
 Shahad Alhawashi Page | 1

IT 342 | SYSTEM ENTERPRISE

WEEK6 | Chapter 6 Relational Database Design: Converting Conceptual Models to Relational

Databases

Database Model Levels

• A Conceptual model represents reality in an abstracted form that can be used in developing

an information system in a wide variety of formats (e.g. relational, object-oriented, flat-file, etc.)

– It is hardware and software independent

– It is independent of any logical model type

• A Logical model represents reality in the format required by a particular database model (e.g.

relational or object-oriented)

– Is still hardware and software independent

– Depends on the chosen logical model type

• A Physical model is created specifically for a particular database software package

– Is dependent on hardware, software, and on the chosen logical model type

Relational Database Model

• The relational model is a type of logical database model that was conceived by E.F. Codd in

1969

• The relational model is based on set theory and predicate logic

– It is well formalized, so its behavior is predictable

• A relational database consists of tables (relations) that are linked together via the use of

primary and foreign keys

– A FOREIGN KEY in a table is a primary key from a different table that has been posted

into the table to create a link between the two tables

• Relational database tables are made up of rows and columns

– Rows are called the table extension or tuples

• The ordering of rows in a table does not matter

– Columns are called the table intension or schema

• The ordering of columns in a table does not matter

• All values in a column must conform to the same data format (e.g. date, text,

currency, etc.)

– Each cell in a database table (a row-column intersection) can contain only one value

• no repeating groups are allowed

Foreign Key Example

 Shahad Alhawashi Page | 2

Relational Database Model

• Some principles of the relational model

– Entity Integrity

• A primary key in a table must not contain a null value

– Guarantees uniqueness of entities and enables proper referencing of

primary key values by foreign key values

– Referential Integrity

• A value for a foreign key in a table must either

– Be null (blank)

– Match exactly a value for the primary key in the table from which it was

posted

– One Fact, One Place

• Fact = a pairing of a candidate key attribute value with another attribute value

– Facts are found in the extensional data

Referential Integrity Example

One Fact-One Place Violations One fact in multiple places

 Shahad Alhawashi Page | 3

Multiple facts in one place

Each value of each attribute in a row is paired with the primary key, so if any cell has two or more

attribute values, by definition there are multiple facts in one place (also known as a repeating group)

Converting Conceptual to Relational

• Step 1: Create a separate table to represent each entity in the conceptual model

– 1A: Each attribute of the entity becomes a column in the relational table

– 2A: Each instance (member) of the entity set will become a row in the relational table

• Steps 2-4 (detailed in the next few slides) involve determining whether each relationship in the

conceptual model should be represented as a separate table or as a posted foreign key

– Redundancy and Load are important determinants

• Redundancy = one fact in multiple places or multiple facts in one place

• Load = the percentage of non-null values in a column

– Participation Cardinalities communicate some of the information regarding

redundancy and load

Relationship Conversion

• Maximum Cardinalities

– The general rule is to post into a “1” entity table

• This avoids “repeating groups” redundancy

– You can NEVER post into an “N” entity

• This causes “repeating groups” redundancy

• Minimum Cardinalities

– The general rule is to post into a “1” (mandatory) entity table

• This avoids null values in the foreign key column

– This rule should be violated in some circumstances (to be discussed soon)

• Step 2: Create a separate table to represent each many-to-many relationship in the

conceptual model, I.e., for the following participation cardinality patterns

(0,N)-(0,N) (0,N)-(1,N) (1,N)-(0,N) (1,N)-(1,N)

– You must create a separate table to represent the relationship

• The primary keys of the related entity tables are posted into the relationship

table to form its primary key. This kind of primary key is called a composite or

concatenated primary key

• This avoids redundancy

• There are no exceptions to this rule!!!

– If you post a foreign key in either direction, redundancy will be a problem for many-to-

many relationships

 Shahad Alhawashi Page | 4

Example: Many-Many Relationships

Example: Many-Many Relationship

Relationship Conversion

• Step 3: For participation cardinality pattern

(1,1)-(1,1), consider whether the two entities are conceptually separate or whether they should

be combined

• If they should remain separate, then

o 3A: Post the primary key from one entity’s table into the other entity’s table as a foreign

key

o 3B: It doesn’t matter which entity’s primary key is posted into the other entity’s table, but

