

' '
I '

__ ,_· ~::--

PANG-NING TAN
Michigan State University

MICHAEL STEINBACH
Un iversity of Minnesota

VIPIN KUMAR
Univers i ty of Minnesota

and Army High Performance

Comput ing Research Center

~
TT

• . Boston S;m Fr.mcisco New York

London Toronto Sydney Tokyo Singapore Madrid

Mexico Cicy Munich Paris Cape Town Hong Kong Montreal

Contents

Preface vii

1 Introduction 1
1.1 What Is Data Mining? . 2
1.2 Motivating Challenges . 4
1.3 The Origins of Data Mining . 6
1.4 Data Mining Tasks . 7
1.5 Scope and Organization of the Book 11
1.6 Bibliographic Notes . 13
1.7 Exercises . 16

2 Data 19
2.1 Types of Data . 22

2.1.1 Attributes and Measurement 23
2.1.2 Types of Data Sets . 29

2.2 Data Quality . 36
2.2.1 Measurement and Data Collection Issues 37
2.2.2 Issues Related to Applications 43

2.3 Data Preprocessing . 44
2.3.1 Aggregation . 45
2.3.2 Sampling . 47
2.3.3 Dimensionality Reduction 50
2.3.4 Feature Subset Selection 52
2.3.5 Feature Creation . 55
2.3.6 Discretization and Binarization 57
2.3.7 Variable Transformation 63

2.4 Measures of Similarity and Dissimilarity 65
2.4.1 Basics . 66
2.4.2 Similarity and Dissimilarity between Simple Attributes . 67
2.4.3 Dissimilarities between Data Objects 69
2.4.4 Similarities between Data Objects 72

xiv Contents

2.4.5 Examples of Proximity Measures 73
2.4.6 Issues in Proximity Calculation 80
2.4.7 Selecting the Right Proximity Measure 83

2.5 Bibliographic Notes . 84
2.6 Exercises . 88

3 Exploring Data 97
3.1 The Iris Data Set . 98
3.2 Summary Statistics . 98

3.2.1 Frequencies and the Mode 99
3.2.2 Percentiles . 100
3.2.3 Measures of Location: Mean and Median 101
3.2.4 Measures of Spread: Range and Variance 102
3.2.5 Multivariate Summary Statistics 104
3.2.6 Other Ways to Summarize the Data 105

3.3 Visualization . 105
3.3.1 Motivations for Visualization 105
3.3.2 General Concepts . 106
3.3.3 Techniques . 110
3.3.4 Visualizing Higher-Dimensional Data 124
3.3.5 Do’s and Don’ts . 130

3.4 OLAP and Multidimensional Data Analysis 131
3.4.1 Representing Iris Data as a Multidimensional Array . . 131
3.4.2 Multidimensional Data: The General Case 133
3.4.3 Analyzing Multidimensional Data 135
3.4.4 Final Comments on Multidimensional Data Analysis . . 139

3.5 Bibliographic Notes . 139
3.6 Exercises . 141

4 Classification:
Basic Concepts, Decision Trees, and Model Evaluation 145
4.1 Preliminaries . 146
4.2 General Approach to Solving a Classification Problem 148
4.3 Decision Tree Induction . 150

4.3.1 How a Decision Tree Works 150
4.3.2 How to Build a Decision Tree 151
4.3.3 Methods for Expressing Attribute Test Conditions . . . 155
4.3.4 Measures for Selecting the Best Split 158
4.3.5 Algorithm for Decision Tree Induction 164
4.3.6 An Example: Web Robot Detection 166

Contents xv

4.3.7 Characteristics of Decision Tree Induction 168
4.4 Model Overfitting . 172

4.4.1 Overfitting Due to Presence of Noise 175
4.4.2 Overfitting Due to Lack of Representative Samples . . . 177
4.4.3 Overfitting and the Multiple Comparison Procedure . . 178
4.4.4 Estimation of Generalization Errors 179
4.4.5 Handling Overfitting in Decision Tree Induction 184

4.5 Evaluating the Performance of a Classifier 186
4.5.1 Holdout Method . 186
4.5.2 Random Subsampling 187
4.5.3 Cross-Validation . 187
4.5.4 Bootstrap . 188

4.6 Methods for Comparing Classifiers 188
4.6.1 Estimating a Confidence Interval for Accuracy 189
4.6.2 Comparing the Performance of Two Models 191
4.6.3 Comparing the Performance of Two Classifiers 192

4.7 Bibliographic Notes . 193
4.8 Exercises . 198

5 Classification: Alternative Techniques 207
5.1 Rule-Based Classifier . 207

5.1.1 How a Rule-Based Classifier Works 209
5.1.2 Rule-Ordering Schemes 211
5.1.3 How to Build a Rule-Based Classifier 212
5.1.4 Direct Methods for Rule Extraction 213
5.1.5 Indirect Methods for Rule Extraction 221
5.1.6 Characteristics of Rule-Based Classifiers 223

5.2 Nearest-Neighbor classifiers . 223
5.2.1 Algorithm . 225
5.2.2 Characteristics of Nearest-Neighbor Classifiers 226

5.3 Bayesian Classifiers . 227
5.3.1 Bayes Theorem . 228
5.3.2 Using the Bayes Theorem for Classification 229
5.3.3 Näıve Bayes Classifier 231
5.3.4 Bayes Error Rate . 238
5.3.5 Bayesian Belief Networks 240

5.4 Artificial Neural Network (ANN) 246
5.4.1 Perceptron . 247
5.4.2 Multilayer Artificial Neural Network 251
5.4.3 Characteristics of ANN 255

xvi Contents

5.5 Support Vector Machine (SVM) 256
5.5.1 Maximum Margin Hyperplanes 256
5.5.2 Linear SVM: Separable Case 259
5.5.3 Linear SVM: Nonseparable Case 266
5.5.4 Nonlinear SVM . 270
5.5.5 Characteristics of SVM 276

5.6 Ensemble Methods . 276
5.6.1 Rationale for Ensemble Method 277
5.6.2 Methods for Constructing an Ensemble Classifier 278
5.6.3 Bias-Variance Decomposition 281
5.6.4 Bagging . 283
5.6.5 Boosting . 285
5.6.6 Random Forests . 290
5.6.7 Empirical Comparison among Ensemble Methods 294

5.7 Class Imbalance Problem . 294
5.7.1 Alternative Metrics . 295
5.7.2 The Receiver Operating Characteristic Curve 298
5.7.3 Cost-Sensitive Learning 302
5.7.4 Sampling-Based Approaches 305

5.8 Multiclass Problem . 306
5.9 Bibliographic Notes . 309
5.10 Exercises . 315

6 Association Analysis: Basic Concepts and Algorithms 327
6.1 Problem Definition . 328
6.2 Frequent Itemset Generation 332

6.2.1 The Apriori Principle 333
6.2.2 Frequent Itemset Generation in the Apriori Algorithm . 335
6.2.3 Candidate Generation and Pruning 338
6.2.4 Support Counting . 342
6.2.5 Computational Complexity 345

6.3 Rule Generation . 349
6.3.1 Confidence-Based Pruning 350
6.3.2 Rule Generation in Apriori Algorithm 350
6.3.3 An Example: Congressional Voting Records 352

6.4 Compact Representation of Frequent Itemsets 353
6.4.1 Maximal Frequent Itemsets 354
6.4.2 Closed Frequent Itemsets 355

6.5 Alternative Methods for Generating Frequent Itemsets 359
6.6 FP-Growth Algorithm . 363

Contents xvii

6.6.1 FP-Tree Representation 363
6.6.2 Frequent Itemset Generation in FP-Growth Algorithm . 366

6.7 Evaluation of Association Patterns 370
6.7.1 Objective Measures of Interestingness 371
6.7.2 Measures beyond Pairs of Binary Variables 382
6.7.3 Simpson’s Paradox . 384

6.8 Effect of Skewed Support Distribution 386
6.9 Bibliographic Notes . 390
6.10 Exercises . 404

7 Association Analysis: Advanced Concepts 415
7.1 Handling Categorical Attributes 415
7.2 Handling Continuous Attributes 418

7.2.1 Discretization-Based Methods 418
7.2.2 Statistics-Based Methods 422
7.2.3 Non-discretization Methods 424

7.3 Handling a Concept Hierarchy 426
7.4 Sequential Patterns . 429

7.4.1 Problem Formulation 429
7.4.2 Sequential Pattern Discovery 431
7.4.3 Timing Constraints . 436
7.4.4 Alternative Counting Schemes 439

7.5 Subgraph Patterns . 442
7.5.1 Graphs and Subgraphs 443
7.5.2 Frequent Subgraph Mining 444
7.5.3 Apriori -like Method . 447
7.5.4 Candidate Generation 448
7.5.5 Candidate Pruning . 453
7.5.6 Support Counting . 457

7.6 Infrequent Patterns . 457
7.6.1 Negative Patterns . 458
7.6.2 Negatively Correlated Patterns 458
7.6.3 Comparisons among Infrequent Patterns, Negative Pat-

terns, and Negatively Correlated Patterns 460
7.6.4 Techniques for Mining Interesting Infrequent Patterns . 461
7.6.5 Techniques Based on Mining Negative Patterns 463
7.6.6 Techniques Based on Support Expectation 465

7.7 Bibliographic Notes . 469
7.8 Exercises . 473

xviii Contents

8 Cluster Analysis: Basic Concepts and Algorithms 487
8.1 Overview . 490

8.1.1 What Is Cluster Analysis? 490
8.1.2 Different Types of Clusterings 491
8.1.3 Different Types of Clusters 493

8.2 K-means . 496
8.2.1 The Basic K-means Algorithm 497
8.2.2 K-means: Additional Issues 506
8.2.3 Bisecting K-means . 508
8.2.4 K-means and Different Types of Clusters 510
8.2.5 Strengths and Weaknesses 510
8.2.6 K-means as an Optimization Problem 513

8.3 Agglomerative Hierarchical Clustering 515
8.3.1 Basic Agglomerative Hierarchical Clustering Algorithm 516
8.3.2 Specific Techniques . 518
8.3.3 The Lance-Williams Formula for Cluster Proximity . . . 524
8.3.4 Key Issues in Hierarchical Clustering 524
8.3.5 Strengths and Weaknesses 526

8.4 DBSCAN . 526
8.4.1 Traditional Density: Center-Based Approach 527
8.4.2 The DBSCAN Algorithm 528
8.4.3 Strengths and Weaknesses 530

8.5 Cluster Evaluation . 532
8.5.1 Overview . 533
8.5.2 Unsupervised Cluster Evaluation Using Cohesion and

Separation . 536
8.5.3 Unsupervised Cluster Evaluation Using the Proximity

Matrix . 542
8.5.4 Unsupervised Evaluation of Hierarchical Clustering . . . 544
8.5.5 Determining the Correct Number of Clusters 546
8.5.6 Clustering Tendency . 547
8.5.7 Supervised Measures of Cluster Validity 548
8.5.8 Assessing the Significance of Cluster Validity Measures . 553

8.6 Bibliographic Notes . 555
8.7 Exercises . 559

9 Cluster Analysis: Additional Issues and Algorithms 569
9.1 Characteristics of Data, Clusters, and Clustering Algorithms . 570

9.1.1 Example: Comparing K-means and DBSCAN 570
9.1.2 Data Characteristics . 571

Contents xix

9.1.3 Cluster Characteristics 573
9.1.4 General Characteristics of Clustering Algorithms 575

9.2 Prototype-Based Clustering . 577
9.2.1 Fuzzy Clustering . 577
9.2.2 Clustering Using Mixture Models 583
9.2.3 Self-Organizing Maps (SOM) 594

9.3 Density-Based Clustering . 600
9.3.1 Grid-Based Clustering 601
9.3.2 Subspace Clustering . 604
9.3.3 DENCLUE: A Kernel-Based Scheme for Density-Based

Clustering . 608
9.4 Graph-Based Clustering . 612

9.4.1 Sparsification . 613
9.4.2 Minimum Spanning Tree (MST) Clustering 614
9.4.3 OPOSSUM: Optimal Partitioning of Sparse Similarities

Using METIS . 616
9.4.4 Chameleon: Hierarchical Clustering with Dynamic

Modeling . 616
9.4.5 Shared Nearest Neighbor Similarity 622
9.4.6 The Jarvis-Patrick Clustering Algorithm 625
9.4.7 SNN Density . 627
9.4.8 SNN Density-Based Clustering 629

9.5 Scalable Clustering Algorithms 630
9.5.1 Scalability: General Issues and Approaches 630
9.5.2 BIRCH . 633
9.5.3 CURE . 635

9.6 Which Clustering Algorithm? 639
9.7 Bibliographic Notes . 643
9.8 Exercises . 647

10 Anomaly Detection 651
10.1 Preliminaries . 653

10.1.1 Causes of Anomalies . 653
10.1.2 Approaches to Anomaly Detection 654
10.1.3 The Use of Class Labels 655
10.1.4 Issues . 656

10.2 Statistical Approaches . 658
10.2.1 Detecting Outliers in a Univariate Normal Distribution 659
10.2.2 Outliers in a Multivariate Normal Distribution 661
10.2.3 A Mixture Model Approach for Anomaly Detection . . . 662

xx Contents

10.2.4 Strengths and Weaknesses 665
10.3 Proximity-Based Outlier Detection 666

10.3.1 Strengths and Weaknesses 666
10.4 Density-Based Outlier Detection 668

10.4.1 Detection of Outliers Using Relative Density 669
10.4.2 Strengths and Weaknesses 670

10.5 Clustering-Based Techniques 671
10.5.1 Assessing the Extent to Which an Object Belongs to a

Cluster . 672
10.5.2 Impact of Outliers on the Initial Clustering 674
10.5.3 The Number of Clusters to Use 674
10.5.4 Strengths and Weaknesses 674

10.6 Bibliographic Notes . 675
10.7 Exercises . 680

Appendix A Linear Algebra 685
A.1 Vectors . 685

A.1.1 Definition . 685
A.1.2 Vector Addition and Multiplication by a Scalar 685
A.1.3 Vector Spaces . 687
A.1.4 The Dot Product, Orthogonality, and Orthogonal

Projections . 688
A.1.5 Vectors and Data Analysis 690

A.2 Matrices . 691
A.2.1 Matrices: Definitions . 691
A.2.2 Matrices: Addition and Multiplication by a Scalar . . . 692
A.2.3 Matrices: Multiplication 693
A.2.4 Linear Transformations and Inverse Matrices 695
A.2.5 Eigenvalue and Singular Value Decomposition 697
A.2.6 Matrices and Data Analysis 699

A.3 Bibliographic Notes . 700

Appendix B Dimensionality Reduction 701
B.1 PCA and SVD . 701

B.1.1 Principal Components Analysis (PCA) 701
B.1.2 SVD . 706

B.2 Other Dimensionality Reduction Techniques 708
B.2.1 Factor Analysis . 708
B.2.2 Locally Linear Embedding (LLE) 710
B.2.3 Multidimensional Scaling, FastMap, and ISOMAP . . . 712

Contents xxi

B.2.4 Common Issues . 715
B.3 Bibliographic Notes . 716

Appendix C Probability and Statistics 719
C.1 Probability . 719

C.1.1 Expected Values . 722
C.2 Statistics . 723

C.2.1 Point Estimation . 724
C.2.2 Central Limit Theorem 724
C.2.3 Interval Estimation . 725

C.3 Hypothesis Testing . 726

Appendix D Regression 729
D.1 Preliminaries . 729
D.2 Simple Linear Regression . 730

D.2.1 Least Square Method 731
D.2.2 Analyzing Regression Errors 733
D.2.3 Analyzing Goodness of Fit 735

D.3 Multivariate Linear Regression 736
D.4 Alternative Least-Square Regression Methods 737

Appendix E Optimization 739
E.1 Unconstrained Optimization . 739

E.1.1 Numerical Methods . 742
E.2 Constrained Optimization . 746

E.2.1 Equality Constraints . 746
E.2.2 Inequality Constraints 747

Author Index 750

Subject Index 758

Copyright Permissions 769

1

I htrod uctiori

Rapid advances in data collection and storage technology have enabled or­
ganizations to accumulate vast amounts of data. However, extracting useful
information has proven extremely challenging. Often, traditional data analy­
sis tools and techniques cannot be used because of the massive size of a data
set. Sometimes, the non-traditional nature of the data means that traditional
approaches cannot be applied even if the data set is relatively small. In other
situations, the questions that need to be answered cannot be addressed using
existing data analysis techniques, and thus, new methods need to be devel­
oped.

Data mining is a technology that blends traditional data analysis methods
with sophisticated algorithms for processing large volumes of data. It has also
opened up exciting opportunities for exploring and analyzing new types of
data and for analyzing old types of data in new ways. In this introductory
chapter, we present an overview of data mining and outline the key topics
to be covered in this book. We start with a descript ion of some well-known
applications that require new techniques for data analysis.

Business Point-of-sale data collection (bar code scanners, radio frequency
identification (RFID), and smart card technology) have allowed retailers to
collect up-to-the-minute data about customer purchases at the checkout coun­
ters of their stores. Retailers can utilize this information, along with other
business-critical data such as Web logs from e-commerce Web sites and cus­
tomer service records from call centers, to help them better understand the
needs of their customers and make more informed business decisions.

Data mining techniques can be used to support a wide range of business
intelligence applications such as customer profiling, targeted marketing, work­
flow management, store layout , and fraud detection. It can also help retailers

..... -~-::....o:.·_-:---"

2 Chapter 1 Introduction

answer important business questions such as "Who are the most profitable
customers?" "What products can be cross-sold or up-sold?" and "What is the
revenue outlook of the company for next year?" Some of these questions mo­
tivated the creation of association analysis (Chapters 6 and 7) , a new data
analysis technique.

Medicine, Science, and Engineering Researchers in medicine, science,
and engineering are rapidly accumulating data that is key to important new
discoveries. For example, as an important step toward improving our under­
standing of the Earth's climate system, NASA has deployed a series of Earth­
orbiting satellites that continuously generate global observations of the land
surface, oceans, and atmosphere. However, because of the size and spatia­
temporal nature of the data, tradit ional methods are often not suitable for
analyzing these data sets. Techniques developed in data mining can aid Earth
scientists in answering questions such as "What is the relationship between
the frequency and intensity of ecosystem disturbances such as drougllts and
hurricanes to global warming?" "How is land surface precipitation and temper­
ature affected by ocean surface temperature?" and "How well can we predict
the beginning and end of the growing season for a region?"

As another example, researchers in molecular biology hope to use the large
amounts of genomic data currently being gathered to better understand the
structure and function of genes. In the past, traditional methods in molecu­
lar biology allowed scientists to study only a few genes at a time in a given
experiment. Recent breakthroughs in microarray technology have enabled sci­
entists to compare the behavior of thousands of genes under various situations.
Such comparisons can help determine the function of each gene and perhaps
isolate the genes responsible for certain diseases. However, the noisy and high­
dimensional nature of data requires new types of data analysis. In addition
to analyzing gene array data, data mining can also be used to address other
important biological challenges such as protein structure prediction, multiple
sequence alignment, the modeling of biochemical pathways, and phylogenetics.

1.1 What Is Data Mining?

Data mining is the process of automatically discovering useful information in
large data repositories. Data mining techniques are deployed to scour large
databases in order to find novel and useful patterns that might otherwise
remai n unknown. They also provide capabili ties to predict t.he outcome of a

1.1 What Is Data Min ing? 3

future observation, such as predicting whether a newly arrived customer will
spend more t han $100 at a department store.

Not all information d iscovery tasks are considered to be data mining . For
example, looking up ind ividual records using a database management system
or finding particular Web pages via a query to an Internet search engine are
tasks related to the area of information r etr ieval. Although such tasks are
important and may involve the use of the sophisticated algorithms and data
structures, t hey rely on traditional computer science techniques and obvious
feat ures of the data to create index structures for efficiently organizing and
retrieving information. Nonetheless, data mining techniques have been used
to enhance information retrieval systems.

Data M ining and Knowledge Discovery

Data mining is an integral part of knowledge d iscovery in databases
(KDD), which is t he overall process of convert ing raw data into useful in­
formation, as shown in Figure 1.1. This process consists of a series of trans­
formation steps, from data preprocessing to postprocessing of data mining
results.

Input
Data

Feature Selection
Dimensionality Reduction
Normalization
Data Subsetting

Information

Filtering Patterns
Visualization
Pattern Interpretation

Figure 1.1. The process of knowledge discovery In databases (KDO).

The input dat,a can be stored in a variety of formats (flat files, spread­
sheets, or relational tables) and may reside in a centralized data repository
or be dist,r ibu ted across multip le sites. The pu rpose of p r eprocessing is
to transform the raw input data into an appropriate format for subsequent
analysis. The steps involved in data preprocessing include fusing data from
multip le sources, cleaning data to remove noise and duplicate observations,
and selecting records and features t hat are relevant to t he data mining task
at hand. Because of the many ways data can be collected and stored, data

4 Chapter 1 Introduction

preprocessing is perhaps the most laborious and time-consuming step in the
overall knowledge discovery process.

"Closing the loop" is the phrase often used to refer to the process of in­
tegrating data mining results into decision support systems. For example,
in business applications, the insights offered by data mining results can be
integrated with campaign management tools so that effective marketing pro­
motions can be conducted and tested. Such integration requires a postpro­
cessing step that ensures that only valid and useful results are incorporated
into the decision support system. An example of postprocessing is visualiza­
tion (see Chapter 3), which allows analysts to explore the data and the data
mining results from a variety of viewpoints. Statistical measures or hypoth­
esis testing methods can also be applied during postprocessing to eliminate
spurious data mining results.

1.2 Motiva ting C ha llenges

As mentioned earlier , traditional data analysis techniques have often encoun­
tered practical difficult ies in meeting the challenges posed by new data sets.
The following are some of the specific challenges that motivated the develop­
ment of data mining.

Scalability Because of advances in data generation and collection, data sets
with sizes of gigabytes, terabytes, or even petabytes are becoming common.
lf data mining algorithms are to handle these massive data sets, then they
must be scalable. Many data mining algorithms employ special search strate­
gies to handle exponential search problems. Scalability may also require the
implementation of novel data structures to access individual records in an ef­
ficient manner. For instance, out-of-core algorithms may be necessary when
processing data sets that cannot fit into main memory. Scalability can also be
improved by using sampling or developing parallel and distributed algorithms.

High D imensionality It is now common to encounter data sets with hun­
dreds or thousands of attributes instead of the handful common a few decades
ago. In bioinformatics, progress in microarray technology has produced gene
expression data involving thousands of features. Data sets with temporal
or spatial components also tend to have high dimensionality. For example,
consider a data set that contains measurements of temperature at various
locations. If the temperature measurements are taken repeatedly for an ex­
tended period, the number of dimensions (features) increases in proportion to

1 .2 Motivating Challenges 5

the number of measurements taken. Traditional data analysis techniques that
were developed for low-dimensional data often do not work well for such high­
dimensional data. Also, for some data analysis algorithms, the computational
complexity increases rapidly as the dimensionality (the number of features)
increases.

Heterogeneous and Complex Dat a Traditional data analysis methods
often deal with data sets containing attributes of the same type, either contin­
uous or categorical. As the role of data mining in business, science, medicine,
and other fields has grown, so has the need fo r techniques that can handle
heterogeneous attributes. Recent years have also seen the emergence of more
complex data objects. Examples of such non-traditional types of data include
collections of Web pages containing semi-structured text and hyperlinks; DNA
data with sequential and three-dimensional structure; and climate data that
consists of time series measurements {temperature, pressure, etc.) at various
locations on the Earth's surface. Techniques developed for mining such com­
plex objects should take into consideration relationships in the data, such as
temporal and spatial autocorrelation, graph connectivity, and parent-child re­
lationships between the elements in semi-structured text and XML documenls.

Data Ownership and Distribut ion Sometimes, the data needed for an
analysis is not stored in one location or owned by one organization. Instead,
the data is geographically distributed among resources belonging to multiple
entities. This requires the development of distributed data mining techniques.
Among the key challenges faced by distributed data mining algorithms in­
clude (1) how to reduce the amount of communication needed to perform the
distributed computation, (2) how to effectively consolidate the data minillg
results obtained from multiple sources, and (3) how to address data security
issues.

Non-trad itional Analysis The traditional statistical approach is based on
a hypothesize-and-test paradigm. ln other words, a hypothesis is proposed ,
an experiment is designed to gather the data, and then the data is analyzed
with respect to the hypothesis. Unfortunately, this process is extremely labor­
intensive. Current data analysis tasks often require the generation and evalu­
ation of thousands of hypotheses, and consequently, the development of some
data mining techniques has been motivated by the desire to automate the
process of hypothesis generation and evaluation. Furthermore, the data sets
analyzed in data mining are typically not the result of a carefully designed

6 Chapter 1 Introduction

experiment and often represent opportunistic samples of the data, rat her than
random samples. Also, t he data sets frequently involve non-traditional types
of data and data distributions.

1.3 The Origins of Data Mining

Brought together by the goal of meeting the challenges of the previous sec­
tion, researchers from different disciplines began to focus on developing more
efficient and scalable tools that could handle diverse types of data. This work,
which culminated in the field of data mining, built upon the methodology and
algorithms that researchers had previously used. In particular, data mining
draws upon ideas, such as (1) sampling, estimation, and hypothesis testing
from statistics and (2) search algorithms, modeling techniques, and learning
theories from artificial intelligence, pattern recognition, and machine learning.
Data mining has also been quick to adopt ideas from other areas, including
optimization, evolutionary computing, information theory, signal processing,
visualization, and information retrieval.

A number of other areas also play key supporting roles. In particular,
database systems are needed to provide support for efficient. storage, index­
ing, and query processing. Techniques from high performance (parallel) com­
puting are often important in addressing the massive size of some data sets.
Distributed techniques can also help address the issue of size and are essential
when the data cannot be gathered in one location.

Figure 1.2 shows the relationship of data mining to other areas.

Figure 1.2. Data mining as a confluence of many discip lines.

'*___.. _.

1.4 Data Mining Tasks 7

1.4 Data Mining Tasks

Data mining tasks are generally divided into two major categories:

Predictive tasks. The objective of these tasks is to predict the value of a par­
ticular attribute based on the values of other attributes. The attribute
to be predicted is commonly known as the target or dependent vari­
able, while the attributes used for making t he prediction are known as
the explanatory or independent variables.

Descriptive tasks. Here, t he objective is to derive pat terns (correlations,
trends, clusters, trajectories, and anomalies) that summarize the un­
derlying relationships in data. Descriptive data mining tasks are often
exploratory in nature a nd frequently require postprocessing techniques
to validate and explain the results.

Figure 1.3 illustrates four of the core data mining tasks that are described
in the remainder of t.his book.

• ••• • ••

••• •• • •••

•
• Dala

ltl 110 "'0 tl,\riUI Anrru..\1 DtiJ,.II('d
O..ntr!ir..IIIO ~Oomtfler

~-- 11101 ...

....... !20M ...

~ltSI(.....

,......, lOOt "'-

~~x- ...
....... ... _ ,.. .. --

Q

Figure 1.3. Four of the core data mining tasks.

. ..
0

8 Chapter 1 Introduction

Predictive modeling refers to the task of building a model for the target
variable as a function of the explanatory variables. There are two types of
predictive modeling tasks: classification, which is used for discrete target
variables, and r egression, which is used for continuous target variables. For
example, predicting whether a Web user will make a purchase at an online
bookstore is a classification task because the target variable is binary-valued.
On the other hand, forecasting the future price of a stock is a regression task
because pr ice is a continuous-valued attribute. The goal of both tasks is to
learn a model that minimizes the error between the predicted and true values
of the target variable. Predictive modeling can be used to identify customers
that will respond to a marketing campaign, predict disturbances in the Earth's
ecosystem, or judge whether a patient has a particular disease based on the
results of medical tests.

Example 1.1 (Predicting the Type of a Flower). Consider the task of
predicting a species of flower based on the characteristics of the flower. In
particular, consider classifying an Iris flower as to whether it belongs to one
of the following three Iris species: Setosa, Versicolour, or Virginica. To per­
form this task, we need a data set containing the characteristics of various
flowers of these three species. A data set with this type of information is
the well-known Iris data set from the UCI Machine Learning Reposit ory at
http://W\Iw. i cs.uci.edu/~m1earn. In addition to the species of a flower,
this data set contains four other attributes: sepal width, sepal length, petal
length, and petal width. (The Iris data set and its attributes are described
further in Section 3.1.) Figure 1.4 shows a plot of petal width versus petal
length for the 150 flowers in the Iris data set. Petal width is broken into the
categories low, medium, and high, which correspond to the intervals [0 , 0.75) ,
[0.75, 1.75), [1.75, oo), respectively. Also, petal length is broken into categories
low, medium, and high, which correspond to the intervals [0, 2.5), [2.5, 5), [5,
oo), respectively. Based on these categories of petal width and length , the
following rules can be derived:

Petal width low and petal length low implies Setosa.
Petal width medium and petal length medium implies Versicolour.
Petal width high and petal length high implies Virginica.

While these rules do not classify all the flowers, they do a good (but not
perfect) job of classifying most of the flowers. Note that flowers from the
Setosa species are well separated from the Versicolour and Virginica species
with respect to petal width and length, but the latter two species overlap
somewhat with respect to these attributes. •

2.5

2

e1.75
~
.r::; 1.5
i5
~
a;
Qj
0..

0.75

0.5

-----==========~========

1.4 Data Mining Tasks 9

; -- - --.--~.- .. - -- -:
:. . • Setosa
I ffff f f f

•• • Versicolour
• Virginica •••••

. :
• . '

•t" . . ' ...
r - - - - - - - - - • - • • - - - - !~: ! - . -·~ . t _ _ +- -t_ - - -- J
I f '
I • e t. f

• ••• •t• •......
' ' ------- -- -- ----- - - -:- ---- - --------- -- --.
'
'

2 ~5 3 4 5
Petal Length (em)

6

Figure 1.4. Petal width versus petal length tor 150 Iris flowers.

Association analysis is used to discover patterns that describe strongly as­
sociated features in the data. The discovered patterns are typically represented
in the form of implication rules or feature subsets. Because of the exponential
size of its search space, the goal of association analysis is to extract the most
interesting patterns in an efficient manner. Useful applications of association
analysis include finding groups of genes that have related functionality, identi­
fying Web pages that are accessed together, or understanding the relationships
between different elements of Earth's climate system.

Example 1.2 (Market Basket Analysis) . The transactions shown in Ta­
ble 1.1 illustrate point-of-sale data collected at the checkout counters of a
grocery store. Association analysis can be applied to find items that are fre­
quently bought together by customers. For example, we may discover the
rule {Di apers} --+ {Milk}, which suggests that customers who buy diapers
also tend to buy milk. This type of rule can be used to identify potential
cross-selling opportunities among related items. •

Cluster a nalysis seeks to find groups of closely related observations so that
observations that belong to the same cluster are more similar to each other

10 Chapter 1 Introduction

Table 1.1 . Market basket data.

Transaction ID Items
1 (Bread, Butter, Diapers, Milk}
2 {Coffee, Sugar, Cookies, Salmon}
3 {Bread, Butter, Coffee, Diapers, Milk, Eggs}
4 {Bread, Butter , Salmon, Chicken}
5 {Eggs, Bread, Butter}
6 {Salmon, Diapers, Milk}
7 {Bread, Tea, Sugar, Eggs}
8 {Cof fee, Sugar, Chicken, Eggs}
9 {Bread, Diapers, Milk, Salt}

10 {Tea, Eggs, Cookies, Diapers, Milk}

than observations that belong to other clusters. Clustering has been used to
group sets of related customers, find areas of the ocean that have a significant
impact on the Earth's climate, and compress data.

Example 1.3 (D ocument C lustering). The collection of news articles
shown in Table 1.2 can be grouped based on their respective topics. Each
article is represented as a set of word-frequency pairs (w, c), where w is a word
and c is the number of times the word appears in the article. There are two
natural clusters in the data set. The first cluster consists of the first four ar­
ticles, which correspond to news about the economy, while the second cluster
contains the last four articles, which correspond to news about health care. A
good clustering algorithm should be able to identify these two clusters based
on the similarity between words that appear in the articles.

Table 1.2. Collection of news articles.

Article Words
1 dollar: 1, industry: 4, country: 2, loan: 3, deal: 2, government: 2
2 machinery: 2, labor: 3, market: 4, industry: 2, work: 3, country: 1

3 job: 5, inAat.ion: 3, rise: 2, jobless: 2, market: 3, country: 2, index: 3
4 domestic: 3, forecast: 2, gain: 1, market: 2, sale: 3, price: 2
5 patient: 4, symptom: 2, drug: 3, health: 2, clinic: 2, doctor: 2
6 pharmaceutical: 2, company: 3, drug: 2, vaccine: 1, flu: 3
7 death: 2, cancer: 4, drug: 3, public: 4, heal th: 3, director: 2
8 medical: 2, cost: 3, increase: 2, patient: 2, health: 3, care: 1

•

1.5 Scope and Organization of the Book 11

A nomaly detection is the task of identifying observations whose character­
istics are significantly different from the rest of the data. Such observations
are known as anomalies or outliers. The goal of an anomaly detection al­
gorithm is to discover the real anomalies and avoid falsely labeling normal
objects as anomalous. In other words, a good anomaly detector must have
a high detection rate and a low false alarm rate. Applications of anomaly
detection include the detection of fraud, network intrusions, unusual patterns
of disease, and ecosystem disturbances.

Example 1.4 (Credit Car d Fraud Det ection). A credit card company
records the transactions made by every credit card holder, along with personal
information such as credit limit, age, annual income, and address. Since the
number of fraudulent cases is relatively small compared to the number of
legitimate transactions, anomaly detection techniques can be applied to build
a profile of legitimate transactions for t he users. When a. new transaction
arrives, it is compared against the profile of the user. If the characteristics of
the transaction are very different from the previously created profile, t hen the
transaction is flagged as potentially fraudulent. •

1.5 Scope a n d Organization of the Book

This book introduces the major principles and techniques used in data mining
from an algorithmic perspective. A study of these principles and techniques is
essential for developing a better understanding of how data mining technology
can be applied to various kinds of data. This book also serves as a starting
point for readers who are interested in doing research in th is field.

We begin the technical discussion of this book with a. chapter on data.
{Chapter 2), which discusses the basic types of data, datil. quality, prepro­
cessing techniques, and measures of similarity and dissimilarity. AILhough
t.his material can be covered quickly, it provides an essential foundation for
data analysis. Chapter 3, on data exploration, discusses summary st.atist.ics,
visualization techniques, and On-Line Analytical Processing (OLAP) . These
techniques provide the means for quickly gaining insight into a data set.

Chapters 4 and 5 cover classification. Chapter 4 provides a foundation
by discussing decision tree classifiers and several issues t.hat are important
to all classification: overfitting, performance evaluation, and the comparison
of different classification models. Using this foundation, Chapter 5 describes
a number of other important classification techniques: rule-based systems,
nearest-neighbor classifiers, Bayesian classifiers , arti fic ial neural networks, sup­
port vector machines, and ensemble classifiers, which are collections of classi-

12 Chapter 1 Introduction

fiers. The multiclass and imbalanced class problems are also discussed. These
topics can be covered independently.

Association analysis is explored in Chapters 6 and 7. Chapter 6 describes
the basics of association analysis: frequent itemsets, association rules, and
some of the algorithms used to generate them. Specific types of frequent
itemsets-maximal, closed, and hyperclique-that are important for data min­
ing are also discussed, and the chapter concludes with a d iscussion of evalua­
tion measures for association analysis. Chapter 7 considers a variety of more
advanced topics, including how association analysis can be applied to categor­
ical and continuous data or to data that has a concept hierarchy. (A concept
hierarchy is a hierarchical categorization of objects, e.g., store items, clothing,
shoes, sneakers.) This chapter also describes how assoc1at ion analysis can be
extended to find sequential patterns (patterns involving order), patterns in
graphs, and negative relationships (if one item is present, then t he other is
not).

Cluster analysis is discussed in Chapters 8 and 9. Chapter 8 first describes
the different types of clusters and then presents three specific clustering tech­
niques: K-means, agglomerative hierarchical cluster ing, and DBSCAN. This
is followed by a discussion of techniques for validating the results of a cluster­
ing algorithm. Additional clustering concepts and techniques are explored in
Chapter 9, including fuzzy and probabi listic clustering, Self-Organizing Maps
(SOM), graph-based clustering, and density-based clustering. There is also a
discussion of scalability issues and factors to consider when selecting a clus­
tering algorithm.

The last chapter , Chapter 10, is on anomaly detection . After some basic
definitions, several different types of anomaly detection are considered: sta­
tistical , distance-based, density-based, and clustering-based. Appendices A
through E give a brief review of important topics that are used in portions of
t he book: linear algebra, dimensionality reduction, statistics, regression, and
optimization.

The subject of data mining, while relatively young compared to statistics
or machine learning, is already too large to cover in a single book . Selected
references to topics that are only briefly covered, such as data quality, are
provided in the bibliographic notes of t he appropriate chapter. References to
topics not covered in this book, such as data mining for streams and privacy­
preserving data mining, are provided in the bibliographic notes of this chapter.

1.6 Bibliographic Notes 13

1.6 Bibliographic Notes

The topic of data mining has inspired many textbooks. Introductory text­
books include those by Dunham [10), Han and Kamber [21], Hand et al. [23],
and Roiger and Geatz [36]. Data mining books with a stronger emphasis on
business applications include t he works. by Berry and Linoff [2], Pyle [34], and
Parr Rud [33]. Books with an emphasis on statistical learning include those
by Cherkassky and Mulier [6), and Hastie et al. [24]. Some books with an
emphasis on machine learning or pattern recognition are those by Duda et
al. [9], Kantardzic [25], Mitchell [31], Webb [41], and Witten and Frank [42].
There are also some more specialized books: Chakrabarti [4] (web mining),
Fayyad et al. [13] (collection of early articles on data mining), Fayyad et a!.
[11] (visualization), Grossman et a!. [18] (science and engineering), Kargupta
and Chan [26} (distributed data mining), Wang et al. [40] (bioinformatics) ,
and Zaki and Ho [44] (parallel data mining).

There are several conferences related to data mining. Some of t he main
conferences dedicated to this field include the ACM SIGKDD lnternaLional
Conference on Knowledge Discovery and Data Mining (KDD), the IEEE In­
ternational Conference on Data Mining (ICDM), the SIAM International Con­
ference on Data Mining (SDM), the European Conference on Principles and
Practice of Knowledge Discovery in Databases (PKDD), and the Pacific-Asia
Conference on Knowledge Discovery and Data Mining (PAKDD). Data min­
ing papers can also be found in other major conferences such as the ACM
SIGMOD/PODS conference, the International Conference on Very Large Data
Bases (VLDB), the Conference on Information and Knowledge Management
(CIKM), the International Conference on Data Engineering (ICDE), the In­
ternational Conference on Machine Learning (ICML), a nd the National Con­
ference on Artificial Intelligence (AAAI).

Journal publications on data mining include IEEE 7ra.nsactions on Knowl­
edge and Data Engineering, Data Mining and Knowledge Discovery, Knowl­
edge and Information Systems, Intelligent Data Analysis, Information Sys­
tems, and the Journal of Intelligent Information Systems.

There have been a number of general articles on data mining that define the
field or its relationship to other fields, particularly statistics. Fayyad eta!. [12]
describe data mining and how it fits into the total knowledge d iscovery process.
Chen et al. [5) give a database perspectiv.e on data mining. Ramakrishnan
and Grama [35] provide a general discussion of data mining and present several
viewpoints. Hand [22) describes how data mining differs from statistics, as does
Friedman [14). Lambert [29] explores t he use of statistics for large data sets and
provides some comments on the respective roles of data mining and staListics.

14 Chapter 1 Introduction

Glymour et al. [16] consider the lessons that statistics may have for data
mining. Smyth et al. [38] describe how the evolution of data mining is being
driven by new types of data and applications, such as those involving streams,
graphs, and text. Emerging applications in data mining are considered by Han
et a!. [20] and Smyth [37] describes some research challenges in data mining.
A discussion of how developments in data mining research can be turned into
practical tools is given by Wu et al. [43]. Data mining standards are the
subject of a paper by Grossman et al. [17]. Bradley [3] discusses how data
mining algorithms can be scaled to large data sets.

With the emergence of new data mining applications have come new chal­
lenges that need to be addressed. For instance, concerns about privacy breaches
as a result of data mining have escalated in recent years, particularly in ap­
plication domains such as Web commerce and health care. As a result, there
is growing interest in developing data mining algorithms that maintain user
privacy. Developing techniques for mining encrypted or randomized data is
known as privacy-preserving data m in ing. Some general references in this
area include papers by Agrawal and Srikant [1], Clifton et al. [7] and Kargupta
et al. [27]. Vassilios et al. [39] provide a survey.

Recent years have witnessed a growing number of applications that rapidly
generate continuous streams of data. Examples of stream data include network
traffic, multimedia streams, and stock prices. Several issues must be considered
when mining data streams, such as the limited amount of memory available,
the need for online analysis , and the change of the data over time. Data
mining for stream data has become an important area in data mining. Some
selected publications are Domingos and Hulten [8] (classification), Giannella
et al. [15) (association analysis), Guha et al. [19] (clustering), Kifer et al. [28]
(change detection), Papadimitriou et al. [32] (time series), and Law eta!. [30]
(dimensionality reduction).

B ibliogr aphy
[lj R. Agrawal and R. Sri kant. Privacy-preserving data mining. In Proc. of 2000 A CM­

SIGMOD Inti. Conf. on Management of Data, pages 439- 450, Dallas, Texas, 2000.
ACM Press.

[2) M. J . A. Berry and G. Linoff. Data Mining Techniques: For Marketing, Sales, and
Customer Relationship Man agement. Wiley Computer Publishing, 2nd edition, 2004.

[3j P. S. Bradley, J . Gehrke, R. Ramakrishnan, and R. Srikant. Scaling mining algorithms
to large databases. Communications of the ACM, 45(8):38-43, 2002.

[4] S. Chakrabarti. Mining the Web: Discovering Knowledge from Hypertext Data. Morgan
Kaufmann, San Francisco, CA, 2003.

Bibliography 15

[5) M.-S. Chen, .J. Han, and P . S. Yu. Data. Mi ning: An Overview from a Database
Perspective. IEEE Transactions on /(nowledge abd Data Engineering, 8(6):865-883,
1996.

[6) V. Cherkassky and F. Mulier. Learning from Data: Concepts, Theory, and Methods.
Wiley lnterscience, 1998.

[7] C. Clifton , M. Kantarcioglu, and J. Vaidya. Defining privacy for data mining. In
National Science Foundation Workshop on Next Generation Data Mining, pages 125-
133, Baltimore, MD, November 2002.

[8) P. Domingos and G. Hulten. Mining high-speed data streams. In Proc. of the 6th Jntl.
Conf. on Knowledge Discovery and Data Mining, pages 71-80, Boston, Massachusetts ,
2000. ACM Press.

[9] R. 0. Duda, P . E. Hart, and D. G . Stork . Pattern Classification. John Wiley & Sons,
Inc., New York, 2nd edition, 2001.

[10) M. H. Dunham. Data Mining: Introductory and Aduanced Topics. Prentice Hall, 2002.
[11] U. M. Fayyad, G. G. Grinstein, and A. Wierse, editors. Information Visualizatton in

Data Mining and Knowledge DiscovenJ. Morgan Kaufmann P ublishers, San Francisco,
CA, September 2001.

[12) U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From Data Mining to Knowledge
Discovery: An Overview. In Aduances in Knowledge Discovery and Data Mining, pages
1- 34. AAAl Press, 1996.

[13) U. M. Fayyad, G. P iatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors. Advances
in Knowledge Discovery and Data Mining. AAAI /MIT Press, 1996.

[14] J. H. Friedman. Data Mining and Statistics: What's the Connection? Unpublished.
www-stat.stanford.ed u/ ~jhf/ftp/dm-stat. ps, 1997.

[15) C. Giannella, J. Han, J. Pe.i, X. Yan, and P. S. Yu. Mining Frequent Patterns in Data
Streams at Multiple Time GranuJarities. In H. Kargupta, A. Joshi , K. Sivaknmar, and
Y. Yesba, editors, Next Generation Data Mining, pages 191-212. AAAI/MIT, 2003.

[1 6] C. Glymour, D. Madigan, D. P regibon, and P. Smyth. Statistical Themes and Lessons
for Data Mining. Data Mining and Knowledge DiscovenJ, 1(1):11-28, 1997.

[17] R. L. Grossman, M. F. Hornick , and G. Meyer. Data mining standards initiatives.
Communications of the A CM, 45(8):59-61, 2002.

[18) R. L. Grossman , C. Kamatb, P. Kegelmeyer, V. Kumar, and R. Namburu, editors. Data
Mining for Scientific and Engineering Applications. Kluwer Academic Publishers, 2001 .

[19] S. Cuba, A. Meyerson, N. Mishra, R. Motwani, and L. O'Callagban. Clustering Data
Streams: Theory and Practice. IEEE 7ransactions on Knowledge and Data Engineering,
15(3):515-528, May/ June 2003.

[20] J. Han, R. B. Altman, V. Kumar, H. Mannila, and D. Pregibon. Emerging scientific
applications in data mining. Communications of the ACM, 45(8):5~-58, 2002.

{21) J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann
Publishers, San Francisco, 2001.

[22] D. J. Hand. Data Mining: Statistics and More? The American Statistician, 52(2):
112-118, 1998.

[23) D. J. Hand , H. Mannila, and P. Smyth. Principles of Data Mining. MIT Press, 2001.

[24] T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statistirol Learning:
Data Mining, Inference, Prediction. Springer, New York, 2001.

[25) M. Kantardzic. Data Mining: Concepts, Models, Methods, and Algorithms. Wiley-IEEE
P ress, Piscataway, NJ, 2003.

... ...,.. .. .,-. ·~sz· ····;;;:=

16 C hapter 1 Introduction

)26) H. Kargupta and P. K. Chan, editors. Aduances in DistT'ibuted and Pam/lei Knowledge
DisC01Jery. AAAI Press, September 2002.

)27) H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar. On the Privacy Preserving Prop­
erties of Random Data Perturbation Techniques. In Proc. of the 2003 IEEE Inti. Conf.
on Data Mining, pages 99- 106, Melbourne, Florida, December 2003. IEEE Computer
Society.

)28) D. Kifer, S. Ben-David, and J. Gehrke. Detecting Change in Data Streams. In Proc. of
the 30th VLDB Con/-, pages 180-191, Toronto, Canada, 2004. Morgan Kaufmann.

[29) D. Lambert. What Use is Statistics for Massive Data? In ACM SIGMOD Workshop
on Research Issues in Data Mining and Knowledge Discouery, pages 54-62, 2000.

[30] M. H. C. Law, N. Zhang, and A. K. Jain. Nonlinear Manifold Learning for Data
Streams. In Proc. of the SIAM Intl. Conf. on Data Mining, Lake Buena Vista, Florida,
April 2004. SIAM.

[31) T. Mitchell. Machine Learning. McGraw-Hill, Boston, MA, 1997.
)32) S. Papadirnitriou, A. Brockwell, and C. Faloutsos. Adaptive, unsupervised stream min­

ing. VLDB Journal, 13(3):222-239, 2004.
)33) 0. Parr Rud. Data Mining Cookbook: Modeling Data for Marketing, Risk and Customer

Relationship Management. John Wiley & Sons, New York , NY, 2001.
)34) D. Pyle. Business Modeling and Data Mining. Morgan Kaufmann, San Francisco, CA,

2003.
)35) N. Ramakrishnan and A. Grama. Data Mining: From Serendipity to Science-Guest

Editors' Introduction. IEEE Computer, 32(8):34-37, 1999.
)36) R. Reiger and M. Geatz. Data Mining: A Thtorial Based PT'imer. Addison-Wesley,

2002.
)37)

)38]

)39)

)40)

!41)
)42)

)43)

)44)

P. Smyth. Breaking out of the Black-Box: Research Challenges in Data Mining. In
Proc. of the 2001 ACM SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discoue'1/, 2001.
P. Smyth, D. Pregibon, and C. Faloutsos. Data-driven evolution of data mining algo­
rithms. Communications of the ACM, 45(8):33- 37, 2002.
V. S. Verykios, E. Bertino, I. N. Fovino, L. P. Provenza, Y. Saygin, andY. Theodoridis.
State-of-the-art in privacy preserving data mining. SIGMOD Record, 33(1):50-57, 2004.
J. T. L. Wang, M. J . Zaki, H. Toivonen, and D. E. Shasha, editors. Data Mining in
Bioinforrnatics. Springer, September 2004.
A. R. Webb. Statistical Pattern Recognition. John Wiley & Sons, 2nd edition, 2002.
I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Tech­
niques with Java Implementations. Morgan Kaufmann, 1999.
X. Wu, P. S. Yu, and G. Piatetsky-Shapiro. Data Mining: How Research Meets Pract ical
Development? Knowledge and Information Systems, 5(2):248-261, 2003.
M. J . Zaki and C.-T. Ho, editors. Large-Scale Parallel Data Mining. Springer, September
2002.

1-7 Exercises

L Discuss whether or not each of the following activities is a data mining task.

-- ·
1. 7 Exercises 17

(a) Dividing the customers of a company according to their geuder.

(b) Dividing t he customers of a company according to their profitability.

(c) Computing the total sales of a company.

(d) Sorting a student database based on student identification numbers.

(e) Predicting the outcomes of tossing a (fair) pair of dice.

(f) Predicting the future stock price of a company using historical records.

(g) Monitoring the heart rate of a patient for abnormalities.

(h) Monitoring seismic waves for earthquake activities.

(i) Extract ing the frequencies of a sound wave.

2. Suppose that you are employed as a data m ining consultant for an lnternel
search engine company. D escribe how data mining can help the company by
giving specific examples of how techniques, such as clustering, classification,
association rule mining, and anomaly detection can be applied.

3. For each of the following data sets, explain whether or not data privacy is an
important issue.

(a) Census data collected from 1900-1950.

(b) IP addresses and visit times of Web users who visit your Website.

(c) Images from Earth-orbiting satellites.

(d) Names and addresses of people from the telephone book.

(e) Names and email addresses collected from the Web.

2

Data

This chapter discusses several data-related issues t hat are important for suc­
cessful data mining:

The Type of Data Data sets differ in a number of ways. For example, the
attributes used to describe data objects can be of different types-quanti tat ive
or qualitative--and data sets may have special characteristics; e.g., some data
sets contain time series or objects with explicit relationships to one another.
Not surprisingly, the type of data determines which tools and techniques can
be used to analyze the data. FUrthermore, new research in data mining is
often driven by t he need to accommodate new application areas and their new
types of data.

The Quality of the Data Data is often far from perfect. While most data
mining techniques can tolerate some level of imperfection in the data, a focus
on understanding and improving data quality typically improves the quality
of the result ing analysis. Data quality issues that often need to be addressed
include the presence of noise and outliers; missing, inconsistent , or duplicate
data; and data that is biased or , in some other way, unrepresentative of the
phenomenon or population that the data is supposed to describe.

Preprocessing Ste ps to M ake t h e Data More Suita ble for Data Min­
ing Often, the raw data must be processed in order to make it suitable for
analysis. While one objective may be to improve data quality, other goals
focus on modifying the data so that it better fits a specified data mining tech­
nique or tool. For example, a continuous attribute, e.g., lengt h, may need to
be transformed into an attribute with discrete categories, e.g., short, medium,
or long, in order to apply a particular technique. As another example, the

-.

20 Chapter 2 Data

number of attributes in a data set is often reduced because many techniques
are more effective when the data has a relatively small number of attributes.

Analyzing Da t a in Terms of Its Relationships One approach to data
analysis is to find relationships among the data objects and then perform
the remaining analysis using these relationships rather than the data objects
themselves. For instance, we can compute the similarity or distance between
pairs of objects and then perform t he analysis- clustering, classificat ion, or
anomaly detection-based on t hese similarities or distances. There are many
such similarity or distance measures, and the proper choice depends on the
type of data and the part icular application.

Example 2.1 {An Illustration of Data-Related Issues). To further il­
lustrate the importance of these issues, consider the following hypothetical sit­
uation. You receive an email from a medical researcher concerning a project
that you are eager to work on.

Hi,

I've attached the data file that] mentioned in my previous email.
Each line contains the information for a single palient and consists
of five fields. We want to pred ict the last fie ld using the other fields.
I don't have time to provide any more information about the data
since I'm going out of town for a couple of days, but hopefully that
won't slow you down too much. And if you don't mind, could we
meet when] get back to discuss your preliminary results? I might
invite a few other members of my team.

Thanks and see you in a couple of days.

Despite some misgivings, you proceed to analyze the data. The first few
rows of the file are as follows:

012 232
020 121
027 165

33.5
16.9
24.0

0 10.7
2 210.1
0 427.6

A brief look at the data reveals nothing strange. You put your doubts aside
and star t the analysis. There are only 1000 lines, a smaller data file than you
had hoped for , but two days later, you feel that you have made some progress.
You arrive for the meeting, and while waiting for others to arrive, you strike

21

up a conversation with a statistician who is working on the project. When she
learns that you have also been analyzing the data from the project, she asks
if you would mind giving her a brief overview of your results.

Statistician: So, you got the data for all the patients?
Data Miner: Yes. I haven't had much time for analysis , but l

do have a few interesting results.
Statistician: Amazing. There were so many data issues with

this set of patients that I couldn't do much.
Data M iner: Oh? 1 didn't hear about any poss ible problems.
Statistician: Well, first there is field 5, the variable we want to

predict. It's common knowledge among people who analyze
this type of data that results are better if you work with the
log of the values, but I didn 't discover this until later. Was it
mentioned to you?

Data Miner: No.
Statistician: But surely you heard about what happened to field

4? It 's supposed to be measured on a scale from 1 to 10, with
0 indicating a missing value, but because of a data entry
error, all 10's were changed into O's. Unfortunately, since
some of the patients have missing values for this field, it's
impossible to say whether a 0 in this field is a real 0 or a 10.
Quite a few of the records have that problem.

Data Miner: Interes ting. Were there any other problems?
Statistician : Yes, fields 2 and 3 are basically the same, buL I

assume that you probably noticed that.
D ata Miner: Yes, but these fields were only weak predictors of

field 5.
Statistician: Anyway, given all those problems, I'm surprised

you were able to accomplish anything.
Data Miner: True, but my results are really quite good. Field 1

is a very strong predictor of field 5. I'm surprised i hat this
wasn't noticed before.

Statistician: What? Field 1 is just an ident ificat ion number.
D ata Miner: Nonetheless, my resul ts speak for themselves.
Statistician: Oh, no! I just remembered. We assigned lD

numbers after we sorted the records based on field 5. There is
a strong connection, but it's meaningless. Sorry.

•

22 Chapter 2 Data.

Although this scenario represents an extreme situation, it emphasizes the
importance of "knowing your data." To that end, this chapter will address
each of the four issues mentioned above, outlining some of the basic challenges
and standard approaches.

2.1 Types of Data

A data set can often be viewed as a collection of data objects. Other
names for a data object are record, point, vector, pattern, event, case, sample,
observation, or entity. In turn, data objects are described by a number of
attributes that capture the basic characteristics of an object, such as the
mass of a. physical object or the time at which an event occurred. Other
names for an attribute are variable, characteristic, field, feature, or dimension.

Example 2.2 (Student Information). Often, a data set is a file, in which
the objects are records (or rows) in the file and each field (or column) corre­
sponds to an attribute. For example, Table 2.1 shows a data set that consists
of student information. Each row corresponds to a student and each column
is an attribute that describes some aspect of a student, such as grade point
average (GPA) or identification number (ID).

Table 2.1. A sample data set containing student information.

Student ID Year Grade Point Average (GPA)

1034262
1052663
1082246

Senior
Sophomore
Freshman

3.24
3.51
3.62

•
Although record-based data sets are common, either in flat files or rela­

tional database systems, there are other important types of data sets and
systems for storing data. In Section 2.1.2, we will discuss some of the types of
data sets that are commonly encountered in data mining. However, we first
consider attributes.

2.1 Types of Data 23

2.1.1 Attributes and Measurem ent

In this section we address the issue of describing data by considering what
types of attributes are used to describe data objects. We first define an at­
tribute, then consider what we mean by the type of an attribute, and finally
describe the types of attributes that are commonly encountered.

What I s an attrib ute?

We start with a more detailed definition of an attribute.

D efinition 2.1. An attribute is a. property or characteristic of an object
that may vary, either from one object to another or from one time to another.

For example, eye color varies from person to person, while the temperature
of an object varies over time. Note that eye color is a symbolic attribute with
a small number of possible values {brown, black, bl1le, green, hazel, etc.} , while
temperature is a numerical attribute with a potentially unlimited number of
values.

At the most basic level, attributes are not about numbers or symbols.
However, to discuss and more precisely analyze the characteristics of objects,
we assign numbers or symbols to them. To do this in a well-defined way, we
need a measurement scale.

Definition 2.2. A measurement scale is a. rule (function) that associates
a numerical or symbolic value with an attribute of an object.

Formally, the process of measurement is the application of a measure­
ment scale to associate a value with a particular attribute of a specific object.
While this may seem a bit abstract, we engage in the process of measurement
all the time. For instance, we step on a bathroom scale to determine our
weight, we classify someone as male or female, or we count the number of
chairs in a room to see if there will be enough to seat all the people coming to
a meeting. In all these cases, the "physical value" of an attribute of an object
is mapped to a numerical or symbolic value.

With this background, we can now discuss the type of an attribute, a
concept that is important in determining if a part icular data analysis technique
is consistent with a specific type of attribute.

The Type of an Attribute

It should be apparent from the previous discussion t hat. the properties of an
attribute need not be the same as the properties of the values used to mea-

24 Chapter 2 Data

sure it . In other words, the values used to represent an att ribute may have
properties that are not properties of the attribute itself, and vice versa. This
is illustrated with two examples.

Example 2.3 (Employee Age a n d ID Number). Two at tributes that
might be associated with an employee are ID and age {in years). Both of these
attributes can be represented as integers. However, while it is reasonable to
talk about the average age of an employee, it makes no sense to talk about
the average employee ID. Indeed, the only aspect of employees that we want
to capture with the ID attribute is that they are distinct. Consequently, the
only valid operation for employee IDs is to te'st whether they are equal. There
is no hint of this limitation, however, when integers are used to represent the
employee ID attribute. For the age attribute, the properties of the integers
used to represent age are very much the properties of the attribute. Even so,
the correspondence is not complete since, for example, ages have a maximum,
while integers do not . •

Example 2.4 (Length of Line Segments). Consider Figure 2.1 , which
shows some objects-line segments-and how the length attribute of these
objects can be mapped to numbers in two different ways. Each successive
line segment, going from the top to the bottom, is formed by appending the
topmost line segment to itself. Thus, the second line segment from the top is
formed by appending the topmost line segment to itself twice, the third line
segment from the top is formed by appending the topmost line segment to
itself three times, and so forth. In a very real {physical) sense, all the line
segments are multiples of the first. This fact is captured by the measurements
on the right-hand side of the figure, but not by those on the left hand-side.
More specifically, the measurement scale on the left-hand side captures only
the ordering of the length attribute, while the scale on the right-hand side
captures both the ordering and additivity properties. Thus, an attribute can be
measured in a way that does not capture all the properties of the attribute. •

The type of an attribute should tell us what properties of the attribute are
reflected in the values used to measure it. Knowing the type of an attribute
is important because it tells us which properties of the measured values are
consistent with the underlying properties of the attribute, and therefore, it
allows us to avoid foolish actions, such as computing the average employee ID.
Note that it is common to refer to the type of an attribute as the type of a
measureme nt scale.

'.
.,.._ ________ _

3 - ---------

7 - ---- -----

8 ----------

10 - - -------­

A mapping of lengths to numbers
that captures only the order
properties of length.

2.1 TypesofData 25

-----------..

--------- -+ 2

__ _ _ _____, 3

----------+

----------+ 5

A mapping of lengths to numbers
that captures both the order and
additivity properties otlength.

Figure 2.1. The measurement of the length of line segments on two different scales of measurement.

The Different Typ es of Attributes

A useful (and simple) way to specify the type of an at tribute is to identify
the properties of numbers that correspond to underlying properties of the
attribute. For example, an attribute such as length has many of the properties
of numbers. It makes sense to compare and order objects by length , as well
as to talk about the differences and ratios of length. The following properties
(operations) of numbers are typically used to describe attributes.

1. Distinctness = and #

2. Order <, S, >, and 2:

3. Addition + and -

4. M ultiplication * and /

Given these properties, we can define four types of attributes: nominal,
ordinal, interval, and ratio. Table 2.2 gives t he definitions of these types,
along with information about the statistical operations that are valid for each
type. Each attribute type possesses all of tne properties and operations of the
attribute types above it. Consequently, any property or operation that is valid
fo r nominal, ordinal , and interval attributes is also valid for ratio attributes.
In other words, the definition of the attribute types is cumulative. However,

26 C hapter 2 Data

Table 2.2. OiHerent attribute types.

Attribute
Type Description Examples Operations

Nominal The values of a nominal zip codes, mode, entropy,
attribute are just different employee ID numbers, contingency
names; i.e., nominal values eye color, gender correlation,
provide only enough x2 test

~~ information to distinguish
u ·- one object from another. ·- ~ ... ro
0 ~ (=, #) hO ·-
!{ Cd Ordinal The values of an ordinal hardness of minerals, median, r-e ::l

0~ attribute provide enough {good, better, best}, percentiles,
information to order grades, rank correlation,
objects. street numbers run tests,
(<, >) sign tests

Interval For interval attributes, the calendar dates, mean,
..., differences between values temperature in Celsius standard deviation,
.:: are meaningful, i.e., a unit or Fahrenheit Pearson's

u-:;; of measurement exists. correlation, ·c ·"'=
"'~ (+, -) t and F tests
>== k - ro Ratio For ratio variables, both temperature in Kelvin, geometric mean, ::l ::l za .:::.. differences and ratios are monetary quantities, harmonic mean,

meaningful. counts, age, mass, percent
(*, /) length, variation

electrical current

this does not mean that the operations appropriate for one attribute type are
appropriate for the attribute types above it.

Nominal and ordinal attributes are collectively referred to as categorical
or qua litative attributes. As the name suggests, qualitative attributes, such
as employee ID, lack most of t he properties of numbers. Even if they are rep­
resented by numbers, i.e., integers, they should be treated more like symbols.
The remaining two types of attributes , interval and ratio, are collectively re­
ferred to as quantitative or nume ric attributes. Quantitative attributes are
represented by numbers and have most of t he properties of numbers. Note
that. quantit ative attributes can be integer-valued or cont.inuous.

The types of attributes can also be described in terms of transformations
that do not change the meaning of an attribute. Indeed, S. Smith Stevens, the
psychologist who originally defined the typ es of attributes shown in Table 2.2,
defined them in terms of these permissible t ran sforma tions. For exam ple,

2.1 Types of Data 27

Table 2.3. Transformations that define attribute levels.

Attribute
Type TI-ansformation Comment

Nominal Any one-to-one mapping, e.g., a If all employee JD numbers are

_..., permutation of values reassigned, it will not make any
ro > difference.
u ·- Ordinal An order-preserving change of An attribute encompassing the ·c ~ o., values, i.e., notion of good, better, best can bO ·-
.£~ new.value = f(old.value), be represented equally well by "' ::l
0~ where f is a monotonic function. the values {1, 2, 3} or by

{0.5, 1, 10}.
..., Interval new.value - a* old.value + b, The Fahrenheit and Celsius

~ a and b constants. temperature scales differ in the
u "' location of their zero value and ·-..,
~~ the size of a degree (uni t). e <==
::> ro Ratio new.value - a* old_value Length can be measured in z~ meters or feet.

the meaning of a length attribute is unchanged if it is measured in meters
instead of feet.

The statistical op erations that make sense for a particular type of attribute
are t hose that will yield the same results when the attribute is transformed us­
ing a t ransformation that preserves the attribute's meaning. To illustrate, the
average length of a set of objects is different when measured in meters rather
than in feet, but both averages represent the same length. Table 2.3 shows the
permissible (meaning-preserving) t ransformations for the four attribute types
of Table 2.2.

Example 2.5 (Temperature Sca les) . Temperature provides a good illus­
tration of some of the concepts that have been described. First, temperature
can be either an interval or a ratio attribute, depending on its measurement
scale. \'Vhen measured on the Kelvin scale, a temperature of 2° is, in a physi­
cally meaningful way, twice that of a tempera ture of 1 o . This is not true when
temperature is measured on either t.he Celsius or Fahrenheit scales, because,
physically, a temperature of 1° Fahrenheit (Celsius) is not much different than
a temperature of 2° Fahrenheit (Celsius) . The problem is that the zero points
of the Fahrenheit and Celsius scales are, in a physical sense, arbitrary, and
therefore, the ratio of two Celsius or Fahrenheit temperatures is not. physi­
cally meaningful. •

28 Chapter 2 Data

Describing Attributes by the Number of Va lues

An independent way of distinguishing between attributes is by t he number of
values t hey can take.

Discrete A discrete attribute has a finite or countably infinite set of values.
Such attributes can be categorical, such as zip codes or ID numbers,
or numeric, such as counts. Discrete attributes are often represented
using integer variables. Binary attributes are a special case of dis­
crete attributes and assume only two values, e.g., true/false, yes/no,
male/female, or 0/1. Binary attributes are often represented as Boolean
variables, or as integer variables that only take the values 0 or 1.

Continuous A continuous attribute is one whose values are real numbers. Ex­
amples include attributes such as temperature, height, or weight. Con­
tinuous attributes are typically represented as floating-point variables.
Practically, real values can only be measured and represented with lim­
ited precision.

l n theory, any of the measurement scale types- nominal, ordinal, interval , and
ratio-could be combined with any of the types based on the number of at­
tribute values-binary, discrete, and continuous. However , some combinations
occur only infrequently or do not make much sense. For instance, it is difficult
to think of a realistic data set that contains a continuous binary attribute.
Typically, nominal and ordinal attributes are binary or discrete, while interval
a nd ratio attributes are continuous. However , cou nt a ttributes, which are
discrete, are also ratio attributes.

Asym metric Attributes

For asymmetric attributes, only presence--a non-zero att ribute value--is re­
garded as important. Consider a data set where each object is a student and
each attribute records whether or not a student took a particular course at
a university. For a specific student, an attribute has a value of 1 if the stu­
dent took the course associated with that attribute and a value of 0 otherwise.
Because students take only a small fraction of all available courses, most of
the values in such a data set would be 0. Therefore, it is more meaningful
and more efficient to focus on t he non-zero values. To illustrate, if students
are compared on the basis of the courses t hey don't take, then most students
would seem very similar, at least if the number of courses is large. Binary
attributes where only non-zero values are important are called asymmetric

·'

2.1 Types of Data 29

binary attributes. This type of attribute is particularly important for as­
sociation analysis, which is discussed in Chapter 6. It is also possible to have
discrete or continuous asymmetric features. For instance, if the number of
credits associated with each course is recorded, then the resulting data set will
consist of asymmetric d iscrete or cont inuous attributes.

2.1.2 Types of Data Sets

There are many types of data sets, and as the field of data mining develops
and mat ures, a greater variety of data sets become available for analysis. Jn
this section, we describe some of the most common types. For convenience,
we have grouped the types of data sets into three groups: record data, graph­
based data, and ordered dat a. These categories do not cover all possibilities
and other groupings are certainly possible.

Gener a] Ch aracteristics of D ata Set s

Before providing details of specific kinds of data sets, we discuss three char­
acterist ics that apply to many data sets and have a significant impact on the
data mining techniques that are used: dimensionality, sparsity, and resolution.

Dim ensiona lit y T he dimensionality of a data set is the number of attributes
that the objects in the data set possess. Data with a small number of dimen­
sions tends to be qualitatively different t han moderate or high-dimensional
data. Indeed, the difficulties associated with analyzing high-dimensional data
are sometimes referred to as the curse of dimensionality. Because of this,
an important motivation in preprocessing the data is dimensionality reduc­
t ion . T hese issues are discussed in more depth later in this chapter and in
Appendix B.

Sparsit y For some data sets, such as those wi th asymmetric features, most
attributes of an object have values of 0; in many cases, fewer than 1% of
the entries are non-zero. In practical terms, sparsity is an advantage because
usually only the non-zero values need to be stored and manipulated. This
results in significant savings wit h respect to computation time and storage.
Furthermore, some data mining algorithms ~ork well only for sparse data.

Resolution l t is frequently possible to obtain data at different levels of reso­
lution, and often the properties of the data are different at different resolutions.
For instance, the surface of the Earth seems very uneven at a resolution of a

30 Chapter 2 Data

few meters, but is relatively smooth at a resolution of tens of kilometers. The
patterns in the data. also depend on the level of resolution. If the resolution
is too fine, a pattern may not be visible or may be buried in noise; if the
resolution is too coarse, the pattern may disappear. For example, variations
in atmospheric pressure on a scale of hours reflect the movement of storms
and other weather systems. On a scale of months, such phenomena are not
detectable.

Record Data

Much data mining work assumes that the data set is a collection of records
(data objects), each of which consists of a fixed set of data fields (attributes).
See Figure 2.2(a) . For the most basic form of record data, there is no explicit
relationship among records or data fields, and every record (object) has the
same set of attributes. Record data is usually stored either in flat files or in
relational databases. Relational databases are certainly more than a collection
of records, but data rruning often does not use any of the additional information
available in a relational database. Rather, the database serves as a convenient
place to find records. Different types of record data are described below and
are illustrated in Figure 2.2.

Transaction or Market B asket Data Transaction data is a special type
of record data, where each record (transaction) involves a set of items. Con­
sider a grocery store. The set of products purchased by a customer during one
shopping trip constitutes a transaction, while t he individual products that
were purchased are the items. This type of data is called market basket
data because t he items in each record are the products in a person's "mar­
ket basket." Transaction data is a collection of sets of items, but it can be
viewed as a set of records whose fields are asymmetric attributes. Most often,
the attributes are binary, indicating whether or not an item was purchased,
but more generally, the attributes can be discrete or continuous, such as the
number of items purchased or the amount spent on those items. Figure 2.2(b)
shows a sample transaction data set,. Each row represents the purchases of a
particular customer at a particular time.

The Data Matrix If the data objects in a collection of data all have the
same fixed set of numeric attributes, then the data objects can be thought of as
points (vectors) in a multidimensional space, where each dimension represents
a distinct attribute describing the object. A set of such data objects can be
interpreted as an m by n matrix, where there are m rows, one for each object,

2.1 Types of Data. 31

Tid Refund Marital Taxable Defaulted
Status Income Borrower

1 .. Yes Si~t~: ·· 125K "Nd ·-:

2 No Mariiea l OOK No Bread, Soda, Milk

3 No s ;ri~t ~'' ·. 70K No ·
4 . Yes M~rrled 120K No 2 Beer, Bread

5 No DivorCed 95K Yes

6 No Married 60K No
3 Beer, Soda. Oiaper. Milk

7 Yes Di~orced 220K No

B. No Singl.e 85K Yes
Beer, Bread, Diaper, Milk

9 No ¥arried 75K No

10 No ~ingle · 90K Yes
5 Soda, Diaper, Milk

(a) Record data. (b) Transaction data.

Projection cl PrDICcllon Of D1stanco l oact ThlckMSS
•Load v load

10.23 5.27 15.22 27 1.2

12.65 6.25 16.22 22 1.1

13.54 7.23 17.34 23 1.2

14.27 8.43 18.45 25 0.9

(c) Data matrix. (d) Document-term matrix.

Figure 2.2. DiHerent variations of record data.

and n columns, one for each attribute. (A representation that has data objects
as columns and attributes as rows is also fine.) This matrix is called a data
matrix or a pattern matrix. A data matrix is a variation of record data,
but because it consists of numeric attributes, standard matrix operation can
be applied to transform and manipulate t he data. Therefore, the data matrix
is the standard data format for most statistical data. F igure 2.2(c) shows a
sample data matrix.

The Sparse D ata Matrix A sparse data matrix is a special case of a data
matrix in which the attributes are of the same type and are asymmetric; i.e.,
only non-zero values are important. 'fransaction data is an example of a sparse
data matrix that has only 0-1 entries. Another common example is document
data. In particular, if the order of the terms (words) in a document is ignored,

32 Chapter 2 Data

then a document can be represented as a term vector , where each term is
a component (attribute) of the vector and the value of each component is
the number of times the corresponding term occurs in t he document. This
representation of a collection of documents is often called a document-term
matrix. Figure 2.2(d) shows a sample document-term matrix. The documents
are the rows of this matrix, while the terms are the columns. In practice, only
the non-zero entries of sparse data matrices are stored.

Graph-Based Data

A graph can sometimes be a convenient and powerful representation for data.
We consider two specific cases: (1) the graph captures relationships among
data objects and (2) the data objects themselves are represented as graphs.

Data with Relationships among Objects The relationships among ob­
jects frequently convey important information. In such cases, the data is often
represented as a graph. In particular, the data objects are mapped to nodes
of the graph, while the relationships among objects are captured by the links
between objects and link properties, such as direction and weight . Consider
Web pages on the World Wide Web, which contain both text and links to
other pages. In order to process search queries, Web search engines collect
and process Web pages to extract their contents. It is well known, however,
that the links to and from each page provide a great deal of information about
the relevance of a Web page to a query, and thus, must also be taken into
consideration. Figure 2.3(a) shows a set of linked Web pages.

Data with Objects That Are Graphs If objects have structure, that
is, the objects contain subobjects that have relationships, then such objects
are frequently represented as graphs. For example, the structure of chemical
compounds can be represented by a graph, where the nodes are atoms and the
links between nodes are chemical bonds. Figure 2.3(b) shows a ball-and-stick
diagram of the chemical compound benzene, which contains atoms of carbon
(black} and hydrogen (gray). A graph representation makes it possible to
determine which substructures occur frequently in a set of compounds and to
ascertain whether the presence of any of these substructures is associated with
the presence or absence of certain chemical properties, such as melting point
or heat of formation. Substructure mining, which is a branch of data mining
that analyzes such data, is considered in Section 7.5.

Useful links:

- ----1+

u.- ,.,., .. Ori&O') l'i-.q..~ as.,._.,.._,....._,.
.,.,~-~JC~-0..
.._,.. .. MAJ~WITPftM. IM

' a-..Qo; ·c•.);....,.,_,.w~
l&MIIAf", JroWffM it.f_..a~l").
IW~Ct~Mllctf)...., C'ioollllon U..O. ·o-. lrol ;.l"f

lct~tF(.rMit\.etR.I. s.la.IOidc-t
S~).JQtw!WIIIrJ A s-.t991.

Knowledge Discovery and
Data Mining Bibliography

tGn.vpN!ff f.....-•IJ, .o ... itdlu'}

u-F-,JM."Iot~OII.-..uT...,.
~,.~~Dt.c·..,.·· ·,
flclEEEC_,_ Soc\aJT«.-:IIC..._..
OIIIOM~a . .-111,-.I, M..UIM

OwiMOpf!cf~ ,..; .. """-_,Cn:,..,
rtMu'J·!Mf!(ro. ·s7 ... ,.. r. uo-~cVac
DiK•"'"' ifl_.._ .. tru T,_lfOI\l .
~ _, o.u EaaJ~ l(•tto!-tl),
DlaftlbcflftJ.

(a) Linked Web pages.

2.1 Types of Data 33

(b) Benzene molecule.

Figure 2.3. DiHerenl variations of graph data.

Ordered Data

For some types of data, the attributes have relationships that involve order
in time or space. Different types of ordered data are described next and are
shown in Figure 2.4.

Sequential Data Sequential data, also referred to as temporal data, can
be thought of as an extension of record data, where each record has a time
associated with it. Consider a retail t ransaction data set that also stores the
time at which the transaction took place. This time information makes it
possible to find patterns such as "candy sales peak before Halloween." A time
can also be associated with each attribute. For example, each record could
be the purchase history of a customer, with a listing of items purchased at
different times. Using this information, it is possible to find patterns such as
"people who buy DVD players tend to buy "DVDs in the period immediately
following the purchase."

Figure 2.4(a) shows an example of sequential transaction data. There
are five different times-tl, t2, t3, t4, and tS ; three different customers-Cl

I

34 Chapter 2 Data

Time Customer Items Purchased
t1 C1 A,B

t2 C3 A,C

t2 C1 C,D

t3 C2 A,D

14 C2 E
15 C1 A,E

Customer Time and Items Purchased

C1 (t1: A,B) (l2:C,D) (t5:A,E)

C2 (t3: A, D) (t4: E)

C3 (t2:A,C)

(a) Sequential transaction data.

