle River, NJ, 1994.

(134] J. Mingers. Expert Systems Rule Induction with Statistical Data. J Operational
Research Society, 38:30-47, 1087,

[135] J. Mingers. An empirical comparison of pruning methods for decision tree induction.
Machme Learning, 4:227-243. 1989.

[136] T. Mitchell. Machine Learning. McGraw-Hill, Boston, MA,, 1997,

(137] B. M. E. Moret. Decision Trees and Diagrams. Computing Surveys. 14(4):593-623,
1082,

[138] 8. K. Murthy. Automatic Construction of Decision Trees from Data: A Multi-
Disciplinary Survey. Data Mining and Knowledge Discovery, 2(1):345-380, 1998,

[139] S. K. Murthy, S. Kasif, and S. Salzberg. A system for induction of oblique decision
trees. J of Artificial Intelligence Research, 2:1-33, 1004.

[140] T. Niblett. Constrncting decision trees in noisy domains. In Prac. of the 2nd European
Working Session on Learning, pages 67-78, Bled, Yugoslavia, May 1987.

[141] T. Niblett and I. Bratko. Learning Decision Rules in Noisy Domains. In Research and
Development in Expert Systems I1I, Cambridge. 1986. Cambridge University Press.
[142] K. R. Pattipati and M. G. Alexandridis. Application of heuristic search and information
theory to sequential fault diagnosis, JEEE Trans. on Systems, Man. and Cybernetics,

20(4):872-887, 1090.

[143] J. R. Quinlan. Discovering rules by mduction from large collection of examples. In
D. Michie, editor, Exzpert Systems n the Micro Electronic Age. Edinhurgh University
Press. Edinburgh, UK, 1970.

[144] J. R. Quinlan. Simplifying Decision Trees. Intl, J. Man-Machine Studies, 27:221 234,
1087,

[145] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan-Kaufmann Publishers,
San Mateo, CA, 1093.

[146] J. R. Quinlan and R. L. Rivest. Inferring Decision Trees Using the Minimum Descrip-
tion Length Principle. Information and Computation, 80(3):227-248, 1989.

198 Chapter 4 Classification

[147] S. R. Safavian and D. Landgrebe. A Survey of Decision Tree Classifier Methodology.
IEEE Trans. Systems, Man and Cybernetics, 22:660-674, May/June 1093.

[148] C. Schaffer. Overfitting avoidence as bias. Machine Learning, 10:153-178, 1993.

[149] R. E. Schapire. The Boosting Approach to Machine Learning: An Overview. In MSRI
Workshop on Nonlinear Estimation and Classification, 2002,

[150] J. Schuermann and W. Doster. A decision-theoretic approach in hierarchical classifier
design. Pattern Recognition, 17:359-369, 1984.

[151] J. C. Shafer, R. Agrawal. and M. Mehta. SPRINT: A Scalable Parallel Classifier
for Data Mining. In Proc. of the 22nd VLDB Conf. pages 544 555, Bombay, India,
September 1996.

[152] P. E. Utgoff and C. E. Brodley. An incremental method for finding multivariate splits
for decision trees. In Proc. of the 7th Intl. Conf. on Machine Learning, pages 5865,
Austin, TX, June 1990.

[153] H. Wang and C. Zaniolo. CMP: A Fast Decision Tree Classifier Using Multivariate
Predictions. In Proc. of the 16th Intl. Conf. on Date Engineering, pages 449 460, San
Diego, CA. March 2000.

[154] Q. R. Wang and C. Y. Suen. Large tree classifier with heuristic search and global
training. IEEF Trans. on Paitern Analysis and Machine Intelligence, 9(1):91-102, 1987.

4.8 Exercises

1. Draw the full decision tree for the parity function of four Boolean attributes,
A, B, C, and D. Is it possible to simplify the tree?

2. Consider the trainiug examples showu in Table 4.7 for a biuary classification
problem.

(a) Compute the Gini index for the overall collection of training examples.

(b) Compute the Gini index for the Customer ID attribute.

{c) Compute the Gini index for the Gender attribute.

(d) Compute the Gini index for the Car Type attribute using multiway split.

{e) Compute the Gini index for the Shirt Size attribute using multiway
split.

{f) Which attribute is better, Gender, Car Type, or Shirt Size?

(g) Explain why Customer ID should not be used as the attribute test con-
dition even though it has the lowest Gini.

3. Consider the training examples shown in Table 4.8 for a binary classification
problem.

(a) What is the entropy of this collection of training examples with respect
to the positive class?

4.8

Table 4.7. Data set for Exercise 2.

Exercises

Customer ID | Gender | Car Type | Shirt Size | Class
1 M Family Small €0
2 M Sports Medium Co
3 M Sports Medium Co
4 M Sports Large Co
5 M Sports | Extra Large | €0
6 M Sports | Extra Large | €0
7 F Sports Small <o
8 F Sports Small Co
9 F Sports Medium <o
10 F Luxury Large Co
11 M Family Large C1
12 M Family | Extra Large | €1
13 M Family Medium €1
14 M Luxury | Extra Large | €1
15 F Luxury Small <1
16 F Luxury Small €1
17 F Luxury Medium €1
18 F Luxury Medium C1
19 F Luxury Medium C1
20 F Luxury Large C1

Table 4.8. Data set for Exercise 3.

Instance

a3 | Target Class

o~ DU W

ol R R BRI R [HC

1.0 5
6.0 s
5.0 =
4.0 o

b |
o
=8

S a S Ea a8
-1
[oe]

ot
[=)
[

199

(b) What are the information gains of @, and a, relative to these training

examples?

{e) For as, which is & continuous attribute, compute the information gain for

every possible split.

200 Chapter 4 Classification 4.8 Exercises 201

(d) What is the best split (among a;, @z, and aa) according to the information (a) Compute a two-level decision tree using the greedy approach desecribed in
gain? this chapter. Use the classification error rate as the criterion for splitting.

{e) What is the hest split (between a; and a2) according to the classification What is the overall error rate of the induced tree?
error rate? (b) Repeat part (a) using X as the first splitting attribute and then choose the
(f) What is the best split {between a, and a,) according to the Cini index? hest remaining attribute for splitting at each of the two suecessor nodes.

‘What is the error rate of the induced tree?
4. Show that the entropy of a node never increases after splitting it into smaller {c) Compare the results of parts (a) and (b). Comment on the suitability of
successor nodes. the greedy heuristic used for splitting attribute selection.

5. Consider the following data set for a binary class problem. 7. The following table summarizes a data set with three attributes 4, B, C and

two class labels 4+, —. Build a two-level decision tree.

A | B | Class Label
TIE + Number of
T T + A B 6] Instances
T|T + T —
L E - T T[T] 5 0
T|T + F|T|T]|o 20
g g = T|F | T |20 0
- F F T 0 5
R - T|T|F|o 0
Sy = F|T|F |2 0
T|E T|F|F|o 0
F F F 0 25

(a) Calculate the information gain when splitting on A and B. Which at-

tribute would the decision tree induction algerithm choose? (a) According to the classification errot rate, which attribute would be chosen

(b) Caleulate the gain in tbe Gini index when splitting on 4 and B. Which as the first splitting attribute? For each attribute, show the contingency
attribute would the decision tree induction algorithm choose? table and the gains in classification error rate.
(c) Figure 4.13 shows that entropy and the Gini index are both monotonously (b) Repeat for the two children of the root node.
increasing on the range [0 0.5] B,nd they 8,” both rfaonotc.)nously decr E?‘:m,lg (c) How many wstances are misclassified by the resultiug decision tree?
on the range [0.5, 1]. Is it possible that information gain and the gain in . e K
the Gini index favor different attributes? Explain. (d) Repeat parts (a), (b), and (e} using C as the splitting attribute.
{e) Use the results in parts (c) and (d) to conclnde abont the greedy nature
6. Consider the following set of training examples. of the decision tree induction algorithm.
X [Y | Z | No. of Class C1 Examples | No. of Class C2 Examples 8. Consider the decigion tree shown in Figure 4.30.
0|00 5 40
o011 0 15 (a) Compute the generalization error rate of the tree using the optimistic
o (1]0 10 5 approach.
0|11 45 0 (b) Cownpute the generalization error rate of the tree using the pessimistic
1|00 10 5 approach. (For simplicity, use the strategy of adding a factor of 0.5 to
101 25 0 each leaf node.)
Ljt1jo 5 20 {c) Cowpute the generalization error rate of the tree using the validation set
1)1)1 0 15 shown above. This approach is known as reduced error pruning.

202 Chapter 4 Classification

Training:
Instance | A | B | C | Class
1 0700 +
2 0 Q 1 +
3 0 1 4] +
4 0 111 -
5 1100 +
6 1 0|0 +
7 1 110 -
8 1101 +
8 1 1 0 -
10 1 110 =
Validation:
Instance | A | B | C | Class
1 0/0]0 +
12 0 1 1 +
13 1 110 +
14 1,01 =
15 1 0] 0 +

Figure 4.30. Decision tree and data sets for Exercise 8.

9. Consider the decision trees shown in Figure 4.31. Assume they are generated
from a data set that eontains 16 binary attributes and 3 classes, Cy, C3, and
Cs.

(a) Decision tree with 7 errors (b} Decision tree with 4 errors

Figure 4.31. Decision trees for Exercise 9.

10.

11.

4.8 Exercises 203

Compute the total description length of each decision tree according to the
minimum deseription length principle.

e The total description length of a tree is given by:

Cosi(tree, data) = Cost{tree} + Cost{dataltree).

Each internal node of the tree is encoded by the ID of the splitting at-
tribute. If there are m attributes, the cost of encoding each attribute is
log, m hits.

Fach leaf is encoded using the ID of the class it is associated with. If
there are k classes, the cost of encoding a class is log, k bits.

Cost(tree) is the cost of encoding all the nodes in the tree. To simplify the
computation, you can assume that the total cost of the tree is obtained
by adding up the costs of encoding each internal node and each leaf node.

Cost(data|tree) is encoded using the classification errors the tree commits
on the training set. Each error is encoded by log, n bits, where n is the
total number of training instances.

Which decision tree is better, according to the MDL prineiple?

‘While the .632 bootstrap approach is useful for obtaining a reliable estimate of
model accuracy, it has a known limitation [127]. Consider a two-class problem,
where there are equal number of positive and negative examples in the data.
Suppose the class labels for the examples are generated randomly. The classifier
used is an unpruned decision tree (i.e., a perfect tnemorizer}. Determine the
accuraey of the classifier using each of the following methods.

(a) The holdout method, where two-thirds of the data are used for training
and the remaining one-third are used for testing,

(b) Ten-fold cross-validation.

{¢) The .632 bootstrap method.

(d) From the results in parts (a), (b). and {¢), which method provides a more
reliable evaluation of the classifier’s accuracy?

Consider the following approach for testing whether a classifier A beats another
classifier B. Let IV be the size of a given data set, p4 be the aceuracy of classifier
A, pg be the accuracy of classifier B, and p = (pa + pg)/2 be the average
accuracy for both classifiers. To test whether classifier A is significantly better
than B, the following Z-statistic is used:

7= Pa—PB

2P(1—P)-
1/_N,_

Classifier A is assumed to be better than classifier B if Z > 1.96.

204 Chapter 4 Classification

Table 4.9 compares the accuracies of three different classifiers, decision tree
classifiers, naive Bayes classifiers, and support vector machines, on various data

sets. {The latter two classifiers are described in Chapter 5.)

Table 4.9. Comparing the accuracy of various classification methods.

Data Set Size | Decision naive Support vector
(N) | Tree (%) | Bayes (%) | machine (%)
Anneal 898 92.00 79.62 87.19
Australia 690 85.51 76.81 84.78
Auto 205 81.95 58.05 70.73
Breast 699 95.14 95.99 96.42
Cleve 303 76.24 83.50 84.49
Credit 690 85.80 TT.54 85.07
Diabetes 768 72.40 75.91 76.82
German 1000 70.90 T74.70 74.40
Glass 214 67.29 48.50 50.81
Heart 270 80.00 84.07 83.70
Hepatitis 155 81.94 8323 87.10
Horse 368 85.33 78.80 82.61
Ionosphere 351 89,17 82.34 88.89
Iris 150 04.07 95.33 06.00
Labor 57 78.95 04.74 02.98
Led? 3200 73.34 73.16 73.56
Lymphography | 148 77.03 83.11 86.49
Pima 768 74.35 76.04 76.95
Senar 208 78.85 69.71 76.92
Tie-tac-toe 958 83.72 70.04 08.33
Vehicle 846 71.04 45.04 74.94
Wine 178 0438 96.63 08.88
Zoo 101 03.07 93.07 06.04

Summarize the performance of the classifiers given in Table 4.9 using the fol-

lowing 3 x 3 table:

win-loss-draw Decision tree | Naive Bayes | Support vector
machine

Decision tree 0-0-23

Naive Bayes 0-0-23

Support vector machine 0-0-23

Each cell in the table contains the number of wins, losses, and draws when

comparing the classifier in a given row to the classifier in a given column.

4.8 Exercises 205

12. Let X be a binomial random variable with mean Np and variance Np(1 — p).
Show thbat the ratio X/N also has a binomial distribution with mean p and
variance p(1 —p)/N.

~

Association Analysis:
Basic Concepts and
Algorithms

Many business enterprises accumulate large quantities of data from their day-
to-day operations. For example, huge amounts of customer purchase data are
collected daily at the checkout counters of grocery stores. Table 6.1 illustrates
an example of such data, commonly known as market basket transactions.
Each row in this table corresponds to a transaction, which contains a unique
identifier labeled T'T D and a set of items bought by a given customer. Retail-
ers are interested in analyzing the data to learn about the purchasing behavior
of their customers. Such valuable information can be used to support a vari-
ety of business-related applications such as marketing pramotions, inventory
management, and customer relationship mansgement.

This chapter presents a methodology known as association analysis,
which is useful for discovering interesting relationships hidden in large data
sets. The uncovered relationships can be represented in the form of associa-

Table 6.1. An example of market basket fransactions.

TID | Items

{Bread, Milk}

{Bread, Dispers, Beer, Eggn}
{Milk, Diapers, Beer, Cola}
{Bread, Milk, Diapers, Beer}
{Bread, Milk, Diapers, Cola}

N

328 Chapter 6 Association Analysis

tion rules or sets of frequent items. For example, the following rule can be
extracted from tbe data set shown in Table 6.1:

{Diapers} — {Beer}.

The rule suggests that a strong relationship exists between the sale of diapers
and beer because many customers who buy diapers also buy beer. Retailers
can use this type of rules to help them identify new opportunities for cross-
selling their products to the customers.

Besides market basket data, association analysis is also applicable to otber
application domains such as bioinformatics. medical diagnosis, Web mining,
and scientific data analysis. In the analysis of Earth science data, for example,
the association patterns may reveal interesting connections among the ocean,
land, and atmospheric processes. Such information may help Earth scientists
develop a better understanding of how the different elements of the Earth
system interact with each other. Even though the techniques presented here
are generally applicable to a wider variety of data sets, for illustrative purposes,
our discussion will focus mainly on market basket data.

There are two key issues that need to be addressed when applying associ-
ation analysis to market basket data. First, discovering patterns from a large
transaction data set can be computationally expensive. Second, some of the
discovered patterns are potentially spurious because they may happen simply
by chance. The remainder of this chapter is organized around these two is-
sues. The first part of the chapter is devoted to explaining the basic concepts
of association analysis and the algorithms used to efficiently mine such pat-
terns. The second part of the chapter deals with the issue of evaluating the
discovered patterns in order to prevent the generation of spurious results.

6.1 Problem Definition

This section reviews the basic terminology used in association analysis and
presents a formal description of the task.

Binary Representation Market basket data can be represented in a binary
format as shown in Table 6.2, where each row corresponds to a transaction
and each column corresponds to an item. An item can be treated as a binary
variable whose value is one if the item is present in a transaction and zero
otherwise. Because the presence of an item in a transaction is often considered
more important than its absence, an item is an asymmetric binary variable.

6.1 Problem Definition 329

Table 6.2. A binary 0/1 representation of market basket data.

TID | Bread | Milk | Diapers | Beer | Eggs | Cola
1 1 1 0 0 0 0
2 1 0 1 1 1 0
3 0 1 1 1 0 1
4 1 1 1 1| 0 0
5 1 1 1 0 0 1

This representation is perhaps a very simplistic view of real market basket data
because it ignores certain important aspects of the data such as the quantity
of iterns sold or the price paid to purchase them. Methods for handling such
non-binary data will be explained in Chapter 7.

Itemset and Support Count Let I = {ij,is,...,i5} be the set of all items
in a market basket data and T' = {t1,£2,....tn5} be the set of all transactions.
Each transaction #; contains a subset of items chosen from 7. In association
analysis, a collection of zero or more items is termed an itemset. If an itemset
contains & items, it is called a k-itemset. For instance, {Beer, Diapers, Milk}
is an example of a 3-itemset. The null (or empty}) set is an itemset that does
not contain any items.

Tbe transaction width is defined as the nmmber of items present in a trang-
action. A transaction t; is said to contain an itemset X if X is a subset of
t;. For example, the second transaction shown in Table 6.2 contains tbe item-
set {Bread, Diapers} but not {Bread, Milk}. An important property of an
itemset is its support count, which refers to the number of trausactions that
contain a particular itemset. Mathematically, the support count, o(X). for an
itemset X can be stated as follows:

o(X) = |{tIX i, tie T},

where the symbol | - | denote the number of elements in a set. In the data set
shown in Table 6.2, the support count for {Beer, Diapers, Milk} is equal to
two because there are only two transactions that contain all three items.

Association Rule An association rule is an implication expression of the
form X — Y, where X and Y are disjoint itemsets, i.e., X NY = 0. The
strength of an association rule can be measured in terms of its support and
confidence. Support determines how often a rule is applicable to a given

330 Chapter 6 Association Analysis

data set, while confidence determines how frequently items in ¥ appear in
transactions that contain X. The formal definitions of these metrics are

o(XUY).

Support, s{X — Y} N (6.1)
Oorifiderice, o(X — V) = % (6.2)

Example 6.1. Consider the rule {Milk, Diapers} — {Beer}. Since the
support count for {Milk, Diapers, Beer} is 2 and the total number of trans-
actions is 5, the rule's support is 2/5 = 0.4. The rule’s confidence is obtained
by dividing the support count for {Milk, Diapers, Beer} by the support count
for {Milk, Diapers}. Since there are 3 transactions that contain milk and di-
apers, the confidence for this rule is 2/3 = 0.67. L]

‘Why Use Support and Confidence? Support is an important measure
because a rnle that has very low support may occur simply by chance. A
low support rule is also hikely to be uninteresting from a business perspective
because it may not be profitable to promote items that customers seldom bny
together (with the exception of the situation described in Section 6.8). For
these reasons, support is often used to eliminate uninteresting rules. As will
be shown in Section 6.2.1, support also has a desirable property that can be
exploited for the efficient discovery of association rules.

Confidence, on the other hand. measures the reliability of the inference
made by a rule. For a given rule X — Y, tbe higher tbe confidence, the more
likely it is for ¥ to be present in transactions that contain X . Confidence also
provides an estimate of the conditional probability of ¥ given X.

Association analysis results sbould be interpreted with caution. The infer-
ence made by an association rule does not necessarily imply causality. Instead,
it snggests a strong co-cccurrence relatiouship between items in the antecedent
and consequent of the rule. Causality, on the other hand, requires knowledge
about the causal and effect attributes in the data and typically involves rela-
tionships occurring over time (e.g., ozone depletion leads to global warming).

Formulation of Association Rule Mining Problem The association
rule mining probleni can be formally stated as follows:

Definition 6.1 (Association Rule Discovery). Given a set of transactions
T, find all the rules having support > minsup and confidence > minconf,
where minsup and minconf are the corresponding support and confidence

thresholds.

6.1 Problem Definition 331

A brute-force approach for mining association rules is to compute the sup-
port and confidence for every possible rule. Tbis approach is probibitively
expensive because there are exponentially many rules that can be extracted
from a data set. More specifically, the total number of possible rules extracted
{rom a data set that contains d items is

R=3% 2%l 1 (6.3)

The proof for this equation is left as an exercise to the readers (see Exercise 5
on page 405). Even for the small data set shown in Table 6.1, this approach
requires us to compute the support and confidence for 36 —27+1 = 602 rules.
More than 80% of the rules are discarded after applying minsup = 20% and
minconf = 50%, thus making most of the computations become wasted. To
avoid performing needless computations, it would be useful to prune the rules
early without having to compute tbeir support and confidence values.

An initial step toward improving the performance of association rule min-
ing algorithms is to decouple the support and confidence requirements. From
Equation 6.2, notice that the support of a rule X — Y depends only on
the support of its corresponding itemset, X UY. For example, tbe following
rules have identical support because they involve items from the same itemset,
{Beer, Diapers, Milk}:

{Beer, Diapers} — {Milk}, {Beer, Milk} — {Diapers},
{Diapers, Milk} — {Beer}, {Beer} — {Diapers, Milk},
{Milk} — {Beer Diapers), {Diapers} — {Beer Milk]}.

If the itemset is infrequent, then all six candidate rules can be pruned imme-
diately without our having to compute their confidence values.

Therefore, a common strategy adopted by many association rule mming
algorithms is to decompose the problem into two major subtasks:

1. Frequent Itemset Generation, whose objective is to find all the item-
sets that satisfy the minsup threshold. These itemsets are called frequent
itemsets.

2. Rule Generation, whose objective is to extract all the high-confidence
rules from the frequent itemsets found in the previous step. These rules
are called strong rules.

The computational requirements for {requent itemset generation are gen-
erally more expensive than those of rule generation. Efficient techniques for
generating frequent itemsets and association rules are discussed in Sections 6.2
and 6.3, respectively.

332 Chapter 6 Association Analysis

Figure 6.1. An itemset lattice.

6.2 Frequent Itemset Generation

A lattice structure can be used to enumerate the list of all possible itemsets.
Figure 6.1 shows an itemset lattice for I = {a,b,¢,d, e}. In general, a data set
that contains k items can potentially generate up to 2¥ — 1 frequent itemsets,
exclnding the nnll set. Becanse k can be very large in many practical appli-
cations, the search space of itemsets that need to be explored is exponentially
large.

A brute-force approach for finding frequent itemsets is to determine the
sopport. count for every candidate itemset in the lattice structure. To do
this, we need to compare each candidate against every transaction, an opera-
tion that is shown in Figure 6.2. If the candidate is contained in a transaction,
its support count will be incremented. For example, the support for {Bread,
Milk} is incremented three times because the itemset is contained in transac-
tions 1, 4, and 5. Such an approach can be very expensive hecause it requires
O(N Muw) comparisons, where N is the number of transactions, M = 2% — 1 is
the nnmber of candidate itemsets, and w is the maximum transaction width.

6.2 Frequent Itemset Generation 333

Candidates

Transactions
TiD ltems
Bread, Milk M
Bread, Diapers, Beer, Eggs
Milk, Diapers, Beer, Coke
Bread, Milk, Diapers, Beer
Bread, Milk, Diapers, Coke 2

«—Z—>
o[alw[n]=

Figure 6.2. Counting the support of candidate itemsets.

There are several ways to reduce the computational complexity of frequent
itemset generation.

1. Reduce the number of candidate itemsets (). The Apriori prin-
ciple, described in the next section, is an effective way to eliminate some
of the candidate itemsets without counting their support values.

2. Reduce the number of comparisons. Instead of matching each can-
didate itemset against every transaction, we can reduce the number of
comparisons by usimg more advanced data structures, either to store the
candidate itemsets or to compress the data set. We will discuss these
strategies in Sections 6.2.4 and 6.6.

6.2.1 The Apriori Principle

This section describes how the support measure helps to reduce the number
of candidate itemsets explored during frequent itemset generation. The use of
support for proning candidate itemsets is gnided by the following principle.

Theorem 6.1 (Apriori Principle). If an itemset is frequent, then all of its
subsets must also be frequent.

To illustrate the idea behind the Apriori principle, consider the itemset
lattice shown in Figure 6.3. Suppose {¢,d,e} is a freqnent itemset. Clearly,
any transaction that contains {c,d,e} must also contain its subsets, {c,d},
{c,e}, {d.e}, {e}, {d}, and {e}. As a result, if {c,d, e} is frequent, then
all subsets of {c,d,e} (i.e., the shaded itemsets in this figure} must also be
frequent.

334 Chapter 6 Association Analysis

!
Frequent
Itemset

Figure 6.3. An illustration of the Aprioni principle. If {¢,d, e} is frequent, then all subsets of this
itemset are frequent.

Conversely, if an itemset such as {a, b} is infrequent, then all of its supersets
must be infrequent too. As illustrated in Figure 6.4, the entire subgraph
containing the supersets of {a,b} can be pruned immediately once {a,b} is
found to be infrequent. This strategy of trimming the exponential search
space based on the support measure is known as support-based pruning.
Such a pruming strategy is made possible by a key property of the support
measure, namely, that the support for an itemset never exceeds the support
for its subsets. This property is also known as the anti-monotone property
of the support measure.

Definition 6.2 (Monotonicity Property). Let I be a set of items, and
J =27 be the power set of I. A measure § is monotone (or upward closed) if

VX, YeJ: (X CY)— f(X)< f(Y),

6.2 Frequent Itemset Generation 335

Infrequent
Itemset

Pruned “x
Supersets S

Figure 6.4. Anillustration of support-based pruning. If {a, b} is infrequent, then all supersets of {a, b}
are infrequent.

which means that if X is a subset of Y, then f(X) must not exceed f(Y). On
the ather hand, f is anti-monotone (or downward closed) if

VX, Yeld: (XCY)— f(Y) < f(X),

which means that if X is a subset of ¥, then f(Y') must not exceed f(X).

Any measure that possesses an anti-monotone property can be incorpo-
rated directly into the mining algorithm to effectively prune the exponential
search space of candidate itemsets, as will be shown in the next section.

6.2.2 Frequent Itemset Generation in the Apriori Algorithm

Apriert is the first association rule mining algorithm that pioneered the use
of support-based pruning to systematically control the exponential growth of
candidate itemsets. Figure 6.5 provides a high-level illustration of the frequent
itemset generation part of the Apriori algorithm for the transactions shown in

336 Chapter 6 Association Analysis

Candidate
1-ltemsets
Item Count .
Beer 3 Minimum support count = 3
Bread 4
Cola])
Diapers 4 \ Candidate
Milk 4 2-ltemsets
Eggs 1 Itemset Count
_4 {Beer, Bread} 7
\ {Beer, Diapers} 3
\ {Beer, Milk} 2
/ {Bread, Diapers}| 3
Itemsets remaved {g:s:;sM;\llﬁk} 3
because of low y
e \ Candidate
3-ltemsets
ltemset Count

{Bread, Diapers, Milk} 3

Figure 6.5. lllustration of frequent itemset generation using the Aprion algorithm.

Table 6.1. We assume that the support threshold is 60%, which is equivalent
to a minimum support count equal to 3.

Initially, every item is considered as a candidate 1-itemset. After count-
ing their supports, the candidate itemsets {Cola} and {Eggs} are discarded
because they appear in fewer than three transactions. In the next iteration,
candidate 2-itemsets are generated using only the frequent 1-itemsets because
the Apriori principle ensures that all supersets of the infrequent 1l-iterusets
must be infrequent. Because there are only four frequent 1-itemsets, the num-
ber of candidate 2-itemsets generated by the algorithm is (;) = 6. Two
of these six candidates, {Beer, Bread} and {Beer, Milk}, are subsequently
found to be infrequent after computing their support values. The remain-
ing four candidates are frequent, and thus will be used to generate candidate
3-itemsets. Without support-based pruning, there are (g) = 20 candidate
3-itemsets that can be formed usiug the six items given in this example. With
the Apriori principle, we only need to keep candidate 3-itemsets whose subsets
are frequent. The only candidate that has this property is {Bread, Diapers,
Milk}.

The effectiveness of the Apriori pruning strategy can he shown by count-
ing the number of candidate itemsets generated. A brute-force strategy of

6.2 Frequent Itemset Generation 337

enumerating all itemsets (up to size 3) as candidates will produce

6 6 6
= 5420 =
(1)4—(2)4-(3) 6+154+20=41

candidates. With the Apriort principle, this numnber decreases to

(‘D+(;)+1=6+6+1=13

candidates, which represents a 68% reduction in the number of candidate
itemsets even in this simple example.

The pseudocode for the frequent itemset generation part of the Apriori
algorithm is shown in Algorithm 6.1. Let Cj denote the set of candidate
k-itemsets and F) denote the set of frequent k-itemsets:

e The algorithm initially makes a single pass over the data set to determine
the support of each item. Upon completion of this step, the set of all
frequent 1-itemsets, Fj, will be known (steps 1 and 2).

e Next, the algorithin will iteratively generate new candidate k-itemsets
using the frequent (k — 1)-itemsets found in the previous iteration (step
5). Candidate generation is implemented using a function called apriori-
gen, which is described in Section 6.2.3.

Algorithm 6.1 Frequent itemset generation of the Apriori algorithm.

k=1
2 Fp,={i|ielAo{{i}) > N xminsup}. {Find all frequent l-iternsets}
repeat
k=k+1.

Cr = apriori-gen(Fk_1). {Generate candidate itemsets}
for each transaction t € T do

Ci = subset(Cy, £). {Identify all candidates that belong to t}

for each candidate itewmset £ € C; do

o(e) = o(e)+1. {Increment support count}

10: end for
11: end for
122 Fr={c¢|ce CiAo(c) 2 N xminsup}. {Extract the frequent k-itemsets}
13: until Fr. =0
14: Result = |J Fy.

Lo Bdos W

338 Chapter 6 Association Analysis

o To count the support of the candidates, the algorithm needs to make an
additional pass over the data set (steps 6-10). The suhset function is
used to determine all the candidate itemsets in C that are contained in
each transaction ¢. The implementation of this function is described in
Section 6.2.4.

s After counting their supports, the algorithm eliminates all candidate
itemsets whose support counts are less than minsup (step 12).

The algorithm terminates when there are no new frequent itemsets gen-
erated, i.e., F = (step 13).

The frequent itemset generation part of the Apriori algorithm has two im-
portant characteristics, First, it is a level-wise algorithm; i.e., it traverses the
itemset lattice one level at a time, from frequent 1-itemsets to the maximum
size of frequent itemsets. Second, it employs a generate-and-test strategy
for finding frequent itemsets. At each iteration, new candidate itemsets are
generated from the frequent itemsets found in the previous iteration. The
support for each candidate is then counted and tested against the minsup
threshold. The total number of iterations needed by the algorithm is k. +1,
where kpac 1s the maximum size of the frequent itemsets.

6.2.3 Candidate Generation and Pruning

The apriori-gen function shown in Step 5 of Algorithm 6.1 geuerates caudidate
itemsets by performing the following two operations:

1. Candidate Generation. This operation generates new candidate A~
itemsets hased on the freqnent (k — 1)-itemsets found in the previous
iteration.

2. Candidate Pruning. This operation eliminates some of the candidate
k-itemsets nsing the snpport-hased pruming strategy.

To illustrate the candidate prumng operation, consider a candidate k-itemset,
X = {d1,ig,....ix}. The algorithm must determine whether all of its proper
subsets, X — {i;} (¥j = 1,2,...,k), are frequent. If one of them is infre-
quent, then X is immediately pruned. This approach can effectively reduce
the number of candidate itemsets considered during support counting. The
complexity of this operation is O(k) for each candidate k-itemset. However,
as will be showu later, we do not have to examine all k subsets of a given
candidate iternset. If m of the k subsets were used to generate a candidate,
we only need to check the remaining k — m subsets during candidate pruning.

6.2 Frequent [temset Generation 339

In principle, there are many ways to generate candidate itemsets. The fol-
lowing is a list of requirements for an effective candidate generation procedure:

1. It should avoid generating too many unnecessary candidates. A candi-
date itemset is unnecessary if at least one of its subsets is infrequent.
Such a candidate is guaranteed to be infrequent according to the anti-
monoctone property of support.

2. It must ensure that the candidate set is complete, i.e., no frequent item-
sets are left out by the candidate generation procedure, To ensure com-
pleteness, the set of candidate itemsets must suhsume the set of all fre-
quent itemsets, i.e., ¥k : Fi. C C.

3. It should uot generate the same candidate itemset more than ouce. For
example, the candidate itemset {a,b,c.d} can be generated in many
ways—by merging {a,b.c} with {d}, {b. d} with {a,c}, {c} with {a,b.d},
etc. Generation of duplicate candidates leads to wasted computations
and thus should be avoided for efficiency reasons.

Next, we will briefly descrihe several candidate generation procedures, in-
cluding the one used by the apricri-gen function.

Brute-Force Method The brute-force method considers every k-itemset as
a potential candidate and then applies the candidate pruning step to remove
any unnecessary candidates (see Figure 6.6). The number of candidate item-
sets generated at level k is equal to (i }, where d is the total number of items.
Although candidate generation is rather trivial, candidate prunimg hecomes
extremely expensive hecause a large number of itemsets must be examined.
Given that the amount of computations needed for each candidate is O(k),
the overall complexity of this method is O Ezzl kox (,‘i)) =0(d-29°1).

F._; x F; Method An alternative method for candidate generation is to
extend each frequent (k — 1)-itemset with other frequent items. Figure 6.7
illustrates how a frequent 2-itemset such as {Beer, Diapers} can be aug-
mented with a frequent item such as Bread to produce a candidate 3-itemset
{Beer, Diapers, Bread}. This method will produce O(|Fy_,| x |F1|) candi-
date k-itemsets, where |F}| is the number of frequent j-itemsets. The overall
complexity of this step is O(37, k|Fx_1 ||F1)-

The procedure is complete because every frequent k-itemset is composed
of a frequent (k — 1)-itemset and a frequent 1-itemset. Therefore, all frequent
k-itemsets are part of the candidate k-itemsets generated by this procedure.

340 Chapter 6 Association Analysis

Candidate Genaration

Hemset

[Beer, Bread, Cola}
Beer, Bread, Diapers}
[Beer, Bread, Milk)
[{Boer, Breac. Eggs} |

[Beer. Cola, Diapars}
[Beer, Cola, Milk} Candidate
Beer, Cola, Eqgs} Pruning

Bread
— [Beer, Dlapers, Milk} — [emset |
Cola {Beer, Dlapers, Eqgs} Jemset

Nems

Item
Beer

Diapers W {Bread, Diapers, Milk}
Milk Bread, Cola, Dlapers}
|Eggs | Eread, Cola, Milk}

Braad, Cola, Egas}
[Broad, Diapars, Milk}
Bread, Diapars, EQgs}
(Bread MIk Eggs} |
[Cola, Diapers, Milk}
(Cola, Diapers. Eggs}
ok Vik.Eggs |
(Dlapers, Milk, Eggs}

Figure 6.6. A brute-force method for generating candidate 3-itemsets.

Frequent
2-Hemsat
ltemset
[(Beer, Diapers] |
Bread, Diapars]

{Bread, Milk}

{Diapers, Milk} Candidate
Candidate Genaration Pruning

[itomeat | —
[{Boer, Diapers, Bread | [femset |
Frequent (Boer, Diapers, Mik] |~ {Bread, Diapars, Milk}
eemael | (Bread, Diapers, Mk} |
em {Bread, Milk, Beer}

Baer
Broad
Diapers
MIK

Figure 6.7. Generaling and pruning candidate k-itemsets by merging a frequent (A — 1)-itemset with a
frequent item. Note that some of the candidates are unnecessary because their subsets are infrequent.

This approach, however, does not prevent the same candidate itemset from
being generated more than once. For instance, {Bread, Diapers, Milk} can
be generated by merging {Bread, Diapers} with {Milk}, {Bread, Milk} with
{Diapers}, or {Diapers, Milk} with {Bread}. One way to avoid generating

6.2 Frequent [temset Generation 341

duplicate candidates is by ensuring that the items in each frequent itemset are
kept sorted in their lexicographic order. Each frequent (k—1)-itemset X is then
extended with frequent items that are lexicographically larger than the items in
X. For example, the itemset {Bread, Diapers} can be augmented with {Milk}
since Milk is lexicographically larger than Bread and Diapers. However, we
should not augment {Diapers, Milk} with {Bread} nor {Bread, Milk} with
{Diapers} because they violate the lexicographic ordering condition.

While this procedure is a substantial improvement over the brute-force
method, it can still produce a large number of unnecessary candidates. For
example, the candidate itemset obtained by merging {Beer. Diapers} with
{Milk} is unnecessary because one of its subsets, {Beer, Milk}, is infrequent.
There are several heuristics available to reduce the number of unnecessary
candidates. For example, note that, for every candidate k-itemset that survives
the pruning step, every item in the candidate must he contained in at least
k — L of the frequent (k — 1)-itemsets. Otherwise, the candidate is guaranteed
to he infrequent. For example, {Beer, Diapers, Milk} is a viable candidate
3-itemset only if every item in the candidate, including Beer, is contained in
at least two frequent 2-itemsets. Since there is only one frequent 2-itemset
contaiming Beer, all candidate itemsets involving Beer must be infrequent.

Fir_y xFi_; Method The candidate generation procedure in the apriori-gen
function merges a pair of frequent {k — 1)-itemsets only if their first k —2 items
are identical. Let A = {e1.az,....ak-1} and B = {b1,ba,...,bx_1} be a pair
of frequent (k — 1)-itemsets. A and B are merged if they satisfy the following
conditions:

a;=b; (fori=1,2,...,k—2) and ap_1 # bp_1.

In Figure 6.8, the frequent itemsets {Bread, Diapers} and {Bread, Milk} are
merged to form a candidate 3-itemset {Bread, Diapers, Milk}. The algorithm
does not have to merge {Beer, Diapers} with {Diapers, Milk} because the
first item in both itemsets is different. Indeed, if {Beer, Diapers, Milk} is a
viable candidate, it would have been obtained by merging {Beer, Diapers}
with {Beer, Milk} instead. This example illustrates both the completeness of
the candidate generation procedure and the advantages of using lexicographic
ordering to prevent duplicate candidates. However, because each candidate is
obtained by merging a pair of frequent (k—1)-itemsets, an additional candidate
pruning step is needed to ensure that the remaiming & — 2 subsets of the
candidate are frequent.

342 Chapter 6 Association Analysis

Frequent

2-itemset

Iltemset
{Beer, Diapers}
{Bread, DEE’E
{Bread, Milk}
[{Diapers, Milk} | Candidate Candidate
Generation Pruning

Itamsat hamset
Frequent (Bread, Diapers, Milk} {Bread, Diapers, Milk}

2-itemset
Itemset
{Beer, Diapers}

{Bread, DiaErs
{Bread, Milk}

{Diapers, Milk}

Figure 6.8. Generating and pruning candidate k-itemsets by merging pairs of frequent (k—1)-itemsets.

6.2.4 Support Counting

Support counting is the process of determining the frequency of occurrence
for every candidate itemset that survives the candidate pruning step of the
apriori-gen function. Support counting is implemented in steps 6 through 11
of Algorithm 6.1. One approach for doing this is to compare each transaction
against every candidate itemset (see Figure 6.2) and to update the support
counts of candidates contained in the transaction. This approach is computa-
tionally expensive, especially when the numbers of transactions and candidate
itemsets are large.

An alternative approach is to enumerate the itemsets contained in each
transaction and use them to update the support counts of their respective can-
didate itemsets. To illustrate, consider a transaction ¢ that contains five items,
{1,2,3,5,6}. There are (2) = 10 itemsets of size 3 contained in this transac-
tion. Some of the itemsets may correspond to the candidate 3-itemsets under
investigation, in which case, their support connts are incremented. Other
subsets of ¢ that do not correspond to any candidates can be ignored.

Figure 6.9 shows a systematic way for enumerating the 3-itemsets contained
in t. Assuming that each itemset keeps its items in increasing lexicographic
order, an itemset can be enumerated by specifying the smallest item first,
followed by the larger items. For instance, given ¢ = {1,2,3,5,6}, all the 3-
itemsets contained in ¢ must begin with item 1, 2, or 3. It is not possihle to
construct a 3-itemnset that begins with items 5 or 6 hecause there are only two

6.2 Frequent Itemset Generation 343

Transaction, t

12366

Level 1 -
1 2(356 356
Tevelz _ T T
v
12[356] 13[56] 15[c] 2356 256 3ss:|
y v v v
123
135 235
125 1586 258 356
156 136 236
Level 3 Subsets of 3 items

Figure 6.9. Enumerating subsets of three items from a transaction ¢.

items in ¢ whose labels are greater than or equal to 5. The number of ways to
specify the first item of a 3-itemset contained in ¢ is illnstrated by the Level
1 prefix structures depicted in Figure 6.9. For instance, 1 represents
a 3-itemset that begins with item 1, followed by two more items chosen from
the set {2,3, 5, 6}.

