
3/10/2015

1

IT344- Database Management Systems

Study Guide for Midterm Exam

College of Computing and Informatics

Saudi Electronic University

Chapter 17

Disk Storage, Basic File Structure and Hashing

Disk Storage Devices

■ Preferred secondary storage device for high
storage capacity and low cost.

■ Data stored as magnetized areas on magnetic
disk surfaces.

■ A disk pack contains several magnetic disks
connected to a rotating spindle.

■ Disks are divided into concentric circular tracks
on each disk surface.

■ Track capacities vary typically from 4 to 50 Kbytes
or more

Disk Storage Devices (cont.)

■ A track is divided into smaller blocks or sectors

■ because it usually contains a large amount of information

■ The division of a track into sectors is hard-coded on the

disk surface and cannot be changed.

■ One type of sector organization calls a portion of a track

that subtends a fixed angle at the center as a sector.

■ A track is divided into blocks.

■ The block size B is fixed for each system.

■ Typical block sizes range from B=512 bytes to B=4096 bytes.

■ Whole blocks are transferred between disk and main

memory for processing.

Disk Storage Devices (cont.) Disk Storage Devices (cont.)

■ A read-write head moves to the track that contains the
block to be transferred.

■ Disk rotation moves the block under the read-write head for
reading or writing.

■ A physical disk block (hardware) address consists of:
■ a cylinder number (imaginary collection of tracks of same

radius from all recorded surfaces)
■ the track number or surface number (within the cylinder)
■ and block number (within track).

■ Reading or writing a disk block is time consuming
because of the seek time s and rotational delay (latency)
rd.

■ Double buffering can be used to speed up the transfer of
contiguous disk blocks.

3/10/2015

2

Records

■ Fixed and variable length records

■ Records contain fields which have values of a
particular type

■ E.g., amount, date, time, age

■ Fields themselves may be fixed length or variable
length

■ Variable length fields can be mixed into one
record:

■ Separator characters or length fields are needed
so that the record can be ―parsed.‖

Blocking

■ Blocking:

■ Refers to storing a number of records in one block
on the disk.

■ Blocking factor (bfr) refers to the number of
records per block.

■ There may be empty space in a block if an
integral number of records do not fit in one block.

■ Spanned Records:

■ Refers to records that exceed the size of one or
more blocks and hence span a number of blocks.

Files of Records

■ A file is a sequence of records, where each record is a

collection of data values (or data items).

■ A file descriptor (or file header) includes information that

describes the file, such as the field names and their data

types, and the addresses of the file blocks on disk.

■ Records are stored on disk blocks.

■ The blocking factor bfr for a file is the (average) number

of file records stored in a disk block.

■ Calculation of blocking factor???

■ A file can have fixed-length records or variable-length

records.

Files of Records (cont.)

■ File records can be unspanned or spanned
■ Unspanned: no record can span two blocks

■ Spanned: a record can be stored in more than one block

■ The physical disk blocks that are allocated to hold the
records of a file can be contiguous, linked, or indexed.

■ In a file of fixed-length records, all records have the same
format. Usually, unspanned blocking is used with such
files.

■ Files of variable-length records require additional
information to be stored in each record, such as
separator characters and field types.

■ Usually spanned blocking is used with such files.

Operation on Files
■ Typical file operations include:

■ OPEN: Readies the file for access, and associates a pointer that will refer
to a current file record at each point in time.

■ FIND: Searches for the first file record that satisfies a certain condition, and
makes it the current file record.

■ FINDNEXT: Searches for the next file record (from the current record) that
satisfies a certain condition, and makes it the current file record.

■ READ: Reads the current file record into a program variable.

■ INSERT: Inserts a new record into the file & makes it the current file
record.

■ DELETE: Removes the current file record from the file, usually by marking
the record to indicate that it is no longer valid.

■ MODIFY: Changes the values of some fields of the current file record.

■ CLOSE: Terminates access to the file.

■ REORGANIZE: Reorganizes the file records.

■ For example, the records marked deleted are physically removed from
the file or a new organization of the file records is created.

■ READ_ORDERED: Read the file blocks in order of a specific field of the
file.

Unordered Files

■ Also called a heap or a pile file.

■ New records are inserted at the end of the file.

■ A linear search through the file records is

necessary to search for a record.

■ This requires reading and searching half the file

blocks on the average, and is hence quite

expensive.

■ Record insertion is quite efficient.

