
Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter 19

Algorithms for

Query Processing

and Optimization

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

0. Introduction to Query Processing (1)

 Query optimization:

 The process of choosing a suitable execution

strategy for processing a query.

 Two internal representations of a query:

 Query Tree

 Query Graph

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Introduction to Query Processing (2)

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

1. Translating SQL Queries into Relational

Algebra (1)

 Query block:

 The basic unit that can be translated into the
algebraic operators and optimized.

 A query block contains a single SELECT-FROM-
WHERE expression, as well as GROUP BY and
HAVING clause if these are part of the block.

 Nested queries within a query are identified as
separate query blocks.

 Aggregate operators in SQL must be included in
the extended algebra.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Translating SQL Queries into Relational

Algebra (2)

SELECT LNAME, FNAME

FROM EMPLOYEE

WHERE SALARY > (SELECT MAX (SALARY)

FROM EMPLOYEE

WHERE DNO = 5);

SELECT MAX (SALARY)

FROM EMPLOYEE

WHERE DNO = 5

SELECT LNAME, FNAME

FROM EMPLOYEE

WHERE SALARY > C

πLNAME, FNAME (σSALARY>C(EMPLOYEE)) ℱMAX SALARY (σDNO=5 (EMPLOYEE))

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

7. Using Heuristics in Query Optimization (1)

 Process for heuristics optimization

1. The parser of a high-level query generates an initial
internal representation;

2. Apply heuristics rules to optimize the internal
representation.

3. A query execution plan is generated to execute groups of
operations based on the access paths available on the files
involved in the query.

 The main heuristic is to apply first the operations that
reduce the size of intermediate results.

 E.g., Apply SELECT and PROJECT operations before
applying the JOIN or other binary operations.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Using Heuristics in Query Optimization (2)

 Query tree:
 A tree data structure that corresponds to a relational algebra

expression. It represents the input relations of the query as
leaf nodes of the tree, and represents the relational
algebra operations as internal nodes.

 An execution of the query tree consists of executing an
internal node operation whenever its operands are
available and then replacing that internal node by the
relation that results from executing the operation.

 Query graph:
 A graph data structure that corresponds to a relational

calculus expression. It does not indicate an order on which
operations to perform first. There is only a single graph
corresponding to each query.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Using Heuristics in Query Optimization (3)

 Example:

 For every project located in ‘Stafford’, retrieve the project number,
the controlling department number and the department manager’s
last name, address and birthdate.

 Relation algebra:

PNUMBER, DNUM, LNAME, ADDRESS, BDATE

(((PLOCATION=‘STAFFORD’(PROJECT))

DNUM=DNUMBER (DEPARTMENT)) MGRSSN=SSN (EMPLOYEE))

 SQL query:

Q2: SELECT P.NUMBER,P.DNUM,E.LNAME,
E.ADDRESS, E.BDATE

FROM PROJECT AS P,DEPARTMENT AS D,
EMPLOYEE AS E

WHERE P.DNUM=D.DNUMBER AND
D.MGRSSN=E.SSN AND
P.PLOCATION=‘STAFFORD’;

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Using

Heuristics in

Query

Optimization

(4)

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Using Heuristics in Query Optimization (5)

 Heuristic Optimization of Query Trees:

 The same query could correspond to many different
relational algebra expressions — and hence many different
query trees.

 The task of heuristic optimization of query trees is to find a
final query tree that is efficient to execute.

 Example:

Q: SELECT LNAME

FROM EMPLOYEE, WORKS_ON, PROJECT

WHERE PNAME = ‘AQUARIUS’ AND
PNMUBER=PNO AND ESSN=SSN
AND BDATE > ‘1957-12-31’;

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Using

Heuristics in

Query

Optimization

(6)

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Using

Heuristics in

Query

Optimization

(7)

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Using Heuristics in

Query

Optimization (8)

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Using Heuristics in Query Optimization (9)

 General Transformation Rules for Relational Algebra Operations:

1. Cascade of : A conjunctive selection condition can be broken up into
a cascade (sequence) of individual operations:

 c1 AND c2 AND ... AND cn(R) = c1 (c2 (...(cn(R))...))