After fixing the first item, the prefix structures at Level 2 represent the
number of ways to select the second item. For example, 12 corresponds
to itemsets that begin with prefix (1 2) and are followed by items 3, 5, or 6.
Finally, the prefix structures at Level 3 represent the complete set of 3-itemsets
contained in ¢. For example, the 3-itemisets that begin with prefix {1 2} are
{1,2,3}, {1,2,5}, and {1,2,6}, while those that begin with prefix {2 3} are
{2,3.5} and {2,3.6}.

The prefix structures shown in Figure 6.9 demonstrate how itemsets con-
tained in a transaction can be systematically enumerated, i.e., by specifying
their items one by one, from the leftmost item to the rightmost item. We
still have to determine whether each enumerated 3-iteinset corresponds to an
existing candidate itemset. If it matches one of the candidates, then the sup-
port count of the corresponding candidate is incremented. In the next section,
we illustrate how this matching operation can be performed efficiently using a
hash tree structure.

344 Chapter 6 Association Analysis

HashTree
P s "/,\ Ty
- g
Leaf nodes P S
containing | {Beer, Bread} =
candidate | {Beer, Diapers} {Bread, D'aP‘“S} {Diapers, Milk}
2itemsets | (Beer, Milkj || (Bread. Mil)
Transactions
TID |ltems
1 Bread, Milk
2 Bread, Diapers, Beer, Eggs
8 Milk, Diapers, Beer, Cola
4 Bread, Milk, Diapers, Beer
5 Bread, Milk, Diapers, Cola

Figure 6.10. Counting the support of itemsets using hash structure.

Support Counting Using a Hash Tree

In the Apriori algorithm, candidate itemsets are partitioned into different
buckets and stored in a hash tree. During support counting, itemsets contained
in each transaction are also hashed into their appropriate buckets. That way,
instead of comparing each itemset in the transaction with every candidate
itemset, it is matched only against candidate itemsets that belong to the same
bucket, as shown in Figure 6.10.

Figure 6.11 shows an example of a hash tree structure. Each internal node
of the tree uses the following hash function, A{p) = p meod 3, to determine
which branch of the current node should be followed next. For example, items
1, 4, and 7 are hashed to the same branch (i.e., the leftmost branch) because
they have the same remainder after dividing the number by 3. All candidate
itemsets are stored at the leaf nodes of the hash tree. The hash tree shown in
Figure 6.11 contains 15 candidate 3-itemsets, distributed across 9 leaf nodes.

Consider a transaction, ¢t = {1,2,3,5,6}. To update the support counts
of the candidate itemsets, the hash tree must be traversed in such a way
that all the leaf nodes containing candidate 3-itemsets belonging to ¢ must be
visited at least once. Recall that the 3-itemsets contained in ¢ must begin with
items 1, 2, or 3, as indicated by the Level 1 prefix structures shown in Figure
6.9. Therefore, at the root node of the hash tree, the items 1, 2, and 3 of the
transaction are hashed separately. Item 1 is hashed to the left child of the root
node, item 2 is hashed to the middle child, and item 3 is hashed to the right
child. At the next level of the tree, the transaction is hashed on the second

6.2 Frequent Itemset Generation 345

Hash Fundion

147 389
258

Figure 6.11. Hashing a transaction at the root node of a hash tree,

item listed in the Level 2 structures shown in Fignre 6.9. For example, after
hashing on item 1 at the root node, items 2, 3, and 5 of the transaction are
hashed. Items 2 and 5 are hashed to the middle child, while item 3 is hashed
to the right child, as shown in Figure 6.12. This process continues until the
leaf nodes of the hash tree are reached. The candidate itemsets stored at the
visited leaf nodes are compared against the transaction. If a candidate is a
snbset of the transaction, its snpport count is incremented. In this example, 5
out of the 9 leaf nodes are visited and 9 out of the 15 itemsets are compared
against the transaction.

6.2.5 Computational Complexity
The computational complexity of the Apriori algorithm can be affected by the

following factors.

Support Threshold Lowering the support threshold often results in more
itemsets being declared as frequent. This has an adverse effect on the com-

346 Chapter 6 Association Analysis

Transaction S 2+
#

Figure 6.12. Subset operation on the leftmost subtree of the root of a candidete hash tree.

putational complexity of the algorithm hecause more candidate itemsets must
be generated and counted, as shown in Figure 6.13. The maximum size of
frequent itemsets also tends to increase with lower support thresholds. As the
maximum size of the frequent itemsets increases, the algorithm will need to
make more passes over the data. set.

Number of Items (Dimensionality) As the nnmber of items increases,
more space will be needed to store the support counts of items. If the number of
frequent items also grows with tbe dimensionality of the data, the computation
and I/O costs will increase because of the larger number of candidate itemsets
generated by the algorithm.

Number of Transactions Since the Aprior: algorithm makes repeated
passes over the data set, its run time increases with a larger number of trans-
actions.

Average Transaction Width For dense data sets, the average transaction
width can he very large. This affects the complexity of the Apréori algorithm in
two ways. First, the maximum size of frequent itemsets tends to increase as the

6.2 Frequent Itemset Generation 347

©
sk @«

g
@

n

Number of Candiciate Kemsals
n

05k

i % WO

10
Size of llemsel

(a) Number of candidate itemsets.

5
PRl ; ;

Number of Froguent kem sels.

55 el e, B SRS
o 5 10 15 2
Size of lemset

{b) Number of frequent itemsets.
Figure 6.13. Effect of support threshold on the number of candidate and frequent itemsets.
average transaction width increases. As a result, more candidate itemsets must

be examined during candidate generation and support counting, as illustrated
in Figure 6.14. Second, as the transaction width increases, more itemsets

348 Chapter 6 Association Analysis

x108

Number of Candidalo hemsats
)

]

9
a8
i i
g
2 v e
i I G i
H -)
g5k ! %
£ fo
® 4- il A T
3 \
A v X
4 ! :)
/ ‘¥
2r ¥ 3
/ b 1
(I R,
oledd it e
0 s 1 15 20 25
Size of kemset.

(b} Number of Frequent Itemsets.

Figure 6.14. Effect of average transaction width on the number of candidate and frequent itemsets.

are contained m the transaction. This will increase the number of hash tree
traversals performed during support counting.

A detailed analysis of the time complexity for the Apriori algorithm is
presented next.

6.3 Rule Generation 349

Generation of frequent 1-itemsets For each transaction, we need to up-
date the support count for every item present in the transaction. Assuming
that w is the average transaction width, this operation requires O(Nw) time,
where N is the total number of transactions.

Candidate generation To generate candidate k-itemsets, pairs of frequent
(k — 1)-itemsets are merged to determine whether they have at least k£ — 2
items in common. Each merging operation requires at most A — 2 equality
comparisons. In the best-case scenario, every merging step produces a viable
candidate k-itemset. In the worst-case scenario, the algorithm must merge ev-
ery pair of frequent (k —1)-itemsets found m the previous iteration. Therefore,
the overall cost of merging frequent itemsets is

Stk —2)[Cil < Cost of merging < Y _(k —2)[Fe_s [°.
h=2 k=2

A hash tree is also constructed during candidate generation to store the can-
didate itemiets. Because the maximum depth of the tree is k, the cost for
populating the hash tree with candidate itemsets is O(3"}, k|Ck|). During
candidate pruning, we need to verify that the & — 2 subsets of every candidate
k-itemset are frequent. Since the cost for looking up a candidate in a hash
tree is O(k), the candidate pruming step requires O(373, k(k — 2)|Cy|) time.

Support counting FEach transaction of length |¢| produces (lil) itemsets of
size k. This is also the effective number of hash tree traversals performed for
each transaction. The cost for support counting is O(N 3", (%)ax). where w
is the maximum transaction width and ey is the cost for updating the support
count of a candidate A-itemset in the hash tree.

6.3 Rule Generation

This section describes how to extract association rules efficiently from a given
frequent itemset. Each frequent k-itemset, Y, can produce up to 28 —2 associa-
tion rules, ignoring rules that have empty antecedents or consequents () — Y
or Y — (). An association rule can be extracted by partitioning the itemset
Y into two non-empty subsets, X and ¥ — X, such that X — ¥ — X satisfies
the confidence thresheld. Note that all such rules must have already met the
support threshold because they are generated from a frequent itemset.

350 Chapter 6 Association Analysis

Example 6.2. Let X ={1,2,3} be a frequent itemset. There are six candi-
date association rules that can be generated from X: {1,2} — {3}, {1,3} —
{2}, {2,3} — {1}, {1} — {2,3}, {2} — {L,3}, and {3} — {1,2}. As
each of their support is identical to the support for X, the rules must satisfy
the support threshold.]

Computing the confidence of an association rule does not require additional
scans of the transaction data set. Consider the rule {1,2} — {3}, which is
generated from the frequent itemset X = {1, 2,3}. The confidence for this rule
is 0({1,2,3})/o({1,2}). Because {1, 2,3} is frequent, the anti-monotone prop-
erty of support ensures that {1,2} must be frequent, too. Since the support
counts for both itemsets were already found during frequent itemset genera-
tion, there is no need to read the entire data set again.

6.3.1 Confidence-Based Pruning

Unlike the support measure, confidence does not have any monotone property.
For example, the confidence for X — Y can he larger, smaller, or equal to the
confidence for another rule X — f/, where X C X and Yy C Y (see Exercise
3 on page 405). Nevertheless, if we compare rules generated from the same
frequent itemset Y, the following theorem holds for the confidence measure.

Theorem 6.2. If a rule X — Y — X does not satisfy the confidence threshold,
then any rule X! — Y — X', where X' is a subset of X, must not satisfy the
confidence threshold as well.

To prove this theorem, consider the following two rules: X' — Y — X' and
X — Y —X, where X’ C X. The confidence of the rules are o(Y)/o(X’) and
o(Y)/o(X), respectively. Since X’ is a subset of X, o(X’) > o(X). Therefore,
the former rule cannot have a higher confidence than the latter rule.

6.3.2 Rule Generation in Aprior: Algorithm

The Apriori algorithm uses a level-wise approach for generating association
rules, where each level corresponds to the number of items that belong to the
rule consequent. lnitially, all the high-confidence rules that have only one item
in the rule conseqnent are extracted. These rules are then used to generate
new candidate rules. For example, if {acd} — {b} and {abd} — {c} are
high-confidence rules, then the candidate rule {ad} — {bc} is generated by
merging the consequents of both rules. Figure 6.15 shows a lattice structure
for the association rules generated from the frequent itemset {a, b, c,d}. If any
node in the lattice has low confidence, then according to Theorem 6.2, the

6.3 Rule Generation 351

Low-Confidence
Rule

Figure 6.15. Pruning of association rules using the confidence measure.

entire subgraph spanned by the node can be pruned immediately. Suppose
the confidence for {bed} — {a} is low. All the rules containing item a in
its consequent, including {ed} — {ab}, {bd} — {ac}, {bc} — {ad}, and
{d} — {abc} can be discarded.

A pseudocode for the rule generation step is shown in Algorithms 6.2 and
6.3. Note the similarity between the ap-genrules procedure given in Algo-
rithm 6.3 and the frequent itemset generation procedure given in Algorithin
6.1. The only difference is that, in rule generation, we do not have to make
additional passes over the data set to compnte the confidence of the candidate
rules. Instead, we determine the confidence of each rule by using the support
counts computed during freqnent itemset generation.

Algorithm 6.2 Rule generation of the Apriori algorithm.
1: for each frequent k-itemset f, k > 2 do

22 Hy={i|ie [x} {1-item consequents of the rule.}
3: call ap-genrules(fi, H;.)
4: end for

352 Chapter 6 Association Analysis

Algorithm 6.3 Procedure ap-genrules(fi, Hn).

1. k=|fi] {size of frequent itemset.}
2 m =|Hn| {size of rule consequent.}
3 if k> m+ 1 then

4 Hp,yq = apriori-gen{H,,).

5 for each hy, 1 € Hpyq do

6 conf =o(fi)/o(fi — hmsa).
7
8

if conf > mineonf then
output the rule (fx —Am+1) — Amy1

o else

10: delete by from Hp,yg.
11: end if

12: end for

13: call ap-genrules(fx, Hm+1.)
14: end if

6.3.3 An Example: Congressional Voting Records

This section demonstrates the results of applying association analysis to the
voting records of members of the United States House of Representatives. The
data is obtained from the 1984 Congressional Voting Records Database, which
is available at the UCI machine learming data repository. Each transaction
contains information about the party affiiation for a representative along with
bis or her voting record on 16 key issues. There are 435 transactions and 34
items in the data set. The set of items are listed in Table 6.3.

The Aprior: algorithm is then applied to the data set with minsup = 30%
and minconf = 90%. Some of the high-confidence rules extracted by the
algorithm are shown in Table 6.4. The first two rules suggest that most of the
members who voted yes for aid to El Salvador and no for budget resolution and
MX missile are Republicans; while those who voted no for aid to El Salvador
and yes for budget resolution and MX missile are Democrats. These high-
confidence rules show the key issues that divide members from both political
parties, If minconf is reduced, we may find rules that contain issues that cut
across the party lines. For example, with minconf = 40%, the rules suggest
that corporation cutbacks is an issue that receives almost equal number of
votes from both parties—52.3% of the members who voted no are Republicans,
while the remaining 47.7% of them who voted no are Democrats.

6.4 Compact Representation of Frequent Itemsets 353

Table 6.3, List of binary attributes from the 1984 United States Congressional Yoting Records. Source:
The UCI machine learning repository.

1. Republican 18. aid to Nicaragua = no

2. Democrat 19. MX-missile = yes

3. handicapped-infants = yes 20. MX-missile = no

4. handicapped-infants = no 21. immigration = yes

5. water project cost sharing = yes 22. immigration = no

6. water project cost sharing = no 23. synfuel corporation cutback = yes
T
8
9

. budget-resolution = yes 24. synfuel corporation cutback = no
. budget-resolution = no 25. education spending = yes
. physician fee freeze = yes 26. education spending = no

10. physician fee freeze = no 27. right-to-sue = yes

11. aid to El Salvador = yes 28. right-to-sue = no

12. aid to El Salvador = no 29. crime = yes

13. religious groups in schools = yes 30. crime = no
14. religious groups in schools =no 31. duty-free-exports = yes

15. anti-satellite test ban = yes 32. duty-free-exports = no
16. anti-satellite test ban = no 33. export administratiou act = yes
17. aid to Nicaragna = yes 34. export administration aet = no

Table 6.4. Association rules extracted from the 1984 United States Congrassional Voting Records.

Associatiou Rule Confidence

{budget resclution = no, MX-missile=no, aid to El Salvador = yes } 91.0%
— {Republican}

{budget resolution = yes, MX-missile=yes, aid to El Salvador = no } 97.5%
— {Democrat}

{erime = yes, right-to-sue = yes, physician fee freeze = yes} 93.5%
— {Republican}
{erime = no, right-to-sue = no, physician fee freeze = no} 100%

— {Democrat}

6.4 Compact Representation of Frequent Itemsets

In practice, the numher of frequent itemsets produced from a transaction data
set can be very large. It is useful to identify a small representative set of
itemsets from which all other frequent itemsets can be derived. Two such
representations are presented in this section in the form of maximal aud closed
frequent itemsets.

354 Chapter 6 Association Analysis

Maximal Frequert

Frequent
\ . ltemset

Infrequert Border

Figure 6.16. Maximal frequent itemsat.

6.4.1 Maximal Frequent Itemsets

Definition 6.3 (Maximal Frequent Itemset). A maximal frequent item-
set is defined as a freqnent itemset for which none of its immediate snpersets
are frequent.

To illustrate this concept, consider the itemset lattice shown in Figure
6.16. The itemsets in the lattice are divided into two groups: those that are
frequent and those that are infrequent. A frequent itemset border, which is
represented by a dashed line, is also illustrated in the diagram. Every itemset
located above the border is frequent, while those located below the border (the
shaded nodes) are infrequent. Among the itemsets residing near the border,
{a,d}, {a,c ¢}, and {b,c,d, e} are considered to be maximal freqnent itemsets
because their inmmediate supersets are infrequent. An itemset such as {a,d}
is maximal frequent because all of its immediate supersets, {a,b,d}, {a,¢,d},
and {a,d. €}, are infrequent. In contrast, {a,c} is non-maximal because one
of its immediate supersets, {a,c, e}, is frequent.

Maximal frequent itemsets effectively provide a compact representation of
frequent itemsets. In other words, they form the smallest set of itemsets from

6.4 Compact Representation of Frequent Itemsets 355

which all frequent itemsets can be derived. For example, the frequent itemsets
shown in Figure 6.16 can be divided into two groups:

o Frequent itemsets that begin with item a and that may contain items ¢,
d, or e. This group includes itemsets such as {a}, {a,c}, {a,d}, {a,€},
and {a,c,e}.

e Frequent itemsets that begin with items b, ¢, d, or e. This group includes
itemsets such as {b}, {b,c}, {c, d},{b,c,d, €}, etc.

Frequent itemsets that belong in the first group are subsets of either {a, ¢, e}
or {a,d}, while those that belong in the second group are subsets of {3, c, d, €}.
Hence, the maximal frequent itemsets {a,c, e}, {a,d}, and {b,c d, e} provide
a compact representation of the frequent itemsets shown in Figure 6.16.

Maximal frequent itemsets provide a valuable representation for data sets
that can produce very long, frequent itemsets, as there are exponentially many
frequent itemsets in such data. Nevertheless, this approach is practical only
if an efficient algorithm exists to explicitly find the maximal frequent itemsets
without having to enumerate all their snbsets. We briefly describe one such
approach in Section 6.5.

Despite providing a compact representation, maximal freqnent itemsets do
not contain the support information of their subsets. For example, the support
of the maximal frequent itemsets {a, c,e}, {a,d}, and {b,c,d,e} do not provide
any hint about the support of their subsets. An additional pass over the data
set is therefore needed to determine the support counts of the non-maximal
frequent itemsets. In some cases, it might be desirable to have a minimal
representation of freqnent itemsets that preserves the support information.
We illustrate such a representation in the next section.

6.4.2 Closed Frequent Itemsets

Closed itemsets provide a minimal representation of itemsets without losing
their snpport information. A formal definition of a closed itemset is presented
below.

Definition 6.4 (Closed Itemset). An itemset X is closed if none of its
immediate supersets has exactly the same snpport count as X.

Put another way, X is not closed if at least one of its immediate supersets
has the same snpport count as X. Examples of closed itemsets are shown in
Figure 6.17. To better illustrate the support count of each itemset, we have
associated each node (itemset) in the lattice with a list of its corresponding

356 Chapter 6 Association Analysis

TID | hems
1 ki minsup = 40%
2
3
4
5

O Closed Frequent fterset

Figure 6.17. An example of the closed frequent itemsets (with minimum support count equal to 40%).

transaction IDs. For example, since the node {b,c} is associated with transae-
tion IDs 1, 2, and 3, its support count is equal to three. From the transactions
given in this diagram, notice that every transaction that contains b also con-
tains ¢. Consequently, the support for {b} is identical to {b, ¢} and {b} should
not be considered a closed itemset. Simmlarly, since ¢ occurs in every transac-
tion that contains both a and d, the itemset {a,d} is not closed. On the other
hand, {b,e} is a closed itemset because it does not have the same support
count as any of its supersets.

Definition 6.5 (Closed Frequent Itemset). An itemset is a closed fre-
quent iternset if it is closed and its support is greater than or equal to minsup.

In the previous example, assuming that the support threshold is 40%, {b,c}
is a closed frequent itemset because its support is 60%. The rest of the closed
frequent itemsets are indicated by the shaded nodes.

Algorithms are available to explicitly extract closed frequent itemsets from
a given data set. Interested readers may refer to the bibliographic notes at the
end of this chapter for further discussions of these algorithms. We can use the
clased frequent itemsets to determine the support counts for the non-closed

6.4 Compact Representation of Frequent Itemsets 357

Algorithm 6.4 Support counting using closed frequent itemsets.

1: Let C denote the set of closed frequent itemsets

2: Let kpa, denote the maximum size of closed frequent itemsets

3 Fyoo. ={fIf €C, |f| =knax} {Find all frequent itemsets of size kpax.}

4: for k = kmax — 1 downto 1 do

5: Fp={f|f C Fit1, |fI=Fk} {Find all frequent itemsets of size k.}

6 for each f € Fi. do
b if f ¢ C then
8
9

f.support = max{f’.support|f’ € Frt1, f C f'}
end if
10: end for
11: end for

frequent itemsets. For example, consider the frequent itemset {a,d} shown
in Figure 6.17. Because the itemset is not closed, its support count must be
identical to one of its immediate supersets. The key is to determine which
superset (among {e,b,d}, {a,¢,d}, or {a,d,e}) has exactly the same support
count as {a,d}. The Aprior: principle states that any transaction that contains
the superset of {a,d} must also contain {a,d}. However, any transaction that
contains {a,d} does not have to contain the supersets of {a,d}. For this
reason, the support for {a,d} must be equal to the largest support among its
supersets. Since {a, c,d} has a larger support than both {a,b, d} and {a,d,€},
the support for {a,d} must be identical to the support for {a, ¢,d}. Using this
methodology, an algorithm can be developed to compute the support for the
non-closed frequent itemsets. The pseudocode for this algorithm is shown in
Algorithm 6.4. The algorithin proceeds in a specific-to-general fashion, i.e.,
from the largest to the smallest frequent itemsets. This is because, in order
to find the support for a non-closed fregnent itemset, the support for all of its
supersets must be known.

To illustrate the advantage of using closed frequent itemsets, consider the
data set shown in Table 6.5, which contains ten transactions and fifteen items.
The items can be divided into three groups: (1) Group A, which contains
items a; through as; (2) Group B, which contains items b; through bs; and
(3) Gronp C, which contains items ¢; through cs. Note that items within each
group are perfectly associated with each other and they do not appear with
items from another group. Assuming the support threshold is 20%, the total
number of frequent itemsets is 3 x (25 — 1) = 93. However, there are only three
closed frequent itemsets in the data: {{e1, a2, a3, a4, as}, {b1, b2, b3, by, b5}, and
{c1,c2,¢3,c4,¢5}). It is often sufficient to present only the closed frequent
itemsets to the analysts instead of the entire set of frequent itemsets.

358 Chapter 6 Association Analysis

Table 6.5. A transaction data set for mining closed itemsets.

TID |a) |ao |az | ag | as | by | ba [ba | by | bs | €1 | e | €3 [g | s
1 1 1 1 1 1 07070 o(o0] o0 00|00
2 i1 |t|{1|(1|1|O0|O0fO]jJOfO|O]|O]|]O]|O]|O
3 1 1 1 1 1 0 |0 | 6|le|la|@|Q |0 |0 |0
4 0 0 0 0 0 q 4 1| % 1 1|0 o000
5 0 0 0 0 0 1 1 1 1 I c|lo|o|l0
6 0 0 0 0 0 1 i s ! 1 1|{0|0|0]|O0O]|O
T o|jojofojojo|OofOojOofOo|1|1]|1]|1|1
8 0 0 1] 0 0 oj(o0ojo|jo0o(0]|1 1 1 1 1
9 o|jofjofojojo|OofOojOofOo|1T|L]|]1]1|1
10 O I I A o O 0 O O I

Frequent
ltemsets

Figure 6.18. Relationships among frequent, maximal frequent, and closed frequent itemsets.

Closed frequent itemsets are useful for removing some of the redundant
association rules. An association rule X — Y is rednndant if there exists
another rule X’ — ¥’ where X is a subset of X’/ and Y is a subset of ¥”, such
that the support and confidence for both rules are identical. In the example
shown in Figure 6.17, {b} is not a closed frequent itemset while {5, c} is closed.
The association rule {} — {d, e} is therefore redundant because it has the
same support and confidence as {b,c} — {d,e}. Such redundant rules are
not generated if closed frequent itemsets are used for rule generation.

Finally, note that all maximal frequent itemsets are closed because none
of the maximal frequent itemsets can have the same support count as their
immediate supersets. The relationships among frequent, maximal frequent,
and closed frequent itemsets are shown in Figure 6.18.

6.5 Alternative Methods for Generating Frequent Itemsets 359

6.5 Alternative Methods for Generating Frequent
Itemsets

Apriori is one of the earliest algorithms to have successfully addressed the
combinatorial explosion of frequent itemset generation. It achieves this by ap-
plying the Aprieri principle to prune the exponential search space. Despite its
significant performance improvement, the algorithm still incurs considerable
I/0 overhead since it requires making several passes over the transaction data
set. In addition, as noted in Section 6.2.5, the performance of the Apriori
algorithm may degrade significantly for dense data sets because of the increas-
ing width of transactions. Several alternative methods have been developed
to overcome these limitations and improve upon the efficiency of the Aprior:
algorithm. The following is a high-level description of these methods.

Traversal of Itemset Lattice A search for frequent itemsets can be con-
ceptually viewed as a traversal on the itemset lattice shown in Figure 6.1.
The search strategy employed by an algorithm dictates how the lattice struc-
ture is traversed during the frequent itemset generation process. Some search
strategies are better than others, depending on the configuration of frequent
itemsets in the lattice. An overview of these strategies is presented next.

s General-to-Specific versus Specific-to-General: The Apriori al-
gorithm uses a general-to-specific search strategy, where pairs of frequent
(k—1)-itemsets are merged to obtain candidate k-itemsets. This general-
to-specific search strategy is effective, provided the maximum length of
a frequent itemset is not too long. The configuration of frequent item-
sets that works best with this strategy is shown in Figure 6.19(a), where
the darker nodes represent infrequent itemsets. Alternatively, a specific-
to-general search strategy looks for more specific frequent itemsets first,
before finding the more general frequent itemsets. This strategy is use-
ful to discover maximal frequent itemsets in dense transactions, where
the frequent itemset border is located near the bottom of the lattice,
as shown in Figore 6.19(b). The Apriori principle can be applied to
prune all subsets of maximal frequent itemsets. Specifically, if a candi-
date k-itemset is maximal frequent, we do not have to examine any of its
subsets of size kK — 1. However, if the candidate A-itemset is infrequent,
we need to check all of its k — 1 subsets in the next iteration. Another
approach is to combine both general-to-specific and specific-to-general
search strategies. This bidirectional approach requires more space to

360 Chapter 6 Association Analysis

Frequent
ltemset Frequent
Border null null ltemset null
-

Border ™, o} -
—— ~
A Nt | i E
B ¢ N
1<
{

; .
(?OOO 000 j000Q
1

|

'

B

/

! i
A 1] ’

S

i
voo
: ' |
b /t\\ 2 N L) /
S . L / JY » .
Qgg'ggo Q. Io Q8000
- \ Frequent
{ay.2,....85} {ay,ap,...,ap} ™ Iltemset {a;,45,....ap)
Border
{a) General-to-specific (b} Specific-to-general (c) Bidirectional

Figure 6.19. General-to-specific, specific-to-general, and bidirectional search.

store the candidate itemsets, but it can help to rapidly identify the fre-
quent itemset border, given the configuration shown in Figure 6.19(c).

e Equivalence Classes: Another way to envision the traversal is to first
partition the lattice into disjoint groups of nodes (or equivalence classes).
A frequent itemset generation algorithm searches for frequent itemsets
within a particular equivalence class first before moving to another equiv-
alence class, As an example, the level-wise strategy used in the Apriori
algorithm can be considered to be partitiomng the lattice on the basis
of itemset sizes; i.e., the algorithm discovers all frequent 1-itemsets first
before proceeding to larger-sized itemsets. Equivalence classes can also
he defined according to the prefix or suffix labels of an itemset. In this
case, two itemsets belong to the same equivalence class if they share
a common prefix or suffix of length &. In the prefix-based approach,
the algorithm can search for frequent itemsets starting with tbe prefix
a before looking for those starting with prefixes b, ¢, and so on. Both
prefix-based and suffix-based equivalence classes can be demonstrated
using the tree-like structure shown in Figure 6.20.

Breadth-First versus Depth-First: The Apriori algorithm traverses
the lattice in a breadth-first manner, as shown in Figure 6.21(a). It first
discovers all the frequent 1-itemsets, followed by the frequent 2-itemsets,
and so on, until no new frequent itemsets are generated. The itemset

6.5 Alternative Methods for Generating Frequent Itemsets 361

(a) Prefix tree. (b) Suffix tree.

Figure 6.20. Equivalence classes based on the prefix and suffix labels of itemsets.

(a) Breadth first (b} Depth first

Figure 6.21. Breadth-first and depth-first traversals.

lattice can also be traversed in a depth-first manner, as sbown in Figures
6.21(b) and 6.22. The algorithm can start from, say, node a in Figure
6.22, and count its support to determine whether it is frequent. If so, the
algorithm progressively expands the next level of nodes, i.e., ab, abe, and
so on, until an infrequent node is reached, say, abed. It then backtracks
to another branch, say, abee, and continues the search from there,

The depth-first approach is often nsed by algorithms designed to find
maximal frequent itemsets. This approach allows the frequent itemset
border to be detected more quickly than using a breadth-first approach.
Once a maximal frequent itemset is found, substantial pruning can be

362 Chapter 6 Association Analysis

abce abde acde bede

abcde

Figure 6.22. Generating candidate itemsets using the depth-first approach.

performed on its subsets. For example, if the node bede shown in Figure
6.22 is maximal frequent, then the algorithm does not have to visit the
subtrees rooted at bd, be, c, d, and € because they will not contain any
maximal frequent itemsets. However, if abe is maximal frequent, only the
nodes such as ac and be are not maximal frequent (but the subtrees of
ac and be may still contain maximal frequent itemsets). The depth-first
approach also allows a different kind of pruning based on the support
of itemsets. For example, suppose the support for {a,b,¢} is identical
to the support for {a,b}. The subtrees rooted at abd and abe can be
skipped because they are guaranteed not to have any maximal frequent
itemsets, The proof of this is left as an exercise to the readers.

Representation of Transaction Data Set There are many ways to rep-
resent a transaction data set. The choice of representation can affect the 1/0
costs iucurred wheun computing the support of candidate itemsets. Figure 6.23
shows two different ways of representing market basket transactions. The rep-
reseutation on the left is called a horizontal data layout, which is adopted
by many association rule mining algorithms, including Apriori. Another pos-
sibility is to store the lst of transaction identifiers (TID-list) associated with
each item. Such a representation is known as the vertical data layout. The
support. for each candidate itemset is obtained by intersecting the TID-lists of
its subset items. The length of the TID-lists shrinks as we progress to larger

6.6 FP-Growth Algorithm 363

Horizontal

Data Layout Vertical Data Layout
TID | Iltems a b E d e
1 |abe 1 1 2l=11
2 |bed ¥lz|s |4 -
3 [ce 5 | 5| 4|56
4 |acd 3 7 8 9

5 |abcd 7 8 9

6 |ae 8 | 10

7 lab

8 |abc 4

9 |acd

10 |b

Figure 6.23. Horizontal and vertical data format.

sized itemsets. However, one problem with this approach is that the initial
set of TID-lists may be too large to fit into main memory, thus requiring
more sophisticated techniques to compress the TID-lists. We describe another
effective approach to represent the data in the next section.

6.6 FP-Growth Algorithm

This section presents an alternative algorithm called FP-growth that takes
a radically different approach to discovering frequent itemsets. The algorithm
does not subscribe to the generate-and-test paradigm of Aprior. Instead, it
encodes the data set using a compact data structure called an FP-tree and
extracts frequent itemsets directly from this structure. The details of this
approach are presented next.

6.6.1 FP-Tree Representation

An FP-tree is a compressed representation of the input data. It is constructed
by reading the data set one transaction at a time and mapping each transaction
onto a path in the FP-tree. As differeut transactions can have several items
in common, their paths may overlap. The more the paths overlap with one
another, the more compression we can achieve usiug the FP-tree structure. If
the size of the FP-tree is small enough to fit into main memory, this will allow
us to extract frequent itemsets directly from the structure in memory instead
of making repeated passes over the data stored on disk.

364 Chapter 6 Association Analysis

Transaction
Data Set null
ltlems
{a.b}
{b.c.d}

{a.c,d,e}
{a.d.e}
{a,b.c}

{a,b,c.d}

fa}
{a.b.c}
{a,b,d}
{b.c.e}

=
o

a

bt

OO~ ® W =

=)

(iv) After reading TID=10

Figure 6.24. Construction of an FP-tree.

Figure 6.24 shows a data set that contains ten transactions and five items.
The structures of the FP-tree after reading the first three transactions are also
depicted in the diagrami. Each node in the tree contains the label of an item
along with a counter that shows the number of transactions mapped onto the
given path. Initially, the FP-tree contains only the root node represented by
the null symbol. The FP-tree is suhsequently extended in the following way:

1. The data set is scanned once to determine the support count of each
item. Infrequent items are discarded, while the frequent items are sorted
in decreasing support counts. For the data set shown in Figure 6.24, a
is the most frequent item, followed by b, ¢, d, and ¢.

6.6 FP-Growth Algorithm 365

2. The algorithin makes a second pass over the data to construct the FP-
tree. After reading the first transaction, {a,b}, the nodes labeled as a
and b are created. A path is then formed from null — a — b to encode
the transaction. Every node along the path has a frequency count of 1.

3. After reading the second transaction, {b,c,d}, a new set of nodes is cre-
ated for items b, ¢, and d. A path is then formed to represent the
transaction by connecting the nodes null — & — ¢ — d. Every node
along this path alsc has a frequency count equal to one. Although the
first two transactions have an item in common, which is b, their paths
are disjoint because the transactions do not share a common prefix.

4. The third transaction, {e,c.d,e}, shares a common prefix item (which
is a) with the first transaction. As a result, the path for the third
transaction, null — a — ¢ — d — ¢, overlaps with the path for the
first transaction, null — a — b. Because of their overlapping path, the
frequency count for node a is incremented to two, wbile the frequency
counts for the newly created nodes, ¢, d, and e, are equal to one.

5. This process continues until every transaction has been mapped onto one
of the paths given in the FP-tree. The resulting FP-tree after reading
all the transactions is shown at the bottom of Figure 6.24.

The size of an FP-tree is typically smaller than the size of the uncompressed
data because many transactions in market basket data often share a few items
in common. In the best-case scenario, where all the transactions have the
same set of items, the FP-tree contains only a single branch of nodes. The
worst-case scenario happens when every transaction has a unique set of items.
As none of the transactions have any items in common, the size of the FP-tree
is effectively the same as the size of the original data. However, the physical
storage requirement for the FP-tree is higher because it requires additional
space to store pointers between nodes and counters for each item.

The size of an FP-tree also depends on how the items are ordered. If
the ordering scheme in the preceding example is reversed, ie., from lowest
to highest snpport item, the resulting FP-tree is shown in Figure 6.25. The
tree appears to be denser because the branching factor at the root node has
increased from 2 to 5 and the numher of nodes containing the high snpport
items such as a and b has increased from 3 to 12, Nevertheless, ordering
by decreasing support counts does not always lead to the smallest tree. For
example, suppose we augment the data set given in Figure 6.24 with 100
transactions that contain {e}, 80 transactions that contain {d}, 60 transactions

366 Chapter 6 Association Analysis

null

Figure 6.25. An FP-tree representation for the data set shown in Figure 6.24 with a differert item
erdering schems.

that contain {c}, and 40 transactions that contain {b}. Item ¢ is now most
frequent, followed by d, c, b, and a. With the augmented transactions, ordering
hy decreasing support counts will result in an FP-tree similar to Figure 6.25,
while a scheme based on increasing support counts produces a smaller FP-tree
siumilar to Figure 6.24(iv).

An FP-tree also contains a list of pointers connecting hetween nodes that
have the same items. These pointers, represented as dashed lines in Figures
6.24 and 6.25, help to facilitate the rapid access of individual items in the tree.
We explain how to use the FP-tree and its corresponding pointers for frequent
itemset generation in the next section.

6.6.2 Frequent Itemset Generation in FP-Growth Algorithm

FP-growth is an algorithm that generates frequent itemsets from an FP-tree
by exploring the tree in a bottom-up fashion. Given the example tree shown in
Figure 6.24, the algorithm looks for frequent itemsets ending in e first, followed
by d, ¢, b, and finally, a. This bottom-up strategy for finding frequent item-
sets ending with a particular item is equivalent to the suffix-based approach
descrihed in Section 6.5. Since every transaction is iapped onto a path in the
FP-tree, we can derive the frequent itemsets ending with a particular item,
say. e, by examining only the paths containing node e. These paths can be
accessed rapidly using the pointers associated with node e. The extracted
paths are shown in Figure 6.26(a). The details on how to process the paths to
obtain frequent itemsets will be explained later.

6.6 FP-Growth Algorithm 367

null null

b:2

Gl Cr——Ag—=— c2

el el el d d d:1
(a) Paths containing node e (b) Paths containing node d
null null null
a8

(c) Paths containing node ¢ (d) Paths containing node b (e) Paths containing node a

Figure 6.26. Decomposing the frequent itemsat generation problem into multiple subproblems, where
each subproblem involves finding frequent itemsets ending in e, d, ¢, b, and a.

Table 6.6. The list of frequent itemsets ordered by their corrasponding suffixes.

Suffix Frequent Itemsets
e {e}, {d,e}, {a.d,e}, {c,e},{ae}
d {d}, {cd}, {b,ed}, {a,cd}, {b.d}, {a.bd}. {ad}
& {c}, {b,c}, {a,b,c}, {a,c}
b {b}, {a.b}
a_|{a}

After finding the freqnent itemsets ending in e, the algorithin proceeds to
look for frequent itemsets ending in d hy processing the paths associated with
node d. The corresponding paths are shown in Figure 6.26(b). This process
continues until all the paths associated with nodes ¢, b, and finally a, are
processed. Tbe paths for these items are shown in Figures 6.26(c), (d), and
(e), while their corresponding frequent itemsets are summarized in Table 6.6.

FP-growth finds all the frequent itemsets ending with a particular suffix
by employing a divide-and-conquer strategy to split the problem into smaller
subprohlems. For example, suppose we are interested in finding all frequent

368 Chapter 6 Association Analysis

null

el el d:1 di
(a) Prefix paths ending in e {b) Conditional FP-tree for e

null null

a2
(c) Prefix paths ending in de {d) Conditional FP-tree for de
null
a2
(e) Prefix paths ending in ce (f) Pretix paths ending in as

Figure 6.27. Example of applying the FP-growth algorithm to find frequent temsets ending in e.

itemsets ending in e. To do this, we must first check whether the iternset
{e} itself is frequent. If it is frequent, we consider the subproblem of finding
frequent itemsets ending in de, followed by ce, be, and ae. In turn, each
of these subproblems are further decomposed into smaller subproblems. By
merging the solutions obtained from the subproblems, all the frequent itemsets
ending in € can be found. This divide-and-conquer approach is the key strategy
employed by the FP-growth algorithm.

For a more concrete example on how to solve the subproblems, consider
the task of finding frequent itemsets ending with e.

1. The first step is to gather all the paths containing node e. These initial
paths are called prefix paths and are shown in Figure 6.27(a).

2. From the prefix paths shown in Figure 6.27(a), the support count for € is
obtained by adding the support counts associated with node e. Assuming
that the minimum support count is 2, {e} is declared a frequent iternset
because its support count is 3.

6.6 FP-Growth Algorithm 369

3. Because {e} is frequent, the algorithm has to solve the subproblems of

finding frequent itemsets ending in de, ce, be, and ae. Before solving
these subproblems, it must first convert the prefix paths into a con-
ditional FP-tree, which is structurally similar to an FP-tree, except
it is used to find frequent itemsets ending with a particular suffix. A
conditional FP-tree is obtained in the following way:

(a) First, the support counts along the prefix paths must be updated
because some of the counts include transactions that do not contain
itemn €. For example, the rightmost path shown in Figure 6.27(a),
null — b:2 — c:2 — e:1, includes a transaction {b, ¢} that
does not contain item e. Tbe counts along tbe prefix path must
therefore be adjusted to 1 to reflect the actual number of transac-
tions containing {b, c, €}.

(b) The prefix paths are truncated by removing the nodes for . These
nodes can be removed hecause the support counts along the prefix
paths have been updated to reflect only transactions that contain e
and the subprohlems of finding freqnent itemsets ending iu de, ce,
be, and ee no longer need information about node €.

(c) After updating the support counts along the prefix paths, some
of the items may no longer be frequent. For example, the node b
appears only once and bas a support count equal to 1, which means
that there is only one transaction that contains hoth b and e. Item b
can be safely ignored from subsequent analysis because all itemsets
ending in be must be infrequent.

The conditional FP-tree for e is shown in Figure 6.27(b). The tree looks
different than the original prefix paths because the freqnency counts have
been updated and the nodes b and e have been eliminated.

. FP-growth uses the couditicnal FP-tree for e to solve the snbproblems of

finding frequent itemsets ending in de, ce, and ae. To find the frequent
itemsets ending in de, the prefix paths for 4 are gathered from the con-
ditional FP-tree for e (Figure 6.27(c)). By adding the frequency counts
associated with node d, we obtain the support count for {d,¢}. Since
the support count is equal to 2, {d.e} is declared a frequent itemset.
Next, tbe algorithm constructs the conditional FP-tree for de using the
approach described in step 3. After updating the support counts and
removing the infrequent item ¢, the conditional FP-tree for de is shown
in Figure 6.27(d). Since the conditional FP-tree contains only one item,

370 Chapter 6 Association Analysis

a, whose support is equal to minsup. the algorithm extracts the fre-
quent itemset {a.d,e} and moves on to tbe next subproblem, which is
to generate frequent itemsets ending in ce. After processing the prefix
paths for ¢, only {c, e} is found to be frequent. The algorithm proceeds
to solve the next suhprogram and found {a, e} to be the only frequent
itemset remaining.