■ Reading the records in order of a particular field

requires sorting the file records.

3/10/2015

3

Ordered Files

■ Also called a sequential file.

■ File records are kept sorted by the values of an ordering field.

■ Insertion is expensive: records must be inserted in the correct order.

■ It is common to keep a separate unordered overflow (or
transaction) file for new records to improve insertion efficiency;
this is periodically merged with the main ordered file.

■ A binary search can be used to search for a record on its ordering
field value.

■ This requires reading and searching log2 of the file blocks on the
average, an improvement over linear search.

■ Reading the records in order of the ordering field is quite efficient.

Average Access Times

■ The following table shows the average access

time to access a specific record for a given type

of file

Hashed Files

■ Hashing for disk files is called External Hashing

■ The file blocks are divided into M equal-sized buckets, numbered
bucket0, bucket1, ..., bucketM-1.

■ Typically, a bucket corresponds to one (or a fixed number of) disk
block.

■ One of the file fields is designated to be the hash key of the file.

■ The record with hash key value K is stored in bucket i, where i=h(K),
and h is the hashing function.

■ Search is very efficient on the hash key.

■ Collisions occur when a new record hashes to a bucket that is already
full.

■ An overflow file is kept for storing such records.

■ Overflow records that hash to each bucket can be linked together.

Dynamic And Extendible Hashed

Files

■ Dynamic and Extendible Hashing Techniques

■ Hashing techniques are adapted to allow the dynamic

growth and shrinking of the number of file records.

■ These techniques include the following: dynamic hashing,

extendible hashing, and linear hashing.

■ Both dynamic and extendible hashing use the binary

representation of the hash value h(K) in order to access

a directory.

■ In dynamic hashing the directory is a binary tree.

■ In extendible hashing the directory is an array of size 2d

where d is called the global depth.

Dynamic And Extendible Hashing

(cont.)

■ The directories can be stored on disk, and they expand or
shrink dynamically.

■ Directory entries point to the disk blocks that contain the
stored records.

■ An insertion in a disk block that is full causes the block to
split into two blocks and the records are redistributed
among the two blocks.

■ The directory is updated appropriately.

■ Dynamic and extendible hashing do not require an
overflow area.

■ Linear hashing does require an overflow area but does
not use a directory.

■ Blocks are split in linear order as the file expands.

Parallelizing Disk Access using RAID

Technology.

■ Secondary storage technology must take steps to
keep up in performance and reliability with
processor technology.

■ A major advance in secondary storage
technology is represented by the development of
RAID, which originally stood for Redundant
Arrays of Inexpensive Disks.

■ The main goal of RAID is to even out the widely
different rates of performance improvement of
disks against those in memory and
microprocessors.

3/10/2015

4

RAID Technology (cont.)

■ A natural solution is a large array of small independent
disks acting as a single higher-performance logical disk.

■ A concept called data striping is used, which utilizes
parallelism to improve disk performance.

■ Data striping distributes data transparently over multiple
disks to make them appear as a single large, fast disk.

RAID Technology (cont.)

■ Different raid organizations were defined based on different
combinations of the two factors of granularity of data interleaving
(striping) and pattern used to compute redundant information.

■ Raid level 0 has no redundant data and hence has the best write
performance at the risk of data loss

■ Raid level 1 uses mirrored disks.
■ Raid level 2 uses memory-style redundancy by using Hamming

codes, which contain parity bits for distinct overlapping subsets of
components. Level 2 includes both error detection and correction.

■ Raid level 3 uses a single parity disk relying on the disk controller
to figure out which disk has failed.

■ Raid Levels 4 and 5 use block-level data striping, with level 5
distributing data and parity information across all disks.

■ Raid level 6 applies the so-called P + Q redundancy scheme
using Reed-Soloman codes to protect against up to two disk
failures by using just two redundant disks.

Use of RAID Technology (cont.)

■ Different raid organizations are being used under different situations
■ Raid level 1 (mirrored disks) is the easiest for rebuild of a disk from

other disks
■ It is used for critical applications like logs

■ Raid level 2 uses memory-style redundancy by using Hamming
codes, which contain parity bits for distinct overlapping subsets of
components.

■ Level 2 includes both error detection and correction.

■ Raid level 3 (single parity disks relying on the disk controller to figure
out which disk has failed) and level 5 (block-level data striping) are
preferred for Large volume storage, with level 3 giving higher transfer
rates.

