
Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter 17

Disk Storage, Basic

File Structures, and

Hashing

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Disk Storage Devices

 Preferred secondary storage device for high
storage capacity and low cost.

 Data stored as magnetized areas on magnetic
disk surfaces.

 A disk pack contains several magnetic disks
connected to a rotating spindle.

 Disks are divided into concentric circular tracks
on each disk surface.

 Track capacities vary typically from 4 to 50 Kbytes
or more

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Disk Storage Devices (cont.)

 A track is divided into smaller blocks or sectors

 because it usually contains a large amount of information

 The division of a track into sectors is hard-coded on the

disk surface and cannot be changed.

 One type of sector organization calls a portion of a track

that subtends a fixed angle at the center as a sector.

 A track is divided into blocks.

 The block size B is fixed for each system.

 Typical block sizes range from B=512 bytes to B=4096 bytes.

 Whole blocks are transferred between disk and main

memory for processing.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Disk Storage Devices (cont.)

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Disk Storage Devices (cont.)

 A read-write head moves to the track that contains the
block to be transferred.
 Disk rotation moves the block under the read-write head for

reading or writing.

 A physical disk block (hardware) address consists of:
 a cylinder number (imaginary collection of tracks of same

radius from all recorded surfaces)

 the track number or surface number (within the cylinder)

 and block number (within track).

 Reading or writing a disk block is time consuming
because of the seek time s and rotational delay (latency)
rd.

 Double buffering can be used to speed up the transfer of
contiguous disk blocks.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Disk Storage Devices (cont.)

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Typical Disk Parameters

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Records

 Fixed and variable length records

 Records contain fields which have values of a
particular type

 E.g., amount, date, time, age

 Fields themselves may be fixed length or variable
length

 Variable length fields can be mixed into one
record:

 Separator characters or length fields are needed
so that the record can be “parsed.”

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Blocking

 Blocking:

 Refers to storing a number of records in one block
on the disk.

 Blocking factor (bfr) refers to the number of
records per block.

 There may be empty space in a block if an
integral number of records do not fit in one block.

 Spanned Records:

 Refers to records that exceed the size of one or
more blocks and hence span a number of blocks.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Files of Records

 A file is a sequence of records, where each record is a

collection of data values (or data items).

 A file descriptor (or file header) includes information that

describes the file, such as the field names and their data
types, and the addresses of the file blocks on disk.

 Records are stored on disk blocks.

 The blocking factor bfr for a file is the (average) number

of file records stored in a disk block.

 A file can have fixed-length records or variable-length

records.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Files of Records (cont.)

 File records can be unspanned or spanned

 Unspanned: no record can span two blocks

 Spanned: a record can be stored in more than one block

 The physical disk blocks that are allocated to hold the
records of a file can be contiguous, linked, or indexed.

 In a file of fixed-length records, all records have the same
format. Usually, unspanned blocking is used with such
files.

 Files of variable-length records require additional
information to be stored in each record, such as
separator characters and field types.

 Usually spanned blocking is used with such files.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Operation on Files
 Typical file operations include:

 OPEN: Readies the file for access, and associates a pointer that will refer
to a current file record at each point in time.

 FIND: Searches for the first file record that satisfies a certain condition, and
makes it the current file record.

 FINDNEXT: Searches for the next file record (from the current record) that
satisfies a certain condition, and makes it the current file record.

 READ: Reads the current file record into a program variable.

 INSERT: Inserts a new record into the file & makes it the current file
record.

 DELETE: Removes the current file record from the file, usually by marking
the record to indicate that it is no longer valid.

 MODIFY: Changes the values of some fields of the current file record.

 CLOSE: Terminates access to the file.

 REORGANIZE: Reorganizes the file records.

 For example, the records marked deleted are physically removed from
the file or a new organization of the file records is created.

 READ_ORDERED: Read the file blocks in order of a specific field of the
file.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Unordered Files

 Also called a heap or a pile file.

 New records are inserted at the end of the file.

 A linear search through the file records is

necessary to search for a record.

 This requires reading and searching half the file

blocks on the average, and is hence quite

expensive.

 Record insertion is quite efficient.

 Reading the records in order of a particular field

requires sorting the file records.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Ordered Files

 Also called a sequential file.

 File records are kept sorted by the values of an ordering field.

 Insertion is expensive: records must be inserted in the correct order.

 It is common to keep a separate unordered overflow (or
transaction) file for new records to improve insertion efficiency;
this is periodically merged with the main ordered file.

 A binary search can be used to search for a record on its ordering
field value.

 This requires reading and searching log2 of the file blocks on the
average, an improvement over linear search.

 Reading the records in order of the ordering field is quite efficient.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Ordered Files (cont.)

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Average Access Times

 The following table shows the average access

time to access a specific record for a given type

of file

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Hashed Files

 Hashing for disk files is called External Hashing

 The file blocks are divided into M equal-sized buckets, numbered
bucket0, bucket1, ..., bucketM-1.

 Typically, a bucket corresponds to one (or a fixed number of) disk
block.

 One of the file fields is designated to be the hash key of the file.

 The record with hash key value K is stored in bucket i, where i=h(K),
and h is the hashing function.

 Search is very efficient on the hash key.

 Collisions occur when a new record hashes to a bucket that is already
full.

 An overflow file is kept for storing such records.

 Overflow records that hash to each bucket can be linked together.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Hashed Files (cont.)

 There are numerous methods for collision resolution, including the
following:

 Open addressing: Proceeding from the occupied position
specified by the hash address, the program checks the
subsequent positions in order until an unused (empty) position is
found.