- H) :

- I 5 ~ . . .
~~~ 1~ 1N4 ,. ,,_ 1Ml , ,;.. INf 1..0 1991 I~ ttrn ,.,. ·-

(c) Temperature time seri es. 

GGTTCCGCCTTCAGCCCCGCGCC 
CGCAGGGCCCGCCCCGCGCCGTC 
GAGAAGGGCCCGCCTGGCGGGCG 
GGGGGAGGCGGGGCCGCCCGAGC 
CCAACCGAGTCCGACCAGGTGCC 
CCCTCTGCTCGGCCTAGACCTGA 
GCTCATTAGGCGGCAGCGGACAG 
GCCAAGTAGAACACGCGAAGCGC 
TGGGCTGCCTGCTGCGACCAGGG 

(b) Genomic sequence data. 

(d) Spatial temperature data. 

Figure 2.4. Different variations of ordered dala. 

C2, and C3; and five different items- A, B, C, D, and E. In the top table, 
each row corresponds to the items purchased at a particular time by each 
customer. For instance, at time t3, customer C2 purchased items A and D. In 
the bottom table, the same information is displayed, but each row corresponds 
to a particular customer. Each row contains information on each transaction 
involving the customer, where a t ransaction is considered to be a set of items 
and the time at which those items were purchased. For example, customer C3 
bought items A and C at time t2. 

2.1 Types of Data 35 

Sequence Data Sequence data consists of a data set that is a. sequence of 
individual entities, such as a sequence of words or letters. It is quite similar to 
sequential data, except that there are no time stamps; instead, there are posi­
tions in an ordered sequence. For example, the genetic information of plants 
and animals can be represented in the form of sequences of nucleotides that 
are known as genes. Many of the problems associated with genetic sequence 
data involve predicting similarit ies in the struct ure and function of genes from 
similarities in nucleotide sequences. Figure 2.4(b) shows a section of the hu­
man genetic code expressed using the four nucleotides from which all DNA is 
constructed: A, T, G, and C. 

Time Series Data Time series data is a special type of sequential data 
in which each record is a t ime series, i.e., a series of measurements taken 
over time. For example, a financial data set might contain objects that are 
time series of the daily prices of various stocks. As another example, consider 
Figure 2.4(c), which shows a time series of the average monthly temperature 
for Minneapolis during the years 1982 to 1994. When working with temporal 
data, it is important to consider temporal autocorrelation ; i.e., if two 
measurements are close in t ime, then the values of those measurements are 
often very similar. 

Spatial Data Some objects have spatial attributes, such as positions or ar­
eas, as well as other types of attributes. An example of spat ial data is weat her 
data (precipitation, temperature, pressure) that is collected for a variety of 
geographical locations. An important aspect of spatial data is spatial auto­
corre lation; i.e., objects that are physically close tend to be similar in other 
ways as well. Thus, two points on !.he Earth that are close to each other 
usually have similar values for temperature and rainfall. 

Important examples of spatial data are the science and engineering data 
sets that are the result of measurements or model output taken at regularly 
or irregularly distributed points on a two- or three-dimensional grid or mesh. 
For instance, Earth science data sets record the temperature or pressure mea­
sured at points (grid cells) on latitude-longitude spherical grids of various 
resolutions, e.g., 1° by 1°. (See Figure 2.4(d).) As another example, in the 
simulation of the flow of a gas, the speed and direction of flow can be recorded 
for each grid point in the simulation. 



36 Chapter 2 Data 

H andling Non-Record D ata 

Most data mining algorithms are designed for record data or its variations, 
such as transaction data and data matrices. Record-oriented techniques can 
be applied to non-record data by ext racting features from data objects and 
using these features to create a record corresponding to each object. Consider 
the chemical structure data that was described earlier. Given a set of common 
substructures, each compound can be represented as a record with binary 
attributes that indicate whether a compound contains a specific substructure. 
Such a representation is actually a transaction data set, where the transactions 
are the compounds and the items are the substructmes. 

In some cases, it is easy to represent the data in a record format, but 
this type of representation does not capture all the information in the data. 
Consider spatia-temporal data consisting of a time series from each point on 
a spatial grid. T his data is often stored in a data matrix, where each row 
represents a location and each column represents a particular point in time. 
However, such a representation does not explicit ly capture the time relation­
ships that are present among attributes and the spatial relationships that 
exist among objects. This does not mean that such a representation is inap­
propriate, but rather that these relationships must be taken into consideration 
during the analysis. For example, it would not be a good idea to use a data 
mining technique that assumes the attributes are statistically independent of 
one another. 

2.2 D ata Qua lity 

Data mining a pplications are often applied to data that was collected fo r an­
other purpose, or for future, but unspecified applications,. For that reason, 
data mining cannot usually take advantage of the significant benefits of "ad­
dressing quality issues at the source." ln contrast, much of statistics deals 
with the design of experiments or surveys that achieve a prespecified level of 
data quality. Because preventing data quality problems is typically not an op­
tion, data mining focuses on (1) the detection and correction of data quality 
problems and (2) the use of algorithms that can tolerate poor data quality. 
The first step, detection and correction, is often called data cleaning. 

The following sections discuss specific aspects of data quality. The focus is 
on measurement and data collection issues, although some appl ication-related 
issues are also discussed. 

2.2 Data Quality 37 

2.2.1 M easurement and D at a Collection Issues 

It is unrealistic to expect that data will be perfect. There may be problems due 
to human error , limitations of measuring devices, or flaws in the data collection 
process. Values or even entire data objects may be missing. l n other cases, 
there may be spurious or duplicate objects; i.e., multiple data objects that all 
correspond to a single "real" object. For example, there might be two difl'erent 
records for a person who has recently Jived at two different addresses. Even if 
all the data is present and "looks fine," there may be inconsistencies-a person 
has a height of 2 meters, but weighs only 2 kilograms. 

In the next few sections, we focus on aspects of data quality that are related 
to data measurement and collection. We begin with a definition of measure­
ment and data collection errors and then consider a variety of problems that 
involve measurement error: noise, artifacts, bias, precision, and accuracy. We 
conclude by discussing data quality issues that may involve both measurement 
and data collection problems: outliers, missing and inconsistent values, and 
duplicate data. 

Measurement a nd D a ta C ollection Errors 

The term measure me nt error refers to any problem resulting from the mea­
surement process. A common problem is that the value recorded differs from 
the true value to some extent. For continuous attributes, the numerical di f~ 

ference of the measured and true value is called the error. The term data 
collect ion error refers to errors such as omitting data objects or attri bute 
values, or inappropriately including a data object. For example, a study of 
animals of a certain species might include animals of a related species that are 
similar in appearance to the species of interest. Both measurement errors and 
data collection errors can be either systematic or random. 

We will only consider general types of errors. Within particular domains, 
there are certain types of data errors that are commonplace, and there often 
exist well-developed techniques for detecting and /or correcting these errors. 
For example, keyboard errors are common when data is entered manually, and 
as a result , many data entry programs have techniques for detecting and, with 
human intervent ion, correcting such errors. 

Noise a nd Artifacts 

Noise is the random component of a measurement error. It may involve the 
distortion of a value or the addition of spurious objects. Figure 2.5 shows a 
time series before and after it has been disrupted by random noise. If a bit 



38 Chapter 2 Data 

(a) Time series. (b) Time series with noise. 

Figure 2.5. Noise in a time series context. 

. ·:. + + + 
,: . + 

+ 
... :..· .. · 

·. -: .. : . 
··.· .... 

+ 
+ 

+ 
+++ 

:i~<:.~: ~:::: >.:~:. -;.,. ; .. , ·:. ~- ··. · :J· .. . . . ': :~·. -· 
. . '• .. · .. : .. ;· 

(a) Three groups of points. (b) With noise points ( +) added. 

Figure 2.6. Noise in a spatial context. 

more noise were added to the time series, its shape would be lost. Figure 2.6 
shows a set of data points before and after some noise points (indicated by 
'+'s) have been added. Notice that some of the noise points are intermixed 
with the non-noise points. 

The term noise is often used in connection with data that has a spatial or 
temporal component. In such cases, techniques from signal or image process­
ing can frequently be used to reduce noise and thus, help to discover patterns 
(signals) that might be "lost in the noise." Nonetheless, the elimination of 
noise is frequently difficult, and much work in dat a mining focuses on devis­
ing robust algorithms that produce acceptable results even when noise is 
present. 

2.2 Data Quality 39 

Data errors may be the result of a more deterministic phenomenon, such 
as a streak in the same place on a set of photographs. Such deterministic 
distortions of the data are often referred to as artifacts. 

Precision, Bias, and Accu racy 

In statistics and experimental science, the quality of the measurement process 
and the resulting data are measured by precision and bias. We provide the 
standard definitions, followed by a brief discussion. For t.he following defini­
tions, we assume that we make repeated measurements of the same underlying 
quantity and use this set of values to calculate a mean (average) value that 
serves as our estimate of the true value. 

Definition 2.3 (P recision ) . The closeness of repeated measurements (of the 
same quantity) to one another. 

Definit ion 2.4 (Bias). A systematic variation of measurements from the 
quantity being measured. 

Precision is often measured by the standard deviation of a set of values, 
while bias is measured by taking the difference between the mean of the set 
of values and t he known value of the quantity being measured. Bias can 
only be determined for objects whose measured quantity is known by means 
external to the current situation. Suppose that we have a standard laboratory 
weight with a mass of 1g and want to assess the precision and bias of our new 
laboratory scale. We weigh the mass five times, and obtain the following five 
values: {1.015, 0.990, 1.013, 1.001, 0.986}. The mean of these values is 1.001, 
and hence, the bias is 0.001. The precision, as measured by the standard 
deviation, is 0.013. 

It is common to use the more general term, accuracy, to refer to the 
degree of measurement error in data. 

Defini t ion 2.5 (A ccuracy) . The closeness of measurements to t.he true value 
of the quantity being measured. 

Accuracy depends on precision and bias, but since it is a general concept, 
there is no specific formula fo r accuracy in terms of these two quantities . 

One important aspect of accuracy is the use of significant digits. The 
goal is to use only as many digits to repres~nt the result of a measurement or 
calculation as are justified by the precision of the data. For example, if the 
length of an object is measured with a meter stick whose smallest markings are 
millimeters, then we should only record the length of data to the nearest mil­
limeter. The precision of such a measurement would be ± 0.5mm. We do not 



. -
• .. !!§'; ·- ·-- · - ;:;::;;-----·-~ 

-.... 

40 C hapter 2 Data 

review the details of working with significant digits, as most readers will have 
encountered them in previous courses, and they are covered in considerable 
depth in science, engineering, and statistics textbooks. 

Issues such as significant digits, precision, bias, and accuracy are sometimes 
overlooked, but they are important for data mining as well as statistics and 
science. Many times, data sets do not come with information on the precision 
of t he data, and furthermore, the programs used for analysis return results 
withou t any such information. Nonetheless, without some understanding of 
the accuracy of the data and the results, an analyst runs the risk of committing 
serious data analysis blunders. 

Outliers 

Outliers are either (1) data objects that, in some sense, have characteristics 
that are different from most of the other data objects in the data set , or 
(2) values of an attribute that are unusual with respect to the typical values 
for that attribute. Alternatively, we can speak of anomalous objects or 
values. There is considerable leeway in the definition of an outlier, and many 
diflerent definitions have been proposed by the statistics and data mining 
communit ies. Furthermore, it is important to distinguish between the notions 
of noise and outliers. Outliers can be legitimate data objects or values. Thus, 
unlike noise, outliers may sometimes be of interest. In fraud and network 
intrusion detection, for example, the goal is to find unusual objects or events 
from among a large number of normal ones. Chapter 10 discusses anomaly 
detection in more detail. 

Missing Values 

It is not unusual for an object to be missing one or more attribute values. 
Jn some cases, the information was not collected; e.g., some people decline to 
give their age or weight . In other cases, some attributes are not applicable 
to all objects; e.g., often, forms have conditional parts that are filled out only 
when a person answers a previous question in a certain way, but for simplicity, 
all fields are stored. Regardless, missing values should be taken into account 
during the data analysis. 

There are several strategies (and variations on these strategies) for dealing 
with missing data, each of which may be appropriate in certain circumstances. 
These strategies are list ed next, along with an indication of their advantages 
and disadvantages. 

2.2 Data Quality tJ l 

Eliminate Data Objects or Attributes A simple and effective strateg,y 
is to eliminate objects with missing values. However, even a partially speci­
fied data object contains some information, and if many objects have missing 
values, then a reliable analysis can be difficult or impossible. Nonetheless, if 
a data set has only a few objects that have missing values , then it may be 
expedient to omit them. A related strategy is to eliminate attribu tes that 
have missing values. This should be done with caution, however, since the 
eliminated attributes may be t he ones that are critical to the analysis. 

Estimate M issin g Values Somet imes missing data can be reliably est.i­
mated. For example, consider a time series that changes in a reasonably 
smooth fashion, but has a few, widely scattered missing values. In such cases, 
the missing values can be estimated (interpolated) by using the remaining 
values. As another example, consider a data set that has many similar data 
points. In this situation, the attribute values of the points closest to t he point 
with the missing value are often used to estimate the missing value. If the 
attribute is continuous, then the average attribute value of the nearest neigh­
bors is used; if the attribute is categorical, then the most commonly occurring 
at tribute value can be taken. For a concrete illustration, consider precipitation 
measurements that are recorded by ground stations. For areas not containing 
a ground station, the precipitation can be estimated using values observed at 
nearby ground stat ions. 

Ignore the M issing Value during Analysis Many data mining approaches 
can be modified to ignore missing values. For example, suppose that objects 
are being clustered and the similarity between pairs of data objects needs to 
be calculated. lf one or both objects of a pair have missing values for some 
att ributes, then the similarity can be calculated by using only the attr ibutes 
that do not have missing values. It is true that the similarity will only be 
approximate, but unless t he total number of attributes is small or t he num­
ber of missing values is high, t his degree of inaccuracy may not matt er much. 
Likewise, many classification schemes can be modified to work with missing 
values. 

Inconsistent Values 

Data can contain inconsistent values. Consider an address field , where both a 
zip code and city are listed , but the specified zip code area is not contained in 
that city. It may be that the individual entering this informat ion transposed 
two digits, or perhaps a digit was misread when the information was scanned 



42 Chapter 2 Data 

from a handwritten form. Regardless of the cause of the inconsistent values, 
it is important to detect and, if possible, correct such problems. 

Some types of inconsistences are easy to detect. For inst ance, a person's 
height should not be negative. In other cases, it can be necessary to consult 
an external source of information. For example, when an insurance company 
processes claims for reimbursement, it checks the names and addresses on the 
reimbursement forms against a database of its customers. 

Once an inconsistency has been detected, it is sometimes possible to correct 
the data. A product code may have "check" digits, or it may be possible to 
double-check a product code against a list of known product codes, and then 
correct the code if it is incorrect, but close to a known code. The correction 
of an inconsistency requires additional or redundant information. 

Example 2.6 (Inconsistent Sea Surface Temp er ature). This example 
illustrates an inconsistency in actual t ime series data that measures the sea 
surface temperature (SST) at various points on the ocean. SST data was origi­
nally collected using ocean-based measurements from ships or buoys, but more 
recently, satellites have been used to gather the data. To create a long-term 
data set, both sources of data must be used. However, because the data comes 
from di fferent sources, the two parts of the data are subtly different. This 
discrepancy is visually displayed in Figure 2.7, which shows the correlation of 
SST values between pairs of years. If a pair of years has a positive correlation, 
t.hen the location corresponding to the pair of years is colored white; otherwise 
it is colored black. (Seasonal variations were removed from the data since, oth­
erwise, all the years would be highly correlated.) There is a distinct change in 
behavior where the data has been put together in 1983. Years wi thin each of 
the two groups, 1958- 1982 and 1983- 1999, tend to have a positive correlation 
with one another, but a negative correlation with years in the other group. 
This does not mean that this data should not be used, only that t.he analyst 
should consider the potential impact of such discrepancies on the data mining 
analysis. • 

Duplicate Data 

A data set may include data objects that are duplicates, or almost duplicates, 
of one another. Many people receive duplicate mailings because they appear 
in a database multiple times under slightly different names. To detect and 
eliminate such duplicates, two main issues must be addressed . First, if there 
are two objects that actually represent a single object, then the values of 
corresponding attributes may differ, and these inconsistent values must be 

2.2 Data Quality 43 

;;; 
~ 

75 

80 

85 

90 

95 

Year 

Figure 2.7. Correlation of SST data between pairs of years. White areas indicate positive correlation. 
Black areas indicate negative correlation. 

resolved. Second , care needs to be taken to avoid accidentally combining data 
objects that are similar, but not duplicates, such as two distinct people with 
identical names. The term deduplication is often used to refer to the process 
of dealing with these issues. 

In some cases, two or more objects are identical with respect to the at­
tributes measured by the database, but they still represent different objects. 
Here, the duplicates are legitimate, but may still cause problems for some al­
gorithms if the possibili ty of identical objects is not specifically accounted for 
in their design. An example of t his is given in Exercise 13 on page 91. 

2.2.2 Issues Related to Applications 

Data quality issues can also be considered from an application viewpoint as 
expressed by the statement "data is of high quality if it is suitable for its 
intended use." This approach to data quality bas proven quite useful, particu­
larly in business and industry. A similar viewpoint is a lso present in statistics 
and t he experimental sciences, with t heir emphasis on the careful design of ex­
periments to collect the data relevant to a specific hypothesis . As with quality 



44 Chapter 2 Data 

issues at the measurement and data collection level , there are many issues that 
are specific to particular applications and fields. Again, we consider only a few 
of the general issues. 

Timeliness Some data starts to age as soon as it has been collected. In 
particular, if the data provides a snapshot of some ongoing phenomenon or 
process, such as the purchasing behavior of customers or Web browsing pat­
terns, then this snapshot represents reality for only a limited time. If the data 
is out of date, then so are the models and patterns that are based on it. 

R elevance The available data must contain the information necessary for 
the application. Consider the task of building a model that predicts the acci­
dent rate for drivers. If information about the age and gender of the driver is 
omitted , then it is likely that the model will have limited accuracy unless this 
information is indirectly available through other attributes. 

Making sure that the objects in a data set are relevant is also challenging. 
A common problem is sampling bias, which occurs when a sample does not 
contain different types of objects in proportion to their actual occurrence in 
the population. For example, survey data describes only those who respond to 
the survey. (Other aspects of sampling are discussed further in Section 2.3.2.) 
Because the results of a data analysis can reflect only the data that is present, 
sampling bias will typically result in an erroneous analysis. 

l<nowledge about the Data Ideally, data sets are accompanied by doc­
umentation that describes different aspects of the data; the quality of this 
documentation can either aid or hinder the subsequent analysis. For example, 
if the documentation identifies several attributes as being strongly related, 
these attributes are likely to provide highly redundant information, and we 
may decide to keep j ust one. (Consider sales tax and purchase price.) If the 
documentation is poor, however, and fails to tell us, for example, that the 
missing values for a particular field are indicated with a -9999, then our analy­
sis of the data may be faulty. Other important characteristics are the precision 
of tlte data, the type of features (nominal, ordinal, interval, ratio), the scale 
of measurement (e.g., meters or feet for length), and the origin of the data. 

2.3 Data Preprocessing 

In this section, we address the issue of which preprocessing steps should be 
applied to make the data more suitable for data mining. Data preprocessing 

2.3 Data Preprocessing 45 

is a broad area and consists of a number of different strategies and techniques 
that are interrelated in complex ways. We will present some of the most 
important ideas and approaches, and try to point out the interrelationships 
among them. Specifically, we will discuss the following topics: 

• Aggregation 

• Sampling 

• Dimensionality reduction 

• Feature subset selection 

• Feature creation 
• Discretization and binarization 

• Variable t ransformation 

Roughly speaking, t hese items fall into two categories: selecting data ob­
jects and attributes for the analysis or creating/changing the attributes. ln 
both cases the goal is to improve the data mining analysis with respect to 
time, cost, and quality. Details are provided in the following sections. 

A quick note on terminology: In the following, we sometimes use synonyms 
for attribute, such as feature or variable, in order to follow common usage. 

2.3.1 Aggregation 

Sometimes "less is more" and this is the case with a ggregation, the combining 
of two or more objects into a single object. Consider a data set consisting of 
transactions (data objects) recording t he daily sales of products in various 
store locations (Minneapolis, Chicago, Paris, ... ) for different days over the 
course of a year . See Table 2.4.. One way to aggregate t ransactions for this data 
set is to replace all the transactions of a single store with a single storewide 
transaction. This reduces the hundreds or thousands of transactions that occur 
daily at a specific store to a single daily transaction, and the number of data 
objects is reduced to the number of stores. 

An obvious issue is how an aggregate transaction is created ; i.e., how the 
values of each attribute are combined across all the records corresponding to a 
particular location to create the aggregate transaction that represents the sales 
of a single store or date. Quantitative attributes, such as price, are typically 
aggregated by taking a sum or an average, A qualitative attribute, such as 
item, can either be omitted or summarized as the set of all the items that were 
sold at that location. 

The data in Table 2.4 can also be viewed as a multidimensional array, 
where each attribute is a dimension. From this viewpoint, aggregation is t he 



46 Chapter 2 Data 

Table 2.4. Data sel containing information about customer purchases. 

Transaction ID 

101123 
101123 
101124 

Item 

Watch 
Battery 
Shoes 

Store Location 

Chicago 
Chicago 

Minneapolis 

Date 

09/06/04 
09/06/04 
09/06/04 

Price 

$25.99 
$5.99 
$75.00 

process of eliminating attributes, such as the type of item , or reducing the 
number of values for a particular attribute; e.g., reducing the possible values 
for date from 365 days to 12 months. This type of aggregation is commonly 
used in Online Analytical Processing (OLAP ), which is discussed further in 
Chapter 3. 

T here are several motivations fo r aggregation. First, the smaller data sets 
resulting from data reduction require less memory and processing time, and 
hence, aggregation may permit the use of more expensive data mining algo­
rithms. Second, aggregation can act as a change of scope or scale by providing 
a high-level view of the data instead of a low-level view. In the previous ex­
ample, aggregating over store locations and months gives us a monthly, per 
store view of the data instead of a daily, per item view. Finally, the behavior 
of groups of objects or attributes is often more stable than that of individual 
objects or attri butes. This statement reflects the statistical fact that aggregate 
quantities, such as averages or totals, have less variability than the individ­
ual objects being aggregated. For totals, the actual amount of variation is 
larger than that of individual objects (on average), but the percentage of the 
variation is smaller, while for means, the actual amount of variation is less 
than that of individual objects (on average). A disadvantage of aggregation is 
the potential loss of interesting details. In the store example aggregating over 
months loses information about which day of the week has the highest sales. 

Example 2.7 (Australian Precipitation) . This example is based on pre­
cipi tation in Australia from t he period 1982 to 1993. Figure 2.8(a) shows 
a histogram for the standard deviation of average monthly precipitation for 
3,030 0.5° by 0.5° grid cells in Australia, while Figure 2.8(b) shows a histogram 
for the standard deviation of the average yearly precipitation for the same lo­
cations. T he average yearly precipitation has less variability than the average 
monthly precipitation. All precipitation measurements (and their standard 
deviations) are in centimeters. 

• 

(a) Histogram of standard deviat ion of 
average monthly precipitation 

2.3 Data Preprocessing 47 

(b) Histogram of standard deviation of 
average yearly precipitation 

Figure 2.8. Histograms of standard deviation for monthly and yearly precipitation in Australia for the 
period 1982 to 1993. 

2.3.2 Sampling 

Sampling is a commonly used approach for selecting a subset of the data 
objects to be analyzed. In statistics, it has long been used for both the pre­
liminary investigation of the data and the final data analysis. Sampling can 
also be very useful in data mining. However, the motivations fo r sampling 
in statistics and data mining are often different. Statisticians use sampling 
because obtaining the entire set of data of interest is too expensive or time 
consuming, while data miners sample because it is too expensive or time con­
suming to process all the data. In some cases, using a sampling algori thm can 
reduce the data size to t he point where a better, but more expensive algorithm 
can be used. 

T he key principle fo r effective sampling is the following: Using a sample 
will work almost as well as using the entire data set if the sample is repre­
sentative. In turn, a sample is representative if it has approximately the 
same property (of interest) as the original set of data. If the mean (average) 
of the data objects is the property of interest, then a sample is representative 
if it has a mean that is close to that of the original data. Because sampling is 
a statistical process, the representativeness ·of any particular sample will vary, 
and the best t hat we can do is choose a sampling scheme that guarantees a 
high probability of getting a representative sample. As discussed next, this 
involves choosing the appropriate sample size and sampling techniques . 



48 Chap ter 2 Data 

Sampling Approaches 

There are many sampling techniques, but only a few of the most basic ones 
and their variations will be covered here. The simplest type of sampling is 
simple random sampling. For t his type of sampling, there is an equal prob­
ability of selecting any part icular item. There are two variations on random 
sampling (and other sampling techniques as well): (1) sampling without re­
placement- as each item is selected, it is removed from the set of all objects 
that together constitute the population, and (2) sampling with replace­
ment- objects are not removed from the population as they are selected for 
the sample. ln sampling with replacement, the same object can be picked more 
than once. The samples produced by the two met hods are not much d ifferent 
when samples are relatively small compared to the data set size, but sampling 
with replacement is simpler to analyze since the probability of selecting any 
object remains constant during the sampling process. 

When the population consists of different types of objects, with widely 
different numbers of objects, simple random sampling can fai l to adequately 
represent those types of objects that are less frequent. This can cause prob­
lems when the analysis requires proper representation of all object types. For 
example, when building classification models for rare classes, it is critical that 
the rare classes be adequately represented in the sample. Hence, a sampling 
scheme that can accommodate differing frequencies for t he items of interest is 
needed. Stratified sampling, which starts with prespecified groups of ob­
jects, is such an approach. In the simplest version, equal numbers of objects 
are drawn from each group even though the groups are of different sizes. In an­
other variation, the number of objects drawn from each group is proportional 
to the size of that group. 

Example 2.8 (Sampling and Loss of Information). Once a sampling 
technique has been selected, it is still necessary to choose the sample size. 
Larger sample sizes increase the probability that a sample will be representa­
tive, bu t they also eliminate much of the advantage of sampling. Conversely, 
with smaller sample sizes, patterns may be missed or erroneous patterns can be 
detected. Figure 2.9(a) shows a data set that contains 8000 two-dimensional 
points, while Figures 2.9(b) and 2.9(c) show samples from t his data set of size 
2000 and 500, respectively. Although most of the structure of this data set is 
present in the sample of 2000 points, much of the structure is missing in the 
sample of 500 points. • 

2.3 Data Preprocessing 49 

" j:·. :_:' 
: . ' . .' ' .. ~.-

- .:·-· ~· . :. ;. : -: 
-~:: . . = ' . ... . ':· . ·.· .. 

(a) 8000 point s (b) 2000 points (c) soo poirit.s 

Figure 2.9. Example of the loss of structure with sampling. 

Example 2.9 (D etermining the Proper Sample Size) . To ill ustrate that 
determining the proper sample size requi res a methodical approach, consider 
the following task. 

Given a set of data that consists of a small number of alrr:ost equal­
sized groups, find at least one representative point for each of the 
groups. Assume that the objects in each group are highly similar 
to each other, but not very similar to objects in different groups. 
Also assume that there are a relatively small number of groups, 
e.g. , 10. Figure 2.10(a) shows a n idealized set of clusters (groups) 
from which these points might be drawn. 

This problem can be efficiently solved using sampling. One approach is to 
take a small sample of data points, compute the pairwise similari ties between 
points, and then form groups of points that a re highly similar. The desired 
set of representative points is then obtained by taking one point from each of 
these groups. To follow this approach, however , we need to determine a sample 
size that would guarantee, with a high probability, the desired outcome; that 
is, that at least one poin t will be obtained from each cluster. Figure 2.10(b) 
shows t he proba bili ty of getting one object from each of the 10 groups as the 
sample size runs from 10 to 60. Interestingly, with a sample size of 20, t here is 
little chance (20%) of getting a sample that .includes all 10 clusters. Even with 
a sample size of 30, there is still a moderate chance (almost 40%) of getting a 
sample that doesn't contain objects from all 10 clusters. This issue is further 
explored in the context of clustering by Exercise 4 on page 559. 

• 



50 Chapter 2 Data 

• • 
• • 
• • 
• • 
• • 

(a) Ten groups of points. 

0.8 . ...................... .. 

~ 0.6 '" .... , 
:0 

~ 
Q, 0.4 

0.2 

Sample Size 

(b) P robability a sample contains points 
from each of 10 groups. 

Figure 2.1 0. Finding representative points from 10 groups. 

Progressive Sampling 

The proper sample size can be difficult to determine, so adaptive or progres­
sive sam pling schemes are sometimes used. These approaches start with a 
small sample, and then increase the sample size until a sample of sufficient 
size has been obtained. \N'hile this technique eliminates the need to determine 
the correct sample size initially, it requires that there be a way to evaluate the 
sample to judge if it is large enough. 

Suppose, for instance, that progressive sampling is used to learn a. pre­
dictive modeL Although the accuracy of predictive models increases a.<> the 
sample size increases, at some point the increase in accuracy levels off. We 
want. to stop increasing the sample size at this leveling-off point. By keeping 
t.rack of ~he change in accuracy of the model as we take progressively larger 
samples, and by taking other samples close to the size of the current one, we 
can get an estimate as to how close we are to this leveling-off point, and thus, 
stop sampling. 

2.3.3 Dimensionality R eduction 

Data sets can have a large number of features. Consider a set of documents, 
where each document is represented by a vector whose components are the 
frequencies with which each word qccurs in the document. In such cases, 

2.3 Data Preprocessing 51 

there are typically thousands or tens of thousands of attributes (components), 
one for each word in t he vocabulary. As another example, consider a set of 
time series consisting of the daily closing price of various stocks over a period 
of 30 years. In this case, the attributes, which are the prices on specific days, 
again number in the thousands. 

There are a variety of benefits to dimensionality reduction . A key benefit 
is that many data mining algorithms work better if the dimensionality-the 
number of attributes in the data-is lower. This is partly because dimension­
ality reduction can eliminate irrelevant features and reduce noise and partly 
because of the curse of dimensionality, which is explained below. Another ben­
efit is that a reduction of dimensionality can lead to a more understandable 
model because the model may involve fewer attributes. Also, dimensionality 
reduction may allow the data to be more easily visualized. Even if dimen­
sionality reduction doesn't reduce the data to two or three dimensions, data 
is often visualized by looking at pairs or triplets of attributes, and t he num­
ber of such combinations is greatly reduced. Finally, the amount of time and 
memory required by the data mining algorit hm is reduced with a reduction in 
dimensionality. 

The term dimensionality reduction is often reserved for those techniques 
that reduce the dimensionali ty of a data set by creating new attributes that 
are a combination of the old attributes. The reduction of dimensionali ty by 
selecting new attributes that are a subset of the old is known as feature subset 
selection or feature selection. It will be discussed in Section 2.3.4 . 

In the remainder of this section, we briefly introduce two important topics: 
the curse of dimensionality and dimensionality reduction techniques based on 
linear algebra approaches such as principal components analysis (PCA ). More 
details on dimensionality reduction ca.n be found in Appendix B. 

The Curse of Dimensionality 

The curse of dimensiona lity refers to the phenomenon that many types of 
data analysis become significantly harder as the dimensionality of the data 
increases. Specifically, as dimensionality increases, the data becomes increas­
ingly sparse in the space that it occupies. For classification, this can mean 
that there are not enough data objects to allow the creation of a model that 
reliably assigns a class to all possible objects. For clustering, the definitions 
of density and the distance between points, which are critical for clustering, 
become less meaningful. (This is discussed further in Sections 9.1 .2, 9.4.5, and 
9.4.7.) As a result, many clustering and classification algorithms (and other 



• 
52 C hapte r· 2 Data 

data analysis algorithms) have t rouble with high-dimensional data- reduced 
classification accuracy and poor quality clusters. 

Linear Algebra Techniques for Dimensionality R eduction 

Some of the most common approaches for dimensionality reduction, part ic­
ularly for continuous data, use techniques from linear algebra to project the 
data from a high-dimensional space into a lower-dimensional space. Principal 
Components Analysis (PCA) is a linear algebra technique for continuous 
at tributes that finds new attributes (principal components) that (1) are linear 
combinations of the original attributes, (2) are orthogonal (perpendicular) to 
each other, and (3) capture t he maximum amount of variation in the data. For 
example, the first two principal components capture as much of the variation 
in the data as is possible with two orthogonal attributes that are linear combi­
nations of the original attributes. Singular Value D ecomposition (SVD) 
is a linear algebra technique that is related to PCA and is also commonly used 
for dimensionality reduction. For addi tional details, see Appendices A and B. 

2.3.4 Feature Subset Selection 

Another way to reduce the dimensionality is to use only a subset of t he fea­
tures. While it might seem that such an approach would lose information, this 
is not t he case if redundant and irrelevant features are present. Redundant 
features duplicate much or all of the information contained in one or more 
other attributes. For example, the purchase price of a product and the amount 
of sales tax paid contain much of the same information. Irre levant features 
contain almost no useful information for the data mining task at hand. For 
instance, students ' ID numbers are irrelevant to t he task of predicting stu­
dents' grade point averages. Redundant and irrelevant features can reduce 
classification accuracy and the quality of the clusters t hat are found . 

While some irrelevant and redundant attributes can be eliminated imme­
diately by using common sense or domain knowledge, selecting the best subset 
of features frequently requires a systematic approach. The ideal approach to 
fea ture selection is to try all possible subsets of features as input to the data 
mining algorithm of interest , and then take the subset that produces the best 
results. This method has the advantage of reflecting the objective and bias of 
the data mining algori thm that will eventually be used. Unfortunately, since 
the number of subsets involving n attributes is 2n, such an approach is imprac­
tical in most situations and alternative strategies are needed. There are three 
standard approaches to feature selection: embedded, filter, and wrapper. 

2.3 Data Preprocessing 53 

Embedded approaches Feature selection occurs naturally as part of the 
data mining algorithm. Specifically, during the operation of the data mining 
algorithm, the algorithm itself decides which attributes to use and which to 
ignore. Algorithms for building decision tree classifiers, which are discussed in 
Chapter 4, often operate in this manner. 

Filter approaches Features are selected before the data mining algorithm 
is run , using some approach that is independent of the data mining task. For 
example, we might select sets of attributes whose pairwise correlation is as low 
as possible. 

W rapper approaches These methods use the target data mining algorithm 
as a black box to find the best subset of attributes, in a way similar to that 
of the ideal algorithm described above, but typically without enumerating all 
possible subsets. 

Since the embedded approaches are algorithm-specific, only the filter and 
wrapper approaches will be discussed further here. 

An Architecture for Feature Subset Selection 

It is possible to encompass both the filter and wrapper approaches within a 
common architecture. The feature selection process is viewed as consisting of 
four parts: a measure for evaluating a subset , a search strategy that controls 
the generation of a new subset of features, a stopping criterion, and a valida­
tion procedure. Filter methods and wrapper methods differ only in the way 
iu which they evaluate a subset of features. For a wrapper method , subset 
evaluat ion uses the target data mining algorithm, while for a fi lter approach, 
the evaluation technique is distinct from the target data mining algorithm . 
T he following discussion provides some details of this approach, which is sum­
marized in Figure 2.11. 

Conceptually, feature subset selection is a search over all possible subsets 
of features. Many different types of search strategies can be used, but the 
search strategy should be computationally inexpensive and should find optimal 
or near optimal sets of features. lt is usually not possible to satisfy both 
requirements, and thus, tradeoffs are neces:;;ary. 

An integral part of the search is an evaluation step to judge how the current 
subset of feat ures compares to others that have been considered. This requires 
an evaluation measure that attempts to determine the goodness of a subset of 
attributes with respect to a particular data mining task, such as classification 



54 C hapte r 2 Data 

Selected 

Validation 
Procedure 

Not 
Done 

Search 
Strategy 

Evaluation 

Figure 2.11. Flowchart of a feature subset selection process. 

or clustering. For the filter approach, such measures attempt to predict how 
well the actual data mining algorithm will perform on a given set of attributes. 
For the wrapper approach, where evaluation consists of actually running the 
target data mining applicat ion, the subset evaluation function is simply t he 
criterion normally used to measure the result of the data mining. 

Because the number of subsets can be enormous and it is impractical to 
examine them all, some sort of stopping criterion is necessary. This strategy is 
usually based on one or more conditions involving the following: the number 
of iterations, whether t he value of the subset evaluation measure is optimal or 
exceeds a certain threshold, whether a subset of a. certain size has been ob­
tained, whether simultaneous size and evaluation criteria. have been achieved, 
and whether any improvement can be achieved by the options available to the 
search strategy. 

Finally, once a subset of features has been selected, the results of the 
target data mining algorithm on the selected subset should be validated. A 
straightforward evaluation approach is to run the algorithm with the full set 
of features and compare the full results to results obtained using the subset of 
features. Hopefully, the subset of features will produce results that are better 
than or almost as good as those produced when using all features. Another 
validation approach is to use a number of different feature selection algorithms 
to obtain subsets of features and t hen compare the results of running the da ta 
mining algorithm on each subset. 

2 .3 Data Preprocessing 55 

Feature Weighting 

Feature weighting is an alternative to keeping or eliminating features. More 
important features are assigned a higher weight, while less important features 
are given a lower weight . These weights are sometimes assigned based on do­
main knowledge about the relative importance of features. Alternatively, they 
may be determined automaticaUy. For example, some classification schemes, 
such as support vector machines (Chapter 5), produce classification models in 
which each feature is given a weight. Features with larger weights play a more 
important role in the model. The normalization of objects that takes place 
when computing the cosine similarity (Section 2.4.5) can also be regarded as 
a. type of feature weighting. 

2.3.5 Feature C reation 

It is frequent ly possible to create, from the original attributes , a new set of 
attributes that captures the important information in a data. set much more 
effectively. Furthermore, the number of new attributes can be smaller than the 
number of original attributes, allowing us to reap all the previously described 
benefits of dimensionality reduction. Three related methodologies for creating 
new att ributes are described next: feature extraction, mapping the data to a 
new space, and feature construction. 

Feature Extraction 

The creation of a new set of features from t he original raw data is known as 
feature extr action . Consider a set of photographs, where each photograph 
is to be classified according to whether or not it contains a. human face. The 
raw data is a set of pixels, and as such, is not suitable for many types of 
classification algorithms. However, if the data is processed to provide higher­
level features, such as the presence or absence of certain types of edges and 
areas that are highly correlated with the presence of human faces, then a much 
broader set of classification techniques can be applied to this problem. 

Unfortunately, in the sense in which it is most commonly used , feature 
extraction is highly domain-specific. For a particular field, such as image 
processing, various features and the techniques to extract them have been 
developed over a period of time, and often_ these techniques have limited ap­
plicability to other fields. Consequently, whenever data mining is applied to a 
relatively new area., a key task is the development of new features and feature 
extraction methods. 



r-=------

56 C hapter 2 Data 

(a) Two time series. (b) Noisy time series. (c) Power spectrum 

Figure 2.12. Application of the Fourier transform to identify the underlying frequencies in time series 
data. 

Mapping the Data to a New Space 

A totally different view of the data can reveal important and interesting fea­
tures. Consider, for example, time series data, which often contains periodic 
patterns. If there is only a single periodic pattern and not much noise, then 
the pattern is easily detected. If, on the other hand, there are a number of 
periodic patterns and a significant amount of noise is present, then these pat­
terns are hard to detect. Such patterns can, nonetheless , often be detected 
by applying a Fourier t ransform to the time series in order to change to a 
representation in which frequency informa tion is explicit. In the example that 
follows, it will not be necessary to know the details of the Fourier transform. 
It is enough LO know that, for each time series, the Fourier transform produces 
a new data object whose attributes are related to frequencies. 

Example 2.10 (Fourier Analysis) . The time series presented in Figure 
2.12(b) is the sum of three other time series, two of which are shown in Figure 
2.12(a) and have frequencies of 7 and 17 cycles per second, respectively. T he 
third time series is random noise. Figure 2.12(c) shows t he power spectrum 
that can be computed after applying a Fourier transform to the original time 
series. (Informally, the power spectrum is proportional to t he square of each 
frequency attribute.) In spite of the noise, there are two peaks that correspond 
to the periods of the two original, non-noisy time series. Again, the main point 
is t hat better feat ures can reveal important aspects of the data. • 

"!.'"" . 
l ·:·' 

' . ' 

2.3 Data Preprocessing 57 

Many other sorts of transformations are also possible. Besides the Fourier 
transform, the wavelet t ra nsform has also proven very usefu l for time series 
and other types of data. 

Feature Construction 

Sometimes the features in the original data sets have the necessary information, 
but it is not in a fo rm suitable for the dat a mining algorithm. In this situation, 
one or more new features constructed out of the original features can be more 
useful than the original features . 

Example 2.11 (Density). To illustrate this, consider a data set consisting 
of information about historical artifacts , which, along with other information, 
contains the volume and mass of each artifact. For simplicity, assume that 
these artifacts are made of a small number of materials (wood, clay, bronze, 
gold) and that we want to classify the artifacts with respect to the material 
of which t hey are made. In this case, a density feature constructed from the 
mass and volume feat ures, i.e. , density == mass/volume, would most directly 
yield an accurate classification. Although there have been some attempts to 
automatically perform feature construction by exploring simple mathematical 
combinations of existing attributes , the most common approach is to construct 
features using domain expertise. • 

2.3.6 Discretization a nd B inarization 

Some data mining algorithms, especially certain classification algorithms, re­
quire t hat the data be in the form of categorical attributes. Algorithms that 
find association patterns require that the data be in the form of binary at­
tributes. T hus, it is oft en necessary to transform a continuous attribute into 
a categorical attribute (d iscretization), and both continuous and discrete 
attributes may need to be transformed into one or more binary attributes 
(b inarizat ion). Additionally, if a categorical attribute has a large number of 
values (categories), or some values occur infrequently, then it may be beneficial 
for certain data mining tasks to reduce the number of categories by combining 
some of the values. 

As with feature selection, the best discretization and binarization approach 
is the one that "produces the best result for the data mining algorithm that 
will be used to analyze the data'' It is typically not practical to apply such a 
criterion directly. Consequent ly, discretizat ion or binarization is performed in 



58 C hapter 2 Data 

Table 2.5. Conversion of a categorical allribute to three binary attributes. 

Categorical Value Integer Value XJ X2 XJ 

awful 0 0 0 0 
pour 1 0 0 1 
OK 2 0 1 0 
good 3 0 1 1 
great 4 1 0 0 

Table 2.6. Conversion of a categorical attribute to five asymmetric binary attributes. 

Categorical Value Integer Value XJ X2 X3 x4 Xs 

awful 0 1 0 0 0 0 
poor 1 0 1 0 0 0 
OK 2 0 0 1 0 0 
good 3 0 0 0 1 0 
great 4 0 0 0 0 1 

a way that satisfies a criterion that is thought to have a relationship to good 
performance for the data mining task being considered . 

Binarization 

A simple technique to binarize a categorical attribute is the following: If there 
are m categorical values, then uniquely assign each original value to an integer 
in the interval [0, m - 1 ]. If t he attribute is ordinal, then order must be 
maintained by the assignment. (Note that even if the attribute is originally 
represented using integers, this process is necessary if the integers are not in the 
interval [0 , m - 1].) Next, convert each of these m integers to a binary number. 
Since n = Pog2(m)l binary digits are requi red to represent these integers, 
represent these binary numbers using n binary attributes. To illustrate, a 
categorical variable with 5 values {awful, poor, OK, good, great} would require 
three binary variables XJ , x2, and X3. The conversion is shown in Table 2.5. 

Such a transformation can cause complications, such as creating unin­
tended relationships among the transformed attributes. For example, in Table 
2.5, attributes x2 and X3 are correlated because information about the good 
value is encoded using both attributes. Furthermore, associa tion analysis re­
qu ires asymmetric binary attribu tes, where only the presence of the attribute 
(value = 1) is important. For association problems, it is t herefore necessary to 
introduce one binary attribute for each categorical value, as in Table 2.6. If the 

2.3 Data Preprocessing 59 

number of resulting attributes is too large, then the techniques described below 
can be used to reduce the number of categorical values before binarization. 

Likewise, for association problems, it may be necessary to replace a single 
binary attribute with two asymmetric binary attributes. Consider a binary 
attribute that records a person's gender, male or female. For traditional as­
sociation rule algorithms, this information needs to be transformed into two 
asymmetric binary attributes, one that is a 1 only when the person is male 
and one that is a 1 only when the person is female. (For asymmetric binary 
attributes, the information representation is somewhat inefficient in that two 
bits of storage are required to represent each bit of information.) 

Discr etization of Continuous Attributes 

Discretization is typically appUed to attributes that are used in classification 
or association analysis. In general, the best discretization depends on the algo­
rithm being used, as well as the other attributes being considered. Typically, 
however, t he discretization of an attribute is considered in isolation. 

Transformation of a continuous attribute to a categorical attribute involves 
two subtasks: deciding how many categories to have and determining how to 
map the values of the continuous attribute to these categories. In the first step, 
after the values of the continuous attribute are sorted, t hey are then divided 
into n intervals by specifying n- 1 split points. In the second , rather trivial 
st.ep, all the values in one interval are mapped to the same categorical value. 
Therefore, the problem of discretization is one of deciding how many split 
points to choose and where to place them. T he result can be represented 
either as a set of intervals {(xa,x!] , (x1.x2J, .. . ,(xn-J ,Xn)}, where x 0 and Xn 

may be +oo or -oo, respectively, or equivalently, as a series of inequalities 
XQ < ."l: :5 X], . . . 1 Xn-1 <X< Xn. 

Unsupervised Discretization A basic distinction between discretization 
methods for classification is whether class information is used (supervised) or 
not (unsupervised). If class information is not used, then relatively simple 
approaches are common. For instance, the equ a l width approach divides the 
range of the attribute into a user-specified number of intervals each having the 
same width. Such an approach can be badly affected by outliers, and for that 
reason , an equal frequency (equa l depth) approach, which tries to put 
the same number of objects into each inter~al , is often preferred. As another 
example of unsupervised discretization, a clustering method, such as K-mea.ns 
(see Chapter 8), can also be used. Finally, visually inspecting the data can 
sometimes be an effect ive approach. 



60 Chap ter 2 Data 

Exam ple 2.12 (Discretizatio n Techniques) . This example demonstrates 
how these approaches work on an actual data set . Figure 2.13(a) shows data 
points belonging to four different groups, along with two outliers-the large 
dots on either end. The techniques of the previous paragraph were applied 
to discretize the x values of these data points into four categorical values. 
(Points in the data set have a random y component to make it easy to see 
how many points are in each group.) Visually inspecting t he data works quite • 
well , but is not automatic, and thus, we focus on the other three approaches. 
The split points produced by the techniques equal width, equal frequency, and 
K-rneans are shown in Figures 2.13(b), 2.13(c), and 2.13(d) , respectively. The 
split points are represented as dashed lines. If we measure the performance of 
a discretization technique by the extent to which different objects in different 
groups are assigned the same categorical value, t hen K-means performs best , 
followed by equal frequency, and finally, equal width. • 

Su p ervised D iscr etization T he discretization methods described above 
are usually better t han no discretization, but keeping the end purpose in mind 
and using additional information (class labels) often produces better results. 
T his should not be surprising, since an interval constructed with no knowledge 
of class labels often contains a mixture of class labels. A conceptually simple 
approach is to place the splits in a way t hat maximizes the purity of the 
intervals. In practice, however, such an approach requires potentially arbitrary 
decisions about the purity of an interval and the minimum size of an interval. 
To overcome such concerns, some statistically based approaches start with each 
attribute value as a separate interval and create larger intervals by merging 
adjacent intervals that are similar according to a statistical test. Entropy­
based approaches a re one of the most promising approaches to discretization, 
and a simple approach based on entropy will be presented. 

First, it is necessary to define entJ·opy. Let k be the number of different 
class labels , m; be the number of values in the i th interval of a partition, and 
m ;j be the number of values of class j in interval i. Then the entropy e; of the 
ith interval is given by the equation 

k 

e; = L Pij log2 Pii, 
1=1 

where Pii = ffiij/m ; is the probability (fraction of values) of class j in the i th 

interval. The total entropy, e, of t he partition is the weighted average of the 
individual interval entropies, i.e., 

• 

0 

• 

,·~: .. ,, 

::~ ·· . .. 
.''· . . .... . . ... : 
· .. 
'· 
•.. 
5 

· .. 
.. .. . -.. . ... . : 

.. 
... 

10 

. ·, .•. ... · . .. 
. '· : .... .. • 

. •·· 
·' 

15 

(a ) Original data. 

... .... , 
I ~~ 
" ' 4' 

" ... 
: - ... . :-.;~ 

"• 
I ., . . ... . ... , .. ....... 

··,.~ 
' \ 
~ 
r , 

··:· 

!! 
: I ..J . . .. , 

I I: .... 
0 I 

I • • ~ 

. -.. : .. 
I 0 

~" ::: 
' I 
• • I , 

I 

,, .. : . 
I • 
I 
I 

.... 
• I 

·'i'. ... 
\ .. 
I • . ' .. 
~· · \ .• 
I . 

1'; . 
: .... ,, .. 
I ' • 

, I 

I• '· .. 
1,.• • 

" . }' 

• • 

20 0 

• • 

2. 3 Data Preprocessing 61 

.. .. ..... 
I ~. .,,, 
... 
:'{ ., . 

·1, •• 

.. ::r·;. . .. . .,. ,. 
'l 't 

1·.· 
. i· · 
5 

I 

1 
~ 

•, , I 

1( 
-1. 
I ... ~ .-.. · ~ 

.. ~ . ~ 
·: • r 
~. 'I 

' .. , ,. . ., 
·' • I' 

10 

. '\ .. ~ 
1, ... 

'4 • • 

I ' 

' '· I, . .. 
'I •"' .. 
~i . 
:, .. 
' ' ·· '": 

, I 
~ ... 

... :• . , .. 
-:1 ., 

:~ ·.' 
15 

(b) Equal width discretizat ion. 

" I 
'• I 
'.• ' I 

J J , I ...• 
' 

• I . : ~ 
• I .J · .. : 

· .. • r: 
::~·· . : ... 

• f I I ' o ~ 

., ! .- .. : .. 
-~·. ·: .::"' :. ! . .. :' : ~ . :· 

' , ' 1 I ' 
I"' I , I 

": : ,, . ~ 
, 'I I ~ 

",• I I 
I I 

. .... \ 
~· ·. •' 

.. ... 
.• 

~·~ · ,:_..· . .. 

• 

20 

• 

0 5 10 15 20 0 5 10 15 20 

(c) Equal frequency discretization. (d) !<-means discretization. 

Figure 2.13. Different discretization techniques. 

11 

e = l: wiei , 
i=l 

where m is the number of values, w; = m;fm is the fraction of values in the 
i th interval , and n is the number of intervals. Intuitively, the entropy of an 
interval is a measure of the purity of an interval. If an interval contains only 
values of one class (is perfect ly pure), then the entropy is 0 and it contributes 



62 Chapter 2 Data 

nothing to the overall entropy. If the classes of values in an interval occur 
equally often (the interval is as impure as possible), then the entropy is a 
maximum. 

A simple approach for partitioning a continuous attribute starts by bisect­
ing the initial values so that the resulting two intervals give minimum entropy. 
This technique only needs to consider each value as a possible split point, be­
cause it is assumed that intervals contain ordered sets of values. The split ting 
process is then repeated with another interval, typically choosing the interval 
with the worst (highest) entropy, until a user-specified number of intervals is 
reached, or a stopping criterion is satisfied . 

Exam ple 2.13 (Discr et ization of Two Attributes) . This method was 
used to independently discretize both the x and y attributes of the two­
dimensional data shown in Figure 2.14. In the first discretization, shown in 
Figure 2.14(a), the x andy attributes were both split into three intervals. (The 
dashed lines indicate the split points.) In the second discretization, shown in 
Figure 2.14(b) , the x and y attributes were both split into five intervals. • 

This simple example illustrates two aspects of discretization. First, in two 
dimensions, the classes of points are well separated, but in one dimension, this 
is not so. In general, discretizing each attribute separately often guarantees 
suboptimal results. Second, five intervals work better than three, but six 
intervals do not improve the discretization much, at least in terms of entropy. 
(Entropy values and results for six intervals are not shown.) Consequently, 
it is desirable to have a stopping criterion that automatically finds the right 
number of partitions. 

Categorical A t t r ibutes wi t h Too Many Va lues 

Categorical attributes can sometimes have too many values. If the categorical 
attribute is an ordinal attribute, then techniques similar to those for con­
tinuous attributes can be used to reduce the number of categories. If the 
categorical attribute is nominal, however, then other approaches are needed. 
Consider a university that has a large number of departments. Consequently, 
a department name att ribute might have dozens of different values. In this 
situation, we could use our knowledge of the relationships among different 
departments to combine departments into larger groups, such as engineering, 
social sciences, or biological sciences. If domain knowledge does not serve as 
a useful guide or such an approach results in poor classification performance, 
then it is necessary to use a more empirical approach, such as grouping values 

2.3 Data Preprocessing 63 

(a) Three intervals (b) Five intervals 

Figure 2.14. Discretizing x andy attributes for four groups (classes) of points. 

together only if such a grouping results in improved classification accuracy or 
achieves some other data mining objective. 

2.3.7 Variable Transformation 

A variable transformation refers to a transformation that is applied to all 
the values of a variable. (We use the term variable instead of attribute to ad­
here to common usage, although we will also refer to attribute transformation 
on occasion.) In other words, for each object , t he transformation is applied to 
the value of the variable fo r that object. For example, if only the magnitude 
of a variable is important, then the values of the variable can be transformed 
by t aking the absolute value. In the following section, we discuss two impor­
tant types of variable transformations: simple functional transformations and 
normalization. 

Simple Functions 

For this type of variable transformation, a simple mathematical function is 
applied to each value individually. If x is a variable, then examples of such 
transformations include xk, log x, e"', ../X, 1/ x, sin x, or lxl. In statistics, vari­
able transformations, especially sqrt, log, and 1/x, are often used to transform 
data that does not have a Gaussian (normal) distribution into data that does. 
While this can be important, other reasons often take precedence in data min-



----~ 

~--- -·- ·-· - ==·==-=---==--=-===================~iiiiii~~=~~====.========== 

64 Chapter 2 Data 

ing. Suppose the variable of interest is the number of data bytes in a session, 
and the number of bytes ranges from 1 to 1 billion. This is a huge range, and 
it may be advantageous to compress it by using a log10 transformation . In 
this case, sessions that t ransferred 108 and 109 bytes would be more similar 
to each other than sessions that transferred 10 and 1000 bytes (9 - 8 = 1 
versus 3 - 1 = 2). For some applications, such as network intrusion detection, 
this may be what is desired, since the first two sessions most likely represent 
transfers of large files, while the latter two sessions could be two quite distinct 
types of sessions. 

Variable transformations should be applied with caution since they change 
the nature of the data. While this is what is desired, there can be problems 
if the nature of the transformation is not fully appreciated. For instance, the 
transformation 1/x reduces the magnitude of values that are 1 or larger, but 
increases the magnitude of values between 0 and 1. To illustrate, the values 
{1,2,3} go to {1,!,n, but the values {1,! . ~} go to {1,2,3}. Thus, for 
all sets of values, the transformation 1/x reverses the order. To help clarify 
the effect of a transformation, it is important to ask questions such as the 
following: Does the order need to be maintained? Does the transformation 
apply to all values, especially negative values and 0? What is the effect of 
the transformation on the values between 0 and 1? Exercise 17 on page 92 
explores other aspects of variable transformation. 

Normalization or Standardization 

Another common type of variable transformation is the s tandardization or 
normalization of a variable. (In the data mining community the terms are 
often used interchangeably. In statistics, however, the term normalization can 
be confused with the transformations used for making a variable normal, i.e., 
Gaussian. ) The goal of standardization or normalization is to make an en­
tire set of values have a particular property. A traditional example is that 
of "standardizing a variable" in statistics. If x is the mean (average) of the 
attribute values and s:r is their standard deviation, then t he transformation 
x' = (x - x)/ Sx creates a new variable that has a mean of 0 and a standard 
deviation of 1. lf different variables are to be combined in some way, then 
such a transformation is often necessary to avoid having a variable with large 
values dominate the results of the calculation. To illustrate, consider compar­
ing people based on two variables: age and income. For any two people, the 
difference in income will likely be much higher in absolute terms (hundreds or 
thousands of dollars) than the difference in age (less than 150). If the differ­
ences in the range of values of age and income are not taken into account, then 

2.4 Measures of Similarity and Dissimilarity 65 

the comparison between people will be dominated by differences in income. In 
particular, if the similarity or dissimilarity of two people is calculated using the 
similarity or dissimilarity measures defined later in this chapter, then in many 
cases, such as that of Euclidean distance, the income values will dominate the 
calculation . 

The mean and standard deviation are strongly affected by outliers, so the 
above transformation is often modified. First, the mean is replaced by the 
median , i.e., the middle value. Second , the st andard deviation is replaced by 
the absolute standard d eviation. Specifically, if x is a variable, then the 
absolute standard deviation of x is given by a A = 2..::~ 1 lx; - I-l l. where x; is 
the i 1h value of the variable, m is the number of objects, and 1-l is either the 
mean or median. Other approaches for computing estimates of the location 
(center) and spread of a set of values in the presence of outliers are described 
in Sections 3.2.3 and 3.2.4, respectively. These measures can also be used to 
define a standardization transformation. 

2.4 Measures of Similarity and Dissimilarity 

Similarity and dissimilarity are important because they are used by a number 
of data mining techniques, such as clustering, nearest neighbor classification, 
and anomaly detection. In many cases, the initial data set is not needed once 
these similarities or dissimilar ities have been computed. Such approaches can 
be viewed as transforming the data to a similarity (dissimilarity) space and 
then performing the analysis. 

We begin with a discussion of the basics: high-level definitions of similarity 
and dissimilarity, and a discussion of how they are related. For convenience, 
the term proximity is used to refer to ei ther similarity or dissimilarity. Since 
the proximity between two objects is a function of the proximity between the 
corresponding attributes of tbe t wo objects, we first describe how to measure 
the proximity between objects having only one simple attribute, and t hen 
consider proximity measures for objects with multiple attributes. This in­
cludes measures such as correlation and Euclidean distance, which are useful 
for dense data such as time series or two-dimensional points, as well as the 
Jaccard and cosine similar ity measures, which a re useful for sparse data like 
documents. Next, we consider several important issues concerning proximity 
measures. The section concludes with a brief discussion of how to select the 
right proximity measure. 



66 Ch a p ter 2 Data 

2.4.1 Basics 

Defini t ions 

Informally, the si mila ri ty between two objects is a numerical measure of the 
degree to which the two objects are alike. Consequently, similarities are higher 
for pairs of objects that are more alike. Similarities are usually non-negative 
and are often between 0 (no similarity) and 1 (complete similarity). 

The dissimilar it y between two objects is a numerical measure of the de­
gree to which t he two objects are different. Dissimilarities are lower for more 
similar pairs of objects. Frequently, the term dist ance is used as a synonym 
for dissimilarity, although, as we shall see, distance is often used to refer to 
a special class of dissimilarities. Dissimilarities sometimes fall in the interval 
[0, I], but it is also common for them to range from 0 to oo. 

Transfor mations 

Transformations are often applied to convert a similarity to a dissimilarity, 
or vice versa, or to transform a proximity measure to fall within a particular 
range, such as [0,1]. For instance, we may have similarities that range from 1 
to 10, but the particular algorithm or software package that we want to use 
may be designed to only work with dissimilarities, or it may only work with 
similarities in the interval [0,1]. We discuss these issues here because we will 
employ such transformations later in our discussion of proximity. In addi­
tion, these issues are relatively independent of the details of specific proximity 
measures. 

Frequently, proximit.y measures, especially similarities, are defined or trans­
formed to have values in the interval [0,1] . Informally, the motivation for this 
is to use a scale in which a proxim ity value indicates the fraction of similarity 
(or dissimilarity) between two objects. Such a transformation is often rela­
tively straightforward. For example, if the similarities between objects range 
from 1 (not at all similar) to 10 (completely similar), we can make them fall 
wit hin the range [0, I] by using the transformations'= (s - 1)/9, where sand 
s' are the original and new similarity values, respectively. In the more general 
case, the transformation of similarities to the interval [0, 1] is given by the 
expressions' = (s - min_s)/(max_s - min_s), where max_s and min_s are the 
maximum and minimum similarity values, respectively. Likewise, dissimilarity 
measures with a finite range can be mapped to the interval [0,1] by using the 
formula d' = (d- min_d)/(max_d- min_d). 

There can be various complications in mapping proximity measures to the 
interval [0, I ], however. If, for example, the proximity measure originally takes 

2.4 Measures of Similarity and Dissimilarity 67 

values in the interval [O,oo], then a non-linear transformation is needed and 
values will not have the same relationship to one another on the new scale. 
Consider the transformation d' = d/(1 + d) for a dissimilarity measure that 
ranges from 0 to oo. The dissimilarities 0, 0.5, 2, 10, 100, and 1000 will be 
transformed into the new dissimilarities 0, 0.33, 0.67, 0.90, 0.99, and 0.999, 
respectively. Larger values on the original dissimilarity scale are compressed 
into the range of values near 1, but whether or not this is desirable depends on 
the application. Another complication is that the meaning of the proximity 
measure may be changed . For example, correlation, which is discussed later, 
is a measure of similarity that takes values in the interval [-1,1]. Mapping 
these values to the interval [0, 1] by taking the absolute value loses information 
about the sign, which can be important in some applications. See Exercise 22 
on page 94. 

Transforming similarities to dissimilarities and vice versa is also relatively 
straightforward, alt hough we again face the issues of preserving meaning and 
changing a linear scale into a non- linear scale. If the s imi larity (or dissimilar­
ity) falls in the interval [0 ,1], then the dissimilarity can be defined as d = 1-s 
(s = 1 - d). Another simple approach is to define similarity as t he nega­
tive of the dissimilarity (or vice versa). To illustrate, the dissimilarities 0, 1, 
10, and 100 can be transformed into the similarities 0, -1, - 10, and -100, 
respectively. 

The similarities resulting from the negation transformation are not re­
stricted to the range [0, 1], but if that is desired, then transformations such as 
s = <t±r, s = e- d, or s = 1- ,!~t;;;;~_d can be used. For the transformation 
s = d!J , the dissimilarities 0, 1, 10, 100 are transformed into 1, 0.5, 0.09, 0.01, 
respectively. For s = e-d, they become 1.00, 0.37, 0.00, 0.00, respectively, 
while for s = 1 - ma~~;;'i;;;f,_d they become 1.00, 0.99, 0.00, 0.00, respectively. 
In this discussion, we have focused on converting dissimilarities to similarities. 
Conversion in t he opposite direction is considered in Exercise 23 on page 94. 

In general, any monotonic decreasing function can be used to convert dis­
similari ties to similarities, or vice versa. Of course, other factors also must 
be considered when transforming similarities to dissimilarit ies, or vice versa, 
or when transforming the values of a proximity measure to a new scale. We 
have mentioned issues related to preserving meaning, distortion of scale, and 
requirements of data analysis tools, but this list is certainly not exhaustive. 

2.4.2 Similarity and Dissimila rity between S imple At tributes 

The proximity of objects with a number of attributes is typically defined by 
combining t he proximities of individual attributes, and t hus, we firs t discuss 



68 Chapter 2 Data 

proximity between objects having a single attribute. Consider objects de­
scribed by one nominal attribute. What would it mean for two such objects 
to be similar? Since nominal attributes only convey information about the 
distinctness of objects, all we can say is that two objects either have the same 
value or t hey do not. Hence, in this case similarity is traditionally defined as 1 
if attribute values match, and as 0 otherwise. A dissimilarity would be defined 
in the opposite way: 0 if the attribute values match, and 1 if they do not. 

For objects with a single ordinal attribute, the situation is more compli­
cated because information about order should be taken into account. Consider 
an attribute that measures the quality of a product, e.g., a candy bar, on the 
scale {poor, fair, OK, good, wonderful} . It would seem reasonable that a prod­
uct, P1, which is rated wonderful, would be closer to a product P2, which is 
rated good, than it would be to a product P3, which is rated OK. To make this 
observation quantitative, the values of the ordinal attribute are often mapped 
to successive integers, beginning at 0 or 1, e.g., {poor=O, fair=1, OK =2, 
good=3, wonderful=4}. Then, d(P1,P2) = 3-2 = 1 or, if we want the dis­
similarity to fall between 0 and 1, d(Pl, P2) = 3~2 = 0.25. A similarity for 
ordinal attributes can then be defined as s = 1 -d. 

T his definition of similarity (dissimilarity) for an ordinal attribute should 
make the reader a bit uneasy since this assumes equal intervals, and this is not 
so. Otherwise, we would have an interval or ratio attribute. Is the difference 
between the values fair and good really the same as that between the values 
OK and wonderful? Probably not , but in practice, our options are limited, 
and in the absence of more information, this is the standard approach for 
defining proximity between ordinal attributes. 

For interval or ratio attributes, the natural measure of dissimilarity be­
tween two objects is the absolu te difference of their values. For example, we 
might compare our current weight and our weight a year ago by saying "I am 
ten pounds heavier." ln cases such as these, the dissimilarities typically range 
from 0 to co, rather than from 0 to 1. T he similarity of interval or ratio at­
tributes is typically expressed by transforming a similarity into a dissimilarity, 
as previously described. 

Table 2.7 summarizes this discussion. In this table, x andy are two objects 
that have one att ribute of the indicated type. Also, d(x,y) and s(x,y) are t he 
dissimilarity and similarity between x and y, respectively. Other approaches 
are possible; t hese are the most common ones. 

The following two sections consider more complicated measures of prox­
imi ty between objects that involve mul tiple attributes: (1) dissimilarities be­
tween data objects and {2) similarities between data objects. This division 

2.4 Measures of Similarity and Dissimilarity 69 

Table 2.7. Similarity and dissimilarity for simple attributes 

Attribut e Dissimilar ity Similarity 
Type 

Nominal d = { ~ if X- y 
s = { ~ ifx = y 

if X f' y if X f' y 
d- !x - y!/(n- 1) 

Ordinal (values mapped to integers 0 to n-1, s=l-d 
where n is the number of values) 

Interval or Ratio d = !x- Y! s=-d,s= i+d's=e-a, 
s=l- d-min.d 

max d-min d 

allows us to more naturally display the underlying motivations for employing 
various proximity measures. We emphasize, however, that similarities can be 
transformed into dissimilarities and vice versa using the approaches described 
earlier. 

2.4.3 Dissimilarities between Data Objects 

In t his section, we discuss various kinds of dissimilarities. We begin with a 
discussion of distances , which are dissimilarities with certain properties, and 
then provide examples of more general kinds of dissimilarities. 

Distances 

We first present some examples, and t hen offer a more formal description of 
distances in terms of the properties common to all distances. The Euclidean 
dis tance, d, between two points, x and y, in one-, two-, three-, or higher­
dimensional space, is given by the following familiar fo rmula: 

n 

d(x, y) = ,L)xk - Yk)2, {2.1 ) 
k=l 

where n is the number of dimensions and Xk and Yk are, respectively, the kth 

attributes (components) of x and y . We illustrate this formula with Figure 
2.15 and Tables 2.8 and 2.9, which show a se~ of points, the x andy coordinates 
of t hese points, and the distance matrix containing the pairwise distances 
of these points. 



70 C h apter 2 Data 

T he Euclidean distance measure given in Equation 2.1 is generalized by 
t he Minkowski distance metric shown in Equation 2.2, 

(2.2) 

where r is a parameter. The following are the three most common examples 
of Minkowski distances. 

• r = l. City block (Ma nhatt an, taxicab, L1 norm) distance. A common 
example is the Hamming distan ce, which is the number of bits that 
are different between two objects that have only binary attributes, i.e., 
between two binary vectors. 

• r = 2. Euclidean distance (L2 norm). 

• r = oo. Supremum (Lma:r or L00 norm) distance. This is the maximum 
difference between any attribu te of the objects . More formally, the L00 

dist ance is defined by Equation 2.3 

( 

n ) 1/r 

d(x,y) = r~~ L lxk - Ykir 
k=l 

(2.3) 

The r parameter should not be confused with the number of dimensions (at­
tribu tes) n. The Euclidean, Manhattan, and supremum distances are defined 
for all values of n: 1, 2, 3, .. . , and specify different ways of combining the 
differences in each dimension (a.tt ribute) into an overall distance. 

Tables 2.10 and 2.11, respectively, give the proximity matrices for the L1 

and Loo distances using data from Table 2.8. Notice that all these distance 
matrices are symmetric; i.e., the ijlh entry is the same as the jith entry. In 
Table 2.9, for instance, the fourth row of the first column and t he fourth 
column of the first row both contain the value 5.1. 

Distances, such as the Euclidean distance, have some well-known proper­
ties. If d(x, y) is the distance between two points, x and y, then the following 
properties hold. 

1. Posit ivity 

(a) d(x,x) ~ 0 for all x andy, 

(b) d(x,y) = 0 only if x = y. 

2.4 Measures of Similarity a nd Dissimilarity 71 

y 

3 

2 p1 

p2 

2 

p3 

• 

3 
X 

4 

p4 

• 

5 

Figure 2.1 5. Four two-dimensional points. 

6 

Table 2.8. x andy coordinates of four points. Table 2.9. Euclidean distance matrix for Table 2.8. 

point x coordinate y coordinate pl p2 p3 p4 
p l 0 2 pl 0.0 2.8 3.2 5.1 
p2 2 0 p2 2.8 0.0 1.4 3.2 
p3 3 1 p3 3.2 1.4 0.0 2.0 
p4 5 1 p4 5.1 3.2 2.0 0.0 

Table 2.10. L1 distance matrix for Table 2.8. Table 2.11. L00 distance matrix for Table 2.8. 

L1 pl p2 p3 p4 Loo pl p2 p3 p4 
pl 0.0 4.0 4.0 6.0 pl 0.0 2.0 3.0 5.0 
p2 4.0 0.0 2.0 4.0 p2 2.0 0.0 1.0 3.0 
p3 4.0 2.0 0.0 2.0 p3 3.0 1.0 0.0 2.0 
p4 6.0 4.0 2.0 00 p4 5.0 3.0 2.0 0.0 

2. Symmetr y 
d(x,y) = d(y,x) for all x andy. 

3. Triangle Inequal ity 
d(x, z) ::; d{x, y) + d(y , z) for all points x, y, and z. 

Measures that satisfy all three properties are known as metr ics . Some 
people only use the term distance for dissimilarity measures that satisfy these 
proper ties, bu t that practice is often violated . The three properties described 
here are useful, as well as mathematically pleasing. Also, if the triangle in­
equality holds, then this property can be used to increase the efficiency of tech­
niques (including clustering) that depend on distances possessing this property. 
(See Exercise 25.) Nonetheless, many dissimilarities do not satisfy one or more 
of the metric properties. We give two examples of such measures. 



72 C hapter 2 Da.ta 

Example 2.14 (Non- metr ic D issimilarities: Set Difl"eren ces) . This ex­
ample is based on the notion or the difference of two sets, as defined in set 
theory. Given two sets A and B, A- B is the set of elements of A that are 
not in B. For example, if A = {1,2,3,4} and B = {2,3,4}, then A - B = {l} 
and B - A = 0, the ernpty set. We can define the dis tance d between two 
sets A and n as d(A, B) = size( A - B), where size is a function returning 
the number of elements in a set. T his distance measure, which is an integer 
value greater than or equal to 0, does not satisfy the second part of the pos­
itivity property, the symmetry property, or the triangle inequality. However, 
these properties can be made to hold if the dissimilarity measure is modified 
as follows: d(A, B) = size( A- B) + s·ize(B - A). See Exercise 21 on page 
94. • 

Examp le 2. 1 5 (Non-metr ic D issim ilarities: Time). This example gives 
a more everyday example of a dissimilarity measure that is not a metric, but 
that is still useful. Define a measure of the distance between times of the day 
as follows: 

{ 
t2 - tl if tl :s t2 } 

d(tl , t2) = 24 + (t2 - tl) if tl ~ t2 . (2.4) 

To illustrate, d(1PM, 2PM) = 1 hour, while d(2PM, lPM) = 23 hours. 
Such a definition would make sense, for example, when answering the question: 
"If an event occurs at 1PM every day, and it is now 2PM, how long do I have 
to wait for that event to occur again?" • 

2.4.4 Sim ila r ities between D ata O b j ects 

For similarities, the triangle inequality (or the analogous property) typically 
does not hold, but symmetry and positivity typically do. To be explicit , if 
s(x, y) is the s imilarity between points x and y , then t he typical properties of 
similarities are the following: 

1. s(x,y) = 1 only if x = y. (0 :S s :S 1) 

2. s(x,y) = s(y,x) for all x and y. (Symmetry) 

There is no general analog of the triangle inequality for similarity mea­
sures. It is sometimes possible, however, to show that a similarity measure 
can easily be converted to a metric distance. The cosine and Jaccard similarity 
measures, which are discussed shortly, are two examples. Also, for specific sim­
ilarity measures, it is possible to derive mathematical bounds on the similarity 
between two objects that are similar in spirit to the triangle inequality. 

2 .4 Measures of Sim ilarity a nd Dissimilarity 73 

Example 2 .16 (A Non-sy m metric Simila r ity Measure). Consider an 
experiment in which people are asked to classify a small set of characters as 
they flash on a screen. The confusion matr ix for this experiment records how 
often each character is classified as itself, and how often each is classified as 
another character. For instance, suppose that "0" appeared 200 times and was 
classified as a "0" 160 times, but as an "o" 40 t imes. Likewise, suppose that 
'o ' appeared 200 t imes and was classified as an "o" 170 times, but as "0" only 
30 times. If we take these counts as a measure of the similarity between two 
characters, then we have a similarity measure, but one that is not symmetric. 
In such sit uations, the similarity measure is often made symmetric by setting 
s'(x, y) = s'(y, x) = (s(x, y) + s(y , x))/2, where s' indicates the new similarity 
measure. • 

2.4.5 Examples of P roximity Measures 

This section provides specific examples of some similarity and dissimilarity 
measures. 

Similarity M easures for B inary Data 

Similarity measures between objects that contain only binary attributes are 
called s imilarity coefficien t s , and typically have values between 0 and 1. A 
value of 1 indicates that the two objects are completely similar, while a value 
of 0 indicates that the objects are not at all similar. There are many rationales 
for why one coefficient is better than another in specific instances. 

Let x and y be two objects that consist of n binary attributes. The com­
parison of two such objects, i.e. , two binary vectors, leads to the following four 
quantit ies (frequencies): 

f oo = the number of attributes where x is 0 and y is 0 
J01 = the number of attributes where x is 0 and y is 1 
JJO = the number of attributes where x is 1 and y is 0 
f 11 = the number of attributes where x is 1 and y is 1 

Sim p le Matching Coefficient One commonly used similarity coefficient is 
the s imple matchin g coefficient (SMC) , which is defined as 

number of matching attribute values !11 + foo (2.
5
) 

S M C = = -,----:..c..;;--=:::"'--:-
number of attributes /o1 + !10 + /u + foo 



74 Chapter 2 Data 

This measure counts both presences and absences equally. Consequently, the 
SMC could be used to find students who had answered questions similarly on 
a test that consisted only of true/false questions. 

J accard Coefficient Suppose that x andy are data objects that represent 
two rows (two transactions) of a transaction matrix (see Section 2.1.2) . If each 
asymmetric binary attribute corresponds to an item in a store, then a 1 indi­
cates that t he item was purchased, while a 0 indicates that the product was not 
purchased. Since the number of products not purchased by any customer far 
outnumbers the number of products that were purchased, a similarity measure 
such as SMC would say that all transactions are very similar. As a result, the 
Jaccard coefficient is frequently used to handle objects consisting of asymmet­
ric binary attributes. The Jaccard coefficient, which is often symbolized by 
J, is given by the following equation: 

J = number of matching presences _ f 11 

number of attributes not involved in 00 matches - fo1 + f 10 + f 11 • 
(2.6) 

Example 2 .17 (The SMC and J accard Similarity Coefficients) . To 
illustrate the difference between these two similarity measures, we calculate 
SMC and J for the following two binary vectors. 

X= (J,0,0,0,0,0,0,0,0,0) 
y = (0,0,0,0,0,0,1,0,0, 1) 

fm = 2 

ho = 1 

foo = 7 

fn = 0 

the number of attri butes where x wa.s 0 a.nd y was 1 
the number of attributes where x was 1 and y was 0 

the number of attributes where x was 0 a.nd y was 0 

the number of attributes where x was 1 and y was 1 

SMC = ln+!oo - ___9±Z_ - 0 7 
fo>+l>o+!n+foo- 2+ 1+0+7 - · 

J = '" __ o _ _ o 
lot+ J,o+ I n - 2+1+0 -

Cosine S imilarity 

• 

Documents are often represented as vectors, where each attribute represents 
the frequency with which a particular term (word) occurs in the document. It 
is more complicated than this, of course, since certain common words are ig-

2.4 Measures of Similarity and Dissimilarity 75 

nored and various processing techniques are used to account for different fo rms 
of the same word, differing document lengths , and differen t word frequencies. 

Even though documents have thousands or tens of thousands of attributes 
(terms), each document is sparse since it has relatively few non-zero attributes. 
(The normalizations used for documents do not create a non-zero entry where 
there was a zero entry; i.e., they preserve sparsity.) Thus, as with transaction 
data, similarity should not depend on the number of shared 0 values since 
any two documents are likely to "not contain" many of the same words, and 
t herefore, if Q-0 matches a re counted, most documents will be highly similar to 
most other documents. Therefore, a similarity measure for documents needs 
to ignores 0-0 matches like the Jaccard measure, but also must be able to 
handle non-binary vectors. The cosine similarity, defined next, is one of the 
most common measure of document similarity. If x and y are two document 
vectors, then 

x·y 
cos(x,y) = llxllllyiJ' (2.7) 

where · indicates the vector dot product, x · y = L:;~= l XkYk, and ll x ll is the 

length of vector x , llxll = /L:::~=l x~ = ,;x-:x. 
Example 2 .18 (Cosine S imilari ty o f Two Document Vectors) . This 
example calculates the cosine similarity for the following two data objects, 
which might. represent document vectors: 

X= (3,2,0,5, 0,0,0,2,0, 0) 
y = (1,0,0,0,0,0,0, 1,0,2) 

X·y = 3• 1 +2•0+0•0+5•0+0•0+0•0+0•0+2• ] +0•0+0•2 = 5 

IJxll = J3 • 3 + 2 • 2 + 0 • 0 + 5 • 5 + 0 • 0 + 0 • 0 + 0 • 0 + 2 • 2 + 0 • 0 + 0 • 0 = 6.48 
IJyiJ = J1 • 1 + 0 • 0 + 0 * 0 + 0 • 0 + 0 • 0 + 0 • 0 + 0 • 0 + 1 * 1 + 0 * 0 + Z. 2 = 2.24 
cos(x,y) = 0.31 

• 
As indicated by Figure 2.16, cosine similarity really is a measure of the 

(cosine of the) angle between x andy. Thus, if t he cosine similarity is 1, the 
angle between x and y is 0°, and x and y are the same except for magnitude 
(length). If the cosine similarity is 0, then the angle between x andy is 90°, 
and they do not share any terms (words). 



76 Chapter 2 Data 

A y 

Figure 2.16. Geometric illustration of the cosine measure. 

Equation 2. 7 can be written as Equation 2.8. 

X Y 1 I 
cos(x , y) = W · M = x · Y , (2.8) 

where X
1 = x/Jixll and y 1 = y/JIYII· Dividing x andy by their lengths normal­

izes them to have a length of 1. This means that cosine similarity does not take 
the magnitude of the two data objects into account when computing similarity. 
(Euclidean distance might be a better choice when magnitude is important.) 
For vectors with a length of 1, the cosine measure can be calculated by taking 
a simple dot product. Consequently, when many cosine similarities between 
objects are being computed, normalizing the objects to have unit length can 
reduce t he time required. 

Extended J accard Coefficient (Tanimoto Coefficient) 

The extended Jaccard coefficient can be used for document data and that re­
duces to the Jaccard coefficient in the case of binary attributes. The extended 
Jaccard coefficient is also known as the Tanimoto coefficient. (However , there 
is another coefficient that is also known as the Tanimoto coefficient. ) This co­
efficient, which we shall represent as EJ , is defined by the following equation: 

Correlation 

X·y 
EJ(x,y) = Jlxii 2 +11YJI 2 -x·y · (2.9) 

The correlation between two data objects that have binary or continuous vari­
ables is a measure of the linear relationship between the attributes of the 
objects. (The calculation of correlation between attributes, which is more 
common, can be defined similarly.) More precisely, Pearson's correlation 

2.4 Measures of Similarity and Dissimilarity 77 

coefficient between two data objects, x and y, is defined by the following 
equation: 

covariance( x , y) Sxy 

corr(x,y) = d d d · · ( ) d d d · · ( ) = -, stan ar _ ev1at1on x * stan ar _ ev1at10n y S:z: sy 
(2.10) 

where we are using the following standard statistical notation and definitions: 

1 n 

covariance(x,y) = Sxy = - - '"'(xk- x)(yk- y) 
n -1 L.., 

standard_deviation (x) 

standard_deviation (y) 

k=l 

I n 

- ""'(Yk - Y)2 n -lL.., 
k=l 

1 n ;:; L:xk is the mean of x 
k=l 

1 n - L Yk is the mean of y 
n 

k=l 

(2.11) 

Example 2.19 (Perfect Corr e lation) . Correlation is always in the range 
- 1 to 1. A correlation of 1 ( -1) means that x and y have a perfect positive 
(negative) linear relationship; that is, Xk = ayk + b, where a and b are con­
stants. The following two sets of values for x and y indicate cases where the 
correlation is -1 and + 1, respectively. In the fi rst case, the means of x and y 
were chosen to be 0, for simplicity. 

X= (-3, 6, 0, 3, -6) 
y=( 1, -2, 0,-1, 2) 

X = (3,6,0,3,6) 
y = (1,2,0, 1,2) 

• 



78 C hapter 2 Data 

- 1.00 -0.90 -0.80 -0.70 -0.60 0.50 -0.40 

~~~~~~ 
-0.30 -0.20 -0.10 0.00 0.10 0.20 0.30

0

~~ o"o~~
0.40 0.50 0.60 0.70 0.80 0.90 1.00

Figure 2.17. Sca"er plols illuslrating correlalions from -1 lo 1.

Example 2.20 (Non-linear R e la tio nships). If the correlation is 0, then
there is no linear relationship between the attributes of the two data objects.
However, non-linear relationships may still exist. In the following example,
Xk = y~, but their correlation is 0.

x= (-3,-2, - 1, 0, 1, 2, 3)
y = (9, 4, l' 0, 1, 4, 9)

•
Example 2.21 (Visua lizing Cor rela tion). 1t is also easy to judge the cor­
relation between two data objects x and y by plotting pairs of corresponding
attribute values. Figure 2.17 shows a number of these plots when x and y
have 30 attributes and the values of t hese attributes are randomly generated
(with a normal distribution) so that the correlation ofx andy ranges from - 1
to 1. Each circle in a plot represents one of the 30 attributes; its x coordinate
is the value of one of the attributes for x, while its y coordinate is the value
of the same attribute for y. •

If we transform x and y by subtracting off their means and then normaliz­
ing them so that their lengths are 1, then their correlation can be calculated by

2.4 Measures of Similarity and Dissimilarity 79

taking the dot product. Notice that this is not the same as the standardization
used in other contexts, where we make the transformations, x~ = (xk - x)/ s:r.
and Yk = (Yk - Y)/ Sy·

Bregman D ive r gen ce• This section provides a brief descri ption of Breg­
man divergences, which are a family of proximity functions that share some
common properties. As a result, it is possible to construct general data min­
ing algorithms, such as clustering algorithms, that work with any Bregman
divergence. A concrete example is the K-means clustering algori thm (Section
8.2). Note that this section requires knowledge of vector calculus.

Bregman divergences are loss or distortion functions . To understand the
idea of a !oss function, consider the following. Let x and y be two points, where
y is regarded as the original point and x is some distortion or approximation
of it. For example, x may be a point that was generated, fo r example, by
adding random noise to y . The goal is to measure the resu lting distortion or
loss that results if y is approximated by x. Of course, the more similar x and
y are, the smaller the loss or distortion . Thus, Bregman d ivergences can be
used as dissimilarity functions.

More fo rmally, we have the following defin ition.

Defini t ion 2.6 (Bregman Divergence). Given a strictly convex function
¢ (with a few modest restrictions that are generally satisfied), the Bregman
divergence (Joss function) D(x,y) generated by that function is given by the
following equation:

D (x,y) = ¢(x) - ¢(y)- ('i7¢(y) , (x - y)) (2.12)

where 'i7¢(y) is the gradient of¢ evaluated at y, x - y , is the vector difference
between x andy, and (\7</>(y),(x- y)) is the inner product between \l<f>(x)
and (x- y). For points in Euclidean space, the inner product is just the dot
product.

D(x,y) can be written as D(x,y) = ¢(x)- L(x), where L(x) = ¢(y) +
(\7</>(y), {x- y)) and represents the equation of a plane that is tangent to the
function </> at y. Using calculus terminology, L(x) is the linearizat ion of¢
around the point y and the Bregman divergence is just the difference between
a funct ion and a linear approximation to that function. Different Bregman
divergences are obtained by using different choices for ¢.

Example 2.22. We provide a concrete exam ple using squared Euclidean dis­
tance, but restrict ourselves to one dimension to simpli fy the mathematics. Let

80 Chapter 2 Data

x and y be real numbers and ¢(t) be the real valued function, ¢(t) = t2 In
that case, the gradient reduces to the derivative and the dot product reduces
to multiplication. Specifically, Equation 2.12 becomes Equation 2.13.

D(x, y) = x 2
- y2 - 2y(x - y) = (x- y)2 (2.13)

The graph for this example, with y = 1, is shown in Figure 2.18. The
Bregman divergence is shown for two values of x: x = 2 and x = 3. •

Figure 2.1 B. Illustration of Bregman divergence.

2.4.6 Issues in Proximity Calculation

This section discusses several important issues related to proximi ty measures:
(1) how to handle the case in whkh attributes have different scales and / or are
correlated, (2) how to calculate proximity between objects that are composed
of different types of attributes, e.g., quantitative and qualitative, (3) and how
to handle proximity calculation when attributes have different weights; i.e.,
when not a ll attributes contribute equally to the proximity of objects.

2.4 Measures of Similarity and Dissimilarity 81

Standardization and Corre lation for D istance Measures

An important issue with distance measures is how to handle the si t uation
when attributes do not have the same range of values. (This situation is
often described by saying that "the variables have different scales.") Earlier,
Euclidean distance was used to measure the distance between people based on
two attributes: age and income. Unless these two attributes are standardized,
the distance between two people will be dominated by income.

A related issue is how to compute distance when there is correlation be­
tween some of the attri butes, perhaps in addition to difrerences in the ranges of
values. A generalization of Euclidean distance, the Mahalanobis distance ,
is useful when att ributes are correlated, have different ranges of values (dif­
ferent variances), and the distribution of the data is approximately Gaussian
(normal). Specifically, the Mahalanobis distance between two objects (vectors)
x and y is defined as

mahalanobis(x,y) = (x- y):E- 1(x- y)T, {2.14)

where :E- 1 is the inverse of the covariance matrix of the data. Note that the
covariance matrix L: is the matrix whose ij'h entry is the covariance of the ith
and j'h attributes as defined by Equation 2.11.

Example 2.23. In Figure 2.19, there are 1000 points, whose x and y at­
tributes have a correlation of 0.6. The distance between t he two large points
at the opposite ends of the long axis of the ellipse is 14.7 in terms of Euclidean
distance, but only 6 with respect to Mahalanobis distance. In practice, com­
put ing the Mahalanobis distance is expensive, but can be worthwhile for data
whose attributes are correlated. If the attributes are relatively uncorrelated,
but have different ranges, then standardizing t he variables is sufficient.

•

Combining Similarities for H eterogeneous Attributes

The previous definitions of similarity were based on approaches that assumed
all the attributes were of the same type. A general approach is needed when the
attributes are of different types. One straightforward approach is to compute
the similarity between each attribute separately using Table 2.7, and then
combine these similarities using a method tliat results in a similarity between
0 and l. Typically, the overall similarity is defined as the average of all the
individual attribute similarities.

82 Chapter 2 Data

5 . ··· ···

4

3 · ' .. . ' ... : -:· ... · ... : ... : ." ,. ;· .·: · ' ::· - ~

2

1 · ·· · ··- -:·-·· · ··

>- 0 -;.

-1

-2 ~ . '.
. ~ . ·.. : . . :

-3 ~ .. . :· : : ;: .. ,:--:
.: :

-4 :. : ••..•... : . . .
··· ··· ····· -·· · ···················

-~~----~6-----~~----~2~--~0----~2~---i-----6~--~8

Figure 2.19. Set of two-dimensional points. The Mahalanobis distance between the two points repre­
sented by large dots is 6; their Euclidean distance is 14.7.

Unfortunately, this approach does not work well if some of the attributes
are asymmetric attributes. For example, if all the attributes are asymmetric
binary attributes, then the similarity measure suggested previously reduces to
the simple matching coefficient, a measure that is not appropriate for asym­
metric binary attri butes. T he easiest way to fix this problem is to omit asym­
metric attributes from the similarity calculation when their values are 0 for
both of the objects whose similarity is being computed. A similar approach
also works well for handling missing values.

In summary, Algorithm 2.1 is effective fo r computing an overall similar­
ity between two objects, x and y, with different types of attributes. This
procedure can be easily modified to work with dissimilarities.

Using W eights

In much of the previous discussion, a ll attributes were treated equally when
computing proximity. This is not desirable when some attributes are more im­
portant to the definjtjon of proximity than others. To address these situations,

2.4 Measures of Similarity and Dissimilarity 83

Algorithm 2.1 Similarities of heterogeneous objects.
J: For the k 'h attribute, compute a similarity, sk(x , y), in the range 10, 1].
2: Define an indicator variable, ch, for the k'h attribute as follows:

1
0 if the k'h attribute is an asymmetric attribute and

6
= both objects have a value of 0, or if one of the objects

k has a missing value for the k'h attribute
otherwise

3: Compute the overall similarity between the two objects using the following for­
mula:

. .1 . () I:~- 1 6ksk(x,y) s1m1 anty x, y = "" 6 L. k=l k
(2.15)

the formulas for proximity can be modified by weighting the contribution of
each attribute.

If the weights wk sum to 1, then (2.15) becomes

. . 1 .t()- L~=1 wkOkSk (x,y)
SliD! an y x, y - '\' n

0 Lk=1 k
(2.16)

The definition of the Min.kowski distance can also be modified as follows:

(2. 17)

2.4.7 Selecting t he Ri ght Proximity Measure

The following are a few general observations that may be helpfu l. F irst, the
type of proximity measure should fit the type of data. For many types of dense,
continuous data, metric distance measures such as Euclidean distance are of­
ten used. Proximity between continuous attributes is most often expressed
in terms of differences, and distance measures provide a well-defined way of
combining these differences into an overall proximity measure. Although at­
tributes can have different scales and be of differing importance, these issues
can often be dealt with as aescribed earlier .

For sparse data, which often consists o~ asymmetric attributes, we typi­
cally employ similarity measures that ignore 0- 0 matches. Conceptually, this
reflects the fact that, for a pair of complex objects, similarity depends on the
number of characteristics they both share, rather than the number of charac­
teristics they both lack. More specifically, for sparse, asymmetric data, most

84 C hapter 2 Data

objects have only a few of the characteristics described by the attributes, and
thus, are highly similar in terms of the characteristics they do not have. The
cosine, Jaccard , and extended Jaccard measures are appropriate for such data.

There are other characteristics of data vectors that may need to be consid­
ered. Suppose, for example, that we are interested in comparing t ime series.
If the magnitude of the time series is important (for example, each time series
represent total sales of the same organization for a different year), then we
could use Euclidean distance. If the time series represent different quantities
(for example, blood pressure and oxygen consumption), then we usually want
to determine if the time series have the same shape, not the same magnitude.
Correlation, which uses a built-in normalization that accounts for differences
in magnitude and level, would be more appropriate.

ln some cases, transformation or normalization of t he data is important
for obtaining a proper similarity measure since such transformations are not
always present in proximity measures. For instance, time series may have
trends or periodic patterns that sign ificant ly impact similarity. Also, a proper
computation of similarity may require that time lags be taken into account.
Finally, two time series may only be similar over specific periods of time. For
example, there is a strong relationship between temperature and t he use of
natural gas, but only during the heating season.

P ractical consideration can also be important. Sometimes, a one or more
proximity measures are already in use in a particular field, and thus, others
will have answered the question of which proximity measures should be used.
Other times, the software package or clustering algorithm being used may
drastically limit the choices. lf efficiency is a concern, then we may want to
choose a proximity measure that has a property, such as t he t riangle inequality,
that can be used to reduce the number of proximity calculations. (See Exercise
25.)

However, if common practice or practical restrictions do not dictate a
choice, then the proper choice of a proximity measure can be a time-consuming
task that requires careful consideration of both domain knowledge and the
purpose for which the measure is being used. A number of different similarity
measures may need to be evaluated to see which ones produce results that
make the most sense.

2.5 Bibliographic N otes

It is essential to unders tand the nature of the data that is being analyzed,
and at a fundamental level, t his is the subject of measurement theory. ln

2.5 Bibliographic Notes 85

particular, one of the initial motivations for defining types of attributes was
to be precise about which statistical operations were valid for what sorts of
data. We have presented the view of measurement theory that was initially
described in a classic paper by S. S. Stevens [79). (Tables 2.2 and 2.3 are
derived from those presented by Stevens [80).) While this is the most common
view and is reasonably easy to understand and apply, there is, of course,
much more to measurement theory. An authoritative discussion can be found
in a t hree-volume series on the foundations of measurement theory [63, 69,
81). Also of interest is a wide-ranging article by Hand [55), which discusses
measurement theory and statistics, and is accompanied by comments from
other researchers in t he field. Finally, there are many books and articles that
describe measurement issues for particular areas of science and engineering.

Data quality is a broad subject that spans every discipline that uses data.
Discussions of precision, bias, accuracy, and significant figures can be found
in many int roductory science, engineering, and statistics textbooks. The view
of data quality as "fitness for use" is explained in more detail in the book by
Redman [76). Those interested in data quality may also be interested in MIT's
Total Data Quality Management program [70, 84). However, the knowledge
needed to deal with specific data quality issues in a particular domain is often
best obtained by investigating the data quality practices of researchers in that
field.

Aggregation is a less well-defined subject than many other preprocessing
tasks. However, aggregat ion is one of the main techniques used by the database
area of Online Analytical Processing (OLAP), which is discussed in Chapter 3.
There has also been relevant work in the area of symbolic data analysis (Bock
and Diday [47)). One of the goals in this area is to summarize traditional record
data in terms of symbolic data objects whose attributes are more complex than
traditional attributes. Specifically, these attributes can have values that o.re
sets of values (categories), intervals, or sets of values with weights (histograms).
Another goal of symbolic data analysis is to be able to perform clustering,
classification, and other kinds of data analysis on data that consists of symbolic
data objects.

Sampling is a subject that has been well studied in statistics and related
fie lds. Many introductory statistics books, such as t he one by Lindgren [65],
have some discussion on samp)jng, and there are entire books devoted to the
subject, such as the classic text by Cochran [49) . A survey of sampling for
data mining is provided by Gu and Liu [54], while a survey of sampling for
databases is provided by Olken and Rotem [72]. There are a number of other
data mining and database-related sampling references that may be of interest,

86 Chapter 2 Data

including papers by Palmer and Faloutsos [74], Provost et al. [75], Toivonen
[82], and Zaki et al. [85].

In statistics, the traditional techniques that have been used for dimension­
ality reduction are multidimensional scaling (MDS) (Borg and Groenen [48],
Kruskal and Uslaner [64]) and principal component analysis (PCA) (Jolliffe
[58]), which is similar to singular value decomposition (SVD) (Demmel [50]) .
Dimensionality reduction is discussed in more detail in Appendix B.

Discretization is a topic that has been extensively investigated in data
mining. Some classificat ion algorithms only work with categorical data, and
association analysis requires binary data, and thus, there is a significant moti­
vation to investigate how to best binarize or discretize continuous attributes.
For association analysis, we refer the reader to work by Srikant and Agrawal
[78], while some useful references for discretization in the area of classification
include work by Dougherty et al. [51], Elomaa and Rousu [52], Fayyad and
Irani [53], and Hussain et al. [56).

Feature selection is another topic well investigated in data mining. A broad
coverage of this topic is provided in a survey by Molina et al. [71] and two
books by Liu and Motada [66, 67]. Other useful papers include those by Blum
and Langley [46], Kohavi and John [62], and Liu et al. [68].

It is difficult to provide references for the subject of feature transformations
because practices vary from one discipline to another. Many statistics books
have a discussion of transformations, but typically the discussion is restricted
to a particular purpose, such as ensuring the normality of a variable or making
sure t hat variables have equal variance. We offer two references: Osborne [73]
and Tukey [83].

While we have covered some of the most commonly used distance and
similarity measures, there are hundreds of such measures and more are being
created all the time. As with so many other topics in this chapter, many of
these measures a re specific to particular fields; e.g., in the area of time series see
papers by Kalpakis et al. [59] and Keogh and Pazza.ni [61]. Clustering books
provide t he best general discussions. In particular, see the books by Anderberg
[45], Jain and Dubes [57], Kaufman and R.ousseeuw [60], and Sneath and Sakal
[77].

Bibliography
[45) M. R. Anderberg. Cluster Analysis for Applications. Academic Press, New York, De­

cember 1973.
[46) A. Blum and P. Langley. Selection of Relevant Features and Examples in Machine

Learning. Artificial Intelligence, 97(1- 2):245--271, 1997.

Bibliography 87

[47) H. H. Bock and E. Diday. Analysis of Symbolic Data: Exploratory Methods for Extract­
ing Statistical Information from Complex Data (Studies in Classification, Data Analysis,
and Knowledge Organization}. Springer-Verlag Telos, January 2000.

[48) I. Borg and P. Groenen. Modern Multidimensional Scaling-Theory and Applications.
Springer-Verlag, February 1997.

[49) W. G. Cochran. Sampling Techniques. John Wiley & Sons, 3rd edition, July 1977.
[501 J . W . Demmel. Applied Numerical Linear Algebra. Society for Industrial & Applied

Mathematics, September 1997.
[511 J. Dougherty, R. Kohavi, and M. Sahami. Supervised and Unsupervised Discretization

of Continuous Features. In Proc. of the 12th Inti. Conf. on Machine Learning, pages
194-202, 1995.

[52] T. E lomaa and J . Rousu. General and Efficient Multisplitt.ing of Numerical Attributes.
Machine Learning, 36(3}:201-244 , 1999.

[53) U. M. Fayyad and K. B. Irani. Multi-interval discretization of continuousvalued at­
tributes for classification learning. In Proc. 13th Int. Joint Conf. on Artificial Intelli­
gence, pages 1022-1027. Morgan Kaufman, 1993.

[541 F . H. Gaohua Gu and H . Liu. Sampling and Its Application in Data Mining: A Survey.
Techn.ical Report TRA6/00, National University of Singapore, Singapore, 2000.

[55) D. J. Hand. Statistics and the T heory of Measurement . Journal of the Royal Statistical
Society: Series A (Statistic., in Society), 159(3}:445-492, 1996.

[56) F. Hussain, H. Liu, C. L. Tan, and M. Dash. TRC6/99: Discretization: an enabling
technique. Technical report, National University of Singapore, Singapore, 1999.

[57) A. K. Jain and R. C. Dubes. A lgorithms for Clustering Data. Prentice Hall
Advanced Reference Series. Prentice Hall, March 1988. Book available online at
http:/ fwww.cse.msu.edu/~jain/Clusteri ng_Jain..Dubes.pdf.

[58) I. T. Jolliffe. Principal Component Analysis. Springer Verlag, 2nd edition, October
2002.

[59) K. Kalpakis, D. Gada, and V. Puttagunta. Distance Measures for Effective Clustering
of ARlMA Time-Series. In Proc. of the 2001 IEEE InU. Conf. on Data Mining, pages
273-280. IEEE Computer Society, 2001.