■ Most popular uses of the RAID technology currently are:
■ Level 0 (with striping), Level 1 (with mirroring) and Level 5 with an

extra drive for parity.
■ Design Decisions for RAID include:

■ Level of RAID, number of disks, choice of parity schemes, and
grouping of disks for block-level striping.

Storage Area Networks

■ The demand for higher storage has risen considerably in
recent times.

■ Organizations have a need to move from a static fixed
data center oriented operation to a more flexible and
dynamic infrastructure for information processing.

■ Thus they are moving to a concept of Storage Area
Networks (SANs).

■ In a SAN, online storage peripherals are configured as
nodes on a high-speed network and can be attached and
detached from servers in a very flexible manner.

■ This allows storage systems to be placed at longer
distances from the servers and provide different
performance and connectivity options.

Chapter 18

Indexing Structures for Files

Indexes as Access Paths

■ A single-level index is an auxiliary file that makes
it more efficient to search for a record in the data
file.

■ The index is usually specified on one field of the
file (although it could be specified on several
fields)

■ One form of an index is a file of entries <field
value, pointer to record>, which is ordered by
field value

■ The index is called an access path on the field.

3/10/2015

5

Indexes as Access Paths (cont.)

■ The index file usually occupies considerably less disk

blocks than the data file because its entries are much

smaller

■ A binary search on the index yields a pointer to the file

record

■ Indexes can also be characterized as dense or sparse

■ A dense index has an index entry for every search key

value (and hence every record) in the data file.

■ A sparse (or nondense) index, on the other hand, has

index entries for only some of the search values

Indexes as Access Paths (cont.)

■ Example: Given the following data file EMPLOYEE(NAME, SSN,
ADDRESS, JOB, SAL, ...)

■ Suppose that:
■ record size R=150 bytes block size B=512 bytes r=30000

records
■ Then, we get:

■ blocking factor Bfr= B div R= 512 div 150= 3 records/block
■ number of file blocks b= (r/Bfr)= (30000/3)= 10000 blocks

■ For an index on the SSN field, assume the field size VSSN=9 bytes,
assume the record pointer size PR=7 bytes. Then:

■ index entry size RI=(VSSN+ PR)=(9+7)=16 bytes
■ index blocking factor BfrI= B div RI= 512 div 16= 32 entries/block
■ number of index blocks b= (r/ BfrI)= (30000/32)= 938 blocks
■ binary search needs log2bI= log2938= 10 block accesses
■ This is compared to an average linear search cost of:

■ (b/2)= 30000/2= 15000 block accesses

■ If the file records are ordered, the binary search cost would be:
■ log2b= log230000= 15 block accesses

Types of Single-Level Indexes

■ Primary Index

■ Defined on an ordered data file

■ The data file is ordered on a key field

■ Includes one index entry for each block in the data file; the

index entry has the key field value for the first record in the

block, which is called the block anchor

■ A similar scheme can use the last record in a block.

■ A primary index is a nondense (sparse) index, since it

includes an entry for each disk block of the data file and the

keys of its anchor record rather than for every search value.

Primary Index

on the Ordering

Key Field

Types of Single-Level Indexes

■ Clustering Index

■ Defined on an ordered data file

■ The data file is ordered on a non-key field unlike primary

index, which requires that the ordering field of the data file

have a distinct value for each record.

■ Includes one index entry for each distinct value of the field;

the index entry points to the first data block that contains

records with that field value.

■ It is another example of nondense index where Insertion

and Deletion is relatively straightforward with a clustering

index.

Types of Single-Level Indexes

■ Secondary Index
■ A secondary index provides a secondary means of

accessing a file for which some primary access already
exists.

■ The secondary index may be on a field which is a candidate
key and has a unique value in every record, or a non-key
with duplicate values.

■ The index is an ordered file with two fields.
■ The first field is of the same data type as some non-ordering

field of the data file that is an indexing field.
■ The second field is either a block pointer or a record pointer.
■ There can be many secondary indexes (and hence, indexing

fields) for the same file.

■ Includes one entry for each record in the data file; hence, it
is a dense index

3/10/2015

6

Properties of Index Types Multi-Level Indexes

■ Because a single-level index is an ordered file, we can

create a primary index to the index itself;

■ In this case, the original index file is called the first-level

index and the index to the index is called the second-level

index.