2. Commutativity of : The operation is commutative:

 c1 (c2(R)) = c2 (c1(R))

3. Cascade of : In a cascade (sequence) of operations, all but the last
one can be ignored:

 List1 (List2 (...(Listn(R))...)) = List1(R)

4. Commuting with : If the selection condition c involves only the
attributes A1, ..., An in the projection list, the two operations can be
commuted:

 A1, A2, ..., An (c (R)) = c (A1, A2, ..., An (R))

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Using Heuristics in Query Optimization (10)

 General Transformation Rules for Relational Algebra Operations
(contd.):

5. Commutativity of (and x): The operation is commutative as is
the x operation:

 R C S = S C R; R x S = S x R

6. Commuting with (or x): If all the attributes in the selection
condition c involve only the attributes of one of the relations being
joined—say, R—the two operations can be commuted as follows:

 c (R S) = (c (R)) S

 Alternatively, if the selection condition c can be written as (c1 and c2),
where condition c1 involves only the attributes of R and condition c2
involves only the attributes of S, the operations commute as follows:

 c (R S) = (c1 (R)) (c2 (S))

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Using Heuristics in Query Optimization (11)

 General Transformation Rules for Relational Algebra

Operations (contd.):

7. Commuting with (or x): Suppose that the projection list

is L = {A1, ..., An, B1, ..., Bm}, where A1, ..., An are

attributes of R and B1, ..., Bm are attributes of S. If the

join condition c involves only attributes in L, the two

operations can be commuted as follows:

 L (R C S) = (A1, ..., An (R)) C (B1, ..., Bm (S))

 If the join condition C contains additional attributes not in

L, these must be added to the projection list, and a final
operation is needed.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Using Heuristics in Query Optimization (12)

 General Transformation Rules for Relational Algebra
Operations (contd.):

8. Commutativity of set operations: The set operations υ and
∩ are commutative but “–” is not.

9. Associativity of , x, υ, and ∩ : These four operations are
individually associative; that is, if q stands for any one of
these four operations (throughout the expression), we
have
 (R q S) q T = R q (S q T)

10. Commuting with set operations: The operation
commutes with υ , ∩ , and –. If q stands for any one of
these three operations, we have
 c (R q S) = (c (R)) q (c (S))

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Using Heuristics in Query Optimization

(13)

 General Transformation Rules for Relational Algebra

Operations (contd.):

 The operation commutes with υ.

L (R υ S) = (L (R)) υ (L (S))

 Converting a (, x) sequence into : If the condition c of a

 that follows a x Corresponds to a join condition, convert

the (, x) sequence into a as follows:

(C (R x S)) = (R C S)

 Other transformations

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Using Heuristics in Query Optimization (14)

 Outline of a Heuristic Algebraic Optimization Algorithm:

1. Using rule 1, break up any select operations with conjunctive
conditions into a cascade of select operations.

2. Using rules 2, 4, 6, and 10 concerning the commutativity of select
with other operations, move each select operation as far down the
query tree as is permitted by the attributes involved in the select
condition.

3. Using rule 9 concerning associativity of binary operations, rearrange
the leaf nodes of the tree so that the leaf node relations with the most
restrictive select operations are executed first in the query tree
representation.

4. Using Rule 12, combine a Cartesian product operation with a
subsequent select operation in the tree into a join operation.

5. Using rules 3, 4, 7, and 11 concerning the cascading of project and
the commuting of project with other operations, break down and
move lists of projection attributes down the tree as far as possible by
creating new project operations as needed.