[60) L. Kaufman and P . J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster
Analysis. Wiley Series in Probability and Statistics. John Wiley and Sons, New York ,
November 1990.

[61) E . J . Keogh and M. J. Pazzani. Scaling up dynamic time warping for datamining
applications. In KDD, pages 285- 289, 2000.

[62) R. l<ohavi and G. H. John. Wrappers for Feature Subset Selection. Artificial Intelligence,
97(1-2):273-324, 1997.

[63) D. Krantz, R. D. Luce, P. Suppes, and A. Tversky. Foundations of Measurements:
Volume 1: Additive and polynomial representations. Academic P ress, New York , 1971.

[64) J. B. Kruskal and E. M. Uslaner. Multidimensional Scaling. Sage Publications, August
1978.

[65) B. W. Lindgren. Statistical Theory. CRC Press, January 1993.
[66) H. Liu and H. Motoda, editors. Feature Extraction, Construction and Selection: A Data

Mining Perspective. Kluwer International SerieS in Engineering and Computer Science,
453. Kluwer Academic Publishers, July 1998.

[67] H. Liu and H. Motoda. Feature Selection for Knowledge Discovery and Data Min­
ing. Kluwer International Series in Engineering and Computer Science, 454. Kluwer
Academic Publishers, July 1998.

88 C hapter 2 Data

j68]

j69j

170]

1711

172]

j73]

174]

175]

176]
177]
178]

179]

lBO!

j81]

j82}

183]

184}

185]

H. Liu, H. Motoda, and L. Yu. P~ature Extraction, Selection, Rnd Construction. In
N Ye, editor, The Handbook of Data Mining, pages 22- 41. Lawrence Erlbaurn Asso­
ciates, Inc., Mahwah, NJ, 2003.
It 0. Luce, D. Krantz, P. Suppes, and A. Tversky. Foundattous of Measurements:
Volume 3: Representation, Axiomutization, and /nvariance. Academic Press, New York,
1990.
MIT Thtal Data Quality Management Program. web.mit.edu/tdqmfwwwfindex.shtml,
2003.
L. C. Molina, L. Belanche, and A. Nebot. Peature Selection Algorithms: A Survey and
Experimental Evaluation. In Proc. of the 2002 IEEE Inti. Conf. on Data Mining, 2002.
F. Olken and D. Rotem. Random Sampling from Databases-A Survey. Statisttcs &
Computing, 5(1):25-42, March 1995.
J. Osborne. Notes on the Use of Data Transformations. Practical Assessment, Resear·ch
fj Evaluation, 28(6), 2002.
C. R. Palmer and C. Faloutsos. Density biased sampling: An improved method for data
mining and clustering. ACM SIGMOD Record, 29(2):82-92, 2000.
F . J . Provost, D. Jensen, nod T . Oates. Efficient Progressive Sampling. lo ?T'Oc. of the
5th Inti. Conf. on Knowledge Discove"J and Data Mining, pages 23-32, 1999.
T . C. Redman. Data Quality: The Field Guide. Digital Press, January 2001.
P. H. A. Sneath and R. R. Sokal. Numerical Taxonomy. Freeman, San Francisco, 1971.
R. Srikant and R. Agrawal. Mining Quantitative Association Rules in Large Relational
Tables. In ?T'Oc. of 1996 ACM-SIGMOD Inti. Conf. on Management of Data, pages
1- 12, Montreal, Quebec, Canada, August 1996.
S. S. Stevens. On the Theory of Scales of Measurement. Science, 103(2684):677-680,
June 1946.
S. S. Stevens. Measurement. In G. M. Maranell, editor, Scaling: A Sourcebook for
BehaVtoral Scientist..s, pages 22--41. Aldjne Publish.ing Co., Chicago, 1974.
P. Suppes, D. Krantz, R. D. Luce, and A. Tversky. Foundations of Measurements:
Volume 2: Geometrical, Threshold, and ?T'Obabilistic Representations. Academic Press,
New York, 1989.
H. Toivonen. Sampling Large Databases for Association R.ules. In VLDB96, pages
134-145. Morgan Kaufman, September 1996.
J. W. Thkey. On the Comparative Anatomy of Transformations. Annals of Mathematical
Statistics, 28(3):602-632, September 1957.
R.. Y. Wang, M. Ziad, Y. W. Lee, and Y. R. Wang. Data Quality. The Kluwer In­
ternational Series on Advances in Database Systems, Volume 23. Kluwer Academic
Publishers, January 2001.
M. J . Zaki, S. Parthasarathy, W. Li, and M. Ogihara. Evaluation of Sampling for Data
Mining of Association Rules. Technical Report TR617, Rensselaer Polytechnic Institute,
1996.

2.6 Exercises

1. l n the initial example of Chapter 2, the statist ician says, "Yes, fields 2 and 3
are basically the same." Can you tell from the three lines of sample data that
arc shown why she says that?

2.6 Exercises 89

2. Classify the following anributes as binary, discrete, or continuous. Also cla~>Sify
them as qualita t ive (nominal or ordinal) or quantitative (interval or ratio).
Some cases may have more than one interpretation, so briefl y indicate your
reasoning if you think t here may be some ambiguity.

E x ample: Age in years. Answer: Discrete, quantitative, ratio

(a) Time in terms of AM or PM.

(b) Brightness as measured by a light meter.

(c) Brightness as measured by people's judgments.

(d) Angles as measured in degrees between 0 a nd 360.

(e) Bronze, Silver , and Gold medals as awarded at the Olympics.

(f) Height a bove sea level.

(g) Number of pa tients in a hospital.

(h) ISBN numbers for books. (Look up the format on the Web.)

(i) Ability to pass light in t erms of the following values: opaque, t ranslucent,
transparent.

U) Military rank.

(k) Distance from the center of campus.

(I) Density of a substance in grams per cubic centimeter.

(m) Coat check number. (When you attend an event, you can often give your
coat to someone who, in turn, gives you a number that you can use to
claim your coat when you leave .)

3. You are approached by the marketing director of a local company, who believes
that he has devised a foolproof way to measure customer satisfaction . He
explains h.is scheme as follows: "It's so simple that I can 't believe that no one
has thought of it before. 1 just keep track of the number of customer complaints
for each product. I read in a data mining book that counts are ratio attributes,
and so, my measure of product satisfaction must be a ratio attribute. But
when 1 rated the products based on my new customer satisfaction measure and
showed them to my boss, be told me that 1 had overlooked the obvious, and
that my measure was worthless. I think that he was just mad because our best­
selling product had the worst satisfaction s ince it had the most complaints.
Could you help me set him straight?"

(a) Who is right, the marketing d irector or his boss? If you answered, his
boss, what would you do to fix the measure of satisfaction?

(b) What can you say about the attribute type of the original producl satis­
faction attribute?

90 C hapter 2 Data

4. A few months later , you are again approached by the same marketing director
as in Exercise 3. T his time, he has devised a b etter approach to measure the
extent to which a customer prefers one product over other, similar products. He
explains, "When we develop new products, we typically create several variations
and evaluate which one customers prefer. Our standard procedure is to give
our test subjects all of the product variations at one time and then ask them to
rank the product variations in order of preference. However, our test subjects
are very indecisive, especially when there are more than two products. As a
result, testing takes forever. J suggested that we perform the compar isons in
pairs and then use these comparisons to get the rankings. T hus, if we have
three prod uct variations, we have the customers compare variations 1 and 2 ,
then 2 and 3, and finally 3 and 1. Our testing time with my new procedure
is a third of what it was for the old procedure, but the employees conducting
the tests complain that they cannot come up with a consistent ranking from
the results. And my boss wants the latest product evaluations, yesterday. I
should also mention that he was t he person who came up with the old product
evaluation approach. Can you help me?"

(a) Is the marketing director in trouble? Will his approach work for gener­
a ting an ordinal ranking of the product variations in t.erms of customer
preference? Explain.

(b) Is there a way to fix the marketing director's approach ? More generally,
what can you say about trying to create an ordinal measurement scale
based on pairwise comparisons?

(c) For the original product evaluation scheme, the overall rankings of each
product variation are found by computing its average over all test subjects.
Comment on whether you think that this is a reasonable approach. What
other approaches might you take?

5. Can you think of a situation in which ident ification numbers would be useful
for prediction?

6. An educational psychologist wants to use association analysis to analyze test
results. The test consists of 100 questions with four possible answers each.

(a) How would you convert this data into a form suitable for associat ion
analysis?

(b) In particular, what type of attributes would you have and how many of
t.hem are there?

7. Which of the following quantities is likely to show more temporal autocorrela­
tion: daily rainfall or daily temperature? Why?

8. Discuss why a document-term matrix is an example of a data set that has
asymmetric discrete or asymmetric continuous features.

2 .6 Exercises 91

9. Many sciences rely on observation instead of (or in addition to) designed ex­
periments. Compare the data quality issues involved in observational science
with t hose of experimental science and data mining.

10. Discuss the difference between the precision of a measurement and the terms
single and double precision, as they are used in computer science, typically to
represent floating-point numbers that require 32 and 64 bits, respectively.

11. Give at least two advantages to working with data stored in text files instead
of in a bin ary format.

12. Distinguish between noise and outliers. Be sure to consider t he following ques­
t ions.

(a) Is noise ever interesting or desirable? Outliers?

(b) Can noise objects be outliers?

(c) Are noise objects always outliers?

(d) Are outliers a lways noise objects?

(e) Can noise make a typical value into an unusual one, or vice versa?

13. Consider the problem of fi nding the K nearest neighbors of a data object. A
programmer designs Algorithm 2.2 for t his task.

Algorithm 2.2 Algorithm for finding K nearest neighbors.
1: for i- 1 to number of data objects d o
2: F'ind the distances of the i 1h object to all other objects.
3: Sort t hese distances in decreasing order.

(Keep track of which object is associated with each distance.)
4: return t he objects associated with t he first K distances of the sorted list
5: end for

(a) Describe the potential problems with this algorithm if there are duplicate
objects in t he da ta set. Assume the dist ance function will only return a
distance of 0 for obj ects t hat are the same.

(b) How would you fix t his problem?

14. The fo llowing attributes are measured for members of a herd of Asian ele­
phants: weight, height, tusk length, trunk .length, and ear area. Based on these
measurements, what sort of similarity measure from Section 2.4 would you use
to compare or group t hese elephants? Justify your answer and explain any
special circumstances.

92 Chapter 2 Data

15. You are given a set of m objects that is divided into K groups, where the i'h
group is of size m;. If the goal is to obtain a sample of size n < m, what is
the difference between the following two sampling schemes? (Assume sampling
with replacement.)

(a) We randomly select n • m;fm elements from each group.

(b) We randomly select n elements from the data set, without regard for the
group to which an object belongs.

16. Consider a docwnent-term matrix, where t/;; is the frequency of the i'h word
(term) in the j'h document and m is the number of documents. Consider the
variable transformation that is defined by

, m
tf;; = tf;; • log df;, (2.18)

where df; is the number of documents in which the i'h term appears, which
is known as the document frequency of the term. This transformation is
known as the inverse document fr equency transformation.

(a) What is the effect of this t ransformation if a term occurs in one document?
In every document?

(b) What might be t he purpose of this transformation?

17. Assume that we apply a square root transformation to a ratio attribute x to
obtain the new attribute x•. As part of your analysis, you identify an interval
(a, b) in which x' has a linear relationship to another attribute y .

(a) What is the corresponding interval (a, b) in terms of x?

(b) Give an equation that relates y to x.

18. This exercise compares and contrasts some similarity and distance measures.

(a) For binary data, the 11 distance corresponds to the Hamming distance;
that is, the number of bits that are d ifferent between two binary vectors.
T he Jaccard similarity is a measure of the similarity between two binary
vectors. Compute the Hamming distance and the Jaccard similarity be­
tween the following two binary vectors.

X = 0101010001
y = 0100011000

(b) Which approach, Jaccard or Hamming distance, is more similar to the
Simple Matching Coefficient, and which approach is more similar to the
cosine measure? Explain . (Note: The Hamming measure is a distance,
while the other three measures are similarities, but don't let this confuse
you.)

2.6 Exercises 93

(c) Suppose that you are comparing how similar two organisms of different
species are in terms of the number of genes they share. Describe which
measure, Hamming or Jaccard, you think would be more appropriate for
comparing t he genetic makeup of two organisms. Explain. (Assume that
each animal is represented as a binary vector, where each attribute is 1 if
a particular gene is present in the organism and 0 otherwise.)

(d) If you wanted to compare the genetic makeup of two organisms of t he same
species, e.g., two human beings, would you use the Hamming distance,
the Jaccard coefficient, or a different measure of similarity or distance?
Explain. (Note that two human beings share > 99.9% of the same genes.)

19. For the following vectors, x andy, calculate the indicated similarity or distance
measures.

(a) x = (1, 1, 1, 1), y = (2, 2, 2, 2) cosine, correlation, Euclidean

(b) x = (0, 1, 0, 1), y = (1, 0, 1, 0) cosine, correlation, Euclidean, Jaccard

(c) x = (0,-1,0, 1), y = {1,0,-1,0) cosine, correlation , Euclidean

(d) x = (1, 1,0,1,0, 1), y = (1,1, 1, 0,0,1) cosine, correlation, Jaccard

(e) x = (2,-1,0,2,0,-3), y = {-1, 1,-1 ,0 ,0, -1) cosine, correlat ion

20. Here, we further explore the cosine and correlat ion measures.

(a) What is the range of values that are possible for the cosine measure?

(b) If two objects have a cosine measure of 1, a re they ident ical? Explain.

(c) What is the relationship of the cosine measure to correlation , if any?
(Hint: Look at statistical measures such as mean and standard deviation
in cases where cosine and correlation are the same and different.)

(d) Figure 2.20(a) shows the relationship of the cosine measure to Euclidean
distance for 100,000 randomly generated points t hat have been normalized
to have an 12 length of 1. What general observation can you make about
the relationship between Euclidean distance and cosine similarity when
vectors have an 12 norm of 1?

(e) Figure 2.20(b) shows t he relationship of correlation to Euclidean d istance
for 100,000 randomly generated points t hat have been standard ized to
have a mean of 0 and a standard deviation of l . What general observa­
t ion can you make about t he relationship between Euclidean distance and
correlation when the vectors have been standardized to have a mean of 0
and a standard deviation of l ?

(f) Derive the mathematical relationship between cosine similarity and Eu­
clidean distance when each data object has an 1 2 length of I.

(g) Derive the mathematical relationship between correlation and Euclidean
distance when each data point has been been standard ized by subtracting
its mean and dividing by its standard deviation.