■ We can repeat the process, creating a third, fourth, ..., top

level until all entries of the top level fit in one disk block

■ A multi-level index can be created for any type of first-

level index (primary, secondary, clustering) as long as the

first-level index consists of more than one disk block

Multi-Level Indexes

■ Such a multi-level index is a form of search tree

■ However, insertion and deletion of new index

entries is a severe problem because every level of

the index is an ordered file.

Dynamic Multilevel Indexes Using B-Trees

and B+-Trees

■ Most multi-level indexes use B-tree or B+-tree data

structures because of the insertion and deletion problem

■ This leaves space in each tree node (disk block) to allow for

new index entries

■ These data structures are variations of search trees that

allow efficient insertion and deletion of new search values.

■ In B-Tree and B+-Tree data structures, each node

corresponds to a disk block

■ Each node is kept between half-full and completely full

Difference between B-tree and B+-tree

■ In a B-tree, pointers to data records exist at all

levels of the tree

■ In a B+-tree, all pointers to data records exists at

the leaf-level nodes

■ A B+-tree can have less levels (or higher capacity

of search values) than the corresponding B-tree

B-tree Structures

3/10/2015

7

Chapter 19

Algorithms for Query processing and
Optimization

0. Introduction to Query Processing (1)

■ Query optimization:

■ The process of choosing a suitable execution

strategy for processing a query.

■ Two internal representations of a query:

■ Query Tree

■ Query Graph

1. Translating SQL Queries into Relational

Algebra (1)

■ Query block:

■ The basic unit that can be translated into the
algebraic operators and optimized.

■ A query block contains a single SELECT-FROM-
WHERE expression, as well as GROUP BY and
HAVING clause if these are part of the block.

■ Nested queries within a query are identified as
separate query blocks.

■ Aggregate operators in SQL must be included in
the extended algebra.

Translating SQL Queries into Relational

Algebra (2)

SELECT LNAME, FNAME

FROM EMPLOYEE

WHERE SALARY > (SELECT MAX (SALARY)

FROM EMPLOYEE

WHERE DNO = 5);

SELECT MAX (SALARY)

FROM EMPLOYEE

WHERE DNO = 5

SELECT LNAME, FNAME

FROM EMPLOYEE

WHERE SALARY > C

πLNAME, FNAME (σSALARY>C(EMPLOYEE)) ℱMAX SALARY (σDNO=5 (EMPLOYEE))

7. Using Heuristics in Query Optimization (1)

■ Process for heuristics optimization
1. The parser of a high-level query generates an initial internal

representation;

2. Apply heuristics rules to optimize the internal
representation.

3. A query execution plan is generated to execute groups of
operations based on the access paths available on the files
involved in the query.

■ The main heuristic is to apply first the operations that
reduce the size of intermediate results.

■ E.g., Apply SELECT and PROJECT operations before
applying the JOIN or other binary operations.

Using Heuristics in Query Optimization (2)

■ Query tree:
■ A tree data structure that corresponds to a relational algebra

expression. It represents the input relations of the query as
leaf nodes of the tree, and represents the relational
algebra operations as internal nodes.

■ An execution of the query tree consists of executing an
internal node operation whenever its operands are
available and then replacing that internal node by the
relation that results from executing the operation.

■ Query graph:
■ A graph data structure that corresponds to a relational

calculus expression. It does not indicate an order on which
operations to perform first. There is only a single graph
corresponding to each query.

3/10/2015

8

Using Heuristics in Query Optimization (3)

■ Example:
■ For every project located in ‗Stafford‘, retrieve the project number,

the controlling department number and the department manager‘s
last name, address and birthdate.

■ Relation algebra:

πPNUMBER, DNUM, LNAME, ADDRESS, BDATE

(((σPLOCATION=‗STAFFORD‘(PROJECT))

DNUM=DNUMBER (DEPARTMENT)) MGRSSN=SSN (EMPLOYEE))

■ SQL query:
Q2: SELECT P.NUMBER,P.DNUM,E.LNAME,

E.ADDRESS, E.BDATE
FROM PROJECT AS P,DEPARTMENT AS D,

EMPLOYEE AS E
WHERE P.DNUM=D.DNUMBER AND

D.MGRSSN=E.SSN AND
P.PLOCATION=‗STAFFORD‘;

Using Heuristics in Query Optimization (5)

■ Heuristic Optimization of Query Trees:
■ The same query could correspond to many different

relational algebra expressions — and hence many different
query trees.