This example illustrates the divide-and-conquer approach used m the FP-
growth algorithm. At each recursive step, a conditional FP-tree is constructed
by updating the frequency counts along the prefix paths and removing all
infrequent items. Because the subproblems are disjoint, FP-growth will not
generate any duplicate itemsets. In addition, the counts associated with the
nodes allow the algorithm to perform support counting while generating the
common suffix itemsets,

FP-growth is an interesting algorithm because it illustrates how a compact
representation of the transaction data set helps to efliciently generate frequent
itemsets. In addition, for certain transaction data sets, FP-growth outperfornis
the standard Apriors algoritbm by several orders of magnitnde. The run-time
performance of FP-growth depends on the compaction factor of the data
set. If the resulting conditional F'P-trees are very bushy (in the worst case, a
full prefix tree), then the performance of the algorithm degrades significantly
because it has to generate a large number of subproblems and merge the results
returned by each subproblem.

6.7 Evaluation of Association Patterns

Association analysis algorithms have the potential to generate a large number
of patterns. For example, although the date set shown w Table 6.1 contains
only six items, it can produce up to hundreds of association rules at certain
support and confidence thresholds. As the size and dimensionality of real
commercial databases can be very large, we could easily end up with thousands
or even millions of patterns, many of which migbht not be interesting. Sifting
through the patterns to identify the most interesting ones is not a trivial task
because “one person’s trasb might be another person's treasure.” It is therefore
important to establish a set of well-accepted criteria for evaluating the quality
of association patterns.

The first set of criteria can be established through statistical arguments.
Patterns that involve a set of mutually independent items or cover very few
transactions are considered uninteresting because they may capture spurious
relationships in the data. Such patterns can be eliminated by applying an

6.7 Evaluation of Association Patterns 371

objective interestingness measure that uses statistics derived from data
to determine whether a pattern is interesting. Examples of ohjective interest-
ingness measures include support. confidence, and correlation.

The second set of criteria can be established through subjective arguments.
A pattern is considered suhjectively uninteresting unless it reveals unexpected
information about the data or provides useful knowledge that can lead to
profitable actions. For example, the rule {Butter} — {Bread} may not be
interesting, despite having high support and confidence values, because the
relationship repregented by the rule may seem rather obvious. On the other
hand, the rule { Diapers} — {Beer} is interesting because the relationship is
quite unexpected and may suggest a new cross-selling opportunity for retailers.
Incorporating subjective knowledge into pattern evaluation is a difficult task
because it requires a considerable amount of prior information from the domain
experts.

Thbe following are some of the approacbes for incorporating subjective
knowledge into the pattern discovery task.

Visualization This approach requires a user-friendly environment to keep
the human user in the loop. It also allows the domain experts to interact with
the data miming system by interpreting and verifying the discovered patterns.

Template-based approach This approach allows the users to constrain
the type of patterns extracted by the mining algorithm. Instead of reporting
all the extracted rules, only rules that satisfy a user-specified template are
returned to the users.

Subjective interestingness measure A subjective measure can be defined
based on domain information such as concept hierarchy (to be discussed in
Section 7.3) or profit margin of items. The measure can then be used to filter
patterns that are obvious and non-actionable.

Readers interested in subjective interestingness measures may refer to re-
sources listed in the bibliography at the end of this chapter.

6.7.1 Objective Measures of Interestingness

An objective measure is a data-driven approach for evaluating the quality
of association patterns. It is domain-independent and requires mimmal in-
put from the users, other than to specify a threshold for filtering low-quality
patterns, An objective measure is usnally computed based on the frequency

372 Chapter 6 Association Analysis

Table 6.7. A 2-way contingency table for variables A and B.

B | B
Al fu | S| fis
A | fo | foo | for
Fri | fro | N

counts tabulated in a contingency table. Table 6.7 sbows an example of a
contingency table for a pair of binary variables, A and B. We use the notation
A (B) to indicate that A (B) is absent from a transaction. Fach entry fij in
this 2 x 2 table denotes a frequency count. For example, f1; is the number of
times A and B appear together in the same transaction, while fp; is the num-
ber of transactions that contain B but not A. The row sum fi, represents
the support count for A, while the column sum f,; represents the support
count for B. Finally, even though our discussion focuses mainly on asymmet-
ric binary variables, note that contingency tables are also applicable to other
attribute types such as symmetric binary, nominal, and ordinal variables.

Limitations of the Support-Confidence Framework FExisting associa-
tion rule mining formulation relies on the support and confidence measures to
eliminate uninteresting patterns. The drawback of support was previously de-
scribed in Section 6.8, in which many potentially interesting patterns involving
low support items might be eliminated by tbe support tbreshold. The draw-
back of confidence is more subtle and is best demonstrated with the following
example,

Example 6.3. Suppose we are interested in analyzing the relationship be-
tween people who drink tea and coffee. We may gather inforination about the
beverage preferences among a group of people and summarize their responses
into a table such as the one shown in Table 6.8.

Table 6.8. Beverage preferences among a group of 1000 people.

Coffee | Coffee

Tea 150 50 200
Tea 650 150 800
800 200 1000

6.7 Evaluation of Association Patterns 373

The information given in this table can be used to evaluate the association
rule {Tea} — {Cof fee}. At first glance, it may appear that people who drink
tea also tend to drink coffee because the rule’s support (15%) and confidence
(75%) values are reasonably high. This argument would have been acceptable
except that the fraction of people who drink coffee, regardless of whether they
drink tea, is 80%, while the fraction of tea drinkers who drink coffee is only
75%. Thus knowing that a person is a tea drinker actually decreases her
probability of being a coffee drinker from 80% to 75%! The rule {Tea} —
{Cof fee} is therefore misleading despite its high confidence valne. s

Thbe pitfall of confidence can be traced to the fact that the measure ignores
the support of the itemset in the rule consequent. Indeed, if the support of
coffee drinkers is taken into account, we would not be surprised to find that
many of the people who drink tea also drink coffee. What is more surprising is
that the fraction of tea drinkers who drink coffee is actually less than the overall
fraction of people who drink coffee, which points to an inverse relationship
between tea drinkers and coffee drinkers.

Because of the limitations in the support-confidence framework, various
objective measures have been used to evaluate the quality of association pat-
terns. Below, we provide a brief description of these measures and explain
some of their strengths and limitations.

Interest Factor The tea-coffee example shows that higb-confidence rules
can sometimes be misleading because the confidence measure ignores the sup-
port of the itemset appearing in the rule consequent. One way to address this
problem is by applying a metric known as lift:

o4 — B)

Lift = s(B)

(6.4}
whicb computes the ratio between the rule’s confidence and the support of
the itemset in the rule consequent. For binary variables, lift is equivalent to
another objective measure called interest factor, which is defined as follows:

s(AB) _ Nfu
#(A) x 8(B) fipfer

Interest factor compares the frequency of a pattern against a baseline fre-
quency computed under the statistical independence assumption. The baseline
frequency for a pair of mutually independent variables is

fu_fir

N NN

I(A.B) = (6.5)

or equivalently, fi1 = f1+Tf+l (6.6)

374 Chapter 6 Association Analysis

Table 6.9. Contingency tables for the word pairs ({p.q} and {r.s}.

n |7 r| T

q | 880 | 50 | 930 g |20 | 50 70

g | 50 |20 70 g | 50 | 880 | 930
930 (70 | 1000 70 | 930 | 1000

This equation follows from the standard approach of using simple fractions
as estimates for probabilities. The fraction fi;/N is an estimate for tbe joint
probability P(A, B), while f14+/N and f /N are the estimates for P(A) and
P(B), respectively. If A and B are statistically independent, then P(A4, B) =
P(A} x P(B), thus leading to the formula shown in Equation 6.6. Using
Equations 6.5 and 6.6, we can interpret the measure as follows:

=1, if A and B are independent;
I{A.B){ > 1. if A and B are positively correlated; (6.7)
<1, if A and B are negatively correlated.

For the tea-coffee example shown in Table 6.8, I = o.g-ig.s = 0.9375, thns sug-

gesting a slight negative correlation between tea drinkers and coffee drinkers.

Limitations of Interest Factor We illustrate the limitation of interest
factor with an example from the text mining domain. In the text domain, it
is reasonable to assume that the association between a pair of words depends
on the number of documents that contain both words. For example, hecause
of their stronger association, we expect the words data and mining to appear
together more frequently than the words compiler and mining in a collection
of computer science articles,

Table 6.9 sbows the frequency of occurrences between two pairs of words,
{p.q} and {r, s}. Using the formula given in Equation 6.5, the interest factor
for {p, ¢} is 1.02 and for {r, s} is 4.08. These results are somewhat troubling
for the following reasons. Altbough p and g appear together in 88% of the
documents, their interest factor is close to 1, which is the value when p and ¢
are statistically independent. On the other hand, the interest factor for {r, s}
is higher than {p,q} even though r and s seldom appear together in the same
document. Confidence is perhaps the hetter choice in this sitnation because it
considers the association between p and ¢ (94.6%) to be much stronger than
that between 7 and s (28.6%).

6.7 Evaluation of Association Patterns 375

Correlation Analysis Correlation analysis is a statistical-based technique
for analyzing relationships between a pair of variables. For continuous vari-
ables, correlation is defined using Pearson’s correlation coefficient (see Equa-
tion 2.10 on page 77). For binary variables, correlation can be measured using
the ¢-coeflicient, which is defined as

¢ — fl]fUD - flelO .
Vi+friforfro

The value of correlation ranges from —1 (perfect negative correlation) to +1

(6.8)

(perfect positive correlation). If the variables are statistically independent,
then ¢ = 0. For example, the correlation between the tea and coffee drinkers
given in Table 6.8 is —0.0625.

Limitations of Correlation Analysis The drawback of using correlation
can be seen from the word association example given in Table 6.9. Althongh
the words p and g appear together more often than r and s, tbeir ¢-coefficients
are identical, 1.e., ¢(p,q) = ¢(r,s) = 0.232. This is because the ¢-coeflicient
gives equal importance to both co-presence and co-absence of items in a trans
action. It is therefore more suitable for analyzing symmetric bmary variables.
Another limitation of this measure is that it does not remain invariant when
there are proportional changes to the sample size. This issue will be discussed
in greater detail when we describe the properties of objective measures on page
377.

IS Measure IS is an alternative measure that has been proposed for han-
dling asymmetric binary variables. The measure is defined as follows:

IS(A,B) = +/T(A,B) x (4, B) = %. (6.9)

Note that 1.5 is large when the interest factor and support of the pattern
are large. For example, the value of IS for the word pairs {p,¢} and {r, s}
shown in Table 6.9 are 0.946 and 0.286, respectively. Contrary to the results
given by interest factor and the ¢-coeflicient, the IS measnre suggests that
the association between {p, ¢} is stronger than {r, s}, which agrees with what
we expect from word associations in documents.

It is possible to show that I.5 is mathematically equivalent to the cosine
measure for binary variahles (see Equation 2.7 on page 75). In this regard, we

376 Chapter 6 Association Analysis

Table 6.10. Example of a contingency table for items pand 4.

q q
p | 800 | 100 | 900
100 0 100

=l

900 | 100 | 1000

consider A and B as a pair of bit vectors, A e B = s(4, B} the dot product
between the vectors, and |A| = y/s(A) the magnitude of vector A. Therefore:

s(A.B) AeB

e V3 < s(B) |A[x B

= cosine{ A, B). (6.10)

The 1S measure can also be expressed as the geometric meau between the
confidence of association rules extracted from a pair of binary variables:

IS(A. B) = s(s’?;f % s(:z};)?) — A= B)xcB—4). (611

Because the geometric mean between any two numbers is always closer to the
smaller number, the I'S value of an itemset {p, g} is low whenever one of its
rules, p — g or ¢ — p, bas low confidence.

Limitations of IS Measure The .S value for a pair of independent item-
sets, A and B, is

___SAB) _ s(A)xs(B) _ , y
ISindep(A»B)*\/s(A)Xs(B) 7\/s(A)><s(B)7\/ (A) x s(B).

Since the value depends on s(A) and s(B), IS shares a similar problemn as
the confidence measure—that the value of the measure can be quite large,
even for uncorrelated and negatively correlated patterns. For example, despite
the large IS value between items p and ¢ given im Table 6.10 (0.889), it is
still less tban the expected value when the items are statistically independent
(£Sindep = 0.9).

6.7 Evaluation of Association Patterns 377

Alternative Objective Interestingness Measures

Besides the measures we have described so far, there are other alternative mea-
sures proposed for analyzing relationships between pairs of binary variables.
These measures can be divided into two categories, symmetric and asym-
metric measures. A measure M is symmetric if M(A — B) = M(B — A).
For example, interest factor is a symmetric measure because its value is iden-
tical for the rules A — B and B — A. In coutrast, confidence is an
asymmetric measure since the confidence for A — B and B — A may not
be the same. Symmetric measures are generally used for evaluating itemsets,
while asymmetric measures are more suitable for analyzing association rules.
Tables 6.11 and 6.12 provide the definitions for some of these measures in
terms of the frequency counts of a 2 x 2 contingency table.

Consistency among Objective Measures

Given the wide variety of measures available. it is reasonable to question
whether the measures can produce similar ordering results when applied to
a set of association patterns. If the measures are consistent, then we can
choose any one of them as our evalnation metric. Otherwise, it is important
to understand what their differences are in order to determine which measure
is more suitable for analyzing certain types of patterns.

Table 6.11. Examples of symmetric objective measures for the itemset {4, B}.

Measure (Symbol) Definition
o Nfu—=Ji1gfis
Corrélation. o) St frifor fro
Odds ratio {a) (fufnn)/(fmfm)
N N foa— —
Keppa (x) e
Interest (1) (Nfu)/(foH)

Cosine (I8) (ful/ (Ve Fia)

Piatetsky-Shapiro {PS) 1#1 _ f%f#

Collective strength {5) o ff:;iﬁiho o Nﬁ%tl}t::)jtﬁgfﬂ
Tnged 1) fuf/(fie+ fa— fu)
All-confidence (h) min Hﬁ ‘ft_”

378 Chapter 6 Association Analysis

Table 6,12, Examples of asymmetric objective measures forthe ruke A — B.

Measure (Symbol} Definition
Goodman-Kruskal (A) (EJ mexg f5i — mazrfoi) /(N — maxg fir)
Mutual Information (M) | (32,3, % log 725) /(- 32, 4 log &)
J-Measure (J) L log 22+ 42 log e
Gini index (G) L s (fny? o (deyr (2
+ X IR+ (2] - (e
Laplace (L) (fu+1)/(frr+2)
Conviction (V') (frsfr0)/ (N fro)
Certaimty factor (F) (o — &y -4y
Added Value (4V) e ip

Table 6.13. Example of contingency tables.

Example | fi fio fo foo
E, 8123 | 83 424 | 1370
E> 8330 2 622 | 1046
E, 3954 | 3080 5 2061
E, 2886 | 1363 | 1320 | 4431
E, 1500 | 2000 | 500 | 6000
Eg 4000 | 2000 | 1000 | 3000
E; 9481 | 208 127 94
Eg 4000 | 2000 | 2000 | 2000
Ey 7450 | 2483 4 63
En 61 2483 4 7452

Suppose the symmetric and asymmetric measures are applied to rank the
ten contingency tables shown in Table 6.13. These contingency tables are cho-
sen to illustrate the differences among the existing measures. The ordering
produced by these measures are shown in Tables 6.14 and 6.15, respectively
{with 1 as the most interesting and 10 as the least interesting table). Although
some of the measures appear to be consistent with each other, there are certain
measures that produce quite different ordering results. For example, the rank-
ings given by the ¢-coefficient agree with those provided by x and collective
strength, but are somewhat different than the rankings produced by interest

6.7 Evaluation of Association Patterns 379

Table 6.14. Rankings of contingency tables using the symmetric measures given in Table 6.11.

dla | & |I[IS|PS|SC R
E 1|31 (6|22 12 2
Ex|lel1]2|7]|3|5s5|2|38]|s
Es|3|2|al4|5| 13|68
Ec|als|3|3|7|3|4|7]|s
Ey 5 7 6 2 9 6 6 9 9
Es|e6|o|s5|5|6| 45|57
E, 7|6 | 7|91 |8]|7]1]1
Es|8|w0|s|8|s8| 7 |8|s|7
Eo|9|a|o|1w0| 4| 90|44
Eo|10| 5|10 1|10] 10]10]10]10

Table 6.15. Rankings of contingency tables using the asymmetric measures given in Table 6.12.

AlMJ |G| L |V |F|AVY
E, |1]1]1]1]a]2]z2] 5
Ey |22 2|3|5]1]1] 686
Ey|5|3|5|2|2|6|6] 4
Ei|a|le6|3]4|0|3]|3]1
Es|o|7|4|6|8 |55 2
Es|3|8|6 |5 |7|4|4] 3
E |75 |98 |3|7|7]| 9
Es|8|9o|7|7|10|8]|8] 7
Ey | 6| 4]10]9]|1]9]|9| 10
Eyp|10|10| 8 | 10| 6 |10]|10| 8

factor and odds ratio. Furthermore, a contingency table such as Ejq is ranked
lowest according to the ¢-coefficient, but highest according to interest factor.

Properties of Objective Measures

The results shown in Table 6.14 suggest that a significant number of the mea-
sures provide conflicting information abont tbe quality of a pattern. To under-
stand their differences, we need to examine the properties of these measures.

Inversion Property Consider the bit vectors shown in Figure 6.28. The
0/1 bit in each column vector indicates whether a transaction (row) contains
a particular item (column). For example, the vector A indicates that item a

380 Chapter 6 Association Analysis

‘OOOOO—‘OOOO|W
[eoo=s-s-20olo
EEEETETL
[Goco=oo=-g|m
‘GCCGO—‘OOCO|'|‘|

,-.
O

A
—
T
g
G

Figure 6.28. Efiect of the inversion operation. The vectors € and F are inversions of vector A, while
the vector I is an inversion of vectors B and F.

belongs to the first and last transactions, whereas the vector B indicates that
item b is contained only in the fifth transaction. The vectors C and E are in
fact related to the vector A—their bits have been inverted from 0’s (absence)
to 1's (presence}, and vice versa. Similarly, D is related to vectors B and F by
inverting their bits. The process of flipping a bit vector is called inversion.
If a measure is invariant under the inversion operation, then its value for the
vector pair (C, D) should be identical to its value for (A, B). The inversion
property of a measure can be tested as follows.

Definition 6.6 (Inversion Property). An objective measure M is invariant
under the inversion operation if its value remains the same when exchanging
the frequency counts fi, with foo and fig with fo;.

Among tbe measures that remain invariant under this operatiou iuclude
the ¢-coefficient, odds ratio, x, and collective strength. These measures may
not be suitable for analyzing asymmetric binary data. For example, the ¢-
coeflicient between C and D is identical to the ¢-coeflicient between A and
B, even though items ¢ and d appear togetber more frequently than a and b.
Furthermore, the ¢-coeflicient between C and D is less than that between E
and F even though items e and f appear together only once! We had previously
raised this issue when discussiug the limitations of the ¢-coeflicient ou page
375. For asymmetric binary data, measures tbat do not remain invariant under
the inversion operation are preferred. Some of the non-invariant measures
include interest factor, IS, PS. and the Jaccard coefficient.

6.7 Evaluation of Association Patterns 381

Null Addition Property Suppose we are interested in analyzing the re-
lationship between a pair of words, such as data and mining, in a set of
documents. If a collection of articles about ice fishing is added to the data set,
should the association between data and mining be affected? This process of
adding unrelated data (in this case, documents) to a given data set is known
as the null addition operation.

Definition 6.7 (Null Addition Property). An objective measure A{ is
invariant under the null addition operation if it is not affected by increasing
Joo, while all other frequencies in the contingency table stay the same.

For apphlications such as document analysis or market basket analysis, the
measure is expected to remain invariant under the null addition operation.
Otherwise, the relationsbip between words may disappear simply by adding
enough documents that do not contain both words! Examples of measures
that satisfy this property include cosine ({5) and Jaccard (£) measures, while
those that violate this property include interest factor, PS, odds ratio, and
the ¢-coefficient.

Scaling Property Tahle 6.16 sbows the contingency tables for gender and
the grades achieved by students enrolled in a particular course in 1993 and
2004. The data in these tables showed that the number of male students has
doubled since 1993, while the number of female students has increased by a
factor of 3. However, the male students in 2004 are not performing any better
than those in 1993 because the ratio of male students who achieve a high
grade to those who achieve a low grade is still the same, i.e., 3:4. Similarly,
the female students in 2004 are performing no better than those in 1993. The
association between grade and gender is expected to remain unchanged despite
changes in the sampling distribution.

Table 6.16. The grade-gender example.

Male | Female Male | Female
High 30 20 50 High 60 60 120
Low 40 10 50 Low 80 30 110
70 30 100 140 90 230
(a) Sample data from 1993. (b} Sample data from 2004.

382 Chapter 6 Association Analysis

Table 6.17. Properties of symmetric measures.

Symbol | Measure Inversion | Null Addition | Scaling
® ¢-coefficient, Yes No No
@ odds ratio Yes No Yes
" Cohen’s Yes No No
I Interest No No No
18 Cosine No Yes No

PE Piatetsky-Shapiro’s Yes No No
S Collective strength Yes No No
¢ Jaccard No Yes No
h All-confidence No No No
s Support No No No

Definition 6.8 (Scaling Invariance Property). An objective measure A
is invariant under the row/column scaling operation if A/ (T} = M(T"), where
T is a contingency table with frequency counts [fi1: fio; fo1; foo], 7 is a
contingency table with scaled frequency counts [kikafi1; kokafio; Kikafor;
kakyfool, and k1, ko, k3, ky are positive constants.

From Table 6.17, notice that only the odds ratio {«) is invariant under
the row and column scaling operations. All other measures such as the ¢-
coeflicient, «, 1.5, interest factor, and collective strength (S) change their val-
ues when the rows and columns of the contingency table are rescaled. Although
we do not discuss the properties of asymmetric measures (such as confidence,
J-measure, Gini index. and conviction), it is clear that such measures do not
preserve their values under inversion and row/column scaling operations, but
are iuvariant under the uull addition operation.

6.7.2 Measures beyond Pairs of Binary Variables

The measures shown in Tables 6.11 and 6.12 are defined for pairs of binary vari-
ables (e.g., 2-itemsets or association rules). However, many of them, such as
support and all-confidence, are also applicable to larger-sized itemsets. Other
measures, such as interest factor, 1.8, PS, and Jaccard coefficient, can be ex-
tended to more than two variables using the frequency tables tabulated in a
multidimensional contingency table. An example of a three-dimensional con-
tingency table for a, b, and ¢ is shown in Table 6.18. Each entry fj;i in this
table represents the mimber of transactions that contain a particular combi-
nation of items e, b, and c. For example, fip1 is the number of transactions
that contain a and ¢, but not 6. On the other hand, a marginal frequency

6.7 Evaluation of Association Patterns 383

Table 6.18. Example of a three-dimensional contingency table,

o b b o) 1] b

a | fui | fior | fi a | fuo | fio | fise

a | four | Joor | fort a | foo | fooo | foro
frn | fror | frm fro | froo | firio

such as fi41 is the number of transactions that contain a and ¢, irrespective
of whether b is present in the transaction.

Given a k-itemset {i;.1g,....%}, the condition for statistical independence
can be stated as follows:

oo Tep. ™ f+¢;].\,].-’i.7>l< o fany) (6.12)

With this definition, we can extend objective measures such as interest factor
and PS, which are based on deviations from statistical independence, to more
than two variables:

7 - N*=1 e Bt i
Fit Rl ig % o K Fr
Pg _ fiyigeiy Fivbo X Figog X oo fy

N Nk

Another approach is to define the objective ineasure as the maximum, min-
imum, or average value for the associations between pairs of items in a pat-
tern. For example, given a k-itemset X = {iy,%5....,%;}, we may define the
$-coefficient for X as the average ¢-coeflicient between every pair of items
(ip,iq) in X. However, because the measure considers only pairwise associa-
tions, it may uot capture all the underlying relationships within a pattern.
Analysis of multidimensional contingency tables is more complicated be-
cause of the presence of partial associations in the data. For example, some
associations may appear or disappear when conditioned upon the value of cer-
tain variables. This problem is known as Simpson’s paradox and is described
in the next section. More sophisticated statistical techniques are available to
analyze such relationships, e.g., loglinear models, but these techniques are

beyond the scope of this book.

384 Chapter 6 Association Analysis

Table 6.19. A two-way contingency table between the sale of high-definition television and exercise
machine.

Buy | Buy Exercise Machine
HDTV | Yes No
Yes 99 81 180
No 54 66 120
153 147 300

Table 6.20. Example of a three-way contingency table.

Customer Buy Buy Exercise Machine | Total

Group HDTV Yes No

College Students Yes 1 9 10
No 4 30 34

‘Working Adult Yes 98 72 170
No 50 36 86

6.7.3 Simpson’s Paradox

It is important to exercise caution when interpreting the association between
variables because the observed relationship may be influenced by the presence
of other confounding factors, i.e., hidden variables that are not included in
the analysis. In some cases, the hidden variables may catise the observed
relationship between a pair of variables to disappear or reverse its direction, a
phenomencn that is known as Simpson's paradox. We illustrate the nature of
this paradox with the following example.

Consider the relationship between the sale of high-definition television
{HDTV) and exercise machine, as shown in Table 6.19. The rule {HDTV=Yes}
—+ {Exercise machine=Yes} bas a confidence of 99/180 = 55% and tbe rule
{HDTV=No} — {Exercise machine=Yes} has a confidence of 54/120 = 45%.
Together, these rules suggest that customers who buy high-definition televi-
sions are more likely to buy exercise machines than those who do not buy
higb-definition televisions.

However, a deeper analysis reveals that the sales of these items depend
on whether the customer is a college student or a working adult. Table 6.20
summarizes the relationship between the sale of HDTVs and exercise machines
among college students and working adults. Notice that the support counts
given in the table for college students and working adults sum up to the fre-
quencies shown in Table 6.19. Furthermore, there are more working adults

6.7 Evaluation of Association Patterns 385
than college students who buy these items. For college students:

c({HDTV=Yes} — {Exercise machine=Yes}) 1/10 = 10%,
c({HDTV=No} — {Exercise miwhine=Yes}) = 4/34 =11.8%,

while for working adults:

c({HDTV:Yes} — {Exercise machine:Yes}) = 08/170 =57.7%,
c({HDTV:No} — {Exercise machine:Yes}) = 50/86 = 58.1%.

The rules suggest that, for each group, customers who do not buy high-
definition televisions are more likely to buy exercise machines, which contradict
the previous conclusion when data from the two customer groups are pooled
together. Even if alternative measures such as correlation, odds ratio, or
interest are applied, we still find that the sale of HDTV and exercise machine
is positively correlated iu the combined data but is negatively correlated in
the stratified data (see Exercise 20 on page 414). The reversal in the direction
of association is known as Simpson's paradox.

The paradox can be explained in the following way. Notice that most
customers who buy HDT'Vs are working adults. Working adults are also the
largest group of customers who buy exercise machines. Because nearly 85% of
the customers are working adults, the observed relationship between HDTV
and exercise machine turns out to be stronger in the combined data than
what it would have been if the data is stratified. This can also be illustrated
mathematically as follows. Suppose

a/b < ec/d and pfg<r/s,

where a/b and p/q may represeut the coufidence of the rule A — B iu two
different strata, while ¢/d and r/s may represent the confidence of the rule
A — B iu the two strata. Wheu the data is pooled togetber, the confidence
values of the rules in the combined data are (a+p)/(b+q} and (c+7)/(d+ s),
respectively. Simpson’s paradox oceurs when

at+p ct+r

b+gq & d+s’

thus leading to the wrong conclusion about the relationsbip between the vari-
ables. The lesson here is that proper stratification is needed to avoid generat-
ing spurious patterns resulting from Simpson's paradox. For example, market

386 Chapter 6 Association Analysis

5 =104

45F

L
1500 2000 2500

0 500 1000
Iterns sorled by support

Figure 6.28. Support distribution of items inthe census data set.

basket data from a major supermarket chain should he stratified according to
store locations, while medical records from various patients should be stratified
according to confounding factors snch as age and gender.

6.8 Effect of Skewed Support Distribution

The performances of many association analysis algorithms are influenced by
properties of their input data. For example, the computational complexity of
the Aprior: algorithm depends on properties such as the number of items in
the data and average transaction width. This section examines another impor-
tant property that has significant inflnence on the performance of association
analysis algorithms as well as the quality of extracted patterns. More specifi-
cally, we focus on data sets with skewed snpport distribntions, where mnost of
the items have relatively low to moderate frequencies, but a small number of
them have very high frequencies.

An example of a real data set that exhibits such a distribution is shown in
Figure 6.29. The data, taken from the PUMS (Public Use Microdata Sample)
census data, contains 49,046 records and 2113 asymmetric binary variables.
We shall treat the asymmetric binary variables as items and records as trans-
actions in the remainder of this section. While more than 80% of the items
bave support less than 1%, a handful of them have support greater than 90%.

6.8 Effect of Skewed Support Distribution 387

Table 6.21. Grouping the items in the census data set based on their support values,

Group [N [#H (5
Support <1% | 1% — 90% | > 9%
Number of Ttems | 1735 358 20

To illustrate the effect of skewed support distrihutiou on frequeut itemset min-
ing, we divide the items into three groups, Gy, Gs, and G3, according to their
support levels. The number of items that belong to each group is shown in
Table 6.21.

Choosing, the right support threshold for mining this data set can be quite
tricky. If we set the threshold too high (e.g., 20%), then we may miss many
interesting patterns involving the low support items from G4. In market bas-
ket analysis, such low support items may correspond to expensive products
(such as jewelry) that are seldom bought by customers, but whose patterns
are still interesting to retailers. Conversely, when the tbreshold is set too
low, it becomes difficult to find the association patterns due to the following
reasons. First, the computational and memory requirenients of existing asso-
ciation analysis algorithms increase considerably with low support thresholds.
Second, the number of extracted patterns also increases suhstantially with low
support thresholds. Third, we may extract many spurious patterns that relate
a higb-frequency item such as milk to a low-frequency item such as caviar.
Such patterns, which are called cross-support patterns, are likely to be spu-
rious because their correlations tend to be weak. For example, at a support
threshiold equal to 0.05%, there are 18,847 frequent pairs involving items from
G and G3. Out of these, 93% of them are cross-support patterns; i.e., the pat-
terns contain items froin both &1 and G3. The maximum correlation chtained
from the cross-support patterns is 0.029, which is much lower than the max-
imum correlation obtained from frequent patterns involving items from the
same group (which is as high as 1.0). Similar statement can be made about
many other interestingness measures discussed in tbe previous section. This
example shows that a large number of weakly correlated cross-support pat-
terns can be generated when the support tbhreshold is sufficiently low. Before
presenting a methodology for eliminating such patterns, we formally define the
concept of cross-support patterns.

388 Chapter 6 Association Analysis

Definition 6.9 (Cross-Support Pattern). A cross-support pattern is an
itemset X = {iy,1s,...,ix} whose support ratio

min [s(iy), s{ia), - - -, s{ix)]
max [s(il), s(i2), ..., s(ik)] "

r(X)=

(6.13)

is less than a user-specified threshold k..

Example 6.4. Suppose the support for milk is 70%, while the support for
sugar is 10% and caviar is 0.04%. Given h, = 0.01, the frequent itemset
{milk, sugar, caviar} is a cross-support pattern because its support ratio is

min [0.7,0.1,0.0004] _ 0.0004

F= = =0.00058 < 0.01,
max [0.7,0.1,0.0004] 0.7

Existing measures such as support and confidence may not be sufficient
to eliminate cross-support patterns, as illustrated by the data set shown in
Figure 6.30. Assuming that k. = 0.3, the itemsets {p, ¢}, {p,7}, and {p,q,7}
are cross-support patterns because their support ratios, which are equal to
0.2, are less than the threshold k.. Although we can apply a high support
threshold, say, 20%, to eliminate the cross-support patterns, this may come
at the expense of discarding other interesting patterns such as the strongly
correlated itemset, {g,r} that has support equal to 16.7%.

Confidence pruning also does not help because the confidence of the rules
extracted from cross-support patterns can be very high. For example, the
confidence for {g} — {p} is 80% even though {p,q} is a cross-support pat-
tern. The fact that the cross-support pattern can produce a high-confidence
rule should not come as a surprise because one of its items (p) appears very
frequently in the data. Therefore, p is expected to appear in many of the
trausactions that contain g. Meanwhile, the rule {g} — {r} also has high
confidence even though {g,7} is not a cross-support pattern. This example
demonstrates the difficnlty of nsing the confidence measure to distinguish be-
tween rules extracted from cross-support and non-cross-support patterns.

Returning to the previous example, notice that the rule {p} — {g} has
very low confidence because mast of the transactions that contain p do not
contain g. In contrast, the rule {r} — {g}, which is derived from the pattern
{g, 7}, has very high confidence. This observation suggests that cross-support
patterns can be detected by examining the lowest confidence rule that can be
extracted from a given itemset. The proof of this statement can he understood
as follows.

6.8 Effect of Skewed Support Distribution 389

0)
0

(== = (e {.

= e

==l =lle (o f

Figure 6.30. A transaction data set containing three items, p, ¢, and r, where p is a high support item
and g and r are low support items.

1. Recall the following anti-monotone property of confidence:

conf({iria} — {is,i4,...,in}) < conf({irsais} — {ia.i5,... 0 }).

This property suggests that confidence never increases as we shift more
items from the left- to the right-hand side of an association rnle. Because
of this property, the lowest confidence rule extracted from a frequent
itemset contains only one item on its left-hand side. We denote the set
of all rules with only one item on its left-hand side as R;.

2. Given a frequent itemset {iy,1a,...,1k}, the rule
{6} — {invda, o osdgony g, -y ik}
has the lowest confidence in R; if s(i;) = max [s(il).s(iz),...,s(ik)].

This follows directly fromn the definition of confidence as the ratio be-
tween the rule’s support and the support of the rule antecedent.

390 Chapter 6 Association Analysis

3. Summarizing the previous points, the lowest confidence attainable from
a frequent itemset {iy,dg,..., 1k} is

5({i1, 090000y ip}))
max [s(i1), s{iz). ..., s(ir}]

This expression is also known as the h-confidence or all-confidence
measure. Because of the anti-monotone property of support, the numer-
ator of the h-confidence measure is bounded by the minimum support
of any item that appears in the frequent itemset. In other words, the
h-confidence of an itemset X = {41,42,...,ix} must not exceed the fol-
lowing expression:

min [s(i1), s(i2). . .., 8(ix)]
max [s(i1), s(i2), ..., s(ig)]

h-confidence(X) <

Note the equivalence between the upper bound of h-confidence and the
support ratio (r) given in Equation 6.13. Because the support ratio for
a cross-support pattern is always less than h,, the h-confidence of the
pattern is also guaranteed to be less than A..

Therefore, cross-support patterns can be eliminated by ensuring tbat the
h-confidence values for the patterns exceed h,. As a final note, it is worth
mentioning that the advantages of using h-confidence go beyond eliminating
cross-support patterns. The measure is also anti-monotone, i.e.,

h-confidence{{41, i3, ..., it }) > h-confidence({i1,2,. .., %k +1})

and thus can be incorporated directly into the mining algorithm. Furthermore,
h-confidence ensures that the items contained in an iteinset are strongly asso-
ciated with each other. For example, suppose the h-confidence of an itemset
X is 80%. If one of the items in X is present in a transaction, there is at least
an 80% chance that the rest of the items in X also belong to the same trans-
action. Such strongly associated patterns are called hyperclique patterns.

6.9 Bibliographic Notes

The association rule mining task was first introduced by Agrawal et al. in
[228, 229] to discover interesting relationships among items in market basket

6.9 Bibliographic Notes 391

transactions. Since its inception, extensive studies have been conducted to
address the various conceptual, implementation, and application issues per-
taining to the association analysis task. A summary of the various research
activities in this area is shown in Figure 6.31.

Conceptual Issues

Research in conceptual issues is focused primarily ou (1) developing a frame-
work to describe the theoretical underpinnings of association analysis, (2) ex-
tending the formulation to handle new types of patterns, and (3) extending the
formulation to incorporate attribute types beyond asymmetric binary data.

Following the pioneering work by Agrawal et al., there has been a vast
amount of research on developing a theory for the association analysis problem.
In [254], Gunopoulos et al. showed a relation between the problem of finding
maximal frequent itemsets and the hypergraph transversal problem. An upper
bound on the complexity of association analysis task was also derived. Zaki et
al. [334, 336 and Pasqnier et al. [204] have applied formal concept analysis to
study the frequent itemset generation problem. The work by Zaki et al. have
subsequently led them to introduce the notion of closed frequent itemsets [336].
Friedman et al. have studied the association analysis problem in the context
of bump hunting iu multidimensional space [252]. More specifically, they
consider frequent itemset generation as the task of finding high probability
density regions in multidimensional space.

Over the years, new types of patterns have been defined, such as profile
association rules [225], cyclic association rules [290], fuzzy association rules
[273], exception rules [316], negative association rules [238, 304|, weighted
association rules [240, 300], dependence rules [308], peculiar rules(340], inter-
transaction association rnles [250, 323], and partial classification rules [231,
285]. Other types of patterns include closed itemsets (294, 336], maximal
itemsets [234], hypercligne patterns [330], support envelopes [314], emerging
patterns [246], and contrast sets [233]. Association analysis has also been
successfully applied to sequential [230, 312|, spatial [266], and graph-based
[268, 274, 293, 331, 335] data. The concept of cross-support pattern was first
introduced by Hui et al. in [330]. An efficient algoritbm (called Hypercliqne
Miner) that automatically eliminates cross-support patterns was also proposed
by the authors.

Substantial research has been conducted to extend the original association
rule formulation to nominal [311], ordinal [281], interval [284], and ratio [253,
255, 311, 325, 339] attributes. One of the key issues is how to define the support
measure for tbese attributes. A methodology was proposed by Steinbach et

P o

Research Issues in Mining
Association Patterns

*gad Ay eynqriyye pue

suazyyed [ersuss 10w o) oddns Jo UONOU [RUCHIPEI)) PUANXS 0 [¢T1g] T8

Conceptual Application
Issues lssues
——————a
4N AN
il
5 P
/) / \
s N L
/ \\ ’/ \\\
/ \
'Y ¥ b |

Theroretical Database Post- Ofher data
il DataType i Dlps:?v’;— s Constralnts Damatne mining

- -binary " -ltem taxonomy problems
-attice theory _numeric -optimization _erplate- - “Web analysis =
~bounds on anerinal -SQL support A st 7 Aext analysis ~classification
itemnset ~ordinal OLAP X -multiple / \\ -bicinformatics | | “fedresson
enumeration -mixed -multi-catabase o \ support / \ _Earth Scienge | | “clustering

% \
%
\\ / \\ E'Y systems
¢ 1 Yy 4 Y tnte
Ruies ftemsets Other Computathonal Algorithm and
model Data Strueture P
-negatve -closed A & S
'j:::ﬂm » ":’::":' -subtress -sertal or parallel -g%ml / \\
“ameong -subgraphs -orline or batch p

-welghted patterns “reg-projciton Mk Method
-spatial and co- ypercliqu -FP-tee
It:caﬂﬂn inner:;s patterns g;nl;m i
~temporal {cyclic, -suppart -Pariition -objective .
sequantial) ameiops -Sampling-bassd -subjactive filtering
fuzzy -CHARM “summarizing
-eception rules

Figure 6.31. A summary of the varicus esearch activities in association analysis.

268

9 1=deyn

SISATRUY UOLJRIDOSSY

€6¢ SN omdedonqig 679

394 Chapter 6 Association Analysis

Implementation Issues

Research activities in this area revolve around (1) integrating the mining ca-
pability into existing database technology, (2) developing efficient and scalable
mining algorithms, (3) handling user-specified or domain-specific constraints,
and (4) post-processing the extracted patterns.

There are several advantages to integrating associatiou analysis into ex-
isting database technology. First, it cau make use of tbe indexing and query
processing capabilities of the database system. Second. it can also exploit the
DBMIS support for scalability, check-pointing, and parallelization [301]. The
SETM algorithm developed by Houtsma et al. [265] was one of the earliest
algorithms to support associatiou rule discovery via SQL queries. Since then,
numerous methods have been developed to provide capabilities for mining as-
sociation rules in database systems. For example, the DMQL [258] and M-SQL
[267] qnery languages extend the basic SQL with new operators for mining as-
sociation rules. The Mine Rule operator [283] is an expressive SQL operator
that can handle both clustered attributes and item hierarchies. Tsur et al.
[322] developed a generate-and-test approach called query flocks for mining
association rules. A distributed OLAP-based infrastructure was developed by
Chen et al. [241] for mining multilevel association rules.