94 Chapter 2 Data

1.4c=--~---,--..,......-~----,

1.2 1.2
Q) " g 1 g 1

"' "' ~0.8 ~ 0.8

:g 0.6 ~ 0.6
u u
goA
w

g 0 .4
w

0.2 0.2

~~~o~.2~~0~.4~~o~.6~-.o~.a.-~ ~~-0~.~2-~0~.4~~0~.6----0~.8--~ 
Cosine Similarity 

(a) Relationship between Euclidean 
distance and the cosine measure. 

(b) Relationship between Euclidean 
distance and correlation. 

Figure 2.20. Graphs for Exercise 20. 

21. Show that the set difference metric given by 

d(A, B) = size(A -B)+ size(B- A) (2.19) 

satisfies the metric axioms given on page 70. A and B are sets and A - B is 
the set difference. 

22. Discuss how you might map correlation values from the interval [-1,1] to the 
interval [0,1]. Note that the type of transformation that you use might depend 
on the application that you have in mind. Thus, consider two applications: 
clustering time series and predicting the behavior of one time series given an­
other. 

23. Given a similarity measure with values in the interval [0,1] describe two ways to 
transform this similarity value into a dissimilarity value in the interval [O,oo]. 

24. Proximity is typically defined between a pair of objects. 

(a) Define two ways in which you might define the proximity among a group 
of objects. 

(b) How might you define t he distance between two sets of points in Euclidean 
space? 

(c) How might you define the proximity between two sets of data objects? 
(Make no assumption about the data objects, except that a proximity 
measure is defined between any pair of objects.) 

25. You are given a set of points S in Euclidean space, as well as the distance of 
each point in S to a point x. (It does not matter if x E S.) 

2 .6 Exercises 95 

(a) lf the goal is to find all points within a specified distance c of point. y , 
y # x, explain how you could use the triangle inequality and the a lready 
calculated distances to x to potentially reduce t he number of distance 
calculations necessary? Hint: The triangle inequality, d(x, z) ~ d(x , y ) + 
d(y,x), can be rewritten as d(x,y) ~ d(x,z)- d(y, z). 

{b) In general, how would the distance between x andy affect the number of 
distance calculations? 

(c) Suppose that you can find a small subset of points S', from the original 
data set, such that every point in the data set is within a specified distance 
o of at least one of the points in S', and that. you also have the pairwise 
distance matrix for S'. Describe a techn ique that uses this informat ion to 
compute, with a minimum of distance calcula.Lions, the set of all points 
within a distance of /3 of a specified point from the data set. 

26. Show that 1 minus the Jaccard similarity is a dist ance measure between two data 
objects, x and y , t hat satisfies the metric axioms given on page 70. Specifically, 
d{x,y) = 1- J (x,y). 

27. Show that t he distance measure defined as the angle between two dat a vectors, 
x and y, satisfies the metr ic axioms given on page 70. Specifically, d{x, y) = 
arccos(cos(x , y)). 

28. Explain why computing the proximity between two a t.tributes is often simpler 
t han computing the similarity between two objects. 



3 

Exploring Data 

The previous chapter addressed high-level data issues that are important in 
the knowledge discovery process. This chapter provides an introduction to 
data exp loration, which is a preliminary investigation of the data in order 
to better understand its specific characterist ics. Data exploration can aid in 
selecting the appropriate preprocessing and data analysis techniques. ll can 
even address some of the questions typically answered by data mining. For 
example, patterns can sometimes be found by visually inspecting the data. 
Also, some of the techniques used in data exploration, such as visualization, 
can be used to understand and interpret data mining results. 

T his chapter covers three major topics: summary statistics, visualization, 
and On-Line Analytical Processing (OLAP). Summary statistics, such as the 
mean and standard deviation of a set of values, and visualization techniques, 
such as histograms and scatter plots, are standard methods that are widely 
employed for data exploration. OLAP, which is a more recent development, 
consists of a set of techniques for exploring multidimensional arrays of values. 
OLAP-related analysis functions focus on various ways to create summary 
data tables from a multidimensional data array. These techn iques include 
aggregating data either across various dimensions or across various attribute 
values. For instance, if we are given sales information reported according 
to product, location, and date, OLAP techniques can be used to create a 
summary that describes the sales activity at a particular location by month 
and product category. 

The topics covered in this chapter have considerable overlap with the area 
known as Exploratory Data Analysis (EDA), which was created in the 
1970s by the prominent statistician, John Thkey. This chapter , li ke EDA, 
places a heavy emphasis on visualization. Unlike EDA, this chapter does not 
include topics such as cluster analysis or anomaly detect ion. There are two 



98 Chapter 3 Exploring Data 

reasons for this. First, data mining views descriptive data analysis techniques 
as an end in themselves, whereas statist ics, from which EDA originated, tends 
to view hypothesis-based testing as the final goal. Second, cluster analysis 
and anomaly detection are large areas and require full chapters for an in­
depth discussion. Hence, cluster analysis is covered in Chapters 8 and 9, while 
anomaly detection is discussed in Chapter 10. 

3.1 The Iris Data Set 

In the following discussion, we will often refer to the Iris data set that is 
available from the University of California at Irvine (UCI) Machine Learn­
ing Repository. It consists of information on 150 Iris flowers, 50 each from 
one of three Iris species: Setosa, Versicolour, and Virginica. Each flower is 
characterized by five attributes: 

1. sepal length in centimeters 

2. sepal width in centimeters 

3. petal length in centimeters 

4. petal width in centimeters 

5. class (Setosa, Versicolour, Virginica) 

The sepals of a flower are the outer structures t hat protect the more fragile 
parts of the flower, such as the petals. In many flowers, the sepals are green, 
and only the petals are colorful. For Irises, however, the sepals are also colorfu l. 
As illustrated by the picture of a Virginica Iris in Figure 3.1, the sepals of an 
Iris a.re larger than the petals and are drooping, while the petals are upright. 

3 .2 Summary Statistics 

Summa ry statistics are quantities, such as the mean and standard deviation, 
that capture various characteristics of a potentially large set of values with a 
single number or a small set of numbers. Everyday examples of summary 
statistics are the average household income or the fraction of college students 
who complete an undergraduate degree in four years. Indeed, for many people, 
summary statistics are the most visible manifestation of statistics. We will 
concentrate on summary statistics for the values of a single at tribute, but will 
provide a brief descript ion of some multivariate summary statistics. 

3.2 Summary Statistics 99 

Figure 3.1. Picture of Iris Virginica. Robert H. Mohlenbrock @ USDA·NACS PLANTS Database/ 
USDA NAGS. 1995. Northeast wetland llora: Field office guide lo plant species. Northeast National 
Technical Center, Chester, PA. Background removed. 

T his section considers only the descriptive nature of summary statistics. 
However, as described in Appendix C, statistics views data as arising from an 
underlying statistical process that is characterized by various parameters, and 
some of the summary statistics discussed here can be viewed as estimates of 
statistical parameters of the underlying d istribution that generated the data. 

3.2 .1 Frequencies and t he Mode 

Given a set of unordered categorical values, there is not much that can be done 
to further characterize the values except to compute the frequency wi th which 
each value occurs for a particular set of data. Given a categorical attribute x, 
which can take values {v1 , •.. , v;, ... Vk} and a set of m objects, the frequency 
of a value v; is defined as 

fr ( ) 
number of objects with attribute value v; 

equency v; = . 
m 

(3.1) 

The mode of a categorical attribute is the value that has t he highest frequency. 



100 Chapter 3 Exploring Data 

Exam ple 3.1. Consider a set of students who have an aLtribu te, class, which 
can take values from the set {freshman, sophomore, junior, senior}. Table 
3.1 shows the number of students for each value of the class attribute. The 
mode of the class attribute is freshman, with a frequency of 0.33. This may 
indicate dropouts due to attrition or a larger than usual freshman class. 

Table 3.1. Class size for students in a hypothetical college. 

Class Size Frequency 
freshman 140 0.33 
sophomore 160 0.27 
junior 130 0 .22 
senior 170 0.18 

• 
Categorical attributes often, but not always, have a small number of values, 

and consequently, the mode and frequencies of these values can be interesting 
and useful. Notice, t hough, that for the lris data set and the class attribute, 
the three types of flower all have the same frequency, and therefore, the notion 
of a mode is not interesting. 

For continuous data, the mode, as currently defined, is often not useful 
because a single value may not occur more than once. Nonetheless, in some 
cases, the mode may indicate important information about t he nature of the 
values or the presence of missing values. For example, Lhe heights of 20 people 
measured to the nearest millimeter will typically not repeat, but if the heights 
are measured to the nearest tenth of a meter, then some people may have the 
same height. Also, if a unique value is used to indicate a missing value, then 
this value will often show up as the mode. 

3.2.2 P ercent iles 

For ordered data, it is more useful to consider the pe1·centiles of a set of 
values. ln particular, given an ordinal or continuous auribute x and a number 
p between 0 and 100, the p'11 percentile Xp is a value of x such that p% of the 
observed values of x are less t han Xp· For instance, the 50'11 percentile is the 
value x50% such that 50% of a ll values of x are less than x5o%· Table 3.2 shows 
the percentiles for the four quantitative attributes of the Iris data set. 

3 .2 Summary Statistics 101 

Table 3.2. Percentiles lor sepal length, sepal width, petal length, and petal width. (All values are in 
centimeters.) 

Percentile Sepal Length Sepal Width Petal Length Petal Width 
0 4.3 2.0 1.0 0.1. 

10 4.8 2.5 1.4 0.2 
20 5.0 2.7 1.5 0.2 
30 5.2 2.8 1.7 0.4 
40 5.6 3.0 3.9 1.2 
50 5.8 3.0 4.4 1.3 
60 6.1 3.1 ~.6 1.5 
70 6.3 3.2 5.0 1.8 
80 6.6 3.4 5.4 1.9 
90 6.9 3.6 5.8 2.2 
100 7.9 4 .4 6.9 2.5 

Example 3.2 . The percentiles, x0%, x 10%, .. . , x9o%, x100% of the integers from 
1 to 10 are, in order , the following: 1.0, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 
10.0. By tradition, min(x) = xo% and max(x) = XJOO%· • 

3 .2 .3 Measures of Location: Mean and M edian 

For cont inuous data, two of the most widely used summary stat istics are the 
m ean and median, which are measures of the location of a set of values. 
Consider a set of m objects and an at tribu te x. Let {x1 , ... , Xm} be lhe 
attribute values of x for these m objects. As a concrete example, these values 
might be the heights of m children. Let {X(! ), .. . , X(m)} represent the values 
of x after they have been sorted in non-decreasing order. Thus, X(!) = min(x) 
and x(m) = max(x). T hen, the mean and median are defined as fol lows: 

1 m 
mean(x) = x = - 'L: x; 

m i=l 

. { x(,·+l) if m is odd , i.e., m = 2r + 1 
med1an x = 1 · · · 

( ) 2 (x(r) + X(r+l)) 1f m IS even, I.e., m = 2r 

(3.2) 

(3.3) 

To summarize, the median is the middle value if there are an odd number 
of values, and the average of the two middle values if the number of val ue~ 

is even. T hus, for seven values, the median is x(4), while for ten values, the 

median is ~ (x(s) + X(6)) · 



102 Chapter 3 Exploring Data 

Although the mean is sometimes interpreted as the middle of a set of values, 
this is only correct if the values are distributed in a symmetric manner. If the 
distribution of values is skewed, then the median is a better indicator of the 
middle. Also, the mean is sensitive to the presence of outliers. For data with 
outliers , the median again provides a more robust estimate of the middle of a 
set of values. 

To overcome problems with the traditional definition of a mean, the notion 
of a trimmed mean is sometimes used. A percentage p between 0 and 100 
is specified, the top and bottom (p/2)% of the data is thrown out, and the 
mean is then calculated in the normal way. The median is a trimmed mean 
with p = 100%, while the standard mean corresponds to p = 0%. 

Example 3.3. Consider the set of values {1 , 2, 3, 4, 5, 90} . The mean of these 
values is 17.5, while the median is 3.5. The trimmed mean with p = 40% is 
also 3.5. • 

Example 3.4. The means, medians, and trimmed means (p = 20%) of the 
four quantitative attributes of the Iris data are given in Table 3.3. The three 
measures of location have similar values except for the attribute petal length. 

Table 3.3. Means and medians for sepal length, sepal width, petal length, and pelal width. (All values 
are in centimelers.) 

Measure Sepal Length Sepal Width Petal Length Petal Width 
mean 5.84 3.05 3.76 1.20 

median 5.80 3.00 4.35 1.30 
trimmed mean (20%} 5.79 3.02 3.72 1.12 

• 

3.2.4 Measu res of Spread: R a n ge a n d Variance 

Another set of commonly used summary statistics for continuous data are 
those that measure the dispersion or spread of a set of values. Such measures 
indicate if the attribute values are widely spread out or if they are relatively 
concentrated around a single point such as the mean. 

The simplest measure of spread is the range, which, given an attribute x 
with a set of m values {x1, . .. , Xm}, is defined as 

range(x) = max(x)- min(x) = X(m)- X(l)· (3.4) 

3.2 Summary Statistics 103 

Table 3.4. Range, standard deviation (std), absolute average difference (AAD), median absolute differ· 

ence (MAD), and interquartile range (lOR) for sepal length, sepal width, petal length, and petal width. 
(All values are in centimeters.) 

Measure Sepal Length Sepal Width Petal Length Petal Width 
range 3.6 2.4 5.9 2.4 
std 0.8 0.4 1.8 0.8 

AAD 0.7 0.3 1.6 0.6 
MAD 0.7 0.3 1.2 0.7 
IQR 1.3 0.5 3.5 1.5 

Although the range identifies the maximum spread , it can be misleading if 
most of the values are concentrated in a narrow band of values, but t here are 
also a relatively small number of more extreme values. Hence, t he variance 
is preferred as a measure of spread. The variance of the (observed) values of 
an attribute xis typically written as si and is defined below. The standard 
deviation, which is t he square root of the variance, is writ ten as S::: and has 
the same units as x . 

1 m 
variance(x) = si =--"'(xi- xi 

m-1~ 
i = l 

(3.5) 

The mean can be distorted by outliers, and since the variance is computed 
using the mean, it is also sensitive to outliers. Indeed, the variance is particu­
larly sensitive to outliers since it uses the squared difference between the mean 
and other values. As a result, more robust estimates of the spread of a set 
of values are often used . Following are the definitions of three such measures: 
the absolute average deviation (AAD), the median absolute dev iation 
(MAD), and the interquartile range(IQR). Table 3.4 shows these measures 
for the Iris data set. 

1 m 
AAD(x) = - Llxi - xl 

m i=l 

MAD (x) =median ( {Jx1 - xJ , ... , Jxm - xi}) 

interquartile range(x) ~ x 15<r. - x2s% 

(3.6) 

(3.7) 

(3.8) 



104 Cha pter 3 Exploring Data 

3.2.5 M ultivariate S ummary S tatistics 

Measures of location for data that consists of several attributes (multivariate 
data) can be obtained by computing t he mean or median separately for each 
attribute. Thus, given a data set the mean of the data objects, x, is given by 

X = (X I,·· · ,Xn), (3.9) 

where X; is the mean of the i1h attribute x;. 

For multivariate data, the spread of each attribute can be computed in­
dependently of t he other attributes using any of the approaches described in 
Section 3.2.4. However, for data with continuous variables, the spread of the 
data is most commonly captured by the covaria nce m atrix S, whose i/h 
entry s;; is the covariance of the i 1

h and jlh attributes of the data. Thus, if x; 
and x; are the i 1

h and j 1
" attributes, then 

s;; = covariance( X;, x;). 

In t urn , covariance(x;,x; ) is given by 

1 m 
covariance( X;, x;) = - - " (xki- X;)(xki- x;), 

m-1 L... 
k=l 

(3. 10) 

(3.11) 

where Xki and Xkj are the values of the i1" and/" attributes for the kth object. 
Notice that covariance( X;, x;) = variance(x;). Thus, the covariance matrix has 
the variances of t he attributes along the diagonal. 

T he covariance of two at tributes is a measure of the degree to which two 
attributes vary together and depends on t he magnitudes of the variables. A 
value near 0 indicates that two attributes do not have a (linear) relationship, 
but it is not possible to judge the degree of relationship between two variables 
by looking only at the value of the covariance. Because the correlation of two 
attributes immediately gives an indication of how strongly two at tributes are 
{linead y) related, correlation is preferred to covariance for data exploration. 
{Also see the discussion of correlation in Section 2.4.5.) The ij1h entry of the 
corr elat ion m atrix R, is the correlation between t he i 1h and /h at tributes 
of t he data. 1f x; and x; are t he ith and /" attributes, then 

. covariance( x;, x ·) 
r;; = correlatwn(x; , x;) = 1 

, 
S;Sj 

(3. 12) 

3.3 Visualization 105 

where s; and s; are the variances of x; and x;, respectively. The diagonal 
entr ies of R are correlation{x;,x;) = 1 , whi le the other entries are between 
- 1 and 1. It is also useful to consider correlation matrices that contain the 
pairwise correlations of objects instead of attributes. 

3.2. 6 Ot her W ays to Summarize t h e Data 

There are, of course, other types of summary statistics. For instance, the 
skewness of a set of values measures the degree to which the values are sym­
metrically distributed around the mean. There are also other characteristics 
of the data t hat are not easy to measure quantitatively, such as whether the 
distribu tion of values is multimodal; i.e., the data has multiple "bumps" where 
most of the values are concentrated. In many cases, however, the most effec­
tive approach to understanding the more complicated or subtle aspects of how 
the values of an attribute are distributed, is to view the values graphically in 
the form of a histogram. (Histograms are discussed in the next section.) 

3.3 V isua lization 

Data visualization is t he display of information in a graphic or tabular format. 
Successful visualization requires that the data (information) be converted into 
a visual format so that the characteristics of the data and the relationships 
among data items or attributes can be analyzed or reported. The goal of 
visualization is the interpretation of the visualized information by a person 
and the formation of a mental model of t he information. 

In everyday life, visual techniques such as graphs and tables are often the 
preferred approach used to explain the weather, the economy, and the results 
of political elections. Likewise, while algorit hmic or mathematical approaches 
are often emphasized in most technical disciplines-data mining included­
visual techniques can play a key role in data analysis. In fact , sometimes the 
use of visualization techniques in data mining is referred to as visual data 
minin g. 

3.3.1 M ot ivations for Visua lization 

The overriding motivation for using visualization is that people can quickly 
absorb large amounts of visual information· and find patterns in it. Consider 
Figure 3.2, which shows the Sea Surface Temperature (SST) in degrees Celsius 
for July, 1982. This picture summarizes the information from approximately 
250,000 numbers and is readily interpreted in a few seconds. For example, it 



106 Chapter 3 Exploring Data 

15 

10 

Longi11Jde 

Figure 3.2. Sea Surtace Temperature (SST) for July, 1982. 

is easy to see that the ocean temperature is highest at the equator and lowest 
at. the poles. 

Another general motivation for visualization is to make use of the domain 
knowledge that is "locked up in people's heads." While the use of domain 
knowledge is an important task in data mining, it is often difficult or impossible 
to fully utilize such knowledge in statistical or algorithmic tools . In some cases, 
an analysis can be performed using non-visual tools, and t hen the results 
presented visually for evaluation by t he domain expert . In other cases, having 
a domain specialist examine visualizations of the data may be the best way 
of finding patterns of interest since, by using domain knowledge, a person can 
often quickly eliminate many uninteresting patterns and direct the focus to 
the patterns that are important. 

3 .3.2 General Concepts 

T his section explores some of the general concepts related to visualization, in 
particular, general approaches for visualizing the data and its attributes. A 
number of visualization techniques are mentioned briefly and will be described 
in more detail when we discuss specific approaches later on . We assume that 
the reader is familiar with line graphs, bar charts, and scatter plots . 

3.3 Visualization 107 

Representation: Mapping Data to Graphical E lements 

The first step in visualization is the mapping of. information to a visual format; 
i.e., mapping the objects, attributes, and relationships in a set of information 
to visual objects, at tributes, and relationships. That is, data objects, their at­
tributes, and the relat ionships among data objects are translated into graphical 
elements such as points, lines, shapes, and colors. 

Objects are usually represented in one of three ways. First, if only a 
single categorical attribute of the object is being considered, t hen objects 
are often lumped into categories based on the value of that attribu te, and 
these categories are displayed as an entry in a table or an area on a screen . 
(Examples shown later in t his chapter are a cross-tabulation table and a bar 
chart .) Second, if an object has multiple attributes, then t he object can be 
displayed as a row (or column) of a table or as a line on a graph. F inally, 
an object is often interpreted as a point in two- or th ree-dimensional space, 
where graphically, t he point might be represented by a. geometric figure, such 
as a. circle, cross, or box. 

For attributes, the representation depends on t.he type of att ribute, i.e., 
nominal, ordinal, or continuous (interval or rat io). Ordinal and continuous 
att ri butes can be mapped to continuous, ordered graphica.l features such as 
location along the x, y , or z axes; intensity; color; or size (diameter, width, 
height, etc.). For categorical attributes, each category can be mapped to 
a distinct position, color, shape, orientation, embellishment, or column in 
a table. However, for nomjnal attributes, whose values are unordered, care 
should be taken when using graphical features, such as color and position that 
have an inherent ordering associated with their values. In other words , the 
graphical elements used to represent the ordinal values often have an order, 
but ordinal values do not. 

The represent ation of relationships via graphical elements occurs either 
explicitly or implicit ly. For graph data, the standard graph representation­
a set of nodes with links between the nodes-is normally used. If the nodes 
(data objects) or links (relationships) have attributes or characteristics of their 
own, then t his is represented graphically. To illustrate, if the nodes are cities 
and the links are highways, t hen the diameter of the nodes might represent 
population, while the width of t he links might represent the volume of traffic. 

In most cases, though, mapping objects and attributes to graphical el­
ements implicitly maps the relat ionships in t he data to relationships among 
graphical elements. To illustrate, if t he data object represents a physical object 
that has a location, such as a city, then the relative posit ions of t he graphical 
objects corresponding to the data objects tend to naturally preserve the actual 



108 Chapter 3 Exploring Data 

relative positions of the objects. Likewise, if there are two or three continuous 
attributes that are taken as the coordinates of the data points, then the result­
ing plot often gives considerable insight int o the relationships of the attribu tes 
and the data points because data points that are visually close to each other 
have similar values for their attributes. 

In general, it is difficult to ensure that a mapping of objects and attribu tes 
will result in the relat ionships being mapped to easily observed relationships 
among graphical elements. Indeed, this is one of the most challenging aspects 
of visualization. In any given set of data, there are many implicit relationships, 
and hence, a key challenge of visualization is to choose a technique that makes 
the relationships of interest easily observable. 

Arrangement 

As discussed earlier, the proper choice of visual representation of objects and 
attributes is essential for good visualization. The arrangement of items within 
the visual display is also crucial. We illustrate this with two examples. 

Example 3 .5. This example illustrates the importance of rearranging a table 
of data. In Table 3.5, which shows nine objects with six binary attributes, 
there is no clear relationship between objects and attributes, at least at first 
glance. 1f the rows and columns of this table are permuted, however, as shown 
in Table 3.6, then it is clear that there a re really only two types of objects in 
the table-one that has all ones for the first three attributes and one that has 
only ones for the last three attributes. • 

Table 3.5. A table ol nine objects (rows) with Table 3.6. A table of nine objects (rows) with six 
six binary attributes (columns). binary attributes (columns) permuted so that the 

relationships of the rows and columns are clear. 

1 2 3 4 5 6 
1010110 
2101001 
3010110 
4 I 0 1 0 0 1 
5010110 
6 1 0 0 0 1 
70 1 0110 
8101001 
9 0 1 0 0 

4 
2 

6 

6 1 
8 1 1 
5 0 0 
3 0 0 
9 0 0 
1 0 0 
7 0 0 

3 2 5 4 
0 0 0 
0 0 0 

1 0 0 0 
1 0 0 0 
0 
0 
0 
0 
0 

3.3 Visualization 109 

Example 3.6. Consider Figure 3.3(a), which shows a visualization of a graph. 
lf the connected components of the graph are separated , as in Figure 3.3(b), 
then the relationships between nodes and graphs become much simpler to 
understand. • 

(a) Original view of a graph. (b) Uncoupled view of connected components 
of the graph. 

Figure 3.3. Two visualizations of a graph. 

Selection 

Another key concept in visualization is selection, which is the elimination 
or the de-emphasis of certain objects and attributes. Specifically, while data 
objects that only have a few dimensions can often be mapped to a two- or 
three-dimensional graphical representation in a straightforward way, there is 
no completely satisfactory and general approach to represent data wi th many 
attributes. Likewise, if there are many data objects, then visualizing all the 
objects can result in a display that is too crowded. If there are many atlri bu tes 
and many objects, then the situation is even more challenging. 

The most common approach to handling many attributes is to choose a 
subset of attributes-usually two-for display. lf the dimensionality is not too 
high, a matrix of bivariate (two-attribute) plots can be constructed for simul­
taneous viewing. (Figure 3.16 shows a matrix of scatter plots for the pairs 
of a ttributes of the Iris data set.) Alternatively, a visualizat ion program can 
automatically show a series of two-dimensional plots, in which the sequence is 
user directed or based on some predefined strategy. The hope is that visual iz­
ing a collection of two-dimensional plots wili provide a more complete view of 
the data. 



llO Chapter 3 Exploring Data 

The technique of selecting a pair (or small number) of attributes is a type of 
dimensionality reduction, and there are many more sophisticated dimension­
ality reduction techniques that can be employed, e.g., principal components 
analysis (PCA). Consult Appendices A (Linear Algebra) and B (Dimension­
ality Reduction) fo r more information. 

When the number of data points is high, e.g., more than a few hundred, 
or if the range of the data is large, it is difficult to display enough information 
about each object. Some data points can obscure other data points, or a 
data object may not occupy enough pixels to allow its features t.o be clearly 
displayed. For example, the shape of an object cannot be used to encode a 
characteristic of t hat object if there is only one pixel available to display it. In 
these situations, it is useful to be able to eliminate some of the objects, either 
by zooming in on a particular region of the data or by taking a sample of the 
data points. 

3.3.3 Tech niques 

Visualization techniques are often specialized to the type of data being ana­
lyzed. Indeed , new visualization techniques and approaches, as well as special­
ized variations of existing approaches, are being continuously created, typically 
in response to new kinds of data and visualization tasks. 

Despite this specialization and the ad hoc nature of visualization, there are 
some generic ways to classify visualization techniques. One such classification 
is based on the number of attributes involved (1, 2, 3, or many) or whether the 
data has some special characteristic, such as a hierarchical or graph structure. 
Visualization methods can also be classified according to the type of attributes 
involved. Yet another classification is based on the type of application: scien­
tific, statistical, or information visualization. The following discussion will use 
three categories: visualization of a small number of attributes, visualization of 
data with spatial and/ or temporal attributes, and visualization of data with 
many attributes. 

Most of the visualization techniques discussed here can be found in a wide 
variety of mathematical and statistical packages, some of which are freely 
available. There are also a number of data sets that are freely available on the 
World Wide Web. Readers are encouraged to try these visualization techniques 
as they proceed through the following sections. 

3 .3 Visualization 111 

Visualizing Small Numbers of Attr ibutes 

This section examines techniques for visualizing data with respect to a small 
number of attributes. Some of these techniques, such as histograms, give 
insight into the distribution of the observed values for a single att ribute. Other 
techniques, such as scatter plots, are intended to display the relationships 
between the values of two attributes. 

Stem and Leaf Plots Stem and leaf plots can be used to provide insight 
into the distribution of one-dimensional integer or continuous data. (We will 
assume integer data init ially, and then explain how stern and leaf plots can be 
applied to continuous data.) For t he simplest type of stem and leaf plot, we 
split the values into groups, where each group contains those values t hat are 
the same except for the last digit. Each group becomes a stem, while the last 
digits of a group are the leaves. Hence, if the values are two-digit integers, 
e.g., 35, 36, 42, and 51, then the stems will be the high-order digits , e.g., 3, 
4, and 5, while the leaves are the low-order digits, e.g., 1, 2, 5, and 6. By 
plotting the stems vertically and leaves horizontally, vye can provide a visual 
representation of the distribution of the data. 

Example 3. 7. The set of integers shown in Figure 3.4 is the sepal length in 
centimeters (multiplied by 10 to make the values integers) taken from the Iris 
data set. For convenience, the values have also been sorted. 

The stem and leaf plot for this data is shown in Figure 3.5. Each number in 
Figure 3.4 is first put into one of the vertical groups-4, 5, 6, or 7- according 
to its ten's digit. Its last digit is then placed to the right of the colon. Often, 
especially if the amount of data is larger, it is desirable to split the st,ems. 
For example, instead of placing all values whose ten's digit is 4 in the same 
"bucket," the stem 4 is repeated twice; all values 40-44 are put in the bucket 
corresponding to the first stem and all values 45-49 are put in the bucket 
corresponding to the second stem. This approach is shown in the stem and 
leaf plot of Figure 3.6. Other variations are also possible. • 

H istograms Stem and leaf plots are a type of h istogram, a plot that dis­
plays the distribution of values for attributes by dividing the possible values 
into bins and showing the number of objects that fall into each bin. For cate­
gorical data, each value is a bin. If this results in too many values, t hen values 
are combined in some way. For continuous attributes, the range of values is di­
vided into bins-typically, bu t not necessarily, of equal width-and the values 
in each bin are counted. 



112 C ha pter 3 Exploring Data 

43 44 44 44 45 46 46 46 46 47 47 48 48 48 48 48 49 49 49 49 49 49 50 
50 50 50 50 50 50 50 50 50 51 51 51 51 51 51 51 51 51 52 52 52 52 53 
54 54 54 54 54 54 55 55 55 55 55 55 55 56 56 56 56 56 56 57 57 57 57 
57 57 57 57 58 58 58 58 58 58 58 59 59 59 60 60 60 60 60 60 61 61 61 
61 61 61 62 62 62 62 63 63 63 63 63 63 63 63 63 64 64 64 64 64 64 64 
65 65 65 65 65 66 66 67 67 67 67 67 67 67 67 68 68 68 69 69 69 69 70 
71 72 72 72 73 74 76 77 77 77 77 79 

4 

5 

Figure 3.4. Sepal length data from the Iris data set. 

34444566667788888999999 
000000000011 1111111222234444445555555666666777777778888888999 

6 000000 111111222233333333344444445555566777777778889999 
7 0122234677779 

Figure 3.5. Stem and leaf plot for the sepal length from the Iris data set. 

4 3444 
4 566667788888999999 
5 00000000001 1111111122223444444 
5 5555555666666777777778888888999 
6 00000011111122223333333334444444 
6 5555566777777778889999 
7 0122234 
7 677779 

Figure 3.6. Stem and leaf plot for the sepal length from the Iris data set when buckets corresponding 
to digits are split. 

Once the counts are available for each bin, a bar plo t is constructed such 
that each bin is represented by one bar a nd the area of each bar is proportional 
to the number of values (objects) that fall into the corresponding range. If all 
intervals are of equal width, then all bars are the same width and the height 
of a bar is proportional to the number of values in the corresponding bin. 

Example 3.8. Figure 3.7 shows histograms (wit h 10 bins) for sepal length, 
sepal width, petal length, and petal width. Since the shape of a histogram 
can depend on the number of bins, histograms for the same data, but with 20 
bins, are shown in Figure 3.8. • 

There are variations of the histogram plot. A r elative (frequen cy) his­
togra m replaces t he count by the relative frequency. However , this is just a 

3 .3 Visualization 113 

(a) Sepal lengLh. (b) Sepal width. (c) Petal length. (d) Petal width. 

Figure 3.7. Histograms of four Iris attributes (10 bins). 

(a) Sepal length. (b) Sepal width. (c) Petal length. (d) Petal width. 

Figure 3.8. Histograms of four Iris attributes (20 bins). 

change in scale of the y axis, and the shape of the histogram does not change. 
Another common variation, especially for unordered categorical data, is the 
P aret o histogr am, which is the same as a normal histogram except that the 
categories are sorted by count so that the count is decreasing from left to right. 

T wo-Dimen siona l Histogr ams Two-dimensional histograms are also pos­
sible. Each attribute is divided into intervals and the two sets of intervals define 
two-dimensional rectangles of values. 

Exam ple 3.9 . F igure 3.9 shows a two-dimensional histogram of petal length 
and petal width. Because each a ttribute is split into three bins, there are nine 
rectangular two-dimensional bins. The height of each rectangular bar indicates 
the number of objects (flowers in this case) t hat fall into each bin. Most of 
the flowers fall into only three of the bins-those along the diagonal. It is not 
possible to see this by looking at the one-dimensional distributions. • 



114 Chapter 3 Exploring Data 

c 
" 8 

Figure 3.9. Two-dimensional histogram of petal length and width in the Iris data set. 

While two-dimensional histograms can be used to discover interesting facts 
about how the values of two attributes co-occur, they are visually more com­
plicated. For instance, it is easy to imagine a situation in which some of the 
columns are hidden by others. 

Box Plots Box plots are a nother method for showing the distribution of the 
values of a single numerical attribute. Figure 3.10 shows a labeled box plot fo r 
sepal length. The lower and upper ends of the box indicate t.he 25th and 75th 

percentiles, respectively, whi le t he line inside the box indicates the value of the 
501h percentile. The top and bottom li nes of the tai ls indicate the 10th and 
goth percentiles. Outliers are shown by "+" marks. Box plots are relatively 
compact, and thus, many of them can be shown on the same plot. Simplified 
versions of the box plot, which take less space, can also be used. 

Example 3.10. The box plots for the first four attributes of the Iris data 
set are shown in Figure 3.11. Box plots can also be used to compare how 
attributes vary between different classes of objects, as shown in Figure 3.12. 

• 

Pie Chart A pie chart is similar to a histogram, but is typically used with 
categorical attributes that have a relatively small number of values. Instead of 
showing the relative frequency of different values with the area or height of a 
bar, as in a histogram, a pie chart uses the relative area of a circle to indicate 
relative frequency. Although pie charts are common in popular articles, they 

~ 
' ! 
! 

_j_ 

-Outlier 

- 90"' percentile 

+--- 75tt1 percen1ite 

+--- soth percentile 

+---- 25th percentlle 

+---- , 01h percenlilo 

Figure 3.1 0. Description of 

box plot for sepal length. 

I: 
~ 

$ 
l· + 

c;!;. 
..... ~s-c.o- ...... ~~"""-' 

3.3 Visualization 115 

-,.. 

6 ~ I. 

0 ! . + 
j 3 ~ ~ e 

Sepal Length SOQIIWktlh Petal Leng4h Petal Width 

Figure 3.11. Box plot for Iris aMributes. 

,: $ ·~ T 

$ f: 
j_ 8 

" 
j_ 

J $ J: $ 
~ 

..L $ 
~l~ ..... - ...... """""",.,.... ....... S..l ...... s-.-"-> -'--CIII' ,..,.._ 

(a.) Sctosa.. (b) Versicolour. (c) Virginica.. 

Figure 3.12. Box plots of attributes by Iris species. 

are used less frequently in technical publications because the size of relative 
areas can be hard to judge. Histograms are preferred for technical work. 

Example 3.11. Figure 3.13 displays a pie chart t hat shows the distribu tion 
of Iris species in the Iris data set. In this case, all three Hower types have the 
same frequency. • 

Percentile Plots and Empirical Cumulative Distribut ion Functions 
A type of diagram that shows the distributiqn of the data more quantitatively 
is the plot of an empirical cumulative d istribution function. While this type of 
plot may sound complicated, the concept is straightforward. For each value of 
a statistical distribution, a cumulative distribution function (CDF) shows 



116 Chapter 3 Exploring Data 

Versicolour 

Figure 3.13. Distribution of the types of Iris llowers. 

the probability that a point is less than that value. For each observed value, an 
em pirical cumulat ive distrib ution function (ECDF) shows the fraction 
of points that are less than this value. Since the number of points is finite, the 
empirical cumulative distribution function is a step function. 

Example 3.12. Figure 3.14 shows the ECDFs of the Iris attributes. The 
percentiles of an attribute provide similar information. Figure 3.15 shows the 
p ercentile p lots of the four continuous attributes of the Iris data set from 
Table 3.2. The reader should compare these figures with the histograms given 
in Figures 3.7 and 3.8. • 

Scatter Plots Most people are familiar with scatter plots to some extent, 
and they were used in Section 2.4.5 to illustrate linear correlation. Each data 
object is plotted as a point in the plane using the values of the two attributes 
as x and y coordinates. It is assumed that the attributes are either integer- or 
real-valued. 

Example 3.13. Figure 3.16 shows a scatter plot for each pair of at tributes 
of the Iris data set. The different species of Iris are indicated by different 
markers. The arrangement of the scatter plots of pairs of attribu tes in this 
type of tabular format, which is known as a scatter p lot matrix, provides 
an organized way to examine a number of scatter plots simultaneously. • 

3.3 Visualization 117 

(a) Sepal Length. (b) Sepal Width. 

~0.5 

'·' 

(c) Petal Length. (d) Petal Width. 

Figure 3.14. Empirical CDFs of four Iris attributes. 

·-
Figure 3.15. Percentile plots for sepal length, sepal width, petal length, and petal width. 



118 C hapter 3 Exploring Data. 

8 Cllfo soo 

5 oorf' 

\ 0 "' ~0 "' 0 u 
<II u ·c: <B"tj. 
0 '§ 'e> '.P m o; 

CfJ ~ > )( )()(' ..,. . ·~-- + t .. 0 -~ .... .. + 
ol 0 ij: X 

)C)(X'f' )( 

co " "' "' Ill V U1 M ll') C\1 "' " C\1 

" (') N 

t.n6uat tedas 41P!M tedas 416ua1 telad 

~ 
o ~<eo 
afl t 
~~ ~ 

+ i 0 + "':!: 

Ill C\1 Ill - Ill 0 
C\1 0 

41P!M 1e1ad 

N 

co 

1'-.t:: 
0, 
c 
Q) 

"'= co a. 
Q) 

"'"' 

3.3 Visualization 119 

There are two main uses for scatter plots. First , they graphically show 
the relationship between two attributes. In Section 2.4.5, we saw how scatter 
plots could be used to judge the degree of linear correlation. (See Figure 2.17.) 
Scatter plots can also be used to detect non-linear relationships, either directly 
or by using a scatter plot of the transformed a t tri butes. 

Second , when class labels are ava ilable, they can be used to investigate the 
degree to which two attri butes separate the classes. If is possible to draw a 
line (or a more complicated curve) that divides the plane defined by the two 
attributes into separate regions that contain mostly objects of one class, then 
it is possible to construct an accurate classifier based on the specified pair of 
attributes. If not , then more attributes or more sophisticated methods are 
needed to build a classifier. In Figure 3.16, many of the pairs of attributes (for 
example, petal width and petal length) provide a moderate separation of the 
Iris species. 

Example 3.14. There are two separate approaches for displaying three at­
tributes of a data set with a scatter plot. First, each object can be displayed 
according to the values of three, instead of two a ttribu tes. Figure 3.17 shows a 
three-dimensional scatter plot for three attributes in the Iris data set. Second, 
one of the attributes can be associated with some characteristic of the marker, 
such as its size, color, or shape. Figure 3.18 shows a plot of three attributes 
of the Iris data set, where one of the attributes, sepal wid th , is mapped to the 
size of t he marker. • 

Extending Two- and T hree-Dimension a l P lots As illustrated by Fig­
ure 3.18 , two- or three-dimensional plots can be extended to represent a few 
additional attributes. For example, scatter plots can display up to three ad­
ditional attributes using color or shading, size, and shape, allowing five or six 
dimensions to be represented. There is a need for caution, however. As the 
complexity of a visual representat ion of the data increases, it becomes harder 
fo r the intended audience to interpret the information. There is no benefit in 
packing six dimensions ' worth of information into a two- or three-dimensional 
plot, if doing so makes it impossible to understand. 

V isua liz ing Spa t io- t emporal D ata 

Data often has spatial or temporal attributes. For instance, the data may 
consist of a set of observations on a spatial grid , such as observations of pres­
sure on the surface of the Earth or t he modeled temperature a t various grid 
points in the simulat ion of a physical object. T hese observations can also be 



120 Chapter 3 Exploring Data 

2 

"' 1.5 g. 
" .J 

"iii c. 

" (/) 0.5 

0 
5 

. . 
··­.. 

. ·~ .. ' ... 

--~ • !C ::. • • 

+ Setosa 
• Versicolour 

., Virginica 

,_ .. ~~ ..... , ..... .. ,.. .. 
. . x ... ";·r .. ·.,'-..••·r• ·-. +"""·J· : . 

. ,,{ · • ,. ·. ... · • -!< T "· . . 

" ,l; • ~ ..• , • . • .. t-:ta ... ..; .. . . •. ~ ·:: .. ~:=- · ~: + +il+, 

Sepal Width 
3 

Figure 3.17. Three-dimensional scatter plot of sepal width, sepal length, and petal width. 

2.5 

2 

~ 1,5 

s: 
"iii 
;;; 
0.. 

0.5 

• Setosa 
• Versicolour 
"' Virginlca 

o,~----~2------~3~-----L------L5------~6------~ 

Petal Length 

Figure 3.1 B. Scatter plot of petal length versus petal width, with the size of the marker indicating sepal 
width. 

3.3 Visualization 121 

Figure 3.19. Contour plot of SST for December 1998. 

made at various points in time. In addition, data may have only a temporal 
component , such as time series data that gives the daily prices of stocks. 

Contour Plots For some three-dimensional data, two attributes specify a 
position in a plane, while the third has a continuous value, such as temper­
ature or elevation . A useful visualization for such data is a contour plot , 
which breaks the plane into separate regions where the values of the t hird 
att ribute (temperat ure, elevation) are roughly the same. A common example 
of a contour plot is a contour map that shows the elevation of land locations. 

Example 3.15. F igure 3.19 shows a contour plot of the average sea surface 
temperature (SST) for December 1998. The land is arbitrari ly set to have a 
temperat ure of 0°C. In many contour maps, such as that of F igure 3.19, the 
contour lines that separate two regions are labeled with the value used to 
separate the regions. For clarity, some of these labels have been deleted. • 

Surface Plots Like contour plots, s u rface plots use two attributes for the 
:r and y coordinates. The third at tribute is used to indicate the height above 



122 Chapter 3 Exploring Data 

(a) Set of 12 points. {b) Overall density function-surface 
plot. 

Figure 3.20. Density of a set of 12 points. 

the plane defined by the first two attribu tes. While such graphs can be useful, 
they require that a value of the third attribute be defined for all combinations 
of values for the first two attributes, at least over some range. Also, if the 
surface is too irregular, then it can be difficult to see all the information, 
unless the plot is viewed interactively. Thus, surface plots are often used to 
describe mathematical functions or physical surfaces that vary in a relatively 
smooth manner. 

Example 3.16. Figure 3.20 shows a surface plot of t he density around a set 
of 12 points. This example is further discussed in Section 9.3.3. • 

Vector Field P lots In some data, a characteristic may have both a mag­
nitude and a direction associated with it. For example, consider the flow of a 
substance or the change of density with location. In these situations, it can be 
useful to have a plot that displays both direction and magnitude. This type 
of plot is known as a vector p lot. 

Example 3 .17. Figure 3.21 shows a contour plot of the density of the two 
smaller density peaks from Figure 3.20(b), annotated with the density gradient 
vectors. • 

Lower-Dimensiona l Slices Consider a spatio-temporal data set that records 
some quantity, such as temperature or pressure, at various locations over time. 
Such a data set has four dimensions and cannot be easily displayed by the types 

3.3 Visualization 123 

\ \_..,\· ··\ "''l · · ·l . . . l. I \ \ .. \ .. , ."I . I . ' 

I 1 -- 1 ... ). I I ' 

I I 

Figure 3.21. Vector plot of the gradient (change) in density for the bottom two density peaks of Figure 

3.20. 

of plots that we have described so far. However, separate "slices" of the data 
can be displayed by showing a set of plots, one for each month. By examining 
the change in a particular area from one month to another, it is possible to 
notice changes that occur, including those that may be due to seasonal factors. 

Example 3.18. The underlying data set for this example consists of the av­
erage monthly sea level pressure (SLP) from 1982 to 1999 on a 2.5° by 2.5° 
latitude-longitude grid. T he twelve monthly plots of pressure for one year are 
shown in F igure 3.22. In this example, we are interested in slices for a par­
ticular month in the year 1982. More generally, we can consider slices of the 
data along any arbitrary dimension. • 

Animat ion Another approach to dealing with s lices of data., whet her or not 
t ime is involved, is to employ animation. The idea is to display successive 
two-dimensional slices of the data. The human visual system is well suited to 
detecting visual changes and can often notice changes that might be difficult 
to detect in anot her manner. Despite the visual appeal of animation, a set of 
still plots, such as those of Figure 3.22, can be more useful since this type of 
visualization allows the information to be studied in arbitrary order and for 
arbitrary amounts of time. 



124 Cha pter 3 Exploring Data 

January February March 

April May June 

July August September 

October November December 

Figure 3.22. Monthly plots of sea level pressure over the 12 months of 1982. 

3. 3.4 Visualizing Higher-Dime nsional D ata 

This section considers visualization techniques that can display more than the 
handful of dimensions that can be observed with the techniques just discussed. 
However, even these techniques are somewhat limited in t hat they only show 
some aspects of the data. 

Matrices An image can be regarded as a rectangular array of pixels, where 
each pixel is characterized by its color and br ightness. A data matrix is a 
rectangular array of values. Thus, a data matrix can be visualized as an image 
by associating each entry of t he data matrix with a pixel in the image. The 
brightness or color of the pixel is determi ned by the value of the corresponding 
entry of the matrix. 

Figure 3.23. Plot of the Iris data matrix where 
columns have been standardized to have a mean 
of 0 and standard deviation ol 1. 

3.3 Visualization 125 

Figure 3.24. Plot of the Iris correlation matrix. 

There are some important practical considerations when visualizing a data 
matrix. If class labels are known, then it is useful to reorder the data matrix 
so that all objects of a class are together. This makes it easier, for example, to 

detect if all objects in a class have similar attribute values for some attributes. 
If different attribut es have different ranges, then the attributes are often stan· 
dardized to have a mean of zero and a standard deviation of 1. This preveuts 
the attribute with the largest magnitude values from visually dominating tlte 
plot. 

Example 3 .19 . Figure 3.23 shows t he standardized data matrix for the lris 
data set. The first 50 rows represent lris flowers of the species Setosa, the next 
50 Versicolour, and the last 50 Virginica. The Setosa flowers have petal width 
and length well below the average, while the Versicolour flowers have petal 
width and length around average. The Virginica flowers have petal width and 
length above average. • 

It can also be useful to look for structure in the plot of a proximity matrix 
for a set of data objects. Again, it is useful to sort the rows and columns of 
the similarity matrix (when class labels are known) so that all the objects of a 
class are together. This allows a visual evaluation of the cohesiveness of eaclt 
class and its separation from other classes. 

Example 3 .20. Figure 3.24 shows the correlation matrix for the Iris data 
set. Again, the rows and columns are organized so tha t all the flowers of a. 
particular species are together. The flowers in each group are most simi lar 



126 C ha p ter 3 Exploring Data 

to each other, but Versicolour and Virginica are more similar to one another 
than to Setosa. • 

If class labels are not known, various techniques (matrix reordering and 
seriation) can be used to rearrange the rows and columns of the similarity 
matrix so that groups of highly similar objects and attributes are together 
and can be visually identified. Effectively, t his is a simple kind of clustering. 
See Section 8.5.3 for a discussion of how a proximity matrix can be used to 
investigate the cluster structure of data. 

Para lle l C oord ina t es Parallel coordinates have one coordinate axis for 
each attribute, but the different axes are parallel to one other instead of per­
pendicular, as is trad itional. Furthermore, an object is represented as a line 
instead of as a point. Specifi~:ally, the value of each attribute of an object is 
mapped to a point on the coordinate axis associated with that attribute, and 
these points are then connected to form the line that represents t he object. 

It, might be feared that t his would yield quite a mess. However, in many 
cases, objects tend to fall into a small number of groups, where the points in 
each group have simi lar values for their at tributes. If so, and if t he number of 
data objects is not too large, then the resul ting parallel coordinates plot can 
reveal interesting patterns. 

Example 3.21. Figure 3.25 shows a parallel coordinates plot of the four nu­
merical attributes of the Iris data set. T he lines representing objects of differ­
ent classes are distinguished by t heir shadjng and the use of three different line 
styles-solid , dotted , and dashed. T he parallel coordinates plot shows that the 
classes are reasonably well separated for petal width and petal length, but less 
well separated for sepal lengt h and sepal width. Figure 3.25 is another parallel 
coordinates plot of the same data, but with a different ordering of the axes. • 

One of the drawbacks of parallel coordinates is that the detection of pat­
terns in such a plot may depend on the order. For instance, if Jines cross a 
lot, the picture can become confusing, and thus, it can be desirable to order 
the coordinate axes to obtain sequences of axes with less crossover. Compare 
Figure 3.26, where sepal width (the at tribute t hat is most mixed) is at the left 
of the figure, to Figure 3.25, where this attribute is in the middle. 

Sta r Coor dina t es a nd C h ernoff Faces 

Another approach to displaying multidimensional data is to encode objects 
as g lyphs or icons- symbols that impart information non-verbally. More 

~ 
2 
"' E 
·~ 4 

"' .!?. 

"' " 'iii 
> 

Sepal Lenglh Sepal Widlh 

3.3 Visualization 127 

- - -Selosa 
- - - Verslcolour 
...... · Virginica 

Pelal Lenglh 

Figure 3.25. A parallel coordinates plot ol the four Iris attributes. 

- - - Selosa 
- - - Verslcolour 
. ... . .. -Virglnica 

6 

Sepal Widlh Sepal Lenglh Pelal Lenglh Pelal Widlh 

Figure 3.26. A parallel coordinates plot of the four Iris at1ributes with the at1ributes reordered to 
emphasize similarities and dissimilarities of groups. ' 



128 Chapter 3 Exploring Data 

specifically, each atlribu te of an objecl is mapped to a particular feature of a 
g,lyph, so that t he value of the a ttribute determines the exact nature of the 
feature . Thus, at a glance, we can distinguish how two objects differ. 

St ar coordinates are one example of this approach. This technique uses 
one axis for each attribute. T hese axes a ll radiate from a center point, like t he 
spokes of a wheel , and are evenly spaced. Typically, all the attribute values 
are mapped to the range [0, 1) . 

An object is mapped onto this star-shaped set of axes using the following 
process: Each attribute value of the object is converted to a fraction that 
represents its distance between the minimum and maximum values of the 
attribute. T his fraction is mapped to a point on the axis corresponding to 
this attri bute. Each point is connected with a line segment to the point on 
the axis preceding or following its own axis; this forms a polygon. The size 
and shape of this polygon gives a visual description of the attribute values of 
the object. For ease of interpretation, a separate set of axes is used for each 
object. ln other words, each object is mapped to a polygon. An example of a 
star coordinates plot of flower 150 is given in Figure 3.27(a) . 

It is also possible to map the values of features to those of more familiar 
objects, such as faces. Thjs technique is named Che r noff faces for its creator, 
Herman Chernoff. ln this technique, each a ttribute is associated with a specific 
feature of a face , and the attribute value is used to determine the way that 
the facial fea t ure is expressed. Thus, the shape of the face may become more 
elongated as the value of the corresponding data feature increases. An example 
of a Chernoff face for flower 150 is given in Figure 3.27(b). 

The program that we used to make this face mapped the features to the 
four features listed below. Other features of the face, such as width between 
the eyes and length of the mouth, are given default values. 

Data Feature 
sepal length 
sepal width 
petal length 
petal width 

Facial Feature 
size of face 
forehead/jaw relative arc length 
shape of forehead 
shape of jaw 

Example 3.22. A more extensive illustration of these two approaches to view­
ing mult idimensional data is provided by Figures 3.28 and 3.29, which shows 
the star and face plots, respectively, of 15 flowers from t he Iris data set. The 
first 5 flowers are of species Setosa, the second 5 are Versicolour , and the last 
5 a re Virginica. • 

3.3 Visualization 129 

(a) Star graph of Iris 150. (b) Chernoff face of Iris 150. 

Figure 3.27. Star coordinates graph and Chernoff face of the 150'h flower of the Iris data set. 

$$47~$ 
M ~ ~ ~ ~ 

~~$¢¢ 
101 102 103 t Q-4 tOS 

Figure 3.28. Plot of 15 Iris flowers using star coordinates. 

(Y) 0 ""' 0 <D 

e e e eJ e 
51 52 53 54 55 

e e e e e 
101 102 103 104 105 

Figure 3.29. A plot of 15 Iris flowers using Chernoff faces. 



130 Chapter 3 Exploring Data 

Despite the visual appeal of these sorts of diagrams, they do not scale well, 
and thus, they are of limited use for many data mining problems. Nonetheless, 
they may still be of use as a means to quickly compare small sets of objects 
that have been selected by other techniques. 

3 .3 .5 Do's and Don'ts 

To conclude this section on visualization, we provide a short list of visualiza­
tion do's and don'ts. While these guidelines incorporate a Jot of visualizat ion 
wisdom, they should not be followed blindly. As always, guidelines are no 
substitute for thoughtful consideration of the problem at hand. 

ACCE NT Principles The following are the ACCENT principles for ef­
fective graphical display put forth by D. A. Burn (as adapted by Michael 
Friendly): 

Apprehension Ability to correctly perceive relations among variables. Does 
the graph maximize apprehension of the relations among variables? 

Clarity Ability to visually distinguish all the elements of a graph. Are the 
most important elements or relations visually most prominent? 

Consistency Ability to interpret a graph based on similarity to previous 
graphs. Are the elements, symbol shapes, and colors consistent with 
their use in previous graphs? 

Efficien cy Ability to portray a possibly complex relation in as simple a way 
as possible. Are the elements of the graph economically used? Is the 
graph easy to interpret? 

Necessity The need for the graph, and the graphical elements. Is the graph 
a more useful way to represent the data than alternatives (table, text)? 
Are all the graph elements necessary to convey the relations? 

Truthfulness Ability to det ermine the true value represented by any graph­
ical element by its magnitude relative to the implicit or explicit scale. 
Are the graph elements accurately positioned and scaled? 

Tufte's Guidelines Edward R. Tufte has also enumerated the following 
principles for graphical excellence: 

3.4 OLAP and Multidimensional Data Analysis 131 

• Gra phical excellence is the well-designed presentation of interesting data­
a matter of substance, of statistics, and of design. 

• Graphical excellence consists of complex ideas communicated with clar­
ity, precision, and efficiency. 

• Graphical excellence is that which gives to the viewer the greatest num­
ber of ideas in the shortest time with the least ink in the smallest space. 

• Graphical excellence is nearly always multivariate . 

• And graphical excellence requires telling the trut h about the dat a .. 

3.4 OLAP and M ult idimension a l Data Analysis 

In this section, we investigate the techniques and insights that come from 
viewing data sets as multidimensional arrays. A number of database sys­
tems support such a viewpoint, most notably, On-Line Analytical Processing 
(OLAP) systems. Indeed, some of the terminology and capabilities of OLAP 
systems have made their way into spreadsheet programs that are used by mil­
lions of people. OLAP systems also have a strong focus on the interactive 
analysis of data and typically provide extensive capabilities for visualizing the 
data and generating summary statistics. For these reasons, our approach to 
multidimensional data analysis will be based on the terminology and concepts 
common to OLAP systems. 

3.4.1 Representing Iris Data as a Mult id imensional Array 

Most data sets can be represented as a table, where each row is an object and 
each column is an attribute. In many cases, it is also possible to view t he data 
as a multidimensional array. We illustrate this approach by representing the 
Iris data set as a multidimensional array. 

Table 3.7 was created by discretizing the petal length and petal width 
attributes to have values of low, medium, and high and then counting the 
number of flowers from the Iris data set that have particular combina.tions 
of petal width, petal length, and species type. (For petal width, the cat­
egories low, medium, and high correspond ·to the intervals [0 , 0.75), [0.75, 
1. 75), [1. 75, oo), respectively. For petal length, the categories low, medium, 
and high correspond to the intervals [0, 2.5) , [2 .5, 5), [5, oo), respectively.) 



132 C ha pter 3 Exploring Data 

Table 3.7. 
type. 

Number of flowers having a particular combination of petal width, petal length, and species 

Petal Length Petal Width Species Type Count 
low low Setosa 46 
low medium Setosa 2 

medium low Setosa 2 
medium medium Versicolour 43 
medium high Versicolour 3 
medium high Virginica 3 

high medium Versicolour 2 
high medium Virginica 3 
high high Versicolour 2 
high high Virginica 44 

Petal 
Width 

Vi rginica/ / / / 
sicolour/ / / / Ver 

Se tosa / .. ...... ~- '- .. ---/---- · ···- v 
high 

mediu m 

low 

Petal 
Width 

0 

0 

' 0 

..c. 

.Ql 

..c. 

0 

·o 
-

·' 
2 

E 
::J 

'6 
Ql 

E 

, • / 
.0 · / .. ··,· v . /L 2 

// ~ •.;1. 

·lli 
. - : / v" 
46 . / Re 

/ q 

Figure 3.30. A multidimensional data representation for the Iris data set. 

3.4 OLAP and Multidimensional Data Analysis 133 

Table 3.8. Cross-tabulation of flowers accord· 
ing to petal length and width for flowers of the 
Setosa species. 

Width 
low medium high 

..c low 46 2 0 .. 
~ medium 2 0 0 s: 
Cl) high 0 0 0 ....:l 

Table 3.1 0. Cross-tabulation of flowers ac­
cording to petal length and width for fl owers of 
the Virginica species. 

Wid th 
low medium high 

..c ... low 0 0 0 
bl) medium 0 0 3 s:: 
Cl) high 0 3 44 ....:l 

Table 3.9. Cross-tabulation of flowers accord· 
ing to petal length and width for flowers of the 
Versicolour species. 

Width 
low medium high 

..c low 0 0 0 
bD medium 0 43 3 s:: 
Cl) high 0 2 2 ....:l 

Empty combinations-those combinations that do not correspond to at least 
one flower-are not shown. 

The data can be organized as a multidimensional array with three dimen­
sions corresponding to petal width, petal length, and species type, as illus­
trated in Figure 3.30. For clarity, slices of this array are shown as a set of 
three two-dimensional tables, one for each species-see Tables 3.8, 3.9, and 
3.10. The information contained in both Table 3.7 and Figure 3.30 is the 
same. However , in t he multidimensional representation shown in Figure 3.30 
(and Tables 3.8, 3.9, and 3.10), the values of the attributes- petal width, petal 
length, and species type--are array indices. 

What is important are the insights can be gained by looking at data from a 
multidimensional viewpoint. Tables 3.8, 3.9, and 3.10 show that each species 
of lris is characterized by a different combination of values of petal length 
and width. Setosa Bowers have low width and length, Yersicolour flowers have 
medium width and length, and Virginica flowers have high width and length. 

3.4.2 M ult id im en sional Data: The .General Case 

The previous sect ion gave a specific example of using a multidimensional ap­
proach to represent and analyze a familiar data set. Here we describe the 
general approach in more detail. 



134 Chapter 3 Exploring Data 

The starting point is usually a tabular representation of the data, such 
as that of Table 3.7, which is called a fact table. Two steps are necessary 
in order to represent data as a multidimensional array: identification of the 
dimensions and identification of an attribute that is the focus of the analy­
sis. The dimensions are categorical attributes or, as in the previous example, 
continuous attributes that have been converted to categorical attributes. The 
values of an attribute serve as indices into t he array for the dimension corre­
sponding to the attribute, and the number of attribute values is the size of 
that dimension . In the previous example, each attribute had three possible 
values, and thus, each dimension was of size three and could be indexed by 
three values. This produced a 3 x 3 x 3 multidimensional array. 

Each combination of attribute values (one value for each different attribute) 
defines a cell of the multidimensional array. To illustrate using the previous 
example, if petal lengt h = low, petal width = medium, and species = Setosa, 
a specific cell containing the value 2 is identified. That is, there are only two 
flowers in the data set that have the specified attribute values. Notice that 
each row (object) of the data set in Table 3.7 corresponds to a cell in the 
multidimensional array. 

The contents of each cell represents the value of a target quantity (target 
variable or attribute) that we are interested in analyzing. In the Iris example, 
the target quantity is the number of flowers whose petal width and length 
fall within certain limits. T he target attribute is quanti tative because a key 
goal of multidimensional data analysis is to look aggregate quant ities, such as 
totals or averages. 

The fo llowing summarizes the procedure for creating a multidimensional 
data representation from a data set represented in t abular form. First, identify 
t.he categorical attributes to be used as the dimensions and a quantitative 
attribute to be used as the target of the analysis. Each row (object) in the 
table is mapped to a cell of the multidimensional array. The indices of the cell 
are specified by the values of the attributes that were selected as dimensions, 
while the value of the cell is the value of the target attribute. Cells not defined 
by t.he data are assumed to have a value of 0. 

Example 3.23. To further illustra te the ideas just discussed, we present a 
more traditional example involving the sale of products.The fact t able for t his 
example is given by Table 3.11. The dimensions of t he multidimensional rep­
resentation are the product ID, location, and date attributes, while the target 
attribute is the revenue. Figure 3.31 shows the multidimensional representa­
tion of this data set. This larger and more complicated data set will be used 
to illustrate additional concepts of multidimensional data analysis. • 

3.4 OLAP and Multid imensional Data Analysis 135 

3.4.3 Analyzing Mul t idimensional Data 

In th is section, we describe different multidimensional analysis techniques. Jn 
particular, we discuss the creation of data cubes, and related operations, such 
as slicing, dicing, dimensionality reduction, roll-up, and drill down. 

Data Cubes: Computing Aggregate Quantities 

A key motivation for taking a multidimensional viewpoint of data is the im­
portance of aggregating data in various ways. In the sales example, we might 
wish to find t.he total sales revenue for a specific year and a specific product. 
Or we might wish to see the yearly sales revenue for each location across all 
products. Computing aggregate totals involves fixing specific values for some 
of the attributes that are being used as dimensions and then summing over 
all possible values for the attributes that make up the remaining dimensions. 
There are other types of aggregate quantities that are also of interest, but for 
simplicity, this discussion will use totals (sums). 

Table 3.12 shows the result of summing over all locations for various com­
binations of date and product. For simplicity, assume that all the dates are 
within one year. If there are 365 days in a year and 1000 products , then Table 
3.12 has 365,000 entries (totals) , one for each product-data pair. We could 
also specify the store location and date and sum over products, or specify the 
location a.nd product and sum over all dates. 

Table 3.13 shows the marg inal totals of Table 3.12. These totals are the 
result of further summing over either dates or products. In Table 3.13, the 
total sales revenue due to product 1, which is obtained by summing across 
row 1 (over all dates), is $370,000. T he total sales revenue on January 1, 
2004, which is obtained by summing down column 1 (over all products), is 
$527,362. The total sales revenue, which is obtained by summing over all rows 
and columns (all t imes and products) is $227,352,1 27. All of these totals are 
for all locations because the entries of Table 3.13 include all locations. 

A key point of this example is that there are a number of different totals 
(aggregates) that can be computed for a mul tidimensional array, depending on 
how many attributes we sum over. Assume that there are n dimensions and 
that the ith dimension (attribute) has si possible values. There are n different 
ways to sum only over a single attribute. If we sum over dimension j, then we 
obtain s 1 * · · · * Sj-1 * Sj+J * · · · * sn totals, 9ne for each possible combination 
of attribute values of then - 1 other attributes (dimensions). The totals that 
result from summing over one attribute form a multidimensional array of n -1 
dimensions and there are n such arrays of totals. In the sales example, there 



136 Chapte r 3 Exploring Data 

Table 3.11. Sales revenue of products (in dollars) for various locations and limes. 

Product lD Location Date Revenue 

Minneapolis Oct. 18, 2004 $250 
Chicago Oct. 18, 2004 $79 

Paris Oct. 18, 2004 301 

27 Minneapolis Oct. 18, 2004 $2,321 
27 Chicago Oct. 18, 2004 $3,278 

27 Paris Oct. 18, 2004 $1,325 

Date 

Product ID 

Figure 3.31. Munidimensional data representation for sales data. 

3.4 OLAP and Mul tid imensional Data Analysis 137 

Table 3.12. Totals that result from summing over all locations lor a fixed lime and product. 

date 
Jan 1, 2004 Jan 2, 2004 Dec 31, 2004 

Q 
1,001 $987 $891 

.... 

.... 
u 
;::l 

"0 27 $10,265 $10,225 $9,325 0 ... 
0. 

Table 3.13. Table 3.12 wilh marginal lotals. 

da te 
Jan 1, 2004 Jan 2, 2004 Dec 31, 2004 total 

Q 
$1,001 $987 $891 $370,000 

.... ... 
u 
;::l 

"0 27 $10,265 $10,225 $9,325 $3,800,020 0 ... 
0. 

total $527,362 $532,953 $631,221 $227,352,127 

are three sets of totals that result from summing over only one dimension and 
each set of totals can be displayed as a two-dimensional table. 

If we sum over two dimensions (perhaps start ing wit h one of the arrays 
of totals obtained by summing over one dimension), then we will obtain a 
multidimensional a rray of totals with n - 2 dimensions. T here wi ll be (~) 

distinct arrays of such to ta ls. For t he sales examples, there will be (~) = 3 
arrays of totals t hat result from s um m ing over location and product, location 
and time, or product and time. In general, summing over k dimensions yields 
G) arrays of totals, each with d imension n- k . 

A multidimensional representation of the data, together with all possible 
totals (aggregates), is known as a data cube. Despi te the name, the size of 
each dimension- the number of a ttribute values-does not need to be equal. 
Also, a data cube may have either more or fewer than three dimen~ions. More 
importantly, a data cube is a generalization of what is known in statistical 
terminology as a cross-tabulation. If marginal totals were added, Tables 
3.8, 3.9, or 3.10 would be typical examples of cross tabulations . 



138 C hapter 3 Exploring Data 

Dimension a lity Reduction and Pivoting 

The aggregation described in the last section can be viewed as a form of 
dimen sionality reduction. Specifically, the jth dimension is eliminated by 
summing over it. Conceptually, this collapses each "column" of cells in the lh 
dimension into a s ingle cell. For both the sales and Iris examples, aggregating 
over one dimension reduces the dimensionali ty of t he data from 3 to 2. If Sj 

is the number of possible values of the j th dimension, the number of cells is 
reduced by a factor of Sj . Exercise 17 on page 143 asks the reader to explore 
t.he difference between this type of dimensionali ty reduction and that of P CA. 

Pivoting refers to aggregating over all dimensions except two. The result 
is a two-d imensional cross tabulation with the two specified dimensions as the 
only remain ing dimensions. Table 3.13 is an example of pivoting on date and 
product. 

Slicing and Dicing 

These two colorful names refer to rather straight forward operations. Slicing is 
selecting a group of cells from the entire multidimensional array by specifying 
a speci fic value for one or more dimensions. Tables 3.8, 3.9, and 3.10 are 
three slices from the Iris set that were obtained by specifying three separate 
values for the species dimension. Dicing involves selecting a subset of cells by 
specifying a range of attribute values. This is equivalent to defining a subarray 
from the complete array. In practice, both operations can also be accompanied 
by aggregation over some dimensions. 

R oll-Up and D rill-Dow n 

In Chapter 2, attr ibute values were regarded as being "atomic" in some sense. 
However, th is is not always the case. In particular , each date has a number 
of properties associated with it such as the year , month, and week. The data 
can also be identified as belonging to a particular business quarter, or if the 
application relates to educat ion, a school quarter or semester . A location 
also has various properties: continent, country, state (province, etc.), and 
city. P roducts can also be divided into various categories, such as clothing, 
electronics, and furniture. 

Often these categories can be organized as a hierarchical tree or lattice. 
For instance, years consist of months or weeks, both of which consist of days. 
Locations can be divided into nations, which contain states {or other units 
of local government), which in turn contain cities. Likewise, any category 

3.5 Bibliographic Notes 139 

of products can be further subdivided. For example, the product category, 
furniture, can be subdivided into the subcategories, chairs, tables, sofas, etc. 

This hjerarchical structure gives rise to the roll-up and drill-down opera­
tions. To illustrate, starting with the original sales data, which is a multidi­
mensional array with entries for each date, we can aggregate {r oll up) the 
sales across all the dates in a month. Conversely, given a representation of the 
data where the t ime dimension is broken into months, we might want to split 
the monthly sales totals {drill down ) into daily sales totals. Of course, this 
requires that the underlying sales data be ava.ilable at a daily granularity. 

Thus, roll-up and drill-down operations are related to aggregation. No­
tice, however, that they differ from the aggregation operations discussed until 
now in that they aggregate cel ls within a dimension, not across the entire 
dimension. 

3.4.4 Final Comments on M ul t idimensiona l Data Analysis 

Multidimensional data analysis, in the sense implied by OLAP and related sys­
tems, consists of viewing the data as a multidimensional array and aggregating 
data in order to better analyze the structure of the data. For the Iris data, 
the differences in petal width and length are clearly shown by such an anal­
ysis. The analysis of business data, such as sales data, can also reveal many 
interesting patterns, such as profitable {or unprofitable) stores or products. 

As mentioned, there are various types of database systems that support 
the analysis of multidimensional data. Some of these systems are based on 
relational databases and are known as ROLAP systems. More specialized 
database systems that specifically employ a mul tidimensional data represen­
tation as their fundamental data model have a lso been designed. Such systems 
are known as MOLAP systems. In addition to these types of systems, statisti­
cal databases (SDBs) have been developed to store and analyze various types 
of statistical data, e.g., census and public health data, that are collected by 
governments or other large organizations. References to OLAP and SDBs are 
provided in the bibliographic notes. 

3.5 Bibliographic Notes 

Summary statistics are discussed in detail in most introductory statistics 
books, such as [92]. References for exploratory data analysis are the classic 
text by Thkey [104] and the book by Velleman and Hoaglin [105]. 

The basic visualization techniques are read ily available, being an integral 
part of most spreadsheets {Microsoft EXCEL [95]) , statistics programs (SAS 



140 Chapter 3 Exploring Data 

[99], SPSS 1102], R [96], and S-PLUS [98)), and mathematics software (MAT­
LAB [94] and Mathematica [93)) . Most of the graphics in this chapter were 
generated using MATLAB . The statistics package R is freely available as an 
open source software package from the R project. 

The literature on visualization is extensive, covering many fields and many 
decades. One of the classics of the field is the book by Thfte [103]. The book 
by Spence [101], which strongly influenced the visualization portion of this 
chapter, is a useful reference for information visualization-both principles and 
techniques. This book also provides a thorough discussion of many dynamic 
visualization techniques that were not covered in this chapter. Two other 
books on visualization that may also be of interest are those by Card et al. 
[87] and Fayyad et al. [89]. 

Finally, there is a great deal of information available about data visualiza­
tion on the World Wide Web. Since Web sites come and go frequently, the best 
strategy is a search using "information visualization," "data visualization," or 
"statistical graphics." However, we do want to single out for attention "The 
Gallery of Data Visualization," by Friendly [90] . The ACCENT Principles for 
effective graphical display as stated in this chapter can be found there, or as 
originally presented in the article by Burn [86] . 

There are a variety of graphical techniques that can be used to explore 
whether the distribution of the data is Gaussian or some other specified dis­
tribution. Also, there are plots that display whether the observed values are 
statistically significant in some sense. We have not covered any of these tech­
niques here and refer the reader to the previously mentioned statist ical and 
mathematical packages. 

Multidimensional analysis has been around in a variety of forms for some 
time. One of the original papers was a white paper by Codd [88], the father 
of relational databases. The data cube was introduced by Gray et al . [91], 
who described various operations for creating and manipulating data cubes 
within a relational database framework. A comparison of stat ist ical databases 
and OLAP is given by Shoshani [100]. Specific information on OLAP can 
be found in documentation from database vendors and many popular books. 
Many database textbooks also have general discussions of OLAP, often in the 
context of data warehousing. For example, see the text by Ramakrishnan and 
Gehrke [97]. 

B ibliography 
1861 D. A. Burn. Designing Effective Statistical Graphs. In C . R. Rao, editor, Handbook of 

Statistics 9. Elsevier/North-Holland, Amsterdam, The Netherlands, September 1993. 

3.6 Exercises 141 

1871 S. K. Card, J. D. MacK inlay, and B. Shneiderman, editors. Readings in Information 
Visualization: Using Vision to T hink. Morgan Kaufmann P ublishers, San Francisco, 
CA, January 1999. 

j88j E. F. Codd , S. B. Codd, and C . T. Smalley. Providing OLAP (On-line Analytical 
Processing) to User- Analysts: An IT Mandate. White Paper, E .F. Codd and Associates, 
1993. 

J89j U. M. Fayyad, G. G . Grinstein, and A. Wierse, editors. Information Visualization in 
Data Mining and Knowledge Discovery. Morgan Kaufmann Publishers, San Francisco, 
CA, September 2001. 

J90j M. Friendly. Gallery of Data Visualization. http:/ f www.math.yorku.caj SCSJ Gallery/, 
2005. 

[91 ) J. Gray, S. Chaudhuri, A. Bosworth , A. Layman, D. Reichart, M. Venkatrao, F . Pellow, 
and H. Pirahesh. Data Cube: A Relational Aggregation Operator Generalizing Group­
By, Cross-Tab, and Sub-Totals. Journal Data Mining and Knowledge Discovery, 1( 1): 
29-53, 1997. 

[92) B. W. Lindgren. Statistical Theory. CRC Press, January 1993. 
[93) Mathematica 5.1. Wolfram R esearch, Inc. http:/ fwww.wolfram.com/, 2005. 
l94j MATLAB 7.0. The Math Works, Inc. h ttp: / /www.mathworks.com, 2005. 
J95) Microsoft Excel 2003. Microsoft, Inc. h ttp: / fwww.microsoft.com/ , 2003. 
l96j R : A language and environment for statistical computing and graphics. The R Project 

for Statistical Computing. http:/ jwww.r-project.org/ , 2005. 
j97) R. Ramakrishnan and J. Gehrke. Database Management Systems. McGraw-Hill, 3rd 

edition, August 2002. 
l98j S-PLUS. Insightful Corporation. http:/ fww w.insightful.com, 2005. 
j99) SAS: Statistical Analysis System. SAS Institute Inc. http:/ jwww.sas.com/ , 2005. 
[lOOj A. Shoshani. OLAP and statistical databases: similarities and differences . In ?roc. 

of the Sixteenth ACM SJGACT·SIGMOD-SIGART Symp. on Principles of Database 
Systems, pages 185- 196. ACM Press, 1997. 

1101) R. Spence. Information Visualization. ACM P ress, New York, December 2000. 
J102) SPSS: Statistical Package fo r the Social Sciences. SPSS, Inc. http :/ jwww.spss.com/ , 

2005. 
1103) E. R . Thfte. The Visual Display of Quantitative Information. Graphics Press, Cheshire, 

CT, March 1986. 
J104) J. W . Thkey. Exploratory data analysis. Addison-Wesley, 1977. 

[105) P. Velleman and D . Hoaglin . The ABC's of EDA: Applications, Basics, and Computing 
of Exploratory Data Analysis. Duxbury, 1981. 

3 .6 E x ercises 

1. Obtain one of the data sets available at the UCI Machine Learning Repository 
and apply as many of the different visualization techniques described in the 
chapter as possible. The bibliographic notes and book Web site provide pointers 
to visualization software. 



142 C hapter 3 Exploring Data 

2. Identify at least two advantages and two disadvantages of using color to visually 
represent information. 

3. What are the arrangement issues that arise with respect to three-dimensional 
plots? 

4. Discuss the advantages and disadvantages of using sampling to reduce the num­
ber of data objects that need to be displayed. Would simple random sampling 
(without replacement) be a good approach to sampling? Why or why not? 

5. Describe how you would create visualizations to display information that de­
scribes the following types of systems. 

(a) Computer networks. Be sure to include both the static aspects of t he 
network, such as connectivity, and the dynamic aspects, such as traffic. 

(b) The distribution of specific plant and animal species around the world for 
a specific moment in time. 

(c) The use of computer resources, such as processor time, main memory, and 
disk, for a set of benchmark database programs. 

(d) The change in occupation of workers in a particular country over the last 
thirty years. Assume that you have yearly information about each person 
that also includes gender and level of education . 

Be sure to address the following issues: 

• Representation. How wi ll you map objects, attributes, and relation­
ships to visual elements? 

• Arra ngement. Are there any special considerat.ions that need to be 
taken into account with respect. to how visual elements are displayed? Spe­
cific examples might be tbe choice of viewpoint, the use of transparency, 
or the separation of certain groups of object.s. 

• Select ion. How will you handle a large number of attribut.es and data 
objects? 

6. Describe one advantage and one disadvantage of a stern and leaf plot with 
respect to a standard histogram. 

7. How might you address the problem that a histogram depends on the number 
and location of the bins? 

8. Describe how a box plot can give information about whether the value of an 
attribute is symmetrically distributed. What can you say about the symmetry 
of the distributions of the attributes shown in Figure 3.11? 

9. Compare sepal length, sepal width, petal length, and petal width, using Figure 
3.12. 

3.6 Exercises 143 

10. Comment on the use of a box plot to explore a data set with four attributes: 
age, weight, height , and income. 

11. Give a possible explanation as to why most of the values of petal length and 
width fall in the buckets along the diagonal in Figure 3.9. 

12. Use Figures 3.14 and 3.15 to identify a characteristic shared by the petal width 
and petal length attributes. 

13. Simple line plots, such as that displayed in Figure 2.12 on page 56, which 
shows two time series, can be used to effectively display high-dimensional data. 
For example, in Figure 2.12 it is easy to tell that the frequencies of the two 
t ime series are d ifferent. What characteristic of time series allows the effective 
visualization of high-dimensional data? 

14. Describe t he types of situations that produce sparse or dense data cubes. Illus­
trate with examples other than those used in the book. 

15. How might you extend the notion of multidimensional data analysis so that the 
target variable is a qualitative variable? In other words, what sorts of summary 
statistics or data visualizations would be of interest? 

16. Construct a data cube from Table 3.14. Is this a dense or sparse data cube? If 
it is sparse, identify the cells that empty. 

Table 3.14. Fact table for Exercise 16. 

Product ID Locat ion ID Number Sold 
1 1 10 

2 
2 

3 6 
1 
2 

5 
22 

17. Discuss the differences between dimensionality reduction based on aggregation 
and dimensionality reduction based on techniques such as PCA and SVD. 



I 

Classification: 
Basic Concepts, 
Decision Trees, and 
Model Evaluation 

4 

ClliMificatioo, wbich ;.. the tllllk of MOigning obj ccl8 to one of O<M:rt>l pr<:<ldincd 
ca.tego:riee1 is a pcrvnalve problem that enc:ompaaaoo many diverae o.pplicBtioDB. 
Ex.amp].., include detecting apam email m'""'ll.S"" baaed upon the measage 
header and content, categorizing cells as malignant or benign based upon the 
resul18 of MRI scans, lllld clBBBifying galaxies based upon their shapes (see 
Figure 4.1). 

(a) A spU:el seloxy. (b) AD olliptical gala>cy. 

FlgLn 4.1. Classificaion ol galuies. The images 818 from tha NASA web&te. 



146 Chapter 4 Classification 

Input 

Attribute set c:==:::) 
(x) 

Classification 
model 

Output 

Class label 
(y) 

Figure 4.2. Classification as the task of mapping an input attribute set x into its class label y. 

This chapter introduces the basic concepts of classification, describes some 
of the key issues such as model overfitting, and presents methods for evaluating 
and comparing the performance of a classification technique. While it focuses 
mainly on a technique known a.s decision tree inductio~ most of the discussion 
in this chapter is also applicable to other dassi£cation techniques, many of 
which are covered in Chapter 5. 

4.1 Preliminaries 

The input data for a classification task is a collection of records. Each record, 
also known as an instance or example, is characterized by a tnple (x, y), where 
xis the attribute set andy is a special attribute, designated as the class label 
(also known as category or target a ttribute). Table 4.1 shows a sample data set 
used for classifying vertebrates into one of the following categories: mammaL 
bird, fish, reptile, or amphibian. The attribute set includes properties of a 
vertebrate such as its body temperature, skin cover, method of reproduction, 
ability to fly, and ability to live in water. Although the attributes presented 
in Table 4.1 are mostly discrete, t he attribute set can also contain continuous 
features. The cl~ label, on the other hand, must be a discrete attribute. 
This is a key characteristic that distinguishes classification from regression, 
a predictive modeling task in which y is a continuous attribute. Regression 
techniques are covered in Appendix D . 

Definition 4.1 ( Classification). Classification is the task of learning a tar­
get function f that maps each att ribute set x to one of the predefined class 
labels y. 

The target function is also known informally as a classification model. 
A classification model is useful for the following purposes. 

Descriptive Modeling A classification model can serve as an explanatory 
tool to distinguish between objects of different classes. For example, it would 
be useful- for both biologists and others- to have a descriptive model that 

4.1 Preliminaries 147 

Table 4.1. The vertebrate data set. 

Name llody ~kin Uives Aquatic Aeria Ha> Hiber- <Jia<ti 
Temperature Cover Birth CreaturE> Creature Legs nates Label 

human warm-blooded hair yes yes mammal 
python cold-blooded scales ye• reptile 
salmon C'old-blooded scales yes fish 
whale warm-blooded hair yes yes mammal 
frog cold-blooded semi Y"S yes amphibian 
komodo cold-blooded scales yes reptile 
dragon 
bat warm-blooded hair yes yes yes yes mammal 
pigeon warm-blooded feathers yes yes bird 
cat warm-b!OCtded fu• yes yes mammal 
leopard cold-blooded scales yes yes no fish 
shark 
turtle cold-blooded scales semi yes reptile 
penguin warm-blooded feathers semi yes bird 
porcupine warm-blooded quills yes yes yes mammal 
eel cold-blooded scales ye> fish 
6a.lamander cold-blooded semi yes yo. amphibian 

summarizes the data shown in Table 4.1 and explains what features define a 
vertebrate as a mammal. reptile. bird. fish. or amphibian. 

Predictive Modeling A classification model can also be used to predict 
the class label of unknown records. As shown in Figure 4.2. a classification 
model cao he treated as a black box that automatically assigns a class label 
when presented with the attribute set of an unknown record. Suppose we are 
given the following characteristics of a creature known as a gila monster: 

We can use a classification model built from the data set shown in Table 4.1 
to determine the class to which the creature belongs. 

Classification techniques are most suited for predicting or describing data 
sets with binary or nominal categories. They axe less effective for ordinal 
categories (e.g., to classify a person as a member of high-. medium-, or low­
income group) because they do not consider the implicit order among the 
categories. Other forms of relationships, such as the subclas!HSuperclass re­
lationships an1ong categories (e.g. , humans and apes are primates, which in 



148 Chapter 4 Classification 

turn, is a subclass of mammals) are also ignored. The remainder of this chapter 
focuses only on binary or nominal class labels. 

4.2 G eneral Approach to Solving a Classification 
Problem 

A classification technique (or classifier) is a systematic approach to building 
classification models from an input data set. Examples include decision tree 
classifiers, rule-based classifiers, neural networks, support vector n1a.chlnes, 
and na·ive Bayes classifiers. Each technique employs a learning algorithm 
to identify a model that best fits the relationship between the attribute set and 
class label of the input data. The model generated by a learning algorithm 
should both fit the input data well and correctly predict the class labels of 
records it has never seen before. Therefore, a key objective of the learning 
algorithm is to build models with good generalization capability; i.e. , models 
that accurately predict the class labels of previously unknown records. 

Figure 4.3 shows a general approach for solving classification problems. 
F irst, a training set consisting of records whose class labels are known must 

Training Set 
., 

1 Yes Large 125K No 
2 No Medium 100K No 
3 No Small 70K No 
4 Yes Medium 120K No 
5 No Large 95K Yes 
6 No Medium 60K No 
7 Yes Large 220K No 
8 No Small 85K Yes 
9 No Medium 75K No 

10 No Small 90K Yes 

Test Set .. 
11 No Small 55K ? 
12 Yes Medium BOK ? 
13 Yes Large 110K ? 
14 No Small 95K ? 
15 No Large 67K ? 

Figure 4.3. General approach for building a classification model. 

4.2 Genera l Approach to Solving a Classification Problem 149 

Table 4.2. Confusion matrix for a 2-class problem. 

Predicted Class 
Class= 1 I Class= 0 

Actual I Class = 1 111 I ItO 
Class Class~ 0 01 00 

be provided. The training set is used to build a classification model , which is 
subsequently applied to the test set, which consists of records with unknown 
dass labels. 

Evaluation of the performance of a classification model is based on the 
counts of test records correctly and incorrectly predicted by the model. These 
counts are tabulated in a table known as a confusion mat rix. Table 4.2 
depicts the confusion matrix for a binary classification problem. Eacl1 entry 
hJ in this table denotes the number of records from class i predicted to be 
of class j. For instance, /01 is the number of records from class 0 incorrectly 
predicted as class 1. Based on the entries in the confusion matrix, the total 
number of correct predictions made by the model is (/11 + loo) and the total 
number of incorrect predictions is Uto +Jot). 

Although a confusion matrix provides the information needed to determine 
how well a classification model performs) sunrmarizing this inforn1ation with 
a single nutnber would tnake it more convenient to cotnpare the perforn1ance 
of different models. Tllis can be done using a performance metric such as 
accuracy, which is defined as follows: 

A Number of correct predictions 
ccuracy = Total number of predictions 

lu + loo (4.1) 
fu + Ito +lot + /oo · 

Equivalently, the performance of a model can be expressed in terms of its 
error rate, which is given by t-he following equation: 

Error rate = Number of wrong predictions = 110 + j 01 

Total number of predictions fu + ho + fot + loo · 
(4.2) 

Most classification algorithms seek models that attain the highest accuracy, or 
equivalently, the lowest error rate when applied to the t.est set. We will revisit 
the topic of model evn.luation in Section 4.5. 



150 Chapter 4 Classification 

4.3 Decision Tree Induction 

This section introduces a decision tree classifier, which is a simple yet widely 
used classification technique. 

4.3.1 How a Decision Tree Works 

To illustrate how classification with a decision tree works, consider a simpler 
version of the vertebrate classification problem described in the previons sec­
tion. Instead of classifying the vertebrates into five distinct groups of species, 
\'ole assign them to two categories: mammals and non-mammah~. 

Suppose a new species is discovered by scientists. How can we tell whether 
it is a mammal or a non-mammal? One approach is to pose a series of questions 
ahout the characteristics of the species. The first question we may ask is 
whether the species is cold- or warm-blooded. If it is cold-blooded, then it is 
definitely not a mammal. Otherwise, it is either a bird or a mammal. In the 
latter case, we need to ask a follow-up question: Do the femalt"s of the species 
give birth to their young? Those that do give birth are definitely mammals, 
while those that do not are likely to be non-mammals (with the exception of 
egg-laying mammals such as the platypus and spiny anteater). 

The previous example illustrates how we can solve a classification problem 
by asking a series of carefully crafted questions abont the attributes of the 
test record. Each time we receive an answer, a follow-up question is asked 
nntil we reach a conclnsion about the class label of the record. The series of 
questions and t heir possible answers can be organized in the form of a decision 
tree, which is a hierarchical structure consisting of nodes and directed edges. 
Figure 4.4 shows the decision tree for the mammal classification problem. The 
tree has three types of nodes: 

• A root node that has no incoming edges and zero or more outgoing 
edges. 

• Internal nodes, each of which has exactly one incoming edge and two 
or more outgoing edges. 

• Leaf or terminal nodes, each of which has exactly one incoming edge 
and no outgoing edges. 

In a decision tree, each leaf node is assigned a class label. The non­
terminal nodes 1 which indude the root and other intemal nodes, contain 
attribute test conditions to separate records that have different characteris­
tics. For example, the root node shown in Figure 4.4 uses the attribute Body 

4.3 Decision Tree Induction 151 

Internal 
node 

___ _ .- -·.\ ,' 

' Leal 

Root 
···- nOOe 

nodes 

Figure 4.4. A decision tllle for the mammal classification problem. 

Temperature to separate warm-blooded from cold-blooded vertebrates. Since 
all cold-blooded vertebrates ace non-mammals, a leaf node labeled Non-mammals 
is created as the right child of the root node. If the vertebrate is warm-blooded, 
a subsequent attribute, Gives Birth, is used to distinguish mammals from 
other warm-blooded creatures, which are most ly birds. 

Classifying a test record is straightforward once a decision tree has been 
constructed. Starting from the root node, we apply the test condition to the 
record and foUow the appropriate branch based on the outcome of the test. 
This will lead us either to another internal node, for which a new test condit ion 
is applied, or to a leaf node. The class label associated with the leaf node is 
then assigned to the record. As an illustration, Figure 4.5 traces the path in 
the decision tree that is used to predict the class label of a flamingo. The path 
terminates at a leaf node labeled Non-mammals. 

4.3.2 How to Build a Decision Tree 

In principle, there are exponentially many decision trees that can be con­
structed from a given set of attributes. While some of the t rees are more accu­
rate than others , finding the optimal tree is computationally infeasible because 
of the exponential size of the search space. Neverthelessf efficient algorithms 
have been developed to induce a reasonably accurate, albeit suboptimal, de­
cision tree in a reasona ble amount of time. These algorithms nsnally employ 
a greedy strategy that grows a decision tree by making a series of locally op-



152 Chapter 4 Classification 

--""'"' 

I 

: Non-
pnammals 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 

.,./"// 

Figure 4.5. Classifying an unlabeled vertebrate. The dashed lines represent the outcomes of applying 
various attribute test conditions on the unlabeled vertebrate. The vertebrate is eventually assigned to 
the Non-mammal class. 

timum decisions about which attribute to use for partitioning the data. One 
sucl1 algorithm is H unt's algorithm, which is the basis of many existing de­
cision tree induction algorithms, including ID3, C4.5, and CART. This section 
presents a high-level discussion of Hw1t's algorithm and illustrates some of its 
design issues. 

Hunt's Algorit hm 

In Hunt's algorithm, a decision tree is grown in a recursive fashion by parti­
tioning the training records into successively purer subsets. Let D, be the set 
of training records that are associated with node t and y = {YI, !J2, .. . , Yc} be 
the class labels. The following is a recursive definition of Hunt's algorithm. 

Step 1: If all the records in Dt belong to the same class y, , then t is a leaf 
node labeled as Yt· 

Step 2: If D, contains records that. belong to more than one class, an a t ­
tribute test condition is selected to partition the records into smaller 
subsets. A child node is created for each outcome of t.be test condi­
tion and the records in D, are distributed to the children based on the 
outcomes. The algorithm is then recnrsively applied to each cliild node. 

4.3 Decision Tree Induction 153 

T1d Home Manta I Annual Defaulted 
Owner Status Income Borrower 

1 Yes Single 125K No 
2 No Married 100K No 
3 No Single ?OK No 
4 Yes Married 120K No 
5 No Divorced 95K Yes 
6 No Married 60K No 
7 Yes Divorced 220K No 
8 No Single 85K Yes 
9 No Married 75K No 
10 No Single 90K Yes 

Figure 4.6. Training set for predicting borrowers who will default on loan payments. 

To illustrate how the algorithm works, consider the problem of predicting 
whether a loan applicant will repay her loan obligations or become delinquent, 
subsequently defaulting on her loan. A training set for this problem can be 
constructed by examining the records of previous borrowers. In the example 
shown in Fignre 4.6, each record contains the personal information of a bor­
rower a long with a class label indicating w hctber the borrower has defaulted 
on loan payments. 

The initial tree for the classification problem contains a single node with 
class label Defaulted = No (see Figure 4.7(a)), which means that most of 
the borrowers successfully repaid their loans. The tree, however, needs to be 
refined since the root node contains records from both classes. The records are 
subsequently divided into smaller subsets based on the outcomes of the Home 
Owner test condition, as shown in Figure 4.7(b). The justification for choosing 
this attribute test condition will be discussed later. For now, we will assume 
that this is the best criterion for splitting the data at this point. Hunt's 
algorithm is then applied recursively to each child of the root node. From 
the training set given in Fignre 4.6, not ice that all borrowers who are home 
owners successfully repaid their loans. The left child of the root is t herefore a 
leaf node laheled Defaulted = No (see Fignre 4.7(b)). For the right child, we 
need to continue applying the recursive step of Hunt's algorithm until all the 
records belong to the same class. The trees resnlting from each recursive step 
are shown in Figures 4. 7 (c) and (d). 



154 Chapter 4 Classification 

Defaulted = No I 

(a) (b) 

(c) (d) 

Figure 4.7. Hunt's algorithm for inducing decision trees. 

Hunt's algorithm will work if every combination of attribute values is 
present in the training data and each combination has a unique class label. 
These assumptions are too stringent for use in most practical situations. Ad­
ditional conditions are needed to handle the following cases: 

1. It is possible for some of the child nodes created in Step 2 to be empty: 
i.e., there are no records associated with these nodes. This can happen 
if none of the training records have the combination of attribute values 
associated with such nodes. In this case the node is declared a leaf 
node with the same class label as the majority class of training records 
associated with its parent node. 

2. In Step 2, if a ll the records associated with D, have identical attribute 
values (except for the class label), then it is not possible to split these 
reoords any further. In this case, the node is declared a leaf node with 
the same class label as the majority class of training records associated 
with this node. 

4.3 Decision Tree Induction 155 

Design Issues of Decision Tree Induction 

A learning algorithm for inducing decision trees must address the following 
two issues. 

1. How should the training records be split? Each recursive atep 
of the tree-growing process must select an attribute test condition to 
divide the records into smaller subsets. To implement this step, the 
algorithm must provide a method for specifying the test condition for 
different attribute types as well as an objective measure for evaluating 
the goodness of each test condition. 

2. How should the splitting procedure stop? A stopping condition is 
needed to terminate the tree-growing process. A possible strategy is to 
continue expanding a node until either all the records belong to the same 
clas.s or all the records have identical attribute values. Although both 
conditions are sufficient to stop any decision tree induction algorithm, 
other criteria can be imposed to allow the tree-growing procedure to 
terminate earlier. The advantages of early termination will be discussed 

later in Section 4.4.5. 

4.3.3 M ethods for Expressing Attribute Test Conditions 

Decision tree induction algorithms must provide a method for expressing an 
attribute test condition and its corresponding outcomes for different attribute 
types. 

Binary Attributes The test condition for a binary attribute generates two 
potential outcomes, as shown in Figure 4.8. 

Warm­
blooded 

Cold­
blooded 

Figure 4.8. Test condnion for binary attributes. 



156 Chapter 4 Classification 

Single Divorced 

(a) Mu~iway spiK 

OR 

{Married} {Single, {Single} {Married, 
Divorced} Divorced} 

Married 

OR 

{Single, 
Married} 

(b) Binary split {by grouping attribute values} 

Figure 4.9. Test conditions for nominal atlributes. 

{Divorced} 

Nominal Attributes Since a nominal attribute can have many values. its 
test condition can be expressed in two ways, as shown in Figure 4.9. For 
a multiway split (Figure 4.9(a)), the number of outcomes depends on the 
number of distinct values for the corresponding attribute. For example, if 
an attribute such as marital status has three distinct values-£ingle, married, 
or divorced-its test condition will produce a three-way split. On the other 
hand, some decision tree algorithms, such as CART, produce only binary splits 
by considering all 2k-l - 1 ways of creating a binary partition of/,; attribute 
values. Figure 4.9(b) illustrates three different ways of grouping the attribute 
values for marital status into two subsets. 

Ordinal Attributes Ordinal attributes can also produce binary or multi way 
splits. Ordinal attribute values can be grouped as loug as the grouping does 
not violate the order property of the attribute values. Figure 4.10 illustrates 
various ways of splitting training records based on the Shirt Size attribute. 
The groupings shown in Figures 4.10(a) and (b) preserve the order among 
the attribute values, whereas the grouping shown in Figure 4.10(c) violates 
th.is property because it combines the attribnte valnes Small and Large into 

{Small, 
Medium) 

4.3 Decision Tree Induction 157 

{Large, 
Extra Large) 

(a) 

{Small) {Medium, Large, 
Extra Large) 

(b) 

{Small, 
Large} 

Figu;e 4.10. Dille rent ways of grouping ordinal attribute values. 

{Medium. 
Extra Large} 

(c) 

the same partition wh.ile Medium and Extra Large are combined into another 
partition. 

Continuous Attributes For continuous attributes, the test condition can 
be expressed as a comparison test (A< v) or (A~ v) with binary outcomes, or 
a range query with outcomes of the form Vi ::; A < Vi+1 1 for i = 1, ... . k. The 

difference between these approaches is shown in Figure 4.11. For the binary 
case, the decisiou tree algorithm must consider all possible split positjons v, 
and it selects the one that produces the best partition. For the rnultiway 
split, the algorithm must consider all possible ranges of continuous values. 
One approach is to apply t he discretization strategies described in Section 
2.3.6 on page 57. After discretization, a uew ordinal value will be assigned to 
each discretized interval. Adjacent intervals can also be aggregated into wider 
ranges as long as the order property is preserved. 

(a) 

(10K, 25K} {25K, 50K} {50K, BOK) 

(b) 

Figure 4.11. Test condition for continuous aHributes. 



158 Chapter 4 Classification 

(a) (b) (c) 

Figure 4.12. Multiway 110rsus binary splits. 

4.3.4 Measures for Selecting the Best Split 

There are many measures that can be used to determine the best way to split 
the records. These measures are defined in terms of the class distribution of 
the records before and after splitting. 

Let p(i It) denote the fraction of records belonging to class i at a given node 
t. We sometiines omit the reference to node t and express the fraction as Pi· 

In a two-class problem, the class distribution at any node can be written as 
