IT 342 | SYSTEM ENTERPRISE

WEEK6 | Chapter 6 Relational Database Design: Converting Conceptual Models to Relational Databases

Database Model Levels

- A Conceptual model represents reality in an abstracted form that can be used in developing an information system in a wide variety of formats (e.g. relational, object-oriented, flat-file, etc.)
 - It is hardware and software independent
 - It is independent of any logical model type
- A Logical model represents reality in the format required by a particular database model (e.g. relational or object-oriented)
 - Is still hardware and software independent
 - Depends on the chosen logical model type
- A Physical model is created specifically for a particular database software package
 - Is dependent on hardware, software, and on the chosen logical model type

Relational Database Model

- The relational model is a type of logical database model that was conceived by E.F. Codd in 1969
- The relational model is based on set theory and predicate logic
 - It is well formalized, so its behavior is predictable
- A relational database consists of tables (relations) that are linked together via the use of primary and foreign keys
 - A FOREIGN KEY in a table is a primary key from a different table that has been posted into the table to create a link between the two tables
- Relational database tables are made up of rows and columns
 - Rows are called the table extension or tuples
 - The ordering of rows in a table does not matter
 - Columns are called the table intension or schema
 - The ordering of columns in a table does not matter
 - All values in a column must conform to the same data format (e.g. date, text, currency, etc.)
 - Each cell in a database table (a row-column intersection) can contain only one value
 - no repeating groups are allowed

Foreign Key Example

SaleID	Date	Amou	int	Salesperson
081401A	6/14	\$4,21	8	123458
081401B	6/14	\$6,43	7	654321
081501A	6/15	\$1,11	2	654321
S	SalespersonID		Nar	ne
12	123456		Fre	d
6	54321		Fra	ncis

Relational Database Model

- Some principles of the relational model
 - Entity Integrity
 - A primary key in a table must not contain a null value
 - Guarantees uniqueness of entities and enables proper referencing of primary key values by foreign key values
 - Referential Integrity
 - A value for a foreign key in a table must either
 - Be null (blank)
 - Match exactly a value for the primary key in the table from which it was posted
 - One Fact, One Place
 - Fact = a pairing of a candidate key attribute value with another attribute value
 - Facts are found in the extensional data

Referential Integrity Example

. .

EXHIBIT 6–1 Foreign Key Examples

(a) Meets referential integrity principle

Sale

(b) Violates referential integrity principle

Sale				Sale			
SaleID	Date	Amount	Salesperson	SaleID	Date	Amount	Salesperson
061401A	6/14	\$4,218	123456	061401A	6/14	\$4,218	123456
061401B	6/14	\$6,437	654321	061401B	6/14	\$6,437	654321
061501A	6/15	\$1,112	654321	061501A	6/15	\$1,112	654321
061501B	6/15	\$3,300		061501B	6/15	\$3,300	
061501C	6/15	\$1,776		061501C	6/15	\$1,776	234567
					/	/	
Salesperson				Salesperson			
SalespersonID	Name	Telephone		SalespersonID	Name	Telephone	
123456	Fred	555-0063		123456	Fred	555-0063	
654321	Francis	555-0007		654321	Francis	555-0007	

One Fact-One Place Violations One fact in multiple places

Sale				Ľ.	
SaleID	Date	Amount	CustomerID	CustomerName	CustomerAddress
8532	Oct. 2	\$13	1 C422	Andy	456 Pine St.
9352	Oct. 14	\$14	C821	Jennifer	987 Forest St.
10215	Oct. 27	\$20	3 C363	Arlie	321 Beech St.
14332	Nov. 5	\$18	C422	Andy	456 Pine St.
17421	Nov. 16	\$22	3 C363	Arlie	321 Beech St.
			\sim		
				2	

Multiple facts in one place

Each value of each attribute in a row is paired with the primary key, so if any cell has two or more attribute values, by definition there are multiple facts in one place (also known as a *repeating group*)

Converting Conceptual to Relational

- Step 1: Create a separate table to represent each entity in the conceptual model
 - 1A: Each attribute of the entity becomes a column in the relational table
 - 2A: Each instance (member) of the entity set will become a row in the relational table
- Steps 2-4 (detailed in the next few slides) involve determining whether each relationship in the conceptual model should be represented as a separate table or as a posted foreign key
 - Redundancy and Load are important determinants
 - Redundancy = one fact in multiple places or multiple facts in one place
 - Load = the percentage of non-null values in a column
 - Participation Cardinalities communicate some of the information regarding redundancy and load