 Chaining: For this method, various overflow locations are kept,
usually by extending the array with a number of overflow
positions. In addition, a pointer field is added to each record
location. A collision is resolved by placing the new record in an
unused overflow location and setting the pointer of the occupied
hash address location to the address of that overflow location.

 Multiple hashing: The program applies a second hash function if
the first results in a collision. If another collision results, the
program uses open addressing or applies a third hash function
and then uses open addressing if necessary.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Hashed Files (cont.)

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Hashed Files (cont.)

 To reduce overflow records, a hash file is typically
kept 70-80% full.

 The hash function h should distribute the records
uniformly among the buckets

 Otherwise, search time will be increased because
many overflow records will exist.

 Main disadvantages of static external hashing:

 Fixed number of buckets M is a problem if the
number of records in the file grows or shrinks.

 Ordered access on the hash key is quite inefficient
(requires sorting the records).

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Hashed Files - Overflow Handling

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Dynamic And Extendible Hashed

Files

 Dynamic and Extendible Hashing Techniques

 Hashing techniques are adapted to allow the dynamic

growth and shrinking of the number of file records.

 These techniques include the following: dynamic hashing,

extendible hashing, and linear hashing.

 Both dynamic and extendible hashing use the binary

representation of the hash value h(K) in order to access

a directory.

 In dynamic hashing the directory is a binary tree.

 In extendible hashing the directory is an array of size 2d

where d is called the global depth.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Dynamic And Extendible Hashing

(cont.)

 The directories can be stored on disk, and they expand or
shrink dynamically.
 Directory entries point to the disk blocks that contain the

stored records.

 An insertion in a disk block that is full causes the block to
split into two blocks and the records are redistributed
among the two blocks.
 The directory is updated appropriately.

 Dynamic and extendible hashing do not require an
overflow area.

 Linear hashing does require an overflow area but does
not use a directory.
 Blocks are split in linear order as the file expands.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Extendible

Hashing

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Parallelizing Disk Access using RAID

Technology.

 Secondary storage technology must take steps to
keep up in performance and reliability with
processor technology.

 A major advance in secondary storage
technology is represented by the development of
RAID, which originally stood for Redundant
Arrays of Inexpensive Disks.

 The main goal of RAID is to even out the widely
different rates of performance improvement of
disks against those in memory and
microprocessors.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

RAID Technology (cont.)

 A natural solution is a large array of small independent
disks acting as a single higher-performance logical disk.

 A concept called data striping is used, which utilizes
parallelism to improve disk performance.

 Data striping distributes data transparently over multiple
disks to make them appear as a single large, fast disk.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

RAID Technology (cont.)

 Different raid organizations were defined based on different
combinations of the two factors of granularity of data interleaving
(striping) and pattern used to compute redundant information.

 Raid level 0 has no redundant data and hence has the best write
performance at the risk of data loss

 Raid level 1 uses mirrored disks.

 Raid level 2 uses memory-style redundancy by using Hamming
codes, which contain parity bits for distinct overlapping subsets of
components. Level 2 includes both error detection and correction.

 Raid level 3 uses a single parity disk relying on the disk controller
to figure out which disk has failed.

 Raid Levels 4 and 5 use block-level data striping, with level 5
distributing data and parity information across all disks.

 Raid level 6 applies the so-called P + Q redundancy scheme
using Reed-Soloman codes to protect against up to two disk
failures by using just two redundant disks.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Use of RAID Technology (cont.)

 Different raid organizations are being used under different situations

 Raid level 1 (mirrored disks) is the easiest for rebuild of a disk from
other disks

 It is used for critical applications like logs

 Raid level 2 uses memory-style redundancy by using Hamming
codes, which contain parity bits for distinct overlapping subsets of
components.

 Level 2 includes both error detection and correction.

 Raid level 3 (single parity disks relying on the disk controller to figure
out which disk has failed) and level 5 (block-level data striping) are
preferred for Large volume storage, with level 3 giving higher transfer
rates.

 Most popular uses of the RAID technology currently are:

 Level 0 (with striping), Level 1 (with mirroring) and Level 5 with an
extra drive for parity.

 Design Decisions for RAID include:

 Level of RAID, number of disks, choice of parity schemes, and
grouping of disks for block-level striping.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Use of RAID Technology (cont.)

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Storage Area Networks

 The demand for higher storage has risen considerably in
recent times.

 Organizations have a need to move from a static fixed
data center oriented operation to a more flexible and
dynamic infrastructure for information processing.

 Thus they are moving to a concept of Storage Area
Networks (SANs).

 In a SAN, online storage peripherals are configured as
nodes on a high-speed network and can be attached and
detached from servers in a very flexible manner.

 This allows storage systems to be placed at longer
distances from the servers and provide different
performance and connectivity options.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Storage Area Networks (cont.)

 Advantages of SANs are:

 Flexible many-to-many connectivity among servers and

storage devices using fiber channel hubs and switches.

 Up to 10km separation between a server and a storage

system using appropriate fiber optic cables.

 Better isolation capabilities allowing non-disruptive addition

of new peripherals and servers.

 SANs face the problem of combining storage options from

multiple vendors and dealing with evolving standards of

storage management software and hardware.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Summary

 Disk Storage Devices

 Files of Records

 Operations on Files

 Unordered Files

 Ordered Files

 Hashed Files

 Dynamic and Extendible Hashing Techniques

 RAID Technology