6. Identify subtrees that represent groups of operations that can be
executed by a single algorithm.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Using Heuristics in Query Optimization

(15)

 Summary of Heuristics for Algebraic Optimization:

1. The main heuristic is to apply first the operations that
reduce the size of intermediate results.

2. Perform select operations as early as possible to reduce
the number of tuples and perform project operations as
early as possible to reduce the number of attributes. (This
is done by moving select and project operations as far
down the tree as possible.)

3. The select and join operations that are most restrictive
should be executed before other similar operations. (This
is done by reordering the leaf nodes of the tree among
themselves and adjusting the rest of the tree
appropriately.)

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Using Heuristics in Query Optimization

(16)

 Query Execution Plans

 An execution plan for a relational algebra query consists of

a combination of the relational algebra query tree and

information about the access methods to be used for each

relation as well as the methods to be used in computing the

relational operators stored in the tree.

 Materialized evaluation: the result of an operation is stored

as a temporary relation.

 Pipelined evaluation: as the result of an operator is

produced, it is forwarded to the next operator in sequence.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

8. Using Selectivity and Cost Estimates in

Query Optimization (1)

 Cost-based query optimization:

 Estimate and compare the costs of executing a

query using different execution strategies and

choose the strategy with the lowest cost estimate.

 (Compare to heuristic query optimization)

 Issues

 Cost function

 Number of execution strategies to be considered

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Using Selectivity and Cost Estimates in

Query Optimization (2)

 Cost Components for Query Execution

1. Access cost to secondary storage

2. Storage cost

3. Computation cost

4. Memory usage cost

5. Communication cost

 Note: Different database systems may focus on

different cost components.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Using Selectivity and Cost Estimates in

Query Optimization (3)

 Catalog Information Used in Cost Functions

 Information about the size of a file

 number of records (tuples) (r),

 record size (R),

 number of blocks (b)

 blocking factor (bfr)

 Information about indexes and indexing attributes of a file

 Number of levels (x) of each multilevel index

 Number of first-level index blocks (bI1)

 Number of distinct values (d) of an attribute

 Selectivity (sl) of an attribute

 Selection cardinality (s) of an attribute. (s = sl * r)

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Using Selectivity and Cost Estimates in

Query Optimization (4)

 Examples of Cost Functions for SELECT

 S1. Linear search (brute force) approach
 CS1a = b;

 For an equality condition on a key, CS1a = (b/2) if the record
is found; otherwise CS1a = b.

 S2. Binary search:
 CS2 = log2b + (s/bfr) –1

 For an equality condition on a unique (key) attribute, CS2
=log2b

 S3. Using a primary index (S3a) or hash key (S3b) to
retrieve a single record
 CS3a = x + 1; CS3b = 1 for static or linear hashing;

 CS3b = 1 for extendible hashing;

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Using Selectivity and Cost Estimates in

Query Optimization (5)

 Examples of Cost Functions for SELECT (contd.)

 S4. Using an ordering index to retrieve multiple records:

 For the comparison condition on a key field with an ordering

index, CS4 = x + (b/2)

 S5. Using a clustering index to retrieve multiple records:

 CS5 = x + ┌ (s/bfr) ┐

 S6. Using a secondary (B+-tree) index:

 For an equality comparison, CS6a = x + s;

 For an comparison condition such as >, <, >=, or <=,

 CS6a = x + (bI1/2) + (r/2)

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Using Selectivity and Cost Estimates in

Query Optimization (6)

 Examples of Cost Functions for SELECT (contd.)

 S7. Conjunctive selection:

 Use either S1 or one of the methods S2 to S6 to solve.

 For the latter case, use one condition to retrieve the records

and then check in the memory buffer whether each

retrieved record satisfies the remaining conditions in the

conjunction.

 S8. Conjunctive selection using a composite index:

 Same as S3a, S5 or S6a, depending on the type of index.