DO NOT post both

o DO NOT make a separate table

o Redundancy is automatically avoided and load is not an issue when you post a foreign

key into either table in a (1,1)-(1,1) relationship

 Shahad Alhawashi Page | 5

Example: (1,1)-(1,1)

Relationship Conversion

• Step 4: For remaining relationships that have (1,1) participation by one entity set, post the

related entity’s primary key into the (1,1) entity’s table as a foreign key

– I.e., for the following participation cardinality patterns

(0,N)-(1,1) (1,N)-(1,1) (1,1)-(0,N) (1,1)-(1,N) (0,1)-(1,1) (1,1)-(0,1)

• Do NOT make a separate table

• Post a foreign key INTO the (1,1) entity’s table from the other entity’s table

• Redundancy is avoided and load is not an issue if you follow this instruction

• If you post the opposite direction, either redundancy [for N maximums] OR load

[for 0 minimums] will be a problem

Example 1: Posting into a (1,1)

 Shahad Alhawashi Page | 6

Example 2: Posting into a (1,1)

Relationship Conversion

• Step 5: For remaining relationships that have (0,1) participation by one or both of the entities,

consider load

I.e., for the following participation cardinality patterns

(0,N)-(0,1) (1,N)-(0,1) (0,1)-(0,N) (0,1)-(1,N) (0,1)-(0,1)

– The rule for maximum cards requires posting into a (0,1) or making a separate table; you

CANNOT post into the (0,N) or (1,N)

– The rule for minimum cards says you really shouldn’t post into the (0,1) because it will

create null values that waste valuable space in the database

• However, if a separate table would waste more space, then it is better to follow

the maximum rule and break the minimum rule

– 5A: Post the related entity’s primary key into the (0,1) entity’s table as a foreign key for

any relationships for which that results in a high load

– 5B: Create a separate table for any relationships for which posting a foreign key results

in low load

• Note: For (0,1)-(0,1), step 5A, post whichever direction results in highest load; if

neither direction yields high load, then follow step 5B

Example: Load Considerations

• Some cash disbursements (13/26) pay for purchases

– If we post Receiving Report# into Cash Disbursement, 13 out of 26 will be non-null

– This is a medium load

– Might be worth breaking minimum rule

– Consider other posting option

• Most purchases (14/18) result in cash disbursements

– If we post Check# into Purchase, 14 out of 18 will be non-null

– This is a high load

– Worth breaking the minimum rule

 Shahad Alhawashi Page | 7

Purchases Cash Disbursements

Purchase Returns

Purchase

Cash

Disbursement

Purchase Return
allowance

for

pays for

(0,1) (0,1)

(0,1) (1,N)

Receiving

Report #

Check #

Purchase

Return

Slip #

Conclusion: post Check# into Purchase table to

represent the “pays for” relationship

Example: Load considerations

• Few purchases (3/18) result in purchase returns

– If we post Purchase Return Slip# into Purchase, only 3 out of 18 will be non-null

– This is low load

– Must either make a separate table or consider posting the other direction

• Can’t post receiving report# into purchase return because one purchase return slip # can be

associated with multiple purchases

Purchases Cash Disbursements

Purchase Returns

Purchase

Cash

Disbursement

Purchase Return
allowance

for

pays for

(0,1) (0,1)

(0,1) (1,N)

Receiving

Report #

Check #

Purchase

Return

Slip #

 Shahad Alhawashi Page | 8

Conclusion: Make a separate table to represent the “allowance for” relationship

Relationship Attribute Placement

• If relationship becomes a separate table, then relationship attributes are placed in that table

• If relationship can be represented by a posted foreign key, relationship attribute is posted

alongside the foreign key

 Shahad Alhawashi Page | 9

Fixing One Fact Multiple Places

• What facts are in multiple places in this table?

• Reverse engineer to get the ER model that this table must represent

• Is the ER model that results in this table correct?

• What SHOULD the ER model have been instead?

• What is the correct relational model?

Fixing One Fact Multiple Places

Fixing Multiple Facts in One Place

• What facts are in multiple places?

• How could this be avoided?

 Shahad Alhawashi Page | 10

Relational Database Design Summary

• The relational model is based on set theory and predicate logic and the resultant relations

(tables) can be manipulated for information retrieval purposes if they are properly constructed

• To create well-behaved tables, follow the rules we discussed

– Conversion rules for cardinality patterns

– One Fact-One Place

• Think at the data (extensional) level!!

• When creating physical databases, use the conceptual and logical models to help you realize

the important issues and potential pitfalls