■ The task of heuristic optimization of query trees is to find a
final query tree that is efficient to execute.

■ Example:
Q: SELECT LNAME

FROM EMPLOYEE, WORKS_ON, PROJECT

WHERE PNAME = ‗AQUARIUS‘ AND
PNMUBER=PNO AND ESSN=SSN
AND BDATE > ‗1957-12-31‘;

Using

Heuristics in

Query

Optimization

(7)

Using Heuristics in

Query

Optimization (8)

Using Heuristics in Query Optimization (9)

■ General Transformation Rules for Relational Algebra Operations:

1. Cascade of σ: A conjunctive selection condition can be broken up into
a cascade (sequence) of individual σ operations:

■ σ c1 AND c2 AND ... AND cn(R) = σc1 (σc2 (...(σcn(R))...))

2. Commutativity of σ: The σ operation is commutative:

■ σc1 (σc2(R)) = σc2 (σc1(R))

3. Cascade of π: In a cascade (sequence) of π operations, all but the
last one can be ignored:

■ πList1 (πList2 (...(πListn(R))...)) = πList1(R)

4. Commuting σ with π: If the selection condition c involves only the
attributes A1, ..., An in the projection list, the two operations can be
commuted:

■ πA1, A2, ..., An (σc (R)) = σc (πA1, A2, ..., An (R))

Using Heuristics in Query Optimization (10)

■ General Transformation Rules for Relational Algebra Operations
(contd.):

5. Commutativity of (and x): The operation is commutative as is
the x operation:

■ R C S = S C R; R x S = S x R

6. Commuting σ with (or x): If all the attributes in the selection
condition c involve only the attributes of one of the relations being
joined—say, R—the two operations can be commuted as follows:

■ σc (R S) = (σc (R)) S

■ Alternatively, if the selection condition c can be written as (c1 and c2),
where condition c1 involves only the attributes of R and condition c2
involves only the attributes of S, the operations commute as follows:

■ σc (R S) = (σc1 (R)) (σc2 (S))

3/10/2015

9

Using Heuristics in Query Optimization (11)

■ General Transformation Rules for Relational Algebra

Operations (contd.):

7. Commuting π with (or x): Suppose that the projection

list is L = {A1, ..., An, B1, ..., Bm}, where A1, ..., An are

attributes of R and B1, ..., Bm are attributes of S. If the

join condition c involves only attributes in L, the two

operations can be commuted as follows:

■ πL (R C S) = (πA1, ..., An (R)) C (π B1, ..., Bm (S))

■ If the join condition C contains additional attributes not in

L, these must be added to the projection list, and a final π
operation is needed.

Using Heuristics in Query Optimization (12)

■ General Transformation Rules for Relational Algebra
Operations (contd.):

8. Commutativity of set operations: The set operations υ and
∩ are commutative but ―–‖ is not.

9. Associativity of , x, υ, and ∩ : These four operations are
individually associative; that is, if θ stands for any one of
these four operations (throughout the expression), we
have

■ (R θ S) θ T = R θ (S θ T)

10. Commuting σ with set operations: The σ operation
commutes with υ , ∩ , and –. If θ stands for any one of
these three operations, we have

■ σc (R θ S) = (σc (R)) θ (σc (S))

Using Heuristics in Query Optimization

(15)

■ Summary of Heuristics for Algebraic Optimization:
1. The main heuristic is to apply first the operations that

reduce the size of intermediate results.

2. Perform select operations as early as possible to reduce the
number of tuples and perform project operations as early as
possible to reduce the number of attributes. (This is done by
moving select and project operations as far down the tree
as possible.)

3. The select and join operations that are most restrictive
should be executed before other similar operations. (This is
done by reordering the leaf nodes of the tree among
themselves and adjusting the rest of the tree appropriately.)

Using Heuristics in Query Optimization

(16)

■ Query Execution Plans

■ An execution plan for a relational algebra query consists of

a combination of the relational algebra query tree and

information about the access methods to be used for each

relation as well as the methods to be used in computing the

relational operators stored in the tree.

■ Materialized evaluation: the result of an operation is stored

as a temporary relation.

■ Pipelined evaluation: as the result of an operator is

produced, it is forwarded to the next operator in sequence.

8. Using Selectivity and Cost Estimates in

Query Optimization (1)

■ Cost-based query optimization:

■ Estimate and compare the costs of executing a

query using different execution strategies and

choose the strategy with the lowest cost estimate.