(Po, pi), where Pl = 1 -Po· To illust rate, consider the test conditions shown 
in Figure 4.12. The class distribution before splitting is (0.5, 0.5) because 
there are an equal number of records from each class. If we split the data 
using the Gender attribute, then the class distributions of the child nodes are 
(0.6, 0.4) and (0.4, 0.6) , respectively. Although the classes are no longer evenly 
distributed, the child nodes still contain records from both classes. Splitting 
ou the second attribute, Car Type, will remit in purer partitions. 

The measures developed for selecting the hest split are often based on the 
degree of impurity of the child nodes. The smnller the degree of impurity, the 
more skewed the class distribution. For example, a node with class distribu­
tion (0, 1) has zero impurity, whereas a node with uniform class distribution 
(0.5, 0.5) has the highest impurity. Examples of impurity measures include 

Entropy(t) 

Gini(t) 

Classificatiou error( t) 

c-1 

- l::p(ilt) log2 p(i lt), 
i=O 

c-1 

1- 2:lP(ilt)]2
, 

l- ml"'[p(i lt)], 

where c is the number of classes and 0 log2 0 = 0 in entropy calculations. 

(4.3) 

(4.4) 

{4.5) 

4.3 Decision Tree Induction 159 

0.9 
Entropy 

0.8 

0.7 

Figure 4.13. Comparison among the mpurity measures for binary classification problems. 

Figure 4.13 compares the values of the impurity measures for binary classi­
fication problems. p refers to the fraction of rec.ords that belong to one of the 
two classes. Observe that all three measures attain their maximum value when 
the class distribution is uniform (i.e., when p = 0.5). The minimum values for 
the measures are attained when all the records belong to the same class (i.e. , 
when p equals 0 or 1). We next provide several examples of computing the 
different impurity measures. 

Gini = 1 - (0/6)2 - (6/6)2 = o 
Entropy = -(0/6) log2 (0/6) - (6/6) log2(6/6) = 0 
Error = 1- max[0/6, 6/6] = 0 

Gini = I - (1/6)2 - (5/6)2 = 0.278 
Entropy= -(l/6)log2 (1/6) - (5/6)log2(5/6) = 0.650 
Error= 1- max[1/6, 5/6] = 0.167 

Gini = I - (3/6)2 
- (3/6)2 = 0.5 

Entropy= - (3/6) log2(3/6) - (3/6) log2(3/6) = 1 
Error = I- max[3/6, 3/6] = 0.5 



160 Chapter 4 Classification 

The preceding examples, along with Figure 4.13, illustrate the consistency 
among different impurity measures. Based on these calculations, node N1 has 
the lowest impurity value, followed by N2 and N3. Despite their consistency, 
the attribute chosen as the test condition may vary depending on the choice 
of impurity measure, as will be shown in Exercise 3 on page 198. 

To determine how well a test condition performs, we need to compare the 
degree of impurity of the parent node (before splitting) with the degree of 
impurity of the child nodes (after splitting). The larger their difference, the 
better the test condition. The gain, C., is a criterion that can be used to 
determine the goodness of a split: 

~N(v) 
C.= /(parent)- L.. ---Jf-I(vj), 

J~l 

(4.6) 

where I( ·) is the impurity measure of a given node, N is the total number of 
records at the parent node, k is the number of attribute values, and N ( Vj) 

is the number of records associated with the child node, Vj· Decision tree 
induction algorithms often choose a test condition that maximizes the gain 
C.. Since /{parent) is the same for all test conditions, maximizing the gain is 
eqni valent to minimizing the weighted average impurity measures of the child 
nodes. Finally, when entropy is used as the impurity measure in Equation 4.6, 
the difference in entropy is known as the information gain, Cl;nfo· 

Splitting of Binary Attributes 

Consider the diagram shown in Figure 4.14. Suppose there are two ways to 
split the data into smaller subsets. Before splitting, the Gini index is 0.5 since 
there are an equal number of records from both classes . If attribute A is chosen 
to split the data, the Gini index for node N1 is 0.4898, and for node N2, it 
is 0.480. The weighted average of the Gini index for the descendent nodes is 
(7 /12) x 0.4898 + (5/12) x 0.480 = 0.486. Similarly, we can show that the 
weighted average of the Gini index for attribute B is 0.375. Since the subsets 
for attribute B have a smaller Cirri index, it is preferred over attribnte A. 

Splitting of Nominal Attributes 

As previously noted, a nominal attribute can produce either binary or multi­
way splits, as shown in Figure 4.15. The computation of the Gini index for a 
binary split is similar to that shown for determining binary attributes. For the 
first binary grouping of the Car Type attribute, the Gini index of {Sports, 

{Sporls, 
Luxury) 

{Sports, 
luxury} 

1 co 9 

I C1 7 

4.3 Decision Tree Induction 161 

Parent 

co 6 

C1 6 

Gini = 0.500 

A 

Yes 

~ 
~ 

I N1 II N2 

co 1 4 11 2 

C1 I 3 II 3 

Gini = 0.486 

B 

I N1 ll N2 

co 1 q s 
C1 I 4 II 2 

Gini = 0.375 

Figure 4.14. Splitting binary attributes. 

(Family, Family 
Luxury} 

" , . 

{Family} {Sports} 
{Family, 
Luxury} 

Family 

1 I co 8 2 1 co 1 

3 I C1 0 10 l C1 3 

" 

Sports Luxury 

8 1 

0 7 

I Ginl 0.468 I Glni 0.167 I Glni 0.163 

(a) Binary spl~ (b) Muniway spl~ 

Figure 4.15. Splitting nominal attributes. 

Luxury} is 0.4922 and the Gini index of {Family} is 0.3750. The weighted 
average Gini index for the grouping is equal to 

16/20 X 0.4922 + 4/20 X 0.3750 = 0.468. 

Similarly, for the second binary grouping of {Sports} and {Family, Luxury}, 
the weighted average Gini index is 0.167. The second grouping has a lower 
Gini index because its corresponding subsets are much purer. 



162 Chapter 4 Classification 

Figure 4.16. Splitting continuous attributes. 

For the multi way split , the Gini index is computed for every attribute value. 
Since Gini({Family}) = 0.375. Gini({Sports}) = 0, and Gini({Luxury}) 
0.219, the overall Gini index for the multiway split is equal to 

4/20 X 0.375 + 8/20 X 0 + 8/20 X 0.219 = 0.163. 

The mnltiway split has a smaller Gini index compaxed to both two-way splits. 
This resn.lt is not surprising because the two-way split actually merges some 
of the outcomes of a multiway split, and thus, results in less pure subsets. 

Splitting of Continuous Attributes 

Consider the example shown in Figure 4.16, in which the test condition Annual 

Income ~ v is used t.o split the training records for the loan default classifica­
tion problem. A brute-force method for finding v is to consider every value of 
the attribute in theN records as a candidate split position. For eacl1 candidate 
v, the data set is scanned once to count the number of records with annual 
income less thru1 or greater than v. Vie then compute the Gini index for each 
candidate and choree the one that gives the lowest value. This approach is 
computationally expensive because it requires O(N) operations to compute 
the Gini index at each candidate split position. Since there arc N candidates, 
the overall complexity of this task is O(N2 ). To reduce the complexity, the 
training records are sorted based on their annual income, a computation that 
requires O(N log N) time. Candidate split p05itions are identified by taking 
the midpoints between two adjocent sorted values: 55, 65, 72, and so on. How­
ever, unlike the brute-force approach, we do not have to examine all N records 
when evaluat ing the Gini index of a candidate split position. 

For the first candidate, v = 55, none of the records has annual income less 
than $55K. As a result , the Gini index for the descendent node with Annual 

4 .3 Decision Tree Induction 163 

Income < $55K is zero. On the other hand, the number of records with annual 
income greater than or equal to $55K is 3 (for class Yes) and 7 (for class No), 
respectively. Thus, the Gini index for this node is 0.420. The overall Gini 
index for tlus candidate split position is equal to 0 x 0 + 1 x 0.420 = 0.420. 

For the second candidate, v = 65, we can determine its class distribution 
by updating the distribution of the previous candidate. More specifically, the 
new distribution is obtained by exanlining the class label of the record with 
the lowest annua.l income (i.e., $60K). Since the class label for this record is 
No, the count for class No is increased from 0 to 1 (for Annual Income :o; $65K) 
and is decreased from 7 to 6 {for Annual Income > $65K). The distribution 
for class Yes remains unchanged. The new weighted-average Gini index for 
this candidate split position is 0.400. 

This procedure is repeated until the Gini index values for all candidates are 
computed, as shown in Figure 4.16. The best split position corresponds to the 
one that produces the smallest Gini index, i.e., v = 97. This procedure is less 
expensive because it requires a constant amount of tiine to update the class 
distribution at eoch candidate split position. It can be further optinuzed by 
considering on.ly caudidate split positions located between two adjacent records 
with different class labels. For example, because the first three sorted records 
(with annual incomes $60K, $70K, and $75K) have identical class labels, the 
best split position shon.ld not reside between $60K and $75K. Therefore, the 
candidate split positions at v = $55K, $65K, $72K, $87K, $92K, $110K, $122K, 
$172K, and $230K are ignored because they are located between two adjocent 
records with the same class labels. This approach allows us to reduce the 
number of candidate split positions from 11 to 2. 

Gain Ratio 

Impurity measures such as entropy and Gi1u index tend to favor attributes that 
have a !urge number of distinct values. Figure 4.12 shows three alternative 
test conditions for partitioning the data set given in Exercise 2 on page 198. 
Comparing the first test condition, Gender, with the second, Car Type, it 
is easy to see that Car Type seems to provide a better way of splitting the 
data since it produces purer descendent nodes. However, if we compare both 
conditions with Customer ID, the latter appears to produce purer partitions. 
Yet Customer ID is not a predictive attribute because its value is unique for 
each record. Even in a less extren1e s ituation, a test condition that .results in a 
large number of outcomes may not be desirable because the number of records 
associated with eoch paxtition is too small to enable us to make any reliable 
predictions. 



164 Chapter 4 Classification 

There are two strategies for overcoming this problem. The first strategy is 

to restrict the test conditions to binary splits only. This strategy is employed 
by decision tree algorithms such as CART. Another strategy is to modify the 
splitting criterion to take into account the number of outcomes produced by 
the attribute test condition. For example, in the C4.5 decision tree algorithm, 
a splitting criterion known as gain ratio is used to determine the goodness 
of a split. This criterion is defined as follows: 

Gain ratio ~info 
Split Info. 

(4.7) 

Here, Split Info= -2:7=1 P(v;)log2 P(v;) and k is the total number of splits. 
For example, if each attribute value has the same number of records, tben 
Vi : P(v;) = l/k and the split information would be equal to log2 k. Tbis 
example suggests that if an attribute produces a large number of splits, its 
split information will also be large, which in turn reduces its gain ratio. 

4.3.5 Algorithm for Decision Tree Induction 

A skeleton decision tree induction algorithm called TreeGrowtb is shown 
in Algorithm 4.1. The input to this algorithm consists of tbe training records 
E and the attribute set F . The algorithm works by recursively selecting the 
best attribute to split tbe data (Step 7) and expanding the leaf nodes of the 

Algorithm 4.1 A skeleton decision tree induction algorithm. 
TreeGrowth (E, F) 

1: if stopping_cond(E,F) = tru.e then 
2: leaf= createNode{). 
3: leaf.label = Classify(E). 
4: return lea f . 
5: el8e 
G: root= createNode(). 
7: root.test_cond = tin<Lbest_split(E, F ). 
8: let V = { vlt' is a possible outcome of root.test..cond } . 
9: for each v E V do 

10: E, = {e I root.test_cond(e) = t' and e E E). 
11: child= TreeGrovth(E,., F). 
12: add child as descendent of root and label the edge (root~ child) as t•. 
13: end for 
14: end if 
15: return root. 

4.3 Decision Tree Induction 165 

tree (Steps 11 and 12) until the stopping criterion is met (Step 1). The details 
of this algorithm are explained below: 

1. The createNode() function extends the decision tree by creating a new 
node. A node in the decision tree has either a test condition, denoted as 
node.tesLcond, or a class label, denoted as node.! abel. 

2. The find_best_spli t() function determines which attribute should be 
selected as the test condition for splitting the training records. As pre­
viously noted, the choice of test condition depends on which impurity 
measure is nsed to determine tbe goodness of a split. Some widely nsed 
measures include entropy, the Gini index. and the ;~:2 statistic. 

3. The Classify() function determines the cla.ss label to be assigned to a 

leaf node. For each leaf node t, let p(ilt) denote the fraction of training 
records from class i associated with the node t. In most cases, the leaf 
node is assigned to the class that has the majority number of training 
records: 

leaf.! abel= argmax p(ilt), 
i 

(4.8) 

where the argmax operator returns the argument i that maximizes the 
expression p(i lt). Besides providing the information needed to determine 
the class label of a leaf node, the fraction p(ilt) can also be used toes­
timate the probability that a record assigned to the leaf node t belongs 
to class i. Sections 5. 7.2 and 5. 7.3 describe how such probability esti­

mates can be used to determine the performance of a decision tree under 
different cost functions. 

4. The stopping_cond() function is used to terminate the tree-growing pro­
cess by testing whether all the records have either the same cla.ss label 
or the same attribute values. Another way to terminate the recursive 
function is to test whether the number of records have fallen below some 
minimum threshold. 

After building the decision tree, a tree-pruning step can be performed 
to reduce the size of the decision tree. Decision tr~s that are too large are 
susceptible to a phenomenon known as overfitting. Pruning helps by trim­
ming the branches of the initia l tree in a way that improves the generalization 
capability of the decision tree. The issues of overfitting and tree pruning are 
discussed in more detail in Section 4.4. 



166 Chapter 4 Classification 

s.. .. IP-ts n- r:::· _ .... _ .... 
""""" so. ... - A- """"""' of &,<eo 

60.1\.11 .11 OOIAIJg/2004 GET htlp:ltwww.cs.tmt.EWI HTTPIU 200 .. ,. Moz.ilaJ4.0 
10:15:21 _...,., ("""" ... ; MSIE6.0; 

Windows NT 5.0) 
60.11.11.11 OOIAIJg/2004 GET httpJ/www.cs.urm.edul HTIP/1.1 200 41378 httpJiwww.cs.umn.tdJI Modla/4.0 

10:15:34 -llumar/MINDS 
_...,., (00f1'1l01ble; MSIE6.0; 

WinOOws NT 5.0 
60.11.11.11 OOIAIJg/2004 GET hftp:l/www.cs.orm.edul HT1P11.1 200 1018516 htlp:II'Nww.cs.urm.edul Moz~la/<4.0 

10;15:41 -lcl.lmaf/MINOS-MINDS -kumariMINOS (OOI'Ill8tble; MSIE6.0; 

-""""•·""' WinclowsNTS.O 
160.11.11.11 00/AIJg/2004 GET http://WWW.C!LUIM..edul HTWIU 200 7<63 htlp'JJwww.CS-t.IIM.edul Moz.ila/4.0 

10:16:11 -kuman'papers/pape!S. -- =.''M:i~·~ """ 35.9.2.2 OOIAIJg/2004 GET tilp:J/V.WW.CS.t.W'!Vtedul H'T1Pf1.0 200 ""' =-~~-=; 10:16:15 - stalrmac 
rv:1.7)Ged:ofl0040616 

(a) Example of a Web server log. 

A~eN5Y18 De-:::A'"m• g papers/pa~rs.html 
IOtaiPages Total niJI'Ibet of pages retrievt~d in a WrJJ session 
mag.., ages Total mmber ol image pages rwteved ~ a Web seSSi~ 
T~Mmme Total arrollll of tine spent b ¥kb site .,.sior 
AepeatedA.ooess The same page requested rrol& than once in a Wfb session 
EnorRequest Errors In reQ.Jestilg lor Wfi:J pages 
GET Petter&age d ~eq.~ests made usirg GET metlod 
POST Petter*aoe cl rewests mede usino POST me !hod 
HEAD Pe~tt~riage d req;ests made usirg HEAD method 
Breadlh Bfead:h ol Wfb traversal 
Deplh Depth of Web tra\IE!r&al 
M~UP Sessicn wiltl m.Jiiple IP addresses 
M~Mgert SessiM with rrultiple user agents 

M!NDSIMINDS_papers.htm 

(b) Graph of a Web session. (c) Derived attributes for Web robot detection. 

Figure 4. 17. Input data lor Web robot detection. 

4.3.6 A n Example: Web Robot Detection 

Web usage mining is the task of applying data mining techniques to extract 
useful patterns from Web access logs. These patterns can reveal interesting 
characteristics of site visitors; e .g., people who repeatedly visit a \Veb site and 
view the same product description page are more likely to buy the product if 
certain incentives such as rebates or free shipping are offered. 

In Web usage mining, it is important to distinguish accesses made by hu­
man users from those due to Web robots. A \Veb robot (also known as a Web 
crawler) is a software program that automatically locates and retrieves infor­
mation from the Internet by following the hyperlinks embedded in \\'eb pages. 
These programs are deployed by search engine portals to gather the documents 
necessary for indexing the Web. \Veb robot accesses must be discarded before 
applying Web mining techniques to analyze human browsing behavior. 

4 .3 Decision Tree Induction 167 

This section describes how a decision tree classifier can be used to distin­
guish between accesses by human users and those by Web robots. The input 
data was obtained from a Web server log, a sample of which is shown in Figure 
4.17(a). Each line corresponds to a single page request made by a Web client 
(a user or a Web robot). The fields recorded in the Web log include the IP 
address of the client, timestamp of the request, Web address of the requested 
document, size of the document, and the client's identity (via the user agent 
field). A \Veb session is a sequence of requests made by a client during a single 
visit to a Web site. Each 'Neb session can be modeled as a directed graph, in 
which the nodes correspond to Web pages and the edges correspond to hyper­
links connecting one Web page to another. Figure 4.17(b) shows a graphical 
r<>presentation of the first \Veb session given in the Web server log. 

To classify the Web sessions, features are constructed to describe the char­
acteristics of each session. Figure 4.17(c) shows some of the features used 
for the Web robot detection task. Among tbe notable features include the 
depth and breadth of the traversaL Depth det.,.nnines the ma..umum dis­
tance of a requested page, where d istance is measured in terms of the num­
ber of hyperlinks away from the entry point of the Web site. For exan1ple, 
the home page http://www.cs.umn.edu/~kumar is asswued to be at depth 
0, whereas http : I /www. cs. umn. edu/kumar/MINDS/HINDS_papers .htm is lo­
cated at depth 2. Based on the Web graph shown in Figure 4.17(b), the depth 
attribute for the first session is equal to two. The breadth attribute measures 
the width of the corresponding \Veb graph. For example, the breadth of the 
Web session shown in Figure 4.17(b) is equal to two. 

The data set for classification contains 2916 records, with equal numbers 
of sessions due to Weh robots (class 1) and human users (class 0). 10% of the 
data were reserved for t raining while the remaining 90% were used for testing. 
The induced decision tree model is shown in Figure 4.18. The tree has an 
error rate equal to 3.8% on the training set and 5.3% on the test set. 

The model suggests that 'Neb robots can be distinguished from hwnan 
users in the following way: 

1. Accesses by Web robots tend to be broad but shallow, whereas accesses 
by humau users t end to be more focused (narrow but deep). 

2. Unlike human users, Web robots seldom retrieve the image pages asso­

ciated with a Weh document. 

3. Sessions due to Web robots tend to be long and contain a large number 
of requested pages. 



168 Chapter 4 Classification 

Decision Tree: 
depth ;1: 

breadth> 7: class 1 
breadth<:= 7: 

breadth<= 3: 
1 lmagePageS> 0.375: class o 
I lmagePageS<• 0.375: 
I I totaiPagesc:= 6: claaa 1 
I I totaiPageS> 6: 
I I I breadth <= 1: class 1 
I I I breadth > 1: class 0 
widlh>3: 
I MultiiP=O: 
I I lmagePages<= 0.1333: claas1 
I I lmagePages> 0.1333: 
I I breadth c 6: cla88 0 
I I breadth> 6: class 1 
I MultiiP= 1: 
I I TotarTime <= 361 : class 0 
I I TotarTime>361: class1 

depth>1 : 
Multi Agent= 0: 
I depth> 2: claaa 0 
I depth< 2: 
I I MultiiP = 1: class 0 
I I MultiiP = 0: 
I I I breadth<== 6: class 0 
1 r 1 breadth>6: 
I I I I RepeatedAccess <= 0.322: class 0 
I I I I RepeatedAccess > 0.322: claaa 1 
Multi Agent= 1: 
I total Pages<= 81: eta as 0 
I tota1Pages>81: class 1 

Figure 4.18. Decision t~ee model for Web robot detection. 

4. Web robots are more likely to make repeated requests for the same doc­
ument since the Web pages retrieved by human users are often cached 
by the browser. 

4.3.7 Characteristics of Decision Tree Induction 

The foUowing is a summary of the important characteristics of decision tree 
induction algorithms. 

I. Decision tree induction is a nonparametric approach for huilding classifi­
cation models. In other words, it does not require any prior assumptions 
regarding the type of probability distributions satisfied by the class and 
other attributes (unlike some of the techniques described in Chapter 5). 

4.3 Decision Tree Induction 169 

2. Finding an optimal decision tree is an NP-complete problem. Many de­
cision tree algorithms employ a heuristic-based approach to guide their 
search in the vast hypothesis space. For example, the algorithm pre­
sented in Section 4.3.5 uses a greedy, top-down, recursive partitioning 
strategy for growing a decision tree. 

3. Techniques developed for constrncting decision trees are computationally 
inexpensive, making it possible to quickly construct models even when 
the training set size is very large. Furthermore. once a decision tree has 
been built, classifying a test record is extreme! y fast, with a worst-case 
complexity of 0( w ), where w is the maximum depth of the tree. 

4. Decision trees, especially smaller-sized trees:, are relatively easy to inter­
pret. The accuracies of the trees are also comparable to other classifica­
tion techniques for many simple data sets. 

5. Decision trees provide an expressive representation for learning discrete­
valued functions. However, they do not generalize well to certain types 
of Boolean problems. One notable example is the parity function, whose 
value is 0 (I) when there is an odd (even) number of Boolean attributes 
with the value True. Accurate modeling of such a function requires: a full 
decision tree with ~ nodes, where d is the number of Boolean attributes 
(see Exercise 1 on page 198}. 

6. Decision tree algorithms axe quite robust to the presence of noise, espe­
cially when methods for avoiding overfitting, as described in Section 4.4, 
are employed. 

7. The presence of redundant attributes does not adversely affect the ac­
curacy of decision trees. An attribute is redundant if it is strongly cor­
related with another attrihnte in the data. One of the two redundant 
attributes will not be used for splitting once tbe other attribute bas been 
chosen. However, if the data set contains many irrelevant attributes, i.e. , 
attributes that are not useful for t he classification task, then some of the 
irrelevant attributes may he accidently chosen during the tree-growing 
process, which results in a decision tree that is larger than necessary. 
Feature selection techniques can help to improve the accuracy of deci­
sion trees by eliminating the irre1evant attributes dnring preprocess-ing. 
\Ve will inve stigate the issue of too many irrelevant attributes in Section 
4.4.3. 



170 Chapter 4 Classification 

8. Since n1ost decision tree algorithtns etnploy a top-down, recursive parti­
tioning approach, the number of records becomes smaller as we t raverse 
down the t ree. At the leaf nodes, the number of records may be too 
small to make a statistically significant decision about the class rep­
resentation of the nodes. This is known as the data fragmentation 
problem. One possible solution is to disallow further splitting when the 
number of records falls below a certain threshold. 

9. A subtree can be replicated multiple times in a decision tree, ns illus­
trated in Figure 4.19. This makes the decision tree more complex than 
necessary and perhaps more difficult to interpret. Such a situation can 
arise frotn decision tree implen1entations that rely on a single attribute 
test condition at each internal node. Since most of the decision tree al­
gorithms use a divide-and-conquer partitioning strategy, the same test 
condition can be applied to different parts of the attribute space, thus 
leading to the subtree replication problem. 

Figure 4.19. Tree replication problem. The same subtree can appear at diflerent branches. 

10. The test conditions described so far in this chapter involve using only a 
single attribute at a time. As a consequence, the tree-growing procedure 
can be viewed as the process of partitioning the attribute space into 
disjoint regions until each region contains records of the same dass (see 
Figure 4.20). The border between two neighboring regions of different 
classes is known as a decision boundary. Since the test condition in­
volves only a single attribute, the decision boundaries are rectilinear; i.e., 
parallel to the ''coordinate axes." This limits the expressiveness of tbe 

0.9 

0.8 

0.7 

0.6 

v 

4.3 Decision Tree Induction 171 

v 
>- 0.5 --------·--·------------

0.4 

0.3 

0.2 

0.1 v 
v 

v 

r---~-----··:··------;;--

lo 
' 0o~~o~.1~0~.2~~0~.3~0~.4~0~.~5~0~ .• ~0~.7~0~.~8~0~.9~ 

X 

Figure 4.20. Example of a decision tree and its decision boundaries for a two-dimensional data set. 

0.2 .... + 

0.1 ,.. 

.. . . .: ... ~ .':: . . .. . . . .. .,.! 
• .. 'r. •• • • .' ..... . .. . · .. . 

-·. 

. . 
I • 

. . .. 

. . , . 
' ... .. . 

• . .. 

0.3 0.4 0.5 0.6 0. 7 0.8 0.9 

Figure 4.21 . Example of data set that cannot be partitioned optimally using test cond~ions involving 
single attributes. 

decision tree representat.ion for modeling complex relationships among 
continuous attributes. Figure 4.21 illustrates a data set that cannot be 
classified effectively by a decision tree algorithm that uses test conditions 
involving only a single attribute at a time. 



172 Chapter 4 Classification 

An oblique d ecision tree can b e used to overcome this limitation 
because it allows test conditions that involve more than one a ttribute. 
The data set given in Figure 4.21 can be easily represented by an oblique 
decision tree containing a single node with test condition 

£ +y < 1. 

Although such techniques are more expressive and can produce more 
compact trees, finding the optimal test condition for a given node can 
be computationally expensive. 

Constructive induction provides another way to partition tbe data 
into homogeneous, nonrectangular regions (see Section 2.3.5 on page 57). 
This approach creates composite attributes representing an arithmetic 
or logical combination of the existing attributes. The new attributes 
provide a better discrimination of the classes and are augmented to the 
data set prior to decision tree induction. Unlike the oblique decision tree 
approach, constructive induction is less expensive because it identifies all 
the relevant combinations of at t ributes once, prior to constructing the 
decision tree. In contrast, an oblique decision tree must determine the 
right attribute combination dynamically, every time an internal node is 
expanded. However, constructive induction can introduce attribute re­
dundancy in the data since the new attribute is a combination of several 
existing attributes. 

11. Studies have shown that the choice of impurity measure has little effect 
on the performance of decision tree indnction algorithms. This is because 
many impurity measures are quite consistent with each other, as shown 
in Figure 4.13 on page 159. Indeed, the strategy used to prune the 
tree has a greater impact on the final tree than the choice of impurity 
measure. 

4.4 Model Overfitting 

The errors committed by a classification model are generally divided into two 
types: training errors and generalization errors. Training error, also 
known as resubstit ution e rror or apparent error, is the numbe.r of misclas­
sifi.cation errors committed on training records, whereas generalization error 
is the expected error of the model on previously unseen records. 

Recall from Section 4.2 that a good classification model must not only fit 
the training data well, it 1nust also accurately classify records it has never 

4.4 Model Overfitting 173 

Figure 4.22. Example of a data set with binary dasses. 

seen before. In other words, a good model must have low training error as 
well as low generalization error. This is important because a model that fits 
the training data too well can have a poorer generalization error than a model 
with a higher training error. Such a situation is known as model overfitting. 

Overfitting Example in Two-Dimensional Data For a more concrete 
example of the overfitting problem, consider the two-dimensional data set 
shown in Figure 4.22. The data set contains data points that belong to two 
diffe rent cla.sses1 denoted as class o and class +1 respectively. The data points 
for tbe o class are generated from a mixture of three Gaussian distributions, 
while a uniform dis tribution is used to generate the data points for the + class. 
There are altogether 1200 points belonging to the o class and 1800 points be­
longing to the + class. 30% of tbe points are chosen for training, while the 
remaining 70% are used for testing. A decision tree classifier that uses the 
Gini index as its irnpnrity measure is t hen applied to the training set. To 
investigate the effect of overfitting, different levels of pruning are applied to 
the initial, fully-grown tree. Figure 4.23(h) shows the training and test error 
rates of the decision tree. 



17 4 Chapter 4 Classification 

Number of Nod9s 

Figure 4.23. Training and test error rates. 

Notice that the training and te5t error rates of the model are large when the 
size of the tree is very small. This situation is known as model underfitting. 
Underfitting occurs because the model has yet to learn the true structure of 
the data. As a result, it performs poorly on hath the training and the test 
sets. As the number of nodes in the decision tree increases, the tree will have 
fewer training and test errors. However, once the tree becomes too large, its 

test error rate begins to increase even though its training error rate continues 
to decrease. This phenomenon is known as model overfitting. 

To understand the overfitting phenomenon, note that the training error of 
a model can be reduced by increasing the model complexity. For example, the 
leaf nodes of the tree can be expanded until it perfectly fits the training data. 
Although the training error for such a complex tree is zero, the test error can 
he large because the tree may contain nodes that accidently fit some of the 
noise points in the training data. Such nodes can degrade the performance 
of the tree because they do not generalize well to the test exaruples. Figure 
4.24 shows the structure of two decision trees with different number of nodes. 
The tree that contains the smaller number of nodes has a higher training error 
rate, but a lower test error rate compared to the more complex tree. 

Overfitting and underfitting are two pathologies that are related t.o the 
model complexity. The remainder of this section examines some of the poten­
tial causes of model overfitting. 

1!1"1Uil,:.:" 

,;~_.., .. 7,'lA 

'£•1•12.11 

(a) Decision tree v.'ith 11 leaf 
nodes. 

4.4 Model Overfitting 175 

-- c • .,. 
-- -~~ . 

"''"-"A--

.. 
~~·- ,; ·." ... ~;L . !~"- :;.~~11-

·"'·.""'"" 
""••n .t; b ... n.•·.~· 

-o' .A..·· ''"~ 

.\ ""''""' 

......... .z.. 

(b) Decision tree with 24 leaf nodes. 

Figure 4.24. Decision trees w~h different model complexities. 

4.4.1 Overfitting Due to Presence of Noise 

Consider the training and test sets shown in Tables 4.3 and 4.4 for the mammal 
classification problem. Two of the ten training records are mislabeled: hats 
and whales are classified as non-mammals instead of mammals. 

A decision tree that perfectly fits the training data is shown in Figure 
4.25(a). Although the training error for the bee is zem, its error rate on 

Table 4.3. An example training set for classifying mammals. Class labels with asterisk symbols repre­
sent mislabeled records. 

Name Body Gives F'our- Hibernates Class 
Temperature Birth legged L•bel 

porcupine warm-blooded yes ye,; yes yes 
cat wa rm-blooded yes yes no yes 
bot warm-blooded yes no yes no' 
whale warm-blooded yes no no no' 
salamander cold-blooded no yes yes no 
komodo dragon cold-blooded no ye,; no no 
python cold-blooded no no yes no 
salmon cold-blooded no no no no 
eagle warm-blooded no no no no 
guppy cold-blooded yes no no no 



176 Chapter 4 Classification 

Table 4.4. An example test set for classifying mammals. 

Name Body Gives Four- Hibernates Class 
Temperature Birth legged Label 

human warm-blooded yes no no yes 
pigeon warm-b looded no no no no 
elephant warm-blooded yes yes no yes 
leopard shark cold-blooded yes no no no 
turtle cold- blooded no yes no no 
penguin oold- blooded no no no no 
ool oold- blooded no no no no 
dolphin warm-b looded yes no no yes 
spiny anteater warm-blooded no yes yeo; yes 
gila monster oold- blooded no yes yeo; no 

(a) Model M1 (t>) Mode1M2 

Figure 4.25. Decision tree induced from the data set shown in Table 4.3. 

the test set is 30%. Both humans and dolphins were m.isclassified as non­
mammals because their attribute values for Body Temperature , Gives Birth, 
and Four-legged are identical to the mislabeled records in the training set. 
Spiny anteaters, on the other hand, represent an exceptional case in which the 
class label of a test record contradicts the class labels of other similar records 
in the training set. Errors due to exceptional cases are often unavoidable and 
establish the minimum error rate achievable by any classifier. 

4.4 Model Overfitting 177 

In contrast, the decision tree M2 shown in Figure 4.25(b) has a lower test 
error rate (10%) even though its training error rate is somewhat higher (20%). 
It is evident that the first decision tree, Ml. has overfitted the training data 
because there is a simpler model with lower error rate on the test set. The 
Four-legged attribute test condition in model Ml is spurious because it fits 
the mislabeled training records, which leads to the m.isclassification of records 
in the test set. 

4.4.2 Over fitting Due to Lack of Representative Samples 

Models that make their classification decisions based on a small number of 
training records are also susceptible to overfitting. Such models can be gener­

ated because of lack of representative samples in the training data and learning 
algorithms that continue to refine their models even when few t raining records 
are available. We illustrate these effects in the example below. 

Consider the five training records shown in Table 4.5. All of these training 
records are labeled correctly and the corresponding d ecision tree is depicted 
in Figure 4.26. Although its training error is zero, its error rate on the test 
set is 30%. 

Table 4.5. An example training set for classifying mammals. 

Name Body Gives Four- Hibernates Class 
Temperature Birth legged Labet 

salamander cold-blooded no yes yes no 

guppy cold-blooded yes no no no 
eagle warm-blooded no no no no 
poorv:iU warm-b1ooded no no yes no 
platypus warm-blooded no yes yes yes 

Hwnans, elephants, and dolphins are m.isclassified because the decision tree 
classifies all warm-blooded vertebrates that do not hibernate as non-mammals. 
The tree arrives at this classification decision because there is only one training 
record, which is an eagle, with such characteristics. This example clearly 
demonstrates the danger of making wrong predictions when there are not 
enough representative examples at the leaf nodes of a decision tree. 



178 Chapter 4 Classification 

Rgure 4.26. Decision tree induced from the data set shown in Table 4.5. 

4.4.3 Overfitting and the Multiple Comparison Procedure 

Model overfitting may arise in learning algorithms that employ a methodology 
known as multiple comparison procedure. To understand multiple comparison 
procedure, consider the task of predicting whether the stock market will rise 
or fall in the next ten trading days. If a stock analyst simply makes random 
gnesses, the probability that her prediction is correct on any trading day is 
0.5. However, the probability that she will predict correctly at least eight out 
of the ten times is 

('") + ('0) ('") 8 g + 10 = 0 054 7 
210 . ) 

which seems quite unlikely. 
Suppose we are interested in choosing an investment advisor from a pool of 

fifty stock analysts. Our strategy is to select the analyst who makes the most 
correct predictions in the next ten trading days. The flaw in this strategy is 
that even if all the analysts had made their predictions in a random fashion. the 
probability that at least one of them makes at least eight correct predictions 
is 

1- (1 - 0.0547)50 = 0.9399, 

which is very high. Although each analyst bas a low probability of predicting 
at least eight times correctly, putting them together, we have a high probability 
of finding an analyst who can do so. Furthermore, there is no guarantee in the 

4.4 Model Overfitting 179 

future that such an analyst will continue to make accurate predictions through 
random guessing. 

How does the multiple comparison procedure relate to model overfitting? 
Many learning algorithms explore a set of independent alternatives, { "Yi}, and 
then choose an alternative, "'(max, that maximizes a given criterion function. 

The algorithm will add "Ymax to the current mode.! in order to improve its 
overall performance. This procedure is repeated until no further improvement 
is observed. AB an example, during decision tree growing, multiple tests are 
performed to determine which attribute can best split the training data. The 
attribute that leads to the best split is chosen to extend the tree as long as 
the observed improvement is statistically significant. 

Let To be the initial decision tree and Tx be the new tree after inserting an 
internal node for attribute .£. In principle, x can be added to the tree if the 
observed gain, ~(To,T,), is greater than some predefined threshold a. If there 
iB only one attribute teBt condition to be evaluated, then we can avoid inserting 
spurious nodes by choosing a large enough value of a. However. in practice, 
more than one test condition is available and the decision tree algorithm must 
choose the best attribute X max from a set of candidates, {x1, x2, . ... Xk}, to 
partition the data. In this situation, the algorithm is actually using a multiple 
comparison procedure to decide whether a decision tree should be extended. 
More specifically, it is testing for ~(To. Txm~l >a instead of ~(To. T,) > o. 
As the number of alternatives, k, increases, so does our chance of finding 
~(To.Tx~~l > o. Unless the gain function~ or threshold a is modified to 
account for k, the algorithru may inadvertently add spurious nodes to the 
model, which leads to model overfltting. 

This effect becomes more pronounced when the number of training records 

from which :L'm"" is chosen is small, because the variance of ~(To. Tx~~l is high 
when fewer examples are available for training. AB a result, the probability of 
finding d(To, Trma.J > o increases when there are very few training records. 
This often happens when the decision tree grows deeper, which in turn reduces 
the number of records covered by the nodes and increases the likelihood of 
adding unnecessary nodes into the tree. Failure to compensate for the large 
number of alternatives or the small number of training records will therefore 
lead to model overfitting. 

4.4.4 Estimation of Generalization Errors 

Although the primary reason for overfitting is still a subject of debate, it 
is generally agreed that the complexity of a model has an impact on model 
overfitting, as was illustrated in Figure 4.23. The question is, how do we 



180 Chapter 4 Classification 

determine the right model complexity? The ideal complexity is that of a 
model that produces the lowest generalization error. The prohlem is that the 
learning algorithm has access only to the training set during model building 
(see Figure 4.3). It has no knowledge of the test set, and thus, does not know 
how well the tree will perform on records it has never seen before. The best it 
can do is to estimate the generalization error of the induced tree. This section 
presents several methods for doing the estimation. 

Using Resubstitution Estimate 

The resubstitution estimate approach assumes that the training set is a good 
representation of the overall data. Consequently, tbe training error, otherwise 
known as resubstitution error, can be used to provide an optimistic estimate 
for the generalization error. Under this assumption, a decision tree induction 
algorithm simply selects the model that produces the lowest training error rate 
as its final model. However, the training error is usually a poor estimate of 
generalization error. 

Example 4.1. Consider the binary decision trees shown in Figure 4.27. As­
sume that both trees are generated from the same training data and both 
make their classification d ecisions at each leaf node according to the majority 
class. Note that the left tree, TL, is more complex because it expands some 
of the leaf nodes in the right tree, T R· The training error rate for the left 
tree is e(h) = 4/24 = 0.167, while the training error rate for the right tree is 

Decision Tree, T L Decision Tree, T R 

Figure 4.27. Example of two decision trees generated from the same training data. 

4.4 Model Overfitting 181 

e(TR) = 6/24 = 0.25. Based on their resuhstitution estimate, the left tree is 
considered better than the right tree. • 

Incorporating Model Complexity 

As previously noted, the chance for model overfitting increases as the model 
becomes more complex. For this reason, we should prefer simpler models, a 
strategy that agrees with a well-known principle known as Occam's razor or 
the principle of parsimony: 

Definition 4 .2. Occam's Razor: Given two models with the same general­
ization errors, the simpler model is preferred. over the more complex model. 

Occam's razor is intuitive hecause the additional components in a complex 
model stand a greater chance of being fitted purely by chance. In the words of 
Einstein, "Everything should be made as simple as possible, but not simpler." 
Next, "" present two methods for incorporating model complexity into the 
evaluation of classification models. 

Pessimistic Error Estimate The first approach explicitly computes gener­
alization error as the sum of training error and a penalty term for model com­
plexity. The resulting generalization error can be considered its pessimistic 
error estimate. For instance, let n( t) be the number of training records classi­
fied by node t and e(t) be the number of misclassi6ed records. The pessimistic 
error estimate of a decision tree T , e9 (T), can be computed as follows: 

e(T) +fl(T) 

N, 

where k is the number of leaf nodes, e(T) is the overall training error of the 
decision tree, Nt is the number of training records, and fl(t;) is the penalty 
term associated with each node ti. 

Example 4 .2. Consider the binary decision trees shown in Figure 4.27. If 
the penalty term is equal to 0.5. then the pessimistic error estimate for the 
left tree is 

4 + 7 X 0.5 7.5 
e9 (TL) = 

24 
= Z4 = 0.3125 

and the pessimistic error estimate for the right tree is 

6 + 4 X 0.5 8 
e9 (TR) = 

24 
= 2.1 = 0.3333. 



182 Chapter 4 Classification 

A B 

Figure 4.28. The minimum description length (MDL) principle. 

Thus, the left tree has a better pessimistic error rate than the right tree. For 
binary trees, a penalty term of 0.5 means a node should always he expanded 
into its two child nodes as long as it improves the classification of at least one 
training record because expanding a node, which is equivalent to adding 0.5 
to the overall error, is less costly than committing one training error. 

If !1(t) = 1 for all the nodes t, the pessimistic error estimate for the left 
tree is e9 (TL) = 11/24 = 0.458, while the pessimistic error estimate for the 
right tree is eg(TR) = 10/24 = 0.417. The right tree therefore has a better 
pessimistic error rate than the left tree. Thus, a node should not be expanded 
into its child nodes unless it reduces the misclassification error for more than 
one training record. • 
Minimum Description Length Principle Another way to incorporate 
model complexity is based on an information-theoretic approach known as the 
minimnrn description length or MDL principle. To illustrate this principle, 
consider the example shown in Figure 4.28. In this example, both A and B are 
given a set of records with known attribute values x. In addition, person A 
knows the exact class label for each record, while person B knows none of this 
infoTmation. B can obtain the classification of eacb record by requesting that 
A transmits the class labels sequentially. Such a message would require 8(n) 
bits of information, where n is the total number of records. 

Alternatively, A may decide to build a classification model that summarizes 
the relationship between x and y. The model can be encoded in a compact 

4.4 Model Overfilling 183 

form before being transmitted to B. If the model is 100% accurate, then the 
cost of transmission is equivalent to the cost of encoding the model. Otherwise, 
A must also transmit information about which record is classified incorrectly 
by the model. Thus, the overall cost of transmission is 

Cost( model, data) = Cost(mode/) + Cost(datajmodel), (4.9) 

where the first term on the right-hand side is the cost of encoding the model, 
while the second term represents the cost of encoding the mislabeled records. 
According to the MDL principle, we shonld seek a model that minimizes the 
overall cost function. An example showing how to compute the total descrip­
tion length of a decision tree is given by Exercise g on page 202. 

Estimating Statistical Bounds 

The generalization error can also be estimated as a statistical correction to 
the training error. Since generalization error tends to be larger than training 
error, the Btatistical correction is usually computed as an upper bound to the 

training error, taking into account the number of training records that reach 
a particular leaf node. For instance, in the C4.5 decision tree algorithm, the 
number of errors committed by each leaf node is assumed to follow a binomial 
distribution. To compute its generalization error, we mnst determine the upper 
bound limit to the observed training error, as illustrated in the next example. 

Example 4.3. Consider the left-most branch of the binary decision trees 
shown in Figure 4.27. Observe that the left.most leaf node of TR has been 
expanded into two child nodes in TL. Before splitting, the error rate of the 
node is 2/7 = 0.286. By approximating a binomial distribution with a normal 
distribution, the following upper bound of the error rate e can be derived: 

•' J •' e + ¥ + Zaj2 e(~e) + ~ 
Eupper(N, e, a)= , 

1 + z~, 
(4.10) 

where a is the confidence level, z0 ; 2 is the standardized value from a standard 
normal distribution, and N is the total number of training records used to 

compute e. By replacing a= 25%, N = 7, and e = 2/7, the upper bound for 
the error rate is eupper(7, 2/7, 0.25) = 0.503, which corresponds to 7 X 0.503 = 
3. 521 errors. If we expand the node into its child nodes as shown in TL, the 
training error rates for the child nodes are 1/4 = 0.250 and 1/3 = 0.333, 



184 Chapter 4 Classification 

respectively. Using Equation 4.10, the upper bounds of these error rates are 
eupp€r(4, 1/4, 0.25) = 0.537 and eupper(3 , 1/3,0.25) = 0.650, respectively. The 
overall training error of the child nodes is 4 x 0.537 + 3 x 0.650 = 4.098, which 
is larger than the estimated error for the corresponding node in T R. • 

Using a Validation Set 

In this approach, instead of using the training set to estimate the generalization 
error. the original training data is divided int.o two smaller subsets. One of 
the subsets is used for training, while the other, known as the validation set, 
is used for estimating the generalization error. Typically, two-thirds of the 
training set is reserved for model building, while the remaining one-third is 
used for error estimation. 

This approach is typically used with classification techniques tbat can be 
parameterized to obtain models with different levels of complexity. The com­
plexity of the best model can he estimated by adjusting the parameter of the 
learning algorithm (e.g., the pruning level of a decision tree) until the empir­
ical model produced by the learning algorithm attains the lowest error rate 
on the validation set. Although this approach provides a better way for esti­
mating how well the model performs on previously unseen records, less data 
is available for training. 

4.4.5 Handling Overfitting in Decision Tree Induction 

In the previous section, we described several methods for estimating the gen­
eralization error of a classification model. Having a reliable estimate of gener­
alization error allows the learning algorithm to search for an accurate model 
without overfitting the training data. This section presents two strategies for 
avoiding model overfitting in the context of decision tree induction. 

Prepruning (Early Stopping Rule) In this approach, the tree-growing 
algorithm is halted before generating a fully grown tree that perfectly fits the 
entire training data. To do this , a more restrictive stopping condition must 
be used; e.g., stop expanding a leaf node when the observed gain in impurity 
measure (or improvement in the estimated generalization error) falls below a 
certain threshold. The advantage of this approach is that it avoids generating 
overly complex subtrees tbat overfit the training data. Nevertheless, it is 
difficult to choose the right threshold for early termination. Too high of a 
threshold will result in underfitted models, while a threshold that is set too low 
may not be sufficient to overcome the model overfilling problem. Furthermore, 

Decision Tree: 
de~h= 1: 

breedth> 7 : class 1 
breadth<"' 7: 

breadth<= 3: 
I lmagePages:> 0.375· class (I 
I lmagePages<= 0.375: 
I I DtaiPages<~ 6: class 1 
I I DtaiPages:> 6: 
1 1 1 breadth<= 1: class 1 
I I I breadth > 1: cl.ass 0 
width> 3: Subtree 
I MultiiP=O: 
1 t i~QeP~es<,.,O-:-t3:fa:-cTDS.S1-t 
I II lnagePages> 0.1333: I 
I 1lbreadth<=6: classO 
I ILPL.~Jtl~~=-£l!~ ... L ______ J 
I MultiiP= 1: 
I I TolaiTime <= 361: class 0 
I I TotaiTime ~ 361 : c.lau1 

deptl't> 1: 

: ~~~~~i'~cla-un------------1 
I l~deplhc::=2 : I 
I Ill MultiiP .. l: classO 
I II• MuttiiP= 0: 
I l1l I breadth"'"' 6 : class 0 
I Ill I breadth~6: I 
1 1 I 1 1 1 RepeatedAccess <= 0.322: class 0 1 

I I I_!_!_J __ ~~~9!!~~1!.~~Q_~_;__c.!_a.!!_!._ l 
I MuttiAgenl = 1: 
I I btaiPages <=81: class 0 
I I btaiPages >81: clillss1 

4.4 Model Overfitting 185 

Simplified Decision Tree: 

depth;, , 
1 r iiTiagerages <;0.1333:- c.ass-1- - , 
lllmagePages >0.1333: I 

I breadth<:•6: classO I 
·~.!'~~1'!.~1!=_~!~..:! ________ : 
~su~~~r.t-;-o:-dasso------- 1 
1-MUffiA~~~,;------------

1 I bta1Pages<=81: clillssO 
I I btaiPages > 81: Cia ISS 1 

Figure 4.20. Post·pruning of the decision tl9e for Web robot detection. 

even if no significant gain is obtained using one of the existing attribute test 
conditions, subsequent splitting may result in better subtrees. 

Post-pruning In this approach, the decision tree is initially grown to its 
maximum size. This is followed by a tree-pruning step) which proceeds to 
trim the fully grown tree in a bottom-up fashion. Trimming can be done by 
replacing a subtree with (1) a new leaf node whose class label is determined 
from the majority class of records afliliated with the subtree, or (2) the most 
frequently used branch of the subtree. The tree-pruning step terminates when 
no further improvement is observed. Post-pruning tends to give better results 
than prepruning because it 10akes pruning decisions based on a fully grown 
t ree, unlike prepruning, which can suffer from premature termination of the 
t ree-growing process. However, for post-pruning, the additional computations 
needed to grow the full tree may be wasted when the subtree is pruned. 

Figure 4.29 illustrates the simplified decision tree model for the Web robot 
detection example given in Section 4.3.6. Notice that the subtrees rooted at 



186 Chapter 4 Classification 

depth = 1 have been replaced by one of the branches involving the attribute 
ImagePages. Tbis approach is also known as subtree raising. The depth > 
1 and Mul tiAgent = 0 subtree has been replaced by a leaf node assigned to 
class 0. This approach is known as subtree replacement. The subtree for 
depth > 1 and MultiAgent = 1 remains intact. 

4.5 Evaluating the Performance of a Classifier 

Section 4.4.4 described several methods for estimating the generalization error 
of a model during training. The estimated error helps the learning algorithm 
to do model selection; i.e., to find a model of the right complexity that is 
not susceptible to over fitting. Once the model bas been constructed, it can be 

applied to the test set to predict the class labels of previously unseen records. 
It is often useful to measure the performance of the model on the test set 

because such a measure provides an unbiased estimate of its generalization 
error. The accuracy or error rate computed from the test set can also be 
used to compare the relative performance of different classifiers on the same 
domain. However, iu order to do tbis, the class labels of the test records 
must be knowu. This sectiou reviews some of the methods collliilonly used to 
evaluate the performance of a classifier. 

4 .5.1 Holdout Method 

In the holdout method, the original data with labeled examples is partitioned 
into two disjoint sets, called the training and the test sets, respectively. A 
clasBi£cation model is then indnced from the training set and its performance 

is evaluated on the test set. The proportion of data reserved for training and 
for testiug is typically at the discretion of the aualysts (e.g., 50-50 or two­
thirds for training and one-third for testing}. The accuracy of the classifier 
can be estimated based on the accuracy of the induced model on the test set. 

The holdout method has several well-known limitations. First, fewer la­
beled examples are available for training because some of the records are with­
held for testing. As a result, the induced model may not be as good as when all 
the labeled examples are used for training. Second, the model may be bighly 
dependent on the composition of the training and test sets. The smaller the 
training set size, the larger the variance of the model. On the other hand, if 
the training set is too large, then the estimated accuracy computed from the 
smaller test set is less reliable. Such an estimate is said to have a wide con­
fidence iuterval. Finally, the training and test sets are no longer independent 

4.5 Evaluating the Performance of a Classifier 187 

of each other. Because the training and test set.. are subset.. of the original 
data, a class that is overrepresented in one subset will be underrepresented in 
the other, and vice versa. 

4.5.2 Random Subsampling 

The holdout method can be repeated several times to improve the estimation 
of a classifier's performance. Tbis approach is known as random subsampling. 
Let ace; be the model accuracy during the ;th iteration. The overall accuracy 
is given by acc,ub =I:~=! acc.,jk. Random subsampling still encounters some 
of the problems associated with the holdout method because it does not utilize 
as much data as possible for training. It a1so has no cout.rol over the number of 

times each record is used for testing ru1d traiuing. Consequently, some records 
might be used for training more often than others. 

4.5.3 Cross-Validation 

An alternative to random subsampling is cross-validation. In tbis approach, 
each record is used_ the same nwnber of times for training and exactly once 
for testing. To illustrate this method, suppose we partition the data into two 
equal-sized subsets. First, we choose one of the subsets for training and the 
other for testing. We then swap the roles of the subsets so that the previous 
training set becomes the test set and vice versa. This approach is called a two­
fold cross-validation. The total error is obtained by summing up the errors for 
both runs. In tbis example, each record is used exactly once for tra.irring and 
once for testing. The k-fold cross-validation method generalizes tbis approacl> 
by segn1enting the data into /.:equal-sized partitions. During e.ach run, one of 
the partitions is choseu for testing, while t he rest of them are used for trainiug. 
This procedure is repeated k times so t hat each partition is used for test ing 
exactly once. Again, the total error is found by summing up the errors for 
all k runs. A special case of the /.:-fold cross-validation method sets k = N , 
the size of the data set. In tbis so-called leave-one-out approach, each test 
set contains only one record. This approach has the advantage of utilizing 
as much data as possible for training. In addition, the test sets are mutually 
exclusive and they effectively cover the entire data set. The drawback of this 
approach is that it is computationally expensive to repeat the procedure N 
time.s. Furthermore, since each test set contains only one record, the variance 
of the estimated performance metric tends to be high. 



188 Chapter 4 Classification 

4.5.4 Bootstrap 

The methods presented so far assume that the training records are sampled 
without replacement. As a result, there are no duplicate records in the training 
and test sets. In the bootstrap approach, the training records are sampled 
with replacement: i.e., a record already chosen for training is put back into 
the original pool of records so that it is equally likely to be redrawn. If the 
original data has N records, it can be shown that, on average~ a bootstrap 
sample of size N contains about 63.2% of the records in the original data. This 
approximation follows from the fact that the pmbability a record is chosen by 
a bootstrap sample is 1 - (1 - 1/N)N. When N is sufficiently large, the 
probability asymptotically approaches 1- e-1 = 0.632. Records that are not 
included in the bootstrap sample become part of the test set. The model 
induced from the training set is then applied to the test set to obtain an 

estimate of the accuracy of the bootstrap sample,<;. The sampling procedure 
is then repeated b times to generate b bootstrap samples. 

There are several variations to the bootstrap sampling approach in terms 
of how tbe overall accuracy of the classifier is computed. One of the more 
widely used approaches is the .632 bootstrap, which computes the overall 
accuracy by combining the accuracies o f e.ach bootstrap sample ( <i) with the 
accuracy computed from a training set that contains all the labeled examples 
in the original data (ace,): 

1 b 
Accuracy, accboot = b I)0.632 x <; + 0.368 x ace,). 

i = l 

4.6 Methods for Comparing Classifiers 

(4.11) 

It is often useful to compare the performance of different classifiers to deter­
mine which classifier works better on a given data set. However, depending 
on the size of the data, the observed difference in accuracy between two clas­
sifiers may not be statisticaUy significant. This section examines some of the 
statistical tests available to compare the performance of different models and 
classifiers. 

For illustrative purposes, consider a pair of classification models, MA and 
MB. Suppose MA achieves 85% accuracy when evaluated on a test set con­
taining 30 records, while }.[B achieves 75% accuracy on a different test set 
containing 5000 records. Based on this information, is J..fA a better model 
than ME? 

4.6 Methods for Comparing Classifiers 189 

The preceding example raises two key questions regarding the statistical 
significance of the per formance metrics: 

1. Although MA has a higher accuracy than MB, it was tested on a smaller 
test set. How mucb confidence can we place on the accuracy for AIA? 

2. Is it possible to explain the difference in accuracy as a result of variations 
in the composition of the test sets? 

The first question relates to the issue of estimating the confidence interval of a 
given model accuracy. The second question relates to the issue of testing the 
statistical significance of the observed deviation. These issues are investigated 
in the remainder of this section. 

4.6.1 Estimating a Confidence Interval for Accuracy 

To determine the confidence interval, we need to establish the probability 
distribution that governs the accuracy measure. This section describes an ap­
proach for deriving the confidence interval by modeling the classification task 
as a binomial experiment. Following is a list of characteristics of a binomial 
experiment: 

1. The experiment consists of N independent trials, where each trial has 
two possible outcomes: success or failure. 

2. The probability of success, p, in each trial is constant. 

An example of a binomial experiment is counting the number of heads that 
turn up when a coin is flipped N times. If X is the number of successes 
observed in N trials, then the probability tbat X takes a particular value is 
given by a binomial distribution with mean Np and variance Np(1- p): 

For example, if the coin i.'3 fair (p = 0.5) and is flipped fifty times, then the 
probability that the head shows up 20 times is 

P(X = 2o) = G~)o.520(1 - o.5)30 = o.0419. 

If the experiment is repeated many times, then the average number of heads 
expected to show up is 50 x 0.5 = 25, while its variance is 50 x 0.5 x 0.5 = 12.5. 



190 Chapter 4 Classification 

The task of predicting the class labels of test records can also be consid­
ered as a binomial experiment. Given a test set that contains N records, let 
X be the number of records correctly predicted by a model and p be the true 
accuracy of the model. By modeling the prediction task as a binomial experi­
ment, X has a binomial distribution with mean Np and variance Np(1 - p). 
It cruJ be shown that the empirical accuracy, ace= XjN, also has a binomial 
distribution with mean p and variance p(1-p)/N (see Exercise 12). Although 
the binomial distribution can be used to estimate the confidence interval for 
ace, it is often approximated by a normal distribution when N is sufficiently 
large. Based on the normal distribution, the following confidence interval for 
a.cc can be derived: 

( 
acc-p ) 

P - Zo/2 :0: :0: Zl-o/2 = I - "• 
y'p(l - p)jN 

(4.12) 

where Za;z and Z1_ 012 are the upper and lower bounds obtained from a stan­
dard normal distribution at confidence level (1- o). Since a standard normal 
distribution is symmetric around z = 0, it follows that z o/2 = zl-o/2• Rear­
ranging this inequality leads to the following confidence interval for p: 

2 X N X ace+ z~/2 ± Zo;2J z~/2 + 4N ace- 4N acc2 

2(N + Z~12) 
(4.13) 

The following table shows the values of Zo;2 at different confidence levels: 

Example 4.4. Consider a model that has an accuracy of 80% when evaluated 
on 100 test records. What is the confidence interval for its true accuracy at a 
95% confidence level? The confidence level of 95% corresponds to zo/2 = 1.96 
according to the table given above. Inserting this term into Equation 4.13 
yields a confidence interval between 71.1% and 86. 7%. The following table 
shows the confidence interval when the number of records, N, increases: 

Note that the confidence interval becomes tighter when N increases. • 

4.6 Methods for Comparing Classifiers 191 

4.6.2 Comparing the Performance of Two Models 

Consider a pair of models, lvft and .M2 , that are evaluated on two independent 
test sets, D 1 and D2. Let n1 denote the number of records in D1 and n2 denote 
the number of records in D 2 . In addition, suppose the error rate for .M, on 
D1 is e1 and the error rate for Af2 on Dz is e2. Our goal is to test whether the 
observed difference between e1 and e2 is statistically significant. 

Assuming that n1 and n2 are sufficiently large, the error rates e, and e2 
can be approximated using normal distributions. If the observed difference in 
the error rate is denoted as d = e1 - e2, then d is also normally distributed 
with mean dt, its true difference, and variance, cr3. The variance of d can be 
computed as follows: 

(4.14) 

where. e1(1- e1 )jn1 and e2(1- e2 )/nz are the variances of the error rates. 
Finally, at the (1 - a)% confidence level, it can be shown that the confidence 
interval for the true difference dt is given by the following equation: 

(4.15) 

Example 4.5. Consider the problem described at the beginning of this sec­
tion. Model AfA has an error rate of e1 = 0.15 when applied to N, = 30 
test records, while model MB has an error rate of e2 = 0.25 when applied 
to N 2 = 5000 test records. The observed difference in their error rates is 
d = 10.15 - 0.251 = 0.1. In this example, we are performing a two-sided test 
to check whether d1 = 0 or d, # 0. The estimated variance of the observed 
difference in error rates can be computed as follows: 

~2 = 0.15(1 - 0.15) 0.25(1 - 0.25) = 0.0043 
(Jd 30 + 5000 

or &d = 0.0655. Inserting this value into Equation 4.15, we obtain the following 
confidence interval for d, at 95% confidence level: 

dt = 0.1 ± 1.96 X 0.0655 = 0.1 ± 0.128. 

As the interval spans t he value zero, we can conclude that the observed differ­
ence is not statistically significant at a 95% confidence level. • 



192 Chapter 4 Classification 

At what confidence level can we reject the hypothesis that d, = 0? To do 
this, we need to determine the value of z.,/2 such that the confidence interval 
for d1 does not span the value zero. We can reverse the preceding computation 
and look for the value z.,12 such that d > Z0 ; 2Cid. Replacing the values of d 
and (id gives Za;2 < 1.527. This value first occurs when (1 - <>) ;$ 0.936 (for a 
two-sided test). The result suggests that the null hypothesis can be rejected 
at confidence level of 93.6% or lower. 

4.6.3 Comparing the Performance of Two Classifiers 

Suppose we want to compare the performance of two classifiers using the k-fold 
cross-validation approach. Initially, the data set D is divided into k equal-sized 
partitions. We then apply each dassifier to construct a model from k - 1 of 
the partitions and test it on the remaining partition. This step is repeated k 
t imes, each t ime using a different partition as the test set. 

Let llfij denote the model induced by claESification technique Li during the 
j'h iteration. Note that each pair of models M 1j and M2j are tested on the 
same partition j. Let e1j and e2j be their respective error rates. The difference 
between their error rates during the j'h fold can he written as d; = e1; - e2;. 
If k is sufficiently large, then d; is normally distributed with mean d,"", which 
is the true difference in their error rates, and variance uc'·. Unlike the previous 
approach. the overall variance in the observed differences is estimated using 
the following formula: 

(4.16) 

where d is the average difference. For this approach, we need to use a !­

distribution to compute the confidence interval for d,"': 

The coefficient 1(1- Q),k- 1 is obtained from a probability table with two input 
parameters, its confidence level (1- <>)and the number of degrees of freedom, 
/.: - 1. The probability table for the !-distribution is shown in Table 4.6. 

Example 4.6. Suppose the estimated difference in the accuracy of models 
generated by two classification t echniques has a mean equal to 0.05 and a 
standard deviation equal to 0.002. If the accuracy is estimated using a 30-fold 
cross-validation approach, then at a 95% confidence level, the true accuracy 
difference is 

df'' = 0.05 ± 2.04 X 0.002. (4.17) 

4.7 Bibliographic Notes 193 

Table 4.6. Probability tabla for !-distribution. 

(1- a) 
k - 1 0.99 0.98 0.95 0.9 0.8 

1 3.08 6.31 12.7 31.8 63.7 
2 1.89 2.92 4.30 6.96 9.92 
4 1.53 2.13 2.78 3.75 4.60 
9 1.38 1.83 2.26 2.82 3.25 

14 1.34 1.76 2.14 2.62 2.98 
19 1.33 1.73 2.09 2.54 2.86 
24 1.32 1.71 2.06 2.49 2.80 
29 1.31 1.70 2.04 2.46 2.76 

Since the confidence interval does not span the value zero, the observed dif­
ference between the techniques is statistically significant. • 

4. 7 Bibliographic Notes 

Early classification systems were developed to organize a large collection of 
objects. For example. the Dewey Decimal and Library of Congress classifica­
t ion systems were designed to catalog and index the vast nwnber of library 
books. The categories are typically identified in a manual fashion, with the 
help of domain experts. 

Automated classification has been a subject of intensive research for many 
yean~. The study o f classification in classical statistics is sometimes known as 
discriminant analysis, where the objective is to predict the group member­
ship of an object based on a set of predictor variables. A well-known classical 
method is Fisher's linear discriminant analysis [117], which seeks to find a lin­
ear projection of the data that produces the greatest discrimination between 
objects that belong to different classes. 

Many pattern recognition problems also require the discrimination of ob­
jects from different classes. Examples include speech recognit ion, handwritten 
character identification, and image classification. Readers who are interested 
in the application of classification techniques for pattern recognition can refer 
to the survey articles by Jain et al. [122] and Kulkarni et al. [128] or classic 
pattern recognition books by Bishop [107], Duda et al. [114]. and Fukunaga 
[118]. The subject of classification is also a major research topic in the fields of 
neural networks, statistical learning, and machine learning. An in-depth treat-



194 Chapter 4 Classification 

ment of various classification techniques is given in the books by Cherkassky 
and Mulier [112], Hastie et al. [120], Michie et al. [133], and Mitchell [136]. 

An overview of decision tree induction algorithms can be foWld in the 
survey artides by Buntine [110], Moret [137], Murthy [138], and Safavian et 
al. [147]. Examples of some well-known decision tree algorithms include CART 
[108], ID3 [143], C4.5 [145], and CHAID [125]. Both ID3 and C4.5 employ the 
entropy measure as their splitting function. An in-depth discussion of the 
C4.5 decision tree algorithm is given by Quinlan [145]. Besides explaining the 
methodology for decision tree growing and tree pruning, Quinlan [145] also 
described how the algorithm can be modified to handle data sets with missing 
values. The CART algorithm was developed by Breiman et al. [108] and uses 
the Gini index as its splitting function. CHAID [125] uses the statistical x2 

test to determine the best split dUJing the tree-growing process. 
The decision tree algorithm presented in t his chapter assumes that the 

splitting condition is specified one attribute at a time. An oblique decision tree 
can use multiple attributes to form the attribute test condition in the internal 

nodes [121, 152]. Breiman et al. [108] provide an option for using linear 
combinations of attributes in their CART implementation. Other approaches 
for inducing oblique decision trees were proposed by Heath et al. [121], Murthy 
et a!. [139]. Cantu-Paz and Kamath [111], and Utgoff and Bradley [152]. 
Although oblique decision trees help to improve the expressiveness of a decision 
tree representatiou1 leanring the appropriate test condition at each node is 
computationally cballenging. Another way to improve the expressiveness of a 
decision tree without using oblique decision trees is to apply a method known 
as constructive induction [132]. T his method simplifies t he task of learning 
complex splitting functions by creating compound features from the original 
attributes. 

Besides the top-down approach, other strategies for growing a decision tree 
include t he bottom-up approach by Landeweerd et al. [130] and Pattipati and 
Alexandridis [142], as well as the bidirectional approach by Kim and Landgrebe 
[126]. Schuermann and Doster [150] and Wang and Suen [154] proposed using 
a soft splitting criterion to address the data fragmentation problem. In 
this approach, each record is assigned to different branches of the decision tree 
with different probabilities. 

Model overfitting is an important issne that ruust be addressed to ensure 
that a decision tree clru;sifier performs equally well on previously unknown 
records. The model overfitting problem ha. been investigated by many authors 
including Breiman et al. [108], Schaffer [148]. Mingers [135], and Jensen and 
Cohen [123]. While the presence of noise is often regarded as one of the 

Bibliography 195 

primary reasons for overfitting [135. 140], Jensen and Cohen [123] argued 
that overfitting is the result of using incorrect hypothesis tests in a multiple 
comparison procedure. 

Schapire [149] defined generalization error as "the probability of rnisclas­
sifying a new example" and test error as •tthe fraction of mistakes on a newly 
sampled test set." Generalization error can therefore be considered as the ex­
pected test error of a classifier. Generalization error may sometimes refer to 
the true error [136] of a modeL i.e .. its expected error for randomly drawn 
data points from the same population distribution where the training set is 
sampled. These definitions are in fact equivalent if both the training and test 
sets are gathered from the same population distrihutiou, which is often the 
case in many data mining and machine learning applications. 

The Occam's razor principle is often attributed to the phil060pher William 
of Occam. Domingos [113] cautioned against the pitfall of misinterpreting 
Occam ~B razor as comparing models with similar training enors, instead of 
generalization errors. A survey on decision tree-pruning methods to avoid 

overfitting is given by Breslow and Aha [109] and Esposito et al. [116]. Some 
of the typical pruning methods include reduced error pruning [144], pessimistic 
error pruning [144], minimum error pruning [141], critical value pruning [134], 
cost-complexity pruning [108], and error-based pruning [145]. Quinlan and 
Rivest proposed using the minimum description length principle for decision 
tree pruning in [146] . 

Kohavi [127] had performed an extensive empirical study to compare the 
performance metrics obtained using different estimation methods such as ran­
dom subsampling, bootstrapping, and k-fold cross-validation. T heir results 
suggest that the best estimation method is based on the ten-fold stratified 
cross-validation. Efron and Tibshirani [115] provided a theoretical and empir­
ical comparison between eros&-validat ion and a bootstrap method known as 
the 632+ rnle. 

Current techniques such as C4.5 require that the entire training data set fit 
into main memory. There has been considerable effort to develop parallel and 
scalable versious of decision tree induction algorithms. Some of the proposed 
algorithms include SLlQ by Mehta et al. [131], SPRINT by Shafer et al. [151], 
CMP by Wang and Zaniolo [153], CLOUDS by Alsabti eta!. [106], RainForest 
by Gehrke et a!. [119], and Sca!ParC by Joshi et al. [124]. A general survey 
of parallel algorithms for data mining is available in [129]. 



196 Chapter 4 Classification 

Bibliography 
fl06) K. Alsabti, S. R.anka, and V. Singh. CLOUDS: A Decision Thee Classifier for Large 

Dntasets. lu Proc. of the 4th lntL Con/. on Kno.,lroge Discovery and Data Mining. 
pages 2-s. New Yock. NY. August 1998. 

[107J C. M. Bishop. Neural Network.t for Pattern RewgniltmL Oxrord University Press, 
Oxford, U. K .. 1005. 

[108) L. Breimnn. J. H . .FriedmllD, R. Olshe n, ond C'. J. Stone. Classification and Regresst-on 
'1h>!s. Chapman & Ha ll. New York, 1984 . 

11001 L. A. Breslow and D. W . Aha. Simplifying Decisiou Trees: A Survey. Knowledge 
Enganeertng Re~oew, 12(1): 1 40, 1097. 

[110J W . Buntine. learning classification trees. In Artifictal l ntelltgence Fhmtters in Statis­
tic., pages 182- 201. Chapman & Hall, London. 1003. 

[111) E. CantU-Paz and C'. Ka.rnat.b . Using 6\'0lutionary algorith1ns to induce oblique decision 
trees. In Proc. of the Genetic and Et10lutionary Computation Con/ .. pages 1053-tOOO. 
San Francisco. CA. 2000. 

11121 V . Cherkassky and F. Mulier. Leeming from Data: Conceyt.. Theory. and Methods. 
\Viley Intencience, 1098. 

[113] P. Domingos. The- Role of Oa:am's Razor in Knowledge D iscove-ry. Dato Mining and 
Knowledge Ducot'e17/. 3(4):409-425. 1099. 

11141 R. 0. Duda, P. E. Hart. and D. G. Stork. Pattern Cfas•ificution. John Wiley & Sons. 
Inc .. New York. 2nd edition. 2001. 

[115J B. Efron and R. Tibsbir8ni. Cros.s-vatidat ion and tbe Bootstrap: EstimRtiog tbe Error 
Rate of a Prediction Rule. Technical report. Stanford University, 1995. 

ru6J F. &posito. D. Malerb8, and G. Sememro. A Comparative Analysis o f f\le thods for 
Pruning Decision Trees. IEEE 1hms. Pattem Analysis and Machine lntelltgence, 19 
(5) :476-491. May 1007. 

[117] R. A. Fisher. T he use o f mult iple measurements in taxonomic problems. Annals of 
Eugenics, 7:179 188, ID30. 

[118] K. Puknnnga Introductirm t"o Statistical Pattern Recognition. Academic Press, New 
York. 1900. 

IUDJ J. Gehrke. R. R.amakrishnan, and V. Ganti. RainForest A Framework for Fast 0... 
cision Ttee Construction o f Large Datnscts. Data Mining and Kno-w ledge DisrotJery, 4 
(2/3):127- 162. 2000. 

1120) T. Hastie, R. Tihshirani , and J . H. Friedman. The Element. of Staluticol Leamsng: 
Data Mtntng. Inference, Prediction. Springer, New York. 2001. 

l12lJ D. Heath, S. Kasif. BJJd S. Salzberg. Induct ion of Obl iqne Decision 'frees. In Proc. of 
the 13th /niL Joint Conf. on Arlo/ic1allntelltgence. pages 1002- 1007, Chambery. France, 
August 1993. 

11221 A. K. Jain. R. P. W . Duin, and J . Mao. Sta\isticnl Pattern Recognition: A Review. 
IEEE Thin. Pat-t. Anal. and Mach. lntellig .. 22(1) :·1 37. 2000. 

[123] D. Jensen and P. R. Cohen. Multiple Comparisons in Induction Algorithms. Machme 
Leamtng, 38(3):309-338. March 2000. 

ll24J M. V. J oshi, G. Ka.rypis, and V. Kumar. ScalParC: A New Scalable and Efficient 
Parallel Classification Algorithm for Mining Large Dlltasets. In Proc. of JQth Inti. 
Parollel Processing Symp. (IPPS/SPDP). pages 573-679, Orlando. FL, April 1008. 

11251 G. V. Kass. An Exploratory Tochnique f<>< Investigating L.~rge Quantities of Categor­
ical Data. A pplied Statistics, 29:1 19-127, 1080. 

Bibliography 197 

I12GJ B. Kim and D. Landgrebe. Hierarchical decision classifiers in high·dimensional and 
large class data. IEEE Thins. on Grosci<nce and Remote Sensmg, 29(4):518- 528. 1091. 

[127) R Kobavi. A Study on Cross-Validation and Bootsl.ra.p for :\ccuracy Estimation and 
f\lodc l Selection. In Proc. of the 15th lntL Joint Conf. on Artificial Intelligence, pages 
1137- 1145. Montreal. Canada. August 1005. 

[128] S. R. Kulkarni, G. Lngosi, and S. S. Vcnk.•llesb. Learning Pattern Classification A 
Surve,v. IEEE Thin. Tnf. Them-y, 44(6):2178- 2206, 1098. 

1129] V. Kumar, M. V. Joshi. E.-H. Han, P. N. Tan. and M. Steinbach. High Performance 
Data Mining. In High Perforntance Compu ting for Computational Science ( VECPA R 
QOOQ), pages 111- 125. Springer. 2002. 

[130] G. Landeweerd , T. Timmers. E. Ce rsema. M . Bins, and M . Halic. Binlll"y t.ree versus 
single level tree classitlcat.ion o r wbite blood eells. Pattem Recogm tiont 16:&71- 571, 
1983. 

1131] ~1. Mebta. R. Agnwal. and J . Rissonen. SL!Q: A Fast Scolable Classifier for Datn 
Mining. In Proc. of tht 5th Inti. Con/. on &tending Databa.s• T.chnology, pages 18 32. 
Avignon, Franoe, March 1900. 

1132] R. S. Michalski. A theory and methodology of inductive lenrning. A rl•ficiallnlcl/ogtnct. 
20:111- 116, 1983. 

1133] D. l\.licrue. D. J . Spiegelhalter . and C. C. Taylor. Machine Ltaming. Neurnl and 
StaWhro.l Class,ficolton. Ellis Horv.·ood. Uppe-r Saddle River. NJ , 1004. 

1134) J . Mingers. Expert Syste111s Rule Induction with Statistical Data. J Opemfoorl<Ji 

Research Societv. 38:39-47. 1987. 
[135] J. Mingers. An empirical oompBrison of pruning methods for decision tree induction. 

Machme Leornmg. 4:227- 243. 1989. 

1136] T. MitcheU. Machine Le .. ming. McGraw. HiU, Boston. MA, 1997. 

li37J B. ~1. E. ~foret. Decision '!toes and Diogrnms. Computing Surv<vs. 14(4) :503- 023, 
1982. 

[138] S. K. Murth.v. Automatic Const ruc tion of Decisicm Trees from Data: A Multi­
Disciplinary Survey. Data Mi ning afltl Kn()IJ)Iedge Diseot•ery, 2(4):34f>-389. 1998. 

1130] S. K. Murthy, S. Kasif, ond S. Salzberg. A S)'!item for ind uction of oblique decision 
trees. J of Artificial Intelligence Research, 2: 1-33, 1994. 

[140] T . Niblett. Constrnct.iog decision trees in noisy domains. In Proc. of the Qnd European 
Wo-r.l:ing Se.uwn em Ltnrni"g, pages 67- '18, Bled, Yugoslavia, May 1987. 

[141] T. Nibleu and I. Bratko. Lesming Decision Rules in Noisy Domains. In Re•earc.h and 
Deuelopment in Expert Svstems Ill. Cambridge. 1986. Cambridge University Press. 

[142] K. R. Pattipati and f\f. G. Ale-xandridis. Application o f heuristic search and informat~on 
theory to sequential fa ult diagnosis. IEEE Trans. on Systerru. Man. and Cubemehcs, 
20(4):872-887. 1000. 

[143] J. R. Quinlan. Oisoovering rules by indLJCtion from large collection of examples. In 
D. Michie, editor. Expert Systems u 1 U1e }.hero Electronic Age. Edinhurgb Universicy 
Press. Edinburgh , UK, 1079. 

1144) J. R. Quinlan. Sin1plifying Decision 'frees. Inti. J. Man· Machine Studie.. 27:221 234. 
1087. 

[145] J. R. Quinlan. C,J .S: Programs for Machine Learning. Morgan-Kaufmann Publishers. 
San Mateo, CA, 1093. 

[146] J. R. Quinlan and R. L. Rivest. Inferring Decision Trees Using the Minimum Descri~ 
tion Le ngth Principle. lnfom,ation and Computation, 80(3}:227- 248

1 
1989. 



198 Chapter 4 Classification 

[147] S. R. Safavian and D. Landgrebe. A Survey of Decision Trre Classifier Methodology. 
IEEE 1\uns. Systems, Man and Cybernetics, 22:060-074, May/June 1008. 

[148] C. Schaffer. Overfitting avoidence as bias. Machine Learning. 10:153-178, 1993. 
[149] R. E. Schopire. The Boooting Approoch to Machine Learning: An Overview. In MSRJ 

Worhhop Ofl Nonlinear Estimation and Cla.ssification, 2002. 
[150] J. Schuermann and \V. Doster. A decision-theoretic approach in hierarchical classifier 

design. Pattern Recognitwn, 17:35!1--369, 1984. 
[151] J. C. Shofer, R. Agrawal. and M. Mehto. SPRINT: A Scalable Porallel Classifier 

for Dato ]\fining. In Proc. of the QQnd VL DB Con/ .. pages 544 555, Bombay, India, 
September 1996. 

[152] P. E. Utgoff and C. E. Brodley. An incremental method for finding multivariate splits 
for decision trees. In Proc. of the 7th Inti. Conf. on Machine Len.ming, pages 58--65. 
Austin, TX, June 1990. 

[153] H. Wang and C. Zaniolo. CMP: A F ... t Decision Thee Cl ... sifier Using Multivariate 
Predictions. In Proc. of the 16th Inti. Conf. on Data Engineering, pages 449 460. San 
Diego, CA. March 2000. 

[154] Q. R. \Vang and C. Y. Suen. Large tree classifier with heuristic search and global 
training. IEEE Trons. on Pattern Analysis and Machine Intelligence, 9(1):91-102, 1987. 

4.8 Exercises 

1. Draw the full decision tree for the parity function of four BooleAil attributes. 
A, B. C, and D. Is it possible to simplify the tree? 

2. Consider the training examples showu in Table 4. 7 for a biuary classification 
problem. 

(a) Compute the Gini index for the overall collection of training examples. 

(b) Compute the Gini index for the CUBtomer ID attribute. 

(c) Compute the Gini index for the Gender attribute. 

(d) Compute the Gini index for the Car Type attribute using multiway split . 

(e) Compute the Gini index for the Shirt Size attribute using multiway 
split. 

(f) Which attribute is better, Gender, Car Type, or Shirt Size? 

(g) Explain why CUstomer ID should not be used as the attribute test con­
dition even though it has the lowest Gini. 

3. Consider the training exa1nples shown in Table 4.8 for a binary classification 
problem. 

(a) What is the entropy of this collection of training examples with respect 
to the positive class? 

4 .8 Exercises 199 

Table 4.7. Data set klr Exercise 2. 

Customer ID Gender Car Type Shirt Size Class 
1 M Family Small co 
2 1\[ Sports Medium co 
3 M Sports Medium co 
4 M Sports Large co 
5 M Sports Ext ra Large co 
6 M Sports Extra Large co 
7 F Sports Small co 
B F Sports Small co 
9 F Sports Medium co 
10 F Luxury Large co 
11 M Family Large C1 
12 M Family Extra Large C1 
13 M Family Mediwn C1 
14 M Luxury Extra Large C1 
15 F Luxury Small C1 
16 F Luxury Small C1 
17 F Luxury Medium C1 
lB F Luxury Mediwn C1 
19 F Luxury Mediwn C1 
20 F Luxury Large C1 

Table 4.8. Data set for Exercise 3. 

Instance a, a2 aJ Target Class 
1 T T 1.0 + 
2 T T 6.0 + 
3 T F 5.0 -
4 F F 4.0 + 
5 F T 7.0 -
6 F T 3.0 -
7 F F B.O -
8 T F 7.0 + 
9 F T 5.0 -

(b) What are the information gains of a 1 and a2 relative to th€8<' training 
examples? 

(c) Fbr a3 , which iss continuous attribute, compute the infonnation gain for 
every possible split . 



200 Chapter 4 Classification 

(d) What is the best split (among a" a,. and a 3 ) aa:ording to the information 
gain? 

(e) What is the best split (between a, and a,) according to the classification 
error rate? 

{f) What is the best split (between a1 and a 2 ) according to the Gini index? 

4. Show that the entropy of a node never increases after splitting it into smaller 
successor nodes. 

5. Consider the following data set for a binary class problem. 

A B Class Label 
T F + 
T T + 
T T + 
T F -
T T + 
F F -
F F -
F F -
T T -
T F -

(a) Calculate the information gain when splitting on A 9lld B. Which at­
tribute would the decision tree induction algorithm choose? 

(b) Calculate the gain in tbe Gini index when splitting on A and B. Which 
attribute would the decision tree induction algorithm choose? 

(c) Figure 4.13 shows that entropy and the Gini inde.x are both monot-onously 
increasing on the range [0. 0.5[ and they are both monotonously decreasing 
on the range [0.5, 1]. Is it possible that information gain and the gain in 
the Gini index favor different attributes? Explain. 

6 . Consider the foUowing set of tnrirring examples. 

X y z No. of Class C1 Examples No. of Class C2 Examples 
0 0 0 5 40 
0 0 1 0 15 
0 1 0 10 5 
0 1 1 45 0 
1 0 0 10 5 
1 0 1 25 0 
1 1 0 5 20 
1 1 1 0 15 

4 .8 Exercises 201 

(a) Compute a two-level decision tree using the greedy approach described in 
this chapter. Use the cl&SSification error rate as the criterion for splitting. 
What is the overall error rate of the induced tree? 

(b) Repeat part (a) using X as the first splitting attribute and t.hen choose the 
best remaining attribute for splitting at each of the two successor nodes. 
What is the error rate of the induced tree? 

(c) Compare the results of parts (a) and (b) . Comment on the suitability of 
the greedy heuristic used for splitting attribute selection. 

7. The following table summarizes a data set. with three attributes A. B. C and 
two class labels+, -. Build a two-level decision tree. 

Number of 
A B c Instances 

+ 
T T T 5 0 
F T T 0 20 
T F T 20 0 
F F T 0 5 
T T F 0 0 
F T F 25 0 
T F F 0 0 
F F F 0 25 

(a) According to the classification error rate, which attribute would be chosen 
as the first splitting attribute? For each a.ttribute1 show the contingency 
table and the gairu; in d!lSsification error rate. 

(b) Repeat for the two children of the root node. 

(c) How many instances are misclassified b.r the resultiug decision tree? 

(d) Repeat parts (a), (b), !Uld (c) using C"" the splitt ing attribute. 

(e) Use the results in parts (c) and (d) to conclnde abont the greedy nature 
of the derision tree induct-ion algorithm. 

8. Consider the decision tree shown in Figure 4.30. 

(a) Compute the generalizat-ion error rate of the tree using the optimistic 
approach. 

(b) Compute the generalization error rate of the tree using the pessimistic 
approach. (For simplicity, use the strategy of adding a factor of 0.5 to 
each leaf node.) 

(c) Compute the generalization error rate of the tree using the validation set 
shown above. This approach is known as reduced error pruning. 



202 Chapter 4 Classification 

Training: 
Instance A B c Class 

1 0 0 0 + 
2 0 0 1 + 
3 0 1 0 + 
4 0 1 1 
5 1 0 0 + 
6 1 0 0 + 
7 1 1 0 
8 1 0 1 + 
9 1 1 0 
10 1 1 0 

Validation· 
Instance A B c Class 

11 0 0 0 + 
12 0 1 1 + 
13 1 1 0 + 
14 1 0 1 
15 1 0 0 + 

Figure 4.30. Decision tree and data sets for Exercise 8. 

9 . Consider the decision trees shown in Figure 4.31. Assume they are generatNi 
from a data set that contains 16 binary attributes and 3 classes. cl, c'l~ and 
C3. 

(a) Decision tree witt> 7 errors (b) Decision tree wittl4 errors 

Figure 4.31. Decision trees for Exercise 9. 

4.8 Exercises 203 

Compute the total d"'""ription length of each decision tree acrording to the 
minimum description length principle. 

• The total description length of a tree is given by: 

Cos t( tree, data)= Cost( tree) + Cost(dataitree) . 

• E~Wh internal node of the tree is encoded by the ID of the splitting at­
tribute. If there are m attributes1 the cost of encoding each attribute is 
log2 m hits. 

• E~Wh leaf is encoded using the ID of the class it is associated with. II 
there are k classes, the cost of enroding a class is log2 k bits. 

• Cost( tree) is the cost. of encoding aJJ the nodes in the tree. To simpli(y the 
computation, you can assume that the total cost of t.he tree is obtained 
by adding up the costs of encoding each internal node and each leaf node. 

• Cost(dataitree) is encoded using t he classification errors the tree commits 
on the training set . Each error is encoded by log2 n bits1 where n is the 
total number of training .instances. 

Which decision t ree is better, according to the MDL principle? 

10. While the .632 bootsuap approach is useful for obtaining a reliable estimate of 
model accuracy, it has a known limitation [127]. Consider a two-class problem, 
where there are equal number of posit ive and negative exrunples in the data. 
Suppose tbe class labels for the examples are generated randomiy. The classifier 
used is an unpruned decision tree (i.e., a perfect memorizer) . Determine the 
accuracy of the classifier using each of the following methods. 

(a) The holdout method, where tw<>-thlrds of the data are used for training 
and the remaining one-third are used for testing. 

(b) Ten-fold cross-validation. 

(c) The .632 bootstrap method. 

(d) From the results in parts (a), (b). and (c), which method provides a more 
reliable evaluation of the classifier's accuracy? 

11. Consider the following approach for testing whether a classifier A beats another 
clsssifier B. Let N be the size of a given data set, PA be the accuracy of classifier 
A, PB be the accur~Wy of classifier B, and p = (pA + Ps)/2 be the average 
accuracy for both classifiers. Th test whether classifier A is significantly better 
than B, the following Z-statistic is used: 

z - PA - PB 
- J~r<}?'l. 

Classifier A is llllBwned to be better than classifier B if Z > 1.96. 



204 Chapter 4 Classification 

Table 4.9 compares the accuracies of three different classifiers, decision tree 
classifiers, naive Bayes classifiers~ and support vector machines, on various data 
sets. (The lat.ter two classifiers""" described in Chapter .5.) 

Table 4.9. Comparing the accuracy of various classification methods. 

Data Set Size Decision naive Support vector 
(N) Tree(%) Bayes(%) machine(%) 

Anneal 898 92.09 79.62 87.19 
Australia 600 85.51 76.81 84.78 
Auto 205 81.95 58.05 70.73 
Breast 699 95.14 95.99 96.42 
Cleve 303 76.24 83.50 84.49 
Credit 690 85.80 77.54 85.07 
Diabetes 708 72.40 75.91 76.82 
German 1000 70.00 74.70 74.40 
Glass 214 67.29 48.59 50.81 
Heart 270 80.00 84.07 83.70 
Hepatitis 155 81.94 83.23 87.10 
Horse 368 85.33 78.80 82.61 
Ionosphere 351 80.17 82.34 88.89 
Iris 150 94.07 95.33 96.00 
Labor 57 78.05 94.74 92.98 
Led7 3200 73.34 73.16 73.56 
Lymphography 148 77.03 83.11 86.49 
Pima 768 74.35 70.04 76.95 
Sonar 208 78.85 69.71 76.92 
Tic-tac-t.oe 958 83.72 70.().1 98.33 
Vehicle 846 71.04 45.04 74.94 
\Vine 178 94.38 00.63 98.88 
Zoo 101 93.07 93.07 96.().1 

Sununarize the p<!rformance of the classifiers given in Table 4.9 using the fol­
lowing 3 x 3 table: 

win-loss-draw Decision t.ree Naive Bayes Support vector 
machine 

Decision tree 0- 0- 23 
Nai've Bayes 0- 0- 23 
:Support vector maclLine 0-0-23 

Each cell in the table conta.i.ns the number of wins. losses, and draws when 
comparing the classifier in a given row to the classifier in a given column. 

4.8 Exercises 205 

12. Let X be a binomial random variable with mean Np and variance Np(l- p). 
Show that the ratio XjN also has a binomial distribution with mean p and 
variance p{l- p)jN. 



I 

Association Analysis: 
Basic Concepts and 
Algorithms 

6 

Many business enterprises accumulate la.rge quantities of data from their day­
to-day opera.lions. For example, huge amounts of customer purehase data are 
collected daily at the checkout coUDtcm of gyo=y store~. T&ble 6.1 illwtratco 
an e:xa.mple of ouch data., commonly known as market basket transactions. 
Each row in thls table oart'eSpond.& to a transaction, which contains a unique 
identifier labeled TID and a set of iteiDB bought by a given customer. Retail­
ers are interested in ana.lyzing the data to learn about the purcha.s.ing behavior 
of their customers. Such valuable informo.tion Cllll be used to support a VllZi­

ety of busin...,.rela.tod applications such os msrbting pramotions, inwntory 
management, and customer relationship ma.na.gement. 

This chapter presents a methodology known as association analysis, 
which is useful for discovering interesting relatioiJShips hidden in large data 
ocis. The uncovered rel&tiODBhips C6ll be repr"""nted in the furm of as5ocia-

Tablo 6.1. An sxamp& of marf<st baskst transacticns. 

TID ltemB 
I 1~read, ~ilk} 
2 {Bread, IJiap.,., Beer, Ew} 
3 {Milk, Diapera, Beer, Cola} 
4 {Bread, Milk, Diapers, Beer} 
5 {Bread, Milk, Diapers, Cola} 



328 Chapter 6 Association Analysis 

tion rules or sets of frequent items. For example, the following rule can be 
extracted from tbe data set shown in Table 6.1: 

{Diapers} ~ {Beer}. 

The rule suggests that a strong relationship exists between the sale of diapers 
and beer because many customers who buy diapers also buy beer. Retailers 
can use this type of rules to help them identify new opportunities for cross­
selling their products to the customers. 

Besides market basket data, association ana1ysis is also applicable to other 
application domains such as bioinformatics, medical diagnosis, Web mining, 
and scientific data analysis. In the analysis of Earth science data, for example, 
the association patterns may reveal interesting connections among the ocean, 
land, and atmospheric processes. Such information may help Earth scientists 
develop a better understanding of how the different elements of the Earth 
system interact witb each other. Even though the techniques presented here 
are generally applicable to a wider variety of data sets, for illustrative purposes, 
our discussion will focus mainly on market basket data. 

There are two key issues that need to be addressed when applying associ­
ation analysis to market basket data. First, discovering patterns from a large 
transaction data set can be computationally expensive. Second, some of the 
discovered patterns are potentially spurious because they may happen simply 
by chance. The remainder of this chapter is organized around tbese two is­
sues. The first part of the chapter is devoted to explaining the basic concepts 
of association analysis and the algorithms used to efficiently mine such pat­
terns. The second part of the chapter deals with the issue of evaluating the 
discovered patterns in order to prevent the generation of spurious results. 

6.1 Problem Definition 

This section reviews the basic terminology used in association analysis and 
presents a formal description of the task. 

Binary Representation Market basket data can be represented in a binary 
format as shown in Table 6.2, where each row corresponds to a transaction 
and each column corresponds to an item. An item can be treated as a binary 
variable whose value is one if the item is present in a transaction and zero 
otherwise. Because the presence of an item in a transaction is often considered 
more important than its absence, an item is an asynun~tric binary variable. 

6.1 Problem Definition 329 

Table 6.2. A binruy 0/ 1 representation of market basket data. 

TID Bread Milk Diapers Beer Eggs Cola 
I I I 0 0 0 0 
2 1 0 1 1 1 0 
3 0 1 I 1 0 1 
4 1 1 1 I 0 0 
5 1 1 1 0 0 1 

This representation is perhaps a very simplistic view of real market basket data 
because it ignores certain important aspects of the data such as the quantity 
of items sold or the price paid to purchase them. Methods for handling such 
non-binary data will be explained in Chapter 7. 

lteniSet and Support Count Let I = {it ,i2, ... .id} be the set of all items 
in a market basket data and T = {t1, t2, . . •• t N} be the set of all transactions. 
Each transaction ti contains a subset of items chosen from I. In association 
analysis, a collection of zero or more items is termed an itemset. If an itemset 

contains 1.: items, it is called a 1.:-itemset. For instance, {Beer, Diapers, Milk} 

is an example of a 3-itemset. The null (or empty) set is an itemset that does 
not contain any items. 

The transaction width is defined as the nnmber of items present in a tram~ 
action. A transaction tj is said to contain an itemset X if X is a subset of 
tj. For example, the second transaction shown in Table 6.2 contains tbe item­
set {Bread, Diapers} but not {Bread, Milk}. An important property of an 
iternset is its support count, which refers to the number of transactions that 
contain a particular itemset. Mathematically, the support count, u(X). for an 
itemset X can be stated as follows: 

u(X) = l{t; IX!:;; t;, t; E T}l. 

where the symbol I · I denote the number of elements in a set. In the data set 
shown in Table 6.2, the support count for {Beer, Diapers, Milk} is equal to 
two because there are only two transactions that contain all three items. 

Association Rule An association rule is an implication expression of the 
form X ~ Y, where X and Y are disjoint itemsets, i.e., X n Y = 0. The 
strength of an association rnle can be measured in terms of its support and 
confidence. Support determines how often a rule is applicable to a given 



330 Chapter 6 Association Analysis 

data set. while confidence determines how frequently items in Y appear in 
transactions that contain X. The formal definitions of these metrics are 

Support, s(X ~ Y) 

Confidence, c(X ~ Y) 

a(X uY) 
- -N-

a(X u Y) 

~ 

(6.1) 

(6.2) 

Example 6.1. Consider the rule {Milk, Diapers} ~ {Beer}. Since the 
support count for {Milk, Diapers, Beer} is 2 and the total number of trans­
actions is 5, the rule's support is 2/5 = 0.4. The rule's confidence is obtained 
by dividing the s upport count for {Milk, Diapers, Beer} by the suppmt count 
for {Milk, Diapers}. Since there are 3 transactions that contain milk and di­
apers, the confidence for this rule is 2/3 = 0.67. • 

Why Use Support and Confidence? Support is an important measure 
because a rnle that has very low suppcrt may occur simply by chance. A 
low support rule is also likely to be uninteresting from a business perspective 
because it may not be profitable to promote items that cu.stmners seldom bny 
together (with the exception of the situation described in Section 6.8). For 
these reasons, support is often used to eliminate uninteresting rules. As will 
be shown in Sectio n 6.2.1, support a lso has a desirable property t hat can be 
exploited for the efficient discovery of aSBociation rules. 

Confidence, on the other hand, measures the reliability of the inference 
made by a r ule. For a given rule X ~ Y, tbe higher tbe confidence, the more 
likely it is for Y to be present in transactions that contain X. Confidence also 
provides an estimate of the conditional probability of Y given X. 

Association analysis results should be interpreted with caution. The infer­
ence made by an association rule does not necessarily imply causality. Instead, 
it snggests a strong co-occurrence relatiouship between items in the antecedent 

and consequent of the rule. Causality, on the other hand, requires knowledge 
about the causal and effect a ttributes in the data and typically involves rela­
tionships occurring over t ime (e.g .. ozone depletion leads to global warming). 

Formulation of Association Rule Mining Problem The association 
rule mining problem can be formally stated as follows: 

Definition 6.1 (Association Rule Discovery). Given a set of transactions 
T, find all the rules having support~ mi.nsup and confidence~ minconf, 
where minsup and minconf are the corresponding support and confidence 
thresholds. 

6.1 Problem Definition 331 

A brute-force approach for mining association rules is to compute the sup­
port and confidence for every possible rule. This approach is prohibitively 
expensive because there are exponentially many rules that can be extracted 
from a data set. More specifically, the total number of possible rules extracted 
from a data set that contains d items is 

(6.3) 

The proof for this equation is left as an exercise to the readers (see Exercise 5 
on page 405). E ven for the small data set shown in Table 6.1, this approach 
requires us to compute tbe support and confidence for 36 -27 + 1 = 602 rules. 
More than 80% of the rules are discarded after applying minsup = 20% and 
minconf = 50%, thus making most of the computations become wasted. To 
avoid performing needless computations, it would be useful to prune the rules 
early without having to compute their support and confidence values. 

An initia l step toward improving the performance of association rule min­
ing algorithras is to decouple the support and confidence requirements. From 
Equation 6.2, notice that the support of a rule X ~ Y depends only on 
the support of its corresponding itemset, X U Y. For example, tbe following 
rules have identical support because they involve items from the same itemset, 
{Beer, Diapers, Milk}: 

{Beer, Diapers} ~ {Milk}, 
{Diapers. Milk} ~ {Beer}, 

{Milk} ~ {Beer,Diapers}, 

{Beer, Milk} ~ {Diapers} , 
{Beer} ~ {Diapers, Milk}, 
{Diapers} ~ {Beer,Milk}. 

If t he itemset is infrequent, then all six candidate rules can be pruned imme­
diately without our having to compute their confidence values. 

Therefore, a common strategy adopted by many association rule mining 
algorithms is to decompose the problem into two major subtasks: 

1. Frequent Itemset Generation, whose objective is to find all the item­
sets that satisfy the minsup threshold. These itemsets are called frequent 
itemsets. 

2. Rule Generation, whose objective is to extract all the high-confidence 
rules from the frequent iternsets found in the previous step. These rules 
are called strong rules. 

The computational requirements for frequent itemset generation are gen­
erally more expensive than those of rule generation. Efficient techniques for 
generating frequent iternsets and association rilles are discussed in Sections 6.2 
and 6.3, respectively. 



332 Chapter 6 Association Analysis 

Figure 6.1. An ~emset latlice. 

6.2 Frequent Itemset Generation 

A lattice structure can be used to enumerate the list of all possible itemsets. 
F igure 6.1 shows an itemset lattice for I = {a,b,c,d,e}. In general, a data set 
that contains k itell1S can potentially generate up to zk - 1 frequent itell1Sets, 
excluding the nnll set. Becanse k can be very large in many practical appli­
cations, the search space of itemsets that need to be explored is exponentia.Jly 
large. 

A brute-force approach for finding frequent itemsets is to determine the 
snpport count for every candidate itemset in the lattice stmcture. To do 
this, we need to cOinpare each candidate against every transaction, an opera­
tion that is shown in Figure 6.2. If the candidate is contained in a t ransaction, 
its support count will be incremented. For example, the support for {Bread, 
Milk} is incremented three times because the itemset is contained in transac­
tions 1, 4, and 5. Such an approach can be very expensive because it requires 
O(N i\fw) comparisot1S, where N is the number of transactions, i\f = zk - 1 is 
the nnmber of candidate itemsets, and w is the maximum transaction width. 

6 .2 Frequent Iten1Set Generation 333 

Candidates 

I Transactions 

TID Items 

t 1 Bread, Milk M 

2 Bread, Diapers, Beer, Eggs 

j N 3 Milk, Diapers, Beer, Coke 

1 4 Bread, Milk, Diapers, Beer 
5 Bread, Milk, Diapers, Coke 

Figure 6.2. Counting the support of candidate ~emsets. 

There are several ways t.o reduce the computational complexity of frequent 
itemset generation. 

1. Reduce the number of candidate ite msets (M). The A priori prin­
ciple, described in the next section, is nn effective way to eliminate some 
of the candidate i temsets without counting their support va.Jues. 

2. Reduce the number of comparisons. Instead of matching each can­
didate itetnset against every transaction, we can reduce the number of 
comparisons by using more advanced data structures, either to store the 
candidate itemsets or to compress the data set. We will discuss these 
strategies in Sections 6.2.4 and 6.6. 

6 .2 .1 The Apriori Principle 

T his section describes how the support measure helps to reduce the number 
of candidate itemsets explored during frequent itemset generation. The use of 
support for prnning candidate itemsets is gnided by t he following principle. 

Theorem 6.1 (A priori Principle). If an itemset is frequent, then all of its 
subsets must also be frequent. 

To illus trate the idea behind the Apriori princ.iple, consider the itemset 
lattice shown in F igure 6.3. Suppose { c, d, e) is a freqnent it,ell1Set. Clearly, 
any transaction that contains { c, d, e} must also contain its subsets, { c, d), 
{c,e}, {d, e}, {c}, {d}, and {e}. As a result, if {c,d,e} is frequent, then 
all subsets of {c,d,e} (i.e., the shaded itemsets in this figure) must a.!so be 
frequent . 



334 Chapter 6 Association Analysis 

Figure 6.3. An illustration of the Apriori principle. If { c, d, e} is frequent, then all subsets of this 
itemset are frequent. 

Conversely, if an itemset sud1 as {a, b} i; infrequent, then all of its supersets 
must be infrequent too. As illustrated in Figure 6.4, the entire subgraph 
contairung the supersets of {a, b) can be pruned immediately once {a,b} is 
found to be infrequent. This strategy of trimming the exponential search 
space based on the support measure is known as support-based pruning. 
Such a pruning strategy is made possible by a key property of the support 
measure, namely, that the support for an itemset never exceeds the support 
for its subsets. This property is also known as the anti-monotone property 
of the support measure. 

De finition 6.2 (Monotonicity Property). Let I be a set of items, and 
1 = 21 be the power set of I. A measure f is monotone (or upward closed) if 

VX, Y E 1: (X<;; Y) ___, !(X)~ J(Y), 

I 
I 
I 
I 
I 
I 
I 
I 
\ 
\ 
\ 

\ 

' ' ' ........... , 
', 

Prunecl ', 
Supersets ' ............ 

6.2 Frequent Itemset Generation 335 

______________ ... 

Figure 6.4. An illustration of support-based pruning. ~ {a, b) is infrequent, then all supersetsof {a, b) 
are infrequent. 

which means that if X is a subset of Y , then J(X) must not exceed J(Y). On 
the other hand, f is anti-monotone (or downward closed) if 

VX, Y E 1: (X<;; Y) ___, f(Y) ~ J(X) , 

which means that if X is a subset of Y, then J(Y) must not exceed !(X). 

Any measure that possesses an anti-n1onotone property can be incorpo­
rated directly into the nlirung algorithm to effectively prune the exponential 
search space of candidate itemsets, as will be shown in the next section. 

6 .2.2 Ft-equent Itemset Generation in the Apriori Algorithm 

Apriori is the first association rule mining algorithm that pioneered the use 
of support-based pruning to systematically control t he exponential growth of 
candidate itemsets. Figure 6.5 provides a high-level illustration of the frequent 
itemset generation part of the A priori algorithm for the transactions shown in 



336 Chapter 6 Association Analysis 

Candidate 
1-ltemsets 

Item Count 
Beer 3 
Bread 4 
Cola 

Minimum support count= 3 

2 " . 
Diapers :l) ;:;:::::: Milk 
Eggs 1 ltemsel Count 

{Beer, Bread} 2 
{Beer, 1apers} 3 
{Beer. Milk} 2 
Bread, Diapers} 3 