Relationship Conversion

- Maximum Cardinalities
 - The general rule is to post into a "1" entity table
 - This avoids "repeating groups" redundancy
 - You can NEVER post into an "N" entity
 - This causes "repeating groups" redundancy
- Minimum Cardinalities
 - The general rule is to post into a "1" (mandatory) entity table
 - This avoids null values in the foreign key column
 - This rule should be violated in some circumstances (to be discussed soon)
- Step 2: Create a separate table to represent each many-to-many relationship in the conceptual model, I.e., for the following participation cardinality patterns (0,N)-(0,N) (0,N)-(1,N) (1,N)-(0,N) (1,N)-(1,N)
 - You <u>must</u> create a separate table to represent the relationship
 - The primary keys of the related entity tables are posted into the relationship table to form its primary key. This kind of primary key is called a composite or concatenated primary key
 - This avoids redundancy
 - There are no exceptions to this rule!!!
 - If you post a foreign key in either direction, redundancy <u>will</u> be a problem for many-tomany relationships

Example: Many-Many Relationships

Relationship Conversion

- Step 3: For participation cardinality pattern (1,1)-(1,1), consider whether the two entities are conceptually separate or whether they should be combined
- If they should remain separate, then
 - 3A: Post the primary key from one entity's table into the other entity's table as a foreign key
 - 3B: It doesn't matter which entity's primary key is posted into the other entity's table, but DO NOT post both
 - o DO NOT make a separate table
 - Redundancy is automatically avoided and load is not an issue when you post a foreign key into either table in a (1,1)-(1,1) relationship

Example: (1,1)-(1,1)

Relationship Conversion

- Step 4: For remaining relationships that have (1,1) participation by one entity set, post the related entity's primary key into the (1,1) entity's table as a foreign key
 - I.e., for the following participation cardinality patterns
 - (0,N)-(1,1) (1,N)-(1,1) (1,1)-(0,N) (1,1)-(1,N) (0,1)-(1,1) (1,1)-(0,1)
 - Do NOT make a separate table
 - Post a foreign key INTO the (1,1) entity's table from the other entity's table
 - Redundancy is avoided and load is not an issue if you follow this instruction
 - If you post the opposite direction, either redundancy [for N maximums] OR load [for 0 minimums] will be a problem

Example 1: Posting into a (1,1)

Example 2: Posting into a (1,1)

SaleID	Date Amo	unt		C	R-ID Date Amount
	Sale	(1,1)	yields	>(0,1)	Cash Receipt
SaleID	Date	Amount	CR-ID*		
S1	6/12	\$10	CR1		
S2	6/12	\$15	CR2		
S3	6/13	\$12	CR3		
CR-ID	Date	Amount	S-ID*		
CR1	6/12	\$10			
CR2	6/12	\$15	S2		
CR3	6/13	\$12			
CR4	6/13	\$1,000			

Relationship Conversion

Step 5: For remaining relationships that have (0,1) participation by one or both of the entities, consider

I.e., for the following participation cardinality patterns (0,N)-(0,1) (1,N)-(0,1) (0,1)-(0,N) (0,1)-(1,N) (0,1)-(0,1)

- The rule for maximum cards requires posting into a (0,1) or making a separate table; you CANNOT post into the (0,N) or (1,N)
- The rule for minimum cards says you really shouldn't post into the (0,1) because it will create null values that waste valuable space in the database
 - However, if a separate table would waste more space, then it is better to follow the maximum rule and break the minimum rule
- 5A: Post the related entity's primary key into the (0,1) entity's table as a foreign key for any relationships for which that results in a high load
- 5B: Create a separate table for any relationships for which posting a foreign key results in low load
 - Note: For (0,1)-(0,1), step 5A, post whichever direction results in highest load; if neither direction yields high load, then follow step 5B

Example: Load Considerations

- Some cash disbursements (13/26) pay for purchases
 - If we post Receiving Report# into Cash Disbursement, 13 out of 26 will be non-null
 - This is a medium load
 - Might be worth breaking minimum rule
 - Consider other posting option
- Most purchases (14/18) result in cash disbursements
 - If we post Check# into Purchase, 14 out of 18 will be non-null
 - This is a high load
 - Worth breaking the minimum rule