 Examples of using the cost functions.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Using Selectivity and Cost Estimates in

Query Optimization (7)

 Examples of Cost Functions for JOIN

 Join selectivity (js)

 js = | (R C S) | / | R x S | = | (R C S) | / (|R| * |S

|)

 If condition C does not exist, js = 1;

 If no tuples from the relations satisfy condition C, js

= 0;

 Usually, 0 <= js <= 1;

 Size of the result file after join operation

 | (R C S) | = js * |R| * |S |

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Using Selectivity and Cost Estimates in

Query Optimization (8)

 Examples of Cost Functions for JOIN (contd.)

 J1. Nested-loop join:

 CJ1 = bR + (bR*bS) + ((js* |R|* |S|)/bfrRS)

 (Use R for outer loop)

 J2. Single-loop join (using an access structure to retrieve

the matching record(s))

 If an index exists for the join attribute B of S with index

levels xB, we can retrieve each record s in R and then use

the index to retrieve all the matching records t from S that

satisfy t[B] = s[A].

 The cost depends on the type of index.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Using Selectivity and Cost Estimates in

Query Optimization (9)

 Examples of Cost Functions for JOIN (contd.)

 J2. Single-loop join (contd.)
 For a secondary index,

 CJ2a = bR + (|R| * (xB + sB)) + ((js* |R|* |S|)/bfrRS);

 For a clustering index,
 CJ2b = bR + (|R| * (xB + (sB/bfrB))) + ((js* |R|* |S|)/bfrRS);

 For a primary index,
 CJ2c = bR + (|R| * (xB + 1)) + ((js* |R|* |S|)/bfrRS);

 If a hash key exists for one of the two join attributes — B of
S

 CJ2d = bR + (|R| * h) + ((js* |R|* |S|)/bfrRS);

 J3. Sort-merge join:
 CJ3a = CS + bR + bS + ((js* |R|* |S|)/bfrRS);

 (CS: Cost for sorting files)

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Using Selectivity and Cost Estimates in

Query Optimization (10)

 Multiple Relation Queries and Join Ordering

 A query joining n relations will have n-1 join operations, and
hence can have a large number of different join orders
when we apply the algebraic transformation rules.

 Current query optimizers typically limit the structure of a
(join) query tree to that of left-deep (or right-deep) trees.

 Left-deep tree:

 A binary tree where the right child of each non-leaf node is
always a base relation.

 Amenable to pipelining

 Could utilize any access paths on the base relation (the right
child) when executing the join.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

9. Overview of Query Optimization in

Oracle

 Oracle DBMS V8

 Rule-based query optimization: the optimizer chooses
execution plans based on heuristically ranked operations.

 (Currently it is being phased out)

 Cost-based query optimization: the optimizer examines
alternative access paths and operator algorithms and
chooses the execution plan with lowest estimate cost.

 The query cost is calculated based on the estimated usage of
resources such as I/O, CPU and memory needed.

 Application developers could specify hints to the ORACLE
query optimizer.

 The idea is that an application developer might know more
information about the data.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

10. Semantic Query Optimization

 Semantic Query Optimization:

 Uses constraints specified on the database schema in order to
modify one query into another query that is more efficient to
execute.

 Consider the following SQL query,

SELECT E.LNAME, M.LNAME

FROM EMPLOYEE E M

WHERE E.SUPERSSN=M.SSN AND E.SALARY>M.SALARY

 Explanation:

 Suppose that we had a constraint on the database schema that
stated that no employee can earn more than his or her direct
supervisor. If the semantic query optimizer checks for the
existence of this constraint, it need not execute the query at all
because it knows that the result of the query will be empty.
Techniques known as theorem proving can be used for this
purpose.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Summary

0. Introduction to Query Processing

1. Translating SQL Queries into Relational Algebra

2. Algorithms for External Sorting

3. Algorithms for SELECT and JOIN Operations

4. Algorithms for PROJECT and SET Operations

5. Implementing Aggregate Operations and Outer Joins

6. Combining Operations using Pipelining

7. Using Heuristics in Query Optimization

8. Using Selectivity and Cost Estimates in Query
Optimization

9. Overview of Query Optimization in Oracle

10. Semantic Query Optimization