{Bread, Milk) 3 

~::•:;: ~~~':ed {Diapers, Milk} 3 

support 
" Candidate 

r'------clt"'e-:m:=!c:~7:•c.:m.:.:se=ts'r.c"'o"'u::n71t 
{Bread, Diapers, Milk} 3 

Figure 6.5. Illustration of frequent itemset generation using the Apriori algorithm. 

Table 6.1. We assume that the support threshold is 60%, which is equivalent 
to a minimum support count equal to 3. 

Initially, every item is considered as a candidate 1-itemset. After count­
ing their supports, the candidate iternsets {Cola} and {Eggs } are discarded 
because t hey appear in fewer than three transactions. In the next iteration, 
candidate 2-itemset.s are generated using only the frequent 1-itemsets because 
the Aprior'i principle ensures that all supersets of the infrequent 1-itemsets 
must be infrequent. Because there are only four frequent 1-itemsets, the num­
ber of candidate 2-itemsets generated by the algorithm is ( ~ ) = 6. Two 
of t hese six candidates, {Beer, Bread} and {Beer, Milk}, are subsequently 
found to be infrequent after computing their support values. The remain­
ing four candidates are frequent, and thus will be used to generate candidate 
3-itemsets. Without support-based pruning, there are ( ~ ) = 20 candidate 
3-itemsets that can be formed usiug the six items given in this example. With 
the A priori principle, we only need to keep candidate 3-itemsets whose subsets 
are frequent. The only candidate that has this property is {Bread, Diapers, 
Milk}. 

The effectiveness of the A priori pruning strategy can he shown by count­
ing the number of candidate itemset.s generated. A brute-force strategy of 

6. 2 Frequent Iten=t Generation 337 

enumerating all itemsets (up to size 3) as candidates will produce 

G) + (~) + G) = 6+ 15+ 20 = 41 

candidates. Witl1 the Apriori principle, this number decreases to 

G)+(~) +1 =6+6+1 = 13 
candidates1 which represents a 68% reduction in the number of candidate 
itewsets even in this simple example. 

The pseudocode for the frequent itemset generation part of the Apriot'i 
algorithm is shown in Algorithm 6.1. Let ck denote the set of candidate 
k-itemsets and Fk denote the set of frequent k-itemsets: 

• The algorithm initially makes a single pass over the data set to determine 
the support of each item. Upon completion of this step, the set of all 
frequent 1-itemsets, F1, will be known (steps 1 and 2). 

• Next, the algorithm will iteratively generate new candidate k-itemsets 
using the frequent (k - 1 )-itemsets found in the previous iteration (step 
5). Candidate generation is implemented using a function called apriori­
gen, which is described in Section 6.2.3. 

A lgorithm 6.1 Frequent itemset generation of the A priori algorithm. 
l:k = l. 
2: F. = {iIi E I 1\u({i})?: N x minsup). {Find all frequent 1-itemsets} 
3: repeat 
4: k = k + 1. 
5: Ck = apriori-gen(H- 1). {Generate candidate itemsets} 
6: for each transaction t E T do 
7: C, = subset(Ck, t). {Identify all candidates that belong tot} 
8: for each candidate itemset c E Ct do 
9: CT(c) = u(c) + 1. {Increment support count} 

10: end for 
11: end for 
12: Fk = { c I c E c. 1\ u(c)?: N x minsup} . {Extract the frequent k-itemsets} 
13: until Fk = 0 
14: Result = UF,. 



338 Chapter 6 Association Analysis 

• To count the support of the candidates, the algorithm needs to make an 
additional pass over the data set (steps 6-10). The subset function is 
used to determine all the candidate itemsets in Ck that are contained in 
each transaction t . The implementation of this function is described in 
Section 6.2.4. 

• After counting their supports, the algorithm eliminates all candidate 
iternsets whose support counts are less than minsup (step 12). 

• The algorithm terminates when there are no new frequent itemsets gen­
erated, i.e., Fk = 0 (step 13). 

The frequent itemset generation part of the Apriori algorithm has two im­
portrult characteristics. First, it is a level-wise algorithm; i.e., it traverses the 
itemset lattice one level at a time, from frequent 1-iternsets to the maximum 
size of frequent itemsets. Second. it employs a generate-and-test strategy 
for finding frequent itemsets. At each iteration, new candidate itemsets are 
generated from the frequent itemsets found in the previous iteration. The 
support for each candidate is then counted and tested against the minsup 
t hreshold. The total number of iterations needed by t he algorithm is kmax + 1, 
where kmax is the maximum size of the frequent itemsets. 

6.2.3 Candidate Generation and Pruning 

The apriori-gen function shown in Step 5 of Algorithm 6.1 geuerates caudidate 
itemsets by performing the following two operations: 

1. Candidate Generation. This operation generates new candidate 1.:­
itemsets based on the frequent (k- 1)-iternsets found in the previous 
iteration. 

2. Candidate Pruning. This operation eliminates some of the candidate 
k-itemsets nsing the snpport-hased pruning strategy. 

To illustrate the candidate pruning operation, consider a candidate k-iternset, 
X= {i,,i2, .. .,ik}. The algor ithm must determine whether all of its proper 
subsets, X - {ij} (lfj = 1, 2, . . . , k), are frequent . If one of them is infre­
quent , then X is immediately pruned. This approach can effectively reduce 
the number of candidate itemsets considered during support cow1ting. The 
complexity of this operation is 0 ( k) for each candidate k-itemset. However, 
as will be E~howu later, Vle do not have to examine all k subsets of a given 
candidate itemset. If m of the k subsets were used to generate a candidate, 
we only need to check the remaining k - m subsets during candidate pruning. 

6.2 Frequent lternset Generation 339 

In principle, there are many ways to generate candidate itemsets. The fol­
lowing is a list of requirements for an effective candidate generation procedure: 

1. It should avoid generating too many unnecessary candidates. A candi­
date itemset is unnecessary if at least one of its subsets is infrequent. 
Such a candidate is guaranteed to be infrequent according to the anti­
monotone property of support. 

2. It must ensure that the candidate set is complete, i.e., no frequent item­
sets are left out by the candidate generation procedure. To ensure com­
pleteness, the set of candidate itemsets must subsume the set of all fre­
quent itemsets, i.e .. Vk : Fk <; Ck-

3. It should uot generate the same candidate itemset more than ouce. For 
example, the candidate iternset {a, b, c, d} can be generated in many 
ways-by merging {a,b,c} with {d) , {b,d} with {a, c). {c} with {a,b, d) , 
etc. Generation of duplicate candidates leads to wasted computations 
and thus should be avoided for efficiency reasons. 

Next, we will briefly describe several candidate generation procedtues, in­
cluding the one used by the apriori-gen function. 

Brute-Force Method The brute-force method considers every k-itemset as 

a potential candidate and then applies the candidate pruning step to remove 
any unnecessary candidates (see Figure 6.6). The number of candidate item­
sets generated at level 1.: is equal to ( t ) , where dis the total number of items. 
Although candidate generation is rather trivial, candidate pruning becomes 
extremely expensive because a large number of iternsets must be examined. 
Given that the amount of comput ations needed for each candidate is O(k), 
the overall complexity of this method is O(":Lt~t k x ( ~ )) = O(d · 2d-1). 

Fk- l x F, Method An alternative method for candidate generation is to 
extend each frequent (k- 1)-itemset with other frequent items. Figure 6.7 
illustrates how a frequent 2-itemset such as {Beer, Diapers} can be aug­
mented with a frequent item such as Bread to produce a candidate 3-itemset 
{Beer, Diapers, Bread}. This method will produce O(IFk-ll x IFd) candi­
date k·-iternsets, where IFi l is the number of frequent j-itemsets. The overall 
complexity of this step is O("L,k kiFk- l iiF,I). 

Tbe proced.ure is complete because every frequent k-itemset is composed 
of a frequent (k - 1)-itemset and a frequent 1-itemset. Therefore, all frequent 
k-itemsets are part of the candidate k-itemsets generated by this procedure. 



340 Chapter 6 Association Analysis 

Item$ 

Candidate 
Pn.mlng 

Item &ret 
{Bread, Diapers, M~k} 

Figure 6.6. A brute-force method for generating candidate 3-itemsets. 

Candklata G9nsratlon 

llemaet 
{~r. Diapers, Bleed} 
{Beer. Diaper"$, Mit:} 
{Bread, Dlape~. Milk} 
{Broad, Milk. Boor} 

Gandlelatg 
Prunng 

ltemset 
__. {Bread, Diapers, Milk} 

Figure 6.7. Generating and prWling candidate k-itemsets by merging a frequent (k -1)-itemset with a 
frequent item. Note that some of the candidates are unnecessary because their subsets are infrequent. 

This approach, however, does not prevent the same candidate itemset from 
being generated more than once. For instance, {Bread, Diapers , Milk} can 
be generated by merging {Bread, Diapers} with {Milk}, {Bread, Milk} with 
{Diapers}, or {Diapers, Milk} with {Bread}. One way to avoid generating 

6.2 Frequent ltemset Generation 341 

duplicate candidates is by ensuring that the items in each frequent itemset are 
kept sorted in their lexicographic order. Each frequent (k-1)-itemset X is then 
extended with frequent items that are lexicographically larger than the items in 
X. For example, the itemset {Bread, Diapers} can be augmented with {:tvlilk} 
since Milk is lexicographically larger than Bread and Diapers. How.ever, we 
should not augment {Diapers, Milk} with {Bread} nor {Bread, Milk} with 
{Diapers) because they violate the lexicographic ordering condition. 

While this procedure is a substantial improvement over the brute-force 
method 1 it can still produce a large number of unnecessary candidates. For 
example, the candidate itemset obtained by merging {Beer, Diapers} with 
{Milk} is unnecessary because one of its subsets~ {Beer1 Milk}, is infrequent. 
There are several heuristics available to reduce the numher of unnecessary 
candidates. For example, note that, for every candidate k-itemset that survives 
the pruning step, every item in the candidate must be contained in at least 
k- 1 of the frequent (k -1)-itemsets. Otherwise, the candidate is guaranteed 
to he infrequent. For example, {Beer, Diapers, Milk} is a viable candidate 
3-itemset only if every item in the candidate, including Beer, is contained in 
at least two frequent 2-itemsets. Since there is only one frequent 2-itemset 
containing Beer, all candidate itemsets involving Beer must be infrequent. 

F k-1 x F k-1 Method The candidate generation procedure in the apriori-gen 
function merges a pair of frequent (k -1)-itemeets only if their first k- 2 items 
are identical. Let A = { a 1, a2, .. . , ak-d and B = {b~o b2 .... , bk-d be a pair 
of frequent (k- 1)-itemsete. A and B are merged if they satisfy the following 

conditions: 

a, = b, (fori= 1, 2, .. . , k - 2) and ak-1 f bk-1· 

In Figure 6.8, the frequent itemsete {Bread, Diapers} and {Bread, Milk} are 
merged to form a candidate 3-itemset {Bread, Diapers, Milk}. The algorithm 
does not have to merge {Beer, Diapers} with {Diapers, Milk} because the 
first item in both itemsets is different. Indeed, if {Beer, Diapers, Milk} is a 
viable candidate, it would have been obtained by merging {Beer, Diapers} 
with {Beer, Milk} instead. This example illustrates both t he completeness of 
the candidate generation procedure and the advantages of using lexicographic 
ordering to prevent duplicate candidates. However, because each candidate is 
obtained by merging a pair of frequent (k-1 )-itemsets, an additional candidate 
pruning step is needed to ensure that the remaining k - 2 subsets of the 
candidate are frequent. 



342 Chapter 6 Association Analysis 6.2 Frequent Iternset Generation 343 

Frequent Transaction, t 
2-itemset 

Candidate Candidate 
Generation Pruning 

lt!lmaet ltemae1 
{Bread, Diapers, Milk} ....... {Bread, Diapers, Milk~ 

Figure 6.8. Genera~ng and pruning candidate k~temsets by merging pairs of frequent (k-1)·itemsets. 

6.2.4 Support Counting 

Support coWlt.ing is the process of determining t he frequency of occurrence 
for every candidate itemset that survives the candidate pruning step of the 
apriori-gen function . Support counting is implemented in steps 6 through 11 
of Algorithm 6.1. One approach for doing this is to compare each transaction 
against every candidate itemset (see Figure 6.2) and to update the support 
counts of candidates contained in the transaction. This approach is computa­
tionally expensive, especially when the numbers of transactions and candidate 
iternsets are large. 

An alternative approach is to e.numerate the iternsets contained in each 
transaction and U5e them to update the support counts of their respective can­

didate iternsets. To illustrate, consider a transaction t. that contains five items, 
{1 , 2, 3 , 5, 6}. There are ( ~ ) = 10 itemsets of size 3 contained in this t ransac­
tion. Some of the iternsets may correspond to the candidate 3-iternsets under 
investigation, in which case. their support connts are incremented. Other 
subsets oft that do not correspond to any candidates can be ignored. 

Figure 6. 9 shows a systematic way for enumerating the 3-itemsets contained 
in t. Assuming that each itemset keeps its items in increasing lexicographic 
order, an itemset can be enWl>erated by spec.if'ying tbe smallest item first, 
followed by t he larger items. For instance, given t = { 1, 2, 3, 5, 6}, all the 3-
iternsets contained in t must begin with item 1, 2. or 3. It is not po,.,ihle to 
construct a 3-itemset tha t begins with items 5 or 6 because there are only two 

Leve/3 Subsets of 3 items 

Figure 6.9. Enumerating subsets of three items from a transaction t. 

items in t whose labels are greater than or equal to 5. The number of ways to 
specify the first item of a 3-itemset contained in t is iUnstrated by tbe Level 
1 prefix structures depicted in Figure 6.9. For instance. 1 1TIEJ represents 
a 3-iternset that hegins with item 1, followed by two more items chosen from 
the set {2, 3,5,6}. 

After fixing the first item, t he prefix structures at Level 2 represent the 
number of ways to select the second item. For example, 1 2 ~corresponds 
to iternsets that begin with prefix (1 2) and are followed by items 3, 5, or 6. 
Finally, the prefix structures at Level 3 represent t he complete set of 3-itemsets 
contained in t. For example, the 3-itemsets that begin with prefix { 1 2} are 
{1, 2.3}, {1 ,2, 5}, and {1, 2,6}, whlle those tbat begin witb prefix {2 3} are 
{2,3,5} and {2, 3, 6}. 

T he prefix structures shown in Figure 6.9 demonstrate how itemsets con­
tained in a t ransaction can be systematically enumerated, i.e .. by specifYing 
their items one by one, from the leftmost item to the rightmost item. We 
still have to determine whether each enumerated 3-itelflset corresponds to an 
existing candidate itemset. If it matches one of tbe candidates, t hen the sup­
port count of the corresponding candidate is incremented. In the next section, 
we illustrate how this matchlng operation can be performed efficiently using a 
hash tree structure. 



344 Chapter 6 Association Analysis 

Hash Tree 

Leafnodes ~ 
containing I {Boer, Bread) Ill{ . }II· }I c~ndidate (Beer. Oi~rs) {B[;!dD•::;s} {Diapers, Milk) 
2-rtemsets {Beer. Mrlk} ' 

Transactions I I TID Items 
t Bread, Milk 
2 Bread, Diapers, Beer, Eggs 
3 Milk, Diapers, Boor, Cola 
4 Bread, Milk, Dlaoers, Beer 
5 Bread, Milk, Diapers, Cola 

Figure 6.10. Counting the support of itemsels using hash structure. 

Suppor t Counting Using a H ash Tree 

In the Apriori algorithm, candidate itemset,; are partitioned into different 
buckets and stored in a hash tree. During support counting, itemsets contained 
in each transaction are also hashed into their appropriate buckets. That way, 
instead of comparing each itemset in the transaction with every candidate 
it.emset, it is matched only against candidate itemsets that belong to the same 
bucket, as shown in Figure 6.10. 

F igure 6.11 shows an example of a hash tree structure. Each internal node 
of the tree uses the following hash function, h(p) = p mod 3, to determine 
which branch of the current node should be followed next. For example, items 
1, 4, and 7 are hashed to the same branch (i.e., the leftmost branch) because 
they have the same remainder after dividing the number by 3. All candidate 
itemsets ru·e stored at the leaf nodes of the hash tree. The h!lSh tree shown in 
Figure 6.11 contains 15 candidate 3-itemsets, distributed across 9leaf nodes. 

Consider a transaction, t = { 1, 2, 3, 5, 6}. To update the support cow1ts 
of the candidate itemsets, the hash tree must be tnwersed in such a way 
that all the leaf nodes containing candidate 3-itemsets belonging to t must be 
visited at least once. Recall that the 3-itemsets contained in t must begin with 
items 1, 2, or 3, as indicated by the Level 1 prefix structures shown in Figure 
6.9. Therefore, at the root node of the hash tree, the items 1, 2, and 3 of the 
transaction are hashed separately. Item 1 is hashed to the left child of the root 
node, item 2 is hashed to the middle child, and item 3 is hashed to the right 
child. At the next level of the tree, the transaction is hashed on the second 

6 .2 Frequent Itemset Generation 345 

HII:Sh FundOn 

2 ~f~ 

,./.'/ -- ··r 

rti7l 
~ 

Figure 6.11. Hashing a transaction at the root node of a hash tree. 

it,em listed in the Level 2 structures shown in Fignre 6.9. For example, after 
hashing on item 1 at the root node, items 2. 3, and 5 of the transaction are 
hashed. Items 2 and 5 are hashed t.o the middle child, while item 3 is hashed 
t.o the right child, as shown in Figure 6 .12. Tlus process continues w1til the 
leaf nodes of the hash tree are reached. The candidate itemsets stored at the 
visited leaf nodes are compared against the transaction. If a candidate is a 
snbset of the transaction, its support count is incremented. In this example, 5 
out of the 9 leaf nodes are visited and 9 out of the 15 itemsets are compared 
against the transaction. 

6.2.5 Computational Complexity 

The computational complexity of the A priori algorithm can be affected by the 
following factors. 

S uppor t Thresho ld Lowering the support threshold often results in more 
it,emsets being declared as frequent. This has an adverse effect on the com-



346 Chapter 6 Association Analysis 

Transaction 

11235~6 1 

Candidate Hash Tree ,' 

12+ B -- ---.... --., 
13+8- ·- -.!>',- .. 

15+ @- -

124 

457 

3+~ 

Figure 6.12. Subset operati011 on the leftmosl sublree of the root of a candidate hash trl!e. 

putational complexity of the algorithm because more candidate itemsets must 
be generated and counted, as shown in Figure 6.13. The maximum size of 
frequent itemsets also tends to increase with lower support thresholds. As the 
maximum size of the frequent itemsets increases, the algorithm will need to 
make more passes over the data set. 

Number of Items (Dimensionality) As the nnmber of items increases. 
more space will be needed to store the support counts of items. If the number of 
frequent items also grows with tbe dimensionality of the data, the computation 
and 1/0 costs will increase because of the larger number of candidate itemsets 
generated by the algorithm. 

Number of Transactions Since the Apriori algorithm makes repeated 
passes over the data set, its run time increases with a larger number of trans­
actions. 

Average Trm1saction Width For dense data sets, the average transaction 
widt h can he very large. This affects the complexity of the A priori algorithm in 
two ways. First, the maximum size of frequent itemsets tends to increase as the 

3.5 

i ' 
j 2.5 

~ 
1! 2 
~ 

~ 1.5 

e 
1 • 

4 
x10~ 

3.5 

i ' 
e 
~ 2.5 

~ 
! 2 

~ 
A 1.5 

e 
1 ' 

6.2 Frequent ltemset Generation 347 

" " 20 
S~e of lk!IMGI 

(a) Number of candidate itemsets. 

o~,~~~+~~~+~-+~+~-~1~,+-~-+~,.~~.-~~ 
SIZ8olhemsel 

(b) Number of frequent itemsets. 

Rgure 6.13. Elect of support threshold on the number of candidate and frequent ilemsets. 

average transaction width increases. As a result, more candidate itemsets must 
be examined during candidate generation and support counting1 as illustrated 
in Figure 6.14. Second, as the transaction width increases, more itemsets 



348 Chapter 6 Association Analysis 

l 
i! 
i! 
i! 

j i 
i 
; 
i 
; 
t 

10 15 20 

(a} Number of c8Ildidal:€ iternsets. 

(b} Number of Frequent Itemsets. 

25 

Figure 6.14. Elect of aYe rage transaction width on the number of candidate and frequent itemsets. 

are contained in the transaction. This will increase the number of hash tree 
t raversals performed during support counting. 

A detailed analysis of the time complexity for the Aprior'i algorithm is 
presented next. 

6.3 Rule Generation 349 

Generation of frequent 1-itemsets For each transaction, we need to up­
date the support count for every item present in the transaction. Assuming 
that w is the average transaction width, this operation requires O(N w ) time, 
where N is the total number of transactions. 

Candidate generation To generate candidate k-itemsets, pairs of frequent 
(k - 1)-iternsets are merged to determine whether they have at leBSt k - 2 
iteDlJl in common. Each merging operation requires at most k - 2 equality 
comparisons. In the best-case scenario, every merging step produces a viable 
candidate k-itemset. In the worst-case scenario, the algorithm must merge ev­
ery pair of frequent ( k -1 )-itemsets found in the previous iterat ion. Therefore, 
the overall cost of merging frequent itemsets is 

w w 

~)k - 2)1Ckl < Cost of merging < L)k - 2)1Fk-l l
2

. 

A hash tree is also constructed during candidate generation to store the can­
didate itemsets. Because the maximum depth of tile tree is ~·, the cost for 
populating the hash tree with candidate itemsets is oO:::J:~2 kiC<I). During 
candidate pruning, we need to verify that the k- 2 subsets of every candidate 
k-itemset are frequent. Since the cost for looking up a candidate in a hash 
tree is O(k), the candidate pruning step requires 0( L~~2 k(k- 2)1Ckl) time. 

Support counting Each transaction of length ltl produces (1~1) itemsets of 
size k. This is also the effective number of hash tree traversals performed for 
each t ransaction. The cost for support counting is O(N Lk (~)<>k). where w 
is the maximum transaction width and Ok is the cost for updating the support 
count of a candidate k-itemset in the hash tree. 

6.3 Rule Generation 

This section describes how to extract association rules efficiently from a given 
frequent itemset. Each frequent k-itemset, Y, can produce up to 2k - 2 associa­
t ion rules, ignoring rules that have empty antecedents or consequents (0 ~ Y 
or Y ~ 0). An association rule can be extracted by partitioning the itemset 
Y into two non-empty subsets, X andY- X , such that X ~ Y- X satisfies 
the confidence threshold. Note that all such rules must have already met the 
support threshold because they are generated from a frequent iteDlJlet. 



350 Chapter 6 Association Analysis 

Example 6.2. Let X = {1, 2, 3} be a frequent itemset. There are six candi­
date association rules that can be generated from X: { 1, 2} - { 3}, { 1, 3} -
{2}, {2,3}- {1}, {1}- {2,3}, {2}- {1,3}, and {3}- {1,2}. As 
each of their support is identical to the support for X, the rules must satisfy 
the support threshold. • 

Computing the confidence of an association rule does not require additional 
scans of the transaction data set. Consider the rule {1, 2} __. {3}, which is 
generated from the frequent itemset X = { 1, 2, 3}. The confidence for this rule 
is cr( {1, 2,3} )/a({l, 2} ). Because {1, 2, 3} is frequent, the anti-monotone prop­
erty of support ensures that { 1. 2} must be frequent, too. Since the support 
counts for both itemsets were already found during frequent itemset genera­
tion, there is no need to read the entire data set again. 

6.3.1 Confidence-Based Pruning 

Unlike the support measure, confidence does not have any monotone property. 
For exan1ple, the confidence for X - Y can he larger, smaller, or equal to the 
confidence for another rule X - Y, where X <;; X and Y <;; Y (see Exercise 
3 on page 405). Nevertheless1 if w e co1npare rules generated hom the same 
frequent itemset Y, the following theorem holds for the confidence measure. 

Theorem 6.2. lf a rule X - Y-X does not satisfy the ctmfidence thr-eshold, 
then any rule X'--.. Y- X', where X' is a subset of X, must not satisfy the 
confidence thr·eshold as well. 

To prove tbis theorem, consider the following two rules: X' - Y-X' and 
X - Y- X, where X' C X . The confidence of the rules are a(Y)/cr(X') and 
a(Y)/a(X), respectively. Since X' is a subset of X, a(X') 2: a(X). Therefore, 
the former rule cannot have a higher confidence than the latter rule. 

6 .3 .2 Rule Generation in Apriori Algorithm 

The Apriori algorithm uses a level-wise approach for generating association 
rules, where each level corresponds to the number of items that belong to the 
rule consequent. Initially, all the high-confidence rules that have only one item 
in the rule consequent are extracted. These rules are t hen used to generate 
new candidate rules. For example, if {acd) __, {b) and {abd} __, {c} are 
high-confidence rules, then the candidate rule {ad} - {be} is generated by 
merging the consequents of both rules. Figure 6.15 shows a lattice structure 
for the association rules generated from the frequent itemset {a, b, c, d} . If any 
node in the lattice has low confidence, then according to Theorem 6.2, the 

LCM'~nfidence 

Auk! 

/, ........ 
.... ---

f 
I 
I 
I 
I 
I 
I 
I 
I 
I 
\ 
\ 
\ 
\ 
I 
\ 
\ 
\ 

\ 
' Pruned 
', Rules 
', 

6 .3 Rule Generation 351 

Figure 6.15. Pruning of association rules using the confidence measure. 

entire suhgraph spanned by the node can be pruned immediately. Suppose 
the confidence for {bed} - (a} is low. All the rules containing item a in 
its consequent, including {cd} - {ab}, {bd} - {ac}, {be} - {ad), and 
{d) ~ {abc) can be discarded. 

A pseudocode for the rule generation step is shown in Algorithms 6.2 and 
6.3. Note the similarity between the ap-genrules procedure given in Algo­
rithm 6.3 and the frequent itemset generation procedure given in Algorithm 
6.1. The only difference is that, in rule generation, we do not have to make 
additional passes over the data set to compote the confidence of the candidate 
rules. Instead, we determine the confidence of each rule by using the support 
counts computed during frequent itemset generation. 

Algorithm 6.2 Rule generation of the A priori algorithm. 
1: for each frequent k-itemset fk, k 2: 2 do 
2: H, ={iIi E h) {l-item consequents of the rule.} 
3: call ap-genrules(J., H..) 
4: end for 



352 Chapter 6 Association Analysis 

Algorithm 6.3 Procedure ap-genrules(fk, Hm)· 
1: k = If• I {size of frequent itemset. } 
2: m = IHml {size of rule consequent.} 
3: if k > m + I then 
4: Hm+l = apriori-gen(Hm)· 
5: for each hm+l E Hm+l do 
G: con/= a(fk)ja(J. - hm+t). 
7: if con/ ?. minconf then 
8: output the rule (J.- hm+t) ~ hm+t· 
9: else 

10: delete hm+l from Hm+l· 
11: end if 
12: end for 
13: call ap-genrules(/<, H m+t·) 
14: end if 

6.3.3 An Example: Congressional Voting Records 

Thi.'l section demonstrates the results of applying association analysis to the 
voting records of members of the United States House of Representatives. The 
data is obtained from the 1984 Congressional Voting Records Database, which 
is available at the UCI machine learning data repository. Each transaction 
contains information about the party affiliation for a representative along with 
his or her voting record on 16 key issueB. There are 435 transactioru; and 34 

items in the data set. The set of items a re listed in Table 6.3. 
The Apriori algorithm is then applied to the data set with minsup = 30% 

and minconf = 90%. Some of the high-confidence rules extracted by the 
algorithm are shown in Table 6.4. The first two rules suggest that most of the 
members who voted yes for aid to El Salvador and no for budget resolution and 
MX missile are R.epublicaru;; while those who voted no for aid to El Salvador 
and yes for budget resolution and MX missile are Democrats. These high­
confidenc.e rules show the key issues that divide members from both political 
parties. If minconf is reduced, we may find rules that contain issues t hat cut 
across the party lines. For example, with m inconf = 40%, the rules suggest 
that corporation cutbacks is an issue that receives almost equal number of 
votes from both p arties- 52.3% of the members who voted no are Republicans, 
while the remaining 47.7% of them who voted no are Democrats. 

6.4 Compact Repres entation of Frequent ltemsets 353 

Table 6.3. List of binary anoibutes lrom the 1984 United States Congressk>nal Voting Records. Source: 
The UCI machine learning repository. 

I. Republican 
2. Democrat 
3. handicapped-infants = yes 
4. handicapped-infants = no 
5. water project cost sharing = yes 
6. water project cost sharing = no 
7. budget-resolution = yes 
8. budget·resolution = no 
9. physician fee freeze = yes 
10. physician fee freeze = no 
II. aid to El Salvador = yes 
12. a.id to El Salvador = no 
13. religious groups in schools = yes 
14. religious groups in schools = no 
15. a.nti-sateilite test ban = yes 
16. anti-satellite test ban = no 
17. aid to Nicaragna. = yes 

18. aid to Nicaragua = no 
19. MX-miss.iie = yes 
20. MX-miss.ile = no 
21. immigration = yes 
22. immigration = no 
23. synfuel corporation cutback = yes 
24. synfuel corporation cutback = no 
25. education spending = yes 
26. education spending = no 
27. right-to-sue = yes 
28. right-to-sue = no 
29. C'rime = yes 
30. crime = no 
31. duty-free-exports = yes 
32. duty-free-exports = no 
33. export administra.tiou act = yes 
34. export administration act = no 

Table 6.4. Association rules extracted from the 1984 United States Congressional Voting Records. 

Associatiou RulP Confidence 
{budget resolution = no, MX-missile=no, aid to El Salvador = yes } 91.0% 

~ {R~publican} 
(budget resolution - yes, MJI.-missile-yes, aid to 101 :>alvador - no ) 97.5/', 

~ {Democrat} 
(crime- yes, right-to-sue- yes, physician fee freeze - yes) 93.5% 

~ (Republican} 
{crime - no1 right-to-sue - no, physician fe~ freeze - no} !DO% 

~ {DPmocrat} 

6.4 Compact Representation of Frequent Itemsets 

In practice, the number of frequent itemsets produced from a transaction data 
set can be very large. It is useful to identify a small representative set of 
itemsets from which all other frequent itemsets can be derived. Two such 
representations are presented in t his section in the form of maximal aud closed 
frequent itemsets. 



354 Chapter 6 Association Analysis 

0 

Infrequent 

Figure 6.16. Maximal frequent itemset. 

6.4.1 Maximal Frequent lte msets 

Frequent 
ltemSBt 
Border 

Definition 6.3 (Maximal Fre quent Itemset). A maximal frequent item­
set is defined as a frequent itemset for which none of its immediate snpersets 
are frequent. 

To illustrate this concept, consider the itenlSCt lattice shown in Figure 
6.16. The itemsets in the lattice are divided into two groups: those that are 
frequent and those that are infrequent. A frequent itemset border, which is 
represented by a dashed line, is also illustrated in the diagram. Every itenlSet 
located above the border is frequent, while those located below the border (the 
shaded nodes) are infrequent . Among the itemsets residing near the border, 
{a, d}, {a, c, e}, and {b, c, d, e} are considered to be maximal frequent itemsets 
because their inm1ediate supersets are infrequent.. An itemset such as {a, d} 
is n1a.ximal frequent because all of its immediate supersets, {a ,b,d}, {a,c,d} , 
and {a,d,e} , nre infrequent. In contrast , {a,c} is non·maximal hecause one 
of its immediate s upersets, {a, c, e }, is frequent . 

Maximal frequent itemsets effectively provide a compact representation of 
frequent itelllSets. In other words, they form the smallest set of itemsets from 

6.4 Compact Representation of Frequent ltenlSets 355 

which all frequent itemsets can be derived. For example, the frequent itenlSets 
shown in F igure 6.16 can be divided into two groups: 

• Frequent itemsets that begin with item a and that may contain itelllS c, 
d, or e. This group includes itemsets such as {a}, {a, c}, {a,d}, {a,e}, 
and {a, c, e}. 

• Frequent itemsets that begin with items b, c, d, or e. This group includes 
itelllSets such as {b}, {b,c}, {c,d},{b,c,d,e}, etc. 

Frequent itenlSets that belong in the first group are subsets of either {a,c,e} 
or {a, d}, while those that belong in the second group are subsets of {b, c, d, e }. 
Hence, the maximal frequent itemsets {a, c, e}, {a, d}, and { b, c, d, e} provide 
a compact representation of the frequent itemsets shown in Figure 6.16. 

Maximal frequent. it.emsets provide a valuable representation for data sets 
that can produce very long, frequent itemsets, as there are exponentially many 
frequent itemsets in such data. Nevertheless, this approach is practical only 
if an efficient algorithm exists to explicitly find the maximal frequent itemsets 
without having to enumerate all their subsets. We briefly describe one such 
approach in Section 6.5. 

Despite providing a compact representation, maximal frequent itenlSets do 
not contain the support infonnation of their subsets. For example, the support 
of the maximal frequent itelllSets {a, c,e}, {a,d}, and {b,c,d,e} do not provide 
any hint about the support of their subsets. An additional pass over t he data 
set is t herefore needed to determine the support counts of the non-maximal 
frequent itemsets. In some cases, it might be desirable to have a minimal 
representation of frequent itemsets that preserves the support infonnation. 
We illustrate such a representation in the next section. 

6.4.2 Closed Frequent Itemse ts 

Closed itemsets provide a minimal representation of itenlSets without losing 
their support information. A formal definition of a closed itemset is presented 
below. 

De finition 6 .4 ( C losed ltemset). An it.emset. X is closed if none of its 
imn1ediate s uperset.s has exactly the san1e snpport count as X. 

Put another way, X is not closed if at least one of its immediate supersets 
has the same support couut as X. Examples of closed itemsets are shown in 
Figure 6.17. To better illustrate the support count of each itemset, we have 
associated each node (itemset) in the lattice with a list of its corresponding 



356 Chapter 6 Association Analysis 

TID llama 
f-"=-+~.~bc=-- minsup = 40'Y.. 

abod 

0 Closed Frequent ltemset 

Figure 6.17. An example of the closed frequent ~emsets (with minimum support count equal to 40%). 

transaction IDs. For example, since the node {b,c} is associated with transac­
tion IDs 1, 2, and 3, its support count is equal to three. From the transactions 
given in this diagram, notice that every transaction that contains b also con­
tains c. Consequently, the support for { b} is identical to { b, c} and { b} should 
not be considered a closed itemset. Similarly, since c occurs in every transac­
tion that contains hath a and d, the itemset {a, d} is not closed. On the other 
hand, {b, c} is a closed itemset because it does not have the same support 
count as any of its supersets. 

Definition 6.5 (Closed Frequent Itemset), An itemset is a, closed fre.. 
quent itemset if it is closed and its support is greater than or equal to minsup. 

In the previous example, assuming that the support threshold is 40%, {b,c} 
is a closed frequent itemset because its support is 60%. The rest of the closed 
frequent i temsets are indicated by the shaded nodes. 

Algorithms are available to explicitly extract closed frequent itemsets from 
a given data set. Interested readers may refer to the bibliographic notes at the 
end of this chapter for further discussions of these nJgorithms. We can use the 
closed frequent itemsets to determine the support counts for the non-closed 

6.4 Compact Representation of Frequent ltemsets 357 

Algor ithm 6.4 Support counting using closed frequent itemsets. 
1: Let C denote the set of closed frequent itemsets 
2: Let kr:nu. denote the maximum size of closed frequent itemset.s 
3: F•m~ = {II/ E C, 1/1 = km-} {Find all frequent itemsets of size km~·} 
4: for k = km~ - I downto I do 
5: Fk = {!If c Fk+L• Ill= k} {Find all frequent itemsets of size k.} 
6: for each I E Fk do 
7: if f ~ C then 
8: f.sulJPOrt = me.x{f'.supportlf' E Fk+,, I c /'} 
9: end if 

10: end for 
11: end for 

frequent itemsets. For example, consider the frequent itenlSet {a, d} shown 
in Figure 6.17. Because the itemset is not closed, its support count must be 
identical to one of its immediate supersets. The key is to determine which 
superset (among {a, b, d}, {a, c, d}, or {a, d, e}) has exactly the same support 
cow1t as {a, d}. The A priori principle states that any transaction that contains 
the superset of {a,d} must also contain {a,d}. However, any transaction that 
contains {a,d} does not have to contain the supersets of {a,d}. For this 
reason, the support for {a, d} must be equal to the hugest support among its 
supersets. Since {a, c, d} has a larger support than both {a, b, d} and {a, d, e}, 
the support for {a, d} must be identical to the support for {a, c, d}. Using this 
methodology, an algorithm can be developed to compute the support for the 
non-closed frequent itemsets. The pseudocode for this algoritlun is shown in 
Algorithm 6.4. The algorithm proceeds in a specific-to-general fashion, i.e. , 
from the largest to the smallest frequent itcmsets. This is because, in order 
to find the support for a non-closed freqnent itemset, the support for all of its 
supersets must be known. 

To illustrate the advantage of using closed frequent itemsets, consider the 
data set shown in Table 6.5, which contains ten transactions and fifteen items. 
The items can be divided into three groups: (1) Group A, which contains 
items a 1 through a5; (2) Group B , which contains items b, through b5; and 
(3) Gronp C, which contains items Ct through cs. Note that items within each 
group are perfectly associated with eacl1 other and they do not appear with 
items from another group. Assuming the support threshold is 20%, the total 
number of frequent itemsets is 3 X (25 - 1) = 93. However, there are only three 
closed frequent itemsets in the data: ({a,,a2,a3,a4, as}, {bt,b2,b3 , b4,b5}, and 
{ct, C2,c3 , c.,c5 } ). It is often sufficient to present only the closed frequent 
itemsets t.o the analysts instead of the entire set of frequent itemsets. 



358 Chapter 6 Association Analysis 

Table 6.5. A transaction data set for mining closed ~emsets. 

TID a, a, a, a, a, b, b, b, b, b, c, "" c, c, c, 
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 
2 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 
3 1 1 1 1 1 0 0 u 0 0 0 0 0 0 u 
4 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 
5 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 
6 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 
7 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 
8 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 
9 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 
10 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 

Figure 6.18. Relationships among frequent, maximal frequent, and closed frequent nemsets. 

Closed frequent itemsets are useful for removing some of the redw1dant 
association rules. An association rule X ---+ Y is rednndant if there exists 
another rule X' ___, Y', where X is a subset of X' andY is a subset of Y', such 
that the support and confidence for both rules are identical. In the example 
shown in Figure 6.17, {b} is not a closed frequent itemset while {b, c} is closed. 
The association rule {b} ---> {d, e} is therefore redundant because it has the 
same support and confidence as { b, c} ---> { d, e}. Such redundaJit rules are 
not generated if closed frequent itemsets are used for rule generation. 

Finally, note that all maximal frequent itemsets are closed because none 
of the maximal frequent itemsets can have the same support cou.nt as their 
immediate supersets. The relationships runong frequent, max imal frequent, 
and closed frequent itemsets are shown in Figure 6.18. 

6.5 Alternative l\llethods for Generating Frequent ltemsets 359 

6.5 Alternative Methods for Generating Frequent 
Itemsets 

Apriori is one of the earliest algorithms to have successfully addressed the 
combinatorial e.xplosion of frequent itemset generation. It achieves this by ap­
plying the A priori principle to prune the exponential search space. Despite its 
significant performance improvement, the algorithm still incurs considerable 
1/0 overhead since it requires making several passes over the trru1saction data 
set. In addition, as noted in Section 6.2.5, the performance of the Apriori 
algorithm may degrade significantly for dense data sets because of the increas­
ing width of transactions. Several alternative methods have been developed 
to overcome these limitations and improve upon the efficiency of the A priori 
algorithm. The following is a high-level description of these methods. 

Traversal of ltemset Lattice A search for frequent itemsets can be con­
ceptually viewed as a traversal on the itemset lattice shown in Figure 6.I. 
The search strategy employed by an algorithm dictates how the lattice struc­
ture is traversed during the frequent itemset generation process. Some search 
strategies are better than others, depending on the configuration of frequent 
itemsets in the lattice. An overview of these strategies is presented next. 

• General-to-Specific versus Specific-to-General: The Apriori al­
gorithm uses a general-to-specific search strategy, where pairs of frequent 
(k -I )-itemsets are merged to obtain cru1didate k-itemsets. This general­
to-specific search strategy is effective, provided the maximum length of 
a frequent itemset is not too long. The configuration of frequent item­
sets that works best with this strategy is shown in Figure 6.19(a) , where 
the darker nodes represent infrequent itmnsets. Alternatively, a specific­
to-general search strategy looks for more specific frequent itemsets first, 
before finding the more general frequent itemsets. This strategy is use­
ful to discover maximal frequent itemsets in dense transactions, where 
the frequent itemset border is located near the bottom of the lattice, 
as shown in Fignre 6.19(b). The Apriori principle can be applied to 
prune all subsets of maximal frequent itemsets. Specifically, if a candi­
date k-itemset is maxima1 frequent, we do not have to exatnine any of its 
subsets of size k - 1. However, if the candidate k-itemset is infrequent, 
we need to check all of its k - I subsets in the next iteration. Another 
approach is to combine both general-to-specific and specific-to-general 
search strategies. This bidirectional approach requires more space to 



360 Chapter 6 Association Analysis 

Frequent 
ltemset 

000'1 

! 
· -~---

(a) Genet"al·tO·specific (b) Specific·tD-genera/ 

Frequent 
ltemset null 
Border'"\ ~ ...,..-, 

_--0\ocl oofo--, 
,' I ~ I \ 
I I I : 
' I I , ? 0 0/C 10 0 0 '/ 

I ft ' ' ' ' I 
·-~~/' - -' 

(c) Bidirectional 

Figure 6.19. General·tD-specific, specific·tD-general, and bidirectional search. 

store the candidate itemsets, but it can help to rapidly identify the fre­
quent itemset border, given the configuration shown in Figure 6.19(c). 

• Equivalence Classes: Another way to envision the traversal is to first 
partition the lattice into disjoint groups of nodes (or equivalence classes). 
A frequent itemset generation algorithm searches for frequent iternsets 
within a particular equivalence class first before rnov:ing to another equiv­
alence class. As an example, the level-wise strategy used in the A priori 
algorithm can be considered to be partitioning the lattice on the basis 
of iternset sizes; i. e. , the algorithm discovers all frequent 1-itemsets first 
before proceeding to larger-sized itemsets. Equivalence classes can also 
he defined according to the prefix or suffix labels of an itemset. In this 
case, two iternsets belong to the same equivalence class if they share 
a common prefLx or suffix of length k. In the prefix-based approach, 
the algorithm can search for frequent itemsets starting with the prefix 
a before looking for those starting with prefixes b, c, and so on. Both 
prefix-based and suffix-based equivalence classes can be demonstrated 
using the tree-like structure shown in Figure 6. 20. 

• Breadth-First versus Depth-First: The Aprior-i algorithm traverses 
the lattice in a breadth-first manner, as shown in Figure 6.2l(a). It first 
discovers all the frequent 1-itemsets, followed by the frequent 2-itemsets, 
and so on, until no new frequent itemsets are gene rated. The itemset 

6.5 Alternative Methods for Generating Frequent ltemsets 361 

(a) Prefix tree. (b) Suffix tree. 

Figure 6.20. EqtJivalence classes based on the prefix and suffix labels of itemsets. 

(a) Breadth first 

/. /.~j:s~-~~""-
9. 9' 919 9 9 '9 '?''9 
! ! ! 11 ! ! ! ! ! 

Q, Q 9 :c? <? <? .. 6 .9 .. 6 
-- . . .... b 'b'l;/::>' 

(b) Depth first 

Figure 6.21. Breadth-first and depth-first traversals. 

lattice can also be traversed in a depth-first manner, as shown in Figures 
6.2l(b) and 6.22. The algorithm can start from, say, node a in Figure 
6.22, and count its support to determine whether it is frequent. If so, the 
algorithm progressively expands the next level of nodes, i.e. , ab, abc, and 
so on, until an infrequent node is reached , say, abed. It then backtracks 
to another branch, say, abce, and continues the search from t here. 

The depth-first approach is often nsed by algorithms designed to find 
maximal frequent itemsets. This approach allows the frequent itemset 
border to be detected more quickly than using a breadth-first approach. 
Once a maximal frequent itemset is found, substantial pruning can be 



362 Chapter 6 Association Analysis 

ab 

abc 

abed 
abce abde acde 

abcde 

--......... 
', 

/ 
Cde/" 

, _______ ..,..,,,.'' 

bcde 

' I 
I . : 
f 
I 
I 

de/ 
I 

I 
I 

I 

Figure 6.22. Generating candidate itemsets using the depth-filS! approach. 

performed on its subsets. For example, if the node bcde shown in Figure 
6 .22 is ma.ximal frequent, then the algorithm does uot have to visit the 
subtrees rooted at bd, be, c, d, and e because they will not. contain any 
maximal frequent itemsets. However, if abc is maximal frequent, only the 
nodes suel1 as ac and be are not maximal frequent (but the subtrees of 
ac and be may still contain maximal frequent iternsets). The depth-first 
approach also allows a different kind of pruning based on the support 
of itemsets. For example, suppose the support for {a, b, c} is identical 
to the support for {a, b}. The subtrees rooted at abd and abe can be 
skipped becalli3e they are guaranteed not to have any maximal frequent 
itemsets. The proof of t his is left as an exercise to the readers. 

Representation of Transaction D a t a Set There are many ways to rep­
resent a transaction data set. The choice of representation can affect the I/0 
costs incurred wheu computing the support of candidate itemsets. Figure 6.23 
shows two different ways of representing market basket transactions. The rep­
resentation on the left is called a horizontal data layout, whim is adopted 
by many association rule mining algorithms, including A priori. Another pos­
sibility is to store the list of transaction identifiers (TID-list) associated with 
each item. Such a representation is known as the vertical data layout.. The 
support for eael1 candidate itemset is obtained by intersecting the TID-lists of 
its subset items. The length of the TID-lists shrinks as we progress to larger 

Horizontal 
Data Layout 

TID Items 
1 a,b,e 
2 b,c,d 
3 c,e 
4 a,c,d 
5 a,b,c,d 
6 a,e 
7 a,b 
8 a,b,c 
9 a,c,d 
10 b 

6.6 FP-Growth Algorithm 363 

Vertical Data Layout 

a b c d e 
1 1 2 2 1 
4 2 3 4 3 

5 5 4 5 6 
6 7 8 9 
7 8 9 
8 10 

9 

Figure 6.23. Horizontal and vertical data format. 

sized itemsets. However, one problem with this approach is that the initial 
set of TID-lists may be too large to fit into main memory, thU13 requiring 
more sophisticated teclmiques to compress the TID-lists. We describe another 
effective approach to represent the data in the next section. 

6.6 FP-Growth Algorithm 

T his section presents an alternative algorithm called FP-growt h that takes 
a radically different approach to discovering frequent itemsets. The algorithm 
does not subscribe to the generate-and-test paradigm of Apriori. Instead, it 
encodes the data set U13ing a compact data structure called an FP- tree and 
extracts frequent itemsets directly from this structure. The details of this 
approach are presented next. 

6.6.1 FP-Tree Representation 

An FP-tree is a compressed representation of the input data. It is constructed 
by reading the data set one transaction at a time and rnapping each transaction 
onto a path in the FP-tree. As different transactions can have several items 
in common, their paths may overlap. The more the paths overlap with one 
another, the rnore compression we can achieve usiug the FP-tree structure. If 
the size of the FP-tree is small enough to fit into main memory, this will allow 
us to extract frequent itemsets directly from the structure in memory instead 
of making repeated passes over the data stored on disk. 



364 Chapter 6 Association Analysis 

Transaction 
Data Set 

TID Items 
1 {a,b} 
2 .Jb.c.d}_ 
3 {a.c,d,e} 
4 _ja,d.~ 
5 {a,b,c} 
6 {a,b,c,d} 
7 {a} 
8 {a,b,c} 
9 {a,b,d} 
10 {b,c,e} 

:;t a 

b:1 

(i) Aller reading TID=1 

b:1 

e:1 

a 

b:1 1 

d:1 
(ii) After reading TID=2 

d:1 

(Iii) Aller reading TID=3 

e:1 

(iv) After reading TID=10 

Figure 6.24. Construction of an FP·tree. 

Figure 6.24 shows a data set that contains ten transactions and five iterus. 

The structures of the FP-tree after reading the first three transactions are also 
depicted in the diagram. Each node in the tree contains the label of an item 
along with a counter that shows the number of transactions mapped onto the 
given path. Initially, the FP-tree contains only the root node represented by 
the null symbol. The FP-tree is subsequently extended in the following way: 

1. The data set is scanned once to determine the support count of each 
item. Infrequent items are discarded. while the frequent items are sorted 
in decreasing support counts. For the data set shown in Figure 6.24, a 
is the most frequent item, followed by b, c, d, and e. 

6.6 FP-Growth Algorithm 365 

2. The algorithm makes a second pass over the data to construct the FP­
tree. After reading the first transaction, (a, b), the nodes labeled as a 
and b are created. A path is then formed from null ~ a ~ b to encode 
the traru;action. Every node along the path has a frequency count of 1. 

3. After :reading the second transaction, { b,c,d}, a new set of nodes is cre­

ated for items b, c. and d. A path is then formed to represent the 
transaction by connecting the nodes null _, b _, c _, d. Every node 
along this path also has a frequency count equal to one. Although the 
first two transactions have an item in common, which is b, their paths 
are disjoint because the transactions do not share a common prefix. 

4. The third transaction, { a,c,d ,e}, shares a common prefix item (which 
is a) with the first transaction. As a result, the path for the third 
transaction, null ~ a ~ c ~ d ~ e, overlaps with the path for the 
first transaction, null ~ a ~ b. Because of their overlapping path, the 
frequency count for node a is incremented to two, wbile the frequency 
counts for the newly created nodes, c, d, and e, are equal to one. 

5. This process continues until every transaction has been mapped onto one 
of the paths given in the FP-tree. The resulting FP-tree after reading 
all the transactions is shown at the bottom of Figure 6.24. 

The size of an FP-tree is typically smaller than the size of the uncompressed 
data because many transactions in market basket data often share a few items 
in common. In the best-cru;e scenario, where all the transactions have the 
same set of items, the FP-tree contains only a single branch of nodes. The 
worst-case scenario happens when every transaction ha.s a unique set of items. 
As none of the transactions have any items in common, the size of t he FP-tree 
is effectively the same as the size of the original data. However, the physical 
storage requirement for the FP-tree is higher because it requires additional 
space to store pointers between nodes and counters for each item. 

T he size of an FP-tree also depends on how the items are ordered. If 
the ordering scheme in the pre<:eding example is reversed. i.e., from lowest 
to highest snpport item, the resulting FP-tree is shown in Figure 6.25. The 
tree appears to be denser because the branching factor at the root node has 
increased from 2 to 5 and the number of nodes containing the high snpport 
items such as a and b has increased from 3 to 12. Nevertheless. ordering 
by decreasing support counts does not always lead to the smallest tree. For 
example, suppose we augment the data set given in Figure 6.24 with 100 
transactions that contain {e }, 80 transactions that contain (d}, 60 transactions 



366 Chapter 6 Association Analysis 

null 

a:1 

Figure 6.25. An FP-tree representation for the data set shown in Figure 6.24 w~h a difilrent item 
ordering scheme. 

that contain {c}, and 40 transactions that contain {b}. Item e is now most 
frequent, followed by d, c, b, and a. With the augmented transactions, ordering 
hy decreasing support counts will result in an FP-tree similar to Figure 6.25, 
while a scheme bMed on increMing support counts produces a smaller FP-tree 
similar to Figure 6.24(iv). 

An FP-tree also contains a list of pointers connecting between nodes that 
have the same items. The6e pointers) represented as dashed lines in Figures 

6.24 and 6.25, help to facilitate the rapid access of individual items in the tree. 
We explain how to use the FP-tree and its corresponding pointers for frequent 
itemset generation in the next section. 

6.6.2 Frequent Itemset Generation in FP-Growth Algorithm 

FP-growth is an algorithm that generates frequent itemsets from an FP-tree 
by exploring the tree in a bottom-up fashion. Given the example tree shown in 
Figure 6.24, the algorithm looks for frequent itemsets ending in e first, followed 
by d, c, b, and finally, a. This bottom-up strategy for finding frequent item­
sets ending with a particular item is equivalent to the suffix-based approach 
described in Section 6.5. Since every transaction is mapped onto a path in the 
FP-tree, we can derive the frequent itemsets ending with a particular item, 
say. e. by examining only the paths containing node e. These paths can be 
accessed rapidly using the pointers associated with node e. The extracted 
paths are shown in Figure 6.26(a). The details on how to process the paths to 
obtain frequent itemsets will be explained later. 

6.6 FP-Growth Algorithm 367 

(a) Paths containing node e 

null 

,,··0·:, c:3t:,f;-.b 

c:3 

d:1 

null 

a:aA 
b/~2 
b:5 

c:2 

d:1 

(b) Paths containing node d 

null 

~ 
a :e 

(c) Paths containing node c (d) Paths containing node b (e) Paths containing node a 

Figure6.26. Decomposing the frequent itemset generation problem into multiple subproblems, where 
each subproblem invoi\OI!s finding frequent hemsets ending in e, d, c, b, and a. 

Table 6.6. The list ol frequent itemsets ordered t7f their corresponding suffixes. 

Suffix Frequent Itemsets 
e {e}. {d,e}, {a,d,e}, {c,e},{a,e} 
d {d}, {c,d}, {b,c,d}, {a,c,d}, {b,d}, {a,b,d}, {a,d} 
c {c) , (b,c} , {a,b,c}, {a,c} 
b {b}, {a.b} 
a {a} 

After finding the freqnent itemsets ending in e, the algorithm proceeds to 
look for frequent itemsets ending in d hy processing the paths associated with 
node d. The corresponding paths are shown in Figure 6.26(b). This process 
cont inues until all the paths associated with nodes c, b, and finally a, are 
processed. Tbe paths for these items are shown in Figures 6.26(c), (d), and 
(e), while their corresponding frequent itemsets are summarized in Table 6.6. 

FP-growth finds all the frequent itemsets ending with a particular suffix 
by emplo)~ng a divide-and-conquer strategy to split the problem into smaller 
subproblems. For example, suppose we are interested in finding all frequent 



368 Chapter 6 Association Analysis 

c~
1 

:::2 
d:1 

a:1 e. . 

(a) Prefix paths ending in e 

c:1a:~null 
dlb_--1,, 

(c) Prefix paths ending in de 

a·?~ 
c:t Z----~ c:f 

(e) Prefix paths ending in ce 

d:1 d:1 

(b) Conditional FP-tree fore 

null I 
a:2 

(d) Conditional FP-tree for de 

nun I 
a:2 

(f) Prefix paths ending in ae 

Figure 6.'lf. Example of applying the FP-growth algorithm to find frequent ijemsets ending in e. 

itemsets ending in e. To do this, we must first check whether the itemset 
{ e} itself is frequ.-nt. If it is frequent, we consider the subprobl.-m of finding 
frequent itemsets ending in de, followed by ce, be, and ae. In turn, each 
of these subproblems are further decomposed into smaller subproblems. By 
merging the solutions obtained from the subproblems, all the frequent itemsets 
ending in e can be found. This divide-and-conquer approach is the key strategy 
employed by the FP-growth algorithm. 

For a more concrete example on how to solve the subproblems, consid.-r 
the task of finding frequent itemsets ending with e. 

I. The first step is to gather all the paths containing node e. These initial 
paths are called prefix paths and are shown in Figure 6.27(a) . 

2. From the prefix paths shown in Figure 6.27(a), the support count fore is 
obtained by adding the support counts associated with node e. Assuming 
that the minimum support count is 2, {e} is declared a frequent itemset 
because its support count is 3. 

6.6 FP-Growth Algorithm 369 

3. Because { e} is frequent, the algorithm has to solve the subproblems of 
finding frequent ite!D.5ets ending in de, ce, be, and ae. Before solving 
these subproblems, it must first convert the prefix paths into a con­
ditional FP-tree, which is structurally similar to an FP-tree, except 
it is used to find frequent itemsets ending with a particular suffi.x. A 
conditional FP-tree is obtained in the following way: 

(a) First, the support counts along the prefix paths must be updated 
because son1e of the counts include transactions that do not contain 
item e. For example, the rightmost path shown in Figure 6.27(a), 
null ~ b: 2 ~ c: 2 ~ e: 1, includes a transaction { b, c} that 
does not contain item e. Tbe counts along the prefix path must 
therefore be adjusted to I to reflect the actual number of transac­
tions containing { b, c, e) . 

(b) The prefix paths are truncated by removing the nodes for e. These 
nodes can be Temoved becalffie the support counts along the prefix 
paths have been updated to reflect only transactions that contain e 
and the subproblems of finding frequent itemsets ending iu de, ce, 
be. and ae no longer need information about node e. 

(c) After updating the support counts along the prefix paths, some 
of the items may no longer be frequent. For example, the node b 
appears only once and has a support count equal to I, which means 
that there is only one transaction that contains both band e. Item b 
can be safely ignored from subsequent analysis because all itemsets 
ending in be must be infrequent. 

The conditional FP-tree fore is shown in Figure 6.27(b). The tree looks 
different than the original prefix paths because the freqnency counts have 
be.-n updated and th.- nodes b and e have bren eliminated. 

4. FP-growth uses the conditional FP-tree fore to solve the snbproblems of 
finding frequent itemsets ending in de, ce, and ae. To find the frequent 
ite!D.5ets ending in de, the prefix paths for d are gathered from the con­
ditional FP-tree for e (Figure 6.27(c)). By adding the frequency counts 
associated with node d~ we obtain the support count for { d, e_}. Since 

the support count is equal to 2, {d. e} is declared a frequent itemset. 
Next, the algorithm constructs the conditional FP-tree for de using the 
approach described in step 3. After updating the support counts and 
removing the infrequent item c, the conditional FP-tree for de is shown 
in Figure 6.27(d). Since the conditional FP-tree contains only one item, 



370 Chapter 6 Association Analysis 

a, whose support is equal to minsup. the algorithm extracts the fre­
quent iternset {a, d, e} and moves on to the next subproblem, which is 
to generate frequent i temsets ending in ce. After processing the prefix 
paths for c, only {c, e} is found to be frequent. The algorithm proceeds 
to solve the next subprogram and found {a, e} to he the only frequent 
iternset remaining. 

This example illustrates the divide-and-conquer approach used in the FP­
growth algorithm. At each recursive step, a conditional FP-tree is constructed 
by updating the frequency counts along the prefix paths and removing all 
infrequent items. Because the subproblems are disjoint, FP-growth will not 
generate any duplicate itemsets. In addition, the counts associated with the 
nodes allow the algorithm to perform support counting while generating the 
common suffix itemsets. 

FP-growth is an interesting algorithm because it illustrates how a compact 
representation of the transaction data set helps to efficiently generate frequent 
iternsets. In addition, for certain transaction data sets. FP-growth outperforms 
the standard A priori algorithm by several orders of rnagnitnde. The run-time 
performance of FP-growth depends on the compaction factor of the data 
set. If the resulting conditional FP-trees are very bushy (in the worst case, a 
full prefix tree) , then the performance of the algorithm degrades significantly 
because it has to generate a large number of subproblems and merge the results 
returned by each subproblem. 

6. 7 Evaluation of Association Patterns 

Association analysis algorithms have the potential to generate a large number 
of patterns. For example, although the data set shown in Table 6.1 contains 
only six items, it can produce up to hundreds of association rules at certain 
support and confidence thresholds. As the size and dimensionality of real 
commercial databases can be very large, we could easily end up with thousands 
or even millions of patterns, many of which might not be interesting. Sifting 
through the patterns to ident ify the most interesting ones is not a trivial task 
because ''one person 's trash might be another person's treasure." It is therefore 

important to establish a set of well-accepted criteria for evaluating the quality 
of association patterns. 

The first set of c riteria can be established through statistical arguments. 
Patterns that involve a set of mutually independent items or cover very few 
transactions are considered uninteresting b ecause they may capture s purious 
relationships in the data. Such patterns can be eliminated by applying an 

6.7 Evaluation of Association Patterns 371 

objective interestingness measure that uses statistics derived from data 
to determine whether a pattern is interesting. Examples of objective interest­
ingness measures include support. confidence, and correlation. 

The second set of criteria can be established through subjective arguments. 
A pattern is considered subjectively uninteresting unless it reveals unexpected 
information about the data or provides useful knowledge that can lead to 
profitable actions. For example, the rule {Butter} ~ {Bread} may not be 
interesting. despite having high support and confidence values, because the 
relationship represented by the rule may seem rather obvious. On the other 

hand, the rule {Diape·rs} ~{Bee!'} is interesting because the relationship is 
quite unexpected and may suggest a new cross-selling opportunity for retailers. 
Incorporating subjective knowledge into pattern evaluation is a difficult task 
because it requires a considerable amount of prior information from the domain 
experts. 

The following are 5ome of the approaches for incorporating subjective 
knowledge into the pattern discovery task. 

Visualization This approach requires a user-friendly environment to keep 

the human user in the loop. It also allows the domain experts to interact with 
the data mining system by interpreting and verifying the discovered patterns. 

Template-based approach This approach allows the users to constrain 
the type of patterns extracted by the mining algorithm. Instead of reporting 
all the extracted rules, only rules that satisfy a user-specified template are 
returned to the users. 

Subjective interestingness measure A subjective measure can be defined 
based on domain informat ion such as concept hierarchy (to be discussed in 
Section 7.3) or profit margin of items. The measure can then be used to filter 
patterns that are obvious and non-actionable. 

Readers interested in subjective interestingness measures may refer to re­

sources listed in the bibliography at the end of this chapter. 

6.7.1 Objective Measures of Interestingness 

An objective measure is a data-driven approach for evaluating the quality 
of association patterns. It is domain-independent and requires minimal in­
put from the users , other than to specify a threshold for filtering low-quality 
patterns. An objective measure is usnally computed based on the frequency 



372 Chapter 6 Association Analysis 

Table6.7. A 2-waycontingencytableforvariables A and B. 

B B 

A fu f,. fl+ 

A fo1 foo fo+ 

f+l f +o N 

counts tabulated in a contingency table. Table 6. 7 shows an example of a 
contingency table for a pair of binary variables, A and B. We use the notation 
A (B) to indicate that A (B) is absent from a trarumction. Eacb entry /;j in 
this 2 x 2 table denotes a frequency count. For example, fu is the number of 
times A and B appear together in the same transaction, wh.ile fo1 is the num­
ber of transactions that contain B but not A. The row sum /1+ represents 
the support count for A, wh.ile the column sum fH represents the support 
count for B . Finally, even though our discussion focuses mainly on asymmet­
ric binary variables, note that contingency tables are also applicable to other 
attribute types such as symmetric binary, nominal, and ordinal variables. 

Limitations of the Support-Confidence Framework Existing associa­
tion rule mining formulation relies on the support and confidence measures to 
eliminate uninteresting patterns. The drawback of support wos previously de­
scribed in Section 6.8, in wh.icb many potentially interesting patterns involving 
low support items might be eliminated by the support threshold. The draw­
back of confidence is more subtle and is best demonstrated with the following 
example. 

Example 6.3. Suppose we are interested in analyzing the relat ionship be­
tween people who drink tea and coffee. We may gather information about the 
beverage preferences among a group of people and summarize their responses 
into a table such as the one shown in Table 6.8. 

Table 6.8. Beverage plllferences among a group of 1000 people. 

Coffee COJTe€ 
Tea 150 50 200 

Tea 650 150 800 

800 200 1000 

6.7 Evaluation of Association Patterns 373 

The information given in this table can be used to evaluate the association 
rule (Tea}~ (Coffee}. At first glance, it may appear that people who drink 
tea also tend to drink coffee because the rule's support (15%} and confidence 
(75%) value.<J are reasonably h.igh. Th.is argument would have been acceptable 
except that the fraction of people who drink coffee, regardless of whether they 
drink tea, is 80%, wh.ile the fraction of tea drinkers who drink coffee is only 
75%. Thus knowing that a person is a tea drinker actually decreases her 
probability of being a coffee drinker from 80% to 75%! The rule {Tea} ~ 
{Coffee} is therefore misleading despite its high oonfidence valne. • 

The pitfall of confidence can be traced to the fact that the measure ignores 
the support of the itemset in the rule consequent. Indeed, if the support of 
coffee drinkers is taken into account, we would not be surprised to find that 
many of the people who drink tea also drink coffee. What is more surprising is 
that the fraction of tea drinkers who drink coffee is actually less than the overall 
fraction of people who drink coffee, which points to an inverse relationshlp 
between tea drinkers and coffee drinkers. 

Because of the limitations in the support-confidence framework, various 
objective measures have been used to evaluate the quality of association pat­
terns. Below, we provide a brief description of these measures and explain 
some of their strengths and limitations. 

Interest Factor The tea-coffee example shows that high-confidence rules 
can sometimes be misleading because the confidence measure ignores the sup­
port of the itemset appearing in the rule consequent. One way to address this 
problem is by applying a metric known as lift: 

L'ft = c(A ~ B) 
' s(B) ' 

(6.4} 

which computes the ratio between the rule's confidence and the support of 
the itemset in the rule consequent. For binary variables, lift is equivalent to 
another objective measure called interest factor, which is defined as follows: 

s(A,B) 
I (A.B) = s(A) x s(B) 

Nfu 

h+f+t' 
(6.5} 

Interest factor compares the frequency of a pattern against a baseline fre­
quency computed under the statistical independence assumption. The baseline 
frequency for a pair of mutually independent variables is 

(6.6} 



37 4 Chapter 6 Association Analysis 

Table 6.9. Contingency tables for the word pairs ({p,q} and { r,s }. 

p p ,. r 

q 880 50 930 8 20 50 70 

q 50 20 70 s 50 880 930 

930 70 1000 70 930 1000 

This equation follows from the standard approach of using simple fractions 
as estimates for probabilities. The fraction fu/N is an estimate for tbe joint 
probability P(A, B), while f1+/N and f+tfN are the estimates for P(A) and 
P(B), respectively. If A and Bare statistically independent, then P(A, B) = 

P(A) x P(B), thus leading to the formula shown in Equation 6.6. Using 
Equations 6.5 and 6.6, we can interpret tbe measure as follows: 

{ 

= 1. if A and B are independent; 
I(A. B) > 1. if A and B are positively correlated; 

< 1. if A and B are negatively correlated. 
(6.7) 

For tbe tea-coffee example shown in Table 6.8, I = 0_g-~g.B = 0.9375, thns sug­
gesting a slight negative c.orrelation between tea drinkers and coffee drinkers. 

Limitations of Interest Factor We illustrate the limitation of interest 
factor with an example from tbe text mining domain. In the text domain, it 
is reasonable to assume that the association between a pair of words depends 
on the number of documents that contain both words. For example, because 
of their stronger association, we expect. the words data and mining to appear 
together more frequently than the words compiler and mining in a collection 
of computer science articles. 

Table 6. 9 sbows the frequency of occurrences between two pairs of words, 
{p,q) and {r, s). Using tbe formula given in Equation 6.5, the interest factor 
for {p, q} is 1.02 and for {r. s} is 4.08. These results are somewhat troubling 
for the following reasons. Although p and q appear together in 88% of the 
documents, their interest factor is close to 1, which is the value when p and g 
are statistically independent. On tbe other hand, the interest factor for {r, s} 
is hlgher than (p, q} even t hough r and s seldom appear together in the same 
document. Confidence is perhaps the better choice in this sitnation because it 
considers the association between p and q (94.6%) to be much stronger than 
that between rand s (28.6%). 

6.7 Evaluation of Association Patterns 375 

Correlation Analysis Correlation analysis is a statistical-based technique 
for analyzing relationshlps between a pair of variables. For continuous vari­
ables, correlation is defined using Pearson's correlation coefficient (see Equa­
tion 2.10 on page 77). For binary variables, correlation can be measured using 
the 4>-coefficient, which is defined as 

¢ = fufoo- fodw 
V' fi+hdo+f+O 

(6.8} 

The value of correlation ranges from - 1 (perfect negative correlation) to + 1 
(perfect positive correlation). If the variables are statistically independent, 
then ¢ = 0. For example, the correlation between the tea and coffee drinkers 
given in Table 6.8 is -0.0625. 

Limitations of Correlation Analysis The drawback of using correlation 
can be seen from the word association example given in Table 6.9. Althongh 
the words p and q appear together more often than r· and s, tbeir 4>-coefficients 
are identical, i.e., <f>(p, q) = <f>(r. s) = 0.232. Thls is because the </>-coefficient 
gives equal importance to both co-presence and co-absenoe of items in a trans­
action. It is therefore more suitable for analyzing symmetric binary variables. 
Another limitation of this measure is that it does not remain invariant when 
there are proportional changes to the sample size. This issue will be discussed 
in greater detail when we describe the properties of objective measures on page 
377. 

IS Measure IS is an alternative measure that has been proposed for han­
dling asymmetric binary variables. The measure is defined as follows: 

s(A, B) 
IS(A,B) = y'I(A,B) x s(A,B) = ~ 

ys(A)s(B) 
(6.9) 

Note that IS is large when the interest factor and support of the pattern 
are large. For example, the value of IS for the word pairs {p, g) and {r, s) 
shown in Table 6.9 are 0.946 and 0.286, respectively. Contrary to the results 
given by interest factor and the <f>-coefficient, the IS measme suggests that 
the association between {p,g} is stronger than {r,s}, which agrees with what 
we expect from word associations in documents. 

It is possible to show that IS is mathematically equivalent to the cosine 
measure for binary variables (see Equation 2.7 on page 75). In this regard, we 



376 Chapter 6 Association Analysis 

Table 6.10. Example of a contingency table for items p and q. 

q q 

p 800 100 900 

p 100 0 100 

900 100 1000 

consider A and B as a pair of bit vectors, A • B = s(A, B) the dot product 
between the vectors, and IA I = yfs{A) the magnitude of vector A. Therefore: 

s(A.B) A•B . 
IS( A. B)= = -I A I IBI = cosme(A, B). 

y's(A) x s(B) x 
(6.10) 

The IS measure can also be expressed as the geometric meau between the 

confidence of association rules extracted from a pair of binary variables: 

IS(A,B) = s(A, B ) x s(A, B) = y'c(A ~B) x c(B ~A). 
s(A) s(B) 

(6.11) 

Because the geometric mean between any two numbers is always closer to the 
smaller number, the IS value of an itemset {p, q} is low whenever one of its 
rules, p ___, q or q - p, bas low confidence. 

Limitations of IS Measure TheIS value for a pair of independent item­
sets, A and B, is 

IS (A B)= s(A.B) = s(A) x s(B) = y's(A) X s(B). 
mdep ' y' s(A) X s(B) y' s(A) X s(B) 

Since the value depends on s(A) and s(B), IS shares a similar probletn as 
the confidence measure-that the value of the measure can be quite large, 
even for uncorrelated and negatively correlated patterns. For example, despite 
the large IS value between items p and q given in Table 6.10 (0.889), it is 
still less than the expected value when the items are statistically independent 
(IS;ndep = 0.9) . 

6. 7 Evaluation of Association Patterns 377 

Alternative Objective Interestingness Measures 

Besides the measures we have described so far, there are other alternative mea­
sures proposed for analyzing relationships between pairs of binary variables. 
These measures can be divided into two cate.gories, symmetric and asym­
metric measures. A measure M is symmetric if M(A ~ B)= M(B ~ A). 

For example1 interest factor is a symmetric measure because its value is iden­
tical for the rules A ~ B and B ~ A. In coutrast, confidence is an 
asymmetric measure since the confidence for A ~ B and B ~ A may not 
be the same. Symmetric measures are generally U6ed for evaluating itemsets, 
while asymmetric measures are more suitable for analyzing association rules. 
Tables 6.11 and 6.12 provide the definitions for some of these measures in 
terms of the frequency counts of a 2 x 2 contingency table. 

Consistency among Objective Measures 

Given the wide variety of measures available, it is reasonable to question 
whether the measures can produce similar ordering results when applied to 
a set of association patterns. If the measures are consistent, then we can 

choose any one of them as our evalnation metric. Otherwise, it is important 
to understand what their differences are in order to determine which measure 
iB more suitable for analyzing certain types of patterns. 

Table 6.11. Examples of symmetric objective measures lor the itemset {A, B}. 

Measure (Symbol) Definition 

Correlatiou ( oi>) Nfn-!I±f..±l 
J!t+ IHio+l+o 

Odds ratio (a) (/11/oo) / (/10/ot) 
Kapp"-(K) Nfu +N loo- !1±1+1 - lo+i+o 

N2 h+f+l lo+i+o 

Interest (/) (N /H)/ {ft+f+t) 

Cosine (IS) (!11)/( y' /t+/+t) 
Piatetsky-Shapiro (PS) J.;;- - 11tf,jl 

Collective strength ( S) £u+£oo 
/t+ f+t + /o+]+o X N-~+~~-}~;i+o 

Jaccard (() fll/(ft+ + f+l - fH) 

All-confidence (h) ntin [f.'-, k-J 



378 Chapter 6 Association Analysis 

Table 6.12. Examples of asymmetric objectille measu"'s for the rule A -. B. 

Measure (Symbol) Definition 

Goodman·Kruskal (A) ( E; nl!I.Xk !;k- maxkf+•)/(N- ma..xk f+.) 

Mutual Information (AI) (E, E; 1/ log r:1!,)/(- E, J;r log l;r) 
J.Meosure (J) 1'-log 1~7! , + fllog 1~/J!, 
Gini index (G) 41- X (-k!:-J' + (f:;J'J- (.W)' 

+ l!ft- X ((i;})' + (~)')- (W.J' 
Laplace (L) (fu + 1)/(/•+ + 2) 
Conviction (V) (/t+f+o)/(N fw) 
Certainty factor (F) (~ - Wl/(1 - Wl 
Added Value (AV) 1:'---.W 

Table 6.13. Example of conlingency !abies. 

Example fa fw !01 /oo 
E, 8123 83 424 1370 
E, 8330 2 622 1046 
E, 3954 3080 5 2961 
E, 2886 1363 1320 4431 
Es 1500 2000 500 6000 
E• 4000 2000 1000 3000 
E, 9481 298 127 94 
Ea 4000 2000 2000 2000 
E, 7450 2483 4 63 
Ew 61 2483 4 7452 

Suppose the symmetric and asymmetric measures are applied to rank the 
ten contingency tables shown in Table 6.13. These contingency t ables are cho­
sen to illustrate the differences among the existing measures. The ordering 
produced by these measures are shown in Tables 6.14 and 6.15, respectively 
(with l as the most interesting and 10 as the least interesting table) . Although 
some of the measures appear to be consistent with each other, there are certain 
measures t hat produce quite different ordering results. For example. the rank­
ings given by the ¢-coefficient agree with those provided by " and collective 
strength. but are somewhat different than the rankings produced by interest 

6. 7 Evaluation of Association Patterns 379 

Table 6.14. Ran kings of contingency tables usjng the symmetlic measures given in Tal:le 6.11. 

</> (} " I IS PS s ( h 
E, 1 3 1 6 2 2 1 2 2 
E, 2 1 2 7 3 5 2 3 3 
Ea 3 2 4 4 5 I 3 6 8 
E, 4 8 3 3 7 3 4 7 5 
Es 5 7 6 2 9 6 6 g 9 

E• 6 9 5 5 6 4 5 5 7 
E1 7 6 7 9 1 8 7 1 1 
Ea 8 10 8 8 8 7 8 8 7 
E, g 4 9 10 4 g 9 4 4 
Ew 10 5 10 I 10 10 10 10 10 

Table 6.15. Rankings of contingency tables using the asymmetric measures given in Table 6.12. 

;. M J G L v F AV 
J<:, 1 1 1 1 4 2 2 5 
E, 2 2 2 3 5 1 1 6 
E, 5 3 5 2 2 6 6 4 
E, 4 6 3 4 9 3 3 l 
Es 9 7 4 6 8 5 5 2 
Es 3 8 6 5 7 4 4 3 
E1 7 5 9 8 3 7 7 9 
Ea 8 9 7 7 10 8 8 7 

Eo 6 4 10 g 1 9 9 10 
E,o 10 10 8 10 6 10 10 8 

factor and odds ratio. Furthermore, a contingency table such as E10 is ranked 
lowest according to the .;i-coefficient, but highest according to interest factor. 

Properties of Objective M easures 

The results shown in Table 6.14 suggest that a signiJicant number of the mea­
sure5 piUvide con.Oicting information about the quality of a pattern. To under­
stand their differences, we need to examine the properties of these measures. 

Inversion Property C<>nsider the bit vectors shown in Figure 6.28. The 
0/1 bit in each column vector indicates whether a transaction (row) contains 
a particular item (column). For example, the vector A indicates that item a 



380 Chapter 6 Association Analysis 

A B c 0 E F 

1 0 a 1 a 0 
0 0 1 1 1 0 
0 0 1 1 1 0 
0 0 1 1 1 0 
0 1 1 a 1 1 
0 0 1 1 1 0 
0 0 1 1 1 0 
0 0 1 1 0 
0 0 1 1 0 
1 0 0 1 0 0 

(a) (b) (c) 

Figure6.28. Effect of the inversion operation. The vectors C and E are inversions of vector A, while 
the vector D is an inversion of vect0l5 B and F. 

belongs to the first and last transactions, whereas the vector B indicates that 
item b is contained only in the fifth transaction. The vectors C and E are in 
fact related to the vector A- their bits have been inverted from D's (absence) 
to 1 's (presence), and vice versa. Similarly, Dis related to vectors Band F by 
inverting their bits. The process of flipping a bit vector is called inversion. 
If a measure is invariant under the inversion operation. then its value for the 
vector pair (C, D) should be identical to its value for (A, B). The inversion 
property of a measure can be tested as follows. 

Definition 6.6 (Inversion Property). An objective measure M is invariant 
under the inversion operation if its value remains the same when exchanging 
the frequency counts !11 with foo and fw with fot· 

Among the rnea.sures that remain invariant under this operatiou iuclude 
the <J).-coefficient, odds ratio, K , and collective strength. These measures may 
not be suitable for analyzing a.symmetric binary data. For example, the <!>­

coefficient between C and D is identical to the .;{>.coefficient between A and 
B, even though items c and d appear together more frequently than a and b. 
Furthermore, the .;{>.coefficient between C and D is less than that between E 
and F even though items e and f appear together only once! We had previously 
raised this issue when discussing the limitations of the <f>.coefficieut ou page 
375. For asymmetric binary data, measures that do not remain invariant under 
the inversion operation are pre ferred. Some of the non-invariant measures 
include interest factor, IS, PS, and the Jaccard coefficient. 

6.7 Evaluation of Association Patterns 381 

Null Addition Property Suppose we are interested in analyzing the re­
lationship between a pair of words, such as data and mining, in a set of 
documents. If a collection of articles about ice fishing is added to the data set, 
should the association between data and mining be affected? This process of 
adding unrelated data (in this case, documents) to a given data set is known 
as the null addition operation. 

Definition 6.7 (Null Addition Property). An objective measure M is 
invariant under the null addition operation if it is not affected by increasing 
foo, while all other frequencies in the contingency table stay the same. 

For applications such as document analysis or market basket analysis, the 
measure is expected to remain invariant under the null addition operation. 
Otherwise, the relationship between words may disappear simply by adding 
enough documents that do not contain both words! Examples of measures 
that satisfy this property include cosine (IS) and Jaccard (€) measures, while 
those that violate this property include interest factor, P S, odds ratio, and 
the .;{>.coefficient. 

Scaling Property Table 6.16 shows the contingency tables for gender and 
the grades achieved by students enrolled in a particular course in 1993 and 
2004. The data in these tables showed that the number of male students has 
doubled since 1993, while the number of female students has increased by a 
factor of 3. However, the male students in 2004 are not performing any better 
than those in 1993 because the ratio of male students who achieve a high 
grru:le to those who achieve a low grru:le is still the same, i.e., 3:4. Similarly, 
the female students in 2004 are performing no better than those in 1993. The 
association between grade and gender is expected to remain unchanged despite 
changes in the sampling distribution. 

Table6.16. The gradla-genderexarnpla. 

High 
Low 

Male 
30 
40 
70 

Female 
20 50 
10 50 
30 100 

(a) Sample data from 1993. 

High 
Low 

Male 
60 
80 
140 

Female 
60 120 
30 110 
90 230 

(b) Sample data. from 2004. 



382 Chapter 6 Association Analysis 

Table 6.17. Properties of symmetric measures. 

Symbol Measure Inversion Null Addition Scaling 

4> ¢-coefficient Yes No No 
a odds ratio Yes No Yes 

" Cohen's Yes No No 
I Interest No No No 
IS Cosine No Yes No 
PS Piatetsky-Shapiro's Yes No No 
s Collective strength Yes No No 
( Jaccard No Yes No 
h All-confidence No No No 
s Support No No No 

Definition 6.8 (Scaling Invariauce Property). An objective measure AI 
is invariant under the row/column scaling operation if M(T) = M(T'), where 
T is a contingency table with frequency counts [fu; ho; fo1; foo], T' is a 
contingency table with scaled frequency counts [k,kJ!n: k2k3fw; k,k.fol: 
k2k~foo], and kt, k2, k3. k4 are positive constantes. 

From Table 6.17, notice that only the odds ratio (a) is invariant under 
the row and column scaling operations. All other measures such as the </>­
coefficient, 1<, IS, interest factor, and collective strength (S) change their val­
ues when the rows and colunms of the contingency table are rescaled. Although 
we do not discuss the properties of asymmetric measures (such as confidence~ 

J-measure, Gini index, and conviction), it is clear that such measures do not 
preserve their values under invension and row /column scaling operations, but 
are iuvariant under the uull addition operation. 

6.7.2 Measures beyond Pairs of Binary Variables 

The measures shown in Tables 6.11 and 6.12 are defined for pairs of binary vari­
ableB (e.g., 2-itemsets or association rules). However, many of them, such as 
support a nd aU-confidence, are also applicable to larger-sized itemsets. Other 
measures, such a.s interest factor, IS, PS, and Jaccard coefficient, can be ex­
tended to more than two variables using the frequency tables tabulated in a 
multidimensional contingency table. An example of a three-dimensional con­
tingency table for a, b, a nd c is shown in Table 6.18. Each entry f ijk in thiB 
table repreBents the number o f traru;actions that contain a particular combi­
nation of items a, b, and c. For example, fto1 is the nwnber of transactions 
that contain a and c, but not b. On the other hand, a marginal frequency 

6.7 Evaluation of Association Patterns 383 

Table 6.18. Example of a thre&-dimensional contingency table. 

c b b c b b 

a hu ho1 fi+t a !no fwo fi+o 

a fou foo1 fo+I a fo10 fooo fo+o 

f +ll ho1 h+I hiD hoo h+O 

such as f1+1 is the number of transactions that contain a and c, irrespective 
of whether b is present in the transaction. 

Given a k-itemset {it. i2, ... , ik}, the condition for statistical independence 
can be stated as follows: 

(6.12) 

With this definition, we can extend objective measures such as interest factor 
and P S, which are based on deviations from statistical independence, to more 
than two variables: 

I = 
/;1+ .. + X f+i2 ... + X ··· X f++ ... i. 

PS = 
/;t;, ... i . _ fit+·.+ X f +i, ... + X ··· X f++ .. i> 

N Nk 

Another approach is to define t he objective measure as the maximum, min­
imum, or average value for the associations between pairs of items in a pat­
tern. For example, given a k-itemset X = { i, i2, . . . , ik} , we may define the 
</>-coefficient for X as the average ¢-coefficient between every pair of items 
(ip, ·iq) .in X. However, because the measure considers only pairwise associa­
tions, it may uot capture all the underlying relationships within a pattern. 

Analysis of multidimensional contingency tables is more complicated be­
cause of the presence of partial associations in the data. For example, some 
associations may appear or disappear when conditioned upon the value of cer­
tain variables. This problem is known as Simpson's paradox and is described 
in the next section. 1-Iore sophisticated statilstical techniqueB are available to 
analyze such relationships , e.g. , loglinear models, but these techniques are 
beyond the scope of this book. 



384 Chapter 6 Association Analysis 

Table 6.19. A two-way contingency table between the sale of hig>-defin~ion television and exercise 
machine. 

Buy Buy Exercise Maclllne 
HDTV Yes No 

Yes gg 81 180 
No 54 66 120 

153 147 300 

Table 6.20. Example of a thre&-way contingency table. 

Customer Buy Buy Exercise Maclllne Thtal 
Group HDTV _!es ~0 
College Students Yes 1 9 10 

No 4 30 34 
Working Adult Yes 98 72 170 

No 50 36 86 

6 .7.3 Simpson's Paradox 

It is important to exercise caution when interpreting the association between 
variables because the observed relationship may be influenced by the presence 
of other confounding factors, i.e., hidden variables that are not included in 
the analysis. In some cases, the hidden variables may cause the observed 
relationship between a pair of variables to disappear or reverse its direction, a 
phenomenon that is known as Simpson 1s paradox. We illustrate the nature of 

this paradox with the following example. 
Consider the relationship between the sale of high-definition television 

(HDTV) and exercise machine, as shown in Table 6.19. The rule {HDTV =Yes} 
~ {Exercise machine= Yes} bas a confidence of 99/180 = 55% and the rule 
{HDTV=No} ~ {Exercise machine= Yes} has a confidence of54/120 = 45%. 
Together, these rules suggest that customers who buy high-definition televi­
sions are more likely to buy exercise machines than those who do not b uy 

high-definition televisions. 
However, a deeper analysis reveals that the sales of these items depend 

on whether the customer is a college student or a working adult. Table 6.20 
summarizes the relationship between the sale of HDTV s and exercise machines 
among college students and working adults. Notice that the support counts 
given in the table for college students and working adults sum up to the fre­
quencies shown in Table 6.19. Furthermore, there are more working adults 

6.7 Evaluation of Association Patterns 385 

than college students who buy these items. For college students: 

c({HDTV=Yes} ~ {Exercise machine= Yes}) 

c({HDTV=No} ~ {Exercisemachine=Yes}) 

while for working adults: 

c({HDTV= Yes} ~(Exercise machine=Yes}) 

c({HDTV=No} ~(Exercise machine= Yes}) 

1/10 = 10%, 

4/34 = 11.8%, 

98/170 = 57.7%, 

50/86 = 58.1%. 

The rules suggest that, for each group, customers who do not buy high­
definition televisions are more likely to buy exercise machines1 which contradict 
the previous conclusion when data from the two customer groups are pooled 
together. Even if alternative measures such as correlation, odds ratio, or 
interest are applied, we still find that the sale of HDTV and exercise machine 
is positively correlated iu the combined data but is negatively correlated in 
the stratified data (see Exercise 20 on page 414). The reversal in the direction 
of association is known as Simpson's paradox. 

The paradox can be explained in the following way. Notice that most 
customers who buy HDTVs are working adults. Working adults are also the 
largest group of customers who buy exercise machines. Because nearly 85% of 
the customers are working adults, the observed relationship between HDTV 
and exercise machine turns out to be stronger in the combined data than 

what it would have been if the data is stratified. This can also be illustrated 
mat hematically as follows. Suppose 

a/b < cjd and pjq < r/s, 

where a/b and pjq may represent the confidence of the rule A ~ B iu two 
different strata, while cjd and r/s may represent the confidence of the rule 
A - B iu the two strata. Wheu the data is pooled together, the confidence 
values of the rules in the combined data are (a +p)/(b +q) and (c + r)/(d+ s), 
respectively. Simpson's paradox occurs when 

a+p c+r -- > -­
b+q d+s' 

thus leading to the wrong conclusion about the relationship between the vari­
ables. The lesson here is that proper stratification is needed to avoid generat­
ing spurious patterns resulting from Simpson's paradox. For example, market 



386 Chapter 6 Association Analysis 

5 :o:104 

05 ) 

0 0L------.oo~-----,o~oo------,.~oo--~~.ooo~----~2soo 
Items sofied by support 

Figure 6.29. Support distribution of items in the oensus data set. 

basket data from a major supermarket chain should be stratified according to 
store locations, while medical records from various patients should be stratified 
according to confounding factors snch as age and gender. 

6.8 Effect of Skewed Support Distribution 

The performances of many association analysis algorithms are influenced by 
properties of their input data. For example, the computational complexity of 
the Apriori algorithm depends on properties such as the number of items in 
the data and average transaction width. This section examines another impor­
tant property tbat has significant influence on the performance of association 
analysis algorithms as well as the quality of extracted patterns. More specifi­
cally, we focus on data sets with skewed support distribntion.s, where most of 
the items have relatively low to moderate frequencies, but a small number of 
them have very high frequencies. 

An example of a real data set that exhibits such a distribution is shown in 
F igure 6.29. The data, taken from the PUMS (Public Use Microdata Sample) 
census data, contains 49,046 records and 2113 asymmetric binary variables. 
We shall treat the asymmetric binary variables as items and records as trans­
actions in the remainder of this section. While more than 80% of the items 
have support less tban 1%, a handful of them bave support greater than 90%. 

6 .8 Effect of Skewed Support Distribution 387 

To illustrate tbe effect of skewed support distributiou on frequeut iternset min­
ing, we divide the items into three groups, Ct. G2. and G3, according to their 
support levels. The number of items that belong to each group is shown in 
Table 6.21. 

Choosing tbe right support threshold for mining this data set can be quite 
tricky. If we set the threshold too high (e.g .. 20%), then we may miss many 
interesting patterns involving the low support items from G 1 . In market bas­
ket analysis, such low support iteiiiS may correspond to expensive products 
(such as jewelry) that are seldom bought by customers, but whose patterns 
are still interesting to retailers. Conversely, when the tbreshold is set too 
low, it becomes difficult to find the association patterns due to the following 
reasons. First, the con1putational and memory requirements of existing asso­
ciation analysis algorithms increase considerably with low support thresholds. 
Second, the number of extracted patterns also increases substantially with low 
suppor t thresholds. Third, we may extract many spurious patterns that relate 
a high-frequency item such as milk to a low-frequency item such as caviar. 
Such patterns, which are called cross-support patterns, are likely to be spu­
rious because their correlations tend to be weak. For example, at a support 
threshold equal to 0.05%, there are 18,84 7 frequent pairs involving items from 
G, and G3. Out of these, 93%ofthem are cross-support patterns; i.e., the pat­
terns contain items from both G 1 and G3. The maximum correlation obtained 
from the cross-support patterns is 0.029, which is much lower than the max­
imum correlation obtained from frequent patterns involving items from the 
same group (which is as high as 1.0). Similar statement can be made about 
many other interestingness measures discussed in the previous section. This 
example shows that a large number of weakly correlated cross-support pat­
terns can be generated when the support threshold is sufficiently low. Before 
presenting a methodology for eliminating such patterns, we formally define the 
concept of cross-support patterns. 



388 Chapter 6 Association Analysis 

Definition 6.9 (Cross-Support Pattern) . A cros&-support pattern is an 
itemsct X = {it, i2, .. . , ik} whose support ratio 

min [s(i!), s(i2), ... , s(id] 
r(X)= [ ] ' max s(it), s(i2), ... , s(ik) 

(6.13) 

is less than a user-specified threshold he. 

Example 6.4. Suppose the support for milk is 70%, while the support for 
sugar is 10% and ca,.iar is 0.04%. Given he = 0.01, the frequent itemset 
{milk, sugar, caviar} is a cross-support pattern because its support ratio is 

,. =min [0.7,0.1,0.0004] = 0.0004 = 0.00058 < O.Ol. 
max [0.7,0.1,0.0004] 0.7 

• 
Existing measures such as support and confidence may not be sufficient 

to eliminate cross-support patterns, a.s illustrated by the data set shown in 
Fignre 6.30. Assuming that he= 0.3, the itemsets {p,q}, {p,r}, and {p, q,r} 
arc cross-support patterns because their support ratios, which arc equal to 
0.2, are less than the threshold he. Although we can apply a high support 
threshold, say, 20%, to eliminate the cross-support patterns, this may come 
at the expense of discarding other interest ing patterns such as the strongly 
correlated itemset, {q,,-} that has support equa.l to 16.7%. 

Confidence pruning also does not help because the confidence of t he rules 

extracted from cross-support patterns can be very high. For example, the 
confidence for {q} ~ {p} is 80% even though {p,q} is a cross-support pat­
tern. The fact that the cross-support pattern can produce a high-confidence 
rule should not come a.s a surprise because one of its items (p) appears very 
frequently in the data. Therefore, p is expected to appear in many of the 
trausactions that contain q. Meanwhile, the rule { q} ~ { r} a.lso has high 
confidence even though { q, r} is not a cross-support pattern. This example 
demonstrates the difficnlty of nsing the confidence measure to distingwsh be­
tween rules extracted from cross-support and non-cross-support patterns. 

Retuming to the previous example, notice that the rule {p} ~ { q} has 
very low confidence because most of the transactions that contain p do not 
contain q. In contrast, the rule {r} ~ { q}, which is derived from the pattern 
{ q, r}, ha.s very high confidence. This observation suggests that cross-support 
patterns can be detected by examining the lowest confidence rule that can be 
extracted from a given itemset. The proof of this statement can he understood 
a.s follows. 

6 .8 Effect of Skewed Support Distribution 389 

p q r 
1 1 

1 
1 

1 0 0 

1 

1 0 
0 
0 0 

1 0 0 

1 

0 

Figure 6.30. A transaction data set containing three items, p, q, and,., where pis a high support item 
and q and r are la.v support items. 

1. Recall the following anti-monotone property of confidence: 

This property suggests that confidence never increases as we shift more 
items from the left- to the right-hand side of an association rnle. Because 
of this property, the lowest confidence rule extracted from a frequent 
iternset contains only one item on its left-hand side. We denote the set 
of all rules with only one item on its left-hand side as R1. 

2. Given a frequent itemset {i~,i2, .. . ,ik}, the rule 

has the lowest confidence in Rt if s(ij) = max[s(it),s(i2), ... ,s(ik)]. 
This follows directly from the definition of confidence as the ratio be­
tween the rule's support and the support of the rule antecedent. 



390 Chapter 6 Association Analysis 

3. Summarizing the previous points, the lowest confidence attainable from 
a frequent itemset {it, .£2, . .. , ik} is 

This expression is also known as the h-confidence or all-confidence 
measure. Because of the anti-monotone property of support, the numer­
ator of the h-confidence measure is bounded by the minimum support 
of any item that appears in the frequent iteffillet. In other words, the 
h-confidence of an iternset X = { i1, i2, ... , id must not exceed the fol­
lowing expression: 

) 
min [s(iJ),s(i2), ... ,s(ik)] 

h-confidence(X < . 
- max [s(iJ),s(io), .. .. s(ik)] 

Note the equivalence between the upper bound of h-confidence and the 
support ratio (r) given in Equation 6.13. Because the support ratio for 
a cross-support pattern is always less than he, the h-confidence of the 
pattern is also guaranteed to be less than h0 . 

Therefore, cross-support patterns can be eliminated by ensuring that the 
h-confidence values for the patterns exceed he. As a final note, it is worth 
mentioning that the ad vantages of using h-confidence go beyond eliminating 
cross-support patterns. The measure is also anti-monotone, i.e., 

h-confidence( {it. i2, .... ik}) 2': h-confidence( { i,, i2, ... , ik+t} ), 

and thus can be incorporated directly into the mining algorithm. Furthermore, 
h-confidence ensures that the items contained in an itemset are strongly asso­
ciated with each other. For example, suppose the h-confidence of an iteiiiBet 

X is 80%. If one of the items in X is present in a transaction, there is at least 
an 80% chance that the rest of the items in X also belong to the same trans­
action. Such strongly associated patterns are called hyperclique patterns. 

6.9 Bibliographic Notes 

The association ruJe mining task was first introduced by Agrawal et al. in 
[228, 229] to discover interesting relationships among items in market basket 

6.9 Bibliographic Notes 391 

transactions. Since its inception. extensive studies have been conducted to 
address the various conceptual, implementation, and application issues per­
taining to the association analysis task. A summary of the various research 
activities in this area is shown in Figure 6.31. 

Conceptual Issues 

Research in conceptual issues is focused primarily ou (1) developing a frame­
work to describe the theoretical underpinnings of association analysis, (2) ex­

tending the formuJation to handle new types of patterns, and (3) extending the 
formulation to incorporate attribute types beyond asymmetric binary data. 

Following the pioneering work by Agrawal et al., there has been a vast 
amount of research on developing a theory for the association analysis problem. 
In [254], Gunopoulos et al. showed a relation between the problem of finding 
maximal frequent itemsets and the hypergraph transversal problem. An upper 
bound on the complexity of association analysis task was also derived. Zaki et 
al. [334, 336] and Pasqnier et al. [294] have applied formal concept analysis to 
study the frequent itemset generation problem. The work by Zaki et al . have 
subsequently led t hem to introduce the notion of closed frequent itemsets [336] . 
Friedman et al. have studied the association analysis problem in the context 
of bump hunting iu muJtidimensional space [252]. More specifically, they 
consider frequent itemset generation as the task of finding high probability 
density regions in multidimensional space. 

Over the years, new types of patterns have been defined, such as profile 
association rules [225], cyclic association ruJes [290], fuzzy association ruJes 
[273] , exception rules [316]. negative association rules [238, 304], weighted 
association ruJes [240, 300], dependence rules [308]. peculiar rules[340], inter­
transaction association roles [250, 323], and partial classification ruJes [231, 
285]. Other types of patterns include closed itemsets [294, 336], maximal 
itemsets [234], hypercliqne patterns [330], support envelopes [314], emerging 
patterns [246], and contrast sets [233]. Association analysis has also been 
successfully applied to sequential [230, 312], spatial [266], and graph-based 
[268, 274, 293, 331, 335] data. The concept of cross-support pattern was first 
introduced by Hui et al. in [330]. An efficient algorithm (called Hypercliqne 
!\liner) that automatically eliminates cross-support patterns was also proposed 
by the authors. 

Substantial research has been conducted to extend the original association 
rule formuJation to nominal [311], ordinal [281] , interval [284], and ratio [253, 
255, 311, 325, 339] attributes. One of the key issues is how to define t he support 
measure for these attributes. A methodology was proposed by Steinbach et 



-negatva 
odeperc:lert:e 
-causal 
·WeiQnted 
-spati!ll &lld co­
loc.aflon palloms 
-tempaal (cycle. 
sequartil.l) 
-hay 
·&lCePIIOnrtikls 

"""""" -maximal 
-~marglng 

P<dtems 
·tftPB'CII(JJe 
pattems 

"""'"" ....... 

-ser1Bi orpaale1 
-arline or bath 

-AprCrl 
-DIC 
-tree.pro,.,clton 
·FP·tree 
-H.mlne 
-Partli>n 
·$iwnplllg-baS9d 
·CHARM 

Figure 6.31. A stJ11mary of !he varirus research activities in association analysis. 

-ranking 
-nltemo 
-sumn-ertzlng 

~ 2.. "' ~ p.. ., 
., w 
<'" .... 

0 ~..s::!. 
::?("!- ::r 
" 0 "' g a '0 .. 
~ 

(!) 

" 
..., 

" "" ~ 
p.. 
<'" ,.. 

~ " :q-

; 0 
c. 
" a· g: 

" " 2.. > 
" " g_ " 0 ~ 
" !;;" 
g., 
"' " "" "" ~ 
b 
3 
0 
(l 

·~ " (1 
2.. 

"" ~ 
1i" 
fjl 

-dllsSincatbll 
-regres:sion 
-cllsterino 
-racommem• 
systems 



394 Chapter 6 Association Analysis 

Implementation Iss ues 

Research activities in this area revolve around (1) integrating the milling ca­
pability into existing database technology, (2) developing efficient and scalable 
mining algorithms, (3) handling user-specified or domain-specific constraints, 
and ( 4) post-processing the extracted patterns. 

There are several advantages to integrating associatiou analysis into ex­
isting database technology. First , it cau make use of the indexing and query 
processing capabilities of the database system. Second. it can also exploit the 
DBMS support for scalability, check-pointing, and parallelization [301]. The 
SETM algorithm developed by Houtsrna et al. [265] was one of the earUest 
algorithms to support association rule discovery via SQL queries. Since then. 
numerous methods have been developed to provide capabilities for mining as­
sociation rules in database systems. For example, the DMQL [258] and M-SQL 
[267] query languages extend the basic SQL with new operators for mining as­

sociation rules. The Mine Rule operator [283] is an expressive SQL operator 
that can handle both clustered attributes and item hierarchies. Tsur et al. 
[322] developed a generate-and-test approach called que ry flocks for mining 
association rules. A distributed OLAP-based infrastructure was developed by 
Chen et al. [241] for rn.inlng multilevel association rules. 

Dunkel and Soparkar [248] investigated the time and storage complexity 
of the Apr"iori algorithm. The FP-growth algorithm was developed by Han et 
al. in [259]. Other algorithms for mining frequent itemsets include the DHP 
(dynamic hashing and pruning) algorithm proposed by Park et al. [292] and 
the Partition algorithm developed by Savasere et al [303]. A sampling-based 
frequent itemset generation algorithm was proposed by Toivonen [320]. The 
algorithm requires only a single pass over the data, but it can produce more 
candidate itemsets than necessary. The Dynamic ltemset Counting (DIC) 
algorithm [239] makes only 1.5 passes over the data and generates less candi­
date itemsets than the sampling-based algorithn1. Other notable algorit hms 
include the t ree-projection algorithm [223] and H-Mine [295]. Survey articles 
on frequent itemset generation algorithms can be found in [226, 262]. A repos­
itory of data sets and algorithn>s is available at the Frequent l temset Mining 
Implementations (FIMI) repository (http:j /firni.cs.helsinki.fi). Parallel algo­
rithms for rn.inlng associat ion patterns have been developed by various authors 
[224, 256, 287, 306. 337]. A survey of such algorithms can be found in [333]. 
Online and incremental versions of association rule mining algorithms had also 
been proposed hy Hidber [260] and Chenog et al. [242]. 

Srikant et al. [313] have considered the problem of mining association rules 
in the presence of boolean constraints such as the following: 

6.9 Bibliographic Notes 395 

(Cookies II Milk) V (descendents(Cookies) A ~ancestors(Wheat Bread)) 

Given such a constraint. the algorithn1 looks for r ules that contain both cook­
ies and milk, or rules that contain the descendent items of cookies but not 
ancestor items of wheat bread. Singh et al. [310] and Ng et al. [288] had also 
developed alternative techniques for constrained-based association rule min­
ing. Constraints can also be imposed on the support for different itemsets. 
This problem was investiga ted by Wang et al. [324] , Liu et al. in [279], and 
Seno et al. [305]. 

One potential problem with association analysis is the large number of 
patterns that can be generated by current algorithms. To overcome this prob­
lem, methods to rank, summarize, and filter patterns have been developed. 
Toivonen et al. [321] proposed the idea of eliminat ing redundant rules nsing 
structural rule covers and to group the remaining rules using clustering. 
Liu et al. [280] applied the s tat istical chi-square test to prune spur ions patterns 
and summarized the remaining patterns using a subset of the patterns called 
direct ion settiJ1g ru1es. The use of objective rueasUies to filter patterns 
has been investigated by many authors, including Brin et al. [238], Bayardo 
and Agrawal [235], Aggarwal and Yu [227], and DuMouchel and Pregibon[247] . 
The properties for many of these measnres were analyzed by P iatetsky-Shapiro 
[297] , Kamber and Singhal [270] , Hilderman and Hamilton [261], and Tan et 
al. [318]. The grade-gender example used to highlight the importance of the 