■ (Compare to heuristic query optimization)

■ Issues

■ Cost function

■ Number of execution strategies to be considered

Using Selectivity and Cost Estimates in

Query Optimization (2)

■ Cost Components for Query Execution

1. Access cost to secondary storage

2. Storage cost

3. Computation cost

4. Memory usage cost

5. Communication cost

■ Note: Different database systems may focus on

different cost components.

3/10/2015

10

Using Selectivity and Cost Estimates in

Query Optimization (3)

■ Catalog Information Used in Cost Functions

■ Information about the size of a file

■ number of records (tuples) (r),

■ record size (R),

■ number of blocks (b)

■ blocking factor (bfr)

■ Information about indexes and indexing attributes of a file

■ Number of levels (x) of each multilevel index

■ Number of first-level index blocks (bI1)

■ Number of distinct values (d) of an attribute

■ Selectivity (sl) of an attribute

■ Selection cardinality (s) of an attribute. (s = sl * r)

Using Selectivity and Cost Estimates in

Query Optimization (4)

■ Examples of Cost Functions for SELECT
■ S1. Linear search (brute force) approach

■ CS1a = b;
■ For an equality condition on a key, CS1a = (b/2) if the record

is found; otherwise CS1a = b.

■ S2. Binary search:
■ CS2 = log2b + (s/bfr)⎤ –1
■ For an equality condition on a unique (key) attribute, CS2

=log2b

■ S3. Using a primary index (S3a) or hash key (S3b) to
retrieve a single record

■ CS3a = x + 1; CS3b = 1 for static or linear hashing;
■ CS3b = 1 for extendible hashing;

Using Selectivity and Cost Estimates in

Query Optimization (10)

■ Multiple Relation Queries and Join Ordering
■ A query joining n relations will have n-1 join operations, and

hence can have a large number of different join orders
when we apply the algebraic transformation rules.

■ Current query optimizers typically limit the structure of a
(join) query tree to that of left-deep (or right-deep) trees.

■ Left-deep tree:
■ A binary tree where the right child of each non-leaf node is

always a base relation.

■ Amenable to pipelining

■ Could utilize any access paths on the base relation (the right
child) when executing the join.

9. Overview of Query Optimization in

Oracle

■ Oracle DBMS V8
■ Rule-based query optimization: the optimizer chooses

execution plans based on heuristically ranked operations.

■ (Currently it is being phased out)

■ Cost-based query optimization: the optimizer examines
alternative access paths and operator algorithms and
chooses the execution plan with lowest estimate cost.

■ The query cost is calculated based on the estimated usage of
resources such as I/O, CPU and memory needed.

■ Application developers could specify hints to the ORACLE
query optimizer.

■ The idea is that an application developer might know more
information about the data.

Chapter 20

Physical Database Design and Tuning

1. Physical Database Design in Relational

Databases (1)

■ Factors that Influence Physical Database Design:

A. Analyzing the database queries and transactions

■ For each query, the following information is needed.

1. The files that will be accessed by the query;

2. The attributes on which any selection conditions for the query

are specified;

3. The attributes on which any join conditions or conditions to link

multiple tables or objects for the query are specified;

4. The attributes whose values will be retrieved by the query.

■ Note: the attributes listed in items 2 and 3 above are

candidates for definition of access structures.

3/10/2015

11

Physical Database Design in Relational

Databases (2)

■ Factors that Influence Physical Database Design (cont.):
A. Analyzing the database queries and transactions (cont.)

■ For each update transaction or operation, the following
information is needed.

1. The files that will be updated;

2. The type of operation on each file (insert, update or delete);

3. The attributes on which selection conditions for a delete or update
operation are specified;

4. The attributes whose values will be changed by an update operation.

■ Note: the attributes listed in items 3 above are candidates for
definition of access structures. However, the attributes listed in
item 4 are candidates for avoiding an access structure.

Physical Database Design in Relational

Databases (3)

■ Factors that Influence Physical Database Design (cont.):

B. Analyzing the expected frequency of invocation of

queries and transactions

■ The expected frequency information, along with the attribute

information collected on each query and transaction, is used

to compile a cumulative list of expected frequency of use

for all the queries and transactions.

■ It is expressed as the expected frequency of using each

attribute in each file as a selection attribute or join attribute,

over all the queries and transactions.

