
Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter 18

Indexing

Structures for

Files

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Indexes as Access Paths

 A single-level index is an auxiliary file that makes
it more efficient to search for a record in the data
file.

 The index is usually specified on one field of the
file (although it could be specified on several
fields)

 One form of an index is a file of entries <field
value, pointer to record>, which is ordered by
field value

 The index is called an access path on the field.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Indexes as Access Paths (cont.)

 The index file usually occupies considerably less disk

blocks than the data file because its entries are much

smaller

 A binary search on the index yields a pointer to the file

record

 Indexes can also be characterized as dense or sparse

 A dense index has an index entry for every search key

value (and hence every record) in the data file.

 A sparse (or nondense) index, on the other hand, has

index entries for only some of the search values

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Indexes as Access Paths (cont.)

 Example: Given the following data file EMPLOYEE(NAME, SSN,
ADDRESS, JOB, SAL, ...)

 Suppose that:

 record size R=150 bytes block size B=512 bytes r=30000
records

 Then, we get:

 blocking factor Bfr= B div R= 512 div 150= 3 records/block

 number of file blocks b= (r/Bfr)= (30000/3)= 10000 blocks

 For an index on the SSN field, assume the field size VSSN=9 bytes,
assume the record pointer size PR=7 bytes. Then:

 index entry size RI=(VSSN+ PR)=(9+7)=16 bytes

 index blocking factor BfrI= B div RI= 512 div 16= 32 entries/block

 number of index blocks b= (r/ BfrI)= (30000/32)= 938 blocks

 binary search needs log2bI= log2938= 10 block accesses

 This is compared to an average linear search cost of:
 (b/2)= 30000/2= 15000 block accesses

 If the file records are ordered, the binary search cost would be:
 log2b= log230000= 15 block accesses

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Types of Single-Level Indexes

 Primary Index

 Defined on an ordered data file

 The data file is ordered on a key field

 Includes one index entry for each block in the data file; the

index entry has the key field value for the first record in the

block, which is called the block anchor

 A similar scheme can use the last record in a block.

 A primary index is a nondense (sparse) index, since it

includes an entry for each disk block of the data file and the

keys of its anchor record rather than for every search value.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Primary Index

on the Ordering

Key Field

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Types of Single-Level Indexes

 Clustering Index

 Defined on an ordered data file

 The data file is ordered on a non-key field unlike primary

index, which requires that the ordering field of the data file

have a distinct value for each record.

 Includes one index entry for each distinct value of the field;

the index entry points to the first data block that contains

records with that field value.

 It is another example of nondense index where Insertion

and Deletion is relatively straightforward with a clustering

index.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

A Clustering

Index

Example

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Another

Clustering

Index

Example

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Types of Single-Level Indexes

 Secondary Index
 A secondary index provides a secondary means of

accessing a file for which some primary access already
exists.

 The secondary index may be on a field which is a candidate
key and has a unique value in every record, or a non-key
with duplicate values.

 The index is an ordered file with two fields.
 The first field is of the same data type as some non-ordering

field of the data file that is an indexing field.

 The second field is either a block pointer or a record pointer.

 There can be many secondary indexes (and hence, indexing
fields) for the same file.

 Includes one entry for each record in the data file; hence, it
is a dense index

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Example of

a Dense

Secondary

Index

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Example of

a Secondary

Index

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Properties of Index Types

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Multi-Level Indexes

 Because a single-level index is an ordered file, we can

create a primary index to the index itself;

 In this case, the original index file is called the first-level
index and the index to the index is called the second-level
index.

 We can repeat the process, creating a third, fourth, ..., top

level until all entries of the top level fit in one disk block

 A multi-level index can be created for any type of first-

level index (primary, secondary, clustering) as long as the

first-level index consists of more than one disk block

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

A Two-Level

Primary Index

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Multi-Level Indexes

 Such a multi-level index is a form of search tree

 However, insertion and deletion of new index

entries is a severe problem because every level of

the index is an ordered file.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

A Node in a Search Tree with Pointers to

Subtrees Below It

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Dynamic Multilevel Indexes Using B-Trees

and B+-Trees

 Most multi-level indexes use B-tree or B+-tree data

structures because of the insertion and deletion problem

 This leaves space in each tree node (disk block) to allow for

new index entries

 These data structures are variations of search trees that

allow efficient insertion and deletion of new search values.

 In B-Tree and B+-Tree data structures, each node

corresponds to a disk block

 Each node is kept between half-full and completely full

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Dynamic Multilevel Indexes Using B-Trees

and B+-Trees (cont.)

 An insertion into a node that is not full is quite
efficient

 If a node is full the insertion causes a split into two
nodes

 Splitting may propagate to other tree levels

 A deletion is quite efficient if a node does not
become less than half full

 If a deletion causes a node to become less than
half full, it must be merged with neighboring
nodes

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Difference between B-tree and B+-tree

 In a B-tree, pointers to data records exist at all

levels of the tree

 In a B+-tree, all pointers to data records exists at

the leaf-level nodes

 A B+-tree can have less levels (or higher capacity

of search values) than the corresponding B-tree

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

B-tree Structures

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

The Nodes of a B+-tree

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Example of

an Insertion

in a B+-tree

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Example of

a Deletion in

a B+-tree

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Summary

 Types of Single-level Ordered Indexes

 Primary Indexes

 Clustering Indexes

 Secondary Indexes

 Multilevel Indexes

 Dynamic Multilevel Indexes Using B-Trees

and B+-Trees

 Indexes on Multiple Keys