Dunkel and Soparkar [248] investigated the time and storage complexity
of the Apriori algorithm. The FP-growth algorithm was developed by Han et
al. in [259]. Other algorithms for mining frequent itemsets include the DHP
(dynamic hashing and pruning) algorithm proposed by Park et al. [292] and
the Partition algorithm developed by Savasere et al [303]. A sampling-based
frequent itemset generation algorithm was proposed by Toivonen [320]. The
algorithm requires only a single pass over the data, but it can produce more
candidate itemsets than necessary. The Dynamic Itemset Counting (DIC)
algorithm [239] makes only 1.5 passes over the data and generates less candi-
date itemsets than the sampling-based algorithm. Other notable algorithms
include the tree-projection algorithm [223] and H-Mine [205]. Survey articles
on frequent itemset generation algorithms can be found in [226, 262]. A repos-
itory of data sets and algorithms is available at the Frequent [temset Mining
Implementations (FIMI) repository (http://fimi.cs lhelsinki.fi). Parallel algo-
rithms for mining association patterns have been developed by various authors
(224, 256, 287, 306, 337]. A survey of such algorithms can be found in [333].
Onhine and incremental versions of association rule mining algorithms had also
heen proposed hy Hidher [260] and Chenng et al. [242].

Srikant et al. [313] have considered the problem of mimng association rules
in the presence of boolean constraints such as the following:

6.9 Bibliographic Notes 395
(Cookies A Milk) v (descendents(Cookies) A —ancestors(Wheat Bread))

Given such a constraint, the algorithm looks for rules that contain both cook-
ies and milk, or rules that contain the descendent items of cookies but not
ancestor items of wheat bread. Singh et al. [310] and Ng et al. [288] had also
developed alternative techniques for constrained-based association rule min-
ing. Constraints can also be imposed on the support for different itemsets.
This problem was investigated by Wang et al. [324], Liu et al. in [279], and
Seno et al. [305].

One potential problem with association analysis is the large number of
patterns that can be generated by current algorithms. To overcome this prob-
lem, methods to rank, summarize, and filter patterns have been developed.
Toivonen et al. [321] proposed the idea of eliminating reduudant. rules nsing
structural rule covers and to group the remaining rules using clustering.
Liu et al. [280] applied the statistical chi-square test to prune spurions patterns
and summarized the remaining patterns using a subset of the patterns called
direction setting rules. The use of objective measures to filter patterns
has been investigated by many authors, including Brin et al. [238], Bayardo
and Agrawal [235], Aggarwal and Yu [227], and DuMouchel and Pregibon[247).
The properties for many of these measnres were analyzed by Piatetsky-Shapiro
[297], Kamher and Singhal [270], Hilderman and Hamilton (261], and Tan et
al. [318]. The grade-gender example used to highlight the importance of the
row and column scaling invariance property was heavily influenced by the
discussion given in [286] by Mosteller. Meanwhile, the tea-coffee example il-
lustrating the limitation of confidence was motivated by an example given in
[238] hy Brin et al. Because of the limitation of confidence, Brin et al. [238]
had proposed the idea of using interest factor as a measure of interesting-
ness. The all-confidence imeasure was proposed by Omiecinski [289]. Xiong
et al. [330] introduced the cross-support property and showed that the all-
confidence measure can be used to eliminate cross-support patterns. A key
difficulty in using alternative objective measures besides support is their lack
of a monotonicity property, whbich makes it difficult to incorporate the mea-
sures directly mto the mining algorithms. Xiong et al. [328] have proposed
an efficient method for mining correlations by introducing an upper bound
function to the ¢-coefficient. Although the measure is non-monotone, it has
an upper bound expression that can be exploited for the efficient mining of
strongly correlated itempairs.

Fabris and Freitas [249] have proposed a method for discovering inter-
esting associations by detecting the occurrences of Simpson’s paradox [309].
Megiddo and Srikant [282] described an approach for validating the extracted

396 Chapter 6 Association Analysis

patterns using hypothesis testing methods. A resampling-based technique was
also developed to avoid generating spurious patterns because of the multiple
comparison problem. Bolton et al. [237] have applied the Benjamini-Hochberg
[236] and Bonferroni correction methods to adjust the p-values of discovered
patterns in market basket data. Alternative methods for handling the multiple
comparison problem were suggested by Webb [326] and Zhang et al. [338].

Application of subjective measures to association analysis has been inves-
tigated by many authors. Silberschatz and Tuzhilin [307] presented two prin-
ciples in which a rule can be considered interesting from a subjective point of
view. The concept of unexpected condition rules was introduced by Liu et al.
in [277]. Cooley et al. [243] analyzed the idea of combiuing soft belief sets
using the Dempster-Shafer theory and applied this approach to identify contra-
dictory and novel association patterns in Web data. Alternative approaches
include using Bayesian networks [269] and neighborhood-based information
[245] to identify subjectively interesting patterns.

Visualization also helps the user to quickly grasp the underlying struc-
ture of the discovered patterns. Many commercial data mining tools display
the complete set of rules (which satisfy both support and confidence thresh-
old criteria) as a two-dimensional plot, with each axis corresponding to the
antecedent or consequent itemsets of the rule. Hofmann et al. [263] proposed
using Mosaic plots and Double Decker plots to visuakize association rules. This
approach cau visualize not only a particular rule, but also the overall coutin-
gency table between itemsets in the antecedent and consequent parts of the
rule. Nevertheless, this technique assumes that the rule consequeut consists of
only a single attribute.

Application Issues

Association analysis has been applied to a variety of application domains such
as Weh mining [206, 317], document analysis [264], telecommunication alarm
diagnosis [271], network intrusion detection [232, 244, 275], and bicinformatics
[302, 327]. Applications of association and correlation pattern analysis to
Earth Science studies have been investigated in [208, 209, 319].

Association patterns have also been applied to other learning problems
such as classification [276, 278]. regression [291], and clustering [257, 329, 332].
A comparisou hetween classification and association rule mining was made
by Freitas in his position paper [251]. The use of association patterns for
clustering has been studied by many authors including Han et al.[257], Kosters
et al. [272], Yang et al. [332] and Xiong et al. [329)].

Bibliography 397

Bibliography

[223] R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad. A Tree Projection Algorithm
for Generation of Frequent Itemsets. Journal of Parallel and Distributed Computing
(Special Issue on High Performance Data Mining), 61(3):350-371, 2001.

[224] R. C. Agarwal and J. C. Shafer. Parallel Mining of Association Rules. IEEE Transac-
tions on Knowledge and Data Engineering, 8(6):962-969, March 1998.

[225] C. C. Aggarwal, Z. Sun, and P. 8. Yu. Online Generation of Profile Association Rules.
In Proe. of the fth Intl. Conf. on Knowledge Discovery and Data Mining, pages 120-
133, New York, NY. August 1996G.

[226] C. C. Aggarwal and P. S. Yu. Mining Large Itemsets for Association Rules. Data
Engineering Bulletin, 21(1):23-31, March 1998.

[227] C. C. Aggarwal and P. S. Yu. Mining Associations with the Collective Strength
Approach. [EEE Trans. on Knouledge and Data Enginecering, 13(6):863-873, Jan-
uary /February 2001.

[228] R. Agrawal. T. Imielinski, and A. Swami. Database mining: A performance perspec-
tive. JIEEF Transactions on Knowledge and Data Engineering, 5:914-925, 1903.

[220] R. Agrawal. T. Imielinski, and A. Swami. Mining association rules between sets of
items in large databases. In Proc. ACM SIGMOD Intl. Conf. Management of Data,
pages 207 216, Washington, DC, 1093.

[230] R. Agrawal and R. Srikant. Mining Sequential Patterns. In Proc. of Intl. Conf. on

Data Engineering, pages 3—14, Taipei, Taiwan, 1995.

K. Ali, S. Manganaris, and R. Srikant. Partial Classification using Association Rules.

In Proc. of the 3rd Intl. Conf. on Knowledge Discovery and Data Mining, pages 115-

118, Newport Beach, CA, August 1997,

[232] D. Barbara. J. Couto. S. Jajodia, and N. Wu. ADAM: A Testbed for Exploring the
Use of Data Mining in Intrusion Detection. SIGMOD Record, 30(4):15-24, 2001.

[233] S. D. Bay and M. Pazzani. Detecting Group Differences: Mining Contrast Sets. Dala

Mining and Knowledge Discovery, 5(3):213-246. 2001.

R. Bayardo. Efficiently Mining Long Patterns from Databases. In Proc. of 1998 ACM-

SIGMOD Intl. Conf. on Management of Data, pages 85-03, Seattle, WA, June 1998.

[235] R. Bayardo and R. Agrawal. Mining the Most Interesting Rules. In Proc. of the 5th
Intl. Conf. on Knowledge Discovery and Data Mining, pages 145 153, San Diego, CA,
August 1909,

[236] Y. Benjamini and Y. Hochberg. Controlling the False Discovery Rate: A Practical

and Powerful Approach to Multiple Testing. Jowrnal Royal Statistical Soctety B, 57

{1):280-300, 1995.

R. J. Bolton, D. J. Hand, and N. M. Adams. Determining Hit Rate in Pattern Search.

In Proc. of the ESF Ezploratory Workshop on Paitern Detection and Discovery in

Data Mining, pages 3648, London, UK, September 2002.

S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: Generalizing associ-

ation rules to correlations. In Proe. ACM SIGMODP Inil. Conf. Management of Data,

pages 265-276, Tucson. AZ, 1997.

S. Brin, R. Motwani, J. Ullman, and S. Tsur. Dynamic Itemset Counting and Impli-

cation Rules for market basket data. In Prec. of 1997 ACM-SIGMOD Intl. Conf. on

Management of Data, pages 255-264, Tucson. AZ, June 1997,

[240] C. H. Cai, A. Fu, C. H. Cheng, and W. W. Kwong. Mining Association Rules with
Weighted Items. In Proc. of IEEE Intl. Database Engineering and Applications Symp.,
pages 68-77, Cardiff, Wales, 1098,

231

[234

(237

238

1239

398

[241]

[242]

[243]

[244)

[248]

[246]

[247]

[248]

[249]

[250]

[251]
[252]

[253]

[254]

[255]

[256]

Chapter 6 Association Analysis

Q. Chen, U. Dayal, and M. Hsu. A Distributed OLAP infrastructure for E-Commerce.
In Proc. of the {th IFCIS Intl. Conf. on Cooperative Information Systems, pages 200—
220, Edinburgh, Scotland, 1999.

D. C. Cheung. S. D. Lee, and B. Kao. A General Incremental Technique for Maintaining
Discovered Association Rules. In Proc. of the 5th Intl. Conf. on Database Systems for
Advanced Applications, pages 185-194, Melbourne, Australia, 1997,

R. Cocley, P. N. Tan, and J. Srivastava. Discovery of Interesting Usage Patterns
from Web Data. In M. Spiliopoulou and B. Masand. editors. Advances in Web Usage
Analysis and User Profiling, volume 1836. pages 163-182. Lecture Notes in Computer
Science, 2000,

P. Dokas, L. Ertoz, V. Kumar, A. Lazarevic, J. Srivastava, and P. N. Tan. Data Mining
for Network Intrusion Detection. In Proc. NSF Workshop on Next Generation Date
Mining, Baltimore, MD, 2002,

G. Dong and J. Li. Interestingness of discovered association rules in terms of
neighborhood-based unexpectedness. In Proc. of the 2rnd Pacific-Asia Conf. on Knowl-
edge Discovery and Data Mining. pages 72-86, Melbourne, Australia. April 1998.

@G. Dong and J. Li. Efficient Mining of Emerging Patterns: Discovering Trends and
Differences. In Proc. of the 5th [ntl. Conf. on Knowledge Discovery and Data Mining,
pages 43-52. San Diego, CA, August 1099,

W. DuMouchel and D. Pregibon. Empirical Bayes Screening for Multi-Item Associa-
tions. In Proe. of the 7th Intl. Conf. on Knowledge Discovery and Data Mining, pages
G7-76, San Francisco, CA, August 2001.

B. Dunkel and N. Soparkar. Data Organization and Access for Efficient Data Mining.
In Proc. of the 15th Intl. Conf. on Data Engineering, pages 522 529, Sydney, Australia,
March 1999,

C. C. Fabris and A. A. Freitas. Discovering surprising patterns by detecting occurrences
of Simpson's paradox. In Proc. of the 19th SGES Intl Conf. on Knowledge-Based
Systems and Applied Artificial Intelligence), pages 148-160, Cambridge, UK, December
1999,

L. Feng, H. J. Lu, J. X. Yu, and J. Han. Mining inter-transaction associations with
templates. In Proc. of the 8th Intl. Conf. on Information and Knowledge Management,
pages 225-233, Kansas City. Missouri, Nov 1999,

A. A. Freitas. Understanding the crucial differences between classification and discoy-
ery of association rules—a position paper. SIGKDD Ezplorations, 2(1}:65-69. 2000.
J. H. Friedman and N. L. Fisber. Bump hunting in high-dimensional data. Statistics
and Computing, 9(2):123-143, April 1999.

T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Mining Optimized Asso-
ciation Rules for Numeric Attributes. In Proc. of the 15th Symp. on Principles of
Database Systems, pages 182 191, Montreal, Canada, June 1996.

D. Gunopulos, R. Khardon, H. Mannila, and H. Toivonen. Data Mining, Hypergraph
Transversals, and Machine Learning. In Proe. of the [6th Symp. on Principles of
Database Systems, pages 209-216, Tucson, AZ, May 1997,

E.-H. Han, G. Karypis, and V. Kumar. Min-Apriori: An Algorithin for Finding As-
sociation Rules in Data with Clontinuous Attributes. http://www.cs.umn.edu/ han,
1997,

E.-H. Han. G. Karypis, and V. Kumar. Scalable Parallel Data Mining for Association
Rules. In Proc. of 1997 ACM-SIGMOD Intl. Conf on Management of Data, pages
277288, Tucson, AZ, May 1657,

[257]

[258]

[250]

[260

261

1262

[263]

[264

1265

266

1267

268

1260

270

2y

[272]

[273]

Bibliography 399

E.-H. Han, G. Karypis, V. Kumar, and B. Mobasher. Clustering Based on Association
Rule Hypergraphs. In Proc. of the 1997 ACM SIGMOD Workshop on Research Issues
in Data Mining and Knowledge Discovery, Tucson, AZ, 1997,

J. Han, Y. Fu, K. Koperski, W. Wang, and O. R. Zaiane. DMQL: A data mining query
language for relational databases. In Proc. of the 1996 ACM SIGMOD Workshop on
Research Issues in Data Mining end Knowledge Discovery, Montreal, Canada, June
1996.

J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns without Candidate Generation.
In Proc. ACM-SIGMGD Int. Conf. on Management of Data (SIGMOD'00), pages
1-12, Dallas, TX, May 2000.

C. Hidber. Online Association Rule Mining. In Proe. of 1099 ACM-SIGAMGD Inti.
Conf. on Management of Data, pages 145-156, Philadelphia, PA, 1999.

R. J. Hilderman and H. J. Hamilton. Knowledge Discovery and Measures of Interest.
Kluwer Academic Publishers, 2001,

J. Hipp, U. Guntzer, and G. Nakhaeizadeh. Algoritbms for Association Rule Mining—
A General Survey. Sigk DD Ezplorations, 2(1):58-04, Jnne 2000.

H. Hofmann, A. P. J. M. Siebes, and A. F. X. Wilhelm. Visualizing Association Rules
with Interactive Mosaic Plots. In Proc. of the 6th [ntl. Conf. on Knowledge Discovery
and Data Mining, pages 227 235, Boston, MA, August 2000.

J. D. Holt and S. M. Chung. Efficient Mining of Association Rules in Text Databases.
In Proc. of the 8th Intl. Conf. on Information and Knowledge Management, pages
234-242, Kansas City, Missouri, 1999.

M. Houtsma and A. Swami. Set-oriented Mining for Association Rules in Relational
Databases. In Proc. of the {1th Intl. Conf. on Data Engineering, pages 25 33, Taipei,
Taiwan, 1995.

Y. Huang, S. Shekhar, and H. Xiong. Discovering Co-location Patterns from Spatial
Datasets: A General Approach. IEEFE Trans. on Knowledge and Date Engineering, 16
(12):1472-1485, December 2004.

T. Imielinski, A. Virmani. and A. Abdulghani. DataMine: Application Programming
Interface and Query Language for Database Mining. In Proc. of the 2nd Intl. Conf.
on Knowledge Discovery and Data Mining, pages 256-262, Portland, Oregon. 1996.
A. Inokuchi, T. Washio, and H. Motoda. An Apriori-based Algorithm for Mining
Frequent Substructures from Graph Data, In Proe, of the {th European Conf. of Prin-
ciples and Practice of Knowledge Discovery in Databases, pages 13-23, Lyon, France,
2000.

S. Jaroszewicz and D. Simovici. Interestingness of Frequent Itemsets Using Bayesian
Networks as Background Knowledge. In Proc. of the 10th Intl. Conf. on Knowledge
Driscovery and Data Mining, pages 178—186, Seattle, WA, August 2004.

M. Kamber and R. Shinghal. Evaluating the Interestingness of Characteristic Rules. In
Pro¢. of the 2nd Intl. Conf. on Knowledge Discovery and Data Mining, pages 263-266,
Portland. Oregon, 1996G.

M. Klemettinen. A Knowledge Discovery Methodology for Telec ication Network
Alarm Databases. PhD thesis. University of Helsinki. 1999.

W. A. Kosters, E. Marchiori, and A. Oecrlemans. Mining Clusters with Assaciation
Rules. In The 3rd Symp. on Intelligent Data Analysis (IDA99). pages 30-50, Amster-
dam, August 1999.

C. M. Kuok, A. Fu, and M. H. Wong. Mining Fuzzy Association Rules in Databases.
ACM SIGMOD Record, 27(1):41-46, March 1998

400

[2r4]
[275]

[276]

[277]

[278]

[279]

[280]

1]

[282]

[283)

[284]

(285]

[286]
[287)

288]

[289]

[200]

[201]

Chapter 6 Association Analysis

M. Kuramochi and G. Karypis. Frequent Subgraph Discovery. In Proc. of the 2001
IEEE Intl. Conf. on Data Mining. pages 313-320. San Jose, CA, November 2001.

W. Lee, S. J. Stolfo, and K. W. Mok. Adaptive Intrusion Detection: A Data Mining
Approach. Artificial Intelligence Review, 14{6):533-567, 2000.

‘W. Li, J. Han, and J. Pei. CMAR: Accurate and Efficient Classification Based on
Multiple Class-association Rules. In Proc. of the 200! IEEE Intl. Conf. on Data
Mining, pages 369-376, San Jose, CA, 2001,

B. Liu, W. Hsu, and 8. Chen. Using General Impressions to Analyze Discovered
Classification Rules. In Proc. of the 3nd Intl. Conf. on Knowledge Discovery and Data
Mining, pages 31-3G, Newport Beach, CA, August 1997.

B. Liu, W, Hsu, and Y. Ma. Integrating Classification and Association Rule Mining.
In Proc. of the fth Intl. Conf. on Knowledge Discovery and Data Mining, pages 80-36,
New York, NY. August 1998,

B. Liu, W. Hsu, and Y. Ma. Mining association rules with multiple minimum supports.
In Proc. of the 5th Intl. Conf. on Knowledge Discovery end Data Mining, pages 125
134, San Diego, CA, August 1999.

B. Lin, W. Hsu, and Y. Ma. Pruning and Summarizing the Discovered A ssociations. In
Proc. of the 5th Intl. Conf. on Knowledge Discovery and Data Mining, pages 125-134,
San Diego. CA, August 1099.

A. Marcus, J. 1. Maletic, and K.-I. Lin. Ordinal association rules for error identifi-
cation in data sets. In Proe. of the 10th Intl. Conf. on Information and Knouwledge
Management, pages 583-591, Atlanta, GA, October 2001.

N. Megiddo and R. Srikant. Discovering Predictive Association Rules. In Proe. of the
4th Intl. Conf. on Knowledge Discovery and Data Mining. pages 274 278, New York,
August 1908,

R. Meo, G. Psaila. and 8. Ceri. A New SQL-like Operator for Mining Association
Rules. In Proc. of the 22nd VLDB Conf., pages 122-133. Bombay, India, 1996.

R. J. Miller and Y. Yang. Association Rules over Interval Data. In Proc. of 1997
ACM-SIGMOD Intl. Conf. on Management of Data. pages 452 461, Tucson, AZ, May
1997.

Y. Morimoto, T. Fukuda, H. Matsuzawa, T. Tokuyama, and K. Yoda. Algorithms for
mining association rules for binary segmentations of huge categorical databases. In
Proe, of the 2Jth VLDB Conf,, pages 380-391, New York, August 1098,

F. Mosteller. Association and Estimation in Contingency Tables. Journal of the Amer-
ican Statistical Association, 63:1-28, 1068.

A. Mueller. Fast sequential and paralle]l algorithms for association rule mining: A
comparison. Technical Report CS-TR-3515, University of Maryland, August 1095,
R.T. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory Mining and Pruning
Optimizations of Constrained Association Rules. In Proc. of 1998 ACM-SIGMOD Intl.
Conf. on Monagement of Data, pages 13-24, Seattle, WA, June 1998.

E. Omiecinski, Alternative Interest Measures for Mining Associations in Databases,
IEEE Trens. on Knowledge end Data Engineering, 15(1):57-69. January/February
2003,

B. Ozden, S. Ramaswamy, and A. Silberschatz. Cyclic Association Rules. In Proc. of
the tfth Intl. Conf. on Daia FEng., pages 412421, Orlando. FL, February 1998,

A. Ozgur. P. N. Tan. and V. Kumar. RBA: An Integrated Framework for Regression
based on Association Rules. In Proc. of the SIAM Intl. Conf. on Data Mining, pages
210-221, Orlando, FL, April 2004.

[202)

[203]

[204]

[205

296

[207

298

209

[300]

1301

[302

303

[304]

305

306

1307]

308

Bibliography 401

J. 8. Park, M.-S. Chen, and P. S. Yu. An effective hash-based algorithm for mining
association rules. SIGMOD Record, 25(2):175-186, 1905,

S. Parthasarathy and M. Coatney. Efficient Discovery of Common Substructures in
Macromolecules. In Proc. of the 2002 IEEE Intl. Conf. on Data Mining, pages 362-369,
Maebashi City, Japan. December 2002.

N. Pasquier. Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets
for association rules. In Proc. of the 7th Intl. Conf. on Database Theory (ICDT99),
pages 398 416, Jerusalem, Israel, January 1999.

J. Pei, J. Han, H. I. Lu, S. Nishio, and S. Tang. H-Mine: Hyper-Structure Mining of
Frequent Patterns in Large Databases. In Proc. of the 2001 IEEE Intl. Conf. on Date
AMining, pages 441448, San Jose, CA, November 2001,

J. Pei. J. Han. B. Mortazavi-Asl, and H. Zhu. Mining Access Patterns Efficiently from
Web Logs. In Proc. of the {th Pacific-Asia Conf. on Knowledge Discovery and Data
Mining, pages 396—407. Kyoto, Japan. April 2000.

G. Piatetsky-Shapiro. Discovery, Analysis and Presentation of Strong Rules. In
G. Piatetsky-Shapiro and W. Frawley, editors, Knowledge Discovery in Databases,
pages 220-248. MIT Press. Cambridge, MA, 1991.

C. Potter, S. Klocster, M. Steinbach, P. N. Tan, V. Kumar, 5. Shekhar, and C. Car-
valho. Understanding Global Teleconneetions of Climate to Regional Model Estimates
of Amazon Ecosystem Carbon Fluxes. Global Change Biology, 10(5):603-703, 2004,
C. Potter. 5. Klooster, M. Steinbach. P. N. Tan, V. Kumar, S. Shekhar, R. Myneni.
and R. Nemani. Global Teleconnections of Ocean Climate to Terrestrial Carbon Flux.
J. Geophysical Research, 108(D17), 2003.

G. D. Ramkumar, S. Ranka, and S. Tsur. Weighted Association Rules: Model and
Algorithm. http://www.cs,ucla.edu /" czdemo/tsur/, 1097,

S. Sarawagi, S. Thomas, and R. Agrawal. Integrating Mining with Relational Database
Systems: Alternatives and Implications. In Proc. of 1998 ACM-SIGMOD Intl. Conf.
on Management of Date, pages 343-354, Seattle, WA, 1998

K. Satou, G. Shibayama, T. Ono, Y. Yamamura, E. Furuichi, 8. Kuhara, and T. Takagi.
Finding Association Rules on Heterogeneous Genome Data. In Prec. of the Pacific
Symp. oen Biocomputing, pages 397 408, Hawaii, January 1997.

A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining associ-
ation rules in large databases. In Proc. of the 21st Int. Conf. on Very Large Databases
(VLDB95), pages 432-444, Zurich, Switzerland, September 1995.

A. Savasere, E. Omiecinski, and $. Navathe. Mining for Strong Negative Associations
in a Large Database of Customer Transaetions. In Proc. of the 1fth Intl. Corf. on
Date Engineering, pages 494-502, Orlando, Florida, February 1998,

M. Seno and G. Karypis. LPMiner: An Algorithm for Finding Frequent Itemsets Using
Length-Decreasing Support Constraint. In Proc. of the 2001 IEEE Intl. Conf. on Data
Mining, pages 505 512. San Jose, C'A. November 2001.

T. Shintani and M. Kitsuregawa. Hash based parallel algorithms for mining asscciation
rules. In Proc of the {th Intl. Conf on Parallel end Distributed Info. Systems, pages
19-30, Miami Beach, FL, December 1096

A. Silberschatz and A. Tuzhilin. What makes patterns interesting in knowledge discov-
ery systems. IEEE Trens. on K ledge and Data Engineering, 8(0):970-974, 1096,
C, Silverstein, S, Brin, and R, Motwani., Beyond market baskets; Generalizing associ-
ation rules to dependence rules. Data Mining and Knowledge Diseovery, 2(1):30-G8,
1998.

402 Chapter 6 Association Analysis

[309] E.-H. Simpson. The Interpretation of Interaction in Contingency Tables. Jowrnal of

the Royal Statistical Society. B(13):238-241, 1951.

L. Singh, B. Chen, R. Haight, and P. Scheuermann. An Algorithm for Constrained
Association Rule Mining in Semi-structured Data. In Proc. of the 3rd Pacifie-Asia
Conf. on Knowledge Discovery and Data Mining. pages 148-158, Beijing, China, A pril
1999,

R. Srikant and R. Agrawal. Mining Quantitative Association Rules in Large Relational
Tables. In Proc. of 1996 ACM-SIGMOD Intl. Conf. on Management of Data, pages
1 12, Montreal, Canada. 1996.

BIBLIOGRAPHY 403

[325] K. Wang, S. H. Tay, and B. Liu. Interestingness-Based Interval Merger for Numeric

Association Rules. In Proc. of the {th Intl. Conf. on Knowledge Discovery and Date
Mining, pages 121 128, New York, NY, August 1998,

G. 1. Webb. Preliminary investigations into statistically valid exploratory rule dis-
covery. In Proc. of the Ausiralesian Date Mining Workshop (AusDMO03). Canberra,
Australia, December 2003.

H. Xiong. X. He, C. Ding, Y. Zhang, V. Kumar, and S. R. Holbrook. Identification
of Functional Modules in Protein Complexes via Hyperclique Pattern Discovery. In
Proc. of the Pacific Symposium on Biocomputing, (PSE 2005). Maui, January 2005.

[312] R. Srikant and R. Agrawal. Mining Sequential Patterns: Generalizations and Perfor- [328] H. Xiong. 8. Shek)har. P. N. _T“n‘ and V Kumar. Explult.mg a,ASuApportfbased Upper
mance Improvements. In Proe. of the 5th Intl Conf. on Eztending Database Technology Bound of Pearson’s Correlation Coefficient for Efficiently Identifying Strongly Corre-
(EDBT96), pages 1832, Avignon, France, 1906 lated Pairs. In Proc. of the 10th Intl. Conf. on Knowledge Discovery and Data Mining,

[313] R. Srikant, Q. Vu, and R. Agrawal. Mining Association Rules with Ttem Constraints. pages 334-343, Seattle, WA, August 2004,

In Proc. of the 8nd Intl. Conf. an Knowledge Discovery and Data Mining, pages 67-73, [329] H.' Xiong. M Stemban].l. B:N; Tongand V: Kumar: HICAP: Hlerarchla! clusterlng
with Pattern Preservation. In Proc. of the SIAM Intl. Conf. on Data Mining, pages
Newport Beachy CA: Angust 1997; 279-200, Orlando, FL, April 2004.

[314] M. steinbach. P. N. Tan, and V IKumar. Support Envelopes: A Technique for Ex- [330] H. Xioné, P.N. ’Iy‘a.n. !zmd V. Kumar. Mining Strong Affinity Association Patterns in
plocingsihe: Bueturesof Assodiatlon Lattemns; In Brog, of the 10tfintt. Conf: on Data Sets with Skewed Support Distribution. In Proc. of the 2003 IEEE Intl. Conf.
Knowledge Discovery and Dota Mining, pages 206 305, Seattle, WA, August 2004, on Date Mining, pages 387 304, Melbourne, FL, 2003.

[315] M. Steinbach, P. N. Tan. H. Xiong. and V. Kumar. Extending the Notion of Support. [331] X. Yan and J. Han. gSpan: Graph-based Substructure Pattern Mining. In Proc. of
In Proc. of the 10th Intl. Conf. on Knowledge Discovery and Data Mining, pages 689~ the 2002 IEEE Intl. Conf. on Data Mining, pages 721-724, Macbashi City. Japan,
694, Seattle, WA, August 2004. December 2002,

[316] E. Suzuki. Autonomous Discovery of Reliable Exception Rules. In Proc. of the 3rd [332] C. Yang, U. M. Fayyad, and P. S. Bradley. Efficient discovery of error-tolerant frequent
Intl. Conf. on Knowledge Discovery and Data Mining, pages 250-202, Newport Beach, itemsets in high dimensions. In Proc. of the 7th Intl. Conf. on Knowledge Discovery
CA. August 1997, and Data Mining, pages 104—203, San Francisco, CA, August 2001.

[317] P. N. Tan and V. Kumar. Mining Association Patterns in Web Usage Data. In Proc. [333] M. J.Zaki. Parallel and Distributed Association Mining: A Survey. IEEE Concurrency.
of the Intl. Conf. on Advences in Infrastructure for e-Business, e-Education, e-Science special issue on Parailel Mechanisms for Data Mining, T(4):14-25 December 1999.
and e-Medicine on the Internet, L'Aquila, Ttaly, January 2002. [334] M. J. Zaki. Generating Non-Redundant Association Rules. In Proc. of the 6th Intl.

[318] P. N. Tan. V. Kumar, and J. Srivastava. Selecting the Right Interestingness Measure Conf. on Knowledge Discovery and Data Mining. pages 34 43, Boston, MA, August
for Association Patterns. In Proc. of the 8th Intl. Conf. on Knowledge Discovery and 2000.

Data Mining, pages 32-41, Edmonton, Canada, July 2002. [335] M. J. Zaki. Efficiently mining frequent trees in a forest. In Proc. of the 8th Intl.

[319] P.N. Tan, M. Steinbach. V. Kumar, S. Klooster, C. Potter, and A. Torregrosa. Finding Conf. on Knowledge Discovery and Data Mining, pages 71 80. Edmonton, Canada,
Spatio-Temporal Patterns in Earth Science Data. [n KDD 2001 Workshop on Temporal July 2002', ; i . e
Data Mining, San Francisco, CA. 2001. [336] M. J. Zaki and M. Oribara. Theoretical foundations of association rules. In Proc. of

the 1998 ACM STGMOD Workshop on Research fssues in Data Mining and Knowledge
Discovery. Seattle, WA, June 1998,
[337] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New Algorithms for Fast
Discovery of Association Rules. In Proc. of the 3rd Intl, Conf. on Knowledge Discovery
and Data Mining, pages 283-286, Newport Beach, CA, August 1997,
H. Zhang, B. Padmanabhan, and A. Tuzbilin. On tbe Discovery of Significant Statis-
tical Quantitative Rules. In Proc. of the {0ih Intl. Conf. on Knowledge Discovery and

[320] H. Toivonen. Sampling Large Databases for Association Rules. In Proc. of the 22nd
VLDB Conf.. pages 134-145, Bombay, India, 199G.

[321] H. Toivonen, M. Klemettinen, P. Ronkainen, K. Hatonen. and H. Mannila. Pruning
and Grouping Discovered Association Rules. In ECML-95 Workshop on Statistics,
Machine Learning and Knowledge Diseovery in Databases, pages 47 52, Heraklion, 238
Greece, April 1995,

[322] 8. Tsur, J. Ullman, S. Abiteboul, C. Clifton, R. Motwani, S. Nestorav, and A. Rosen- Data Mining, pages 374-383, Seattle, WA, August 2004.
thal. Query Flocks: A Generalization of Association Rule Mining. In Proc. of 1998 [339] Z. Zhang, Y. Lu, and B. Zhang. An Effective Partioning-Combining Algorithm for
ACM-SIGMOD Intl. Conf. on Management of Data, pages 1-12, Seattle, WA, June Discovering Quantitative Association Rules. In Proc. of the st Pacific-Asia Conf. on
1908, Knouwledge Discovery and Date Mining, Singapore, 1997,

[323] A. Tung, H. J. Lu. J. Han, and L. Feng. Breaking the Barrier of Transactions: Mining [340] N. Zhong, Y. Y. Yao, and S. Ohsuga. Peculiarity Oriented Multi-database Mining. In
Inter-Transaction Association Rules. In Proc. of the 5th Intl. Conf. on Knowledge Proc, of the 3rd European Conf. of Principles and Practice of Knowledge Discovery in
Discovery and Data Mining, pages 297-301, San Diego, CA, August 1999, Databases, pages 136 146, Prague. Czech Republic, 1909,

[324] K. Wang, Y. He. and J. Han. Mining Frequent Itemsets Using Support Constraints.
In Proc. of the 26th VL DB Conf., pages 43-52, Cairo, Egypt, September 2000.

404 Chapter 6 Association Analysis

6.10 Exercises

1. For each of the following questions, provide an example of an association rule
from the market basket domain that satisfies the following conditions. Also,
describe whether such tules are subjectively mteresting.

(a) A rule that has high support and high confidence.

(b) A rule that has reasonably high support but low confidence.
(c) A rule that has low support and low confidence.

(d) A rule that has low support and high confidence.

2. Consider the data set shown in Table 6.22.

Table 6.22. Example of market baskst transactions.

Customer ID | Transaction ID | Items Bought

1 0001 Ta.d. e}

1 0024 {a.b,c,e}
9 0012 {a,b,d, e}
2 0031 {a.e,d, e}
3 0015 {b,e, e}

3 0022 {bd,e}

4 0029 {e.d}

4 0040 {a.b,c}

5 0033 {a.d, e}

5 0038 {a.b e}

(a) Compute the support for itemsets {e}, {b,d}, and {b,d, e} by treating
each transaction ID as a market basket.

(b) Use the results in part (a) to compute the confidence for the associa-
tion rules {b,d} — {e} and {e} — {b,d}. Is confldence a symmetric
measure?

{c¢) Repeat part (a) by treating each customer ID as a market basket. Each
item should be treated as a binary variable (1 if an item appears in st
least one transaction bought by the customer, and 0 otherwise.)

(d) Use the results in part (¢) to compute the confidence for the association
rules {b,d} — {e} and {e} — {b.d}.

(e) Suppose s, and ¢, are the snpport and confidence values of an association
rule » when treating each transaction ID as a market basket. Also, let sp
and ez be the support and confideuce values of r when treatiug each cus-
tomer ID' as a market basket. Discuss whether there are any relationships
between ¢; and s; or 3 and c;.

6.10 Exercises 405

3. (a) What is the confidence for the rules — 4 and 4 — 07

(b) Let ey, ez, and cg be the confidence values of the rules {p} — {q},
{p} — {g¢.7}. and {p,r} — {q}, respectively. If we assume that ¢;. ¢o,
and ¢z have different values, what are the possible relationships that may
exist among c1, c2, and ca? Which rule has the lowest confidence?

{¢) Repeat the analysis m part (b) assuming that the rules have identical
support. Which rule has the highest confidence?

(d) Transitivity: Suppose the confidence of the rules A — B and B — C
are larger than some threshold, minconf. Is it possible that A — (" has
a confidence less than mincon f?

4. For each of the following measures, determine whether it is monotone, anti-
monotone, or non-monotone (i.e., neither monotone nor anti-monotone).
Example: Snpport, s = Z[!T"rﬁ) is anti-monotone because s(X) >
3(Y) whenever X C Y.

(a) A characteristic rule i3 a rule of the form {p} — {q1,¢2....,9x}, where
the rule antecedent contains ouly a single item. An itemset of size k can
produce up to k characteristic rules. Let ¢ be the minimum confidence of
all characteristic rules generated from a given itemset:

¢Hpipesoml) = min [e({p} — {B2pss.o o B}
e({pe} — {p1.pa.. . oa-t1})]

Is ¢ monotone, anti-monotone, or non-monotone?

{(b) A discriminant rule is a rule of the form {py.ps,....p.} — {g}. Where
the rule consequent contains only a single item. An itemset of size k can
produee up to & diseriminant rules. Let 7 be the minimum confidence of
all discriminant rules generated from a given itemset:

9({pr.pz,....pk}) = min[e({pz,pa..... o} — {1}
e({pr,p2 - peor} — ()]

Is » monotone, anti-monotone, or non-monctone?

{c

Repeat the analysis in parts (a) and (b) by replacing the min funetion
with a max function.

5. Prove Equation 6.3. (Hint: First, count the number of ways to create an itemset
that forms the left hand side of the rule. Next, for each size k itemset selected
for the left-hand side, count the number of ways to choose the remaining d — k
items to form the right-hand side of the rule.)

406 Chapter 6 Association Analysis

Table 6.23. Market basket transactions.

Transaction ID | Items Bought

{Milk, Beer, Diapers}

{Bread, Butter, Milk}

{Milk, Diapers, Cookies}
{Bread, Butter, Cookies}
{Beer, Cookies, Diapers}
{Milk, Diapers, Bread, Butter}
{Bread, Butter, Diapers}
{Beer, Diapers}

{Milk, Diapers, Bread, Butter}
{Beer, Cookies}

==l R e N S

6. Consider the market basket transactions shown in Table 6.23.

(a) What is the maximum numbher of association rules that can he extracted
from this data {including rules that have zero support)?

(b) What is the maximum size of frequent itemsets that ean be extracted
(assuming minsup > 0)?

(¢) Write an expression for the maximum number of size-3 itemsets that can
be derived from this data set.

(d) Find an itemset (of size 2 or larger) that has the largest support,

(e) Find a pair of iterns, ¢ and b, such that the rules {a} — {b} and {b} —
{a} have the same confidence.

7. Consider the following set of frequent 3-itemsets:
{1,2,3},{1.2,4},{1,2,5},{1,3,4},{1.3,5}.{2,3,4},{2,3,5}, {3,4,5}.
Assume that there are only five items in the data set.

(a) List all candidate 4-itemsets obtained hy a candidate generation procedure
using the Fy_; x F| merging strategy.

(b) List all candidate 4-itemsets obtained by the candidate generation proce-
dure in Apriori.

(¢) List all candidate 4-itemsets that survive the candidate pruning step of
the Apriori algorithm.

8, The Apriori algorithm uses a generate-and-count strategy for deriving frequent
itemsets. Candidate itemsets of size k + 1 are created by joining & pair of
frequent itemsets of size k (this is known as the candidate generation step). A
candidate is discarded if any one of its subsets is found to be infrequent during
the candidate pruning step. Suppose the Apriori algorithm is applied to the

6.10 Exercises 407

Tablke 6.24. Example of market basket transactions.

Transaction 1D | Items Bought
{a.b,d, e}
{b,c,d}
{a.b,d, e}
{a.c.d,e}
{b,c,d,e}
{b,d,e}
{e.d)
{a.b.c}
{a.d,e}
{h.d)

OO U WD

—_
(=

data set shown in Table 6.24 with minsup = 30%, i.e., any itemset occurring
in less than 3 transactions is considered to be infrequent.

(a) Draw an itemset lattice representing the data set given in Tahle 6.24.
Label each node in the lattice with the following letter(s):

e N: If the itemset is not considered to be a candidate itemset by
the Apriori algorithm. There are two reasons for an itemset not to
be considered as a candidate itemset: (1) it is not generated at all
during the candidate generation step, or (2) it is generated during
the candidate generation step but is subsequently removed during
the candidate pruning step because one of its subsets is found to be
infrequent.