Conclusion: post Check# into Purchase table to

represent the "pays for" relationship

Example: Load considerations

- Few purchases (3/18) result in purchase returns
 - If we post Purchase Return Slip# into Purchase, only 3 out of 18 will be non-null
 - This is low load
 - Must either make a separate table or consider posting the other direction
- Can't post receiving report# into purchase return because one purchase return slip # can be associated with multiple purchases

Conclusion: Make a separate table to represent the "allowance for" relationship

Relationship Attribute Placement

- If relationship becomes a separate table, then relationship attributes are placed in that table
- If relationship can be represented by a posted foreign key, relationship attribute is posted alongside the foreign key

Diagram format	Grammar format
Student O Name O Address	Entity: Student Attributes: StudentID Name Address Identifier: StudentID
Takes o Grade earned	Entity: Course Attributes: CourseID Description Credits Identifier: CourseID
Course -o Description -o Credits	Relationship: Takes Connected entities: (0,N) Student (0,N) Course Attributes: Grade earned

Student		
StudentID	Name	Address
999888	Mildred	123 Almanac St.
888777	Kent	456 Market Dr.
777666	Candace	789 Harriet Ave.
Course		
CourseID	Description	Credits
ACG611	Advanced AIS	3
FIN642	Financial Markets	3
MIS650	IT Management	3
Takes		
StudentID	CourseID	Grade Earned
999888	ACG611	В
999888	MIS650	A-
888777	MIS650	B+

Inventor	y				
ItemID	De	escription	Date Manufactured	Salenumber	Actual Sale Price
11	Big bl	lue item	9/24/05	1	\$450
12	Triang	gle green item	9/25/05	1	\$375
13	Small	square item	9/26/05		
14	Medi	um pink item	9/27/05	2	\$500
Sale					
Salenum	ber	Date	Dollar Amount		
S1		10/12/05	\$825		
S2		10/15/05	\$500		

Fixing One Fact Multiple Places

Employ	ee				
EmpID	EmpName	Payrate	Hours Worked	Dept#	DeptName
8532	Andy	\$13	36	D423	Audit
7352	Jennifer	\$14	45	D423	Audit
215	Arlie	\$20	50	D777	ISAAS
4332	Craig	\$18	60	D821	Tax
74	Steven	\$22	64	D821	Tax

- What facts are in multiple places in this table?
- Reverse engineer to get the ER model that this table must represent
- Is the ER model that results in this table correct?
- What SHOULD the ER model have been instead?
- What is the correct relational model?

Fixing One Fact Multiple Places

Fixing Multiple Facts in One Place

Address	QOH	
123 Oak	2,14,784	
456 Pine	4,23,873	
	Address 123 Oak 456 Pine	Address QOH 123 Oak 2,14,784 456 Pine 4,23,873

Inventory

Product#	Description	StdCost	QOH
AB12	Granddaddy	\$5,000	2,4
BC445	Mama	\$3,000	14,23
DD2	Littlebabe	\$100	784,873

InventoryInWarehouse

Warehouse#	Product#
W1	AB12
W1	BC445
W1	DD2
W2	AB12
W2	BC445
W2	DD2

- What facts are in multiple places?
- How could this be avoided?

Warehouse				
Warehouse#	Address			
W1	123 Osk			
W2	456 Pine			

Inventory

Product#	Description	StdCost
AB12	Granddaddy	\$5,000
BC445	Mama	\$3,000
DD2	Littlebabe	\$100

inventoryInWarehouse

Warehouse#	Product#	QOH
W1	AB12	2
W1	BC445	14
W1	DD2	784
W2	AB12	4
W2	BC445	23
W2	DD2	873

Relational Database Design Summary

- The relational model is based on set theory and predicate logic and the resultant relations (tables) can be manipulated for information retrieval purposes if they are properly constructed
- To create well-behaved tables, follow the rules we discussed
 - Conversion rules for cardinality patterns
 - One Fact-One Place
- Think at the data (extensional) level!!
- When creating physical databases, use the conceptual and logical models to help you realize the important issues and potential pitfalls