row and column scaling invariance property was heavily influenced by the 
discussion given in [286] by Mosteller. Meanwhile, the tea-coffee example il­
lustrating the limitation of confidence was motivated by an example given in 
[238] by Brin et al. Because of the limitation of confidence, Brin et al. [238] 
had proposed the idea of using interest factor as a measure of interest ing­
ness. The all-confidence measure was proposed by Omiecinski [289]. Xiong 
et al. [330] introduced the cross-support property and showed that the all­
confidence measure can be used to eliminate cross-support patterns. A key 
difficulty in using alternative objective measures besides support is their lack 
of a monotonicity property, wbicb makes it difficult to incorporate the mea­
sures directly into the mining algorithms. Xiong et al. [328] have proposed 
an efficient method for rn.inlng correlations by introducing an upper bound 
function to t he &-coefficient. Alt hough the measure is non-monotone , it has 
an upper bound expression that can be exploited for the efficient mining of 
strongly correlated itempairs. 

Fabris a nd Freitas [249) have proposed a method for discovering inter­
esting associations by detecting the occurrences of Simpson's paradox [309). 
l\legiddo and Sri kant [282] described an approach for validating the extracted 



396 Chapter 6 Association Analysis 

patterns using hypothesis testing methods. A resampling-based technique was 
also developed to avoid generating spurious patterns because of the multiple 
comparison problem. Bolton et al. [237] have applied the Benjamini-Hochberg 
[236] and Bonferron.i correction methods to adjust the p-values of discovered 
patterns in market basket data. Alternative methods for handling the multiple 
comparison problem were suggested by Webb [326] and Zhang eta!. [338] . 

Application of subjective measures to association analysis has been inves­
tigated by many authors. Silberschatz and Tuzhilin [307] presented two prin­
ciples in which a rule can be consjdered inte resting from a subjective point of 

view. The concept of unexpected condition rules was introduced by Liu et al. 
in [277]. Cooley et a!. [243] analyzed the idea of combining soft belief sets 
using the Dempster-Shafer theory and applied this approach to identify contra­
dictory and novel association patterns in Web data. Alternative approaches 
include using Bayesian networks [269] and neighborhood-based informat ion 
[245] to identify subjectively interesting patterns. 

Visualization also helps the user to quickly grasp the underlying struc­
ture of the discovered patterns. Many commercial data mining tools display 
t he complete set of rules (which satisfy both support and confidence thresh­
old criteria) as a two-dimensional plot, with each axis corresponding to the 
antecedent or consequent itemsets of the rule. Hofmann et al. [263] proposed 
using Mosaic plots and Double Decker plots to visualize association rules. This 
approach can visualize not only a particular rule, but also the overall contin­
gency table between itemsets in the antecedent and consequent parts of the 
rule. Nevertheless, this technique assumes t hat the ruJe consequeut consists of 
only a single attribute. 

Application Issues 

Association analysis has been applied to a variety of application domains such 
as Weh mining [296, ~17], document analysis [264], telecommunication alarm 
diagnosis [271], network intrusion detection [2~2, 244, 275], and bioinformatics 
[302, ~27]. Applications of association and correlation pattern analysis to 
Earth Science studies have been investigated in [298, 299, 319]. 

Associa tion patterns have also been app1ied to other learning problems 

such as classification [276, 278], regression [291]. and clustering [257, 329, 332]. 
A comparison hetweeu classification aud association rule mining was made 
by Freitas in his position paper [251]. The use of association patterns for 
clustering ha:s been studied by many authors including Han et a!.[257], Kosters 
et al. [272], Yang eta!. [332] and Xiong et al. [329]. 

Bibliography 397 

Bibliography 
[223] R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad. A Tree Projection Algorithm 

for Generation of Frequent ltemsets. Jaumal of Parullel and Distributed Computing 
(Speool/88ue on High Performance Data M ining), 61(3):35(}-371, 2001. 

[224] R. C . Agarwal and J. C. Shafer. Parallel Mining of Association Rules. IEEE Trnnsac­
tion!l on Kn&Wledge and Data Engineering, 8(6):962- 969, :March 1998. 

[225] C. C. Aggarwal, Z. Sun. and P. S. Yu. Online Generation of Profile Association Rules. 
In Proc. of the jth Intl. Conj. on Knowledge fucovery and Data Mining, pages 121}-
133, New York, NY. August 1090. 

[226] C. C. Aggarwal and P. S. Yu. Mining Large Itemsets for Association Rules. Data 
Engineering Bulletin, 21(1):23-31. March 1098. 

[227] C. C. Aggarwal and P. S. Yu. Mining Associations with the Collective Strength 
Approach. IEEE Tmru. on Knowledge and Data Engineering, 13(6):863-873, Jan­
uary / February 2001. 

[228] R. AgrawaL T. Imielinski, and A. Swami. Database mining: A performance perspec­
tive. IEEE Trnnsactions on Knowledge and Data Engineering, 5:914-925. 1993. 

[229] R. Agrawal. T. Imielinski, and A. Swami. l\lining association rules between sets of 
items in large databases. In Proc. A CM SI GM OD Inti. Con/. Management of Dat.a, 
pages 207 216, Washington, DC, 1003. 

[230] R. Agrawal a.nd R. SrikaJlt. Mining Sequential Patterns. In Proc. of Intl. Conf . on 
Data Engineering, pages 3-1-4, Taipei, Taiwan, 1995. 

[231] K. Ali, S. Manganaris, and R. Srikant. Partial Classificat ion using ASS)Ciation Rules. 
In Proc. of the :Jrd. Inti. Cot1j. 0t1 Know ledge DiJctwery and Data Mining, pages 115---
118, Newport Beach, CA. August 1997. 

[232] D. Barbara. J. Couto. S. Jajodia, and N. Wu. ADM!: A Testbed for Exploring tbe 
Use of Data Mining in lntrusion Detection. SIGMOD Record, 30(4):1fr-24, 2001. 

[233] S. D. Bay and M. Pazzani. Detecting Group Differences: Mining Contrast Sets. Data 
Afining and Knowledge ~cov€ry, 5(3):213- 246. 2001. 

[234] R. Bayardo. Efficiently Mining Long Patterns from Databases. In Proc. of 1998 ACM­
SlGMOD Inti. Conj. on Management of Data. pages 85- 93, Seattle, WA, June 1998. 

[235] R. Bayardo and R. Agrawal. Mining the Most lnteresting Rules. 1n Proc. of the 5th 
Intl. Con/. on Knowledge Discotrery and Data Mining. pages 145 153, San Diego, CA. 
August 1999. 

[236] Y. Benjamini and Y. Hochberg. CQntrolling the False D iscovery Rate: A Practical 
and Powerful Approach to f\·Iultiple Testing. Journal Royal Statistical Society B. 57 
( 1):289-300, 1995. 

[237] R. J. Bolton, D. J. Hand, nnd N. M. Adams. Determining Hit Rate in Pattern Search. 
In Proc. of the ESF Explorotorv Workshop 0t1 Pattern Detection and DisCtJverv in 
Data !vlining, pages 36----48, London, UK, September 2002. 

[238] S. Brio, R. Motwani, and C. Silverstein. Beyond tnarkE't baskets: Generalizing associ­
ation rules to correlations. In Proc. ACJ..J SJGMOD Intl. Conf. Management of Data, 
pages 265- 276, Tucson. AZ, 1907. 

[239] S. Brin, R. Mot¥.·ani, J. Ullman, and S. Tsur. Dynamic l temset Counting and Impli­
cation Rules for market basket data.. In Proc. of 19g7 ACM-SIG.MOD lnU. Conf. on 
Management of Data, pages 255- 264, Tuc:son. AZ. June 1997. 

[240] C. H. Cai, A. Fu. C. H. Cheng, nnd W. W. Kwong. Mining Association Rules with 
Weighted Items. In Proc. of IEEE lntL Database Engineering and Applications Symp .• 
pages 61>-77, Cardiff, Wales. 1098. 



398 Chapter 6 Association Analysis 

[241] Q. Chen, U. Dayal, and M. Hsu. A Distributed OLAP infrastructure forE-Commerce. 
In Proc. of the 4th JFCJS Intl. Con/. on Cooperative Information Systems, pages 200----
220, Edinburgh, Scotland, lOgo. 

[242] D. C. Cheung. S. D. Lee, and B. Kao. A General Increlll€ntal Technique for Maintaining 
Disoovered Association Rules. In Proc. of the 5th Inti. Conf. on Database Systems for 
Advanced Applications, pages 185--194, J...·Jelbourne, Australia, 1997. 

[243] R. Cooley, P. N. Tan, a.nd J. Srivastava. Discovery of Interesting Usage Patterns 
from Web Data. In .M. Spiliopoulou and B. :Masand. editors. Advances in Web Usage 
Analysis and User Profiling, volume 1836. pages 163---.182. Lecture Notes in C..omputer 
Science, 2000. 

[244] P. Dokas, L. ErtOz, V. Kumar, A. LazareYic, J. Srivastava, and P. N. Tan. Data Mining 
for Network Intrusion Detection. In Pruc. NSF Work...'lhop on Next Genemt-ion Data 
Mining, Baltimore, MD. 2002. 

[245] G. Dong and J. Li. Interestingness of discovered association rules in terms or 
neighborh<XJd-based unexpectedness. In Pmc. of the 2nd Pacific-Asia Con/. on K nowl­
edge DiscotJery and Data Mining. pages 72-86~ Melbourne, Australia. April1098. 

[246] G. Dong and J. Li. Efficient Mining of Emerging Patterns: Discovering Trends and 
Differences. In Proc. of the 5th. Inti. Conf on Knowledge Discot1ery and Data Mining, 
pages 43-52. San Diego, CA. August 1999. 

[247] \V. Du!vlouchel and D. Pregibon. Empirical Bayes Screening for Multi-Item Associa­
tions. In Proc. of the 7th Intl. Con f. on Knowledge Discovery and Data Mining. pages 
67-76. San Francisco, CA, August 2001. 

[248] B. Dunkel and N. Soparkar. Data Organization and Access for Efficient Data Mining. 
Io Proc. of the 15th Inti. Con/. on Data Engineering, pages 522 529. Sydney, Australia, 
March 1999. 

[249] C. C. Fabris and A. A. Freitas. Discovering surprising patterns by detecting occurrences 
of Simpson's paradox. In Proc. of the J!Jth. SGES Intl. Conf. on Knowledge-Based 
Systems and Applied Artifidal Intelligen~). pages 148-160, Cambridge, UK, December 
1909. 

[250] L. Feng, H. J. Lu. J. X. Yu, and J. Han. Mining inter-transaction associations with 
templates. In Proc. of the 8th Inti. Con]. on lnfonnation and Knowletige Managemen~ 
pages 225- 233, Kansas City. Missouri, Nov 19{)9. 

[251] A. A. Freitas. Understanding the crucial differences between classification and discov­
ery of association rules--a position paper. SIGKDD ExplomtJons, 2(1):65----GO. 2000. 

[252] J. H. Friedman and N. I. Fisher. Bump hunting in high-dimensional data. Statistics 
and Computing, 9(2):123-143, April1999. 

[253] T. Fukuda, Y. ~-Iorimoto, S. ~lorishita., and T. Tokuyama. ~-"lining Optimized Asso­
ciation Rules for N urneric Attributes. In Proc. of the. 1 Sth Symp. on Principles of 
Database Systems, pages 182 191, ~'lontreal, Canada, June 1096. 

[254.] D. Gunopulos. R. Khardon, H. Ma.nnila, and H. Toivonen. Data Mining, Hypergra.ph 
Transversa1s, and Machine Learning. In Proc. of the 16th Symp. on Principles of 
Database Systems, pages 209- 216 , Tucson. AZ, May 1997. 

[255] E.-H. Han, G. Karypis, a.nd V . Kumar. Min-Apriori: An Algorithm for Finding As­
sociation Rules in Data with C-ontinuous Attributes. http:/ jwww.cs.urnn.edurhan, 
1907. 

[256] E.-H. Han. G. Karypis, and V. Kumar. Scalable Parallel Data ~lining for Association 
Rules. In Proc. of 1997 ACM-SIGMOD Inti. Conf. on Management of Data, pages 
277- 288, Tucsoo, AZ. May 1!l!l7. 

Bibliography 399 

[257] E.-H. Han, G. Karypis, V. Kumar, and B. Mobasher. Clustering Based on Association 
Rule Hypergraphs. In Proc. of the 1997 ACM SIGMOD Workshop on Research Issues 
in Data Mining and Knov.lledge .Diuovery, TUcson, AZ, 1907. 

[258] J. Han) Y. FU, K. Koperski, "\V. ·wang, and 0. R. Zalane. DMQL: A data mining query 
lru1guage for relat ional databases. In Proc. of the 1996 ACA! SIGMOD Work...'lhop on 
Research Issues in Data Mining and Knowledge Di.scot,ery, Montreal. Canada, June 
1990. 

[259] J. Han, J. Pei. andY. Yin. Mining Frequent Patterns without Candidate Generation. 
In Proc. A CM-SIGMOD Int. Conf. on Management of Data (SIGMOD 'OO), pages 
1-12. Dallas, TX, May 2000. 

[200] C. Hidber. Online Association Rule Mining. In Proc. of 1 !199 AC.Af.SIGMOD Inti. 
Con/. on klanagement of Data, pages 145-156, Philadelphia, PA. 19!J9. 

[2Gl] R. J. Hildemaan and H. J. Hamilton. Knou,ledge Di.sc01.1e.ry and MeCJsu.rts of Interest. 
Kluwer Academic Publishers, 2001. 

[262] J. Hipp, U. Guntzer, and G. Nakhaeizadeh. Algorithms for Association Rule Mining­
A GeoeraJ Survey. SigKDD Explorntions, 2(1):58-04, Jnne 2000. 

[263] H. Hofmann, A. P. J. M. Siebes, and A. F. X. Wilhelm. Visualizing Associotion Rules 
with Interactive ~·IO"'aic Plots. In Proc. of the 6th. Intl. Conf. on Knowledge Disrovery 
and Data Mining, pages 1)27 235, Boston, ?\·fA, August 2000. 

[264] J. D. Holt and S. M. Chung. Efficient Mining: of Association Rules in Tex\ Databases. 
In Proc. of the 8th Intl. Conf. on Information and Knowledge .Management, pages 
234-242, Kansas City, Mi<lsouci, 199!). 

[265] M. Houtsma and A. Swami. Set-oriented Mining for Association Rules in Relational 
Databases. In Proc. of the 11th Inti. Conf. on Data Engineering, pages 25 33, Taipei, 
Taiwan, 1995. 

[26G] Y. Huang, S. Shekhar, and H. Xiong. Disrovering Co-location Patterns from Spatial 
Datasets: A General Approach. IEEE Trons. on Knowledge and Data Engineering, 16 
(12):1472-1485. December 2004. 

[267] T. Imielinski, A. Virmani. 8Ild A. Abdulghani. DataMine: Application Programming 
Interface and Query Language for Database Mining. In Proc. of the 2nd l nt1. Conf. 
on Knowledge Di-scovery and Data Mining, pages 256--262, Portland, Oregon. 1006. 

[268] A. Inokuchi, T. Washio. ond H. Motoda. An Apriori-based Algorithm for Mining 
Frequent Substructures from Graph Dat.a. In Proc. of the ,Jth European Conf. of Prin­
ciples and Practice of Knowledge DUeot•ery in Databases, pages 13-23, Lyon, France, 
2000. 

[26{)] S. Jaroszewicz and D. Simovici. lnterf"St.ingness of Frequent ltemsets Using Bayesian 
Networks as Background Knowledge. In Proc. of the 10th Inti. Con/. on Knowledge 
Discovery and Data Mining, pages 178-186, Seattle. WA, August 2004. 

[270] M. Kamber and R. Shingbal. Evaluating the Interestingness of Characteristic Rules. In 
Proc. of the 2nd Intl. Conf. on Knowledge Discovery and Data Mining. pages 263-266, 
Portland, Oregon, 1906. 

[271] l\1. Klemettinen. A Knowledge Discovery Methodology for Telecommunication N etwork 
Alarm Databases. PhD thesis. University of Helsinki. 19{)9. 

[272] W. A. Koo;:ters, E. MOichiori, and A. Oerlemans. Mining Clusters with Associat-ion 
Rules. In The 3rd Symp. on Intelligent Data Analysis (IDA99). pages 39-50, Amster­
dant, August 1009. 

[273] C. M. Kuok, A. FU, and M. H. Wong. Mining Fuzzy Association Rules in Databases. 
ACM SIGMOD Record, 27(1):41-46, March 1908. 



400 Chapter 6 Association Analysis 

[274] M. Kuramochi and G. Karypis. Frequent Subgraph Discovery. In Proc. of the 2001 
IEEE Inti. C<m/. on Data Mimng. pages 313-320. San Jooe, CA, November 2001. 

[275] W. Lee, S. J. Stolfo, and K. W. Mok. Adaptive Intrusion Detection: A Data Mining 
Approach. Artificial Intelligence Reviewl 14(6):533-567l 2000. 

[276] W. Li, J. Han, and J. Pei. C MAR: Accurate and Efficient Classification Based on 
Multiple Class-association Rules. In Proc. of the 2001 IEEE Intt C<m/. on Data 
Mining, po.ges 360-376. San Jose, CA. 2001. 

[277] B. Liu, W. Hsu, and S. Chen. Using General Impressions to Analyze Discovered 
Classification Rules. In Proc. of the :lrd Intl. Con]. on Knou1ledge Discovery and Data 
Mining, pages 31-36, Nev.rport Beach, CA, August 1997. 

[278] B. Liu, W. Hsu. and Y. !\.b. Integrating ClMsiflcation and Association Rule Mining. 
In Proc. of the 4th Intl. Ccmf. on Knowledge Discovery and Data Mining, pages 80-86, 
New York, NY, August 1998. 

[279] B. Liu, W. Hsul andY. Ma. Mining a.ssociation rules with multiple- minimum supports. 
In Proc. of the 5th Intl. Conf. on Knowledge Discot--ery and Data Mining, pages 125--
134, SaiJ Diego, CA, August 1999. 

[280] B. Liu, W. Hsu, andY. M~. Pruning and Summarizing the Discovered Assoda.tions. In 
Proc. of the 5th inti. Conf. on Knowledge Disco,.!ery and Data Mining, pages 125-134, 
San Diego, CA, August 1009. 

[281] A. Marcus, J. I. Maletic, and K -1. Lin. Ordinal association rules for error identifi­
cation in data sets. In Proc. of the 10th Intl. Conf. on Information and Knowledge 
Management, pages 589-591, Atlanta, GA, October 2001. 

[282] N. ~'legiddo and R. Srikant. Discovering Predictive Association RuleB. In Proc. of the 

4th lntl. Con]. on Knowledge Di..scot't'f'JI and Data Mining. pages 274 278, New York, 
August 1\l08. 

[283] R Meo, G. Psa.ila. and S. Ceri A New SQL-like Operator for Mining AS80ciation 
Rules. In Proc. of the ~2nd VLDB Conf., pages 122-133. Bombay, India, 1996. 

[284] R. J. Miller and Y. Yang. Association Rules over Interval Data. In Proc. of 1997 
ACM-SJGMOD Intl. Con]. on Management of Data. pages 452 4.(}1, Tucson. AZ, May 
1907. 

[285] Y. 1-lorimoto, T. FUkuda, H. Matsuzawa, T. Tokuyama, and K . Yoda. Algorithms for 
mining association rules for binary segmentations of huge categorical databases. In 
Proc. of the 24th VLDB Con{. , pages 380-3D1, New York, August ID98. 

[286] F. Mosteller. Association and Estimation in Contingency Tables. Journal of the Amer­
ican Statistical Association, 63:1- 28, 1068. 

[287] A. Mueller. Fast sequential and parallel algorithms for association rule mining: A 
comparison. Technical Report CS-TR-3515, University of Maryland. August 1095. 

[288] R. T. Ng, L. V. S. Lakshmanan, J. Han, and A . Pang. Exploratory Mining and Pruning 
Optimizations of Constrained Association Rules. In Proc. of 1998 A CM-SI GM OD Inti. 
Conf. on Management of Data, pages 13- 24. Seattle, VlA, June 1908. 

[289] E. Omiecinski. Alternative Interest Measures for Mining Associations in Databases. 
fEEE Trans. on Knowledge and Data Engineering, 15(1):57- 69. January/February 
2003. 

[290] B. Ozden, S. Ra.rnaswamy, and A. Silberschatz. Cyclic Association Rules. In Proc. of 
the 14th l n tl. Conf on Data Eng., pages 412-421. Orlando, FL, February 1998. 

[291] A. O.gur, P. N. Tan, alld V. Kumar. RBA: An Integrated Framework for Regression 
based on Association Rules. In Proc. of the SIAM Inti. Conj. on DaUJ. Mining. pages 
210-221, Orlando, FL, April 2004. 

Bibliography 401 

[~2] J. S. Park, t>.l-S. Chen , and P. S. Yu. An effective hash-based algorithm for mining 
association rules. SIGMOD Record, 25(2):175-186, 1905. 

[293] S. Parthasarathy and M. Coatney. Efficient Discovery of Common Substructures in 
Macromolecules. In Proc. of the QOOQ IEEE Inti. Gonj. on Data Mining, pages 362-36{), 

Maebashi C ity, Japan. December 2002. 
[2g4] N. Pasquier, Y. Bast ide, R. Taouil. and L. Lakhal. Discovering frequent closed itewsets 

for association rules. In Proc. of the 7th lntl. Conj. on Database Theory (JCDT'99) , 
pages 398 416, Jerusalem, Israel, January lQ{I!)_ 

[2fl5] J. Pei, J. Han, H. J. Lu, S. Nishio, and S. Tang. H-f\-1ine: Hyper-Structure Mining of 
Frequent Patterns in Large Databaoes. In Proc. of the 2001 IEEE Inti. C<mf. on Data 
Mining, pages 441-448. San Jose, CA. November 2001. 

[2!16] J. Pei. J. Han. B. fvlortazavi-Asl , and H. Zhu. Mining A cress Patterns Efficiently from 
Web Logs. In Proc. of the 4th Pacific-A!Iia Conf. on Knowledge Discovery and Data 
Mining, pages 390--407, Kyoto, Japan. April 2000. 

[2!17] G. Piatetsky-Shapiro. Discovery, Analysis and Presentation of Strong Rules. In 
G. Piatetsky-Shapiro and W. Frawley, editors, Knowledge Discovery in Databases, 
pages 229-248. MIT Press. Cambridge. MA, 1991. 

[298] C. Potter, S. Kloooter, M. Steinbach, P. N. Tan, V. Kumar, S. Shekhar, and C. Car­
valho. Underst8Ilding Global Teleconnections of Climate to Regional Nlode) Estimates 
of Amazon Eoosystem Carbon Fluxes. Global Change Biology, 10(5):603-703, 2004. 

[299] C. Potter. S. Klooster, M. Steinba<:h. P. N. Tan, V. Kumar , S. Shekhar, R. Myneni, 
and R. Nemani. Global Teleconnections of Ocean Climate to Terrestrial Carbon Flux. 
J. Geophysical Research, 108(D 17), 2003. 

[300] G. D. Ramkumar, S. Rankn. and S. Tsur. Weighted Association Rules: Model and 
Algorithm. http:/ j www.cs .ucla.edu;-czdemojtsur/, JD07. 

[301] S. Sarawagi, S. T homas, and R. Agrawal. Integrating Mining with Relational Database 
Systems: Alternatives and Implications. In Proc. of 1998 ACM.SIGMOD Int.J.. Conf. 
on Management of Data, pages 343-354, Seattle, WA, 1998. 

[302] K. Satou, G. Shibayama, T. Ono, Y. Yamamuro, E. Furoichi, S. Kuhara, and T. Takagi. 
Finding Association Rules on Heterogeneous Genome Data. In Proc. of the Pacific 
Symp. on Biocomputing, page:s 397 -408. Hawaii, January 1997. 

[303] A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining associ­
ation rules in large databases. In Proc. of the £1st Int. Conf. on Very Large Databases 
(VLDB'95), pages 432-444, Zurich, Switzerland, September 1005. 

[304] A. Savasere, E. Omiecinski, and S. Navathe. Mining for Strong Negative Associations 
in a Large Database of Customer Transaetions. In Proc. of the 14th inti. Con f. on 
Data Engineering, pages 494- 502, Orlando: Florida, February 1908. 

[305] t\·1. Seno and G. Kruypis. LPMiner: An Algorithm for Finding Frequent Itemsets Using 
Length-Decreasing Support Constraint. In Proc. of the :2001 IEEE lnt.l. Con/. on Data 
Minong, pages 505 512. San Jose, CA. Novembe.r 2001. 

[306] T . Shintani and M. Kitsuregawa. Hash based para He-1 algorithms for mining BS50Ciation 
rules. In Proc of the Jth Intl. Conf on Pamllel and Distributed Info. Systems. pages 
1!)- 30, Miami Beach, FL, December 1006. 

[307] A. SiJberschatz and A. Tuzhilin. What makes patterns interesting in knowledge discov­
t>ry systems. IEEE Trans. on Knou1ledge and Data Engineering, 8(6):9~974, 1996. 

[308] C. Silverstein, S. Brin, and R. Motw8Ili. Beyond market baskets: Generalizing associ­
ation rules to dependence rules. Data Mining and Knowletige Discovery, 2(1) :30--{lS, 
1!J!l8. 



402 Chapter 6 Association Analysis 

[300] E.-H. Simpson. The Interpretation of Interaction in Contingency Tables. Journal of 
the Royal Statistical Society. 8(13):238-241. 1951. 

[310] L. Singh~ B. Chen. R. Haight! a.nd P. Scheuermann. An Algorithm for Const rained 
Association Rule Mining in Semi-structured Data. In Proc. of the 3rd Pad.fic-Asia 
Conf- on Knowledge Discovery and Data Mining. pages 148-158, Beijing, China, April 
U99. 

[311] R. Srikant nnd R. Agrawal. Mining Quantitative Association Rules in Large Relational 
Tables. In Proc. of 1996 ACM-SIGMOD lntl. Con/. on Management of Data, pages 
1 12, Montreal, Canada. 1006. 

[312] R. Srikant and R. Agrawal. Mining Sequential Patterns: Generalizations and Perfor­
manre bnprovements. In Proc. of the 5th Intl Conf. on Extending Database Technology 
(EDBT'96), pages 1&-32, Avignon, France, 1996. 

[313] R. Srikant, Q. Vu, and R. Agrawal. Mining Association Rules with Item Constraiu.ts. 
In Proc. of the :Jrd Intl. Conf. on Knowledge Diuovery and Data A-fining~ pages 67-73, 
Newport Beach, CA, August 1{)97. 

[314] M. Steinbach. P. N. Tan. and V. Kumar. Support Envelopes: A Technique for Ex­
ploring the Structure of Association Patterns. In Proc. of the 10th Inti. Conj. on 
Knowledge DiscotJery and Data Mining, pages 2l!G 305. Seattle, WA, August 2()().:1. 

[315] M. Steinbech, P. N. Thn. H. Xiong. and V. Kumar. Extending the Notion of Support. 
In Proc. of the 10th Intl. Conf. on Knowledge Discovery and Data Mining, pages 689---
694, Seattle, "\VA. August 2004. 

[316] E. Suzuki. Autonomous Disoovery of Reliable Exception Rules. In Proc. of the 3rd. 
Inti. Con/. on Knowledge Discovery and DaW.. Mining. pages 250--2G2. Newport Beach, 
CA. August 1097. 

[317] P. N. Tan and V. Kumar. Mining Association Pattems in Web Usa.ge Data. In Pnx. 
of the Intl. Conf. on Advances in Infmstructure for e-Business, e-Edumtion. e-Science 
and e-Medicine on the Internet, L 'Aquila, Italy, January 2002. 

[318] P. N. Tan. V. Kumar, and J. Srivastava. Selecting tbe Right Interestingness Measure 
for Association Patterns. In Proc. of the 8th Intl. Conf. on Kno111ledge Discm1ery and 
Data Afini.ng, pages 32- 41, Edmonton, Canada, Ju]y 2002. 

[319[ P. N. Thn, M. Steinbach. V. Kumar, S. Klooster, C. Potter, and A. Torregrosa. Finding 
Spa tier Temporal Patterns in Earth Science Data. In KDD 2001 Workshop on Tem7J"ra/ 
Data A-fining, San Francisco, CA. 2001. 

[320] H. Toivonen. Sampling Large Databases for Association Ruta.. In Proc. of the 2f!nd 
VLDB Conf, pages 134-145, Bombay, India, 199G. 

[321] H. Toivonen, 1-t KJemett inen, P. Ronko.inen, K. Hatonen. and H. Ma.nnila.. Pruning 
and Grouping Discovered Association Rules. In ECML-95 Workshop on Statistics, 
Machine Learning and Knowledge Discovery in Databases, pages 47 52, Heraklion, 
Greece, April1995. 

[322] S. Tsur, J. Ullman, S. Abiteboul, C. Clifton, R. Motwani. S. NestorO\', and A. Rrnen­
thal. Query Flocks: A Generalization of Association Rule Mining. In Pmc. of 1998 
ACJ.I-SIGMOD Intl. Con/. on Management of Data. pages 1- 12, Seattle, WA, June 
1998. 

[323] A. Tung, H. J. Lu. J. Han, and L. Feng. Breaking the Barrier of Transactions: Mining 
Inter-Transaction Association Rules. In Proc. of the 5th Int.!. Con/. on Knowledge 
Discovery and Data A-fining~ pages 207-301~ San Diego, CA, August 1999. 

[324] K. Wang, Y. He. and J. Han. Mining Frequent ltemsets Using Support Constraints. 
lo Proc. of the 26th VLDB Con/., pages 43-52. Cairo, Egypt, September 2000. 

BIBLIOGRAPHY 403 

[325] K. Wang, S. H. Tay, and B. Liu. Interestingness-Based Interval Merger for Numeric 
Association Rules. In Pnx. of the 4th Jntl. Con/. on Knowledge Discovery and Data 
Mining, pages 121 128. NE"W York, NY. August 1098. 

[32GJ G. I. Webb. Preliminary investigations into statistically valid exploratory rule di~ 
covery. In Proc. of the Australasian Data A-fining Workshop (AwDM03). Canberra., 
Australia, December 2003. 

[327] H. Xiong. X. He, C. Ding, Y. Zhang, V. Kumar, and S. R. Holbrook. Identification 
of Functional Modules in Protein Complexes via Hypercliqne Pattern Discovery. In 
Proc. of the Pacific Symposium on Biocompu.ting, (PSB 2005). Maui, January 2005. 

[328] H. Xiong. S. S~ekhar, P. N. Tan, and V. Kumar. Exploiting a Support-based Upper 
Bound of Pearson's Correlation Coefficient for Efficiently Identifying Strongly Corre­
lated Pairs. In Proc. of the 10th Intl. Con{. on Knowledge Discovery and Data Mining, 
pages 334-343, Seattle, WA, August 2004. 

[32D] H. Xiong, M. Steinbach, P. N. Tan. and V. Kumar. IUCAP: Hierarchial Clustering 
wit h Pattern Preservation. In Proc. of the SIAM lntl. Conf. on Data Mining. pages 
279-290, Orlando~ FL, April 2004. 

[330] H. Xiong, P. N. Tan. and V. Kumar. ?\.'lining Strong Affinity Association Patterns in 
Data Sets with Skewed Support Distribution. In Proc. of the ~003 IEEE Inti. Ccnf. 
on Data Mining, pages 387 394, tl.felbourne, FL, 200::J. 

[331] X. Yan and J . Han. gSpan: Grapl>-based Substructure Pattern Mining. In Proc. of 
the QOOQ IEEE Inti. Conf on Data A-fining, pages 721-724, ~.'laebashi City. Japan, 
December 2002. 

[332] C. Yang, U. M. Fayyad. and P. S. Bradley. Efficient discovery of error-tolerant frequent 
itemsets in high dimensions. In Proc. of the 7th Inti. Conf. on Knowledge Discovery 
and Data M1ning, pages 104--203, San Francisco, CA, August 2001. 

[333] M. J. Zaki. Parallel and Distributed Association Mining: A Survey. IEEE Concurrency. 
special issue on Pamllel Nfechanis1118 for Data Mining, 7(4):14-25, Derember 1999. 

[::J34] M. J. Zaki. Generating Non-Redundant Association Rules. In Proc. of the 6th Inti. 
Con/. on Knowledge Disco11ery and Data Mining. pages 34 43, Boston. MA, August 
2000. 

[335] M. J. Zaki. Efficiently mining frequent trees in a for..t. In Proc. of the 8th Inti. 
Con/. on Knowledge Discovery and Data Mining, pages 71 80. Edmonton, Canada, 
July 2002. 

[336] M. 1 _ Zaki and M. Orihara. Theoretical foundations of association rules. In Proc. of 
the 1998 ACAf SIGMOD Workshop on Research Jssv.es in Data Afining and Knowledge 
Discovery, Seattle, WA. June 1098. 

[337] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W . Li New Algorithms for Fast 
Discovery of Association Rules. In Proc. of the 3nl Inti. Con/. on Knowledge Discovery 
and Data Mtning, pages 283- 286, Newport Beoch, CA, August 1907. 

[338] H. Zhang, B. Padmanabhan, and A. Tuzbilin. On tbe Disoovery of Significant Stati~ 
tical Quantitative Rules. In Proc. of the 10th Intl. Conf. on Knowledge Discovery and 
Data A-fining, pages 374-383, Seattle. \¥A, August 2004. 

[339] z. Zhang, Y. Lu, and B. Zhang. An Effective Partioning-C.ombining Algorithm for 
Discovering Quantitative Association Rules. In Proc. of the 1st Pacific-A sia Conf. on 
Knowledge Discovery and Data },fining, Singapore, 1997. 

[340] N. Zhong, Y. Y. Yao, ~nd S. Ohsuga. Peculiarity Oriented Multi-database Mining. In 
Proc. of the 3ni European Conf. of Principles and Pmctice of Knou1ledge Discmrery in 
Databases, pages 136 14G. Prague. Czech Republic, 1999. 



404 Chapter 6 Associatio n Analysis 

6.10 Exercises 

1. For each of the following questions, provide an example of an association rule 
from the market basket domain that satisfies the following conditions. Also. 
describe wbether such rules are subjectively interesting. 

(a) A rule that has high support and high confidence. 

(b) A rule that has reasonably high support but low confidence. 

(c) A rule that has low support and low confidence. 

(d) A rule that has low support-and high confidence. 

2. Consider the data set shown in Table 6.22. 

Table 6.22. Example of market basket transactions. 

Customer ID Transaction ID Items Bought 
1 0001 ~a,d,e) 
1 0024 {a.b,c,e) 
2 0012 {a,b, d, e) 
2 0031 {a.c,d,e) 
3 0015 {b,c,e) 
3 0022 {b,d,e) 
4 0029 {c,d) 
4 0040 {a, b,c) 
5 0033 {a.d, e) 
5 0038 {a,b,e} 

(a) Compute the support for itemsets {e). {b, d}, and {b,d, e) by treating 
each transection ID as a market b88ket. 

(b) Use the results in part (a) to oompute the confidence for the associa­
tion rules {b,d) - {e} and {e) _____, {b,d). Is confidence a symmetric 
measure? 

(c) Repeat part (a) by treating each customer ID as a market basket. Each 
item should be treated as a binary variable (1 if an item appears in at 
least one transaction bought by the customer, and 0 otherwise.) 

(d) Use the results in part (c) to compute the confidence for the association 
rules {b,d) _____, {e) and {e) _, {b, d). 

(e) Suppose s 1 and c1 are the support and confidence values of an association 
rule r when treating each t ransaction ID as a market basket. Also, let s2 

and c2 be the support and confideuce values of r when treatiug each cus. 
tamer ID as a market basket. Discuss whether there are any relat ionships 
between Bt and s2 or r1 e.nd c2. 

6.10 Exercises 405 

3. (a) What is the confidence for the rules 0 ----> A and A _____, 0? 

(b) Let c1 , c,, and c3 be the confidence values of the rules {p} ~ {q) , 
{p} _____, {q, r ), and {p, r) _____, {q}, respectively. If we assume that. c1 , c2 , 

and c3 have different values, what are the possible relationships t hat may 
exist among c,, c2, and ci ? Which rule has the lowest confidence'? 

(c) Repeat the ane.Jysis in part {b) assuming that the rules have identical 
support. Which rule has t he highest confidence? 

(d) Transitivity: Suppose the confidence of the rules A _____, B and B _____, C 
are larger than some threshold , mincm1f- Is it possible that A _____, C has 
a confidence less than m inconf? 

4. For each of the following measures, determine whether it is monotone, anti· 
monotone. or non-monotone (i.e., neither monotone nor anti-monotone). 

Example: Snpport, s = ;!Al is anti-monotone because s(X) ~ 
s(Y) whenever X c Y. 

(a) A characteristic rule is a rule of the form {p} - {q1 , q2 , ... , qn }, where 
the rule antecedent contains ouly a single item. An itemset of size k can 
produce up t<> k chanwteristic rules. Let ( be the minimum confidence of 
all characteristic .rulPS generated from a given itemset: 

(({P~oP'l. ---.Pk)) = min[ c([Pd _____, {p,, p,, .. . ,pk)),. 

c({pk} _____, {p,, p, .. . ,pk-d)] 

Is ( monotone! anti-monotone! or non-monotone? 

( b) A discriminant rule is a rule of the form {p 1.7>2, ... ,pn}---> {q} , where 
the rule consequent contains only a single item. An itemset of size k cau 
produce up to k discriminant rules. Let ry be the minimum confidence of 
all discriminant rules generated from a given itemset: 

min [ c({J>.>, p3,. . . ,p>) ----> {pl}), ... 

c({p" p,,.- -P•-d _____, {pk})] 

Is 17 monotone, anti-monotone, or non-monotone? 

(c) Repeat the ane.lysis in parts (a) and (b) by replacing the min function 
with a max function. 

5. P rove Equation 6.3. (Hint : First, count the nun1ber of ways to create an itemset 
that forms the left hand side of the rule. Next, for each size k itemset selected 
for the left-h9Jld side, count the number of ways to choose the remaining d - k 
items to form the right-hand side of the rule.) 



406 Chapter 6 Association Analysis 

Table 6.23. Market basket transactions. 

Transaction ID Items Bought 
1 {Milk, Beer, Diapers} 
2 {Bread. Butter, Milk} 
3 {!1-lilk, Diapers, Cookies} 
4 {Bread, Butter, Cookies} 
5 {Beer, Cookies, Diapers} 
6 {Milk, Diapers, Bread, Butter} 
7 {Bread, Butter, Diapers} 
8 {Beer, Diapers} 
9 {Milk, Diapers, Bread, Butter} 
10 {Beer, Cookies} 

6. Consider the market basket transactions shown in Table 6.23. 

(a) What is the maximum number of association rules that can he extracted 
from this data (including rules that have zero support)? 

(b) What is the maximum size of frequent itemsets that can be extracted 
(assuming m.insup > 0)'? 

(c) Write an expression for the maximum number of size-3 itemsets that can 
be derived from this data set. 

(d) Find an itemset (of size 2 or larger) that has the largest support. 

(e) Find a pair of items, a and b, such that the rules {a} ----> {b} and {b} ____, 
{a} have the same conildence. 

7. Consider the following set of frequent. 3-itemsets: 

{1, 2, 3}, {1' 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5 }, {2, 3, 4}, {2, 3 , 5}, {3, 4, 5 }. 

Assume that there are only five it,ems in the data set. 

(a) List all candidate 4-itemsets obtained hy a candidate generation procedure 
using the Fk-l x F1 merging strategy. 

(b) List all candidate 4-itemsets obtained by the candidate generation proce­
dure in Apriori. 

(c) List all candidate 4-itemsets that survive the candidate pruning step of 
the Apriori algorithm. 

8. The Apriori algorithm uses a generate-and-count strategy for deriving frequent 
itemsets. Candidate itemsets of size k + 1 are created by joining a pair of 
frequent it,emsets of size k (thls is known as the candidate generation step). A 
candidate is discarded if any one of its subsets is found to be infrequent during 
the candidate pnming step. Suppose the Apri01'i algorithm is applied to the 

6.10 Exercises 407 

Table 6.24. Example of markel basket transactions. 

Transaction ID Items Bought 
1 {a,b,d,e} 
2 {b, c,d} 
3 {a,b,d,e} 
4 {a.c.d,e} 
5 {b,c,d,e} 
6 {b, d, e} 
7 {c,d} 
8 {a,b.c} 
g {a, d, e} 
lO {b,d} 

data set shown in Thble 6.24 with min sup = 30%, i.e. 1 any itemset occurring 
in less than 3 transactions is considered to be infrequent. 

(a) Draw an itemset lattice representing the data set given in Tahle 6.24. 
Label each node in t he latt ice with t he following letter(s): 

• N: If the it.emset is not considered to be a candidate itemset by 
the A priori algorithm. There are two reasons for an itemset not to 
he considered as a candidate itemset: (1) it is not generated at all 
during the candidate generation step, or (2) it is generated during 
the candidate generation step hut is suhsequently removed during 
the candidate pruning step because one of its subsets is found to be 
infrequent. 

• F: If the candidate itemset is found to be frequent by the A priori 
algorithm. 

• 1: If the candidate itemset is found to be infrequent. after support 
COUllting. 

(b) What is the percentage of frequent it.emsets (with respect to all itemsets 
in the lattice)? 

(c) What is t.he pruning ratio of the Apriori algorithm on this data set? 
(Pruni.ng ratio is defined as the percentage of itemsets not considered 
to be a candidate because ( 1) they are not generated during candidate 
generation or (2) they ru:e pruned during the candidate pruning step.) 

(d) What is the false alarm rate (i.e, percentage of candidate itemsets that 
are found to be infrequent after performing support counting)? 

9. The Apriori algorithm uses a hash tree data structure t.o efficiently coUllt t.he 
support of candidate itemsets. Consider the hash tree for candidate 3-itemsets 
shown in F igure 6.32. 



408 Chapter 6 Association Analysis 

Figure 6.32. An example of a hash tree structure. 

(a) Given a transaction that contains items {I. 3,4, 5, 8}, which of the hash 
tree leaf nodes will be visited when finding the candidates of the transao­
tion? 

(b) Use the visited leaf nodes in part (b) to determine the candidate itemsets 
that are contained in the transaction {1,3, 4,5,8} . 

10 . Consider the following set of csndidate 3-itemsets: 

{1, 2, 3}, {1, 2, 6}, {1, 3, 4}, {2,3, 4}, {2, 4, 5}, {3, 4, 6}, { 4, 5, 6} 

(a) Construct a hash tree for the above candidate 3-itemsets. Assume the 
tree uses a hash function where all odd-numbered items are hashed to 
the left child of a node, while the even-numbered items are hashed to the 
right child. A candidate k-itemset is inserted into the tree by bashing on 
each successive item in the candidate and then following the appropriate 
branch of the tree according to the hash value. Once a leaf node is reached, 
the candidate is inserted based on one of the following conditions: 

Condition 1: If the depth of the leaf node is equal to k (the root is 
assumed to be at depth 0), then the candidate is inserted regardless 
of the number of itemsets already stored at the node. 

Condition 2: If the depth of the leaf node is less than k, then tbe candi­
date ca.n be inserted as long as the nwnber of iteUlSets stored at the 
node is less than maxsi:e. Assume mal· size = 2 for this question. 

Condition 3: If the depth of the leaf node is less thll.!l k and the number 
of itemsets stored at the node is equal to mru:size, then the leal 
node is converted into an internal nodE". New leaf nodes arE' creatf'd 
as children of the old leaf node. Candidate itemsets previously stored 

6.10 Exercises 409 

Figure 6.33. An itemset lattice 

in the old leaf node are distributed to the children based on their hash 
values. The new candidate is also hashed to its appropriate leaf node. 

(b) How mll.!ly leaf nodes are there in the candidate hash tree? How many 
internal nodes are there? 

(c) Consider a transaction that contains the following items: {1,2,3.5,6}. 
Using the hash tree constructed in part (a) , which leaf nodes will be 
checked against the transaction? What s.ce the CRlldidate 3-iteiru>:ets con­
tained in the transaction? 

11. Given the lattice structure shown in Figure 6.33 and the transactions given in 
Table 6.24, label each node with the following letter(s): 

• llf if the node is a maximal frequent itemset, 

• C if it is a closed frequent itemset, 

• N if it is frequent but neither maximal nor closed, and 

• I if it is inlreqnent. 

Assume that the support threshold is equal to 30%. 

12. The original association rule mining formulation uses the snppon and confi­
dence measures to prune ullinteresting rules. 



410 Chapter 6 Association Analysis 

(a) Draw a contingency table for each of the following rules using the tran»­
sctions shown in Table 6.25. 

Table 6.25. Example of marl<et basket transactions. 

rrtansaction ID Items Bought 
1 {a, b, d,e) 
2 {b,c,d) 
3 {a,b,d,e) 
4 {a, c,d.e) 
5 {b,c,d,e} 
6 {b,d,e) 
7 {c,d) 
8 {a, b, c) 
g {a, d. e) 
10 {b. d} 

Rules: {b) ~ {c), {a} -> {d), {b) ~ {d). {e) -> {c), {c) -> {a}. 

(h) Use the contingency tables in part (a) to compute and rank the rnles in 
decreasing order according to the following measures. 

i. Support. 

ii. Confidenre. 

iii. Interest(X _, Y) = P~·fx~1P(Y}. 

. IS(X-Y)=~. 
IV. v'P(X)P(l') 

v. Klosgen(X ~ Y) = J P(X, Y)x(P(YIX)-P(Y)), where P(YIX) = 
P(X.Y) 
~-

. Odd . (X Y) P(X.Y)P~,Y) 
Vl. S ratiO - = P(X,V)P(,Y) . 

13. Given the rankings you had obtained in Exercise 12, compute the correlation 
between the rankings of confidence and the other five measnres. Which measure 
is most highly correlated with confidence? Which measure is least correlated 
with confidence? 

14. Answer the following questions using the data sets shown in Figure 6.34. Note 
that each data set contains 1000 items !lJld 10,000 transactions. Dark cells 
indicate the presence of items and white cells indicate the absence of items. We 
will apply the A priori algorithm to extract frequent itemsets with minsup = 
10% (i.e., itemsets must be contained in at least 1000 transactions)? 

(a) Which data set(s) will produce the most number of frequent itemsets? 

6.10 Exercises 411 

(b) Which data set(s) will produce the fewest number of frequent itemsets? 

(c) Which data set(s) will produce the longest frequent itemset? 

(d) Which data set(s} will produce frequent itemsets with highest maximum 
support? 

(e) Which data set(s} will produce frequent itemsets containing items with 
wide-varying support levels (i.e., items with mixed snpport, ranging from 
less than 20% to more than 70%). 

15. (a) Prove that the ¢coefficient is equal to 1 if and only if /u = ft+ = f +t· 

(b) Show that if Aa.nd Bare independent, then P(A,B)xP(A,H) = P(A,H) x 
P(A,B). 

(c) Show that Yule's Q and Y coefficients 

Q 

y 

[
/u/oo - fwfm] 
/u/oo + /to/ot 

[ .JJllToo - .JJlOToll 
.JJllToo + .JJ10To1 

a.re normalized versions of the odds ratio. 

(d) Write a simplified expression for the value of each lll€ll.Sure shown in Tables 
6.11 and 6.12 when the variables are statistically independent. 

16. Consider the interestingness measure, frf = P(~IAJ,(J)(.B). for an sssociation 
rule A -> B . 

(a) What is the range of this measure? \\>'hen does the measure attain its 
maximum and minimum values? 

(b) How does M behave when P(A, B) is increl!S€d while P(A) and P(B) 
remain unchanged? 

(c) How does M behave when P(A) is increased while P(A. B) and P(B) 
remain unchanged? 

(d) How does M behave when P(B) is increased while P(A, B) and P(A) 
remain unchanged? 

(e) Is the measure symmetric under variable permutation? 

(f) What is the value of the measure when A and B are statistically indepen­
dent? 

(g) Is the measure null-invariant? 

(h) Does the me.asure remain invariant under row or column scaling opera­
tiOI18? 

(i) How does the measure behave under the inversion operation? 



412 Chapter 6 Association Analysis 

Items 

• 2000 

"' "' 6 4000 :s u u 
~ ~ -,g 6000 ,g 

8000 I. -
200 400 600 800 

(a) (b) 

Items Items -
·II 

2000 ., :g c 
0 4000 .Q 

~ N " iii 6000 c -I 
.. 

F F 
8000 

200 400 600 800 200 400 600 800 

(c) (d) 

Items Items 

lllllljllll r-- 2000 

"' ~ c 
. Q 4000 . Q 10% are 1s 
1l 1l 90%are Os :X :X c 6000 $ (uniformly distributed) 
$ II I 

. 
I 8000 

200 400 600 800 200 400 600 800 

(e) (f) 

Figure 6.34. Figures for Exercise 14. 

2000 

4000 

6000 

8000 

2000 

4000 

6000 

8000 

2000 

4000 

6000 

8000 

6.10 Exercises 413 

17. Suppose we have market basket data consisting of 100 transactions and 20 
items. If the support for item a is 25%, the support for item b is 90% and the 
support for itemset {a, b) is 20%. Let the support. and confidence thresholds 
be 10% and 60%, respect ively . 

(a) Compute the confidence of the association rule {a) --; {b). Is the rule 
interesting according to the confidence measure? 

(b) Compute the interest measure for the association pattern {a , b). Describe 
the nature of the relationship bet.ween item a and item b in terms of the 
interest measure. 

(c) What conclusions can you draw from the results of parts (a) and (b)? 

(d) Prove that if the confidence of the rule {a) ~ {b) is less than the support 
of {b), then: 

i. c({l!} ~{b))> c({l!} ~{b)), 
ii. c{{a) ~ {b}) > s({b)), 

where c( ·) denote the rule confidence and s( ·) denote the support of an 
itemset. 

18. Table 6.26 shows a 2 x 2 x 2 contingency table for the binary v!U'iables A and 
B at different values of the oontrol variable C. 

Table 6.26. A Contingency Table. 

A 

1 0 

1 0 15 
C=O 8 0 15 30 

1 5 0 
C=1 8 

0 0 15 

(a) Compute the ¢coefficient for A and B when C = 0, C = 1, and C = 0 or 
1. Note that ¢((A.B}) = P(A.B)-P(A)P(B) • 

y' P(A)P(B)(l P(A))(l P(B) ) 

(b) What conclusions can you draw from the above result? 

19. Consider the contingency tables shown in Table 6.27. 

(a) For table I, compute support, the interest measure, and the 1> correla,. 
tion coefficient for the association pattern {A. B}. Also, compute the 
confidence of rules A --> B and B ~ A. 



414 Chapter 6 Association Analysis 

Table 627. Contingency tables for Exercise 19. 

B 11 

ACIIIJ 
A~ 

(a) Table I. 

B 11 

~~ 
A~ 

(b) Table II. 

(b) For table II, compute support, the interest measure, and tbe rP correla­
tion coefficient for the association pattern {A, B}. Also, compute the 
confidence of rules A -> B and B -> A. 

(c) What conclusions can you draw from the results of (a) and (b)? 

20. Consider the relationship between customers who buy high-definition televisions 
and exercise machines as shown in Tables 6.19 and 6.20. 

(a) Compute the odds ratios for both tables. 

(b) Compute the <P-coefficient for both tables. 

(c) Compute the inteiT'St factor for both tables. 

For each of the measures given above, describe how the direction of association 
changes when data is pooled together instead of being stratified. 



I 

Cluster Analysis: 
Basic Concepts and 
Algorithms 

8 

Cluster !Lilalysis divides data. into groups (clusters) that are mea.ningful, useful, 
or both. If meanlngful groups a.re the goal, then the clusters should capture the 
natura.l•tructurc: of the data. In oome casco, hawcv.:r, clwter o.na.l~io ie ooly a 
useful starting point for other purposes, such aa data. summ.a.:rization. Whether 
for underat!Lilding or utility, cluster a.nal.ysis has long played a.n import!Lilt 
role in a. wide Vlll"iety of fields: psychology !Lild other social sciences, biology, 
statistics, pattern recognition, information retrieval, machine learning, a.nd 
dllta mining. 

There have been many applica.tions of cluster analyois t o practical prol>­
lemo. We provide some spedfic examples, ocganized by whether the purpose 
of the clustering is understanding or utility. 

Clustering for Understanding Cl""""", or oonceptually meanJngful groups 
of objtds tbn.t ,:,hare common cha.racter.iJitia~, pllLy an impartl2llt role in bow 
people analyze and describe the world. Indeed, human beings are skilled at 
dividing objects into groupe (clustering) and assigning particular objects to 
these groups (classification). For exa.mple, even relatively young children C!Lil 
quickly label the objects in • photograph as buildings, vehicles, people, ani­
mo.IB, plants, etc. In the context of underetanding data., clusters are potential 
clllBSes and cluster lloiiB!ysis iB the study of techniques £01 automatica.lly finding 
classes. The following are some examples: 



488 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms 

• Biology. Biologists have spent many years creating a taxonomy (hi­
erarchical classification) of all living thlngs: kingdom, phylum, class, 
order, family, genus, and species. Thus, it is perhaps not surprising that 
much of the early work in cluster analysis sought to create a discipline 
of mathematical taxonomy that could automatically find such classifi­
cation structures. More recently, biologists have applied clustering to 
analyze the large amounts of genetic information that are now available. 
For example, clustering has been used to find groups of genes that have 
similar functions. 

• Information Retrieval. The World Wide Web consists of billions of 
Web pages. and the results of a query to a search engine can return 
thousands of pages. Clustering can be used to group these search re­

sults into a small number of clnsters, each of which captures a particular 
aspect of the query. For instance, a query of ·'movie" might return 
Web pages grouped into categories such M reviews~ trailers, stars, and 
theaters. Each category (cluster) can be broken into subcategories (sub­
clusters), producing a hierarchical structure that further assists a user's 
exploration of the query results. 

• Climate. Understanding the Earth's climate requires finding patterns 
in the atmosphere and ocean. To that end, cluster analysis has been 
applied to find patterns in the atmospheric pressure of polar regions and 
areas of the ocean that have a significant impact on land climate. 

• Psychology and Medicine. An illness or condition frequently has a 
number of variations, and cluster analysis can be used to identify these 
different snbcategories. For example, clnstering has been used to identify 
different types of depression. Cluster analysis can also be used to detect 
patterns in the spatial or temporal distribution of a disease. 

• Business. Businesses collect large amounts of information on current 
and potential customers. Clustering can be used to segment customers 
into a small number of groups for additional analysis and marketing 
activities. 

Clustering for Utility Cluster analysis provides an abstraction from in­
dividual data objects to the clusters in whlch those data objects reside. Ad­
ditionally, some clustering techniques characterize each cluster in terms of a 
cluster prototype; i.e., a data object that is representative of the other ob­
jects in the cluster. These cluster prototypes can be used as the basis for a 

489 

number of data analysis or data processing techniques. Therefore, in the con­
text of utility, cluster analysis is the study of techniques for finding the most 
representative cluster prototypes. 

• Summarization. Many data analysis techniques, such as regression or 
PCA, have a time or space complexity of O(m2 ) or higher (where m is 
the number of objects), and thus, are not practical for large data sets. 
However, instead of applying the algorithm to the entire data set, it can 
be applied to a reduced data set consisting only of cluster prototypes. 
Depending on the type of analysis, the nnmber of prototypes, and the 
accuracy with which the prototypes represent the data, the results can 
be comparable to thO!<e that would have been obtained if all the data 
could have been used. 

• Compression. Cluster prototypes can also be used for data compres­
sion. In particular, a table is created that consists of the prototypes for 
each cluster; i.e., each prototype is assigned an integer value that is its 
position (index) in the table. Each object is represented by the index 
of the prototype associated with its cluster. Thls type of compression is 
known as vector quantization and is often applied to image, sonnd, 
and video data, where (l) many of the data objects are highly similar 
to one another, (2) some loss of information is acceptable, and (3) a 
substantial reduction in the data size is desired. 

• Efficiently Finding Nearest Neighbors. Finding nearest neighbors 
can require computing the pairwise dis tance between all points. Often 
clusters and their cluster prototypes can be found much more efficiently. 
If objects are relatively close to the prototype of their cluster, then we can 
use the prototypes to reduce the number of distance computations that 
are necessary to find the nearest neighbors of an object. Intuitively, if two 
cluster prototypes are far apart, then the objects in the corresponding 
clusters cannot be nearest neighbors of each other. Conseqnently, to 
find an object's nearest neighbors it is only necessary to compute the 
distance to objects in nearby clusters, where the nearness of two clusters 
is measured by the distance between their prototypes. This idea is made 
more precise in Exercise 25 on page 94. 

This chapter provides an introduction to cluster analysis. We begin with 
a high-level overview of clustering, including a discussion of the various ap­
proaches to dividing objects into sets of clusters and the different types of 
clusters. We then describe tbree specific clustering techniques t hat represent 



490 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms 

broad categories of algorithms and illustrate a variety of concepts: K-means, 
agglomerative hierarchical clustering, and DBSCAN. The final section of this 
chapter is devoted to cluster validity-methods for evaluating the goodness 
of the clusters produced by a c.lustering algorithm. More advanced clustering 
concepts and algorithms will be discussed in Chapter 9. Whenever possible, 
we discuss the strengths and weakne&Ses of different schemes. In addition, 
the bibliographic notes provide references to relevant books and papers that 
explore cluster analysis in greater depth. 

8.1 Overview 

Before discussing specific clustering techniques, we provide some necessary 
background. First, we further define cluster analysis, illustrating why it is 
difficult and explaining its relationship to other techniques that group data. 
Then we explore two important topics: (1) different ways to group a set of 
objects into a set of clusters, and (2) types of clusters. 

8 .1.1 What Is Cluster Analysis? 

Cluster analysis groups data objects based only on information found in the 
data that describes the objects and their relationships. The goal is that the 
objects within a group be similar (or related) to one another and rlilferent from 
(or unrelated to) the objects in other groups. The greater the similarity (or 
homogeneity) within a group and the greater the rlifference between groups, 
the better or more distinct the clustering. 

In many applications, the notion of a cluster is not well defined. To better 
understand the difficulty of deciding what constitutes a cluster, consider Figure 
8.1, which shows twenty points and three different ways of dividing theru into 
clusters. The shapes of the markers indicate cluster membership. Figures 
8.l(b) and 8.l(d) divide the data into two and six parts, respectively. However, 
the apparent division of each of the two larger clusters into three subclusters 
may simply be an artifact of the human visual system. Also, it may not be 
unreasonable to say that the points form four clusters, as shown in Figure 
8.l(c). This figure illustrates that the definition of a cluster is in1precise and 
that the best definition depends on the nature of data and the desired results. 

Cluster analysis is related to other techniques that are used to divide data 
objects into groups. For instance, clustering can be regarded as a form of 
classification in that it creates a labeling of objects with class (cluster) labels. 
However, it derives these labels only from the d ata. In contrast, classification 

.. . . . . . . • •• . .. .. 
(a) Origina.l points. 

+.t+ + + 
•• + . * ·· .. : . .. 

(c) Four clusters. 

Yo • 
• • •• • 

8.1 Overview 491 

. .. . . . .. .. 
(b) Two clusters. 

* ** • I 

••••• 
(d) Six clusters. 

Figure 8.1. Di~"'nt weys of clustering the same set of points. 

in the sense of Chapter 4 is supervised classification; i.e. , new, unlabeled 
objects are assigned a elMS label using a model developed from objects with 
known class labels . For this reason, cluster analysis is sometimes referred 
to as unsupervised classification. When the term classification is used 
without any qualification within data mining, it typically refers to supervised 
classification. 

Also, while the terms segmentation and partitioning are sometimes 
used as synonyms for clustering, these terms are frequently used for approaches 
outside the trarlitional bounds of cluster analysis. For example, the term 
partitioning is often used in connection with techniques that divide graphs into 
subgraphs and that are not strongly connected to clustering. Segmentation 
often refers to the division of data into groups using simple techniques; e.g. , 
an image can be split into segments based only on pixel intensity and color, or 
people can be divided into groups based on their income. Nonetheless, some 
work in graph partitioning and in image and market segmentation is related 
to cluster analysis. 

8 .1.2 Different Types of Clusterings 

An entire collection of clusters is commonly referred to as a clustering, and in 
this section, we distinguish various types of clnsterings: hierarchical (nested) 
versus partitional ( unnested), exclusive versus overlapping versus fuzzy, and 
complete versus partial. 

Hierarchical versus Partitional The ma.;t commonly discussed rlistinc­
tion among different types of clusterings is whether the set of clusters is nested 



492 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms 

or unnested, or in more traditional terminology. hierarchical or partitional. A 
partitional clustering is simply a division of the set of data objects into 
non-overlapping subsets (clusters) such that each data object is in exactly one 
subset. Taken individually, each collection of clusters in Figures 8.1 (b--d) is 
a parti tiona! clustering. 

If we permit clusters to have subclusters, then we obtain a h.ierarchlcal 
clustering, which is a set of nested clusters that are organized as a tree. Each 
node (cluster) in the tree (except for the leaf nodes) is the union of its children 
(subclusters), and tbe root of the tree is the cluster containing all the objects. 
Often, but not always, the leaves of the tree are singleton clusters of individual 
data objects. If we allow clusters to be nested, then one interpretation of 
Figure 8.1(a) is that it has two subclusters (Figure 8.1(b)). each of which, in 
turn, bas three subclusters (Figure 8.l(d)). The clusters shown in Figures 8.1 
{a-d), when taken in that order, also form a hierarchical (nested) clustering 
with, respective1y, 1, 2, 4, and 6 clUJSters on each level. FinaUy, note that a 
hierarchical clustering can be viewed as a sequence of partitional clusterings 
and a partitionaJ clustering can be obtained by taking any member of that 
sequence; i.e., by cutting the hierarchical tree at a particular level. 

Exclusive versus Overlapping versus Fuzzy The clusterings shown in 
Figure 8.1 are all exclusive, as they assign each object to a single cluster. 
There are many situations in which a point could reasonably be placed in more 
than one cluster, and these situations are better addressed by non-exclusive 
clustering. In the most general sense, an overlapping or non-exclusive 

clustering is used to reflect the fact that an object can simultaneously belong 
to more than one group (class) . For instance, a person at a university can be 
both an enrolled student and an employee of the university. A non-exclusive 
clustering is also often nsed when, for example, an object is '"'between" two 

or more clusters and could reasonably be assigned to any of these clusters. 
Imagine a point halfway between two of the clusters of Figure 8.1. Rather 
than make a somewhat arbitrary assignment of the object to a single cluster, 
it is placed in all of the "equally good" clusters. 

In a fuzzy clustering. every object belongs to every cluster with a mem­
bership weight that is between 0 (absolutely doesn't belong) and 1 (absolutely 
belongs). In other words, clusters are treated as fuzzy sets. (Mathematically, 
a fuzzy set is one in which an object belongs to any set with a weight that 
is between 0 and 1. In fuzzy clustering, we often impose the additional con­
straint that the sum of the weights for each object must equal 1.) Similarly, 
probabilistic clustering techniques compute tbe probability with whicb each 

8.1 Overview 493 

point belongs to each cluster, and these probabilities must also sum to 1. Be­
cause the membership weights or probabilities for any object sum to 1, a fuzzy 
or probabilistic clustering does not address true multiclass situations, such as 
the case of a student employee, where an object belongs to multiple classes. 
Instead, these approaches rue most appropriate for avoiding the arbitrariness 
of assigning an object to only one cluster when it may be close to seve.ral. In 
practice, a fuzzy or probabilistic clustering is often converted to an exclusive 
clustering by assigning each object to the cluster in which its membership 
weight or probability is highest. 

Complete versus Partial A complete clustering assigns every object to 
a cluster, whereas a partial clustering does not. The motivation for a partial 
clustering is that some objects in a data set may not belong to well-defined 
groups. Many times objects in the data set may represent noise, outliers, or 
"'uninteresting background." For example, some ne.wspaper stories may share 
a common theme, such as global warming, while other stories are more generic 
or one-of-a-kind. Thus, to find the important topics in last month's stories, we 
may want to search only for clusters of documents that are tightly related by a 
common theme. In other cases, a complete clustering of the objects is desired. 
For example, an application that uses clustering to organize documents for 
browsing needs to guarantee that all documents can be browsed. 

8.1.3 Different Types of Clusters 

Clustering aims to find useful groups of objects (clusters), where usefulness is 
defined by the goals of the data analysis. Not surprisingly. there are several 
different notious of a cluster that prove useful in practice. In order to visnaJly 
illustrate the differences among these types of clusters, we use two-dimensional 
points, as shown in Figure 8.2, as our data objects. We stress, however, that 
the types of clusters described here are equally vaJid for other kinds of data. 

Well-Separa ted A cluster is a set of objects in which each object is closer 
(or more similar) to every other object in the cluster than to any object not 
in the cluster. Sometimes a threshold is used to specify tbat aJI the objects in 
a cluster must be sufficiently close (or similar) to one another. This idealistic 
definition of a cluster is satisfied only when the data contaius natural clusters 
that are quite far from each other. Figure 8.2(a) gives an example of well­
separated clusters that comists of two groups of points in a two-dimensional 
space. The distance between any two points in different groups is larger than 



494 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms 

the distance between any two points within a group. Well-separated clusters 
do not need to be globular, but can have any shape. 

Prototype-Based A cluster is a set of objects in whlch each object is closer 
(more similar) to the prototype that defines the cluster than to the prototype 
of any other cluster. For data with continuous attributes, the prototype of a 
duster is often a centroid, i.e., the average (mean) of all the points in the dns­
ter. When a centroid is not meaningful, such as when the data has categorical 
attributes, the prototype is often a medoid, i.e., the most representative point 
of a cluster. For many types of data, the prototype can be regarded as the 
most central point, and in such instances, we commonly refer to prototype­

based clusters as center-based clusters. Not surprisingly, such clusters tend 
to be globular. Figure 8.2(b) shows an example of cente.r-based clusters. 

Graph-Based If the data is represented as a graph. where the nodes are 
objects and the links represent connections among objects (see Section 2.1.2), 
then a cluster can be defined as a connected component: i.e., a group of 
objects that are connected to one another, but that have no connection to 
objects outside the group. An important example of graph-based clusters are 
contiguity-based clusters , where two objects are connected ouly if they are 
withln a specified distance of each other. This implies that each object in a 
contiguity-based cluster is closer to some other object in the cluster than to 
any point in a different cluster. Figure 8.2( c) shows an example of such clusters 
for two-dimensional points. This definition of a cluster is useful when clusters 

are irregular or intertwined, but can have trouble when noise is present since, 
as illustrated by the two spherical clusters of Figure 8.2(c), a small bridge of 
points can merge two distinct clusters. 

Other types of graph-based clusters are also possible. One such approach 
(Section 8.3.2) defines a cluster as a clique; i.e., a set of nodes in a graph that 
are completely connected to each other. Specifically, if we add connections 
between objects in the order of tbeir distance from one another, a cluster is 
formed when a set of objects forms a clique. Like prototype-based clusters, 
such clusters tend to be globular. 

Density-Based A cluster is a dense region of objects that is surrounded by 
a region of low density. Figure 8.2( d) shows some density-based clusters for 
data created by adding noise to the data of Figure 8.2(c). The two circular 
clusters are not merged, as in Figure 8.2(c), because the bridge between them 
fades into the noise. Likewise, the curve that is present in Figure 8.2(c) also 

8.1 Overview 495 

fades into the noise and does not form a cluster in Figure 8.2(d). A density­
based definition of a cluster is often employed when the clusters are irregular or 
intertwined, and when noise and outliers are present. By contrast. a contiguity­
based definition of a cluster would not work well for the data of Figure 8.2{d) 
since the noise would tend to form bridges between clusters. 

Shared-Property (Conceptual Clusters) More generally, we can define 
a cluster as a set of objects that share some property. This definition enoom­
passes all the previous definitions of a cluster; e.g., objects in a center-based 
cluster share the property that they are all closest to the same centroid or 
medoid. However, tbe shared-property approach also includes new types of 
clusters. Consider the clusters shown in Figure 8.2(e). A triangular area 
(cluster) is adjacent to a rectangular one, and there are two intertwined circles 
(clusters). In both cases, a clustering algorithm would need a very specific 
concept of a cluster to successfully detect these clusters. The process of find­
ing such clusters is called conceptual clustering. However, too sophisticated 
a notion of a cluster would take us into the area of pattern recognition, and 
thns, we only consider sim.pler types of clusters in this book. 

Road Map 

In this chapter, we use the following three simple, but important techniques 
to introduce many of the concepts involved in cluster analysis. 

• K -means. This is a prototype-based, partitional clustering technique 
that attempts to find a user-specified number of clusters (K), whlch are 
represented by their centroids. 

• Agglomerative Hierarchical Clustering. Thls clustering approach 
refers to a collection of closely related clustering techniques that produce 
a hierarchical clustering by starting with each point as a singleton cluster 
and then repeatedly merging the two closest clusters until a single, all­
encompassing cluster remains. Some of these techniques have a natural 
interpretation in terms of graph-based clustering, whlle others have an 
interpretation in terms of a prototype-based approach. 

• DBSCAN. This is a density-based clustering algorithm that produces 
a partitional clustering, in which the number of clusters is automatically 
determined by the algorithm. Points in low-density regions are classi­
fied as noise and omitted; thns, DBSCAN does not produce a complete 
clustering. 



496 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms 

0 0 
(a) Well-separated clusters. Ea.ch 
point is closer to all of the points in its 
cluster than to any point in another 
duster. 

(c) CQntiguity-ba5ed dusters. Each 
point is closer to at. least one point 
in its duster than to any point in 
another duster. 

(b) Cenrer-based clusters. Eocb 
point is closer to the center of its 
cluster than to the center of any 
other cluster. 

(d) Density-based clusters. Clus­
ters are regions or high density sep­
ara.tOO by regions of low density. 

(e-) Conce-ptual clusters. Points in a cluster share some general 
property that derives from the entire set of points. (Points in the 
intersection of the circles belong to both.) 

Figure 8.2. Different types of clusters as illuslmled by sets of two-dimensional points. 

8.2 K-means 

Prototype-based clustering techniques create a one-level partitioning of the 
data objects. There are a number of such teclmiques, hut two of the most 
prominent are K-means and K-medoid. K-means defines a prototype in terms 
of a centroid, whlch is usually the mean of a group of points, lUld is typically 

8.2 K-means 497 

applied to objects in a continuous n-dimensional space. K-medoid defines a 
prototype in terms of a medoid, whlch is the most representative point for a 
group of points, and can be applied to a wide range of data since it requires 
only a proximity measure for a pair of objects. While a centroid almost never 
corresponds to an actual data point, a medoid, by its definition, must be an 
actual data point. In this section, we will focus solely on K-means, whlch is 
one of the oldest and most widely used clustering algorithms. 

8.2.1 The Basic K-means Algorithm 

The K-means clustering technique is simple, and we begin with a description 
of the basic algorithm. We first choose K initial centroidB~ where K is a user­
specified parameter. namely, the number of clusters desired. Each point is 
then assigned to the closest centroid, and each coUection of points assigned to 
a centroid is a cluster. The centroid of each cluster is then updated based on 
the points assigned to the cluster. We repeat the assignment and update steps 
until no point changes clusters, or equivalently, until the centroids remain the 
same. 

K-means is formally described by Algorithm B. I. The operation ofK-means 
is illustrated in Figure 8.3, whlch shows how, starting from three centroids, the 
final clusters are found in four assignment-update steps. In these and other 
figures displaying K-means clustering, each subfigure shows (1) the centroids 
at the start of the iteration and {2) the assignment of the points to those 
centroids. The centroids are indicated by the "+" symbol; aU points belonging 
to the same cluster have the same marker shape. 

Algorithm 8.1 Basic K-means algorithm. 
1: Select K points as initial centroids. 
2: repeat 
3: Form K clusters by assigning each point to its closest centroid. 
4: Recompute the centroid of each cluster. 
5: until Centroids do not change. 

In the first step, shown in Figure 8.3(a), points are assigned to the initial 
centroids, which are all in the larger group of points. For this example, we use 
the mean as the centroid. After points are assigned to a centroid, the centroid 
is then updated. Again, the figure for each step shows the centroid at the 
heginning of the step and the assignment of points to those centroids. In the 
second step, points are assigned to the updated centroids, and the centroids 



498 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms 

"' "' "' "' "' "' "' "' 
6 t: 6

6
6 6 ~: {!,.6.6 "'"'"' "'"' "' 6 .t::.t:. 6 A :!D..t::.L'l.r:. 

0. 66.t:. "'"'~ "'"'" 
0 ~ ~~~~ 6 

1:!. 6e.6ll 66 6 l'l 6. 66~66.6 6 6 6 n.6~6.o.l:J. 6. 
6. 6866.t:J. ~ :.t::..g6ag ~ ~~266~ o -t9~o 8

0 
0 t:.l:J."'ll, 8 

0 0 " 0 "' " 0 " f o + 0 0 
oo 

~ 
co 

8ft 
ao 

~0 
oO 

c Da 0 D o [] 0 Ll[)~[] 00~0 8fo 0 c 0 0 c 0 
oo oo 

(a) Iteration 1. (b) Iteration 2. (c) Iteration 3. (d) Iteration 4. 

Figure 11.3. Using the K-means algorithm to find three clusters in sample data. 

are updated again. In steps 2, 3, and 4, which are shown in Figures 8.3 (b), 
(c), and (d), respect ively, two of the cent roids move to the two small groups of 
points at the bottom of the figures. When the K-means algorithm terminates 
in Figure 8.3( d ), because no more changes occur 1 the centroids have identified 
the natural groupings of points. 

For some combin ations of proximi ty functions and types of centroids, K­
means always converges to a solution; i.e., K-means reaches a state in which no 
points are shifting from one cluster to another, and hence, the centroids don't 
change. Because most of the convergence occurs in the early steps, however, 
the condition on line 5 of Algorithm 8.1 is often replaced by a weaker condition, 
e.g .. repeat until only 1% of the points change clusters. 

We consider each of the steps in the basic K-mea.ns algorithm in more detail 
and then provide an analysis of the algorithm's space and time oomplexity. 

Assigning Points to t he Closest Centroid 

To assign a point to the closest centroid, we need a proximity measure that 
quantifies the notion of '~dosest" for the specific data under consideration. 
Euclidean (Lz) distance is often used for data points in Euclidean space, while 
cosine similarity is more appropriate for documents. However, there may be 
several types of proximity measures that are appropriate for a given type of 
data. For example, Manhattan (L1) distance can be used for Euclidean data, 
while the Jaccard measure is often employed for documents. 

Usually, the similarity measures used for K-means are relatively simple 
since the algorithm repeatedly calculates the similarity of each point to each 
centroid. In some cases1 however, such as when the data is in low-dimensional 

8.2 K-means 499 

Table 8.1. Table of notation. 

Symbol Description 
X An object. 
c, The ith cluster. 
C; The centroid of cluster C,. 
c The centroid of all points. 

11loj Tile number of objects iu the ;th duster. 
m The number of objects in the data set. 
K The number of clusters. 

Euclidean space, it is possible to avoid computing many of the similarities, 
thus significantly speeding up the K-means algorithm. Bisecting K-means 
(described in Section 8.2.3) is another approach that speeds up K-means by 
reducing the number of similarities computed. 

Centroids and Objective Functions 

Step 4 of the K-means algorithm was stated rather generally as "recompute 
the centroid of each cluster," since the centroid can vary, depending on the 
proximity measure for the data and the goal of the clustering. The goal of 
the clustering is typically expressed by an objective function that depends on 
the proximities of the points to one another or to the cluster centroids; e.g., 
minimize the squared distance of each point to its closest centroid. We illus­
trate this with two examples. However, the key point is this: once we have 
specified a proximity measure and an objective function, the centroid that we 
should choose can often be determined mathematically. We provide mathe­
matical details in Section 8.2.6, and provide a non-mathematical discussion of 
this observation here. 

Data in Euclidean Space Consider data whose proximity measure is Eu­
clidean distance. For our objective function, which measures the quality of a 
clnstering, we use the sum of the squared error (SSE), which is also known 
as scatter. In other words, we calculate the error of each data point, i.e., its 
Euclidean distance to the closest centroid, and then compute the total sum 
of the squared errors. Given two different sets of clusters that are produced 
by two diHerent runs of K-meanB 1 we prefer the one with the smallest squared 
error since this means that the prototypes (centroids) of this clustering are 
a better representation of the points in their cluster. Using the notation in 
Table 8.1, the SSE is formally defined as follows: 



500 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms 

K 

SSE= L L dist(c;, x)2 (8.1) 
i=l xEC, 

where dist is the standard Euclidean (L,) distance between two ohjects in 
Euclidean space. 

Given these assumptions, it can he shown (see Section 8.2.6) that the 
centroid that minimizes the SSE of the cluster is the mean. Using the notation 
in Tahle 8.1, the centroid (mean) of the ;th cluster is defined by Equation 8.2. 

1 
c; = - I;x 

m; xEC.: 
(8.2) 

To illustrate, the centroid of a cluster containing the three two-dimensional 

points, (1,1), (2,3), and (6,2), is ((1 + 2 + 6)/3, ((1 + 3 + 2)/3) = (3, 2). 
Steps 3 and 4 of tbe K-means algorithm directly attempt to minimize 

the SSE (or more generally, t he objective function) . Step 3 forms clusters 
hy assigning points to their nearest centroid, which minimizes the SSE for 
the given set of centroids. Step 4 recomputes the centroids so as to further 
minimize the SSE. However, the actions of K-means in Steps 3 and 4 are only 
guaranteed to find a local minimum with respect to the SSE since they are 
based on optimizing the SSE for specific choices of the centroids and clusters, 
rather than for all possible choices. We will later see an example in which this 
leads to a suboptimal clustering. 

Document Data To illustrate that K-means is not restricted to data in 
Euclidean space, we consider document data and the cosine sinlilarity measure. 
Here we assume that the document data is represented as a document-term 
matrix as described on page 31. Our objective is to maximize the similarity 
of the documents in a cluster to the cluster centroid; this quantity is known 
as tbe cohesion of tbe cluster . For this objective it can be shown that the 
cluster centroid is. as for Euclidean data, the mean. The analogous quantity 
to the total SSE is the total cohesion, which is given by Equation 8.3. 

K 

Total Cohesion = L L cosine(x.c; ) 
i=l x ECa 

(8.3) 

The General Case There are a number of choices for the proximity func­
tion, centroid, and objective function that can be used in the basic K-means 

8.2 K-means 501 

Table 8.2. K-means: Common choices for proximity, centroids, and objective functions. 

Proximity FUnction Centroid Objective Function 
Manhattan (1.) median Minimize sum of the 1 1 distance of an ob-

ject to its cluster centroid 
Squared l!:uclidean (L~) mean 1\'linimize sum of the squared L, distance 

of BJl object to its duster centroid 
cailne mesn IV[aximize sum of the cosine similarity of 

an object to its cluster centroid 
Bregman divergence mean IVIinimize sum of the Bregman diverge-nce 

of BJl object to its cluster centroid 

algorithm and that are guaranteed to converge. Table 8.2 shows some possible 
choices, including the two that we have just discussed. Notice that for Man­
hattan (L1 ) distance and the objective of minimizing the sum of the distances, 
the appropria te centroid is the median of the points in a cluster. 

The last entry in the table, Bregman divergence (Section 2.4.5), is actnally 
a class of proximity measures that includes the squared Euclidean distance, L~ . 
the Mahalano bis distance, and cosine similarity. The importance of Bregman 
divergence functions is that any such function can be used as the basis of a K­
means style clustering algorithm with the mean as the centroid. Specifically, 
if we use a Bregman divergence as our proximity function, then the result­
ing clnstering algorithm has the usua1 properties of K-mearu; with respect to 
convergence, local minima, etc. Furthermore, the properties of such a cluster­
ing algorithm can be developed for all possible Bregman divergences. Indeed, 
K-means algorithms that use cosine similarity or squared Euclidean distance 
are particular instances of a general clustering algorithm based on Bregman 
divergences. 

For the rest our K-means discussion, we use two-dimensional data since 
it is easy to explain K- means and its properties for this type of data. But, 

as suggested by the last few paragraphs, K-means is a very general clustering 
algorithm and can be used with a wide variety of data types, such as documents 
and time series. 

Choosing Initial Centroids 

When random initialization of centroids is used, different runs of K-means 
typically produce different total SSEs. We illustrate this with the set of two­
dimensional points shown in F igure 8.3, which has three natural clusters of 
points. Figure 8.4(a) shows a clustering solution that is the global minimum of 



502 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms 

g~ 
00 

(a) Optin1aJ clustering. (b) Suboptimal clustering. 

Figure 8.4. Throo optimal and non-optimal clusters. 

the SSE for three clusters, while Figure 8.4(b) shows a suboptimal clustering 
that is only a local minimum. 

Choosing the proper initial centroids is the key step of the basic K-means 
procedure. A cormnon approach is to choose the initial centroids randomly, 
but the resulting clusters are often poor. 

Example 8.1 (Poor Initial Centroids). Randomly selected initial cen­
troids may be poor. We provide an example of this using the same data set 
used in Figures 8.3 and 8.4. Figures 8.3 and 8.5 show tbe clusters that re­
sult from two particular choices of iuitial centroids. (For both figures, the 
positions of the cluster centroids in the various iterations are indicated by 
crosses.) In Figure 8.3, even though all the initial centroids are from one natu­
ral cluster, the minimum SSE clustering is still found. In Figure 8.5, however, 
even though the initial centroids seem to he better distributed, we obtain a 
suboptimal clustering, with higher squared error. • 

Example 8.2 (Limits of Random Initialization). One technique that 
is commonly used to address the problem of choosing initial centroids is to 
perform multiple runs, each with a different set of randomly chosen initial 
centroids, and then seloct tbe set of clusters with the minimum SSE. While 
simple~ tbis strategy may not work very wel1, depending on tbe data set and 
the number of clusters sought. We demonstrate this using the sample data set 
sbown in Figure 8.6(a). The data consists of two pairs of clusters, where the 
clusters in each (top-bottom) pair are closer to each other than to the clusters 
in the other pair. Figure 8.6 (b-d) shows that if we start with two initial 
centroids per pair of clusters, then even when both centroids are in a single 

oo 
Cl Cl+[] 

0 0 

(a) Iteration I. 

8.2 K-means 503 

(b) Iteration 2. (c) Iteration 3. 

Figure 8.5. Poor starting centroids forK-means. 

0 6 . ' . 
~b. ft-66 6 

o~00a 66 61\ 
~ oo~cog 

0 " c 

(d) Iteration 4. 

cluster the centroids will redistribute themselves so that the "true" clusters 
are fou'nd. However, Figure 8. 7 shows that if a pair of clusters has only one 
initial centroid and the other pair has three, then two of the true clusters will 
be combined and one true cluster will be split. 

Note that an optimal clustering will be obtained as long as two initial 
centroids fall anywhere in a pair of clusters, since the centroids will redistribute 
themselves, one to each cluster. Unfortunately, as the number of clusters 
becomes larger, it is increasingly likely tbat at least one pair of clusters will 
have only one initial centroid. (See Exercise 4 on page 559.) In this case, 
because the pairs of clusters are farther apart than clusters within a pair, the 
K-means algorithm will not redistribute the centroids between pairs of clusters, 
and thus, only a local minimum will be achieved. • 

Because of the problems with using randomly selected initial centroids, 
which even repeated runs may not overcome, other techniques are often em­
ployed for initialization. One effective approach is to take a sample of points 
and cluster them using a hierarchical dustering technique. K clusters are ex­
tracted from the hierarchical clustering, and the centroids of those clusters are 
used as the initial centroids. This approach often works well, but is practical 
only if (1) the sample is relatively small, e.g., a few hundred to a few thousand 
(hierarchical clustering is expensive), and (2) K is relatively small compared 
to the sample size. 

The following procedure is another approach to selecting initial centroids. 
Select the first point at random or take the centroid of all points. Then, for 
each successive initial centroid, select the point that is farthest from any of 
the initial centroids already selected. In this way, we obtain a set of initial 



504 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms 

~ ~ 

"'~~ 
D. ~6~ 0 

D. r:.t:J. 6 

"' 
0 oc 0 

0 0 0 

D 00 ~ 0 

(a) Initial points. 

o o o o 
0 0 0 

c ~[]0 

(c) Iteration 2. 

0 

0 0 0 

~0~0 
0 0 0 

Do 
0 

0 

oooog 
oO o 

0 0 0 

"""0 

"' "' "'"'"' "' "'"' ""'"' £:.6,{!, CJ. 

l'. 

(b) Iteration I. 

(d) Iteration 3. 

0 

oooo g 
oo o 

0 0 Q 

Do 
0 

Figure 8.6. Two pairs of clusters with a pair of initial centroids within each pair of dusters. 

centroids that is guaranteed to be not only randomly selected hut also well 
separated. Unfortunately, such an approach can select outliers, rather thru1 
points in dense regions (clusters). Also, it is expensive to compute the farthest 
point from the current set of initial centroids. To overcome these problems, 
this approach is often applied to a sample of the points. Since outliers are 
rare, they tend not to show up in a random sample. In contrast, points 
from every dense region are likely to be include d unless the sample size is very 
small. ALso, the computation involved in finding the initial centroids is greatly 
reduced because the srunple size is typically much smaller than the number of 
points. 

Later on, we will discuss two other approaches that are useful for produc­
ing better-quality (lower SSE) clusterings: using a variant of K-means that 

+ 
~ 

6 £:,.0. 6. 
~ ~ ~ 

6. ~~6 
~ l'. 

(a) Iteration 1. 

~ ~ 

l'. "'~ 
" ~ l'. ~[', 6 

6. l:l,6 D. 

6 

+ 
~ 

D. t::.t:J. b. 
"'6 6 

0 0 D. t::. 
66 

" 6 

(c) Iteration 3. 

0 

0 o o 
~o~o 

0 0 0 

D o 
0 

8.2 K-means 505 

~ "' 
"'"'"' 

D. l:l.ll.~ 6 

l'J.t::.ll. 6 

" + 

+ 

o" _z 
c "17 

c o 4a _57 

0 0 v 

(b) Iteration 2. 

Do 
0 

(d) Iteration 4. 

Figurl! 8.7. Two pairs of clusters with marl! or fewer than two initial centroids wnhin a pair of clusters. 

is less susceptible to initialization problems (bisecting K-means) and using 
postprocessing to "fixnp'' the set of clusters produced. 

Time and Space Complexity 

The space requirements for K-meru1s are modest because only the data points 
and centroids are stored. Specifically, the storage required is O((m + K)n), 
where m is the number of points and n is the number of attributes. The time 
requirements for K-means are also modest-basically linear in the number of 
data points. In particular, t he time required is O(I * K * m • n), where I is the 
number of iterations required for convergence. As n1entioned, I is often small 
and can usually be safely bounded, as most changes typically occur in the 



506 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms 

first few iterations. Therefore, K-means is linear in m, the number of points, 
and is efficient as well as simple provided tbat K, the number of clusters, is 
significantly less than m. 

8.2.2 K-means: Additional Issues 

Handling Empty Clusters 

Oue of the problems with the basic K-meaos algorithm given earlier is that 
empty clusters can be obtained if no points are allocated to a cluster during 
the assignment step. If this happens, then a strategy is needed to chonse a 
replacement centroid, since otherwise, the squared error will be larger than 
necessary. One approach is to choose the point that is farthest away from 
any current centroid. If nothing else. this eliminates the point that currently 
contributes most to tbe total squared error. Another approach is to choose 
the replacement centroid from the cluster that has the highest SSE. This will 
typically split the cluster and reduce the overall SSE of the clustering. If there 
are several empty clusters, then this process can he repeated several times. 

Outliers 

When the squared error criterion is used, outliers can unduly influence the 
clusters that are found. In particular, when outliers are present, the resulting 
cluster centroids (prototypes) may not be as representative as they otherwise 
would be and thus, the SSE will be higher as well. Because of this, it is often 

useful to discover outliers and eliminate them b eforehand. It is important, 
however, to appreciate that there are certain clustering applications for which 
outliers should not be eliminated. When clustering is used for data com­
pression, every point must be clustered, and in some cases, such as financial 
analysis, apparent outliers, e.g., unusually profitable customers, can be the 
most interesting points. 

An obvious issue is how to identify outliers. A nwnber of techniques for 
identifying outliers will be discussed in Chapter 10. If we use approaches that 
remove outliers before clustering, we avoid clustering points that will not clus­
ter well. Alternatively, outliers can also be identified in a postprocessing step. 
For instance, we can keep t rack of the SSE contributed by each point, and 
eliminate those points with unusually high contributions, especially over mul­
tiple runs. Also, we may want to eliminate small clusters since they frequently 
represent groups of outliers. 

8.2 K-means 507 

Reducing the SSE with Postprocessing 

An obvious way to reduce the SSE is to find more clusters, i.e. , to use a larger 
K. However, in many cases, we would like to improve the SSE, but don't 
want to increase the number of clusters. This is often possible because K­
means typically converges to a local mirumwn. Various techniques are used 
to "fix up" the resulting clusters in order to produce a clustering that has 
lower SSE. The strategy is to focus on individual clusters since the total SSE 
is simply the sum of the SSE contributed by each cluster. (We will use the 
terminology total SSE aud cluster SSE, respectively, to avoid any potential 
confusion.) We can change the total SSE by performing various operations 
on the clusters, such as splitting or merging clusters. One conunonly used 
approach is to use alternate cluster splitting and merging phases. During a 
splittiug phase1 clusters are divided, while during a merging phase, clusters 
are combined. In this way, it is often possible to escape local SSE minima and 
still produce a clustering solution with the desired number of clusters. The 
following are some techniques used in the splitting and merging phases. 

Two strategies that decrease the total SSE by increasing the number of 
clusters are the following: 

Split a cluster: The cluster with the largest SSE is usually chnsen, but we 

could also split the cluster with the largest standard deviation for one 
particular attribute. 

Introduce a new cluster centroid: Often the point that is farthest from 
any cluster center is chosen. We can easily deterrn.ine this if we keep 
track of the SSE contributed by each point. Another approach is to 

choose randomly from all points or from the points with tbe highest 
SSE. 

Two strategies that decrease the number of clusters, while trying to mini­
mize the increase in total SSE, are the following: 

Disperse a cluster: This is accomplished by removing the centroid that cor­
relponds to t he clnster and reassigning tbe points to other clusters. Ide­
ally, the cluster that is dispersed should be the one that increases the 
total SSE the least. 

Merge two clusters: The clusters with the closest centroids are typically 
chosen, although another, perhaps better, approach is to merge the two 
clusters that relult in the smallest increase in total SSE. These two 
merging strategies are the same ones that a:re used in the hierarchical 



508 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms 

clustering techniques known as the centroid method and Ward's method, 
respectively. Both methods are discussed in Section 8.3. 

Updating Centroids Incrementally 

Instead of updating cluster centroids after all points have been assigned to a 
cluster, the centroids can be updated incrementally, after each assignment of 
a point to a cluster. Notice that this requires either zero or two updates to 
cluster centroids at each step, since a point either moves to a new cluster (two 
updates) or stays in its current cluster (zero updates). Using an incremental 
update strategy guarantees that empty clusters are not produced since all 
clusters start with a single point~ and if a cluster ever has only one point, then 
that point will always be reassigned to the same cluster. 

In addition, if incremental updating is used. the relative weight of the point 
being added may be adjusted; e.g., the weight of points is often decreased as 
the clustering proceeds. While this can re:mlt in better accuracy and faster 
convergence, it can be difficult to make a good choice for the relative weight, 
especially in a wide variety of situations. These update issues are similar to 
those involved in updating weights for artificial neural networks. 

Yet another benefit of incremental updates has to do with using objectives 
other than "minimize SSE." Suppose that we are given an arbitrary objective 
function to measure the goodness of a set of clusters. When we process an 
individual point, we can compute the value of the objective function for each 
possible cluster assignment, and then choose the one that optimizes the objec­
tive. Specific examples of alternative objective functions are given in Section 
8.5.2. 

On the negative side, updating centroids incrementally introduces an or­
der dependency. In other words, the clusters produced may depend on the 
order in which the points are processed. Although this can be addressed hy 
randomizing the order in which the points are processed, the basic K-mean.s 
approach of updating the centroids after all points have been assigned to clns­
ters has no order dependency. Also, incremental updates are slightly more 
expensive. However, K-means converges rather quickly, and therefore, the 
numher of points switching clusters quickly becomes relatively small. 

8 .2.3 Bisecting K-means 

The bisecting K-means algorithm is a straightforward extension of the basic 
K-means algorithm that is based on a simple idea: to obtain K clnsters, split 
the set of all points into two clusters, select one of these clusters to split, and 

8.2 K-means 509 

so on. until K clusters have been produced. The details of bisecting K-mean.s 
are given by Algorithm 8.2. 

Algorithm 8.2 Bisecting K-means algorithm. 
1: Initialize the list of clusters to contain the cluster consisting of all points. 
2: repeat 
3: Remove a cluster from the list of clusters. 
4: {Perform several "trial" bisections of the chosen cluster.} 
5: fori = 1 to number of trials do 
6: Bisect the selected duster using basic K-means. 
7: end for 
8: Select the two clusters from the bisection with the lowest total SSE. 
9: Add these two clusters to the list of clusters. 

10: until Until the list of clusters contains K clusters. 

There are a number of different ways to choose which cluster to split. We 
can choose the largest cluster at each step, choose the one with the largest 
SSE, or use a criterion based on both size and SSE. Different choices result in 
different clusters. 

We often refine the resulting clusters by nsing their centroids as the initial 
centroids for the basic K-means algorithm. This is necessary because, although 
the K-means algorithm is guaxanteed to lind a clustering that represents a local 
minimum with respect to the SSE, in bisecting K-means we are using the K­
mean.s algorithm "locally," i.e., to bisect individual clusters . Therefore, the 
final set of clnsters does not represent a clustering that is a local minimum 
with respect to the total SSE. 

Example 8.3 (Bisecting K-means and Initialization). To illustrate that 
bisecting K-means is Jess susceptible to initialization prob1ems, we show, in 
Figure 8.8, how bisecting K-means finds four clusters in the data set originally 
shown in Figure 8.6(a). In iteration 1, two pairs of clusters are found; in 
iteration 2, the rightmost pair of clusters is split; and in iteration 3, the leftmost 
pair of clusters is split. Bisecting K-means has less trouble with initialization 
because it performs several trial bisections and takes the one with the lowest 
SSE, and because there axe only two centroids at each step. • 

Finally, by recording the sequence of clusterings produced as K-mean.s 
bisects clusters, we can also use bisecting K-means to produce a hieraxchical 
clustering. 



510 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms 

oco c .:: Oo 
0 

" 
v 

.:,ll.~g- " o00o8 v vo oooog 
3 0o8o •'o ocgo 0o~ D 

v"~" 0~0 
o oo (; ooo ooo fJ V V'V<;> 

r. ··. 0 oo v Co 
0 

+ + + 
c 0 

" 
D 

0 
0 

uo 0 

·~~ 
co 0 off'~ co ~ ,,., ~ 

001,\~ %ll.Ae 00~~~ "r."t&. 0~~ "''#,"' n o • ,o c c 0: D 0 0 : 

(a) Iteration 1. (b) Iteration 2. (c) Iteration 3. 

Figure 8.8. Bisecting K-means on the four clusters example. 

8 .2.4 K-means and Different Types of Clusters 

K-means and its variations have a uumber of limitations with respect to finding 
different types of clusters. In particular, K-means has difficulty detecting the 
'~natural" clusters, when clusters have nonaspherical shape15 or widely different 

sizes or densities. This is illustrated by Figures 8.9, 8.10, and 8.11. In Figure 
8.9, K-means cannot find the three natural clusters because one of the clusters 
is much larger than the other two, and hence, the larger cluster is broken, while 
one of the smaller clusters is combined with a portion of the larger cluster. In 
Figure 8.10, K-means fails to find the three natural clusters because the two 
smaller clusters are much denser than the larger cluster. Finally, in Figure 
8.11, K-means finds two clusters that mix portions of the two natural clusters 
because the shape of the natural dusters is not globular. 

The difficulty in these three situatious is that tbe K-means objective fuuo­
tion is a mismatch for the kinds of clusters we are trying to find since it is 
minimized by globular clusters of eqnal size and density or by clusters that are 
well separated. However~ these limitations can be overcome, in some sense, if 
the user is willing to accept a clustering that breaks the natural clusters into a 
number of subclusters. Figure 8.12 shows what happens to the three previous 
data sets if we find six clusters instead of two or three. Each smaller cluster is 
pure in the sense that it contains only points from one of the natural clusters. 

8.2.5 Stre ngths and Weaknesses 

K-means is simple and can be used for a wide variety of data types. It is also 
quite efficient, even though multiple runs are often performed. Some variants, 
including bisecting K-means, are even more efficient, and are less suscepti­
ble to initialization problems. K-means is not suitable for all types of data, 

c 0 0 ;J 
~) (") c 

O!l 1 0 0~0~0~0 O 
D c o e go 0 Oc..; C O 

0 0 0 ooooo 
:::J :.J o 0 0 0 o on o c 

n o 0 0 o 
O c Oo oooo 

() c 0 c 

(a) Origina.J poi nco. 

0 0 0 
0 0 0 
0 0 0 

0 

8.2 K-means 511 

(b} Three K-means dusters. 

Figure 8.9. K-rneans with clusters of different size. 

(a) Origina.J poincs. (b) Three K-means clusters. 

Figure 8.10. K-means w~h clusters of dill3rent density. 

<> <> 0 
0 0 0 

{:} 0 00 C> 0 D O 0 0 

0 0 0. 0 0 •;-} 0 
D 0 0 0 0 0 0 

"" " oo o 

" " 0 
0 0 0 0 0 

"" v v {) 
{} v v 0 0 -l:r 0 0 0 0 0 

o_, v c {}{} vv 0 o o 
0 00 0 00 v 

o" v v o o 0 ogo vv" "" ~v oo 0 28r-" " V''V'V * {) 0 0 0 0 
v v oO 0 

0 

vv vvv v -v" v v Do OOo 0 00 0 0 
v 'V-v v o 0 oo o 

0 "vv " oo 

(a) Original points. (b) Two K-meam;; clusters. 

Figure 8.11. K-rneans with non-globular clusters. 



512 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms 

(a) Unequal sizes. 

0 !::. 

0 0 0 !::. * !::. 
0 + 0 !::. !::. !::. 

ooo 0 
0 

(b) Unequal dellilities. 

0 0 
0 O .rJLO 

I> 0 d 0 o o 
I> I> 

1>-h, 
I> I> 

I> I> 

0 

(c) Non-spherical shapt>s. 

Figure &.12. Using K-rneans to find clusters that am subclusters of the natural clusters. 

8.2 K-means 513 

however. It cannot handle non-globular clusters or clusters of different sizes 
and densities, although it can typically find pure subcluster• if a large enough 
number of clusters is specified. K-means also has trouble clustering data that 
contains outliers. Outlier detection and removal can help significantly in such 
situations. Finally1 K-means is restricted to data for which there is a notion of 
a center (centroid). A related technique, K-medoid clustering, does not have 
this restriction, but is more expensive. 

8.2.6 K-means as an Optimization Problem 

Here, we delve into the mathematics behind K-means. This section, which can 
be skipped without loss of continuity, requires knowledge of calculus through 
partial derivatives. Familiarity with optimization techniques, especially those 
based on gradient descent, may also he helpful. 

As mentioned earlier! given an objective function such as "minimize SSE," 
clustering can he treated as an optimization problem. One way to solve this 
problem- to find a global optimum- is to enumerate all possible ways of di­
viding the points into clusters and theu choose the set of clusters that best 
satisfies the objective funct ion, e.g., t hat minimizes the total SSE. Of course, 
this exhaustive strategy is computationally infeasible and as a result, a more 
practical approach is needed, even if such an approach finds solutions that are 
not guaranteed to be optimal. One technique, which is known as gradient 
descent, is based on picking an initial solution and then repeating the fol­
lowing two steps: compute the change to the solution that best optimizes the 
objective function and then update the solution. 

We assume that the data is on..,.dimensional, i.e., dist(",Y) = (x- y)2 . 

This does not change anything essential, but greatly simplifies the notation. 

Derivation of K-means as an Algorithm to Minimize the SSE 

In this Eiection, we show how the centroid for the K-meall6 algorithm_ can be 

mathematically derived when the proximity function is Euclidean distance 
and the objective is to minimize the SSE. Specifically, we investigate how we 

can best update a cluster centroid so that the cluster SSE is minimized. In 
mathematical terms, we seek to mitrimize Equation 8.1, whlch we repeat here, 
specialized for one-dimensional data. 

K 

SSE = L L (c;- ")2 (8.4) 
i=l xEC~ 



514 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms 

Here, ci is the ith cluster. X is a point in Gil and Ct is the mean of the ir-h 

cluster. See Table 8.1 for a complete list of notation. 
We can solve for the k'" centroid Cb which minimizes Equation 8.4, by 

differentiating the SSE, setting it equal to 0, and solving, as indicated below. 

Thus, as previously indicated, the best centroid for minimizing the SSE of 
a cluster is the mean of the points in the cluster. 

Derivation of K-means for SAE 

To demonstrate that the K-means algorithm can be applied to a variety of 
different objective functions, we consider how to partition the data into K 
clusters such that the sum of the Manhattan (LI) distances of points from the 
center of their clusters is minimized. We are seeking to minimize the sum of 
the L1 absolute errors (SAE) as given by the following equation, where disiL, 
is the Lt djstance. Again, for notational simplicity, we use one-dimensional 
data, i.e., distL, = lei - 4 

K 

SAE = L L distL1 (c;J) (8.5) 
i=1zEC, 

We can solve for the k'" centroid C<, which minimizes Equation 8.5, by 
differentiating the SAE, setting it equal to 0, and solving. 

8.3 Agglomerative Hierarchical Clustering 515 

If we solve for q, we find that Ck = median{:c E Ck}, the median of the 
points in the cluster. The median of a group of points is straightforward to 
compute and less susceptible to distortion hy outliers. 

8.3 Agglomerative Hierarchical Clustering 

Hierarchical clustering techniques are a second important category of cluster­
ing methods. As with K-rnearlS, these approaches are relatively old compared 
to many clustering algorithms, but they still enjoy widespread use. There are 
two basic approaches tor generating a hierarchical clustering: 

Agglomerative: Start with the points as individual clusters and, at each 
step, merge the closest pair of clusters. This requires defining a notion 
of cluster proximity. 

Divisive: Start with one, all-inclusive cluster and. at each step, split a cluster 
until only singleton clusters of individual points remain. In this case, we 
need to decide which cluster to split at each step and how to do the 
splitting. 

Agglomerative hierarchical clustering techniques are by far the most common, 
and. in this section, we will lOcus exclusively on these methods. A divisive 
hierarchical clustering techniqne is described in Section 9.4.2. 

A hierarchical clustering is often displayed graphically using a tree-like 
diagram called a dendrogram, which displays both the cluster-subcluster 



516 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms 

p1 p2 p3 p4 

(a) Dendrogram. (b) Nested cluster diagram. 

Figure 8.13. A hierarchical clusterillg of four points shwm as a dendrogram and as nested clusters. 

relationships and the order in which the clusters were merged (agglomerative 
view) or split (divisive view). For sets of two-dimensional points, such as those 
that we will use as examples. a hierarchical clustering can also be graphically 
represented using a nested cluster diagram. Figure 8.13 shows an example of 
these two types of figures for a set of four two-dimensional points. These points 
were clustered using the single-link technique that is described in Section 8.3.2. 

8.3.1 Basic Agglomerative Hierarchical Clustering Algorithm 

~lany agglomerative hierarchical clustering techniques are variations on a sin­
gle approach: starting with individual points as clusters, successively merge 
the two closest clusters until only one duster remains. This approach is ex­
pressed more formally in Algorithm 8.3. 

Algorithm 8.3 Basic agglomerative hierarchical clustering algorithm. 
1: Compute the proximity matrix, if necessary. 
2: repeat 
3: Merge the closest two clusters. 
4: Update the proximity matrix to reflect the proximity between the new 

duster and the original dusterB. 

5: until Only one cluster remains. 

8.3 Agglomerative Hierarchical Clustering 517 

Defining Proximity between Clusters 

The key operation of Algorithm 8.3 is the computation of the proximity be­
tween two clusters, and it is the definition of cluster proximity that differ­
entiates the various agglomerative hierarchical techniques that we will dis­
cuss. Cluster proximity is typically defined with a particular type of cluster 
in mind~ee Section 8.1.2. For example, many agglomerative hierarchical 
clusteriug t echniques, such as MIN, MAX, aud Group Average, come from 
a graph-based view of clusters. MIN defines cluster proximity as the prox­
imity between the dosest two points that ace in different clusters, or using 
graph terms, the shortest edge between two nodes in different subsets of nodes. 
This yields contiguity-based clusters as shown in Figure 8.2(c). Alternatively. 
MAX takes the proximity between the farthest two points in different clusters 
to be the cluster proximity, or using graph terms, the longest edge between 
two nodes in different subsets of nodes. (If our proximities are distances, then 
tbe names, MIN and !IIAX, are short and suggestive. For similarities, however, 
where higher values indicate closer points, the names seem reversed. For that 
reason, we usually prefer to use the alternative namffi, single link and com­
plete link, respectively.) Another graph-based approach, the group average 
technique, defines cluster proximity to be the average pairwise proximities (av­
erage length of edges) of all pairs of poiuts from different clusters. Figure 8.14 
illustrates these three approaches. 

(a) MIN (single link.) (b) MAX (complete link.) (c) Group average. 

Figun! 8.14. Graph-based definitions of cluster proximity 

lf, instead, we take a prototype-baBed view, in which each cluster iB repre­
sented by a centroid, different definitions of cluster proximity are more natural. 
'When using centroids, the cluster proximity is commonly defined as the prox­
imity between cluster centroids. An alternative technique, Ward's method, 
also assumes that a cluster is represented by its centroid, but it measureB the 
proximity between two clusters in terms of the increase in the SSE that re-



518 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms 

suits from merging the two clusters. Like K-means, Ward's method attempts 
to minimize the sum of the squared distances of points from tbeir cluster 
centroids. 

Time and Space Complexity 

The basic agglomerative hierarchical clustering algorithm just presented uses 
a proximity matrix. This requires the storage of ~m2 proximities (assuming 
the proximity matrix is symmetric) where m is the number of data points. 
The space needed to keep track of the clusters is proportional to the number 
of clusters, which ism -1, excluding singleton clusters. Hence, the total space 
complexity is O(m2). 

The analysis of the basic agglomerative hierarchical clustering algorithm 
is also straightforward with respect to computational complexity. O(m2) time 
is required to compute the proximity matrix. After that step, there are m- 1 
iterations involving steps 3 and 4 because there are m clusters at the start and 
two clusters are merged during each iteration. If performed as a linear search of 
the proximity matrix, then for the ;th iteration, step 3 requires O((m- i + 1)2 ) 

time, which is proportional to the current number of clusters squared. Step 