F: If the candidate itemset is found to be frequent by the Apriori
algorithm.

I: If the candidate itemset is found to be infrequent after support
counting.

(b) What is the percentage of frequent itemsets (with respect to all itemsets
in the lattice)?

{c) What is the pruning ratio of the Apriori algorithm on this data set?
(Pruning ratio is defined as the percentage of itemsets not considered
to be a candidate because (1) they are not generated during candidate
generation or (2) they are pruned during the candidate pruning step.)

(d) What is the false alarm rate (i.e, percentage of candidate itemsets that
are found to be infrequent after performing support counting)?

9. The Apriori algorithm uses a hash tree data structure to efficiently count the
support of candidate itemsets. Consider the hash tree for candidate 3-itemsets
shown in Figure 6.32.

408 Chapter 6 Association Analysis

3,69 147

2,5,
L5 L6 L7
eay | 1246y | 1258}
{278} {289}
L4

369

Figure 6.32. An example of a hash tree structure.

(a) Given a transaction that contains items {1.3.4, 5,8}, which of the hash
tree leaf nodes will be visited when finding the candidates of the transac-
tion?

(b) Use the visited leaf nodes in part (b) to determine the eandidate itemsets
that are contained in the transaction {1,3,4,5,8}.

10. Consider the following set of candidate 3-itemsets:
{1.2,3},{1,2,6}, {1, 3,4}, {2,3, 4}, {2.4,5}. {3, 1.6}, {4. 5,6}

(a) Construct a hash tree for the above candidate 3-itemsets. Assume the
tree uses a hash function where all odd-numbered items are hashed to
the left child of a node, while the even-numbered items are hashed to the
right child. A candidate k-itemset is inserted into the tree by hashing on
each successive item in the candidate and then following the appropriate
branch of the tree according to the hash value. Once a leaf node is reached,
the candidate is inserted based on one of the following conditions:

Condition 1: If the depth of the leaf node is equal to & (the oot is
assumed to be at depth 0), then the candidate is inserted regardless
of the number of itemsets already stored at the node.

Condition 2: If the depth of the leaf node is less than k, then the candi-
date can be inserted as long as the number of iteinsets stored at the
node is less than maxsize. Assume maxsize = 2 for this question.

Condition 3: If the depth of the leaf node is less than & and the numher
of itemsets stored at the node is equal to marsize, then the leaf
node is converted into an internal node. New leaf nodes are created
as children of the old leaf node. Candidate itemsets previously stored

6.10 Exercises 409

(b)

(e)

Figure 6.33. An itemset lattice

in the old leaf node are distributed to the children based on their hash

values. The new candidate is also hashed to its appropriate leaf node.
How many leaf nodes are there in the candidate hash tree? How many
internal nodes are there?

Consider a transaction that contains the following items: {1,2,3,5,6}.
Using the hash tree construected in part (a), which leaf nodes will be
checked against, the transaction? What are the candidate 3-itemsets con-
tained in the transaction?

11. Given the lattice structure shown in Figure 6.33 and the transactions given in
Table 6.24, label each node with the following letter(s):

Af if the node is & maximal frequent itemset,

C if it is a elosed frequent itemset,

N if it is frequent but neither maximal nor closed, and
I if it is infregnent.

Assume that the support threshold is equal to 30%.

12. The original association rule mining formulation uses the snpport and confi-
dence measures to prune uninteresting rules.

410 Chapter 6 Association Analysis

(a) Draw a contingency table for each of the following rules using the trans-
actions shown in Table 6.25.

Table 6.25. Example of market baskst transactions.

Transaction ID | Ttems Bought
{a,b,d.e}
{b,e,d}
{a,b,d.e}
{a,c.d.e}
{b,e.d,e}
{b,d e}
fe.d)
{a,b,e}
{a,d,e}
{o.d}

© 00~ U LN

—
(=1

Rules: {8} — {e}, {a} — {d}, {8} — {d}. {e} — {e}. {c} — {a}.

(h) Use the contingency tables in part {a} to compute and rank the rnles in
decreasing order according to the following measures.

. Support.

ii. Confidence.

_Pxyy

iii. Interest{X —Y) = 209] PY).

= . __ P(X.Y)
iv. I8(X — V) = 2.

v. Klosgen(X — Y} = /P(X, V)x(P(Y|X)—P(Y)), where P(Y|X) =

PX.Y)
PRy
vi. Odds ratio(X — V) = pEplee il

13. Given the rankings you had obtained in Exercise 12, compnte the correlation
between the rankings of confidence and the other five measnres. Which measure
is most highly correlated with confidence? Which measure is least correlated
with confidence?

14, Answer the following questions using the data sets shown in Figure 6.34. Note
that each data set contains 1000 items and 10,000 transactions. Dark cells
indicate the presence of items and white cells indicate the absence of items. We
will apply the Apriori algorithm to extract frequent itemsets with minsup =
10% (i.e., itemsets must be contained in at least 1000 transactions)?

(a) Which data set(s) will produce the most number of frequent itemsets?

6.10 Exercises 411

(b) Which data set(s) will produce the fewest number of frequent itemsets?
{c) Which data set{s) will produce the longest frequent itemset?

(d) Which data set(s) will prodnce frequent itemsets with highest maximum
support?

(e) Which data set(s) will produce frequent itemsets containing items with
wide-varying support levels (i.e., items with mixed snpport, ranging from
less than 20% to more than 70%}.

15. (a) Prove that the ¢ coefficient is equal to 1 if and only if fi; = fi; = fy1.
(b) Show that if A and B are independent, then P(4, B)x P(4, B) = P(4,B)x
P(A,B).
(c) Show that Yule's @ and Y coefficients

0 [fnfoo - flofm}
fuifoo + frofor

VJll]Dﬂ -V]10301

ro- {M+m‘]

are normalized versions of the odds ratio.

(d) Write a simplified expression for the value of each measure shown in Tables
6.11 and 6.12 when the variables are statistically independent.

16. Consider the mterestingness measure, M = %&;‘m, for an association

rule A — B.

(a) What is the range of this measure? When does the measnre attain its
maximum and minimum values?

(b) How does A behave when P(A, B) is increased while P(A) and P(B)
remain unchanged?

(c) How does Af behave when P(A) is increased while P(A, B) and P(B)
remain unchanged?

(d) How does A behave when P(B) is increased while P(A, B) and P(A)
remain unchanged?

(e) Is the measure symmetric under variable permutation?

(F) What is the value of the measure when A and B are statistically indepen-
dent?

(g) Is the measure null-invariant?

(h) Does the measure remain invariant under row or column scaling opera-
tions?

(i) How does the measure behave under the inversion operation?

412

Transactions

Transactions

Transactions

Chapter 6 Association Analysis

ltems

2000
4000
6000
8000
200 400 600 800
(a)
ltems.
-
L]
I — 2000
~ 4000
= I ———— .
] - L 6000
| — .
" - 8000
I n
N
200 400 600 800
(¢)
ltems
L} & L] I
il o
|||||| ||r_ s
| . L 6000
.
I I I I L 8000
-
| ']

200 400 600 800
(e)

Transactions

Transactions

Transactions

ltems
I |
n
] "
. 2000
L]
4000
—
- . 8000
I — . [B000
"o. —
200 400 600 800
(b)
ltems
— .
-
I L |
2000
—
— - 4000
L
.
=1 - + 6000
—
- 8000
n L —
200 400 600 800
(d)
Items
. |
- 2000
10% ara 1s 4000
90% are Os
(uniformly distributed) | 000
- 8000

200 400 600 800
0

Figure 6.34. Figures for Exercise 14.

6.10 Exercises 413

17. Suppose we have market basket data consisting of 100 transsetions and 20
items. If the support for item a is 25%, the support for item b is 90% and the
support for itemset {a,b} is 20%. Let the support and confidence thresholds
be 10% and 60%, respectively.

(a) Compute the confidence of the association rule {a} — {b}. Is the rule
interesting according to the confidence measure?

(b) Compute the interest measure for the association pattern {a,b}. Deseribe
the nature of the relationship between item « and item b in terms of the
interest measure.

{¢) What conclusions can you draw from the results of parts {a) and (b})?

(d) Prove that if the confidence of the rule {a} — {b} is less than the support
of {b}, then:

L c(fa} — {b}) > c({a} — {b}),

i e{{a} — {b}) > s({b}),
where c(-} denote the rule confidence and s(-) denote the support of an
itemnset.

18. Table 6.26 shows a 2 x 2 x 2 contingency table for the binary variables A and
B at different values of the control variable €.

Table 6.26. A Contingency Table.

A
1 0
1 0 15
G=0 |B g 15 30
1 5 0
Cui | B
o 0 15

(a) Compute the ¢ coeflicient for 4 and B when C=0,C=1,and C=0or

_ P(A.B)-P(A)P(B)
1. Note that ¢({4,B}) = TR P T

(b) What conclusions can you draw from the above result?

19. Consider the contingency tables shown in Table 6.27.

(a) For table I, compute support, the interest measure, and the ¢ correla-
tion coefficient for the association pattern {A, B}. Also, compute the

confidence of rules 4 — Band B — A.

414 Chapter 6 Association Analysis

Table 6.27. Contingercy tables for Exsrcise 19.

B B B B
Al 9|1 Al8| 1
Al 1 |89 Al1] 9
(a) Table I. (b) Table IL.

(b) For table II, compute support, the interest measure, and the ¢ cotrela-
tion coefficient for the association pattern {A, B}. Also, compute the
confidence of rules A — B and B — A.

() What conclusions can you draw from the results of (a} and (b)?

20, Consider the relationship between customers who buy high-definition televisions
and exercise machines as shown in Tables 6.19 and 6.20.

(a) Compute the odds ratios for both tables,
(b) Compute the ¢-coeflicient for both tables.
{c) Compute the interest factor for hoth tables.

For each of the measures given above, describe how the direction of association
changes when data is pooled together instead of being stratified.

Cluster Analysis:
Basic Concepts and
Algorithms

Cluster analysis divides data into groups (clusters) that are meaningful, useful,
or both. If meaningful groups are the goal, then the clusters should capture the
natural structure of the data. In some casca, however, cluster analysis is only a
useful starting point for other purposes, such as date summarization. Whether
for understanding or utility, cluster analysis has long played an important
role in a wide variety of fields: psychology and other social sciences, biology,
statistics, pattern recognition, information retrieval, machine learning, and
data mining.

There have been many applications of cluster analysis to practical prob-
lems. We provide some specific examples, organized by whether the purpose
of the clustering is understanding or utility.

Clustering for Understanding Classes, or conceptually meaningful groups
of objects that share common characteristics, play an impartant role in how
people analyze and describe the world. Indeed, human beings are skilled at
dividing objects into groups (chistering) and assigning particular objects to
these groups (classification). For example, even relatively young children can
quickly label the objects in a photograph as buildings, vehicles, people, ani-
mals, plants, etc. In the context of understanding data, clusters are potential
classes and cluster analysis is the study of techniques for automatically finding
classes. The following are some examples:

488 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

e Biology. Biologists have spent many years creating a taxonomy (hi-
erarchical classification) of all living things: kingdom, phylum, class,
order, family, genus, and species. Thus, it is perhaps not surprising that
much of the early work in cluster analysis sought to create a discipline
of mathematical taxonomy that could automatically find such classifi-
cation structures. More recently, biologists have applied clustering to
analyze the large amounts of genetic information that are now available.
For example, clustering has been used to find groups of genes that have
similar functions.

Information Retrieval. The World Wide Web consists of billions of
‘Web pages, and the results of a query to a search engine can return
thousands of pages. Clustering can be used to group these search re-
sults into a small number of clnsters, each of which captures a particular
aspect of the query. For instance, a query of “movie” might return
‘Web pages grouped into categories such as reviews, trailers, stars, and
theaters. Each category (cluster) can be broken into subcategories (sub-
clusters), producing a hierarchical structure that further assists a user’s
exploration of the query resnlts.

Climate. Understanding the Earth's climate requires finding patterns
in the atmosphere and ocean. To that end, cluster analysis has been
applied to find patterns in the atmospheric pressure of polar regions and
areas of the ocean that have a significant impact on land climate.

Psychology and Medicine. An illness or condition [requently has a
number of variations, and cluster analysis can be used to identify these
different snbcategories. For example, clnstering has been used to identify
different types of depression. Cluster analysis can also be used to detect
patterns in the spatial or temporal distribution of a disease.

Business. Businesses collect large amounts of information on current
and potential customers. Clustering can be used to segment custorers
into a small number of groups for additional analysis and marketing
activities.

Clustering for Utility Cluster analysis provides an abstraction from in-
dividual data objects to the clusters in which those data objects reside. Ad-
ditionally, some clustering techniques characterize each cluster in terms of a
cluster prototype; i.e., a data object that is representative of the other ob-
jects in the cluster. These cluster prototypes can be used as the basis for a

489

number of data analysis or data processing techniques. Therefore, in the con-
text of utility, cluster analysis is the study of techniques for finding the most
representative cluster prototypes.

e Summarization. Many data analysis techniques, such as regression or
PCA, bave a time or space complexity of O(m?) or higher (where m is
the number of objects), and thus, are not practical for large data sets.
However, instead of applying the algorithm to the entire data set, it can
be applied to a reduced data set consisting only of cluster prototypes.
Depending on the type of analysis, the nnmber of prototypes, and the
accuracy with which the prototypes represent the data, the results can
be comparable to those that would bave been obtained if all the data
could have been used.

e Compression. Cluster prototypes can also be used for data compres-
sion. In particular, a table is created that consists of the prototypes for
each cluster; i.e., eacb prototype is assigned an integer value that is its
position (index) in the table. Each object is represented by the index
of the prototype associated with its cluster. This type of compression is
known as vector quantization and is often applied to image, sonnd,
and video data, where (1) many of the data objects are highly similar
to one another, (2) some loss of information is acceptable, and (3) a
substantial reduction in the data size is desired.

Efficiently Finding Nearest Neighbors. Finding nearest neigbbors
can Tequire computing the pairwise distance between all points. Often
clusters and their cluster prototypes can be found much more efficiently.
If objects are relatively close to the prototype of their cluster, then we can
use the prototypes to reduce the number of distance computations that
are necessary to find the nearest neighbors of an object. Intuitively, if two
cluster prototypes are far apart, then the objects in the corresponding
clusters cannot be nearest neighbors of each other. Consegnently, to
find an object’s nearest neighbors it is only necessary to compute the
distance to objects in nearby clnsters, where the nearness of two clusters
is measured by the distance between their prototypes. This idea is made
more precise in Exercise 25 on page 94.

This chapter provides an introduction to cluster analysis. We begin with

a high-level overview of clustering, including a discussion of the various ap-
proaches to dividing objects into sets of clusters and the different types of
clusters. We then describe three specific clustering techniques that represent

490 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

broad categories of algorithms and illustrate a variety of concepts: K-means,
agglomerative hierarchical clustering, and DBSCAN. The final section of tbis
chapter is devoted to cluster validity—methods for evaluating the goodness
of the clusters produced by a clustering algorithm. More advanced clustering
concepts and algorithms will be discussed in Chapter 9. Whenever possible,
we discuss the strengths and weaknesses of different schemes. In addition,
the bibliographic notes provide references to relevant books and papers that
explore cluster analysis in greater depth.

8.1 Overview

Before discussing specific clustering techniques, we provide some necessary
background. First, we further define cluster analysis, illustrating why it is
difficult and explaining its relationship to other techniques that group data.
Then we explore two important topics: (1) different ways to group a set of
objects into a set. of clusters, and (2) types of clusters.

8.1.1 What Is Cluster Analysis?

Cluster analysis groups data objects based only on information found in the
data that describes the objects and tbeir relationships. The goal is tbat the
objects within a group be similar (or related) to one another and different from
(or unrelated to) the objects in other groups. The greater the similarity (or
homogeneity) within a group and the greater the difference between groups,
the better or more distinet the clustering.

In many applications, the notion of a cluster is not well defined. To better
understand the difficulty of deciding what constitutes a cluster, consider Figure
8.1, whicb shows twenty points and three different ways of dividing them into
clusters. The shapes of the markers indicate cluster membership. Figures
8.1(b) and 8.1(d) divide the data into two and six parts, respectively. However,
the apparent division of each of the two larger clusters into three subclusters
may simply be an artifact of the human visual system. Also, it may not be
unreasonable to say that the points form four clusters, as shown in Figure
8.1{c). This figure illustrates that the definition of a cluster is imprecise and
that the best definition depends on the nature of data and the desired results.

Cluster analysis is related to other techniques that are used to divide data
objects into groups. For instance, clustering can be regarded as a form of
classification in that it creates a labeling of objects with class (cluster) labels.
However, it derives these labels only from the data. In contrast, classification

8.1 Overview 491

LX) ® '.l 0

LI] L] im a4
. * . [} L& .
(A ¢ en & ° L aaa’
L] LX) [} AA
{a) Original points. (b} Two clusters.
++?+ + -*‘, ++++ . i',,
v * + ®e v .® L |
" 0'0. * 'v 0.0. .
(c) Four clusters. (d) Six clusters.

Figure 8.1. Different ways of clustering the same set of points.

in the sense of Chapter 4 is supervised classification; i.e., new, unlabeled
objects are assigned a class label using a model developed from objects with
known class labels. For this reason, cluster analysis is sonietimes referred
to as unsupervised classification. When the term classification is used
without any qualification within data mining, it typically refers to supervised
classification.

Also, while the terms segmentation and partitioning are sometimes
used as synonyms for clustering, these terms are frequently used for approaches
outside the traditional bounds of cluster analysis. For example, the term
partitioning is often used in connection with techniques that divide graphs into
subgraphs and that are not strongly connected to clustering. Segmentation
often refers to the division of data into groups using simple techmques; e.g.,
an image can be split into segments based only on pixel intensity and color, or
people can be divided into groups based on their income. Nonetheless, some
work in graph partitioning and in image and market segmentation is related
to cluster analysis.

8.1.2 Different Types of Clusterings

An entire collection of clusters is commonly referred to as a clustering, and in
this section, we distinguish various types of clnsterings: hierarchical (nested)
versus partitional {unnested), exclusive versus overlapping versus fuzzy, and
complete versus partial.

Hierarchical versus Partitional The most commonly discussed distinc-
tion among different types of clusterings is whether the set of clusters is nested

492 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

or unnested, or in more traditional terminology. hierarchical or partitional. A
partitional clustering is simply a division of the set of data objects into
non-overlapping subsets {clusters) such that each data object is in exactly one
subset. Taken individually, each collection of clusters in Figures 8.1 (b—d) is
a partitional clustering.

If we permit clusters to have subclusters, then we obtain a hierarchical
clustering, which is a set of nested clusters that are organized as a tree. Each
node (cluster) in the tree (except for the leaf nodes) is the union of its children
(subclusters), and the root of the tree is the cluster containing all the objects.
Often, but not always, the leaves of the tree are singleton clusters of individual
data objects. If we allow clusters to be nested, then one interpretation of
Figure 8.1(a) is that it has two subclusters (Figure 8.1(b)), each of which, in
turn, bas three subclusters (Figure 8.1(d)). The clusters shown in Figures 8.1
(a—d), when taken in that order, also form a hierarchical (nested} clustering
with, respectively, 1, 2, 4, and 6 clusters on each level. Finally, note that a
hierarchical clustering can be viewed as a sequence of partitional clusterings
and a partitional clustering can be obtained by taking any member of that
sequence; i.e., by cutting the hierarchical tree at a particular level.

Exclusive versus Overlapping versus Fuzzy The clusterings shown in
Figure 8.1 are all exclusive, as they assign each object to a single cluster.
There are many situations in which a point could reasonably be placed in more
than one cluster, and these situations are better addressed by non-exclusive
clustering. In the most general sense, an overlapping or non-exclusive
clustering is used to reflect the fact that an object can simultancously belong
to more than one group (class). For instance, a. person at a university can be
both an enrolled student and an employee of the university. A non-exclusive
clustering is also often nsed when, for example, an object is “between” two
or more clusters and could reasonably be assigned to any of these clusters.
Imagine a point halfway between two of the clusters of Figure 8.1. Rather
than make a somewhat arbitrary assignment of the object to a single cluster,
it is placed in all of the “equally good” clusters.

In a fuzzy clustering, every object belongs to every cluster with a mem-
bership weight that is between 0 (absolutely doesn’t belong) and 1 (absolutely
belongs). In other words, clusters are treated as fuzzy sets. (Matbematically,
a fuzzy set is one in which an object belongs to any set with a weight that
is between 0 and 1. In fuzzy clustering, we often impose the additional con-
straint that the sum of the weights for each object must equal 1.) Similarly,
probabilistic clustering techniques compute tbe probability with which each

8.1 Overview 493

point belongs to each cluster, and these probabilities must also sum to 1. Be-
cause the membership weights or probabilities for any object sum to 1, a fuzzy
or probabilistic clustering does not address true multiclass situations, such as
the case of a student employee, where an object belongs to multiple classes.
Instead, these approaches are most appropriate for avoiding the arbitrariness
of assigning an object to only one cluster when it may be close to several. In
practice, a fuzzy or probabilistic clustering is often converted to an exclusive
clustering by assigning each object to the cluster in which its membership
weight or probability is highest.

Complete versus Partial A complete clustering assigns every object to
a cluster, whereas a partial clustering does not. The motivation for a partial
clustering is that some objects in a data set may not belong to well-defined
groups. Many times objects in the data set may represent noise, outliers, or
“uninteresting background.” For example, some newspaper stories may share
a common thene, such as global warniing, while other stories are more generic
or one-of-a-kind. Thus, to find the important topics in last month’s stories, we
may want to search only for clusters of documents that are tightly related by a
common theme. In other cases, a complete clustering of the objects is desired.
For example, an application that uses clustering to organize documents for
browsing needs to guarantee that all documents can be browsed.

8.1.3 Different Types of Clusters

Clustering aims to find useful groups of objects (clusters), where usefulness is
defined by the goals of the data analysis. Not surprisingly. there are several
different notious of a cluster that prove useful in practice. In order to visnally
illustrate the differences among these types of clusters, we use two-dimensional
points, as sbown in Figure 8.2, as our data objects. We stress, however, that
the types of clusters described here are equally valid for other kinds of data.

Well-Separated A cluster is a set of objects in which each object is closer
(or more similar) to every other object in the clnster than to any object not
in the clnster. Sometimes a thresbold is used to specify that all the objects in
a cluster must be sufficiently close {or similar) to one another. This idealistic
definition of a cluster is satisfied only when the data contaius natural clusters
that are quite far from each other. Figure 8.2(a) gives an example of well-
separated clusters that consists of two groups of points in a two-dimensional
space. The distance between any two points in different groups is larger than

494 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

the distance between any two points within a group. Well-separated clusters
do not need to be globular, but can have any shape.

Prototype-Based A cluster is a set of objects in which eacb object is closer
{more similar) to the prototype that defines the cluster than to the prototype
of any other cluster. For data with continuous attributes, the prototype of a
cluster is often a centroid, i.e., the average (mean) of all the points in the clns-
ter. When a centroid is not meaningful, such as when the data has categorical
attributes, the prototype is often a medoid, i.e., the most representative point
of a cluster. For many types of data, the prototype can be regarded as the
most central point, and in such instances, we commonly refer to prototype-
based clusters as center-based clusters. Not surprisingly, such clusters tend
to be globular. Figure 8.2(b) shows an example of center-based clusters.

Graph-Based If the data is represented as a graph. where the nodes are
objects and the links represent connections among objects (see Section 2.1.2),
then a cluster can be defined as a connected component; i.e., a group of
objects that are connected to one another, but that have no connection to
objects outside the group. An important example of graph-based clusters are
contiguity-based clusters, where two objects are connected ouly if they are
within a specified distance of each other. This imphes that each object in a
contiguity-based cluster is closer to some other object in the cluster than to
any point in a different cluster. Figure 8.2(c) shows an example of such clusters
for two-dimensional points. This definition of a cluster is useful when clusters
are irregular or intertwined, but can have trouble when noise is present since,
as illustrated by the two spherical clusters of Figure 8.2(c), a small bridge of
points can merge two distinct clusters.

Other types of graph-based clusters are also possible. One such approach
(Section 8.3.2) defines a cluster as a clique; i.e., a set of nodes in a graph that
are completely connected to each other. Specifically, if we add connections
between objects in the order of their distance from one another, a cluster is
formed when a set of objects forms a clique. Like prototype-based clusters,
such clusters tend to be globular.

Density-Based A closter is a dense region of objects that is surrounded by
a region of low density. Figure 8.2(d) shows some density-based clusters for
data created by adding noise to the data of Figure 8.2(c}. The two circular
clusters are not merged, as in Figure 8.2(c), because the bridge between them
fades into the noise. Likewise, the curve that is present in Figure 8.2(c) also

8.1 Overview 495

fades into the noise and does not form a cluster in Figure 8.2(d). A density-
based definition of a cluster is often employed when tbe clusters are irregular or
intertwined, and when noise and outliers are present. By contrast, a contiguity-
based definition of a cluster would not work well for the data of Figure 8.2(d)
since the noise would tend to form bridges between clusters.

Shared-Property (Conceptual Clusters) More generally, we can define
a cluster as a set of objects that share some property. This definition encom-
passes all the previous definitions of a cluster; e.g., objects in a center-based
cluster share the property that they are all closest to the same centroid or
medoid. However, tbe sbared-property approach also includes new types of
clusters. Consider the clusters shown in Figure 8.2(e). A triangular area
(cluster) is adjacent to a rectangular one, and there are two intertwined circles
(clusters). In both cases, a clustering algorithm would need a very specific
concept of a cluster to successfully detect these clusters. The process of find-
ing such clusters is called conceptual clustering. However, too sophisticated
a notion of a cluster would take us into the area of pattern recognition, and
thns, we only consider simpler types of clusters in this book.

Road Map

In this chapter, we use the following three simple, but important techniques
to introduce many of the concepts involved in cluster analysis.

e K-means. This is a prototype-based, partitional clustering technique
that attempts to find a user-specified number of clusters (K), which are
represented by tbeir centroids.

s Agglomerative Hierarchical Clustering. This clustering approach
refers to a collection of closely related clustering technignes that produce
a hierarchical clustering by starting with each point as a singleton cluster
and then repeatedly merging tbe two closest clusters until a single, all-
encompassing cluster remains. Some of these techniques have a natural
interpretation in terms of grapb-based clustering, while others bave an
interpretation in terms of a prototype-based approach.

e DBSCAN. This is a density-based clustering algorithm that produces
a partitional clustering, in which the number of clnsters is automatically
determined by the algorithm. Points in low-density regions are classi-
fied as noise and omitted; thns, DBSCAN does not produce a complete
clustering,.

496 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

O O

(a) Well-separated clusters. Each {b) Center-based clusters. Each
point. is eloser to all of the pointsin its point is closer to the center of its
cluster than to any point in another cluster than to the center of any
cluster. other cluster.

(¢) Contiguity-based clusters. Each (d) Density-based clusters. Clus-
point is cleser to at least one point ters are regions of high density sep-
in its cluster than to any peoint in arated by regions of low density.

another cluster.

(e) Conceptnal clusters. Points in a cluster share some general
property that derives from the entire set of points. {Points in the
intersection of the circles belong to both.)

Figure 8.2. Difierant types of clusters as il d by sets of two-di ional points.

8.2 K-means

Prototype-based clustering techmiques create a one-level partitioning of the
data objects. There are a number of such techniques, hut two of the most
prominent are K-means and K-medoid. K-means defines a prototype in terms
of a centroid, which is usually the mean of a group of points, and is typically

8.2 K-means 497

applied to objects in a continuous n-dimensional space. K-medoid defines a
prototype in terms of a medoid, which is the most representative point for a
group of points, and can be applied to a wide range of data since it requires
only a proximity measure for a pair of objects. While a centroid almost never
corresponds to an actual data point, a medoid, by its definition, must be an
actual data point. In this section, we will focus solely on K-means, which is
one of the oldest and maost widely used clustering algorithms.

8.2.1 The Basic K-means Algorithm

The K-means clustering technique is simple, and we begin with a description
of the basic algorithm. We first choose K initial centroids, where K is a user-
specified parameter, namely, the number of clusters desired. Each point is
then assigned to the closest centroid, and each collection of points assigned to
a centroid is a cluster. The centroid of each cluster is then updated based on
the points assigned to the cluster. We repeat the assignment and update steps
until no point changes clusters, or equivalently, until the centroids remain the
same.

K-means is formally described by Algorithm 8.1. The operation of K-means
is illustrated in Figure 8.3, which shows how, starting from three centroids, the
final clusters are found in four assignment-update steps. In these and other
figures displaying K-means clustering, each subfigure shows (1) the centroids
at the start of the iteration and (2) the assignment of the points to those
centroids. The centroids are indicated by the *+” symbol; all points belonging
to the same cluster have the same marker shape.

Algorithm 8.1 Basic K-means algorithm.
1: Seleet K points as initial centroids.
2: repeat
3: Form K clusters by assigning each point to its closest centroid.
4
5

Recompute the centroid of each cluster.
: until Centroids do not change.

In the first step, shown in Figure 8.3(a), points are assigned to the initial
centroids, which are all in the larger group of points. For this example, we use
the mean as the centroid. After points are assigned to a centroid, the centroid
is then updated. Again, the figure for each step shows the centroid at the
heginning of the step and the assignment of points to those centroids. In the
second step, points are assigned to the updated centroids, and the centroids

498 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

a8 A A A LA A A A
A A a a8 A 4
6 %n A AR B AQp Al A§AAA
a fal s A%A A qrA
N - P-I-T- S & n 8T8 P D0
g E.Aioc%’l 2 ann%a 2 2 dnpag® 2 A8 0
o 0% § 0 088 & p88A a NALK
o o [e] A& o A A
o n a a
Q) o+ o Q o o
ob ob ol of
200 200 aho o
Tege 88 Se%a MR gk BB o4ss SR
o (el ¢} o (o] o (eRe) o ‘00
(a) Tteration 1. {b) Iteration 2. (¢} Iteration 3. (d) Iteration 4.

Figure 8.3. Using the K-means algorithm te find three clusters in sample data.

are updated again. In steps 2, 3, and 4, which are shown in Figures 8.3 (b},
{c), and (d), respectively, two of the centroids move to the two small groups of
points at the bottom of the figures. When the K-means algorithm terminates
in Figure 8.3(d), because no more changes occur, the centroids have identified
the natural gronpings of points.

For some combinations of proximity functions and types of centroids, K-
means always converges to a solution; i.e., K-means reaches a state in which no
points are shifting from one cluster to another, and hence, the centroids don't
change. Because most of the convergence occurs in the early steps, however,
the condition on line 5 of Algorithm 8.1 is often replaced by a weaker condition,
e.g., repeat until only 1% of the points change clusters.

‘We consider each of the steps in the basic K-means algorithm in more detail
and then provide an analysis of the algorithm’s space and time complexity.

Assigning Points to the Closest Centroid

To assign a point to the closest centroid, we need a proximity measure that
quantifies the notion of “closest™ for the specific data under consideration.
Eudlidean (L) distance is often used for data points in Euclidean space, while
cosine similarity is more appropriate for documents. However, there may be
several types of proximity measures that are appropriate for a given type of
data. For example, Manhattan (L) distance can be used for Euclidean data,
while the Jaccard measure is often employed for documents.

Usually, the similarity measures used for K-means are relatively simple
since the algorithm repeatedly calculates the similarity of each point to each
centroid. In some cases, however, such as when the data is in low-dimensional

8.2 K-means 499

Table 8.1. Table of notation.

Symbol | Description
x An object.
C; The " cluster.
c; The centroid of cluster C;.
c The centroid of all points.
my The number of objects in the " cluster.
m The number of objects in the data set.
K The number of clusters.

Euclidean space, it is possible to avoid computing many of the similarities,
thus significantly speeding up the K-means algorithm. Bisecting K-means
(described in Section 8.2.3) is another approach that speeds up K-means by
reducing the number of similarities computed.

Centroids and Objective Functions

Step 4 of the K-means algorithm was stated rather generally as “recompute
the centroid of each cluster,” since the centroid can vary, depending on the
proximity measure for the data and the goal of the clustering. The goal of
the clustering is typically expressed by an objective function that depends on
the proximities of the points to one another or to the cluster centroids; e.g.,
minimize the squared distance of each point to its closest centroid. We illus-
trate this with two examples. However, the key point is this: once we have
specified a proximity measure and an objective function, the centroid that we
should choose can often be determined mathematically. We provide mathe-
matical details in Section 8.2.6, and provide a non-mathematical discussion of
this observation here.

Data in Euclidean Space Consider data whose praximity measnre is Eu-
clidean distance. For our objective function, which measures the quality of a
clnstering, we use the sum of the squared error (SSE), which is also known
as scatter. In other words, we calculate the error of each data point, i.e., its
Euclidean distance to the closest centroid, and then compute the total sum
of the squared errors. Given two different sets of clusters that are produced
by two different runs of K-means, we prefer the one with the smallest squared
error since this means that the prototypes (centroids) of this clustering are
a better representation of the points in their cluster. Using the notation in

Table 8.1, the SSE is formally defined as follows:

500 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

K

SSE = Z Z dist(c;, x)? (8.1)

=1 xeC,

where dist is the standard Euclidean (Ls) distance between two ohjects in
Eudlidean space.

Given thbese assumptions, it can he shown (see Section 8.2.6) that the
centroid that minimizes the SSE of the cluster is the mean. Using the notation
in Tahle 8.1, the centroid (mean) of the i? cluster is defined by Equation 8.2.

Ci= mi E x (8.2)

! xeC;

To illustrate, the centroid of a cluster containing the three two-dimensional
points, (1,1), (2,3), and (6,2), is ((L + 2+ 6)/3,((L + 3+ 2)/3) = (3,2).

Steps 3 and 4 of the K-means algorithm directly attempt to minimize
the SSE (or more generally, the objective function). Step 3 forms clusters
hy assigning points to their nearest centroid, which minimizes the SSE for
the given set of centroids. Step 4 recomputes the centroids so as to further
minimize the SSE. However, the actions of K-means in Steps 3 and 4 are only
guaranteed to find a local minimum with respect to the SSE since they are
based on optimizing the SSE for specific choices of the centroids and clusters,
rather than for all possible choices. We will later see an example in which this
leads to a suboptimal clustering.

Document Data To illustrate that K-means is not restricted to data in
Buclidean space, we consider document data and the cosine similarity measure.
Here we assume that the document data is represented as a document-term
matrix as described on page 31. Our objective is to maximize the similarity
of the documents in a cluster to the cluster centroid; this quantity is known
as the cohesion of the cluster. For this objective it can be shown that the
cluster centroid is, as for Euclidean data, the mean. The analogous quantity
to the total SSE is the total cohesion, which is given by Equation 8.3.

K
Total Cohesion = E Z cosine(X.c;) (8.3)
i=1 x€Cy

The General Case Tbere are a number of choices for the proximity func-
tion, centroid, and objective function that can be used in the basic K-means

8.2 K-means 501

Table 8.2, K-means: Commen choices for preximity, centroids, and objective functions.

Proximity Function Centroid | Objective Function

Manhattan (L) median | Minimize sum of the [; distance of an ob-
ject to its cluster centroid
Squared Euclidean {L%) rean Minimize sum of the squared Lo distance
of an object to its cluster centroid

cosine mean Maximize sum of the cosine similarity of
an objeet to its cluster centroid
Bregman divergence mean | Minimize sum of the Bregman divergence

of an object to its cluster centroid

algorithm and that are guaranteed to converge. Table 8.2 shows some possible
choices, including the two that we have just discussed. Notice that for Man-
hattan (L;) distance and the cbjective of minimizing the sum of the distances,
the appropriate centroid is the median of the points in a cluster.

The last entry in the table, Bregman divergence (Section 2.4.5), is actnally
a class of proximity measures that includes the squared Euclidean distance, 1.3,
the Mahalanobis distance, and cosine similarity. The importance of Bregman
divergence functions is that any such function can be used as the basis of a K-
means style clustering algorithm with the mean as the centroid. Specifically,
if we use a Bregman divergence as our proximity function, then the result-
ing clnstering algorithmi has the usual properties of K-means with respect to
convergence, local minma, etc. Furthermore, the properties of such a cluster-
ing algorithm can be developed for all possible Bregman divergences. Indeed,
K-means algorithms that use cosine similarity or squared Euclidean distance
are particular instances of a general clustering algorithm based on Bregman
divergences.

For the rest our K-means discussion, we use two-dimensional data since
it is easy to explain K-means and its properties for this type of data. But,
as suggested by the last few paragraphs, K-means is a very general clustering
algorithm and can be used with a wide variety of data types, such as documents
and time series,

Choosing Initial Centroids

When random initialization of centroids is used, different runs of K-means
typically produce different total SSEs. We illustrate this with the set of two-
dimensional points shown in Figure 8.3, whicb has three natural clusters of
points. Figure 8.4(a) shows a clustering solution that is the global mimimum of

502 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

aa a o
oy o O
AR At aaan
A P -3 ey
A AD ABAD a AD.09%0
a faY a o
8 dnpas 336009 °
a p0a g o £% g
a A o ©
a Q
s o = a
oo a0
oo o
oo ped o_ao i)
LB Dn O b a oog
a co a o
(a) Optimal clustering. {b) Suboptimal clustering.

Figure 8.4. Three optimal and non-optimal clusters.

the SSE for three clusters, while Figure 8.4(b) shows a suboptimal clustering
that is only a local minimum.

Choosing the proper initial centroids is the key step of the basic K-means
procedure. A common approach is to choose the initial centroids randomly.
but the resulting clusters are often poor.

Example 8.1 (Poor Initial Centroids). Randomly selected initial cen-
troids may be poor. We provide an example of this using the same data set
used in Figures 8.3 and 8.4. Figures 8.3 and 8.5 show the clusters that re-
sult from two particular choices of iuitial centroids. (For both figures, the
positions of the cluster centroids in the various iterations are indicated by
crosses.) In Figure 8.3, even though all the initial centroids are from one natu-
ral cluster, the minimum SSE clustering is still found. In Figure 8.5, however,
even though the initial centroids seem to be better distributed, we obtain a
suboptimal clustering, with higher squared error.]

Example 8.2 (Limits of Random Initialization). One techmque that
is commonly used to address the problem of choosing initial centroids is to
perform multiple runs, each with a different set of randomly chosen initial
centroids, and then select the set of clusters with the minimum SSE. While
simple, tbis strategy may not work very well, depending on the data set and
the number of clusters sought. We demonstrate this using the sample data set
shown in Figure 8.6(a). The data consists of two pairs of clusters, where the
clusters in each (top-bottom) pair are closer to each other than to the clusters
in the other pair. Figure 8.6 (b—d) shows that if we start with two initial
centroids per pair of clusters, then even when both centroids are in a single

8.2 K-means 503

A A A & A PN
A & p 5 A A
o & & a
BB + A An AN N Rpop Sl a
o A4 A e
o “a s tat e o -
e TN 0 n2oadad 4 208088 4 0 5 %0% 8 4
cuou(,Ao 30‘7“0% o o'gs 50 "0%‘03
o 9% § a oo’ S e o0 S a 0%
o o 2] Q o o o a
o o o o}
o ol = a a o3
.o no ao ao
©on oo o pg 9 0g
a : oo o _a o ¢
n”‘t” fdg LA DSDD o L ug;.u ao " + foa
d d
B oo . £ a oo s oo
(a) Iteration 1. (b) Iteration 2. (c) Iteration 3. {d) Iteration 4.

Figure 8.5. Poor starting centroids for K-means.

cluster, the centroids will redistribute themselves so that the “true” clusters
are found. However, Figure 8.7 shows that if a pair of clusters has only one
initial centroid and the other pair has three, then two of the true clusters will
be combined and one true cluster will be split.

Note that an optimal clustering will be obtained as long as two initial
centroids fall anywhere in a pair of clusters, since the centroids will redistribute
themselves, one to each cluster. Unfortunately, as the number of clusters
becomes larger, it is increasingly likely tbat at least one pair of clusters will
have only one initial centroid. (See Exercise 4 on page 559.) In this case,
because the pairs of clusters are farther apart than clusters within a pair, the
K-means algorithm will not redistribute the centroids between pairs of clusters,
and thus, only a local minimum will be achieved.]

Because of the problems with using randomly selected initial centroids,
which even repeated runs may not overcome, other techniques are often em-
ployed for initialization, One effective approach is to take a sample of points
and cluster them using a hierarchical clustering technique. K clusters are ex-
tracted from the hierarchical clustering, and the centroids of those clusters are
used as the initial centroids. This approach often works well, but is practical
only if (1) the sample is relatively small, e.g., a few hundred to a few thousand
(hierarchical clustering is expensive), and (2) K is relatively small compared
to the sample size.

The following procedure is another approach to selecting initial centroids.
Select the first point at random or take the centroid of all points. Then, for
each successive initial centroid, select the point that is farthest from any of
the initial centroids already selected. In this way, we obtain a set of initial

504 Chapter 8 Cluster Analysis: Basic Concepts and Algerithms

A a A (o]
a a
a
A A Ooooo afa 502 2
< A 00
AAga 8%, 8 s 0%,
AAD A o 00 AAB A o o0ov
a 08 a R8
a A
o go o A <A
Ty o v Y 2 g B %% %
B gbg vg v A ogg o v
oo vovy o SRR
D g v v o g o ¥
v v
{a) Initial points. (b) Tteration 1.
A & ° A A]
A A
A 692 o] ATD 692 o]
a co a [l
AAgA 095 AuéA °%
A A p © o0 A AL A ©co
Yo Qg
4] - <]
o o
0o oo o g O oo o
7 .
o a “l o a v %
B D-DF o v, v = o 7. V‘FV
olo v¥y oo vy
B g ¢ 2 - g W
v v
{c) Tteration 2. (d} Tteration 3.

Figure 8.6. Two pairs of clusters with a pair of initial centroids within each pair of dusters.

centroids that is guaranteed to be not only randomly selected but also well
separated. Unfortunately, such an approach can select outliers, rather than
points in dense regions (clusters). Also, it is expensive to compute the farthest
point from the current set of initial centroids. To overcome these problems,
this approach is often applied to a sample of the points. Since outhers are
rare, they tend not to show up in a random sample. In contrast, points
from every dense region are likely to be included unless the sample size is very
small. Also, the computation involved in finding the initial centroids is greatly
reduced because the sample size is typically much smaller than the number of
points,

Later on, we will discuss two other approaches that are useful for produc-
ing better-quality (lower SSE) clusterings: using a variant of K-means that

8.2 K-means 505

a a © a a8 o
ala 00 0O 5 h 4, 508 0
a 0% a oo
Aﬁga 00_0_0 Bna ° %y
And p 0 g © A AR A 00 ©
o o
+ oF: - o
+
A a
‘B 5 ot uv
A o ni a Y
fehe aha %
A -pnv " |:|y
Sl = A o @
a a
(a) Iteration 1. (b) Iteration 2.
A Al o A A o
s 00 © A’ s 00 0O
A A A o oo (AR ©s00
WA A 9%, A B 2%,
A AL A 0 o Q PV N-SN © 0o®
o o
a 4 a 5
+ +
a
A as A o~ A& oAb A o~
Ag A CIa a8 8 079
ATAA 4 " + 824 a s o
S oF p a 5T 5
A A o a § Fa¥ A& a a y
a a
(c) Iteration 3. (d) Iteration 4.

Figure 8.7. Two pairs of clusters with more or fewer than two inifial centroids within a pair of clusters.

is less susceptible to initialization problems (bisecting K-means) and using
postprocessing to “fixnp” the set of clusters produced.

Time and Space Complexity

The space requirements for K-means are modest because only the data points
and centroids are stored. Specifically, the storage required is O((m + K)n),
where m is the number of points and n is the number of attributes. The time
requirements for K-means are also modest—basically linear in the number of
data points. In particular, the time required is O(* K » m «n), where [is the
number of iterations required for convergence. As mentioned, I is often small
and can usually be safely bounded, as most changes typically occur in the

506 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

first few iterations. Therefore, K-means is linear in m, the number of points,
and is efficient as well as simple provided tbat K, the number of clusters, is
significantly less than m.

8.2.2 K-means: Additional Issues
Handling Empty Clusters

Oue of the problems with the basic K-means algorithm given earher is that
empty clusters can be obtained if no points are allocated to a cluster during
the assignment step. If this happens, then a strategy is needed to choose a
replacemnent centroid, since otherwise, the squared error will be larger than
necessary. One approach is to choose the point that is farthest away from
any current centroid. If nothing else, this eliminates the point that currently
coutributes most to tbe total squared error. Amnother approach is to choose
the replacement centroid from the cluster that has the highest SSE. This will
typically split the cluster and reduce the overall SSE of the clustering. If there
are several empty clusters, then this process can he repeated several times.

Outliers

When the squared error criterion is used, outliers can unduly influence the
clusters that are found. In particular, when outhers are present, the resulting
cluster centroids (prototypes) may not be as representative as they otherwise
would be and thus, the SSE will be higher as well. Because of this, it is often
useful to discover outliers and elmiinate them beforehand. It is important,
however, to appreciate that there are certain clustering apphlications for which
outliers should not be eliminated. When clustering is used for data com-
pression, every point must be clustered, and in some cases, such as financial
analysis, apparent outliers, e.g., unusually profitable customers, can he the
most interesting points.

An obvious issue is how to identify outliers. A number of techniques for
identifying outliers will be discussed in Chapter 10. If we use approaches that
remove outliers before clustering, we avoid clustering points that will not clus-
ter well. Alternatively, outliers can also be identified in a postprocessing step.
For instance, we can keep track of the SSE contributed by each point, and
eliminate those points with unusually high contributions, especially over mul-
tiple runs. Also, we may want to eliminate small clusters since tbey frequently
represent groups of outliers.

8.2 K-means 507

Reducing the SSE with Postprocessing

An obvious way to reduce the SSE is to find more clusters, i.e., to use a larger
K. However, in many cases, we would like to improve the SSE, but don't
want to increase the number of clusters. This is often possible because K-
means typically converges to a local minimum. Various techniques are used
to “fix up” the resulting clusters in order to produce a clustering that has
lower SSE. The strategy is to focus on individual clusters since the total SSE
is simply the sum of the SSE contributed by each cluster. (We will use the
termiuology total SSE aud cluster SSE, respectively, to avoid any potential
confusion.) We can change the total SSE by performing various operations
on the clusters, such as splitting or merging clusters. One commonly used
approach is to use alternate cluster splitting and merging phases. During a
splittiug phase, clusters are divided, while during a merging phase, clusters
are combined. In this way, it is often possihle to escape local SSE minima and
still produce a clustering solution with the desired number of clusters. The
following are some techmiques used in the sphitting and merging phases.

Two strategies that decrease the total SSE by increasing the numher of
clnsters are the following:

Split a cluster: The cluster with the largest SSE is usually chosen, but we
could also split the cluster with the largest standard deviation for one
particular attribute.

Introduce a new cluster centroid: Often the point that is farthest from
any cluster center is chosen. We can easily determine this if we keep
track of the SSE contributed by each point. Another approach is to
choose randomly from all points or from the points with tbe highest
SSE.

Two strategies that decrease the number of clusters, while trying to mini-
mize the increase in total SSE, are the following:

Disperse a cluster: This is accomnplished by removing the centroid that cor-
responds to the clnster and reassigning tbe points to other clusters. Ide-
ally, the cluster that is dispersed should be the one that increases the
total SSE the least.

Merge two clusters: The clusters with the closest centroids are typically
chosen, although another, perhaps better, approach is to merge the two
clusters that result in the smallest increase in total SSE. These two
merging strategies are the same ones that are used in the hierarchical

508 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

clustering techniques known as the centroid method and Ward's method,
respectively. Both methods are discussed in Section 8.3.

Updating Centroids Incrementally

Instead of updating cluster centroids after all points have been assigned to a
cluster, the centroids can be updated incrementally, after each assignment of
a point to a cluster. Notice that this requires either zero or two updates to
cluster centroids at each step, since a point either moves to a new cluster {two
updates) or stays in its current cluster (zero updates). Using an incremental
update strategy guarantees that empty clusters are not produced since all
clusters start with a single point, and if a cluster ever has only one point, then
that point will always be reassigned to the same cluster.

1n addition, if incremental updating is used, the relative weight of the point
being added may be adjusted; e.g., the weight of points is often decreased as
the clustering proceeds. While this can resnlt in hetter accuracy and faster
convergenee, it can be difficult to make a good choice for the relative weight,
especially in a wide variety of situations. These update issues are similar to
those involved in updating weights for artificial neural networks.

Yet another benefit of incremental updates has to do with using objectives
other than “minimize SSE.” Suppose that we are given an arbitrary objective
function to measure the goodness of a set of clusters. When we process an
individual point, we can compute the value of the cbjective function for each
possihle cluster assignment, and then choose the one that optimizes the objec-
tive. Specific examples of alternative objective functions are given in Section
8.5:2,

On the negative side, updating centroids incrementally introduces an or-
der dependency. In other words, the clusters produced may depend on the
order in which the points are processed. Although this can be addressed hy
randomizing the order in which the points are processed, the basic K-means
approach of updating the centroids after all points bave been assigned to clns-
ters has no order dependency. Also, incremental updates are slightly more
expensive. However, K-means converges rather quickly, and therefore, the
numher of points switching clusters quickly becomes relatively small,

8.2.3 Bisecting K-means

The bisecting K-means algorithm is a straightforward extension of the basic
K-means algorithm that is based on a simple idea: to obtain K closters, split
the set of all points into two clusters, select one of these clusters to split, and

8.2 K-means 509

so on, until X clusters have been produced. The details of bisecting K-means
are given by Algorithm 8.2.

Algorithm B.2 Bisecting K-means algorithm.
1: Initialize the list of clusters to contain the cluster consisting of all points.
2: repeat
3: Remwove a cluster from the list of clusters.
{Perform several “trial” bisections of the chosen cluster.}
for i = 1 to number of trials do
Biseet the selected eluster using basic K-means.
end for
Select the two clusters from the bisection with the lowest total SSE.
9: Add these two clusters to the list of elusters.
10: until Until the list of clusters contains X clusters.

e

There are a number of different ways to choose which cluster to split. We
can choose the largest cluster at each step, choose the one with the largest
SSE, or use a criterion based on both size and SSE. Different choices result in
different. clusters.

‘We often refine the resulting clusters by nsing their centroids as the initial
centroids for the basic K-means algorithm. This is necessary because, although
the K-means algorithm is guaranteed to find a clustering that represents a local
minimum with respect to the SSE, in bisecting K-means we are using the K-
means algorithm “locally,” i.e., to bisect individual clusters. Therefore, the
final set of clnsters does not represent a clustering that is a local minimum
with respect to the total SSE.

Example 8.3 (Bisecting K-means and Initialization). To illustrate that
bisecting K-means is less susceptible to imitialization problems, we show, in
Figure 8.8, how bisecting K-means finds four clusters in the data set originally
shown in Figure 8.6(a). In iteration 1, two pairs of clusters are found: in
iteration 2, the rightmost pair of clusters is split; and in iteration 3, the leftmost
pair of clusters is split. Bisecting K-means has less trouhle with initialization
because it performs several trial bisections and takes the one with the lowest
SSE, and because there are only two centroids at each step.]

Finally, by recording the sequence of clusterings produced as K-means
bisects clusters, we can also use bisecting K-means to produce a hierarchical
clustering.

510 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

¢ a .: o o v o
;oo <k o Bl 218 Vi
2 68a Q858 8e og ¥ gw RS

©ov g &AL 080 4 ooo vov o con
o ba o ca v Ao
* * % o
o
T P 2 ¢o g S oot g oy
250 IS ¢ 0 A& A 5 &
o A% age A 2%4a, %
2 Ry Fe? “Aﬂﬁé R %/@A&
o ¢ % N e % At A
o A
(a) Iteration 1. {b) Iteration 2. (c) Iteration 3.

Figure 8.8. Bisecting K-means on the four clusters example.

8.2.4 K-means and Different Types of Clusters

K-means and its variations have a uumber of limitations with respect to finding
different types of clusters. In particular, K-means has difficulty detecting the
“patural™ clusters, when clusters have non-spherical shapes or widely different
sizes or densities. This is illustrated by Figures 8.9, 8.10, and 8.11. In Figure
8.9, K-means cannot find the three natural clusters because one of the clusters
is much larger than the other two, and hence, the larger cluster is broken, while
one of the smaller clusters is combined with a portion of the larger cluster. In
Figure 8.10, K-means fails to find the three natural clusters because the two
smaller clusters are much denser than tbe larger cluster. Finally, in Figure
8.11, K-means finds two clusters that mix portions of the two natural clusters
because the shape of the natural clusters is not globular.

The difficulty in these three situatious is that tbe K-means objective fuuc-
tion is a mismatch for the kinds of clusters we are trying to find since it is
minimized by globular clusters of eqnal size and density or by clusters that are
well separated. However, these limitations can be overcome, in some sense, if
the user is willing to accept a clustering tbat breaks the natural clusters into a
number of subclusters. Figure 8.12 shows what happens to the three previous
data sets if we find six clusters instead of two or three. Each smaller cluster is
pure in the sense that it contains only points from one of the natural clusters.

8.2.5 Strengths and Weaknesses

K-means is simple and can be used for a wide variety of data types. It is also
quite efficient, even though multiple runs are often performed. Some variants,
including bisecting K-means, are even more efficient, and are less suscepti-
ble to initialization problems. K-means is not suitable for all types of data,

Sy 2Y
000,20
o 08 ,s%0 "0
atl | oYn
oLp 620 0%0R 00 9%
DDOO oc’2 0 0 0 ¢
S| ouoOOUOCOOO
n O 5 g0 o
Qe o000 O

(a) Original points.

8.2 K-means 511

OO o ©o
0L 0o g o
88 = OOOQ o & 6
U u 009,000 o
+4 0 g0 dec o o 0 ¢
-0 0 00000500()003
| o o o
¢ 0%0 0000
o0 Qo

(b) Three K-means clusters.

Figure 8.9. K-means with clusters of different size.

(a) Original points.

T - [} &
v
o o
AL LI S DS S
v v A’l@ﬁ@ﬁ £ B Srﬁcﬁ
v v v a 3 o ¢ u
vV v gV V % 0% ¢ 5 O C DD+
v v e}
v v] < O Rkl
v v B! > o o e -
EO A Dbggb OQC+OO DD’Q?FSD
v Vv ¥ > S) < Bk
v v o o
(a) Original points. (b) Three K-means clusters.
Figure 8.10. K-means with clusters of diflerent density.
i a
o 5 o]
s ¥ 6 o © DDD ol o
a‘*aceo’ﬁon 5 oHpoedio g
o oon ked - [Q o
a F v v @ T, v v DE‘]:‘ _b o 0 5 00
Pa 5 VN o o o 090
s vV 2 oo o Y =T 0 g o© o
Se W08 VWY oo "8 SaF ¥
vvv v v 00 o o
o
Vv vvvvvvv iV DOOOOOOO fe)
v gYvv o © s%00
vV Qo

(b) Two K-means clusters.

Figure 8.11. K-means with non-globular clusters.

512 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

A
¢ & D%
o ¢ 9 ATIT - o o
ofo s Tan gEee
o A A o
o ¢ o gV v
v v
© OO + ivd Dﬁbgp
(o]] v D%D
T v 5
o] Sle} v o
o v
(b) Unequal densities.
a
o
Dugl_ﬂ m] d
0
[> oo DDDQ <
s b 44_4
> A O q < ©
e s g.d 2%
> A <
B> %A <44 OﬁLo
> s B @ B
A% 5o o %
n © O—bo o <
° 5% 0
O
QO

{c) Nen-spherical shapes.

Figure 8.12. Using K-means to find clusters that are subdlusters of the natural clusters.

8.2 K-means 513

however. It cannot handle non-globular clusters or clusters of different sizes
and densities, although it can typically find pure subclusters if a large enough
number of clusters is specified. K-means also has trouble clustering data that
contains outliers. Outher detection and removal can help significantly in such
situations. Finally, K-means is restricted to data for which there is a notion of
a center (centroid). A related technique, K-medoid clustering, does not have
this restriction, but is more expensive.

8.2.6 K-means as an Optimization Problem

Here, we delve into the mathematics behind K-means. This section, which can
be skipped without loss of continuity, requires knowledge of calculus through
partial derivatives. Familiarity with optimization techniques, especially those
based on gradient descent, may also he helpful.

As mentioned earlier, given an objective function such as “minimize SSE.”
clustering can he treated as an optimization problem. One way to solve this
problem—to find a glohal optimum—is to enumerate all possible ways of di-
viding the points into clusters and theu choose the set of clusters that best
satisfies the objective function, e.g., that minimizes the total SSE. Of course,
this exhaustive strategy is computationally infeasible and as a result, a more
practical approach is needed, even if such an approach finds solutions that are
not guaranteed to be optimal. One technique, which is known as gradient
descent, is based on picking an initial solution and then repeating the fol-
lowing two steps: compute the change to the solution that best optimizes the
objective function and then update the solution.

We assume that the data is one-dimensional, i.e., dist(x,y) = (x — y)2
This does not change anythiug essential, but greatly simplifies the notation.

Derivation of K-means as an Algorithm to Minimize the SSE

In this section, we show how the centroid for the K-means algorithm can be
mathematically derived when the proximity function is Euclidean distance
and the objective is to minimize the SSE. Specifically, we investigate how we
can best update a cluster centroid so that the cluster SSE is minimized. In
mathematical terms, we seek to miinmize Fquation 8.1, which we repeat here,
specialized for one-dimensional data.

K
SSE=3 Y (ei— 1) (8.4)

i=1 reC,

514 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

Here, C; is the i** cluster, r is a point in C;, and ¢; is the mean of the it
cluster. See Table 8.1 for a complete list of notation.

We can solve for the k' centroid cg, which minimizes Equation 8.4, hy
differentiating the SSE, setting it equal to 0, and solving, as indicated below.

d & 4
a—qSSE = aTkZZ(qfr)

i=1zeC,
K 8)
= Y) pota-s)
i=1 reC, k
= ZQ*(E&—I;_.):O
zeChq
Z 2% (cp —ap) =0= mpcy = Z [kéck=iz Tj
my
zeCy, z€Cs €0l

Thus, as previously indicated, the hest centroid for minimizing the SSE of
a cluster is the mean of the points in the cluster.

Derivation of K-means for SAE

To demonstrate that the K-means algorithm can be applied to a variety of
different ohjective functions, we consider how to partition the data into K
clusters such that the sum of the Manhattan (L) distances of points from the
center of their clusters is minimized. We are seeking to ininimize the suin of
the Ly absolute errors (SAE) as given by the following equation, where disty,,
is the L; distance. Again, for notational simplicity, we use one-dimensional
data, i.e., dist, = |¢; — £|.

K
SAE =Y 5" dist,(ci, 1) (8.5)

i=1r€C;

We can solve for the A*® centroid cg, which minimizes Equation 8.5, by
differentiating the SAE, setting it equal to 0, and solving.

8.3 Agglomerative Hierarchical Clustering 515

2 2 <
9o SAE = B—GZZM*A

i=1z€C,

£ 9
- 3.3 B |]

i=1 zeC,

)
= > Se e~ =0

zeCy

a

E —og —ux| = 0= E sign(x —c) =0
6ck

reCy 2€Cy

If we solve for c, we find that ¢ = median{r € Ci}, the median of the
points in the cluster. The median of a group of points is straightforward to
compute and less susceptihle to distortion hy outhers.

8.3 Agglomerative Hierarchical Clustering

Hierarchical clustering techniques are a second important category of cluster-
ing methods. As with K-means, these approaches are relatively old compared
to many clustering algorithms, but they still enjoy widespread use. There are
two basic approaches for generating a hierarchical clustering:

Agglomerative: Start with the points as individual clusters and, at each
step, merge the closest pair of clusters. This requires defining a notion
of cluster proximity.

Divisive: Start with one, all-inclusive cluster and, at each step, split a cluster
until only singleton clusters of individual points remain. In this case, we
need to decide which cluster to split at each step and how to do the
splitting.

Agglomerative hierarchical clustering techniques are by far the most common,
and. in this section, we will focus exclusively on these methods. A divisive
hierarchical clustering technigne is descrihed in Section 9.4.2.

A hierarchical clustering is often displayed graphically using a tree-like
diagram called a dendrogram, which displays both the cluster-subcluster

516 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

p4

pl p2 p3 pd

(a) Dendrogram. (b} Nested cluster diagram.

Figure 8.13. A hierarchical clustering of four points shown as a dendrogram and as nested clusters.

relationships and the order in which the clusters were merged (agglomerative
view) or split (divisive view). For sets of two-dimensional points, such as those
that we will use as examples, a hierarchical clustering can also be graphically
represented using a nested cluster diagram. Figure 8.13 shows an example of
these two types of figures for a set of four two-dimensional points. These points
were clustered using the single-link technique that is described in Section 8.3.2.

8.3.1 Basic Agglomerative Hierarchical Clustering Algorithm

Many agglomerative hierarchical clustering techniques are variations on a sin-
gle approach: starting with individual points as clusters, successively merge
the two closest clusters until only one cluster remains. This approach is ex-
pressed more formally in Algorithm 8.3.

Algorithm 8.3 Basic agglomerative hierarchical clustering algorithm.

: Compute the proximity matrix, if necessary.

repeat
Merge the closest two clusters.
Update the proximity matrix to reflect the proximity between the new
cluster and the original clusters.

& until Only one cluster remains.

B e e

8.3 Agglomerative Hierarchical Clustering 517

Defining Proximity between Clusters

The key operation of Algorithm 8.3 is the computation of the proximity be-
tween two clusters, and it is the definition of cluster proximity that differ-
entiates the various agglomerative hierarchical techniques that we will dis-
cuss. Cluster proximity is typically defined with a particular type of cluster
in mind—see Section 8.1.2. For example, many agglomerative hierarchical
clusteriug techniques, such as MIN, MAX, and Group Average, come from
a graph-based view of clusters. MIN defines cluster proximity as the prox-
imity between the closest two points that are in different clusters, or using
graph terms, the shortest edge between two nodes in different subsets of nodes.
This yields contiguity-hased clusters as shown in Figure 8.2(c). Alternatively,
MAX takes the proximity between the farthest two points in different clusters
to he the cluster proximity, or using graph terms, the longest edge between
two nodes in different subsets of nodes. (If our proximities are distances, then
the names, MIN and MAX, are short and suggestive. For similarities, however,
where higher values indicate closer points, the names seem reversed. For that
reason, we usually prefer to use the alternative names, single link and com-
plete link, respectively.} Another graph-based approach, the group average
technique, defines cluster proximity to be the average pairwise proximities (av-
erage length of edges) of all pairs of poiuts from differeut clusters. Figure 8.14
illustrates these three approaches.

{a) MIN (single link.) (b) MAX (complete link.) (¢) Group average.

Figure 8.14. Graph-based definitions of cluster proximity

If, iustead, we take a prototype-based view, in which each cluster is repre-
sented by a centroid, different definitions of cluster proximity are more natural.
When using centroids, the cluster proximity is commonly defined as the prox-
imity between cluster centroids. An alternative technique, Ward’s method,
also assumes that a cluster is represented hy its centroid, but it measures the
proximity between two clusters in terms of the increase in the SSE that re-

518 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

sults from merging the two clusters. Like K-means, Ward's method attempts
to minimize the sum of the squared distances of points from tbeir cluster
centroids.

Time and Space Complexity

The basic agglomerative hierarchical clustering algorithm just presented uses
a proximity mastrix. This requires the storage of %mz proximities (assuming
the proximity matrix is symmetric) where m is the number of data points.
The space needed to keep track of the clusters is proportional to the number
of clusters, which is m — 1, excluding singleton clusters. Hence, the total space
complexity is O(m?).

The analysis of the basic agglomerative hierarchical clustering algorithm
is also straightforward with respect to computational complexity. O(m?) time
is required to compute the proximity matrix. After that step, there are m — 1
iterations involving steps 3 and 4 because there are m clusters at the start and
two clusters are merged during each iteration. If performed as a linear search of
the proximity matrix, then for the ith iteration, step 3 requires O{(m —i+1)?)
time, which is proportional to the current number of clusters squared. Step
4 only requires O{m — i + 1) time to update the proximity matrix after the
merger of two clusters. (A cluster merger affects only O(m — i + 1) proximities
for the techniques that we consider.} Without modification, this would yield
a time complexity of O(m?®). If the distances from each cluster to all otber
clusters are stored as a sorted list (or heap), it is possible to reduce the cost
of finding the two closest clusters to O{rn — i +1). However, because of the
additional complexity of keeping data in a sorted list or heap, the overall time
required for a hierarchical clustering based on Algorithm 8.3 is O(m?logm).

The space and time complexity of hierarchical clustering severely limits the
size of data sets that can be processed. We discuss scalability approaches for
clnstering algorithms, including hierarchical clustering techniques, in Section
9.5.

8.3.2 Specific Techniques

Sample Data

To illustrate the behavior of the various hierarchical clustering algorithms,
we shall use sample data that consists of 6 two-dimensional points, whicb are
shown in Figure 8.15. The r and y coordinates of the points and the Euclidean
distances between them are shown in Tables 8.3 and 8.4, respectively.

8.3 Agglomerative Hierarchical Clustering 519

08

1
L5

’ : Point | z Coordinate | y Coordinate
T pl 0.40 0.53
PY RO SO SRS SRS = 1 SR p2 0.22 0.38
0o : p3 0.35 0.32
e pd 0.26 0.19
01 p5 0.08 0.41
F p6 0.45 0.30

o 01 02z 03 04 05 08

Figure 8.15. Set of 6 two-dimensional points. Table 8.3. ry coordinates of 6 points.

pl p2 p3 pd p5 p6é
pl | 0.00 | 0.24 | 0.22 | 0.37 | 0.34 | 0.23
p2 | 0.24 | 0.00 | 0.15 | 0.20 | 0.14 | 0.25
p3 022|015 | 000|015 | 028 | 011
pd | 037020015 0.00 029022
p5 | 034|014 | 0.28 | 0.20 | 0.00 | 0.39
p6 | 0.23 | 025 | 0.11 | 0.22 | 0.39 | 0.00

Table 8.4. Euclidean distance matrix for 6 points.

Single Link or MIN

For the single link or MIN version of hierarchical clustering, the proximity
of two clusters is defined as the minimum of the distance {maxinwm of the
similarity) between any two points in the two different clusters. Using graph
terminology, if you start with all points as singleton clusters and add links
between points one at a time, shortest links first, then these single links com-
bine the points into clusters. The single link technique is good at handling
non-elliptical shapes, but is sensitive to noise and outliers.

Example 8.4 (Single Link). Figure 8.16 shows the result of applying the
single link technique to our example data set of six points. Figure 8.16(a})
shows the nested clusters as a sequence of nested ellipses, where the numbers
associated with the ellipses indicate the order of the clustering. Figure 8.16(b}
shows tbe same information, but as a dendrogram. The height at which two
clusters are merged in the dendrogram reflects the distance of the two clusters.
For instance, from Table 8.4, we see that the distance between points 3 and 6

520 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

0.2
0.15
[0}
0.05
0 3 6 2 5 4 1
(a} Single link clustering. (b) Single link dendrogram.

Figure 8.16. Single link clustering of the six points shown in Figure 8.15.

i5 0.11, and that is the height at which they are joined into one cluster in the
dendrogram. As another example, the distance between clusters {3,6} and
{2,5} is given by

dist({3,6},{2.5}) min(dist(3,2), dist(6,2), dist(3,5).dist(6,5))
min(0.15,0.25,0.28, 0.39)

0.15.

Complete Link or MAX or CLIQUE

Por the complete link or MAX version of hierarchical clustering, the proximity
of two clusters is defined as the maximum of the distance {minimum of the
similarity) between any two points in the two different clusters. Using graph
terminology, if you start with all points as singleton clusters and add links
hetween points one at a time, shortest links first, then a group of points is
not a cluster until all the points in it are completely linked, i.e., form a cligue.
Complete link is less susceptible to noise and outliers, but it can hreak large
clusters and it favors glohular shapes.

Example 8.5 (Complete Link). Figure 8.17 shows the results of applying
MAX to the sample data set of six points. As with single link, points 3 and 6

8.3 Agglomerative Hierarchical Clustering 521

0.4

0.3

0.2]

0.1

3 6 4 1 2 5
(a) Complete link clustering. (b} Complete link dendrogram.

Figure 8.17. Complele link clustering of the six points shown in Figure 8.15.

are merged first. However, {3, 6} is merged with {4}, instead of {2,5} or {1}
because

dist({3.6}.{4}) = max(dist(3,4),dist(6,4))
max(0.15,0.22)
= 022,
dist({3,6}.{2,5}) = max{dist(3,2),dist(6,2),dist(3,5),dist(6,5))
= max(0.15,0.25.0.28,0.39)
= 0.39.
dist({3.6},{1}) = max(dist(3,1),dist(6,1))
= max(0.22,0.23)
= 0.23.

Group Average

For the group average version of hierarchical clustering, the proximity of two
clusters is defined as the average pairwise proximity among all pairs of points
in the different clusters. This is an intermediate approach between the single
and complete link approaches. Thus, for group average, the cluster proxim-

522 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

4 2 5 1

{a) Group average clustering. (b} Group average dendrogram.

Figure 8,18, Group average clustering of the six points shown in Figure 8,15,

ity prozimity(Ci, C;) of clusters C; and Cj, which are of size m; and mj;,
respectively, is expressed by the following equation:

> xec, proximity(x, y)

yec,

prorimity(C;, C;) = (8.6)

I & Ty
Example 8.6 (Group Average). Figure 8.18 shows the results of applying
the group average approach to the sample data set of six points. To illustrate
how group average works, we calculate the distance hetween some clusters.

dist({3,6,4},{1}) (0224 0.37+0.23)/(3 1)

= 028
dist({2,5},{1}) = (0.2357+0.3421)/(2+ 1)
= 0.2880
dist({3,6,4}.{2,5}) = (0.15+ 0.28 + 0.25 + 0.30 + 0.20 + 0.29) /(6 + 2)
= 026

Because dist{{3, 6,4}, {2,5}) is smaller than dist({3, 6,4}, {1}) and dist({2, 5}, {1}),

clnsters {3,6,4} and {2,5} are merged at the fourth stage. u

8.3 Agglomerative Hierarchical Clustering 523

3 -} 4 1 2 5
(a) Ward’s clustering. (b} Ward’s dendrogram.

Figure 8.19. Ward's clustering of the six points shown in Figure 8.15.

Ward’s Method and Centroid Methods

For Ward’s method, the proximity between two clusters is defined as the in-
crease in the squared error that results when two clusters are merged. Thus,
this method uses the same objective function as K-means clustering. While
it may seem that this feature makes Ward's method somewhat distinct from
other hierarchical techniques, it can be shown mathematically that Ward’s
method is very similar to the group average method when the proximity be-
tween two points is taken to be the square of the distance between them.

Example 8.7 (Ward’s Method). Figure 8.19 shows the results of applying
Ward’s method to the sample data set of six points. The clustering that is
produced is different from those produced by single link, complete link, and
group average. »

Centroid methods calculate the proximity between two clusters by calcu-
lating the distance hetween the centroids of clusters. These techniques may
seem similar to K-means, but as we have remarked, Ward’s method is the
correct hierarchical analog.

Centroid methods also have a characteristic—often considered had—that
is not possessed by the other hierarchical clustering techmiques that we have
discussed: the possibility of inversions. Specifically, two clusters that are
merged may be more similar (less distant) than the pair of clusters that were
merged in a previous step. For the other methods, the distance between

524 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

Tahle 8.5, Tabls of Lance-Wiliams coefficients for common hierarchical clustering approaches.

Clustering Method aa oB 3 bl

Single Link 12 172 0| —1/2

Complete Link 1/2 1/2 0 1/2

Group .Avera,ge m—;ﬁ,&ﬂ TAE,Z,E e 0 0

Centroid nr+ms n;_4+vng matms)® ¢
T matmg mptmg —mg

Ward's matmatmg | matmpimg | matmpimg 0

merged clusters monotonically iucreases {or is, at worst, non-increasing) as
we proceed from singleton clusters to one all-inclusive cluster.

8.3.3 The Lance-Williams Formula for Cluster Proximity

Any of the cluster proximities that we have discussed in this section can be
viewed as a choice of different parameters (in the Lance-Williams formula
shown below in Equation 8.7) for tbe proximity between clusters) and R,
where R is formed by merging clusters A and B. In this equation, p(...) is
a proximity function, while ma, mp, and mq are the number of points in
clnsters A, B, and @, respectively. In other words, after we merge clusters A
and B to form cluster K, the proximity of the new cluster, i, to an existing
cluster, @), is a linear function of the proximities of) with respect to the
original clusters A and B. Table 8.5 shows the values of these coeflicients for
the technignes that we have discnssed.

P(R. Q) = cap(A, Q) +app(B. Q)+ 8p(4, B) +7[p(4, Q) —p(B, Q)| (8.7)

Any hierarchical clustering technique that can be expressed using the
Lance-Williams formula does not need to keep the original data points. In-
stead, the proximity matrix is updated as clustering occurs. While a general
formula is appealing, especially for implementation, it is easier to understand
the different hierarchical methods by looking directly at the definition of clus-
ter proximity that eacb method nses.

8.3.4 Key Issues in Hierarchical Clustering

Lack of a Global Objective Function

We previously mentioned tbat agglomerative hierarchical clnstering cannot be
viewed as globally optimizing an objective function. lostead, agglomerative
hierarchical clustering techniques use various criteria to decide locally, at each

8.3 Agglomerative Hierarchical Clustering 525

step, which clusters should be merged (or split for divisive approaches). This
approach yields clustering algorithms tbat avoid the difficulty of attempting
to solve a hard combinatorial optimization problem. (It can be shown that
the general clustering problem for an objective function such as “minimize
SSE™ is computationally infeasible.) Furthermore, such approaches do not
have problems with local minima or difficulties in choosing initial points. Of
course, the time complexity of O(m?log m) and the space complexity of O(m?)
are prohibitive in many cases.

Ability to Handle Different Cluster Sizes

One aspect of agglomerative hierarchical clustering that we have not yet dis-
cugsed is how to treat the relative sizes of the pairs of clusters that are merged.
(This discussion applies only to cluster proximity schemes that involve sums,
such as centroid, Ward's, and group average.) There are two approaches:
weighted, which treats all clusters equally, and unweighted, which takes
the number of points in each cluster into account. Note that the terminology
of weighted or unweighted refers to the data points, not the clusters. In other
words, treating clusters of unequal size eqnally gives different weights to the
points in different clusters, while taking the cluster size into account gives
points in different clusters the same weight.

We will illustrate this using the group average technique discussed in Sec-
tion 8.3.2, which is the unweighted version of the group average technique.
In the clustering lterature, the full name of this approach is the Unweighted
Pair Group Method using Arithmetic averages (UPGMA). In Table 8.5, which
gives the formula for updating cluster similarity, the coeflicients for UPGMA
involve the size of each of the clusters that were merged: ay = ﬁ, ap =

MmB__ 4 =1{,v =0. For the weighted version of group average—known as

MA-+Mmp

WPGMA—the coefficients are constants: aq4 = 1/2,ap = 1/2,3=0,7=0.
In general, nnweighted approaches are preferred nnless there is reason to be-
lieve that individual points should have different weights: e.g., perhaps classes
of objects have been nnevenly sampled.

Merging Decisions Are Final

Agglomerative hierarchical clnstering algorithms tend to make good local de-
cisions about combining two clusters since they can use information about the
pairwise similarity of all points, However, once a decision is made to merge
two clusters, it cannot be undone at a later time. This approach prevents
a local optimization criterion fromn becoming a global optimization criterion.

526 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

For example, although the “minimize squared error” criterion from K-means
is used in deciding which clusters to merge in Ward’s method, the clusters at
each level do not represent local minima with respect to the total SSE. Indeed,
the clusters are not even stable, in the sense that a point in one cluster may
be closer to the centroid of some other cluster than it is to the centroid of its
current cluster. Nonetheless, Ward's method is often used as a robust method
of initializing a K-means clustering, indicating that a local “minmimize squared
error” objective function does have a connection to a global “minimize squared
error” objective function.

There are some techniques that attempt to overcome the hmitation that
merges are final. One approach attempts to fix up the hierarchical clustering
hy moving branches of the tree around so as to iinprove a global objective
function. Another approach uses a partitional clustering technique such as K-
means to create many small clusters, and then performs hierarchical clustering
using these small clusters as the starting point.

8.3.5 Strengths and Weaknesses

The strengths and weakness of specific agglomerative hierarchical clustering
algorithms were discussed above. More generally, such algorithms are typi-
cally used hecause the underlying apphcation, e.g., creation of a taxonomy,
requires a hierarchy. Also, there have been some studies that suggest that
these algorithms can produce hetter-quality clusters. However, agglomerative
hierarchical clustering algorithms are expensive in terms of their computa-
tional and storage requirements. The fact that all merges are final can also
cause trouble for noisy, high-dimensional data, such as document data. In
turn, these two problems can be addressed to some degree by first partially
clustering the data using another technique, such as K-means.

8.4 DBSCAN

Density-based clustering locates regions of high density that are separated
from one another hy regions of low density. DBSCAN is a simple and effec-
tive density-based clustering algoritbm that illustrates a number of important
concepts that are important for any deusity-based clustering approach. In this
section, we focus solely on DBSCAN after first considering the key notion of
density. Other algorithms for finding density-based clusters are descrihed in
the next chapter.

8.4 DBSCAN 527

8.4.1 Traditional Density: Center-Based Approach

Although there are not as many approaches for defining density as there are for
defining similarity, there are several distinct methods. In this section we dis-
cuss the center-based approach on which DBSCAN is based. Other definitions
of density will be presented in Chapter 9.

In the center-based approach, density is estimated for a particular point in
the data set by counting the number of points within a specified radius, Eps,
of that point. This includes the point itself. This technique is graphically
llustrated by Figure 8.20. The number of points within a radius of Eps of
point A is 7, including A itself.

This method is simple to implement, but the density of any point will
depend on the specified radius. For instance, if the radius is large enough,
then all points will have a density of m, the number of points in the data set.
Likewise, if the radius is too small, then all points will have a density of 1.
An approach for deciding on the appropriate radius for low-dimensional data
is given in the next section in the context of our discussion of DBSCAN.

Classification of Points According to Center-Based Density

The center-based approach to density allows us to classify a point as being (1}
in the interior of a dense region (a core point), (2) on the edge of a dense region
(a border point), or (3) in a sparsely occupied region (a noise or background
point). Figure 8.21 graphically illustrates the concepts of core, border, and
noise points using a collection of two-dimensional points. The following text
provides a more precise description.

Core points: These points are in the interior of a density-based cluster. A
point is a core point if the number of points within a given neighborhood
around the point as determined by the distance function and a user-
specified distance parameter, Eps, exceeds a certain threshold, MinPts,
which is also a user-specified parameter. In Figure 8.21, point A is a
core point, for the indicated radius (Eps) if MinPts < 7.

Border points: A border point is not a core point, but falls within the neigh-
borhood of a core point. In Figure 8.21, point B is a border point. A
border point can fall within the neighborhoods of several core points.

Noise points: A noise point is any point that is neither a core point nor a
border point. In Figure 8.21, point C is a noise point.

528 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

border point _core point

noise point__

Figure 8.20. Center-based -
density. Figure 8.21. Core, border, and noise points.

8.4.2 The DBSCAN Algorithm

Given the previous definitions of core points, border points, and noise poiuts,
the DBSCAN algorithm cau be informally described as follows. Any two core
points that are close enough—within a distance E'ps of oue another—are put
in the same cluster. Likewise, any border point that is close enough to a core
point is put in the same cluster as the core point. (Ties may need to be resolved
if a border point is close to core points from different clusters.) Noise points
are discarded. The formal details are given in Algorithm 8.4. This algorithm
uses the same concepts and finds the same clusters as the original DBSCAN,
but is optimized for simplicity, uot efficiency.

Algorithm 8.4 DBSCAN algorithm.

: Label all points as core, border, or noise points.

Eliminate noise points.

: Put an edge between all core points that are within Eps of each other.

: Make each group of connected core points into a separate cluster.

: Assign each border point to one of the clusters of its associated core points.

O N e

Time and Space Complexity

The basic time complexity of the DBSCAN algerithm is O(m X time to fiud
points in the Eps-neighborhood), where m is the number of points. In the
worst case, this complexity is O(m?). However, in low-dimensional spaces,
there are data structures, such as kd-trees, that allow efficient retrieval of all

8.4 DBSCAN 529

points within a given distance of a specified point, and the time complexity
can be as low as O(mlogm). The space requirement of DBSCAN, eveu for
high-dimensional data, is O(m) because it is only necessary to keep a small
amount of data for each point, i.e., the cluster label and the identification of
each point as a core, border, or noise point.

Selection of DBSCAN Parameters

There is, of course, the issue of how to determine the parameters Eps and
MinPts. The basic approach is to look at the behavior of the distance from
a point to its ™ nearest neighbor. which we will call the k-dist. For points
that belong to some cluster, the value of k-dist will be small if k is not larger
than the cluster size. Note that there will be some variation, depending on the
density of the cluster and the random distribution of points, but on average,
the range of variation will not be huge if the cluster densities are not radically
different. However, for points that are not in a cluster, such as noise points,
the k-dist will be relatively large. Therefore, if we compute the k-dist for
all the data points for some k, sort them in increasing order, and then plot
the sorted valnes, we expect to see a sharp change at the value of k-dist. that
corresponds to a suitable value of Eps. If we select this distance as the Eps
parameter and take the value of k as the MinPts parameter, theu poiuts for
which k-dist is less than Eps will be labeled as core points, while other points
will be labeled as noise or border points.