4 only requires O(m - i + 1) time to update the proximity matrix after the 
merger of two clusters. (A cluster merger affects only 0( m - i + 1) proximities 
for the techniques that we consider.) Without modification, this would yield 
a time complexity of O(m3

). If the distances from each cluster to all other 
clusters are stored as a sorted list (or heap), it is possible to reduce the cost 
of finding the two closest clusters to O(m- i + 1). However, because of the 
additional complexity of keeping data in a sorted list or heap, t he overall time 
required for a hierarchical clustering based on Algorithm 8.3 is 0( m 2 log m). 

The space and time complexity of hierarchical clustering severely limits the 
size of data sets that can be processed. V\'e discuss scalability approaches for 
clustering algorithms, including hierarchical clustering tedmiques, in Section 
9.5. 

8.3.2 Specific Techniques 

Sample Data 

To illustrate the behavior of the various hierarchical clustering algorithms, 
we shall use sample data that consists of 6 two-dimensional points, which are 
shown in Figure 8.15. The x andy coordinates of the points and the Euclidean 
distances between them are shown in Tables 8.3 and 8.4, respectively. 

8.3 Agglomerative Hierarchical Clustering 519 

Point x Coordinate y Coordinate 
p1 0.40 0.53 
p2 0.22 0.38 
p3 0.35 0.32 
p4 0.26 0.19 
p5 0.08 0.41 
p6 0.45 0.30 

Figure 8.15. Set of 6 two-dimensional points. Table 8.3. xy coordinates of 6 points. 

pi p2 p3 p4 p5 p6 
p1 0.00 0.24 0.22 0.37 0.34 0.23 
p2 0.24 0.00 0.15 0.20 0.14 0.25 
p3 0.22 0.15 0.00 0.15 0.28 0.11 
p4 0.37 0.20 0.15 0.00 0.29 0.22 
p5 0.34 0.14 0.28 0.29 0.00 0.39 
p6 0.23 0.25 0.11 0.22 0.39 0.00 

Table 8.4. Euclidean distance matrix lor 6 points. 

Single Link or .MIN 

For the single link or MIN version of hierarchical clustering, the proximity 
of two clusters is defined as the minimum of the clistance (maximum of the 
similarity) between any two points in the two different clusters. Using graph 
terminology, if you start with all points as singleton clusters and add links 
between points one at a time, shortest links first, then these single links mm­
bine the points into clusters. The single link technlque is good at handling 
non-elliptical shapes, but is sensitive to noise and outliers. 

Example 8.4 (Single Link). Figure 8.16 shows the result of applying the 
single link technlque to our example data set of six points. Figure 8.16(a) 
shows the nested clusters as a sequence of nested e llipses, where the numbers 
associated with the ellipses indicate the order of the clustering. Figure 8.16(b) 
shows tbe same information, but as a dendrogram. The height at which two 
clusters are merged in the dendrogram reflects the distance of the two clusters. 
For instance, from Table 8.4, we see that the distance between points 3 and 6 



520 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms 

0. 2 

I 
_[ =-0.15 

0. 1 

0.05 

(a) Single link clustering. (b) Single link dendrogram. 

Figure 8.16. Single link clustering ofthe six points shown in Figure 8.15. 

is 0.11, and that is the height at which they are joined into one cluster in the 
dendrogram. As another example. t he distance between clusters { 3, 6} and 
{2, 5} is given by 

dist( {3,6} , {2. 5}) rnin(dist(3, 2), dist(6, 2), dist(3. 5).dist(6, 5)) 

rnin(0.15, 0.25, 0 .28, 0.39) 

0.15. 

Complete Link or MAX or CLIQUE 

• 

For the complete link or MAX version of hierarchical clustering, the proximity 
of two clusters is defined as the maximum of the distance (minimum of the 
similarity) between any two points in the two different clusters. Using graph 
terminology, if you start with a ll points as singleton clusters and add links 
between points one at a time, shortest links first, then a group of points is 
not a cluster until all the points in it are completely linked, i.e., form a clique. 
Complete link is less susceptible to noise and outliers, but it can hreak large 
clusters and it favors globular shapes. 

Example 8.5 (Complete Link) . Figure 8.17 shows the results of applying 
MAX to the sample data set of six points. As with single link, points 3 and 6 

8.3 Agglomerative Hierarchical Clustering 521 

(a) Complete link clustering. (b) Complete link dendn:>gTam. 

Figure 8.17. Complele link clustering of the six points shC>Yn i1 Figure 8.15. 

are merged first. However, {3,6} is merged with {4}, instead of {2, 5} or {1} 
because 

dist({3,6}. {4)) 

dist( {3. 6}. {2, 5}) 

dist({3.6), {1}) 

Group Average 

max(dist(3, 4), dist(6, 4)) 

max(0.15, 0.22) 

0.22. 

max(dist(3, 2), dist(6, 2), dist(3, 5),dist(6, 5)) 

max(0.15, 0.25. 0.28, 0.39) 

0.39. 

max(dist(3, 1), dist(6, 1)) 

max(0.22, 0.23) 

0.23. 

• 

For the group average version of hierarchical clustering, the proximity of two 
clusters is defined as the average pairwise proximity among all pairs of points 
in the different clusters. This is an intermediate approach between the single 
and complete link approaches. Thus, for group average, the cluster proxim-



522 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms 

{a) Group average clustering. (b) Group average dendrogram. 

Figure 8.18. Group average clustering of the six points shown in Figure 8.15. 

ity proximity(C;, Cj) of clusters C; and C1, which are of size m, and mj, 
respectively, is expressed by the following equation: 

L x<c, proximity( x, y) 
pro.rimity(C;,CJ) = _ _c'cc<c~''--------

11'!.; * 11lj 
(8.6) 

Example 8.6 (Group Average). Figure 8.18 shows the results of applying 
the group average approach to the sample data set of six points. To illustrate 

how group average works, we calculate the distance between some clusters. 

dist({3, 6,4}, {1}) 

dist({2, 5}, {1}) 

dist( {3,6, 4), {2, 5}) 

(0.22 + 0.37 + 0.23)/(3. 1) 

0.28 

(0.2357 +0.3421)/(2•1) 

0.2889 

(0.15 + 0.28 + 0.25 + 0.39 + 0.20 + 0.29)/(6. 2) 

0.26 

Becausedist( {3, 6,4}, {2, 5}) is smaller than dist({3, 6,4}, {1}) and dist({2, 5}, {1} ), 
clnsters { 3, 6 , 4} and { 2, 5} are merged at the fourth stage. • 

8.3 Agglomerative Hierarchical Clustering 523 

(a) Ward'5 clustering. (b) Ward's dendrogram. 

Figure 8.19. Ward'sdustering of the six points shown in Figure 8.15. 

Ward' s Method and Centroid Methods 

For 'Ward's method, the proximity between two clusters is defined as the in­
crease in the squared error that results when two clusters are merged. Thus, 
this method uses the same objective function as K-rueans clustering. While 
it may seem that this feature makes \Vard's method somewhat distinct from 
other hierarchical techniques, it can be shown mathematically that Ward's 
method is very similar to the group average method when the proximity be­

tween two points is taken to be the square of the distance between them. 

Example 8.7 (Ward's Method). Figure 8.19 shows the results of applying 
\Vard's method to the sample data set of six points. The clustering that is 
produced is different from those produced by single link, complete link, and 
group average. • 

Centroid methods calculate the proximity between two clusters by calcu­
lat ing the distance between the centroids of clusters. These techniques may 
seem similar to K-means, but as we have remarked, Ward's method is the 
correct hierarchical analog. 

Centroid methods also have a chnracteristic-<>ften considered had-that 
is not possessed by the other hierarchical clustering techniques that we have 
discussed: the possibility of inversions. Specifically, two clusters that are 
merged may be more similar (less distru1t) thao the pair of clusters that were 
merged in a previous step. For the other methods, t he distance between 



524 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms 

Table 8.5. Table of laoo&-Williams coefficients for common hierarchical clustering approaches. 

Clustering Method <>A <>a i3 ,., 
Single Link 1/2 1/2 0 -1/2 
Complete Link 1/2 1/2 0 1/2 
Group Average ---"!A__ ----"'.B__ 0 0 m rn rn rn 
Centroid rnA ____!!!1L_ mAmB 0 

mA.+mB mA.+mB (mA+mB)!l 
Ward's rnA rn2 rn• rn2 -mQ 0 m +m +m m +m +m m +m +m 

merged clusters monotonically iucreases {or is, at worst~ non-increasing) as 
we proceed from singleton clusters to one all-inclusive cluster. 

8.3.3 The Lance-Williams Formula for Cluster Proximity 

Any of the cluster proximities that we have discussed in this section can be 
viewed as a choice of different parameters (in the Lance-\Villiarns formula 
shown below in Equation 8. 7) for tbe proximity between clusters Q and R, 
where R is formed by merging clusters A and B. In this equation, p( ... ) is 
a proximity function, while mA, m 8 , and mq are the number of points in 
clusters A, B, and Q, respectively. In other words, after we m erge clusters A 
and B to form cluster R, the proximity of the new cluster, R, to an existing 
cluster, Q, is a linear function of the proximities of Q with respect to the 
original clusters A and B. Table 8.5 shows the values of these coefficients for 
the techniques that we have discussed. 

p(R. Q) = <>Ap(A, Q) +asp(B,Q) +f3p(A, B) +-, lp{A,Q) - p(B,Q)i (8.7) 

Any hierarchical clustering technique that can be expressed using the 
Lance-Williams formula does not need to keep the original data points. In­
stead, tbe proximity matrix is updated as clustering occurs. While a general 
formula is appealing, especially for implementation, it is easier to understand 
the different hierarchical methods by looking directly at the definition of clus­
ter proximity that eacb method nses. 

8.3.4 Key Issues in Hierarchical Clustering 

Lack of a Global Objective Function 

We previously mentioned that agglomerative hierarchical clustering cannot be 
viewed as globally optimizing an objective function. Instead, agglomerative 
hierarchical clustering techniques use various criteria to decide locally, at each 

8.3 Agglomerative Hierarchical Clustering 525 

step. which clusters should be merged (or split for divisive approaches). This 
approach yields clustering algorithms tbat avoid the difficulty of attempting 
to solve a hard combinatorial optimization problem. (It can be shown that 
the general clustering problem for an objective function such as "minimize 
SSE'' is computationally infeasible.) Furthermore, such approaches do not 
have problems with local minima or difficulties in choosing initial points. Of 
course, the time complexity of 0( m2 log m) and the space complexity of O(m2 ) 

are prohibitive in many cases. 

Ability to Handle Different Cluster Sizes 

One aspect of agglomerative hierarchical clustering that we have not yet dis­
cussed is how to treat the relative sizes of the pairs of clusters that are merged. 
(Tbi.s discussion applies only to cluster proximity schemes that involve sums, 
such as centroid, Ward's, and group average.) There are two approaches: 
weighted. which treats all clusters equally, and unweighted, which takes 
the number of points in each cluster into account. Note that the terminology 
of weighted or unweighted refers to the data points, not the clusters. In other 
words, t reating clusters of unequal size eqnally gives different weights to the 
points in different clusters, while taking the cluster size into account gives 
points in different dusters the same weight. 

We will illustrate this using the group average technique discussed in Sec­
tion 8.3.2, whlch is the unweig hted version of the group average technique. 
In the clustering literature, the full name of this approach is the Unweighted 
Pair Group Method using Arithmetic averages (UPGJ\IA ). In Table 8.5, which 
gives the formula for updating cluster similarity, the coefficients for UPG!viA 
involve the size of each of the clusters that were merged: OA = mA:~8 , O B = 
m ~~8 , ;3 = 0, r = 0. For the weighted version of group average--known as 
WPGMA- the coefficients are constants: etA= l /2,as = 1/2,/3 = 0,")" = 0. 
In genera1, nnweighted approaches are preferred unless there is reason to be­
lieve that individual points should have different weights; e.g., perhaps classes 
of objects have been nnevenly sampled. 

Merging Decisions Are Final 

Agglomerative hierarchical clnstering algorithms tend to make good local de­
cisions about combining two clusters since tbey can use information about the 
pairwise similarity of all points. However, once a decision is made to merge 
two clusters, it cannot be undone at a later time. This approach prevents 
a local optimization criterion from becoming a global optimization criterion. 



526 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms 

For example, although the '"minimize squared error" criterion from K-means 
is used in deciding wblch clusters to merge in Ward's method, the clusters at 
each level do not represent local minima with respect to the total SSE. Indeed. 
the clusters are not even stable, in the serue that a point in one cluster may 
be closer to the centroid of some other cluster than it is to the centroid of its 
current cluster. Nonetheless, Ward's method is often used as a robust method 
of initializing a K-mearu clustering, indicating that a local "minimize squared 
error" objective function does have a connection to a global "minimize squared 
error" objective function. 

There are some techniques that attempt to overcome the limitation that 
merges are final. One approach attempts to fix up the hierarchical clustering 
hy moving branches of the tree around so as to improve a global objective 
function. Another approach uses a partitional clustering technique such as K­
meanB to create many small clusters, and then performs hierarchical clustering 
using these small clusters a.s the starting point. 

8.3.5 Strengths and Weaknesses 

The strengths and weakness of specific agglomerative hierarchical clustering 
algorithms were discussed above. More generally, such algorithms are typi­
cally used because the underlying application. e.g., creation of a taxonomy, 
requires a hierarchy. Also, there have been some studies that suggest that 
these algorithms can produce better-quality dusters. However, agg1omerative 
hierarcblcal clustering algorithms are expensive in terms of their computa­
tional and storage requirements. The fact that all merges are final can also 
cause trouble for noisy, high-dimensional data, such as document data. In 
turn, these two problems can be addressed to some degree by first partially 
clustering the data using another technique, such as K-means. 

8.4 DBSCAN 

Density-based clustering locates regions of high density that are separated 
from one another by regions of low density. DBSCAN is a simple and effec­
tive density-based clustering algorithm that illustrates a number of important 
concepts that are important for any deusity-based clustering approach. In this 
section, we focus solely on DBSCAN after first considering the key notion of 
density. Other algorithms for finding density-based clusters are described in 
the next chapter. 

8.4 DBSCAN 527 

8.4.1 Traditional Density: Center-Based Approach 

Although there are not as many approaches for defining density as there are for 
defining similarity, there are several distinct methods. In tbls section we dis­
cuss the center-based approach on which DBSCAN is based. Other definitions 
of density will be presented in Chapter 9. 

In the center-based approach, density is estimated for a particular point in 
the data set by counting t he number of points witbln a specified radius, Eps, 
of that point. This includes the point itself. This technique is graphically 
illustrated by Figure 8.20. The number of points within a radius of Eps of 
point A is 7, including A itself. 

This method is simple to implement, but the density of any point will 
depend on the specified radius. For instance, if the radius is large enough, 
then all points will have a density of m, the number of points in the data set. 
Likewise, if the radius is too small, then all points will have a density of L 

An approach for deciding on the appropriate radius for low-dimeruional data 
is given in the next section in the context of our discussion of DBSCAN. 

Classification of Points According to Center-Based Density 

The center-based approach to density allows us to classify a point as being ( 1) 
in the interior of a dense region (a core point) , {2) on the edge of a dense reg ion 
(a border point), or (3) in a sparsely occupied region (a noise or background 
point). Figure 8.21 graphically illustrates the concepts of core, border, and 
noise points using a collection of two-dimensional points. The following text 
provides a more precise description. 

Core points: These points are in the interior of a density-based cluster. A 
point is a core point if the number of points within a given neighborhood 
around the point as determined by the distance function and a user­
specified distance parameter, Eps, exceeds a certain threshold, M inPts, 
which is also a user-specified parameter. In Figure 8.21, point A is a 
core point, for the indicated radius ( Eps) if M inPts :0: 7. 

Border points: A border point is not a core point, but falls within the neigh­
borhood of a core point. In Figure 8.21, point B is a border point. A 
border point can fall within the neighborhoods of several core points. 

Noise points: A noise point is any point that is neither a core point nor a 
border point. In Figure 8.21, point C is a noise point . 



528 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms 

Figure 8.20. Center-based ---~ 

density. Figure 8.21. Core, border, and noise point& 

8.4.2 The DBSCAN Algorithm 

Given the previous definitions of core points, border points, and noise poiuts~ 
the DBSCAN algorithm cau be informally described as follows. Any two core 
points that ace close enough--within a distance Eps of oue another-are put 
in the same cluster. Likewise, any border point that is close enough to a core 
point is put in the same cluster as the core point. (Ties may need to be resolved 
if a border point is close to core points from different clusters.) Noise points 
are discarded. The formal details are given in Algorithm 8.4. This algorithm 
uses the same concepts and finds the sarue clusters as the original DB SCAN, 
but is optimized for simplicity, uot efficiency. 

Algorithm 8.4 DBSCAN algorithm. 
1: Label aJ..l points as core, border, or noise points. 
2: Elimlrulte noise points. 
3: Put an edge between all core points that ore within Eps of each other. 
4: Make each group of counected core points into a separate cluster. 
5: Assign each border point to one of the clusters of its associated core points. 

Time and Space Complexity 

The basic t ime complexity of the DBSCAN algorithm is O(m X time to fiud 
points in the Eps-neighborhood), where m is the number of points. In the 
worst case, this complexity is O(m2 ). However, in low-dimensional spaces, 
there are data structures, such as kd-trees, that a llow efficient retrieval of all 

8.4 DBSCAN 529 

points within a given distance of a specified point. and the time complexity 
can be as low as O(mlogm). The space requirement of DBSCAN, eveu for 
high-dimensional data. is O(m) because it is only necessary to keep a small 
amount of data for each point, i.e., the cluster label and the identification of 
each point as a corel border, or noise point. 

Selection of DBSCAN Parameters 

There is, of course, the issue of how to determine the parameters Eps and 
M inPts. The basic approach is to look at the behavior of the distance from 
a point to its k-'h nearest neighbor. which we will call the k-dist. For points 
that belong to some cluster, the value of k-dist will be small if k is not larger 
than the cluster size. Note that there will be some variation, depending on the 
density of the cluster and the random distribution of points, but on average, 
the range of variation will not be huge if the cluster densities are not radically 
different. However, for points that are not in a cluster, such as noise points. 
the k-dist will be relatively large. Therefore, if we compute the k-dist for 
all the data points for some k, sort them in increasing order, and then plot 
the sorted valnes, we expect to see a sharp change at the value of k-dist that 
corresponds to a suitable value of Eps. If we select this distance as the Eps 
parameter and take the value of k as t he J..fi.nPts parameter, theu poiuts for 
which k-dist is less than Eps will be labeled as core points, while other points 
will be labeled as noise or border points. 

Figure 8.22 shows a sample data set, while the k-dist graph for the data is 
given in Figure 8.23. The value of Eps that is determined in this way depends 
on k, but does not change dramatically as k changes. If the value of k is too 
small, then even a small number of closely spaced points that are noise or 
outliers will be incorrectly labeled as clusters. If the value of k is too large, 
then small clusters (of size less than k) are likely to be labeled as noise. The 
original DBSCAN algorithm used a valne of k = 4, which appears to be a 
reasonable value for most two-dimensional data sets. 

Clusters of Varying Density 

DBSCAN can have tronble with density if the deusity of clusters varies widely. 
Consider Figure 8.24, which shows four clusters embedded in noise. The den­
sity of the clusters and noise regions is indicated by their darkness. The noise 
around the pair of denser clusters, A and B, has the same density as clusters 
C and D. If the Eps threshold i.s low enough that DBSCAN finds C and D as 
clusters, then A aud Band the points surrounding them will become a siugle 



530 C h apter 8 Cluster Analysis: Basic Concepts and Algorithms 

Figure 8.22. Sample data. Figure 8.23. K-<list plot for sample data. 

8888 
Figure 8.24. Four clusters embedded in noise. 

cluster. If the Eps threshold is high enough that DBSCAN finds A and B as 
separate dusters, and the points surrounding them are n1arked as noise, then 
C and D and the points surrounding them will also be max ked as noise. 

An Example 

To illu•trate the use of DBSCAN, we show the clusters that it finds in the 
relatively complicated two-din1ensional data set shown in Figure 8.22. This 
data set consists of 3000 two-dimensional points. The Eps threshold for this 
data was found by plotting the sorted distances of the fourth nearest neighbor 
of each point (Figure 8.23) and identifying the value at, which t.here is a sharp 
increase. We selected Eps = 10, whicl1 corresponds to the knee of the cmve. 
The clusters found by DBSCAN using these parameters, i.e., M inPts = 4 and 
E ps = 10, are shown in Figure 8.25(a). The core points, border points, and 
noise points are displayed in Figure 8.25(b). 

8.4.3 Strengths and W eaknesses 

Because DBSCAN uses a density-based definition of a cluster, it is relatively 
resistant to noise and can handle clusters of arbitrary shapes and sizes. Thus, 

8.4 DBSCAN 531 

(•) Clusters found by DB SCAN. 

x - Noise Point + - Border Point o- Core Point 

(b) C.ore, border, and noise points. 

Figure 8.25. DBSCAN clustering of 3000 two-dimensional points. 



532 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms 

DBSCAN can find many clusters that could not be found using K-means, 
such as those in Figure 8.22. As indicated previously, however, DBSCAN has 
trouble when the clusters have widely varying densities. It also has trouble 
with high-dimensional data because density is more difficult to define for such 
data. One possible approach to dealing with such issues is given in Section 
9.4.8. Finally, DBSCAN can be expensive when the computation of nearest 
neighbors requires computing all pairwise proximities, as is usually the case 
for high-dimensional data. 

8.5 Cluster Evaluation 

In supervised classification, the evaluation of the resulting classification model 
is an integral part of the process of developing a classification model, and 
there rue well-accepted evaluation measures and procedures, e.g., accuracy 
and cross-validation1 respectively. However, because of its very nature, cluster 
evaluation is not a well-developed or commonly nsed part of cluster analysis. 
Nonetheless, cluster evaluation, or cluster validation as it is more tradition­
ally called, is important, and this section will review some of the most common 
and easily applied approaches. 

There might be some confusion as to why cluster evaluation is necessary. 
Many times, cluster analysis is conducted as a part of an exploratory data 
analysis. Hence, evaluation seems like an unnecessarily complicated addition 
to what is suppDBed to be an infonnal proce;s. Furthermore, since there 
are a number of different types of clusters- in some sense. each clustering 
algorithm defines its own type of cluster- it may seem that each situation 
nllght require a different evaluation measure. For instance, K·means clusters 
might be evaluated in terms of the SSE, but for density-based clusters, which 
need not be globular, SSE would not work well a t all. 

Nouethele88, cluster evaluation should be a part of any cluster analysis. 
A key motivation is that almost every clustering algorithm will find clusters 
in a data set, even if that data set has no natural cluster structure. For 
instance, consider Figure 8.26, which shows the result of clustering 100 points 
that are randomly (uniformly) distributed on the unit square. The original 
points are shown in Figure 8.26(a), while the clusters found by DBSCAN, K­
mean.s, and complete link are shown in Figures 8.26(b), 8.26(c), and 8.26(d), 
respectively. Since DBSCAN found three clusters (after we set Eps by looking 
at the distances of the fourth nearest neighbors), we set K-means and complete 
link to find three clusters as well. (In Figure 8.26(b) t he noise is shown by 
the small markers.) However, the clusters do not look compelling for any of 

8.5 Cluster Evaluation 533 

the three methods. In higher dimensions, such problems cannot be so easily 
detected. 

8 .5.1 Overview 

Being able to distinguish whether there is non-random structure in the data 
is just one important aspect of cluster validation. The following is a list of 
several important issues for cluster validation. 

1. Determining the clustering tendency of a set of data, i.e. , distinguish­
ing whether non-random structure actually exists in the data. 

2. Determining the correct number of clusters. 

3. Evaluating how well the results of a cluster analysis fit the data without 
reference to external information. 

4. Comparing the resnlts of a cluster analysis to externally known results, 
such as externally provided class labels. 

5. Comparing two sets of clusters to determine which is better. 

Notice that items 1, 2, and 3 do not make use of any external information­
they are unsupervised techniques-while item 4 requires external information. 
Item 5 can be performed in either a supervised or an unBupervised manner. A 
further distinction can be made with respect to items 3, 4, and 5: Do we want 

to evaluate the entire clustering or just individual clusters? 
While it is possible to develop various numerical measures to assess the 

different aspects of cluster validity mentioned above, there are a number of 
challenges. First, a measure of cluster validity may be quite limited in the 
scope of its applicability. For example, most work on measures of clustering 
tendency has been done for two- or three-dimeusional spatial data. Second, 
we need a framework to interpre t any measure. If we obtain a value of 10 for a 
measure t hat evaluates how well cluster labels match externally prov ided class 
labels, does this value represent a good, fair, or poor match? The goodness 
of a match often can be measured by looking at the statistical distributiou of 
this value, i.e., how likely it is that such a value occurs by chance. Finally, if 
a measure is too complicated to apply or to understand, theu few will use it. 

The evaluation measures, or indices, that are applied to judge various 
aspects of cluster validity are traditionally classified into the following three 
types. 



534 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms 

• • • • • • • • • • • •• • • •• • • • • ... • • • • ••• . ... • • • • : .. .. • • • • • • • • • • • • . • • • "' • • ., •• ••• • • •• • • • • • ••• • • • • . • • • • .. • ~ ~ . • • • . '· • • . • .. • • • •• .. •• 
• • • 

• ·~ • . .... 
•• • • . . 
• •• •• • • . . 

~ • •• • • . • . • • • • . . . . . 
• • • • • • • • • . . . .. • 
(a) Original points. (b) Three clusters found by DB SCAN. 

• • . . 
•• • . . 

• • • . . . • 
• • • . . • 

• • . 
, • ' ' .. . . • • • . .. • • • . • ••• • • . 

• • • . . • .... • • • • • • 
• • • • • • ·~ • ·~ • •• • • • • • • • •• • • • • • • . • • • .• • • • • •• • • •• • • • • • • ... • • •• ~ •• • • • • • • • • • 
(c) Thcee clusters found by K-means. (d) Three dusters found by complete 

link. 

Figure 8.26. Clustering of 100 uniformly distributed points. 

8.5 Cluster Evaluation 535 

Unsupervised. Measures the goodness of a clustering structure without re-­
spect to external information. An example of this is the SSE. Unsu. 
pervised measures of cluster validity are often further divided into two 
classes: measures of cluster cohesion (compactness, tightness), which 
determine how closely related the objects in a cluster are, and measures 
of cluster separation (isolation), which determine how distinct or well­
separated a cluster is from other clusters. Unsupervised measures are 
often called internal indices because they use only information present 
in the data set . 

Supervised. Measures the extent to which the clustering structure discovered 
by a clustering algorithm matcbetS some exte rnal structure. An example 
of a supervised index is entropy, which measures how well cluster labels 
match externally supplied class labels. Supervised measures are often 
called external indices because they use information not present in 
the data set . 

Relative. Compares different clusterings or clusters. A relative cluster eval­
uation measure is a supervised or rmsupervised evaluation measure that 
is used for the purpose of comparison. Thus, re lative measures are not 
actually a separate type of cluster evaluation measure, but are instead a 
specific use of such measures. As an example, two K·means clusterings 
can be compared using either the SSE or entropy . 

In tbe remainder of tbis section, we provide specific details concerning clus­
ter validity. We first describe topics related to unsupervised cluster evaluation, 
beginning with (1) measures based on cohesion and separation, and (2) two 
techniques based on the proximity matrix. Since these approaches are useful 
only for partitional sets of clusters, we also describe the popular cophenetic 
correlation coefficient. which can be used for the unsupervised evaluation of 
a hierarchical clustering . We end our diBcussion of Ul15upervised evaluation 
with brief discussions about finding t he correct nwnber of clusters and evalu­
ating clustering tendency. We then consider supervised approaches to cluster 
validity, such as entropy, purity, and the Jaccard measure. We conclude this 
section with a short discussion of how to interpret t he values of (unsupervised 
or supervised) validity measures. 



536 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms 

8.5.2 Unsupervised Cluster Evaluation Using Cohesion and 
Separation 

Many internal measures of cluster validity for partitional clustering schemes 
are based on the notions of cohesion or separation. In this section, we use 
cluster validity measures for prototype- and graph-based clustering techniques 
to explore these notions in some detail. In the process, we wiU also see some 
interesting relationshlps between prototype- and graph-based clustering. 

In general, we can consider expressing overall cluster validity for a set of 
K clusters as a weighted sum of the validity of individual clusters, 

K 

overall validity= L w; validity(C;). (8.8) 
i=l 

The validity function can be cohesion, separation, or some combination of these 
quantities. The weights will vary depending on the cluster validity measure. 
In some cases, the weights are simply 1 or the size of the cluster, while in otber 
cases they reflect a more complicated property, such as the square root of the 
cohesion. See Table 8.6. If the validity function is cohesion, then higher values 
are better. If it is separation, then lower values are better. 

Graph-Based View of Cohesion and Separation 

For graph-based clusters, the oohesion of a cluster can be defined as the sum of 
the weights of the links in the proximity graph that connect points within the 
cluster. See Figure 8.27(a). (Recall that the proximity graph has data objects 
as nodes, a link between each pair of data objects, and a weight assigned to 
each link that is tbe proximity betweeu the two data objects connected by the 
linl<.) Likewise, the separation between two clusters can be measured by the 
sum of the weights of the links from points in one cluster to points in tbe otber 
cluster. This is illustrated in Figure 8.27{b). 

Mathematically, cohesion and separation for a graph-based cluster can be 
expressed using Equations 8.9 and 8.10, respectively. The proximity function 
can be a similarity, a dissimilarity, or a simple function of these quantities. 

cohesion( C;) 

separation(C;, c,) 

L proximity( X. y) 
xEC~ 
yEC~ 

L proximity( X, y) 
x E C 1 
y ECJ 

{8.9) 

(8.10) 

8.5 Cluster Evaluation 537 

(a) Cohesion. (b) Separation. 

Figure 8.27. Graph-based view of cluster cohesion and separation. 

Prototype-Based View of Cohesion and Separation 

For prototype-based clusters, tbe cohesion of a cluster can be defined as the 
sum of the proximities with respect to the prototype (centroid or medoid) of 
the clugter. Similarly

1 
the separation between two clusters can be measured 

by the proximity of the two cluster prototypes. This is illustrated in Figure 
8.28, where the centroid of a cluster is indicated by a "+". 

Cohesion for a prototype-based cluster is given in Equation 8.11 , while 
two measures for separation are given in Equations 8.12 and 8.13, respec­
tively, where c., is tbe prototype (centroid) of cluster C; and c is tbe overall 
prototype (centroid). There are two measures for separation because, as we 
will see shortly, the separation of cluster prototypes from an overall prototype 
is sometimes directly related to the separation of cluster prototypes from one 
another. Note that Equation 8.11 is tbe cluster SSE if we let praximity be the 
squared Euclidean distance. 

cohesion( C;) 

separation(C,, Cj) 

sepamtion(C;) 

L p1'0ximity(x .c; ) 
x EC, 

proximity( C;, c j) 

proximity( C;, c) 

Overall Measures of Cohesion and Separation 

(8.11) 

(8.12) 

(8.13) 

The previous definitions of cluster cohesion and separation gave us some sim­
ple and well-defined measures of cluster validity that can be combined into 
an overall measure of cluster validity by using a weighted sum, as indicated 



538 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms 

,-·. 
;:' 

,' ·-- --+',, + -----l- -------------7------- + 
· .• . ' 

(a) Cohesion. (b) Separation. 

Figure 8.28. Prototype-basad view of cluster cohesion and separation. 

in Equation 8.8. However, we need to decide what weights to use. Not sur­
prisingly, the weights used can vary widely, although typically they ace some 
measure of cluster size. 

Table 8.6 provides examples of validity measures based on cohesion and 
separation. I 1 is a measure of cohesion in terms of the pairwise proximity of 
objects in the cluster divided by the cluster size. I2 is a measure of cohesion 
based on the snm of the proximities of objects in the cluster to the cluster 
centroid. £1 is a measure of separation defined as the proximity of a cluster 
centroid to the overall centroid multiplied by the number of objects in the 
duster. (/t, which is a measure based on both cohesion and separation, is 
the sum of the pairwise pmximity of all objects in the cluster with all objects 
outside the cluster-the total weight of the edges of the proximity graph that 
must be cut to separate the cluster from all other clusters--ilivided by the 

sum of the pairwise proximity of objects in the cluster. 

Table 8.6. Table of graJ*l.based cluster evaluation measures. 

Name Cluster Measure Cluster Weight Type 
graph-based 

I , ~.,c, proximity(x, y) _!__ cohesion 
YEC 

m, 

prototype-bosed 
I, ~xEG, proximity(x.c;) 1 cohesion 

prototype-based 
£, proximi-ty( C;, c) t1li separation 

~~-' ~xEc, proximity(x,y 
1 

graph-based 
g, 

~.Ec, proximity(x,y) 
separation and 

J7-t yec1 yec, cohesion 

8.5 Cluster Evaluation 539 

Note that any unsupervised measure of cluster validity potentially can be 
used as an objective function for a clustering algorithm and vice versa. The 
CLUstering TOolkit (CLUTO) (see the bibliographic notes) uses t he cluster 
evaluation measures described in Table 8.6, as well as some other evaluation 
measures not mentioned here, to drive the clustering process. It does this by 
using an algorithm that is similar to the increment al K-means algorithm dis­
cussed in Section 8.2.2. Specifically, each point is assigned to the cluster that 
produces the best value for the cluster evaluation function. The cluster eval­
uation measure I2 corresponds to traditional K-means and produces clusters 
that have good SSE values. The other measures produce clusters that are not 
as good with respect to SSE, hut that are more optimal with respect to the 
specified cluster validity measure. 

Relationship between Prototype-Based Cohesion and Graph-Based 
Cohesion 

While the graph-based and prototype-based approaches to measuring the co­
hesion and separation of a cluster seem distinct, for some proximity measures 
they are equivalent. For instance, for the SSE and points in Euclidean space, 
it can be shown (Equation 8.14) that the average pairwise distance between 
the points in a cluster is equivalent to the SSE of the cluster. See Exercise 27 
on page 566. 

1 
Cluster SSE= L dist(c;, x)2 =

2
m; L L dist(x,y)2 

xEC. xECt yECo 

(8.14) 

Two Approaches to Prototype-Based Separation 

When proximity is measured by Euclidean distance, the traditional measure of 
separation between clusters is the between group sum of squares (SSB). which 
is the sum of the squared distance of a cluster centroid, C;. to the overall mean, 
c , of all the data points. By summing the SSB over all clusters, we obtain the 
total SSB, which is given by Equation 8.15, where c; is the mean of the ;th 

cluster and c is the overall mean. The higher the total SSB of a clustering, 
the more separated the clusters are fmm one another. 

K 

Total SSB = L m; dist(c,.c)2 (8.15) 
i-= 1 

It is straightforward to show that the total SSB is directly related to the 
pairwise distances between the centroids. In particular, if the cluster sizes are 



540 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms 

equal, i.e., m, = m/K, then this relationship takes the simple form given by 
Equation 8.16. (See Exercise 28 on page 566.) It is this type of equivalence that 
motivates the definition of prototype separation in terms of both Equations 
8.12 and 8.13. 

l K K 

'Ibtal SSB = 2K LL 'ji dist(c; , cj) 2 

i=lj=l 

{8.16) 

Relationship between Cohesion and Separation 

In some cases, there is also a strong relationship between cohesion and separa­
tion. Specifically, it is possible to show that the sum of the total SSE and the 
total SSB is a coru;tant; i.e., that it is equal to the total sum of squares (TSS), 
which is the sum of squares of the distance of each point to the overall mean 
of the data. The importance of this result is that minimizing SSE (cohesion) 
is equivalent to maximizing SSB (separation). 

We provide the proof of this fact below, since the approach illustrates 
techniques that are also applicable to proving the relationships stated in the 
last two sections. To simplify the notation, we assume that the data is one­
dimensionaL i.e., dist(x, y) = (:r- y)2

. Also. we use the fact that the eros~>- term 
L;{:, LxEC,(:r- c;)(c- c;) is 0. (See Exercise 29 on page 566.) 

TSS 
K 

L L (x-c)2 
t=lzECt 

K 

L L ((x - c;) - (c - e;))2 

1\ F\ 1\ 

L L (x -ci)' - 22: L (x - c; )(c -ci ) + L L (c- e; )2 

l=l z ECt 1=l r ECt i=L x ECt 

r: r: 
L L (x - ci)>+ L L (c - c, )> 
l=l .rEG, t=l .~:EG, 

1\ h-

L L (x- c,)>+ L IC;I{c-e;)2 
i=l.rEC, i=l 

SSE+ SSB 

8.5 Cluster Evaluation 541 

Evaluating Individual Clusters and Objects 

So far, we have focused on using cohesion and separation in the overall eval­
uation of a group of clusters. l'<lany of these measures of cluster validity also 
can be used to evaluate individual clusters and objects. For example, we can 
rank individual clusters according to their specific value of cluster validity, i.e .. 
cluster cohesion or separation. A cluster that has a high value of cohesion may 
be considered better than a clruster that has a lower value. This information 
often can be used to improve the quality of a clustering. If. for example, a 
cluster is not very cohesive, then we may want to split it into several subclu~ 
ters. On the other hand, if two clusters are relatively cohesive, but not well 
separated, we may want to merge them into a single cluster. 

We can also evaluate the objects within a cluster in terms of their con­
tribution to the overall cohesion or separation of the cluster. Objects that 
contribute more to the cohesion and separation are near the '1interior"' of the 
cluster. T hose objects for which the opposite is true are probably near the 
"edge" of the cluster. In the following section, we consider a cluster evalua­
tion measure that uses an approach based on these ideas to evaluate points, 
clusters, and the entire set of clusters. 

The Silliouette Coefficient 

The popular method of silhouette coefficients combines both cohesion and sep­
aration. The following steps explain how to oompute the silhouette ooefficient 
for an individual point, a process that consists of the following three steps. 
We use dist!lllces, but an analogous approach can be used for similarities. 

1. For t he ;th object, calculate its average distance to all other objects in 
its cluster. Call this value a,, 

2. For the ;th object and any clruster not containing the object, calculate 
the object's average distance to all the objects in the given cluster. Find 
the minimum such value with respect to all clusters; call this value b;. 

3. For the ;th object, the silhouette coefficient is'' = (b; - a,)j max( a;, b;). 

The value of the silhouette coefficient can vary between -1 and 1. A 
negative value is undesirable because this corresponds to a case in which Cli, 

the average dist!lllce to points in the cluster, is greater than b;, the minimum 
average distance to points in another clnster. We want the silhouette coefficient 
to be positive (a; < b, ), and for a; to be as close to 0 as possible, since the 
coefficient assumes its maximum va1ue of 1 when a;, = 0. 



542 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms 

··- .. .. .. _ .. .. -.;• .. -' . 
~ ~ M U U M U ~ M 

Slhouetlll Coelllcient 

Figure 8.29. Silhouette coeffiCients for points in ten clusters. 

We can compute tl1e average silhouette coefficient of a cluster by simply 
taki11g the average of the silhouette coefficients of points belonging to the 
cluster. An overall measure of the goodness of a clustering can he obtained by 
computing the average silhouette coefficient of all points. 

Example 8.8 (Silhouette Coefficient). Figme 8.29 sho'-'"S a plot of the 
silhouette coefficients for points in 10 clusters. Darker shades indicate lower 
silhouette coefficients. • 

8 .5.3 Unsupervised Cluster Evaluation Using the Proximity 
Matrix 

In this section, we exrunine a couple of unsupervised approaches for assessing 

cluster validity that are based on the proximity matrix. The first compares an 
actual and idealized proximity matrix, while the second uses visualization. 

Measuring C luster VaHdity via Correlation 

If we are given the similarity matrix for a data set and the cluster labels from 
a cluster analysis of the data set, then we can evaluate the "goodness" of 
the clusteru1g by looking at the correlation between the similarity matrix and 
an ideal version of the similarity matrix based on the cluster labels. (With 
minor manges, the following applies to proximity matrices, but for sinlplicity, 
'''" discuss only similarity matrices.) More specifically, an ideal cluster is one 
whose points have a similarity of 1 to all points in the cluster, and a sim.i.larity 
of 0 to all points in other clusters. Thus, if we sort the rows and columns 
of the sinlilarity matrix so tl1at all objects belonging to the same class are 
together, then an ideal similarity matrix has a b lock diagonal structure. In 
other words, the similarity is non-zero. i.e., 1, inside the blocks of the similarity 

8.5 Cluster Evaluation 543 

matrix whose entries represent intra-cluster sin1ilarity, and 0 elsewhere. The 
ideal similarity matrix is constructed by creating a matrix that has one row 
and one column for each data point-just like an actual similarity matrix­
and assigning a 1 to an entry if the associated pair of points belongs to the 
same cluster. All other entries are 0. 

High correlation between the ideal and actual similarity matrices indicates 
that the points that belong to the same cluster are close to each other, while 
low correlation indicates the opposite. (Since the actual and ideal similarity 
matrices are symmetric, the correlation is calculated oaly among the n(n-1)/2 
entries below or above the diagonal of the matrices.) Consequently, this is not 
a good measure for many density- or contiguity-based clusters , because they 
are not globular and may be closely intertwined with other clusters. 

Example 8.9 (Correlation of Actual and Ideal Similarity Matrices) . 
To illustrate this measure, we calculated the correlation between the ideal and 
actual similarity matrices for the K-means clusters shown in Figure 8.26(c) 
(random data) and Figure 8.30(a) (data with three well-separated clusters). 
The correlations were 0.5810 and 0.9235, respectively, which reflects the ex­
pected result that the clusters found by K-means in the random data are worse 
than the clusters found by K-means in data with well-separated clusters. • 

Judging a Clustel"ing Visually by Its Similarity Matrix 

The previous technique suggests a more general, qualitative approach to judg­
ing a set of clusters: Order the similarity matrix with respect to cluster lahels 
and then plot it. In theory, if we have well-separated clusters, then the simi­
larity matrix should be roughly block-diagonal. If not, t hen the patterns dis­
played in the sinlilarity matrix can reveal the relationships between clusters. 
Again, all of this can be applied to dissimilarity matrices, hut for simplicity, 
we will only discuss similarity matrices. 

Example 8.10 (Visualizing a Similarity Matrix). Consider the points in 
Figure 8.30(a), which form three well-separated clusters. If we use K-means to 
group these points into three clusters, then we should have no trouble finding 
these clusters since they are well-separated. The separation of these clusters 
is illustrated by the reordered similarity matrix shown in Figure 8.30(b ). (For 
uniformity, we have transformed the distances into similarities nsing the for­
mulas= 1 - (d -min..d)/(max..d-min..d).) Figure 8.31 shows the reordered 
similarity matrices for clusters found in the random data set of F igure 8 .26 by 
DBSCAN, K-means, and complete link. 



544 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms 

.. 
0.6 

0.2 

'o 0.2 0.4 0.6 •• 

(a) Well-separnted dusters. (b) Similarity matrix sorted by K-means 
cluster labels. 

Figure 8.30. Similarity matrix for wel~separated clusters. 

The well-separated clusters in Figure 8.30 show a very strong, block­
diagonal pattern in the reordered similarity matrix. However, there are also 
weak block diagonal patterns- see Figure 8.31- in the reordered similarity 
matrices of the clusterings found by K-means, DBSCAN, and complete link 
in the random data . Just as people can find patterns in clouds, data mining 
algorithms can find clusters in random data. While it is entertaining to find 
pat terns in douds, it is pointless and perhaps embarrassing to find clusters in 
noise. • 

This approach may seem hopelessly expensive for large data sets, since 
the oornpntation of the pra.xirnity matrix takes 0( m2 ) time, where m is the 
number of objects, but with sampling, t his method can still be used. We cru1 
take a sample of data points from each cluster, compute the sinrilarity between 
t hese points, ru1d plot t.he result. It may be necessary to oversample small 
clusters and undcrsamplc large ones to obtain an adequate represcntat.ion of 
all clusters. 

8.5.4 Unsupervise d Evaluation of Hie r archical Clustering 

The previous approaches to cluster evaluation are intended for partit.ioual 
clusterings. Here we discuss the cophenetic correlation1 a popular evaJuation 
measure for hierarchical clusterings. T he cophenetic distance between two 
objects is t he proximity at which an agglomerative hierarchical clustering tecl1-

(a) Similarity matrix 
sorted by DBSCAN 
cluster labels. 

8.5 Cluster Evaluation 545 

(b) Similarity matrix 
sorted by K-rueaus 
cluster labels . 

1: 
u· 
-

(c) Similarity matrix 
sorted by complete link 
cluster labels. 

Figure 8.31. Similarity matrices for clusters from random data. 

nique puts the objects in the same cluster for the first time. For example, if at 
some point in the agglomerative hierarchical clustering process, the smallest 
distance between the two clusters that are merged is 0.1, then all points in 
one cluster have a cophenetic distance of 0.1 with respect to the points in the 
other cluster. In a cophenetic distance matrix, the entries are the cophenetic 
distances between each pair of objects. The co phenetic distauce is different 
for each hierarchical clustering of a set of points. 

Example 8.11 (Cophenetic Distance Matrix). Table 8. 7 shows the cophen­
t ic distance matrix for the single link clustering shown in Figure 8.16. (The 
data for this figure consists of the 6 two-dimensional points given in Table 
8.3.) 

Table 8.7. Cophenetic distance matrix for single link and data in table 8.3 

Point PI P2 P3 P 4 P5 P6 
PI 0 0.222 0.222 0.222 0.222 0.222 
P2 0.222 0 0.148 0.151 0.139 0.148 
P3 0.222 0.148 0 0.151 0.148 0.110 
P4 0.222 0.151 0.151 0 0.151 0.151 
P5 0.222 0.139 0.148 0.151 0 0.148 
P6 0.222 0.148 0.110 0.151 0.148 0 

• 
The CoPhenetic Corre lation Coefficient (CPCC) is the correlation 

between the entries of this matri..x and the original d.issi.Jnilarity matrix aud is 



546 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms 

a standard measure of how well a hierarchical clustering (of a particular type) 
fits the data. One of the most common uses of tbis measure is to evaluate 
which type of hierarchical clustering is best for a particular type of data. 

Example 8.12 (Cophenetic Correlation Coefficient). We calculated the 
CPCC for the hierarchical clusterings shown in Figures 8.16-8.19.These values 
are shown in Tahle 8.8. The hierarchical clustering produced by the single 
link technique seems to fit the data less well than the clusterings produced by 
complete link, group average, and Ward's method. 

Table 8.8. Cophenetic correlation coeffident for data of Table 8.3 and four agglomeralive hierarchical 
clustering techniques. 

Technique CPCC 
Single Link 0.44 

Complete Link 0.63 
Group Average 0.66 

Ward's 0.64 

• 
8.5.5 Determining the Correct Number of Clusters 

Various unsupervised cluster evaluation measures can be used to approxi­
mately determine the correct or natural nnmber of clusters. 

Example 8.13 (Number of Clusters). The data set of Figure 8.29 has 10 
nat ural clusters. Figure 8.32 shows a plot of the SSE versus the number of 
clusters for a (bisecting) K-means clustering of the data set, while Figure 8.33 
shows the average silhouette coefficient versus the number of clusters for the 
same data. There is a distinct knee in the SSE and a distinct peak in the 
silhouette coefficient when the number of clusters is equal to 10. • 

Thns, we can try to find the natural number of clusters in a data set by 
looking for the number of clusters at wbich there is a knee, peak, or dip in 
the plot of the evaluation measure when it is plotted against the number of 
clusters. Of course, such an approach does not always work well. Clusters may 
be considerably more intertwined or overlapping than those shown in Figure 
8.29. Also, the data may consist of nested clusters. Actually, the clusters in 
Figure 8.29 are somewhat nested: i.e., there are 5 pairs of clll!'lters since the 
clusters are closer top to bottom than they are left to right. There is a knee 
that indicates tbis in the SSE curve, but the silhouette coefficient curve is not 

Figure 8.32. SSE versus number of clusters for 
the data of Figure 9.29. 

8.5 Cluster Evaluation 54 7 

Figure 8.33. Average silhouette coefficient ver­
sus number of cluslets for the data of Figure 
8.29. 

as clear. In sunmmry, wbile caution is needed, the technique we have just 
described can provide insight into the number of clusters in the data . 

8.5.6 Clustering Tendency 

One obvious way to determine if a data set has clusters is to try to cluster 
it. However, almost all clustering algorithms will dutifully find clusters when 
given data. To address tbis issue, we conld evaluate the resulting clusters and 
only claim that a data set has clusters if at least some of the clusters are of good 
quality. However, tbis approach does not address the fact the clusters in the 
data can be of a different type than those sought by our clustering algorithm. 
To handle tbis additional problem, we could use multiple algorithms and again 
evaluate the quality of the resnlting clusters. If the clusters are uniformly poor, 
then tbis may indeed indicate that there are no clusters in the data. 

Alternatively, and this is the focus of measures of clustering tendency, we 

can try to evaluate whether a data set has clusters without clustering. The 
most common approach, especially for data in Euclidean space, haB been to 
use statistical tests for spatial randonmess. Unfortunately, choosing the cor­
rect model, estimating the parameters, and evaluating the statistical siguifi­
cance of the hypothesis that the data is non-random can be quite challenging. 
Nonetheless, many approaches have been developed, most of them for points 
in low-dimensional Eudidean space. 

Example 8.14 (Hopkins Statistic). For this approach, we generatep points 
that are randomly distributed across the data space and also sample p actual 



548 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms 

data points. For both sets of points we find the distance to the nearest neigh­
bor in the original data set. Let the u; be the nearest neighbor distances of the 
artificially generated points, while the w; are the nearest neighbor distances 
of the sample of points from the original data set. The Hopkins statistic H is 
then defined by Equation 8.17. 

H = l:f-1 w; 

Lf=l Ui + Lf=l Wi 
(8.17) 

If the randomly generated points and the sample of data points have 
roughly the same nearest neighbor distances, then H will be near 0.5. Values 
of H near 0 and 1 indicate, respectively, data that is highly clustered and 
data that is regularly distributed in the data space. To give an example, the 
Hopkins statistic for the data of Figure 8. 26 was computed for p = 20 and 100 
different trials. The average value of H was 0.56 with a standard deviation 
of 0.03. The same experiment was performed for the well-separated points of 
Figure 8.30. The average value of H WllB 0.95 with a standard deviation of 
0.006. • 

8 .5 .7 Supervised Measures of Cluster Validity 

When we have external information about data, it is typically in the form of 
externally derived class labels for the data objects. In such cases, the usual 
procedure is to measure the degree of correspondence between the cluster labels 
and the class labels. But why is this of interest? After all, if we have the class 
labels, then what is the point in performing a cluster analysis? Motivations for 
such an analysis are the comparison of clustering techniques with the "ground 
truth" or the evaluation of the extent to which a manual classification process 
can be automatically produced by cluster analysis. 

We consider two different kinds of approaches. The first set of techniques 
nse measures frum classification, such as entropy, purity, and the F-measure. 

These measures evaluate the extent to which a cluster contains objects of a 
single class. The second group of methods is related to the similarity measures 
for binary data, such as the Jaccard measure that we saw in Chapter 2. These 
approaches measure the extent to which two objects that are in the same class 
are in the same cluster and vice versa. For convenience, we will refer to these 
two types of measures as classification-oriented and similarity-oriented, 
respectively. 

8.5 Cluster Evaluation 549 

Classification-Oriented Measures of Cluster Validity 

There are a number of measures- entropy, purity, precision, recall, and the 
F-measure-that are commonly used to evaluate the performance of a classi­

fication model. In the case of ciaBSification, we measure the degree to which 
predicted class labels correspond to actual class labels, but for the measures 
just mentioned, nothing fundamental is changed by using cluster labels in­
stead of predicted class labels. Next, we quickly review the definitions of these 
meMures, which were discussed in Chapter 4. 

Entropy: The degree to which each cluster consists of objects of a single class. 
For each cluster, the class distribution of the data is calculated first, i.e., 
for cluster j we compute Pij, the probability that a member of cluster i 
belongs to class j as Pij = mij / m;, where m; is the number of objects in 
cluster i and m;; is the number of objects of class j in cluster i. Using 
this class distribution. the entropy of each cluster i is calculated using 
the standard formula, e; = - LJ=1 Pii log2 p;;, where L is the number of 
classes. The total entropy for a set of clusters is calculated as the swn 
of the entropies of each cluster weighted by the size of each cluster, i.e., 
e = 2:~1 ~e,, where K is the number of clusters and m is the total 
number of data points. 

Purity: Another measure of the extent to which a cluster contains objects of 
a single class. Using the previous terminology, the purity of cluster i is 
p; = maxp;j, the overall purity of a clustering is pu•·ity = 2:~1 ~p;. 

1 

Precision: The fraction of a cluster that consists of objects of a specified class. 
The precision of cluster i with respect to class j is precision(i,j) = PiJ· 

Recall: The extent to which a cluster contains all objects of a specified class. 
The recall of cluster i with respect to class j is •·ecall(i.j) = m;;/mj, 
where mi is the number of objects in class j. 

F-measure A combination of both precision and recall that measures the 
extent to which a cluster contains only objects of a particular class and all 
objects of that class. The F-measure of cluster i with respect to class j is 
F(i, j) = {2 x precision(i,j) X recall(i,j)) / (precision (i, j) +recall(i,j)). 

Example 8 .15 (Supervised Evaluation Measures). We present an exam­
ple to illustrate these measures. Specifically, we use K-means with the cosine 
similarity measure to clnster 3204 newspaper articles from the Los Angeles 



550 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms 

Table 8.9. K-means clustering results for the lA Times document data set. 

Cluster Enter- Financial Foreign Metro National Sports Entropy Purity 
tainment 

1 3 5 40 506 96 27 1.2270 0. 7474 
2 4 7 280 29 39 2 1.1472 0.7756 
3 1 1 1 7 4 671 0.1813 0.9796 
4 10 162 3 119 73 2 1.7487 0.4390 
5 331 22 5 70 13 23 1.3976 0.7134 
6 5 358 12 212 48 13 1.5523 0.5525 

Total 354 555 341 943 273 738 1.1450 0.7203 

Times. These articles come from six clifferent classes: Entertainment, Finan­
cial, Foreign, Metro, National, and Sports. Table 8.9 shows the results of a 
K-means clustering to find six clusters. The first column indicates tbe clus­
ter, while the next six columns together form the confusion matrix; i.e. , these 
columns indicate how the documents of each category are distributed among 
the clusters. The last two columns are the entropy and purity of each cluster, 
respectively. 

Ideally, each cluster will contain documents from only one class. In reality, 
each cluster contains documents from many classes. Nevertheless, many clus­
ters contain documents primarily from jnst one class. In particular l clnster 

3, which contains mostly documents from the Sports section, is exceptionally 
good, botb in terms of pnrity and entropy. The purity and entropy of the 
other clusters is not as good, but can typically be greatly improved if the data 

is partitioned into a larger number of clusters. 
Precision, recall, and the F-measure can be calculated for each cluster. To 

give a concrete example, we consider cluster 1 and the Metro clasB of Table 
8.9. The precision is 506/677 = 0.75, recall is 506/943 = 0.26, and hence, the 
F value is 0.39. In contrast, the F value for cluster 3 and Sports is 0.94. • 

Similarity-Orie nted M e asures of Cluster Validity 

The measures that we discnss in this section are all based on the premise 
that any two objects that are in the same cluste r should be in the same class 
and vice versa. We can view this approach to closter validity as involving 
the comparison of two matrices: ( l) the ideal ci uster similarity matrix 
discussed previously, which has a 1 in the ijlh entry if two objects, i and j, 
are in the same cluster and 0, otherwise, and (2) an ideal class similarity 
matrix defined with respect to class labels, which has a 1 in the ;j'h entry if 

8.5 Cluster Evaluation 551 

two objects, i and j, belong to the same class, and a 0 otherwise. As before, we 
can take the correlation of these two matrices as the measure of cluster valiclity. 
This measure is known as the r statistic in clustering validation literature. 

Example 8.16 (Correlation between Cluster and Class Matrices). To 
demonstrate this idea more concretely, we give an example involving five data 
points, Pl·P2.P3 ,P4.P5. two clusters, C1 = {P! ,P2.P3) and Co= {p,,p,), and 
two classes, Lt = {pJ,P2} and £2 = {P3-P4· P5}- The ideal cluster and class 
similarity matrices are given in Tables 8.10 and 8.11. The correlation between 
the entries of these two matrices is 0.359. 

Table 8.10. Ideal cluster sim~arity matrix. Table 8.11. Ideal class similarity matrix. 

Point p1 p2 p3 p4 p5 Point p1 p2 p3 p4 p5 
p1 1 1 1 0 0 pl 1 1 0 0 0 
p2 1 1 1 0 0 p2 1 1 0 0 0 
p3 1 1 1 0 0 p3 0 0 1 1 1 
p4 0 0 0 1 1 p4 0 0 1 1 1 
p5 0 0 0 1 1 p5 0 0 1 1 1 

• 
More generally, we can use any of the measures for binary similarity that 

we saw in Section 2.4.5. (For example, we can convert these two matrices into 
binary vectors by appending the rows .) We repeat the definitions of the four 
quantities used to define those similarity measures, but modify our descriptive 
text to fit the current context. Specifically, we need to compute the following 
four quantities for all pairs of distinct objects. (There are m(m - 1)/ 2 such 
pairs, if m is the number of objects.) 

loo = number of pairs of objects having a different class and a different cluster 
lo1 = number of pairs of objects having a clifferent class and the same cluster 
ho = number of pairs of objects having the same class and a clifferent cluster 
/11 = nnmher of pairs of objects having the same class and the same cluster 

In particular, the simple matching coefficient, which is known as the Rand 
statistic in this context, and the Jaccard coefficient are two of the most fre­
quently used cluster validity measures. 

Rand statistic = /oo + In 
loo + lot + ho + /11 

(8.18) 



552 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms 

Jaccard coefficient= f, ; 11 f (8.19) 
01 + 10 + 11 

Example 8.17 (Rand and Jaccard Measures). Based on these formulas, 
we can readily compute the Rand statistic and Jaccard coefficient for the 
example based o n Tables 8.10 and 8.11. Noting that /oo = 4. /01 = 2, ho = 2, 
and !11 = 2, the Rand statistic= (2 + 4)/10 = 0.6 and the Jaccard coefficient 
= 2/(2+2+2 ) = 0.33. • 

We also note that the four quantities, foo, /oJ. J,o, and /u. define a con­
tingency table as shown in Table 8.12. 

Table 8.12. Twcrway contingency table for determining wt-ett-er pairs of objects are in the same class 
and same cluster. 

.-------<0,-ru~.r~~~~ 

Previously, in the context of association analysis-see Section 6.7.1- we 
presented an extensive discussion of measures of association that can be used 
for this type of contingency table. (Compare Table 8.12 with Table 6. 7.) Those 
measures can also be applied to cluster validity. 

Cluster Validity for Hierarchical Clusterings 

So far in this section, we have discussed supervised measures of cluster va­
lidity only for partitional clusterings. Supervised evaluation of a hierarchical 
clustering is more difficult for a variety of reasons, including the. fact that a 
preexisting hierarchical structure often does not exist. Here, we will give an 
example of an approach for evaluating a hierarchical clustering in terms of a 
(flat) set of class labels, which are more likely to be available than a preexisting 
hierarchical structure. 

The key idea of this approach is to evaluate whether a hierarchical clns­
tering contains, for each class. at least one cluster that is relatively pure and 
includes most of the objects of that class. To evaluate a hierarchical cluster­
ing with respect to this goal, we compute. for each class, the F-measure for 
each clnster in the cluster hierarchy. For each class, we take t he maximum F ­
measure attained for any cluster. Finally, we calculate an overall F -measure for 
the hierarchical clustering by computing the weighted average. of all per-class 
F-measures, where the weights are based on the class sizes. More formally, 

8.5 Cluster Evaluation 553 

this hierarchical F-measure is defined as follows: 

F ="' mJ maxF(i.j) 
~ m ' 

j 

where the maximum is taken over all clusters i at all levels, m1 is the number 
of objects in class j, and m is the total number of objects. 

8.5.8 Assessing the Significance of Cluster Validity Measures 

Cluster validity measures are intended to help us measure the goodness of the 
clusters that we have obtained. Indeed, they typically give us a single number 
as a measure of that goodness. However, we are then faced with the problem 
of interpreting the significance of this number. a task that may be even more 
difficult. 

T he minimum and maximum values of cluster evaJuation mea.sUies may 
provide some guidance in many cases. For instance, by definition, a purity of 
0 is bad, while a purity of 1 is good, at least if we trust our class labels and 
want our cluster structure to re:Hect the class structure. Likewise, an entropy 
of 0 is good, as is an SSE of 0. 

Sometimes, however, there may not be a mirrimwn or max.imwn value, 
or the scale of the data may affect the interpretation. Also, even if there 
are rninimwn and maximum values with obvious interpretations, intern1ediate 
values stilJ need to be interpreted. In some cases, we can use an absolute 
standard. If, for example, we are clustering for utility, we may be willing to 
tolerate only a certain level of error in the approximation of our points by a 
cluster centroid. 

But if this is not the case, then we must do something else. A common 
approach is to interpret the value of our validity measure in statistical tenns. 
Specifically, we attempt to judge how likely it is that our observed value may 
be achieved by random chance. The value is good if it is unusual; i.e .• if it is 
unlikely to be the result of random chance. The motivation for this approach 
is that we are only interested in clusters that reflect non-random structure in 
the data, and such structures should generate unusually high (low) values of 
our cluster validity measure, at least if the validity measures are designed to 
reflect the presence of strong cluster structure. 

Example 8.18 (Significance of SSE). To show how this works, we present 
an example b!l.'led on K-means and the SSE. Suppose that we want a measure of 
how good the well-separated clusters of Figure 8.30 are with respect to random 
data. We generate many random sets of 100 points having the same range as 



554 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms 

0.04 
SSE 

Figur11 8.34. Histogram of SSE for 500 random data sets. 

the points in the three clusters, find three clusters in each data set using K­
means, and accumulate the distribution of SSE values for these clusterings. By 
using this distribution of the SSE values, we can then estimate the probability 
of the SSE value for the original clusters. Figure 8.34 shows the histogram of 
the SSE from 500 random runs. The lowest SSE shown in Figure 8.34 is 0.0173. 
For the three clusters of Figure 8.30, the SSE is 0.0050. We could therefore 
conservatively claim that there is less than a 1% chance that a clustering such 
as that of Figure 8.30 could occur by chance. • 

To conclude, we stress that there is more to cluster evaluation---supervised 
or urumperv:ised-than obtaining a numerical mem;ure of cluster validity. U n­

less this value has a natural interpretation based on the definition of the mea­
sure, we need to interpret th.is value in some way. If our cluster evaluation 
measure is defined such that lower values indicate stronger clusters, then we 
can use statistics to evaluate whether the value we have obtained is unusually 
low, provided we have a distribution for the evaluation measure. We have pre­
sented an example of how to find such a distribution, but there is considerably 
more to this topic, and we refer the reader to the bibliographic notes for more 
pointers. 

Fina1ly, even when an evaluation measure is used aa a relative measure, 
i.e., to compare two clusterings, we still need to assess the significance in the 
difference between the evaluation measures of the two clusterings. Althongh 
one value will almost always be better than another. it can be difficult to 
determine if the difference is significant. Note that there are two aspects to 
this significance: whether the difference is statistically significant (repeatable) 

8.6 Bibliographic Notes 555 

and whether the magnitude of the difference is meaningful with respect to the 
application. Many would not regard a difference of 0.1% as significant, even if 
it is consistently reproducible. 

8.6 Bibliographic Notes 

Discussion in this chapter has been most heavily influenced by the books on 
clnster analysis WTitten by Jain and Dubes [396], Anderberg [37 4], and Kauf­
man and Rousseeuw [400]. Additional clustering books that may alsc be of 
interest inclnde those by Aldenderfer and Blashfield [373], Everitt et a!. [388] , 
Hartigan [394], Mirkin [405], Murtagh [407]. Romesburg [409], and Spath [413]. 
A more statistically oriented approach to clustering is given by the pattern 
recognition book of Duda et a!. [385], the machine learning book of Mitchell 
[406] , and the book on statistical learning by Hastie et a!. [395]. A general 
survey of clustering is given by Jain et a!. [397], while a survey of spatial data 
mining techniques is provided by Han et a!. [393]. Behrkin [379] provides a 
survey of clustering techniques for data mining. A good sonrce of references 
to clustering outside of the data miffing field is the article by Arabie and Hu­
bert [376]. A paper by Kleinberg [401] provides a discussion of some of the 
trade-offs that clustering algorithms make and proves that it is impossible to 
for a clustering algorithm to simultaneously possess three simple properties. 

The K-means algorithm has a long history, but is still the subject of current 
research. The original K-meaus algorithm was proposed by MacQueen [403]. 
The ISO DATA algorithm by Ball and Hall [377] was an early. but sophisticated 
version of K-means that employed various pre- and postprocessing techniques 

to improve on the basic algorithm. The K-means algorithm and many of its 
variations are described in detail in the books by Anderberg [374] and Jain 
and Dubes [396], The bisecting K-means algorithm discussed in this chapter 
was described in a paper by Steinbach et a!. [414], and an implementation 
of this and other clustering approaches is freely available for academic use in 
the CLUTO (CLUstering TOolkit) package created by Karypis [382]. Boley 
[380] has created a divisive partitioning clustering algorithm (PDDP) based 
on finding the first principal direction (component) of the data, and Savaresi 
and Boley [411] have explored its relationship to bisecting K-means. Recent 
variations of K-means are a new incremental version of K-means (Dhillon eta!. 
[383]), X-means (Pelleg and Moore [408]), and K-barmorric means (Zhang et al 
[416]). Haruerly and Elkan [392] discuss some clustering algorithms that pro­
duce better results than K-means. While some of the previously mentioned 
approaches address the initialization problem of K-means in some manner, 



556 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms 

other approaches to improving K-means initialization can also be found in the 
work of Bradley and Fayyad [381]. DbiUon and Modha [384] present a gen­
eralization of K-means, called spherical K-means, that works with commonly 
used similarity functions. A general framework for K-means clustering that 
uses dissimilarity functions based on Bregman divergences was constructed by 
Banerjee et aJ. [378]. 

Hierarchical clustering techniques also have a long history. Much of the 
initial activity was in the area of taxonomy and is covered in books by Jardine 
and Sibson [398] and Sneath and Sokal [412]. General-purpose discussions of 
hierarchical clustering are also available in most of the clustering books men­
tioned above. Agglomerative hierarchical clustering is the focus of most work 
in the area of hierarchical clustering, but divisive approaches have also received 
some attention. For example, Zahn [415] describes a clivisive hierarchical tech­
nique t hat uses the minimum spanning tree of a graph. While both divisive 
and agglomerative approaches typically take the view that merging (splitting) 
decisions are final, there has been some work by Fisher [389] and Karypis et 
a!. [399] to overcome these limitations. 

Ester et a!. proposed DBSCAN [387], which was later generalized to the 
GDBSCAN algorithm by Sander et a!. [410] in order to handle more general 
types of data and distance measures. such as polygons whose closeness is mea­
sured by the degree of intersection. An incremental version of DBSCAN was 
developed by Kriegel et a!. [386]. One interesting outgrowth of DBSCAN is 
OPTICS (Ordering Points To Identify the Clustering Structure) (Ankerst et 
al. [375]), which allows t he visualization of cluster structure and can also be 
used for hierarchical clustering. 

An authoritative cliscussion of cluster valiclity, which strongly influenced 
the discussion in this chapter. is provided in Chapter 4 of Jain and Dubes' 
clustering book [396]. More recent reviews of cluster valiclity are those of 
Halkidi et a!. [390, 391 J and Milligan [ 404]. Silhouette coefficients are described 
in Kaufman and R.ousseeuw's clustering book [400]. The source of the cohesion 
and separation measures in Table 8.6 is a paper by Zhao and Karypis [417], 
which also contains a discussion of entropy, purity, and the hierarchical F­
measure. The original source of the hierarchical F-measure is an article by 
Larsen and Aone [402]. 

Bibliography 
[373] M. S. Aldenderfer and R. K. BIMhfield . Cluster Analysis. Sage Publications, Los 

Angeles. 1985. 
[3i4] M. R. Anderberg. Cluster Analysi!l for Applications. Academic Press, New York, 

December 1973. 

Bibliography 557 

[375] M. Ankerst. M. M. Breunig. H.-P. Kriegel, and J. Sander. OPTICS: Ordering Points 
To Identify the Clustering Structure. In Proc. of 1999 ACM-SIGMOD Inti. Con/. on 
Managemfnt of Data, pages 4~60, Philadelphia, Pennsylvania, June togo_ ACM PrE"SS. 

[376] P. Arabie1 L. Hubert, Blld G. D. Soete. An overview of combinatorial data analysis. 
In P. Arabie, L. Hubert, and G. D. Soete, editors. Clustering and Cla3rification, pages 
188-217. \Vorld Scientific, Singapore, January 1996. 

[377] G. Ball and D. Hall. A Clustering Technique for Summarizing Multivariate Data. 
Behavior Science. 12:153-155, March 1967. 

[378] A . Banerjee, S. Merugu. I. S. Dhillon, and J. Ghooh. Clustering with Bregman Diver­
gences. In Proc. of the ~004 SIAM Inti. C01Jj. on Data Mintng, pages 234-245, Lake 
Buena. V ista, FL. April 2004. 

[379] P. Berkhin. Survey Of Clustering Data Mining Techniques. Technical report. Accrue 
Softv.-are, San Jose, CA , 2002. 

[380] D. Boley. Principal Direction Divisive Partitioning. Dota. Mining and Knou•iedge 
Discrn•ery, 2(4):325 344. 1008. 

[381] P. S. Bradley and U. M. Fayyad. Refining Initial Points for K-Means Clustering. In 
Proc. of the 15th Inti. Ccm,J. on Machine Learning, pages 01- 90. Madison, WI, July 
1908. Morgan Kaufmann Publishers Inc. 

[382] CLUTO 2.1.1: Software for Clustering High-Dimensional Datasets. 
/www.cs.umn.edu/,..,karypis, Navember 2003. 

[383] I. S. Dhillon, Y. Guan, and J. Kogan. Iterative Clustering of High Dimensional Text 
Data Augmented by Local Search. In Proc. of the 2009 IEEE Inti. Con/. on Data 
Mining, pages 131- 138. IEEE C.ornputer Society. 2002. 

[384] I. S. Dhillon and D . S. Modba. Concept D€<nrnpositions for Large Sparse Text Data 
Using C lustering. Nfachine Learning. 42(1/2):143--175, 2001. 

[385] R. 0 . Duda! P. E. Hart. and D. G. Stork. Pattern Classification. John Wiley & Sons, 
Inc.l New Yorkl second edition, 2001. 

[386] M. Ester, H.-P. Kriegel. J. Sander, M. Wimmer. and X. Xu. Incremental Clustering 
for Mining in a Data Warehousing Environment. In Proc. of the QJth VLDB Conf., 
pages 323-333, New York City, August 1998. Morgan Kaufmann. 

[387] M. Ester, H.-P. Kriegel, J . Sander, and X. Xu. A Density-Based Algorithm for Dis­
covering Clusters in Large Spatial Databases witb Noise. fu Proc. of the Qnd Inti. Conf. 
on Knowledge Discovery and Data Mining, pages 226- 231, Portland, Oregon, August 
1906. AAAI Press. 

[388] B. S. Everitt, S. Landau. and M. Leese. Cluster Aoolysis. Arnold Publishers, London. 
fourth edition, May 2001. 

[389] D. Fisher. Iterative Optimization and Simplification of Hierarchical Clusterings. Jour­
nal of Artificial Intelligence Remmh, 4:147 179, 1096. 

[390] M. Halkidi, Y. Batistakis, and M. Vazirgiannis. Cluster validity methods: part I. 
SIGMOD Record (ACM Sped.al Interest Group on Management of Data), 31(2):40-45, 
June 2002. 

[391] M. Halkidi, Y. Batistakis, and l\L Vazirgiannis. Clustering vaJidity checking methods: 
part II. SIGMOD Record (ACM Special Interest Group on Management of Data). 31 
(3) :19 '1:7, Sept. 2002. 

[392] G. Hamerly and C. Elkan. Alternatives to the k-means algorithm that find better 
clusterings. In Proc. of the 11th Inti. Con/. on Injonnation and Knowledge Managemen~ 
pages OOG-607, l\·icLean, V irginia, 2002. ACM Press. 



558 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms 

[3!J3] J. Han. )\[. Kamber, and A. Thng. Spatial Clustering Methods in Data Mining: A 
review. In H. J. Miller and J. Han, editors. Geographic Data Mifiing and Knowledge 
Discovery, pages 188 217. Taylor and Francis, London, December 2001. 

[394] J. Hartigan. Clustering Algorithm!l. Wiley, New Yorkl 1975. 

[395] T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statistic.al Learning: 
Data Mining, Inference, Prediction. Springer, New York. 2001. 

[3!JG] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall 
Advanced Reference Series. Prentice Hall, ~-la.rch 1988. Book available online nt 
http:/ j www .cse.msu.edu f ,. .... .jain/ Clustering_Jain..D ubes. pdf. 

[397] A. K. Jain, M. N. Murty, and P. J. Fl.vnu. Data clustering: A review. ACJ\<1 Computing 

Suroeys. 31(3):264-323, September 1009. 
[398] N. Jardine and R. Sibson. Mathematical Taxcnomy. Wiley. New York. 1971. 
[:W!l] G. Karypis. E.-H. Han, and V. Kumar. Multilevel Refinement for Hierarchical Clus­

tering. Technical Report TR 99-020, University of J\finnesota, Minneapolis, MN, 199g_ 

[400] L. Kaufman and P. J. Rousseeuw. Findir~g Groups in Data; An Introduction to Cluster 
Analysis. \Viley Series in Probability and Statistics. John \Viley and Sons, New York. 
November 1990. 

[401] J. M. Kleinberg. An Impossibility Theorem lor Clustering. In Proc. of the 16th Annual 
Con}. on Neurollnformation Processing Systems, December, 9-l4 2002. 

[402] B. Larsen and C. Aone. Fast 81ld Effeetive Text Mining Using Linear-Time Document 
Clustering. In Proc. of the Sfh. InU. Conf. on Knou1ledge Discouery and Data Mining. 
pages 16-22, San Diego, California, 1909. ACM Press. 

[403] J. 1tlacQueen. Some methods for classification and analysis of multivariate observa­
tlons . In Proc. of the 5th Ber/..:eley Symp. on Mathematical Statistics and Probability, 
pages 281- 297. University of California Press. 1967. 

[404] G. W. Milligan. Clustering Validation: Results and Implications for Applied Analyses. 
In P. Arabie, L. Hubert, and G. D. Soete, editors. Clustering and ClfJssifirotion, pages 
345-375. World Scientific, Singapore. January 1996. 

[405] B. hlirkin. Mathematical Clasfrijication and G1ustering, volume 11 of Noncontlt!X Opti­
mization and Its Applications. Kluwer Academic Publishers, August 1996. 

[406] T. Mitchell. Machine Learning. McGraw-Hill, Bo.ton. MA, 1997. 
[407] F. Murtagh. Multidimensional Clustering Algorith~. Physica-Verlag, Heidelberg and 

Vienna, 1085. 
[408] D. Pelleg and A. W. Moore. X -means: Extending K -means with Efficient Estimation 

of the Number of Clusters. In Proc. of the 17th lntl. Con/. on );lachine Lro.,-ning. pages 
727- 734. Morgan Kaufmann, San Francisco, CA. 2000. 

[409] C. Romesburg. Cluster Analysis for Researcher-s. Life Time Learning, Belmont. CA, 
!984. 

[410] J. Sander, M. E ster . H.-P. Kriegel , and X. Xu. Density-Based Clustering in Spatial 
Databases: The Algorithm GDBSCAN and its Applications. Data A-fining and Knowl­
edge Discovery, 2(2):16!)-194, 1008. 

[411] S. M. Savaresi and D. Boley. A compaxative analysis on the bisectiug K-means and 
the PDDP clustering algorithms. Intelligent Data Analysis, 8(4):345-362, 2004. 

[412] P. H. A. Sneath and R R. Soka.l. Numerical Taxonomy. Fteeman, San Francisco, 1071. 
[413] H . Sp3.th . Cluste.,- Analysis Algorithm! for Data Reduction and Classification of Ob­

jects, volume 4 of Computers and The?r Appli~ation. Ellis Horwood Publishers, Chich­
est er, 1980. ISBN 0-85312-141-9. 

8 . 7 Exercises 559 

[414] ~-1. Steinbach, G. Karypis, and V. Kumar. A Comparison of Document Clustering 
Techniques. In Proc. of KDD Workshop on Text Mming, Proc. of the 6th InU. Conf. 
on Knowledge Discot1ery and Data Mining, Boston, ~·lA, August 2000. 

[415] C. T. Zalm. Graph-Theoretical ~Iethods for Detecting and DesT.ibing Gestalt Clusters. 
IEEE Transactions on Computers, C- 20(1):68-86, Jan. 1971. 

[416] B. Zhang, M. Hsu, and U. Dayal. K-Harmonic Means A Data Clustering Algorithm. 
Technical Report HPL-1900-124, Hewlett Packard Laboratories, Oct. 29 1999. 

[417] Y. Zhao and G. Karypis. Empirical and theoretical comparisons of selected criterion 
functions for document clustering. Machine Learning, 55(3):311- 331, 2004. 

8. 7 Exercises 

I. Consider a data set consisting of 220 data vectors, where each vector has 32 
components and each component is a 4-byte value. Suppose that vector quan­
tization is: used for compression and that 216 prototype vectors: are used. How 
many bytes of storage does that data set take before and after compression and 
what is th£> compression ratio'? 

2. Find all well-separated clusters in the set of points shown in Figure 8.35. 

. .. . .. 
. .. . .. 

. .. . . . . .. 
Figure 8.35. Points for Exercise 2. 

3. 1'!8Jly pa.rtitional clus:tering algorithms: that automatically determine the num­
ber of clusters claim that this is an advantage. List two situations in which this 
is not the case. 

4. Given K equally sized clusters, the probability that a randomly chosen initial 
centroid will come from any given cluster is 1/ K . but the probability that each 
cluster will have exactly one initial CPntroid is much lower. (It should be clear 
that having one initial centroid in each cluster is a good starting s:ituation for 
K-means.) In general. if there are K clusters and each cluster ha.s n points, then 
the probability, p, of selecting in a sample of size K one initial centroid frmn each 
cluster is given by Equation 8.20. (This assumes sampling with replacement.) 
From this formula we can calculate, for example, that the chance of having one 
initial centroid from each of fow dusters is 4!/4' = 0.0938. 



560 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms 

number of ways to select one cetltroid from ea.ch cluster K!nK K! 
p = numbPr of ways to se[Kt K centroids = (Kn)K = KK (8.20) 

(a) Plot the probabUity of obtaining one point from each duster in a siUllple 
of size K for values of K between 2 and 100. 

(b) Fbr K dusters. K = 10,100, and 1000, find the probability that a sample 
of size 2K containB at least one point from each cluster. You can use 
either mathematical methods or statistical simulation to determine the 
answer. 

5. Identify the clusters in Figure 8.36 w;i.ng the center- , com.iguity-, snd density­
based definitions. Also indicate the number of clusters for each case and give 
a brief indication of your reasouing. Note that darkness or the number of dots 
indicates density. If it helps, assume center-based means K-mean•, contiguity­
based means single link, and density-based means DBSCAN. 

(a) (b) (c) (d) 

Figure 8.36. Clusters for Exercise 5. 

6. For the following sets of two-dimensional points, (1) provide a sketch of how 
they would be split into clusters by K-means for the given number of clusters 
and (2) indicate approximately where the resulting centroids would be. Assume 
that. we are using the squared error objective function. If you think that there 
is more than one possible solution, then please indicate whether each solution 
is a global or local minimum. Note that the la.bel of each diagram in Figure 
8.37 matdles the corresponding part of this question. e.g., Figure 8.37(a) goes 
with part (a). 

(a) K = 2. Assuming that the points are uniformly distributed in the circle. 
how many possible ways are there (in theory) to partition the points 
into two clust£'rs'? \Vbat can you say about d1e positioru; of th() two 
centroids? (Again, you don!t need to provide exact centroid locatioru;, 
just a qualitative description.) 

0 G 
(a) (b) (c) (d) 

Figure 8.37. Diagrams for Exercise 6. 

8 . 7 Exercises 561 

0 0 
(C?\ 
u 

(e) 

(b) K = 3. The distance between the edges of the circles is slightly greater 
than the radii of the circles. 

(c) K = 3. The distance between the edges of the circles is much less than 
the radii of the circles. 

(d) K = 2. 

(e) K = 3. Hint: Use the symmetry of the situation and remember that we 
are looking for a rough sketch of what the result would be. 

7. Suppose that for a data set 

• there are m points and K clusters1 

• half the points and clusters are in ''more dense-'' regions: 

• half the points and clusters are in "less dense" regions, and 

• the two regions are well-separated from each other. 

For the given data set , which of the following should o~ur in order to minimize 
the squared error when finding K clusters: 

(a) Centroids should be equally distributed between more dense and less dense 
regions. 

(b) More centroids should be allocated to the less dense region. 

(c) More centroids should be allocated to t-he denser region. 

Note: Do not get distracted by special cases or bring in factors other than 
density. However, if you feel the true answer is different from any given above, 
justify your response. 

8. Consider the mean of a cluster of objects from a binary transaction data set. 
\Vhat are the minimum and maximun1 values of the components of the mean? 
What is the interpretation of components of the cluster mean? Which compo­
nents most aecurately charact.erize the objects in the cluster? 

9. Give an example of a data set consistiug of three natural clusters, for which 
(almost always) K-means would likely find the correct clusters, but bisecting 
K-means would not. 



562 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms 

10. ¥lould the cosine measure he the- appropriate similarity measure to use with K­
means clustering for time series data? Why or why not'? If not, whst similarity 
measure would be more appropriate? 

11. Total SSE is the sum of the SSE for each separate attribute. What does it mean 
if the SSE for one variable is low for all clusters? Low for just one cluster? High 
for all clusters? High for just one cluster? How could you use the per varia.hle 
SSE information to improve your clustering? 

12. The leader algorithm (Hartigan [394)) represents each cluster using a point. 
known as a leader1 and assigns each point to the cluster corresponding to the 
closest leader, unless this distance is above a user-specified threshold. In that 
case, the point becomes the leader of a new cluster. 

(a) What 81'e the adVlilltages and disadVBlltages of the leader e.lgorithm as 
compared to K-means'? 

(b) Suggest ways in which t.he leader e.lgorithm might be improved. 

13. The Voronoi diagram for a set of K points iu the plane is a partition of all 
the points of the plane into K regions, such that every point (of the plane) 
is assigned to the closest point among the K specified points. (See Figure 
8.38.) \Vhat is the relationship bPtween Voronoi diagrruns and K-means clus­
ters? What do Voronoi diagrams tell us about the possible shapes of K-means 
clnsters'? 

Figure 8.38. Varanai diagram for Exercise 13. 

14. You are given a data set with 100 records and are esked to cluster the data. 
You use K-means to cluster the data, but for all values of K. 1 ~ K ~ 100, 
the K-means algorithm returns only one non-empty cluster. You then apply 
an incremental version of K-means, hut obt.ain exactly the same result. How is 
this possible? How would single link or DBSCAN handle such data? 

15. Traditional agglomerative hierarchical clustering routines merge two clusters at 
each step. Does it seem likely that such an approach accurately captures the 

8. 7 Exercises 563 

(nest€<~) cluster structure of a set of data points? If not, explain how you might 
postprocess the data to obtain a more accurate view of the cluster structure. 

16. Use the similarity matrix in Table 8.13 to perform single and complete link 
hierarchical clustering. Sbow your resuJts by drawing a. dendrogram. Tbe den­
drogram should clearly show tbe order in which the points are merged. 

Table 8.13. Simiarily matrix far Exercise 16. 

pi p2 p3 p4 p5 
pl 1.00 0.10 0.41 0.55 0.35 
p2 0.10 1.00 0.64 0.47 0.98 
p3 0.41 0.64 1.00 0.44 0.85 
p4 0.55 0.47 0.44 1.00 0.76 
p5 0.35 0.98 0.85 0.76 1.00 

17. Hierarchical clustering is sometimes used to generate K clusters, K > 1 by 
taking the clusters a t the K'h level of the dendrogram. (Root is at level L) By 
looking at the clusters produced in this way, we can evaluat" the behavior of 
hierarchical clustering on different types of data and clnsters, and also compare 
hierarchice.l approaches to K-means. 

The following is a set of ou<>-dimensional points: {6,12, 18, 24,30,42,48). 

(a) For each of the following sets of initie.l centroids, create two clusters by 
assignjug each point to the nearest centroid, and then calcnlate the total 
squa.red error for each set. of two clliSters. Show both the clusters and t.he 
total squared error for each set of centroids. 

i. {18,45} 

ii. {15, 40} 

(h) Do both sets of cent.roids represent stable solutions; i.e., if the K-means 
algorithm was run on this set of points using the given centroids as the 
starting centroids, would there be any change in the clusters generated? 

(c) What are the two clusters produced by single link? 

(d) Which technique. K-meaos or single link, seems to produce the "most 
natural" clustering in this situation? (For K-means, take the clustering 
with the lowest squared error.) 

(e) What delinition(s) of clustering does t his natnral clustering correspond 
to? (Well-separatro, cent<>r-based, contiguous. or deusity.) 

(f) What well-known characteristic of the K-mesns algorithm explains the 
previous behavior'? 



564 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms 

18. Suppose we find K clusters using Ward's method, bisecting K-means, and ordi­
nary K-means. Which of these solutions represents a local or global minimum? 
Explain. 

19. Hierarchical clustering algorithms require O(m2 log( m)) time, and consequently. 
are impractical to use directly on larger data sets. One po&Sible technique for 
reducing the time required is to sample the data set. For exan1ple, if K clusters 
are desired and rm points ace sampled from the m points. then a hieracchi­
cal clustering algorithm will produce a hierarchical clustering in roughly O(m) 
time. K clusters can be extracted from this hierarchical clustering by taking 
the clusters on the K 'h level of the dendrogram. The remaining points can 
then be assigned to a cluster in linear time, by using various strategies. To give 
a specific exrunple, the centroids of the K dusters can be computed, and thPn 
each of the m- Jfii remaining points can be assigned to the cluster associated 
with the closest centroid. 

For each of the foUowing types of data or clusters, discuss briefly if ( 1) sampling 
will cause problems for this approach and (2) what those problems are. Assume 
that the sampling teclmique randomly chooses points from tbe total set of m 
points and that any unmentioned characteristics of the data or clusters are as 
optimal as possible. In other words, focus only on problems caused by the 
particular dJ.arecteristic n1entionM. Fina.lly, 9S8ume that K is very muc-h less 
than m . 

(a) Data with very different sized clusters. 

(b) High-dimensional data. 

(c) Data with outliers, i.e., atypical points. 

(d) Data with highly irregular regions. 

(e) Data with globnlar clusters. 

(f) Data with widely different densities. 

(g) Data with a small percentage of noise points. 

(h) Non-Euclidean data. 

(i) Euclidean data. 

(j) Data with many and mixed attribute types. 

20. Consider the following fonr faces shown in Figure 8.39. Again, darkness or 
numher of dots represents density. Lines are used only to distinguish regions 
and do not represent points. 

(a) For each figure, conld you use single link to find the patterns represented 
by the nose, eyes, and mouth? Explain. 

(b) For each figure, could you use K-mea.ns to find the patterns represented 
by the nose, eyes, and mouth? Explain. 

8. 7 Exercises 56 5 

•
. ,::::::::::.® 

}(:{ :: 6:: : ® 0 

: :.:: : :.o·.··. ::.:: .. :::: "' ..... .. .... ~ 

: : ;:g:: : ~ 
· .. ·.· .· .·.·. 

(a) (b) (c) (d) 

Figure 8.39. Figure for Exercise 20. 

(c) What liluitation does clusterh1g have in detecting all the patterns formed 
by the points in Figure 8.39(c)? 

21. Compute the entropy and purity for the confusion matrix in Table 8.14. 

Table 8.14. Con~on matrix for Exercise 21. 
Cluster Enterta.irunent Financial Foreign Metro National Sports Total 

#1 1 1 0 11 4 676 693 

#2 27 89 333 827 253 33 1562 
#3 326 465 8 105 16 29 949 

Total 354 555 341 943 273 738 3204 

22. You are given two sets of 100 poiuts that fall within the unit square. One set 
of points is arranged so that the points are uniformly spaced. The other set o( 
points is generated from a uniform distribution over the unit square. 

(a) J.s there a difference betweeu the two sets of points? 

(b) If so, which set of points will typically have a smaller SSE for K=IO 
clusters? 

(c) What will be the behavior of DBSCAN on the unifonn data set? The 
random data set? 

23. Using the data in Exercise 24. compute the silhouette coefficient for each point, 
each of the two clusters. and the overall clustering. 

24. Given the set of cluster labels and similarity matrix shown in Tables 8.15 and 
8.16, respectively1 compute the correlation between the similarity matrix and 
the ideal similarity matrix, i.e., the matrix whose i/h entry is 1 if two objects 
belong to the same cluster, and 0 otherwise. 



566 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms 

Table 8.15. Table of cluster labels for Exeroioo 24. Table 8.16. Similarity matrix for Exeroioo 24. 

Point Cluster Label Point P1 P2 P3 P4 
P1 1 PI I 0.8 0.65 0.55 
P2 1 P2 0.8 1 0.7 0.6 
P3 2 P3 0.65 0.7 1 0.9 
P4 2 P4 0.55 0.6 0.9 1 

25. Compute the hienJichical F-measure for the eight objects {pi, p2, p3, p4, p5, 
p6. p7, p8} and hierarchical clustering shown in Figure 8.40. Class A contains 
points pl, p2, and p3, while p4, p5, p6. p7, and p8 belong to class B. 

Figull! 8.40. Hierarchical clustering for Exercise 25. 

26. Compute the cophenet.ic correlation coefficient for the hierarchical clusterings 
in Exercise 16. (You will need to convert the similarities into dissimilarities.) 

27. Prove Equation 8.14. 

28. Prove Equation 8.16. 

29. Prove that :Lf~1 :L,Ec (x - m,)(m - m;) = 0. This fact was used in the proof 
that TSS = SSE + SSB in Section 8. 5. 2. 

30. Clusters of documents can be summarized by finding the top terms (words) for 
the documents in the cluster. e .g., by taking the most frequent k terms, where 
k is a constant, say !0, or by taking all terms that occur more frequently than 
a specified threshold. Suppose that K-means is used to find clusters of both 
documents 8lld words for a document data set. 

(a) How might a set of term clusters defined by the top terms in a document 
cluster differ from the word clusters found by clustering the terms with 
K-means'? 

(b) How could term clustering be used to define clusters of documents? 

31. We can represent a data set as a collection of object nodes and a collection of 
attribute nodes. where there is a link between ea.ch object and e<~ch attribute, 

8. 7 Exercises 567 

and where the weight ofthat link is the value of the object for that attribute. For 
sparse data, if the value is 0, the link is omitted. Bipartite clustering attempts 
to partition this graph into disjoint. clusters, where each cluster consist-s of a 
set of object nodes and a set of attribute nodes. The objective is to mrocimize 
the weight of links between the object and attribute nodes of a cluster, while 
minimizing the weight of links between object and attribute links in different 
clusters. This type of clustering is also known as co-clustering since the 
objects and attributes are clustered at the same time. 

(a) How is bipartite clustering (co-clustering) different from clustering the 
sets of objects and attributes separately? 

(b) Are there any cases in which these approaches yield the same clusters? 

(c) What are the s trengths and weaknesses of co-clustering as compared to 
ordinary clustering"? 

32. In Figure 8.41, ma.tch the similarity matrices, which are sorted according to 
cluster labels, with the sets of points. Differences in shading and marker shape 
diBtinguish between clusters , and each set of points contains 100 points and 
three clusters. In t he set of points labeled 2, there are three very tight, equal­
sized clusters. 



568 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms 

1 

•• . .. :: ., .. . 0.0 

"' ... O.t 
0.1 . . 0 .1 

•• . 
"1 • ..... 

. O.t 
Jo 0.5 

... . 
.. 0.5 .. :· .. 0.4 ., ... 0.3 

02 . ~ 0.2 

0.1 
,. 

' .. . . 
00 

0.0 0.0 

0.8 0.8 

0.1 

i··"' 
0.1 

0,6 ~~ 
:..o.s .~ .. 0.5 .$_ • 

0.4 ·it 0.4 

0.3 0.3 ,::,.-; .. .-.~. 0.2 ·'lK- 0.2 

0.1 
., .... .~ 

0.1 ..... · t~· 

o. 0> 0.4 0.6 

Figure 8.41. Points and similarity matrioas for Exercise 32. 



I 

Errata for Introduction to Data Mining 
by Tan, Steinbach, and Kumar. 

Please send all error reports to dmbook@cs.umn.edu 

Preface 

Errata 1 

Page x, last sentence of first paragraph: The emall address for reporting 
errata has an error. Please UBe the one given above. 

Chapter 2 

1. Page 23: The title "What Is an attribute?" should be 
"What ls a.n Attribute?". 

2. Page 60, equation in the last paragraph: "e; = E~=l p;; log2 p;;'' should 

be "e; = - E~=l Pii log2 Pi/. 
3. Page 69, fourth line from bottom: "of x and y" should be "of x a.nd y". 

4. Page 70, second line from bottom: "d(x, x) ~ 0 for all x a.nd y" should 
be "d(x,y) ~ 0 for all x andy". 

5. Page 75, second equation before the last paragraph: IIYII should be 
2.45, not 2.24. 

6. Page 78, last sentence of the first paragraph: "xk = y'f: should be 

"111c =x~"· 

7. Page 91, Exercise 14: "what sort of similarity measure" should be 
"what sort of proximity measure". 

Chapter 3 

1. Page 100 Table 3.1: The number of freshman should be 200 a.nd the 
number of seniors should be llO, as shown in Table 1. 

Table 1. aass size for students in a hypothetical college. 

Class Size Frequency 
freshman 200 0.33 
sophomore 160 0.27 
junior 130 0.22 
senior no 0.18 



2 Errata 

2. Page 126: Example 3.21: "Figure 3.25 is another parallel coordinates 
plot of the same data,'' should be "Figure 3. 26 is another parallel 
coordinates plot of the same data," 

Chapter 4 

1. Page 160, second line from the bottom of the second paragraph from 
the bottom: "the Gini index for attribute B is 0.375" should be "'the 
Gini index for attribute B is 0.371". 

2. Page 161, F igure 4.14, bottom rigbt table. "Gini = 0.375" should be 
"Gini = 0.371" . 

3. Page 173, second from bottom line: "Figure 4.23(b) shows the training 
and test error rates" should be ''Figure 4. 23 shows the training and test 
error rates" . 

4. Page 189, sixth from bottom line, the equation should be: 

5. Page 192, Equation 4.17: 

df'' = 0.05 ± 1.70 X 0.002. 

6. Page 193, Table 4.6. Column headings are given in Table 2. 

Table 2. Probability table fort-distribution. 

(1-o) 
k - I 0.90 0.95 0 .975 0.99 0.995 

I 3.08 6.31 12.7 31.8 63.7 
2 1.89 2.92 4.30 6.96 9.92 
4 !.53 2.13 2.78 3.75 4.60 
9 1.38 1.83 2.26 2.82 3.25 
14 1.34 1.76 2.14 2.62 2.98 
19 1.33 1.73 2.09 2.54 2.86 
24 1.32 1.71 2.06 2.49 2.80 
29 1.31 1.70 2.04 2.46 2.76 

7. Page 198, Exercise 3(a): "What is the entropy of this collection of 
training examples with respect to the positive class?" should be "What 
is the entropy of this collection of t rruning examples with respect to the 
class attribute?" . 

Errata 3 

8. Page 200, Exercise 5(c) both instances of "monotonously" should be 
~'monotonicaJlyl'. 

Chapter 5 

1. Page 208, sixth from top line: "and op is a logical operator chosen" 
should be "and op is a comparison operator chosen'' . 

2. Page 213, Algorithm 5.1line 8: "R - R V r" should be "R +- R V r'' . 

3. Page 218, tenth from bottom line: "rules r, and Tz given in the 
preceding example are 43.12 and 2'1 should be "ru1es q and r2 given in 
the pre<:eding example are 63.87 and 2.83". 

4. P age 233, Equation 5.16 should be: 

5. Page 264, sixtb and seventh from bottom line, equations should be: 

2::: A,y,ra = 65.5261 x 1 x 0.3858 + 65.5261 x - 1 x 0.4871 = - 6.64. 

2::: A;y;.c;2 = 65.5261 x 1 x 0.4687 + 65.5261 x - 1 x 0.611 = - 9.32. 

6. Page 271, Equation (5.55): 

In the transformed space, we can find the parameters w = ( WQ, w,, ... , 
W5) such that: 

7. Page 271, tenth from bottom line: "a ll t he circles are located in the 
lower right-hand side of the diagram" should be "all the circles are 
located in t he lower left-hand side of tbe diagram". 

8. Page 273, second from top line: "instance z can be classified" should be 
~'instance z can be classified". 



4 Errata 

9. Page 273, Equation (5.60): 

cl>(u) · cl>(v) (ut , ,q, ./2u,, ./2u,, v'2u, u,, 1) · (vf, v~ . ./2v,, v'2t'2· -/2v,v,,1) 

uivf + u~vi + 2ut Vi + 2u2v2 + 2ut u2v1 v2 + 1 

{U·V+1)2. 

10. Page 274, second line in the second paragraph: "A test instance xis 
classified" should be '·A test instance z is claSBified''. 

11. Page 288, Equation 5.69 should he: 

if Cj(X;) = y; 

if Cj(X;) # Y; 

12. Page 315, Exercise 1{a): "exclustive" should he "exclusive". 

13. Page 317, Exercise 5(d) and 5{e): ''examples covered by R1 are 
discarded)" should be "examples covered by Rl are discarded". 

14. Page 323, Exercise 17(c) and 17(d): "part (c)" should be "part (b)". 

Chapter 6 

1. Page 356, caption in Figure 6.17: "(with minimum support count equal 
to 40%" should be "(with minimum support equals to 40%)". 

2. Page 408, Exercise 9(b): "Use the visited leaf nodes in part (b)" should 
be "Use the visited leaf nodes in part (a)". 

3. Page 411, Exercise 15(b): ''P(A.B) x P(A.B) = P(A,B) x P(A.B)" 
should be "P(A, B) X P(A, B) = P(A, B) X P(A, B)". 

4. Page 413, Exercise 17: "If the support'' sho uld be "Asswne the 
support'' . 

5. Page 413, Exercise 17(d)(i): c({a} ~ {b}) > c({a} ~ {b}) should be 
c{{O:} ~ {b}) > c({a} ~ {b}). 

Chapter 7 

1. Page 421, the rule "R\;) : Age E [20, 24) ~ Chat Ouline =No" should 

be "Rl~ : AgeE [20, 24) ~ Chat Online = Yes'. 

Errata 5 

2. Page 437. fourth from bottom line: "events in one element must occur 
immediately after the events" should be "events in one element must 
occur after the events,,. 

3. Page 449. Figure 7.13 should be as shown in Figure 1. 

+ 

G1 G2 G3 ~ merge(G1,G2) 

[,--,--,, 
~] 

~.--,-,, 

ll ""=[1 

p p q 0 
I 1 I 0 r 0 0 :p 0 r: p 0 r1 

0 0 Met =: • MG::= : .. 
~ __ _,. __ ~j ~--~--~! 0 0 0 ? 
q 0 0 0 ? 0 

Figum 1. Vertex-growing strategy. 

4. Page 450, Figure 7.14 should be as shown in Figure 2. 

• 

:-----:--: 
: : 
: p i 
I I 
I I I 
I I e 
: ,r 
I & I 

~--------· 

/ :({;: 
G3 ~ merge(G1,G2) 

G1 G2 

G4 = merge(G1,G2) 

Figum 2. Edge-growing strategy. 



(3 Errata 

5. Page 480, Exercise 12(c): "w = ({A}{B.C.D}{A))" should be 
"w = ({A}{A,B,C,D){A))". 

6. Page 483, Exercise 19(a): "join the two undirected and unweighted 
subgraphs shown in Figure 19a" should be "join the two undirected 
and unweighted subgraphs shown below''. 

Chapter 8 

Page 519: The numbers in Tables 8.3 ru1d 8.4 were rounded to two decimal 
places. Thus, if t he x and y coordinates of the points given in Table 8.3 are 
used to compute the pairwise distances. the results don't quite match those 
shown in Table 8.4. The original. more precise values are given in Tables 3 
and 4. 

point x coordinate y coordinate 
pi 0.4005 0.5306 
p2 0.2148 0.3854 
p3 0.3457 0.3156 
p4 0.2652 0.1875 
p5 0.0789 0.4139 
p6 0.4548 0.3022 

Table 3. X-Y coordinates of six points. 

pl p2 p3 p4 p5 p6 
p1 0.0000 0.2357 0.2218 0.3688 0.3421 0.2347 
p2 0.2357 0.0000 0.1483 0.2042 0.1388 0.2540 
p3 0.2218 0.1483 0.0000 0.1513 0.2843 0.1100 
p4 0.3688 0.2042 0.1513 0.0000 0.2932 0.2216 
p5 0.3421 0.1388 0.2843 0.2932 0.0000 0.3921 
p6 0.2347 0.2540 0.1100 0.2216 0.3921 0.0000 

Table 4. Distance Matrix for Six Points 

Page 517, the fifth line of the first paragraph: "see Section 8. 1.2" should be 
"see Section 8.1.3,.,. 
Page 522. the fourth line from the bottom: 
"dist( {3, 6, 4}. {2, 5}) = (0.15 + 0.28 + 0.25 + 0.39 + 0.20 + 0.29)/(6 • 2)" should b€ 

"dist({3.6,4}, {2, 5}) = (0.15 + 0.28 + 0.25 + 0.39 + 0.20 + 0.29)/(3 • 2)" 
Page 549, the third line of the paragraph with the heading, Entropy: "for 
cluster j we compute P;J" should be "for cl UBter i we compute Pij". 

Errata 7 

Chapter 9 

Page 586, in Equations 9.9 and 9.10, as well as in the first line below 
Equation 9.10, u should be I'· 
Page 596, the first line after Equation 9.16: "the difference, p(t) - m1(t), 
between the centroid, lllj(t) , and the current object, p(t)" should be "the 
difference, p (t) - m 1(t), between the current object, p(t), and the centroid, 
IDj(t)". 
Page 605, Figure 9.11: "(c) View in the xy plane" should be "(c) View in the 
xz plane" ; "(d) View in the xy plane" should be "(d) View in the yz plane". 
Page 618, Equation 9.17: "RC=" should be "RC(C; ,C1) = ". 
Page 619, Equation 9.18: "Rl =" should be "Rl(Ci, Cj ) =". 
Page 637, the fourth line before Algorithm 9.14: "the total number of 
clnsters is m/pq" should be ''the total uumber of clusters is m/q" . 
Page 639, the first line: '•Overall, m/ pq clusters are produced" should be 
"Overall, m/q clusters are produced" . 
Page 639, the third line: "is not pq'' should b e "is not q". 
Page 639, the fourth line: "m/ pq of the intermediate clusters" should be 
"mjq of the intermediate clusters". 

Chapter 10 

Page 661, the first line below Equation 10.1: "pr·ob(lxl) 2 c = o '' should be 
"prob(lxl ;:> c) = ex" . 
Page 669, All occurrences of y should be bold (y) in Equation 10.7. 

Appendix A 

1. Equation (A.4) should be as follows: 

u v 
cos(u , vJ = ifUii . w· 

Page 700. first line of the bibliographic notes: "Stramg" should be 
~·strang". 

Appendix C 

1. Page 727. eighth from bottom line: "variance s(X) X s (X) / N" should 
be "variance s(X) x (1 - s(X))jN''. 

2. Page 727, fourth from bottom line: "variance minsup x m insupjN'' 
should be ''variauce minsup X (1 - minsup)jN". 