Figure 8.22 shows a sample data set, while the k-dist graph for the data is
given in Figure 8.23. The value of Eps that is determined in this way depends
on k, but does not change dramatically as k changes. If the value of k is too
small, then even a small nuinber of closely spaced points that are noise or
outliers will be incorrectly labeled as clusters. If the value of & is too large,
then small clusters (of size less than k) are likely to be labeled as noise. The
original DBSCAN algorithm used a valne of k = 4, which appears to be a
reasonable value for most two-dimensional data sets.

Clusters of Varying Density

DBSCAN can have tronble with density if the deusity of clusters varies widely.
Consider Figure 8.24, which shows four clusters embedded in noise. The den-
sity of the clusters and noise regions is indicated by their darkness. The noise
around the pair of denser clusters, A and B, has the same density as clusters
C and D. If the £'ps thresbold is low enough that DBSCAN finds € and D) as

clusters, then A aud B and the points surrounding them will become a siugle

530 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

&

8

4 Nasmat Heighbar Distance

]

: S
W woo i1mo moe @00 w00
P Soctsd by Destmincs o AR Mot Heghtar

8

Figure 8.22. Sample data. Figure 8.23. K-dist plot for sample data.

Nowe

Figure 8.24. Four clusters embedded in noise.

Nase

cluster. If the E'ps threshold is high enough that DBSCAN finds 4 and B as
separate clusters, and the points surrounding them are marked as noise, then
C and D and the points surrounding them will also be marked as noise.

An Example

To illustrate the use of DBSCAN, we show the clusters that it finds in the
relatively complicated two-dimensional data set shown in Figure 8.22. This
data set consists of 3000 two-dimensional points. The Eps threshold for this
data was found by plotting the sorted distances of the fourth nearest neighbor
of each point (Figure 8.23) and identifying the value at which there is a sharp
increase. We selected Eps = 10, which corresponds to the knee of the curve.
The clusters found by DBSCAN using these parameters, i.e., MirPts = 4 and
Eps = 10, are shown in Figure 8.25(a). The core points, border points, and
noise points are displayed in Figure 8.25(b).

8.4.3 Strengths and Weaknesses

Because DBSCAN uses a density-based definition of a cluster, it is relatively
resistant to noise and can handle clusters of arbitrary shapes and sizes. Thus,

8.4 DBSCAN

(a) Clusters found by DBSCAN.

X X X x
i y x)’(()(2 X i X ;((x
X)(&«-g;x X 5);:xa X X x‘d—f%x ¥
x
x X S0®08 0 O 83%0‘?’%%@% x % x
o R K A
xxxxozg;.;oogoom o‘ég)oo ox);‘: %Oox
%+ 0 o e X Xeo (posho
i iy "g?,‘;igpéo X e
o o 6 x
i S i HI S D,
o2 o, © x _ ofados X
x 5% pgto Bafbt 430 MoolsS3 ¥ 9528000 %
x%cbg S oX 600 a0+ ég k%0 X o SO X 5
QO}O?&FQO%%%)O o xo% ode x O%&Po *
o)?ﬂ O%OQOCbOoﬁg_ 008 00+ x 009%0G, x
xX o0 ° 20, 0% o (P
2% 9% 00 0, o 0e® X o 0t
xoo‘”coogioogcé%b%? %Dgo&ggc’%oo s o ‘%abo X
Sooge O 99 (5 9000 0 P Xx
4 oeadko%cg—cﬁfgoﬂ #%%mocpgdéech E09%n5 x
x X X *
x x x
X — Noise Paint + — Border Point o~ Care Paint

(b) Core, border, and noise points.

Figure 8.25. DBSCAN clustering of 3000 two-dimensional points.

531

532 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

DBSCAN can find many clusters that could not be found using K-means,
such as those in Figure 8.22. As indicated previonsly, however, DBSCAN has
trouble when the clusters have widely varying densities. It also has trouble
with high-dimensional data because density is more difficult to define for such
data. One possible approach to dealing with such issues is given in Section
9.4.8. Finally, DBSCAN can be expensive when the computation of nearest
neighbors requires computing all pairwise proximities, as is usually the case
for high-dimensional data.

8.5 Cluster Evaluation

In supervised classification, the evaluation of the resulting classification model
is an integral part of the process of developing a classification model, and
there are well-accepted evaluation measures and procedures, e.g., accuracy
and cross-validation, respectively. However, because of its very nature, cluster
evaluation is not a well-developed or commonly nsed part of cluster analysis.
Nonetheless, cluster evaluation, or cluster validation as it is more tradition-
ally called, is important, and this section will review sorne of the most common
and easily applied approaches.

There might be some confusion as to why cluster evaluation is necessary.
Many times, cluster analysis is conducted as a part of an exploratory data
analysis. Hence, evaluation seems like an unnecessarily complicated addition
to what is supposed to be an informal process. Furtherinore, since there
are a number of different types of clusters—in some sense, each clustering
algorithm defines its own type of cluster—it may seem that each situation
might require a different evaluation measure. For instance, K-means clusters
might be evaluated in terms of the SSE, but for density-based clusters, which
need not be globular, SSE would not work well at all.

Nouetheless, cluster evaluation should be a part of any cluster analysis.
A key motivation is that almost every clustering algorithm will find clusters
in a data set, even if that data set has no natural cluster structure. For
instance, consider Figure 826, which shows the result of clustering 100 points
that are randomly (uniformly) distributed on the unit square. The original
points are shown in Figure 8.26(a), while the clusters found by DBSCAN, K-
means, and complete link are sbown in Figures 8.26(b), 8.26(c), and 8.26(d},
respectively. Since DBSCAN found tbree clusters (after we set Eps by looking
at the distances of the fourth nearest neighbors), we set K-means and complete
link to find three clusters as well. (In Figure 8.26(b) the noise is shown by
the small markers.) However, the clusters do not look compelling for any of

8.5 Cluster Evaluation 533

the three methods. In higher dimensions, such problems cannot be so easily
detected.

8.5.1 Overview

Being able to distinguish whether there is non-random structure in the data
is just one important aspect of cluster validation. The following is a list of
several important issues for cluster validation.

1. Determining the clustering tendency of a set of data, i.e., distinguish-
ing whether non-random structure actually exists in the data.

2. Determining the correct number of clusters.

3. Evaluating how well the results of a cluster analysis fit the data without
reference to external information.

4, Comparing the resnlts of a cluster analysis to externally known results,
such as externally provided class labels.

5. Comparing two sets of clusters to determine which is better.

Notice that items 1, 2, and 3 do not make use of any external information—
they are unsupervised techniques—while item 4 requires external information.
Item 5 can be performed in either a supervised or an unsupervised manner. A
further distinction can be made with respect to items 3, 4, and 5: Do we want
to evaluate the entire clustering or just individual clusters?

While it is possible to develop various numerical measures to assess the
different aspects of cluster validity inentioned above, there are a number of
challenges. First, a measure of cluster validity may be quite limited in the
scope of its applicability. For example, most work on measures of clustering
tendency has been done for two- or three-dimeusional spatial data. Second,
we need a framework to interpret any measure. If we obtain a value of 10 for a
measure that evaluates how well cluster labels match externally provided class
labels, does this value represent a good, fair, or poor match? The goodness
of a match often can be measured by looking at the statistical distributiou of
this value, i.e., how likely it is that such a value occurs by chance. Finally, if
a measure is too complicated to apply or to understand, theu few will use it.

The evaluation measures, or indices, that are applied to judge various
aspects of cluster validity are traditionally classified into the following three
types.

534 Chapter 8 Cluster Analysis

LI] s o
oo . b °
* .
ee® .
] .
° @ % e
. ° °
& * e ®°
seo
LI L o 4% .
° 4 ® o .'. °
s o0
®
°
® o @
° .
. o
. s % o e @
e ©® e
e® o . % 9
° ®
(a) Original points.
[} L]
& P
e . R Lo
ee® x
° * o
° . 3 .
x
& i
s 0o . g ¥ &
[] . .. + ’i; 2
... P + T x
e VvV¥
v E
® v "
vy v v
v Vv v
v v v v ¥
vy ¥ vy v
vV v v Y ¥
v v

(¢} Three clusters found by K-means.

Figure 8.26. Clustering of 1

: Basic Concepts and Algorithms

y v v
v v
v v b v
vv¥ . v
v
Ll v vV
v v
v
yvv, M A
v v v v
v v 'v;
vy ¥ v Vy v
v VvV
» |]
x * %
* ¥ W n
*
“ P =, =
S * -
= » =
* » . Fl
* *

¥ *
¥ *
Lot - **' 5 »
+ »* P
* »
€ ¥ i x ¥
* "
* ™ *
P *
* » ®
» * ...;
* L] -
* a L} ®
x ©®8
e
L]
v Y%
vy ° ®
v ®e o .
v e o @
v v °
e® ® ° % ¢
v .

(d)} Three clusters found by complete
link.

00 uniformly distributed points.

8.5 Cluster Evaluation 535

Unsupervised. Measures the goodness of a clustering structure without re-
spect to external information. An example of this is the SSE. Unsu-
pervised measures of cluster validity are often further divided into two
classes: measures of cluster cohesion (compactness, tightness), which
determine how closely related the objects in a cluster are, and measures
of cluster separation (isolation}, which determine how distinct or well-
separated a cluster is from other clusters. Unsupervised measures are
often called internal indices because they use only information present
in the data set.

Supervised. Measures the extent to which the clustering structure discovered
by a clustering algorithm matcbes some external structure. An example
of a supervised index is entropy, which measures how well cluster labels
match externally supplied class labels. Supervised measures are often
called external indices because they use information not present in
the data set.

Relative. Compares different clusterings or clusters. A relative cluster eval-
uation measure is a supervised or unsupervised evaluation measure that
is used for the purpose of comparison. Thus, relative measures are not
actually a separate type of cluster evaluation measure, but are instead a
specific use of such measures. As an example, two K-means clusterings
can be compared using either the SSE or entropy.

In tbe remainder of this section, we provide specific details concerning clus-
ter validity. We first describe topics related to unsupervised cluster evaluation,
begmning with (1) measures based on cobesion and separation, and (2) two
techniques based on the proximity matrix. Since these approaches are useful
only for partitional sets of clusters, we also describe the popular cophenetic
correlation coefficient, which can be used for the unsupervised evaluation of
a hierarchical clustering. We end our discussion of unsupervised evaluation
with brief discussions about finding the correct number of clusters and evalu-
ating clustering tendency. We then consider supervised approaches to cluster
validity, such as entropy, purity, and the Jaccard measure. We conclude this
section with a short discussion of how to interpret the values of (unsupervised
or supervised) validity measures.

536 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

8.5.2 Unsupervised Cluster Evaluation Using Cohesion and
Separation

Many internal measures of cluster validity for partitional clustering schemes
are hased on the notions of cohesion or separation. In this section, we use
cluster validity measures for prototype- and graph-based clustering techniques
to explore these notions in some detail. In the process, we will also see some
interesting relationships between prototype- and graph-based clustering.

In general, we can consider expressing overall cluster validity for a set of
K clusters as a weighted sum of the validity of individual clusters,

K
overall validity = Z w; validity(Cy). (8.8)
i=1

The wvalidity function can be cohesion, separation, or some combination of these
quantities. The weights will vary depending on the cluster validity measure.
In some cases, the weights are simply 1 or the size of the cluster, while in otber
cases they reflect a more complicated property, such as the square root of the
cohesion. See Table 8.6. If the validity function is cohesion, then higher values
are better. If it is separation, then lower values are better.

Graph-Based View of Cohesion and Separation

For graph-based clusters, the cohesion of a cluster can be defined as the sum of
the weights of the links in the proximity graph that connect points within the
cluster. See Figure 8.27(a). (Recall that the proximity graph has data objects
as nodes, a link between each pair of data objects, and a weight assigned to
each link that is tbe proximity betweeu the two data objects connected by the
link.) Likewise, the separation between two clusters can be measured by the
sum of the weights of the links from points in one cluster to points in the otber
cluster. This is illustrated in Figure 8.27(h).

Mathematically, cohesion and separation for a graph-based cluster can be
expressed nsing Equations 8.9 and 8.10, respectively. The prozimity function
can be a similarity, a dissimilarity, or a simple function of these quantities.

cohesion(C;) = Epralimity(x,y) (8.9)
e

separation(C;, Cj) = Zprorimity(x,y) (8.10)
xeC,

YEC,;

8.5 Cluster Evaluation 537

(a) Cohesion. (b) Separation.

Figure 8.27. Graph-based view of cluster cohesion and separation.

Prototype-Based View of Cohesion and Separation

For prototype-based clusters, the cobesion of a cluster can be defined as the
sum of the proximities with respect to the prototype (centroid or medoid) of
the cluster. Similarly, the separation between two clusters can be measured
by the proximity of the two cluster prototypes. This is illustrated in Figure
8.28, where the centroid of a cluster is indicated by a “+".

Cohesion for a prototype-based cluster is given in Equation 8.11, while
two measures for separation are given in Equations 8.12 and 8.13, respec-
tively, where ¢; is the prototype (centroid) of cluster C; and ¢ is the overall
prototype (centroid). There are two measures for separation because, as we
will see shortly, the separation of cluster prototypes from an overall prototype
is sometimes directly related to the separation of cluster prototypes from one
another. Note that Equation 8.11 is tbe cluster SSE if we let proximity be the
squared Euclidean distance.

cohesion(C;) = Z prozimity(X.c;) (8.11})

xeC,
separation(Cy, C}) = prorimity(c;, ;) (8.12)
separation(C;) = prorimity(c;,c) (8.13)

QOverall Measures of Cohesion and Separation

The previous definitions of cluster cohesion and separation gave us some sim-
ple and well-defined measures of cluster validity that can be combined into
an overall measure of cluster validity by using 2 weighted sum, as indicated

538 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

(a) Cohesion. (b) Separation.

Figure 8.28. Prototype-based view of cluster cohesion and ssparation.

in Equation 8.8, However, we need to decide what weights to use. Not sur-
prisingly, the weights used can vary widely, although typically they are some
measure of cluster size.

Table 8.6 provides examples of validity measures based on c¢ohesion and
separation. 7y is a measure of cohesion in terms of the pairwise proximity of
objects in the cluster divided by the cluster size. T3 is a measure of cohesion
based on the snm of the proximities of objects in the cluster to the cluster
centroid. &) is a measure of separation defined as the proximity of a cluster
centroid to the overall centroid multiplied by the number of objects in the
cluster. G, which is a measure based on both cohesion and separation, is
the sum of tbe pairwise proximity of all objects in the cluster with all objects
outside the cluster—the total weight of the edges of the proximity graph that
must be cut to separate the cluster from all other clusters—divided by the
sum of the pairwise proximity of objects in the cluster.

Table 8.6. Table of graph-based cluster evaluation measures.

Name| Cluster Measure Cluster Weight Type
graph-based
T, Y xec, proximity(x,y) f‘ cohesion
YEC,
prototype-based
1, Y oxeq, Prozimity(x.c;) 1 cohesion
prototype-based
& proximity(c;, c) m; separation
5 graph-based
Gy E'j:x 3 xec, prorimity(X,y) ss————=—-———| separation and
%1 “yec] » o prorimity(x,y} cohesion

8.5 Cluster Evaluation 539

Note that any unsupervised measure of cluster validity potentially can be
used as an objective function for a clustering algorithm and vice versa. The
CLUstering TOolkit (CLUTQ) (see the bibliographic notes) uses the cluster
evaluation measures described in Table 8.6, as well as some other evaluation
measures not mentioned here, to drive the clustering process. [t does this by
using an algorithm that is similar to the incremental K-means algorithm dis-
cussed in Section 8.2.2. Specifically, each point is assigned to the cluster that
produces the best value for the cluster evaluation function. The cluster eval-
uation measure T corresponds to traditional K-means and produces clusters
that have good SSE values. The other measures produce clusters that are not
as good with respect to SSE, but that are more optimal with respect to the
specified cluster validity measure.

Relationship between Prototype-Based Cohesion and Graph-Based
Cohesion

While the graph-based and prototype-based approaches to measuring the co-
hesion and separation of a cluster seem distinct, for some proximity measures
they are equivalent. For instance, for the SSE and points in Euclidean space,
it can be shown (Equation 8.14) that the average pairwise distance between
the points in a cluster is equivalent to the SSE of the cluster. See Exercise 27
on page 566.

) 1 .
Cluster SSE= Y dist(c;, x)* = - Y Y distix,y) (8.14)
xeC; xeC; yeli

Two Approaches to Prototype-Based Separation

When proximity is measured by Euclidean distance, the traditional measure of
separation between clusters is the between group sum of squares (SSB). which
is the sum of the squared distance of a cluster centroid, ¢;. to the overall mean,
c, of all the data points. By summing tbe SSB over all clusters, we obtain the
total SSB, which is given by Equation 8.15, where ¢; is tbe mean of the i™"
cluster and c is the overall mean. The higher the total SSB of a clustering,
the more separated the clusters are from one another.

K
Total SSB = 3" m, dist(c,, c)? (8.15)

=1
It is straightforward to show that the total SSB is directly related to the
pairwise distances between the centroids. In particular, if the cluster sizes are

540 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

equal, i.e., m; = m/K, then this relationship takes the simple form given by
Equation 8.16. (See Exercise 28 on page 566.) It is this type of equivalence that
motivates the definition of prototype separation in terms of both Equations
8.12 and 8.13.

K K
Total SSB = % ZZ = diat{ci,c;)? (8.16)
i=1 j=1

=|3

Relationship between Cohesion and Separation

In some cases, there is also a strong relationship between cohesion and separa-
tion. Specifically, it is possible to show that the sum of the total SSE and the
total SSB is a constant; i.e., that it is equal to the total sum of squares (TSS),
which is the sum of squares of the distance of each point to the overall mean
of the data. Tbe importance of tbis result is that mimmizing SSE (cohesion)
is equivalent to maximizing SSB (separation).

We provide the proof of tbis fact below, since the approach illustrates
techniques that are also applicable to proving the relationships stated in the
last two sections. To simiplify the notation, we assume that the data is one-
dimensional. i.e., dist(xr,y) = (x—y)°. Also, we use the fact that the cross-term
Efil Yorec, (& — ¢i)(c—¢;) i 0. (Sec Exercise 29 on page 566.)

K
88 = Y ¥ (a—op?

i=1 z€C,
K
= Y Y @) e
i=1 xeC,
K K K
= Z E (z—a)? 722 E (2—c;}le—e) +Z E:(e—a,)2
1=1 2&C\ =1zeC, i=1 zeCy
K K
= Z E (I—E,')"’Jrz: Z (070,)2
1=1 reC, 1=1 2€Cy
K R
= Y S -+ |Glc—a)
i=1reC, i=1
= BSSE + 55B

8.5 Cluster Evaluation 541

Evaluating Individual Clusters and Objects

So far, we have focused on using cohesion and separation in the overall eval-
uation of a group of clusters, Many of these measures of cluster validity also
can be used to evaluate individual clusters and objects. For example, we can
rank individual clusters according to their specific value of cluster validity, ie.,
cluster cohesion or separation. A cluster that has a high value of cohesion may
be considered better than a clnster that has a lower value. This information
often can be used to improve the quality of a clustering. If, for example, a
cluster is not very cohesive, then we may want to split it imto several subclus-
ters. On the other hand, if two clusters are relatively cohesive, but not well
separated, we may want to merge them into a single cluster.

We can also evaluate the objects within a cluster in terms of their con-
tribution to the overall cohesion or separation of the cluster. Objects that
contribute more to the cohesion and separation are near the “interior” of the
cluster. Those objects for which the opposite is true are probably near the
“edge” of the cluster. In the following section, we consider a cluster evalua-
tion measure that uses an approach based on these ideas to evaluate points,
clusters, and the entire set of clusters.

The Silhouette Coefficient

The popular method of silhouette coeflicients combines both cohesion and sep-
aration. The following steps explain how to compute the silhouette coefficient
for an individual point, a process that consists of the following three steps.
We use distances, but an analogons approach can be used for similarities.

1. For the i*? ohject, calculate its average distance to all other objects in
its cluster. Call this value a;.

2. For the " object and any clnster not containing the ohject, calculate
the object’s average distance to all the objects in the given cluster. Find
the minimum such value with respect to all clusters; call this value b;.

3. For the 7t" cbject, the silhouette coeflicient is s; = (b; —a;)/ max(a;, b;).

The value of the silhouette coefficient can vary between —1 and 1. A
negative value is undesirable because this corresponds to a case in which e,
the average distance to points in the cluster, is greater than b;, the minimum
average distance to points in anotber clnster. We want the silhouette coeflicient
to be positive (a; < b;}, and for a; to be as close to 0 as possible, since the
coeflicient assumes its maximum value of 1 when a; = 0.

542 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

¥ . [- ‘-1.’ . REn ‘e
. - ® 2
.. . . "J,‘. - o,
- e .
ey 0‘-‘!: . _.f,“': R
a" LT :
= 4 p W

0 [A] 02 3 04 05 06 07 08 08 1
Sihouette Coefficiant

Figure 8.29. Silhouette coefficients for points in ten clusters.

We can compute the average silhouette coefficient of a cluster by simply
taking the average of the silhouette coefficients of points belonging to the
cluster. An overall measure of the goodness of a clustering can be obtained by
computing the average silhouette coefficient of all points.

Example 8.8 (Silhouette Coefficient). Figure 8.29 shows a plot of the
silhouette coefficients for points in 10 clusters. Darker shades indicate lower
silhouette coefficients.]

8.5.3 Unsupervised Cluster Evaluation Using the Proximity
Matrix

In this section, we examine a couple of nnsupervised approaches for assessing
cluster validity that are based on the proximity matrix. The first compares an
actual and idealized proximity matrix, while the second uses visualization.

Measuring Cluster Validity via Correlation

If we are given the similarity matrix for a data set and the cluster labels from
a cluster analysis of the data set, then we can evaluate the “goodness” of
the clustering by looking at the correlation between the similarity matrix and
an ideal version of the similarity matrix based on the cluster labels. (With
minor changes, the following applies to proximity matrices, but for simplicity,
we discuss only similarity matrices.) More specifically, an ideal cluster is one
whose points have a similarity of 1 to all points in the cluster, and a similarity
of 0 to all points in other clusters. Thus, if we sort the rows and columns
of the similarity matrix so that all objects belonging to the same class are
together, then an ideal similarity matrix has a block diagonal structuore. In
other words, the similarity is non-zero, i.e., 1, inside the blocks of the similarity

8.5 Cluster Evaluation 543

matrix whose entries represent intra-cluster similarity, and 0 elsewhere. The
ideal similarity matrix is constructed by creating a matrix that has one row
and one column for each data point—just like an actual similarity matrix—
and assigning a 1 to an entry if the associated pair of points belongs to the
same cluster. All other entries are 0.

High correlation between the ideal and actual similarity matrices indicates
that the points that belong to the same cluster are close to each other, while
low correlation indicates the opposite. (Since the actual and ideal similarity
matrices are symimetric, the correlation is calculated only among the n(n—1}/2
entries below or above the diagonal of the matrices.) Consequently, this is not
a good measure for many density- or contiguity-based clusters, becanse they
are not globular and may be closely intertwined with other clusters.

Example 8.9 (Correlation of Actual and Ideal Similarity Matrices).
To illustrate this measure, we calculated the correlation between the ideal and
actual similarity matrices for the K-means clusters shown in Figure 8.26(c)
(random data) and Figure 8.30(a) (data with three well-separated clusters).
The correlations were 0.5810 and 0.9235, respectively, which reflects the ex-
pected result that the clusters found by K-means in the random data are worse
than the clusters found by K-means in data with well-separated clusters. =

Judging a Clustering Visually by Its Similarity Matrix

The previous techmque snggests a more general, qualitative approach to jndg-
ing a set of clusters: Order the similarity matrix with respect to cluster lahels
and then plot it. In theory, if we have well-separated clusters, then the simi-
larity matrix should be roughly block-diagonal. If not, then the patterns dis-
played in the similarity matrix can reveal the relationships between clusters.
Again, all of this can be applied to dissimilarity matrices, but for simplicity,
we will only discuss similarity matrices.

Example 8.10 (Visualizing a Similarity Matrix). Consider the pomts in
Figure B.30(a), which form three well-separated clusters. If we use K-means to
group these points into three clusters, then we should have no trouble finding
these clusters since they are well-separated. The separation of these clusters
is illustrated by the reordered similarity matrix shown in Figure 8.30(b). (For
uniformity, we have transformed the distances into similarities nsing the for-
mula s = 1—(d —min.d)/(maz_d—min_d).) Figure 8.31 shows the reordered
similarity matrices for clusters found in the random data set of Figure 8.26 by

DBSCAN, K-means, and complete link.

544 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

o8

08 .‘f

04f- ; '%? &:

-
o2 ¥

(a) Well-separated clusters. {b) Similarity matrix sorted by K-means
cluster labels.

Figure 8.30. Similarity matrix for well-separated clusters.

The well-separated clusters in Figure 8.30 show a very strong, block-
diagonal pattern in the reordered similarity matrix. However, there are also
weak block diagonal patterns—see Figure 8.31—in the reordered similarity
matrices of the clusterings found by K-means, DBSCAN, and complete link
in the random data. Just as people can find patterns in clouds, data mining
algorithms can find clusters in random data. While it is entertaining to find
patterns in clouds, it is pointless and perhaps embarrassing to find clusters in
noise.]

This approach may seem hopelessly expensive for large data sets, since
the compntation of the proximity matrix takes O(m?) time, where m is the
number of objects, but with sampling, this method can still be used. We can
take a sample of data points from each cluster, compute the similarity between
these points, and plot the result. It may be necessary to oversample small
clusters and undersample large ones to obtain an adequate representation of
all clusters.

8.5.4 Unsupervised Evaluation of Hierarchical Clustering

The previous approaches to cluster evaluation are intended for partitioual
clusterings. Here we discuss the cophenetic correlation, a popular evaluation
measure for hierarchical clusterings. The cophenetic distance between two
objects is the proximity at whicli an agglomerative hierarchical clustering tech-

8.5 Cluster Evaluation 545

(a) Similarity matrix (b) Similarity matrix (c) Similarity matrix
sorted by DBSCAN sorted by K-means sorted by complete link
cluster labels. cluster labels, cluster labels.

Figure 8.31. Similarity matrices for clusters from random data.

nique puts the objects in the same cluster for the first time. For example, if at
some point in the agglomerative hierarchical clustering process, the smallest
distance between the two clusters that are merged is 0.1, then all points in
one cluster have a cophenetic distance of 0.1 with respect to the points in the
other cluster. In a cophenetic distance matrix, the entries are the cophenetic
distances between each pair of objects. The cophenetic distance is different
for each hierarchical clustering of a set of points.

Example 8.11 (Cophenetic Distance Matrix). Table 8.7 shows the cophen-
tic distance matrix for the single link clustering shown in Figure 8.16. (The
data for this figure consists of the 6 two-dimensional points given in Table

8.3.)

Table 8.7. Cophenetic distance matrix for single link and data in table 8.3

Point | P1 P2 P P4 P5 P6
P1 0 0.222 | 0.222 | 0.222 | 0.222 | 0.222
P2 | 0.222 0 0.148 | 0.151 | 0.139 | 0.148
P3]0.222 | 0.148 0 0.151 | 0.148 | 0.110
P4 [0.222 | 0.151 | 0.151 0 0.151 | 0.151
P5 | 0.222 | 0.139 | 0.148 | 0.151 0 0.148
P6 | 0.222 | 0.148 | 0.110 | 0.151 | 0.148 0

The CoPhenetic Correlation Coeflicient (CPCC) is the correlation
between the entries of this matrix and the original dissimilarity matrix aud is

546 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

a standard measure of how well a hierarchical clustering (of a particular type)
fits the data. One of the most common uses of this measure is to evaluate
which type of hierarchical clustering is best for a particular type of data.

Example 8.12 (Cophenetic Correlation Coefficient). We calculated the
CPCC for the hierarchical clusterings shown in Figures 8.16-8.19.These values
are shown in Tahle 8.8. The hierarchical clustering produced hy the single
link technique seems to fit the data less well than the clusterings produced by
complete Hnk, group average, and Ward's method.

Table 8.8. Cophenetic correlation coefficient for data of Table 8.3 and four agglomerative hierarchical
clustering technigues.

Technique CPCC
Single Link 0.44
Complete Link | 0.63
Group Average | 0.66
Ward’s 0.64

8.5.5 Determining the Correct Number of Clusters

Various unsupervised cluster evaluation measures can be used to approxi-
mately determine the correct or natural nnmber of clusters.

Example 8.13 (Number of Clusters). The data set of Figure 8.29 has 10
natural clusters. Figure 8.32 shows a plot of the SSE versus the number of
clusters for a (hisecting) K-means clustering of the data set, while Figure 8.33
shows the average silhouette coefficient versus the numbher of clusters for the
same data. There is a distinct knee in the SSE and a distinct peak in the
silhouette coeflicient when the number of clusters is equal to 10.]

Thns, we can try to find the natnral nnmber of clusters in a data set hy
looking for the numnber of clusters at which there is a knee, peak, or dip in
the plot of the evaluation measure when it is plotted against the number of
clusters. Of course, such an approach does not always work well. Clusters may
be considerably more intertwined or overlapping than those shown in Figure
8.29. Also, the data may consist of nested clusters. Actually, the clusters in
Figure 8.29 are sornewhat nested; i.e., there are 5 pairs of clusters since the
clnsters are closer top to bottomn than they are left to right. There is a knee
that indicates this in the SSE curve, but the silhouette coefficient curve is not

8.5 Cluster Evaluation 547

. T
IR LN

] 5 10 15 E 2 aa [5 10 15 20 25 30
Humber of Clusters Number of Clusters

SSE
IS
Lt
Shouena Coaflcen.
e
o
@

Figure 8.32. SSE versus number of clusters for Figure 8.33. Average silhouette coefficient ver-
the data of Figure 8.29. sus number of clusters for the data of Figure
8.20.

as clear. In summary, while caution is needed, the technique we have just
described can provide insight into the number of clusters in the data.

8.5.6 Clustering Tendency

One obvious way to determine if a data set has clusters is to try to cluster
it. However, almost all clustering algorithms will dutifully find clusters when
given data. To address this issue, we conld evaluate the resulting clusters and
only claim that a data set has clusters if at least some of the clusters are of good
quality. However, this approach does not address the fact the clusters in the
data can be of a different type than those sought by our clustering algorithm.
To handle this additional prohlem, we could use multiple algorithms and again
evalnate the qnality of the resnlting clusters. If the clusters are uniformly poor,
then this may indeed indicate that there are no clusters in the data.

Alternatively, and this is the focus of measures of clustering tendency, we
can try to evaluate whether a data set has clusters without clustering. The
most common approach, especially for data in Enclidean space, has been to
use statistical tests for spatial randomness. Unfortunately, choosing the cor-
rect model, estimating the parameters, and evaluating the statistical sigmifi-
cance of the hypothesis that the data is non-random can be quite challenging.
Nonetheless, many approaches have been developed, most of them for points
in low-dimensional Euclidean space.

Example 8.14 (Hopkins Statistic). For this approach, we generate p points
that are randomly distributed across the data space and also sample p actual

548 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

data points. For both sets of points we find the distance to the nearest neigh-
bor in the original data set. Let the u; be the nearest neighbor distances of the
artificially generated points, while the w; are the nearest neighbor distances
of the sample of points from the original data set. The Hopkins statistic H is
then defined by Equation 8.17.

_ Db i

= Thow i (B17)

If the randomly generated points and the sample of data points have
roughly the same nearest neighbor distances, then H will be near 0.5. Values
of H near 0 and 1 indicate, respectively, data that is highly clustered and
data that is regularly distributed in the data space. To give an example, the
Hopkins statistic for the data of Figure 8.26 was computed for p = 20 and 100
different trials. The average value of H was 0.56 with a standard deviation
of 0.03. The same experiment was performed for the well-separated points of
Figure 8.30. The average value of H was 0.95 with a standard deviation of
0.006. []

8.5.7 Supervised Measures of Cluster Validity

When we have external information about data, it is typically in tbe form of
externally derived class labels for the data objects. In such cases, the usual
procedure is to measure the degree of correspondence between the cluster labels
and the class labels. But why is this of interest? After all, if we have the class
labels, then what is the point in performing a cluster analysis? Motivations for
such an analysis are the comparison of clustering techniques with the “ground
truth” or the evaluation of the extent to which a manual classification process
can be automatically produced by cluster analysis.

We consider two different kinds of approaches. The first set of techniques
nse measures from classification, such as entropy, purity, and the F-measure.
These measures evaluate the extent to which a cluster contains objects of a
single class. The second group of methods is related to the similarity measures
for binary data, such as the Jaccard measure that we saw in Chapter 2. These
approaches measure the extent to which two objects that are in the same class
are in the same cluster and vice versa. For convenience, we will refer to these
two types of measures as classification-oriented and similarity-oriented,
respectively.

8.5 Cluster Evaluation 549

Classification-Oriented Measures of Cluster Validity

There are a number of measures—entropy, purity, precision, recall, and the
F-measure—that are commonly used to evaluate the performance of a classi-
fication model. In the case of classification, we measure the degree to which
predicted class labels correspond to actual class labels, but for the measures
just mentioned, nothing fundamental is changed by using cluster labels in-
stead of predicted class labels. Next, we quickly review the definitions of these
measures, which were discussed in Chapter 4.

Entropy: The degree to which each cluster consists of objects of a single class.
For each cluster, the class distribution of the data is calculated first, i.e.,
for cluster j we compute py;, the probability that a member of cluster :
belongs to class j as p;; = my;/m;, where m; is the number of objects in
cluster i and my; is the number of objects of class j in cluster . Using
this class distribution, the entropy of each cluster 7 is calculated using
the standard formula, ¢; = — Z_f:l pijlogs pij, where L is the number of
classes. The total entropy for a set of clusters is calculated as the sum
of the entropies of each cluster weighted by the size of each cluster, i.e.,
e=Y¥, Tae;, where K is the number of clusters and m is the total
number of data points.

Purity: Another measure of the extent to wbich a cluster contains objects of
a single class. Using the previous terminology, the purity of cluster ¢ is
p; = maxp;j, the overall purity of a clustering is purity = E{“:l Dep;.
J

Precision: The fraction of a cluster that consists of objects of a specified class.
The precision of cluster ¢ with respect to class j is precision(i, j) = p;;.

Recall: The extent to which a cluster contains all objects of a specified class.
The recall of cluster i with respect to class j is recall(i.j} = myj/myj,
where m; is the number of objects in class j.

F-measure A combination of both precision and recall that measures the
extent to which a cluster contains only objects of a particular class and all
objects of that class. The F-measure of cluster with respect to class j is
F(i, j) = (2 xprecision(i, j) x recall(i, j)) /(precision(i, j) +recall{i, 7)).

Example 8.15 (Supervised Evaluation Measures)., We present an exam-
ple to illustrate these measures. Specifically, we use K-means with the cosine
similarity measure to clnster 3204 newspaper articles from the Los Angeles

550 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms
Tablke 8.9, K-means clustering results for the LA Times document data set.
Cluster | Enter- Financial | Foreign | Metro | National | Sports | Entropy | Purity
tainment
1 3 5 40 506 96 27 1.2270 | 0.7474
2 4 7 280 29 39 2 1.1472 | 0.7756
3 1 1 1 iz 4 671 0.1813 | 0.9796
4 10 162 3 119 73 2 1.7487 | 0.4390
5 331 22 5 70 13 23 1.3976 | 0.7134
6 5 358 12 212 48 13 1.5523 | 0.5525
Total | 354 555 341 943 273 738 11450 | 0.7203

Times. These articles come from six different classes: Entertainment, Finan-
cial, Foreign, Metro, National, and Sports. Table 8.9 shows the results of a
K-means clustering to find six clusters. The first column indicates the clus-
ter, while the next six columns together form the confusion matrix; i.e., these
columns indicate how the documents of each category are distributed among
the clusters. The last two columns are the entropy and purity of each cluster,
respectively.

Ideally, each cluster will contain documents {from only one class. In reality,
each cluster contains documents from many classes. Nevertheless, many clus-
ters contain documents primarily from jnst one class. In particular, clnster
3, which contains mostly documents from the Sports section, is exceptionally
good, botb in terms of pority and entropy. The purity and entropy of the
other clusters is not as good, but can typically be greatly improved if the data
is partitioned into a larger number of clusters.

Precision, recall, and the F-measure can be calculated for each cluster. To
give a concrete example, we consider cluster 1 and the Metro class of Table
8.9. The precision is 506/677 = 0.75, recall is 506/943 = 0.26, and hence, the
F value is 0.39. In contrast, the F value for cluster 3 and Sports is 0.94. []

Similarity-Oriented Measures of Cluster Validity

The measures that we discnss in this section are all based on the premise
that any two objects that are in the same cluster should be in the same class
and vice versa. We can view this approach to closter validity as involving
the comparison of two matrices: (1) the ideal cluster similarity matrix
discussed previously, which has a 1 in the 75" entry if two objects, 7 and 7,
are in the same cluster and 0, otherwise, and (2) an ideal class similarity
matrix defined with respect to class labels, which has a 1 in the i entry if

8.5 Cluster Evaluation 551

two objects, 7 and j, belong to the same class, and a 0 otherwise. As before, we
can take the correlation of these two matrices as the measure of cluster validity.
This measure is known as the I" statistic in clustering validation literature.

Example 8.16 (Correlation between Cluster and Class Matrices). To
demonstrate this idea more concretely, we give an example involving five data
points, p1.p2. p3, p1.P5, two clusters, C1 = {p1, po,p3} and Co = {p4,ps}, and
two classes, Ly = {p1,p2} and L2 = {p3.ps. ps}. The ideal cluster and class
similarity matrices are given in Tables 8.10 and 8.11. The correlation between
the entries of these two matrices is 0.359.

Table 8.10. Ideal cluster similarity matrix. Table 8.11. Ideal class similarity matrix.
Point | pl p2 p3 pd pb Point | pI p2 p3 pd4 p5
pl 1 1 1 0 o0 pl 1 1 0 0 0
p2 1 1 1 0 0 p2 1 1 0 0 0
P2 |1 1 1 0 0 P lo 0o 1 1 1
pd 0 0 0 1 1 p4 o 0 1 1 1
p5 |0 0o 0o 1 1 p5 6 0 1 1 1

More generally, we can use any of the measures for binary similarity that
we saw in Section 2.4.5. {For example, we can convert these two matrices into
binary vectors by appending the rows.) We repeat the definitions of the four
quantities used to define those similarity measures, but modify our descriptive
text to fit the current context. Specifically, we need to compute the following
four quantities for all pairs of distinct objects. (There are m(m — 1)/2 such
pairs, if m is the number of objects.)

foo = number of pairs of objects having a different class and a different cluster
Jo1 = number of pairs of objects having a different class and the same cluster
J10 = number of pairs of objects having the same class and a different cluster
f11 = nnmbher of pairs of ohjects having the same class and the same cluster

In particular, the simple matching coefficient, which is known as the Rand
statistic in this context, and the Jaccard coefficient are two of the most fre-
quently used cluster validity measures.

foo + fun

Rand statistic= —————————
foo + for + fro + fnn

(8.18)

552 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

fu
for + fio + fu1
Example 8.17 (Rand and Jaccard Measures). Based on these formulas,
we can readily compute the Rand statistic and Jaccard coefficient for the
example based on Tables 8.10 and 8.11. Noting that foo = 4. for = 2, fio =2,
and f1; = 2, the Rand statistic = (2 + 4)/10 = 0.6 and the Jaccard coefficient
=2/(242+2) = 0.33. =

Jaccard coefficient = (8.19)

We also note that the four quantities, foo, fo1, f10, and f11. define a con-
tingency table as shown in Table 8.12.

Table B.12. Two-way contingsncy table for determining whether pairs of objects are in the same class
and same cluster.

Same Cluster | Different Cluster
Same Class fi fio
Different Class for foo

Previously, in the context of association analysis—see Section 6.7.1—we
presented an extensive discussion of measures of association that can be used
for this type of contingency table. (Compare Table 8.12 with Table 6.7.) Those
measures can also be applied to cluster validity.

Cluster Validity for Hierarchical Clusterings

So far in this section, we have discussed supervised measures of cluster va-
lidity only for partitional clusterings. Supervised evaluation of a hierarchical
clustering is more difficult for a variety of reasons, including the fact that a
preexisting hierarchical structure often does not exist. Here, we will give an
example of an approach for evaluating a hierarchical clustering in terms of a
{flat) set of class labels, which are more likely to be available than a preexisting
hierarchical structure.

The key idea of this approach is to evalnate whether a hierarchical clns-
tering contains, for each class, at least one cluster that is relatively pure and
includes most of the objects of that class. To evaluate a hierarchical cluster-
ing with respect to this goal, we compute, for each class, the F-measure for
each clnster in tbe cluster hierarchy. For each class, we take the maximum F-
measure attained for any cluster, Finally, we calcnlate an overall F-measnre for
the hierarchical clustering by computing the weighted average of all per-class
F-measures, where the weights are based on the class sizes. More formally,

8.5 Cluster Evaluation 553

this hierarchical F-measure is defined as follows:
I L x
F—zj: - m?,xF(l.J)

where the maximum is taken over all clusters 7 at all levels, m; is the number
of objects in class j, and m is the total number of objects.

8.5.8 Assessing the Significance of Cluster Validity Measures

Cluster validity measures are intended to help us measnre the goodness of the
clusters that we have obtained. Indeed, they typically give us a single number
as a measure of that goodness. However, we are then faced with the problem
of interpreting the significance of this number, a task that may be even more
difficult.

The minimum and maximum values of cluster evaluation measures may
provide some guidance in many cases. For instance, by definition, a purity of
0 is bad, while a purity of 1 is good, at least if we trust our class labels and
want our cluster structure to reflect the class structure. Likewise, an entropy
of 0 is good, as is an SSE of 0.

Sometiines, however, there may not be a minimum or maximum value,
or the scale of the data may affect the interpretation. Also, even if there
are minimum and maximum values with obvious interpretations, intermediate
values still need to be interpreted. In some cases, we can use an absolnte
standard. If, for example, we are clustering for utility, we may be willing to
tolerate only a certain level of error in the approximation of our points by a
cluster centroid.

But if this is not the case, then we must do something else. A common
approach is to interpret the value of our validity measure in statistical terms.
Specifically, we attempt to judge how likely it is that our observed value may
be achieved by random chance. The value is good if it is unusual; i.e., if it is
unlikely to he the result of random chance. The motivation for this approach
is that we are only interested in clnsters that reflect non-random strncture in
the data, and such structures should generate unusually high (low) values of
our cluster validity measure, at least if the validity measures are designed to
reflect the presence of strong cluster structure.

Example 8.18 (Significance of SSE). To show how this works, we present
an example based on K-means and the SSE. Suppose that we want a measure of
how good the well-separated clusters of Figure 8.30 are with respect to random
data. We generate many random sets of 100 points having the same range as

554 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

Figure 8.34. Histogram of SSE for 500 random data sets.

the points in the three clusters, find three clusters in each data set using K-
means, and accumulate the distribution of SSE values for these clusterings. By
using this distribution of the SSE values, we can then estimate the probability
of the SSE value for the original clusters. Figure 8.34 shows the histogram of
the SSE from 500 random runs. The lowest SSE shown in Figure 8.34 i5 0.0173.
For the three clusters of Figure 8.30, the SSE is 0.0050. We could therefore
conservatively claim that there is less than a 1% chance that a clustering such
as that of Figure 8.30 could oceur by chance.]

To conclude, we stress that there is more to cluster evaluation—supervised
or unsupervised—than obtaining a numerical measure of cluster validity. Un-
less this value has a natural interpretation based on the definition of the mea-~
sure, we need to interpret this value in some way. If our cluster evaluation
measure is defined such that lower values indicate stronger clusters, then we
can use statistics to evaluate whether the value we bave obtained is unusually
low, provided we have a distribution for the evaluation measure. We have pre-
sented an example of how to find such a distribution, but there is considerably
more to this topic, and we refer the reader to the bibliographic notes for more
pointers.

Finally, even when an evaluation measure is used as a relative measure,
i.e., to compare two clusterings, we still need to assess the significance in the
difference between the evaluation measures of the two clusterings. Althongh
one value will almost always be better than another, it can be difficult to
determine if the difference is significant. Note that there are two aspects to
this significance: whether the difference is statistically significant (repeatable)

8.6 Bibliographic Notes 555

and whether the magnitude of the difference is meaningful with respect to the
application. Many would not regard a difference of 0.1% as significant, even if
it is consistently reproducible.

8.6 Bibliographic Notes

Discussion in this chapter has been most heavily influenced by the books on
clnster analysis written by Jain and Dubes [396], Anderberg [374], and Kauf-
man and Rousseeuw [400]. Additional clustering books that may also be of
interest inclnde those by Aldenderfer and Blashfield [373], Everitt et al. [388],
Hartigan [394], Mirkin [405], Murtagh [407]. Romesburg [409], and Spath [413].
A more statistically oriented approach to clustering is given by the pattern
recognition book of Duda et al. [385], the machine learning book of Mitchell
[406], and the book on statistical learning by Hastie et al. [395]. A general
survey of clustering is given by Jain et al. [397], while a survey of spatial data
mining techniques is provided by Han et al. [393). Behrkin [379] provides a
survey of clustering techmques for data mimng. A good sonrce of references
to clustering outside of the data miming field is the article by Arabie and Hu-
bert [376]. A paper by Kleinberg [401] provides a discussion of some of the
trade-offs that clustering algorithms make and proves that it is impossible to
for a clustering algorithm to simultaneously possess three simple properties.
The K-means algorithm has a long bistory, but is still the subject of current
research. The original K-meaus algorithm was proposed by MacQueen [103].
The ISODATA algorithm by Ball and Hall [377] was an early. but sophisticated
version of K-means that employed various pre- and postprocessing techniques
to improve on the basic algorithm. The K-means algorithm and many of its
variations are described in detail in the books by Anderberg [374] and Jain
and Dubes [396]. The bisecting K-means algorithm discussed in this chapter
was described in a paper by Steinbach et al. [414], and an implementation
of this and other clustering approaches is freely available for academic use in
the CLUTO (CLUstering TOolkit) package created by Karypis [382]. Boley
[380] has created a divisive partitioning clustering algorithm (PDDP) based
on finding the first principal direction (component) of the data, and Savaresi
and Boley [411] have explored its relationship to bisecting K-means. Recent
variations of K-means are a new incremental version of K-means (Dhillon et al.
[383]), X-means (Pelleg and Moore [108]), and K-barmonic means (Zbang et al
[4186]). Hanierly and Elkan [392] discuss some clustering algorithms that pro-
duce better results than K-means. While some of the previously mentioned
approaches address the initialization problem of K-means in some manner,

556 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

other approaches to improving K-means initialization can also be found in the
work of Bradley and Fayyad [381]. Dbillon and Modha [384] present a gen-
eralization of K-means, called spherical K-means, that works with commonly
used similarity functions. A general framework for K-means clustering that
uses dissimilarity functions based on Bregman divergences was constructed by
Banerjee et al. [378].

Hierarchical clustering techniques also have a long history. Much of the
initial activity was in the area of taxonomy and is covered in books by Jardine
and Sibson [398] and Sneath and Sokal [412]. General-purpose discussions of
hierarchical clustering are also available in most of the clustering books men-
tioned above. Agglomerative hierarchical clustering is the focus of most work
in the area of hierarchical clustering, but divisive approaches have also received
some attention. For example, Zahn [415] describes a divisive hierarchical tech-
nique that uses the minimum spanning tree of a graph. While hoth divisive
and agglomerative approaches typically take the view that merging (splitting)
decisions are final, there has been some work by Fisher [389] and Karypis et
al. [399] to overcome these limitations.

Ester et al. proposed DBSCAN [387], which was later generalized to the
GDBSCAN algorithm by Sander et al. [410] in order to handle more general
types of data and distance measures, such as polygons whose closeness is mea-
sured by the degree of intersection. An incremental version of DBSCAN was
developed by Kriegel et al. [386]. One interesting outgrowth of DBSCAN is
OPTICS (Ordering Points To Identify the Clustering Structure) (Ankerst et
al. [375]), which allows the visualization of cluster structure and can also be
used for hierarchical clustering.

An authoritative discussion of cluster validity, which strongly influenced
the discussion in this chapter, is provided in Chapter 4 of Jain and Dubes’
clustering book [396]. More recent reviews of cluster validity are those of
Halkidi et al. [390, 391] and Milligan [404]. Silhouette coefficients are described
in Kaufman and Rousseeuw's clustering book [400]. The source of the cobesion
and separation measures in Table 8.6 is a paper by Zhao and Karypis [417],
which also contains a discussion of entropy, purity, and the hierarchical F-
measure. The original source of the hierarchical F-measure is an article by
Larsen and Aone [402].

Bibliography
[373] M. S. Aldenderfer and R. K. Blashfield. Cluster Analysis. Sage Puhlications, Los
Angeles, 1985,

[374) M. R. Anderberg. Cluster Analysis for Applications. Academic Press, New York,
December 1973,

Bibliography 557

[375] M. Ankerst. M. M. Breunig, H.-P. Kriegel, and J. Sander. OPTICS: Ordering Points
To Identify the Clustering Structure. In Proc. of 1999 ACM-SIGMOD Intl. Conf. on
Marnagement of Data, pages 49-60, Philadelphia, Pennsylvania, June 1999. ACM Press.

[376] P. Arabie, L. Hubert, and G. D. Soete. An overview of combinatorial data analysis.
In P. Arabie, L. Hubert, and G. D. Soete, editors. Clustering and Classification, pages
188-217. World Scientific, Singapore, January 1996.

[377] G. Ball and D. Hall. A Clustering Technique for Summarizing Multivariate Data.
Behevior Science, 12:153-155, Mareh 1967,

[378] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh. Clustering with Bregman Diver-
gences., In Proc. of the 2004 SIAM Intl. Conf. on Data Mining, pages 234-245, Lake
Buena Vista, FL, April 2004,

[379] P. Berkhin. Survey Of Clustering Data Mining Techniques. Technical report. Accrue
Software, San Jose, CA, 2002.

[380] D. Boley. Principal Direction Divisive Partitioning. Date Mining and Knowledge
Discovery, 2(4):325 344, 1998.

[381] P. S. Bradley and U. M. Fayyad, Refining Initial Points for K-Means Clustering, In
Proc. of the 15th Intl. Conf. on Machine Learning, pages 91-99, Madison, WI, July
1898. Morgan Kaufmann Publishers Inc.

[382] CLUTO 2.1.L: Software for Clustering High-Dimensional — Datasets.
/www.cs.umn.edu/~karypis, November 2003.

[383] L. S. Dhillon, Y. Guan, and J. Kogan. Iterative Clustering of High Dimensional Text
Data Augmented by Local Search. In Proc. of the 2002 IEEE Intl. Conf. on Data
Mining, pages 131-138. IEEE Computer Society. 2002.

[384] L. S. Dhillon and D. S. Modha. Concept Decompositions for Large Sparse Text Data
Using Clustering. Machine Learning. 42(1/2):143-175, 2001

[385] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John Wiley & Sons,
Inc., New York, second edition, 2001,

[386] M. Ester, H.-P. Kriegel. J. Sander, M. Wimmer. and X. Xu, Incremental Clustering
for Mining in a Data Warehousing Environment. In Proc. of the 2{th VLDB Con{.,
pages 323-333, New York City, August 1998. Morgan Kaufmann.

[387] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A Density-Based Algorithm for Dis-
covering Clusters in Large Spatial Databases with Noise. In Proc. of the 2nd Intl. Conj.
on Knowledge Discovery and Data AMining, pages 226-231, Portland, Oregon, August
1996. AAAT Press.

[388] B. S. Everitt, S. Landau, and M. Leese. Cluster Analysis. Arnold Publishers, London,
fourth edition, May 2001,

[389] D. Fisher. Iterative Optimization and Simplification of Hierarchical Clusterings. Jour-
nal of Artificial Intelligence Research, 4:147 179, 1996,

[390] M. Halkidi, Y. Batistakis, and M. Vazirgiannis. Cluster validity methods: part L
SIGMOD Record (ACM Special Inierest Group on Management of Data), 31(2):40-45,
June 2002.

[391] M. Halkidi, Y. Batistakis, and M. Vazirgiannis. Clustering validity checking methods:
part II. SIGMOD Record (ACM Special Interest Group on Management of Data). 31
(3):19 27, Sept. 2002.

[302] G. Hamerly and C. Elkan. Alternatives to the k-means algorithm that find better
clusterings. In Proc. of the 11th Intl. Conf. on Information and Knowledge Management,
pages 600607, McLean, Virginia, 2002. ACM Press.

558 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

[393] J. Han, M. Kamber, and A. Tung. Spatial Clustering Methods in Data Mining: A
review. In H. J. Miller and J. Han, editors. Geographic Deta Mining and Knowledge
Discovery, pages 188 217. Taylor and Francis, Londen, December 2001,

[304] J. Hartigan. Clustering Algorithms. Wiley, New York, 1975.

[305] T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statistical Learning:
Data Mining, Inference, Prediction. Springer, New York. 2001.

[306] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall
Advanced Reference Series. Prentice Hall, March 1088, Book available online at
http: //www cse. msu.edu/~jain/Clustering_Jain_Dubes_pdf.

[397] A.K. Jain, M. N. Murty, and P. J. Flynu. Data clustering: A review. 4CM Computing
Surveys. 31(3):264-323, September 1999.

[398] N. Jardine and R. Sibson. Mathematical Tozonomy. Wiley. New York, 1971.

[399] G. Karypis. E-H. Han, and V. Kumar. Multilevel Refinement for Hierarchical Clus-
tering. Technical Report TR 99-020, University of Minnesota, Minneapolis, MIN, 1999.

[400] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster
Analysis. Wiley Series in Probability and Statistics. John Wiley and Sons, New York,
November 1990

[401] J. M. Kleinberg. An Impossibility Theorem for Clustering. In Proc, of the 16th Annual
Conf. on Neural Information Processing Systems, December, 9-14 2002.

[402] B. Larsen and C. Aone. Past and Effective Text Mining Using Linear-Time Document
Clustering. In Proc. of the 5th Intl. Conf. on Knowledge Discovery and Data Mining,
pages 16-22, San Diego, California, 1959. ACM Press.

[403] J. MacQueen. Some methods for classification and analysis of multivariate observa-
tions. In Proc. of the 5th Berkeley Symp. on Mathematical Statistics and Probabelity,
pages 281-297. University of California Press, 1967.

[404] G. W. Milligan. Clustering Validation: Results and Implications for Applied Analyses.
In P. Arabie, L. Hubert, and G. D. Soete, editors, Clustering and Classification, pages
345-375, World Scientific, Singapore. January 1996,

[406] B. Mirkin. Mathematical Classification and Clustering, volume 11 of Nonconver Opti-
mization and Its Appiteations. Kluwer Academic Publishers, August 1996.

[406] T. Mitchell. Machine Learning. McGraw-Hill, Boston. MA, 1997.

[407] F. Murtagh. Multidimensional Clustering Algorithms. Physica-Verlag, Heidelberg and
Vienna, 1985.

[408] D. Pelleg and A. W. Moore. X -means: Extending & -means with Efficient Estimation
of the Number of Clusters. In Proe. of the 17th Intl. Conf. on Machine Learning. pages
727-734. Morgan Kaufmann, San Francisco, CA. 2000.

[409] C. Romesburg. Cluster Analysis for Researchers. Life Time Learning, Belmont. CA,
1084,

[410] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu. Density-Based Clustering in Spatial
Databases: The Algorithm GDBSCAN and its Applications. Data Mining and Knowl-
edge Discovery, 2(2):160-194, 1098.

[411] 8. M. Savaresi and D. Boley. A comparative analysis on the bisectiug K-means and
the PDDP clustering algorithms. Intelligent Data Analysis, 8(4}:345-362, 2004.

[412] P. H. A. Sneath and R. R. Sokal. Numerical Tazonomy. Freeman, San Francisco, 1971.

[413) H. Spath. Cluster Analysie Algorithms for Data Reduetion and Classification of Ob-
jects, volume 4 of Computers and Their Application. Ellis Horwood Publishers, Chich-
ester, 1980. ISBN 0-85312-141-9.

8.7 Exercises 559

[414] M. Steinbach, G. Karypis, and V. Kumar. A Comparison of Document Clustering
Techniques. In Proc. of KDD Workshop on Text Mining, Proc. of the 6th Intl. Conf.
on Knowledge Discovery and Data Mining, Boston, MA, August 2000.

[415] C.T.Zahn. Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters.
IEBE Transactions on Computers, C-20(1):68-86, Jan. 1971

[416] B. Zhang, M. Hsu, and U. Dayal. K-Harmonic Means A Data Clustering Algorithm.
Technical Report HPL-1990-124, Hewlett Packard Laboratories. Oct. 20 1999,

[417] Y. Zhao and G. Karypis. Empirical and theoretical comparisons of selected criterion
functions for document clustering. Machine Learning, 55(3):311-331, 2004.

8.7 Exercises

1. Consider a data set consisting of 22° data vectors, where each vector has 32
components and each component is & 4-byte value. Suppose that vector quan-
tization is used for compression and that 2'® prototype vectors are used. How
many bytes of storage does that data set take before and after compression and
what is the compression ratio?

2. Find sll well-separated clusters in the set of points shown in Figure 8.35.

Figure 8.35. Points for Exercise 2.

3. Many partitional clustering algorithms that automatically determine the num-
ber of clusters claim that this is an advantage. List two situations in which this
is not the case.

4. Given K equally sized clusters, the probability that a randomly chosen initial
centroid will come from any given cluster is 1/K, but the probability that each
cluster will have exactly one initial eentroid is much lower. (It should be clear
that having one initial centroid in each cluster is a good starting situation for
K-means.) In general, if there are K clusters and each eluster has n points, then
the probability, p, of selecting in a sample of size K" one initial centroid fromn each
cluster is given by Equation 8.20. {This assumes sampling with replacement.)
Fromn this formula we can calculate, for example, that the chance of having one
initial centroid from each of four clusters is 41/4* = 0.0938.

560 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

_ number of ways to select one centroid from each cluster Kin¥ K! s
P= number of ways to select K centroids T (Km)K T RK B20)

(a) Plot the probability of obtaining one point from each cluster in a sample
of gize K for values of K between 2 and 100.

(b) For K clusters, K = 10,100, and 1000, find the probability that a sample
of size 2K contains at least one point from each cluster. You can use
either mathematical methods or statistical simulation to determine the
ANSWeT.

5. Identify the clusters in Figure 8.36 using the center-, contiguity-, and density-
based definitions. Also indicate the number of clusters for each case and give
a brief indication of your reasoning. Note that darkness or the number of dots
indicates density. If it helps, assume center-based means K-means, contiguity-
based means single link, and density-based means DBSCAN.

OO

(a) (b) (e} (d)

Figure 8,36, Clusters for Exercise 5.

6. For the following sets of two-dimensional pomts, (1) provide a sketch of how
they would be split into clusters by K-means for the given number of clusters
and (2) indicate approximately where the resulting centroids would be. Assume
that we are using the squared error objective funetion. If you think that there
is more than one possible solution, then please indicate whether each solution
is a global or local minimmn, Note that the label of each diagram in Figure
8.37 marches the corresponding part of this question. e.g., Figure 8.37(a) goes
with part {a).

(a) K =2 Assuming that the points are uniformly distributed in the circle,
how many possible ways are there (in theory) to partition the points
into two clusters? What can you say about the positions of the two
centroids? (Again, you don’t need to provide exact eentroid locations,
just a qualitative description.)

8.7 Exercises 561

A _
\J 00 0o =

(a) (b) (e} (4 (e}

Figure 8.37. Diagrams for Exercise 6.

(b) K = 3. The distance between the edges of the cireles is slightly greater
than the radii of the circles.

{¢) A = 3. The distance between the edges of the cireles is much less than
the radii of the cireles.

(d) K =2.
{e) K = 3. Hint: Use the symmetry of the situation and remember that we
are looking for & rough sketeh of what the result would be.

. Suppose that for a data set

e there are m points and K clusters,

e half the points and clusters are in “more dense™ regions,

e half the points and clusters are in “less dense™ regions, and
e the two regions are well-separated from each other.

For the given data set, which of the following should oceur in order to minimize
the squared error when finding X clusters:

(a) Centroids should be equally distributed betweeu more dense and less dense
Tegions.
(b) More centroids should be allocated to the less dense region.
(c) More ceutroids should be allocated to the denser region.
Note: Do not get distracted by special eases or bring in factors other than

density. However, if you feel the true answer is different from any given above,
Jjustify your response.

. Consider the mean of a cluster of objects from a binary transaction data set.

What are the minimum and maximum values of the components of the mean?
What is the interpretation of components of the cluster mean? Which compo-
nents most accurately characterize the objects in the cluster?

. Give an example of a data set consistiug of three natural clusters, for which

(almost always) K-means would likely find the correct clusters, but biseeting
K-means would not.

562

10.

12

12.

13.

14.

15.

Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

‘Would the cosine measure he the appropriate similarity measure to use with K-
means clustering for time series data? Why or why not? If not, what similarity
measure would be more appropriate?

Total SSE is the sum of the 8SE for each separate attribute. What does it mean
if the SSE for one variable is low for all clusters? Low for just one cluster? High
for all clusters? High for just one cluster? How could vou use the per variahle
SSE information to improve your clustering?

The leader algorithm (Hartigan [394]) represents each cluster using a point,
known as a leader, and assigns each point to the cluster corresponding to the
closest leader, unless this distance is above a user-specified threshold. In that
case, the point becomes the leader of a new cluster.

(a) What are the advantages and disadvantages of the leader algorithm as
compared to K-means?

(b) Suggest ways in which the leader algorithm might be improved.

The Voronoi diagram for a set of K points iu the plane is a partition of all
the points of the plane into A regions, such that every point (of the plane)
is assigned to the closest point ameng the K specified points. (See Figure
8.38.) What is the relationship between Voronoi diagrams and K-mesans clus-
ters? What do Voronoi diagrams tell us about the possible shapes of K-means
clnsters?

Figure 8.38. Voronai diagram for Exercise 13.

You are given a data set with 100 records and are asked to cluster the data.
You use K-means to cluster the data, but for all values of K, 1 < K < 100,
the K-means algorithm returns only one non-empty cluster. You then apply
an incremental version of K-means, hut obtain exactly the same result. How is
this possible? How would single link or DBSCAN handle such data?

Traditional agglomerative hierarchieal clustering routines merge two eclusters at
each step. Does it seem likely that such an approach asccurately eaptures the

16.

17,

8.7 Exercises 563

(nested) cluster structure of a set of data points? If not, explain how you might
postprocess the data to obtain a more accurate view of the eluster structure.

Use the similarity matrix in Table 8.13 to perform single and complete link
hierarchical clustering. Show your results by drawing a dendrogram. The den-
drogram should clearly show the order in which the points are merged.

Table 8.13. Similarity matrix for Exercise 16.

pl [p2 | p3 | pd | P5
pl | 1.00 | 0.10 | 0.41 | 0.55 | 0.35
p2 | 0.10 | 1.00 | 0.64 | 0.47 | 0.08
p3 | 0.41 [0.64 | 1.00 | 0.44 | 0.85
pl | 055 [047 |0.44 | 100 | 0.76
p5 | 0.35 | 0.98 | 0.85 | 0.76 | 1.00

Hierarchical clustering is sometimes used to generate K clusters, K > 1 by
taking the clusters at the K" level of the dendrogram. (Root is at level 1.) By
looking at the clusters produced in this way, we can evaluate the behavior of
hierarchical clustering on different types of data and clnsters, and also compsre
hierarchical approaches to K-means.

The following is a set of cue-dimensional points: {6. 12,18, 24, 30,42, 48}.

(a) For each of the following sets of initial centroids, create two clusters hy
assigniug each point to the nearest centroid, and then calenlate the total
squared error for each set of two clusters. Show both the eluaters and the
total squared error for each set of centroids.

i. {18 45}
il. {15,40}

(h) Do hoth sets of centroids represent stable solutions; i.e., if the K-means
algorithm was run on this set of points using the given centroids as the
starting centroids, would there be any change in the clusters generated?

(c) What are the two clusters produced by single link?

(d) Which technique, K-means or single link, seems to produce the “most
natural” clustering in this situation? (For K-means, take the clustering
with the lowest squared error.)

{e) What definition(s) of clustering does this natnral clustering correspond
to? (Well-separated, center-based, contiguous, or density.)

(f) What well-known characteristic of the K-means algorithm explains the
previous behavior?

564

18.

19.

20.

Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

Suppose we find K clusters using Ward’s method, bisecting K-means, and ordi-
nary K-means. Which of these solutions represents a local or global minimum?
Explain.

Hierarchieal clustering algorithms require O(m?log(m)) time, and consequently,
are impractical to use directly on larger data sets. One possible technique for
reducing the time required is to sample the data set. For example, if K clusters
are desired and /m points are sampled from the m points, then a hierarchi-
cal clustering algorithm will produce a hierarchical clustering in roughly O(m)
time. K clusters can be extracted from this hierarchical clustering by taking
the clusters on the K level of the dendrogram. The remaining points can
then be assigned to a eluster in linear time, by using various strategies. To give
a specific example, the centroids of the K clusters can be computed, and then
each of the m — /m remaining points can be assigned to the cluster associated
with the closest centroid.

For each of the following types of data or clusters, discuss briefly if (1) sampling
will cause problems for this approach and {2) what those problems are. Assume
that the sampling technique randomly chooses points from the total set of m
points and that any unmentioned characteristics of the data or clusters are as
optimal as possible. In other words, focus only on problems caused by the
particular characteristic mentioned. Finally, assume that X is very much less
than m.

(a) Data with very different sized clusters.

(b) High-dimensional data.

{c) Data with ontliers, i.e., atypical points.

(d) Data with highly irregular regions.

(e) Data with globnlar clusters.

{f) Data with widely different densities.

(g) Data with a small percentage of noise points.

(h) Non-Euclidean data.

(i) Euclidean data.

(j) Data with many and mixed sttribute types.
Consider the following fonr faces shown in Figure 8.39. Again, darkness or

nunher of dots represents density. Lines are used only to distinguish regions
and do not represent points.

(a) For each figure, conld you use single link to find the patterns represented
by the nose, eyes, and mouth? Explain.

(b) For each figure, could you use K-means to find the patterns represented
by the nose, eyves, and mouth? Explain.

21,

8.7 Exercises 565

(a) (b) (c) (d)

Figure 8.39, Figure for Exercise 20.

{c) What limitation does clustering have in deteeting all the patterns formed
by the points in Figure 8.39(c)?

Compute the entropy and purity for the confusion matrix in Table 8.14.

Table 8.14. Confusion matrix for Exercise 21.

Cluster | Entertainment | Financial | Foreign | Metro | National | Sports | Total
#1 1 1 0 11 4 676 693
#2 27 89 333 827 253 33 1562
#3 326 465 3 105 16 20 919

Total 354 555 341 043 273 738 3204
22. You are given two sets of 100 poiuts that fall within the unit square. One set
of points is arranged so that the points are uniformly spaced. The other set of
points is generated from a uniform distribution over the unit square,
(a) Is there a difference betweeu the two sets of points?
(b) If so, which set of points will typically have a smaller SSE for K=10
clusters?
{c) What will be the behavior of DBSCAN on the uniform data set? The
random data set?

23. Using the data in Exercise 24, compute the silhouette coefficient for each point,

each of the two clusters, and the overall clustering.

24, Given the set of cluster labels and similarity matrix shown in Tables 8,15 and

8.16, respectively, compute the correlation between the similarity matrix and
the ideal similarity matrix, i.e., the matrix whose ij** entry is 1 if two objects

belong to the same cluster, and 0 otherwise.

566 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

Table 8.15. Table of cluster labels for Exercise 24, Table 8,16. Similarity matrix for Exerise 24,

Point | Cluster Label Point | P1 [P2] P3 P4
P1 1 P1 1 [08]065][055
P2 1 P2 08 | 1 | 0.7 | 06
P3 2 P3 (065|077 1 0.9
P4 2 P4 [055]06] 09 1

25. Compute the hierarchical F-measure for the eight objects {pl, p2, p3, p4, p5,
pb. p7, p8} and hierarchical clustering shown in Figure 8.40. Class A contains
points pl, p2, and p3, while p4, p5, p6, p7, and p8 belong to class B.

{p1. P2, p3, P4, p5, P8, 7.}

| Grezpapsy | [4o e et pm |

EKEEHEEREERIEEE

Figure 8.40. Hierarchical clustering for Exercise 25.

26. Compute the cophenetic correlation coefficient for the hierarchical clusterings
in Exercise 16. {You will need to convert the similarities into dissimilarities.)

27. Prove Equation 8.14.
28. Prove Equation 8.16.

29. Prove that E?:l >zeq,(z—mg)(m—m;) = 0. This fact was used in the proof
that TSS = SSE + SSB in Section 8.5.2.

30. Clusters of documents can be summarized by finding the top terms {words) for
the documents in the cluster, e.g., by taking the most frequent k terms, where
k is a constant, say 10, or by taking all terms that occur more frequently than
a specified threshold. Suppose that K-means is used to find clusters of both
documents and words for a document data set.

() How might a set of term clusters defined by the top terms in a document
cluster differ from the word clusters found by clustering the terms with
K-means?

(b) How could term clustering be used to define clusters of documents?

31. We can represent a data set as a collection of object nodes and a collection of
attribute nodes, where there is a link between each object and each attribute,

32.

8.7 Exercises 567

and where the weight of that link is the value of the object for that attribute. For
sparse data, if the value is 0, the link is omitted. Bipartite clustering attempts
to partition this graph into disjeint clusters, where each cluster consists of a
set of object nodes and a set of attribute nodes. The objective is to maximize
the weight of links between the object and attribute nodes of a cluster, while
minimizing the weight of links between object and attribute links in different
clusters. This type of clustering is also known as co-clustering since the
objects and attributes are clustered at the same time.

(a) How is bipartite clustering (co-clustering) different from clustering the
sets of objects and attributes separately?

(b) Are there any cases in which these approaches yield the same clusters?

{c) What are the strengths and weaknesses of co-clustering as compared to
ordinary clustering?

In Figure 8.41, match the similarity matrices, which are sorted according to
cluster labels, with the sets of points. Differences in shading and marker shape
distinguish between clusters, and each set of points contains 100 points and
three clusters. In the set of points labeled 2, there are three very tight, equal-
sized clusters.

568 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

1 1 1 2
v .
v T o
00 vee 7 v gt 09|
v v
08 A % . : 08
07 ve v 07}
be' - v v v .4
06 i 08 v
=05 = v » 05|
g wase
o4l x 5 e 04 L]
: « g
o3t " c e 03
02 x FE o‘: 02| -
0ff ¥ sl "By Iy 01
° 4 06 08 k 02 4 X 08 1
x x
3 4

Figure 8.41. Points and similarity matrices for Exercise 32.

Errata 1

Errata for Introduction to Data Mining
by Tan, Steinbach, and Kumar.

Please send all error reports to dmbook@cs.umn.edu

Preface

Page x, last sentence of first paragraph: The email address for reporting
errata has an error. Please use the one given above.

Chapter 2

1. Page 23: The title “What Is an attribute?” should be
“What is an Attribute?”.

2. Page 60, equa.:::ion in the last paragraph: “e; = 2:‘:1 pij logg pi;” should
be “e; = — 37 pij logy pi;”-
3. Page 69, fourth line from bottom: “of z and y” should be “of x and y”.

4. Page 70, second line from bottom: “d(x,x) > 0 for all x and y” should
be “d(x,y) > 0 for all xand y".

5. Page 75, second equation before the last paragraph: ||y|| should be
2.45, not 2.24.

6. Page 78, last sentence of the first paragraph: “z = y?” should be
“yr. _— IE’!-

7. Page 91, Exercise 14: “what sort of similarity measure” should be
“what sort of proximity measure”.

Chapter 3

1. Page 100 Table 3.1: The number of freshman should be 200 and the
number of seniors should be 110, as shown in Table 1.

Table 1. Class size for students in a hypothetical college.

Class Size | Frequency
freshman 200 0.33
sophomore | 160 027
junior 130 0.22
senior 110 0.18

2 Errata

2. Page 126: Example 3.21: “Figure 3.25 is another parallel coordinates
plot of the same data,” should be “Figure 3.26 is another parallel
coordinates plot of the same data,”

Chapter 4

1. Page 160, second line from the bottom of the second paragraph from
the bottom: “the Gini index for attribute B is 0.375" should be “‘the
Gini index for attribute B is 0.371",

2. Page 161, Figure 4.14, bottom right table. “Gini = 0.375" sbould be
“Gini = 0.371".

3. Page 173, second from bottom line: “Figure 4.23(b) shows the training
and test error rates” should be “Figure 4.23 shows the training and test
error rates” .

4. Page 189, sixtb from bottom line, tbe equation sbould be:
NN ;
P(X = v) = ()pﬁ(l .
v

5. Page 192, Equation 4.17:

di¥ = 0,05+ 1.70 x 0.002,

6. Page 193, Table 4.6. Column headings are given in Table 2.

Table 2. Probability table for t-distribution.

(1-a

k—1[080]0.957]0975]0.99 [0.995
1 3.08 [6.31 | 12.7 | 318 | 63.7
2 1.89 1292 | 430 | 6.96 | 8.92
4 153213 | 278 | 3.75 | 4.60
9 1.38 | 1.83 | 2.26 | 2.82 | 3.25
14 1.34 | 1.v6 | 2.14 | 2.62 | 298
19 1.33 | 1.73 | 2.09 | 2.54 | 2.86
24 132 | 1.71 | 2.06 | 249 | 2.80
29 1.31 | 1.70 | 2.04 | 2.46 | 2.76

7. Page 198, Exercise 3(a}: “What is the entropy of this collectiou of
training examples with respect to the positive class? should be “What
is the entropy of this collection of traimng examples with respect to the
class attribute?”.

Errata 3

8. Page 200, Exercise 5(c) both instances of “monotonously” should be
“monotonically”.

Chapter 5

1. Page 208, sixth from top line: “and op is a logical operator chosen”
should be “and op is a comparison operator chosen”.

2. Page 213, Algorithm 5.1 line 8: “R — RV r” sbould be “R+— RV r".

3. Page 218, tenth from bottom line: “rules r; and 7 given in the
preceding example are 43.12 and 27 should be “rules 71 and r3 given in
the preceding example are 63.87 and 2.83".

4. Page 233, Equation 5.16 should be:

P(X; = Y =g;) = (x; _#ij)2].

1
exp| -
V2roy P [20;‘3

5. Page 264, sixth and seventh from bottom line, equations should be:

wi = 3 Ngimn = 65.5261 x 1x 0.3858 + 65.5261 x —1 x 0.4871 = —6.64.

i

wy = Z Ay = 65.5261 % 1 x 0.4687 + 65.5261 x —1 x 0.611 = —9.32.

%
6. Page 271, Equation (5.55):
b : (r1.70) — (22,12, V211, V252, V21110, 1).

In the transformed space, we can find the parameters w = (wg, un, ...,
ws) such that:

w5rf + w“'g + w21 + wav2irs + w1 V2s1x0 + wp = 0.

7. Page 271, tentb from bottom line: “all the circles are located in the
lower right-hand side of the diagram™ should be “all the circles are
located in the lower left-lhand side of the diagram™.

8. Page 273, second from top line: “instance z can be classified” should be
“instance Z can be classified”.

4 Errata Errata 5

9. Page 273, Equation (5.60): 2. Page 437, fourth from bottom line: “events in one element must occur
immediately after the events” should be “events in one element must
b(u) - $(v) = (uf, u%. V2u1, V2us, vV2u1ug, 1) (vf, vg. V2v1, V2us, V21 va, 1) occur after the events”.
e @iBei) oD
= upep +upvy + 2ugvy + 2uguy + 2uguguivg + 1 3. Page 449, Figure 7.13 should be as shown in Figure 1.
= (u-v+ 12

10. Page 274, second line in the second paragraph: “A test instance x is
classified” should be “A test instance Z is classified”.

11. Page 288, Equation 5.69 should he:

(7} —a, i _
Gy W e~ HOi(x) =wu
w; = —2—x " —
¢ Z; {eﬂg if C(x:) # wi G3 = merge(G1,G2)

0
12. Page 315, Exercige 1{a): “exclustive” should he “exclusive”. 0
-

13, Page 317, Exercise 5(d) and 5{e): “examples covered by R1 are
discarded)” should be “examples covered by R1 are discarded”.

-3

14. Page 323, Exercise 17(c) and 17(d): “part (c)” should be “part (b)". Shaans . Ve T
igure 1. Vertex-growing strategy.

Chapter 6
4. Page 450, Figure 7.14 should be as shown in Figure 2.

1. Page 356, caption in Figure 6.17: “(with minimum support count equal
to 40%” should be “{(with minimum support equals to 40%)”.

2. Page 408, Exercise 9(b): “Use the visited leaf nodes in part (b)" should
be “Use the visited leaf nodes in part (a)”.

3. Page 411, Exercise 15(b): “P(A, B) x P(A,B) = P(A, B) x P(4,B)"
should be “P(A, B) x P(A,B) = P(A,B) x P(A,B)".

4. Page 413, Exercise 17: “If the support” should be “Assume the
support™.

5. Page 413, Exercise 17(d)(i): c({a} — {b}) > e({@} — {b}) should be
c({a} — {8}) > c{a} — {B})-

Chapter 7

1. Page 421, the rule “Rg';) : Age € [20,24) — Chat Quline = No" should G4 =merge(G1,G2)
wp(d . - e Ve
be “Ry, : Age € [20,24) — Chat Online = Yes". Figure 2. Edge-grawing siralegy.

6 Errata

5. Page 480, Exercise 12(c): “w = ({AHB,C. D}{A})" should be
“w = (AHA, B,C, D} (A"

6. Page 483, Exercise 19(a): “join the two undirected and unweighted
subgraphs shown in Figure 19a" should be %join the two undirected
and unweighted subgraphs shown below”.

Chapter 8

Page 519: The numbers in Tables 8.3 and 8.4 were rounded to two decimal
places. Thus, if the z and y coordinates of the points given in Table 8.3 are
used to compute the pairwise distances, the results don’t quite match those
shown in Table 8.4. The original, more precise values are given in Tables 3

and 4.

point | x coordinate | y coordinate
pl 0.4005 0.5306
p2 0.2148 0.3854
p3 0.3457 0.3156
p4 0.2652 0.1875
p5 0.0739 0.4139
pé 0.4548 0.3022

Table 3. X-Y coordinates of six paints.

pl p2 p3 i el p6

pl | 0.0000 | 0.2357 | 0.2218 | 0.3688 | 0.3421 | 0.2347
p2 | 0.2357 | 0.0000 | 0.1483 | 0.2042 | 0.1388 | 0.2540
p3 | 0.2218 | 0.1483 | 0.0000 | 0.1513 | 0.2843 | 0.1100
pd | 0.3688 | 0.2042 | 0.1513 | 0.0000 | 0.2832 | 0.2216
p5 | 0.3421 | 0.1388 | 0.2843 | 0.2932 | 0.0000 | 0.3921
p6 | 0.2347 | 0.2540 | 0.1100 | 0.2216 | 0.3921 | 0.0000

Table 4. Distance Matrix for Six Points

Page 517, the fifth line of the first paragraph: “see Section 8.1.2" should be
“see Section 8.1.3".

Page 522, the fourth line from the bottom:

Sdist({3,6,4}.{2,5}) = (0.15 + 0,28 + 0.25 + 0.39 + 0,20 + 0.29)/(6 + 2)” should be
“dist({3.6,4},{2,5)) = (0.15 + 0.28 + 0.25 + 0.39 +0.20 +0.20)/(3 » 2)°

Page 549, the third line of the paragraph with the heading, Entropy: “for

cluster j we compute p;;” sbould be “for cluster ¢ we compute p;;”.

Errata 7

Chapter 9

Page 586, in Equations 9.9 and 9.10, as well as in the first line below
Equation 9.10, u should be p.

Page 596, the first line after Equation 9.16: “the difference, p(t) — m;(2).
between the centroid, m;{¢), and the current object, p(¢)” should be “the
difference, p(¢) — m;(t), between the current object, p(t), and the centroid,
my(t)”.

Page 605, Figure 9.11: ¥(c)} View in the xy plane” should be “(c) View in the
xz plane”; #(d) View in the xy plane” should be “(d) View in the yz plane”.
Page 618, Equation 9.17: “RC =" should he *RC(C;, C;) =".

Page 619, Equation 9.18: “RI =" sbould be “RI(C;,C;) =".

Page 637, the fourth line before Algorithm 9.14: “the total number of
clnsters is m/pq™ should be “the total uumber of clusters is m/q".

Page 639, the first line: “Overall, m/pq clusters are produced” should be
*Overall, m/q clusters are produced”.

Page 639, the third line: “is not pq” should be “is not q".

Page 639, the fourth line: “m/pq of the intermediate clusters” should be
“m/q of the intermediate clusters”.

Chapter 10

Page 661, the first line below Equation 10.1: “prob(|z]) > ¢ = " should be
“prob{|z| > c) = a”.
Page 669, All occurrences of y should be bold (y) in Equation 10.7,

Appendix A
1. Equation {A.4) should be as follows:

u v

lal - {v]

cos(u, v) =

Page 700, first line of the bibliographic notes: “Straing” should be
“Strang”.
Appendix C

1. Page 727, eighth from bottom line: “variance s(X) x s(X}/N™ should
be “variance s{X) x (1 — s(X))/N".

2. Page 727, fourth from bottom line: “variance minsup x minsup/N"
should be “variauce minsup x (1 — minsup)/N".