■ 80-20 rule

■ 20% of the data is accessed 80% of the time

Physical Database Design in Relational

Databases (4)

■ Factors that Influence Physical Database Design

(cont.)

C. Analyzing the time constraints of queries

and transactions

■ Performance constraints place further priorities on

the attributes that are candidates for access paths.

■ The selection attributes used by queries and

transactions with time constraints become higher-

priority candidates for primary access structure.

Physical Database Design in Relational

Databases (4)

■ Factors that Influence Physical Database Design

(cont.)

D. Analyzing the expected frequencies of

update operations

■ A minimum number of access paths should be

specified for a file that is updated frequently.

Physical Database Design in Relational

Databases (4)

■ Factors that Influence Physical Database Design

(cont.)

E. Analyzing the uniqueness constraints on

attributes

■ Access paths should be specified on all candidate

key attributes — or set of attributes — that are

either the primary key or constrained to be unique.

Physical Database Design in Relational

Databases (5)

■ Physical Database Design Decisions

■ Design decisions about indexing

■ Whether to index an attribute?

■ What attribute or attributes to index on?

■ Whether to set up a clustered index?

■ Whether to use a hash index over a tree index?

■ Whether to use dynamic hashing for the file?

3/10/2015

12

Physical Database Design in Relational

Databases (6)

■ Physical Database Design Decisions (cont.)

■ Denormalization as a design decision for speeding up
queries

■ The goal of normalization is to separate the logically related
attributes into tables to minimize redundancy and thereby
avoid the update anomalies that cause an extra processing
overheard to maintain consistency of the database.

■ The goal of denormalization is to improve the performance
of frequently occurring queries and transactions. (Typically
the designer adds to a table attributes that are needed for
answering queries or producing reports so that a join with
another table is avoided.)

■ Trade off between update and query performance

2. An Overview of Database Tuning in

Relational Systems (1)

■ Tuning:

■ The process of continuing to revise/adjust the physical

database design by monitoring resource utilization as well

as internal DBMS processing to reveal bottlenecks such as

contention for the same data or devices.

■ Goal:

■ To make application run faster

■ To lower the response time of queries/transactions

■ To improve the overall throughput of transactions

An Overview of Database Tuning in

Relational Systems (3)

■ Problems to be considered in tuning:

■ How to avoid excessive lock contention?

■ How to minimize overhead of logging and

unnecessary dumping of data?

■ How to optimize buffer size and scheduling of

processes?

■ How to allocate resources such as disks, RAM and

processes for most efficient utilization?

An Overview of Database Tuning in

Relational Systems (7)

■ Tuning Queries

■ Indications for tuning queries

■ A query issues too many disk accesses

■ The query plan shows that relevant indexes are not

being used.

An Overview of Database Tuning in

Relational Systems (8)

■ Tuning Queries (cont.): Typical instances for query tuning
■ In some situations involving using of correlated queries,

temporaries are useful.
■ If multiple options for join condition are possible, choose

one that uses a clustering index and avoid those that
contain string comparisons.

■ The order of tables in the FROM clause may affect the join
processing.

■ Some query optimizers perform worse on nested queries
compared to their equivalent un-nested counterparts.

■ Many applications are based on views that define the data
of interest to those applications. Sometimes these views
become an overkill.

Chapter 21

Introduction to Transaction Processing Concepts
and Theory

3/10/2015

13

1 Introduction to Transaction

Processing (1)

■ Single-User System:
■ At most one user at a time can use the system.

■ Multiuser System:
■ Many users can access the system concurrently.

■ Concurrency
■ Interleaved processing:

■ Concurrent execution of processes is interleaved in
a single CPU

■ Parallel processing:
■ Processes are concurrently executed in multiple

CPUs.

Introduction to Transaction Processing (2)

■ A Transaction:
■ Logical unit of database processing that includes one or more

access operations (read -retrieval, write - insert or update,
delete).

■ A transaction (set of operations) may be stand-alone
specified in a high level language like SQL submitted
interactively, or may be embedded within a program.

■ Transaction boundaries:
■ Begin and End transaction.

■ An application program may contain several
transactions separated by the Begin and End transaction
boundaries.

Introduction to Transaction Processing (3)

SIMPLE MODEL OF A DATABASE (for purposes of
discussing transactions):

■ A database is a collection of named data items

■ Granularity of data - a field, a record , or a whole disk
block (Concepts are independent of granularity)

■ Basic operations are read and write

■ read_item(X): Reads a database item named X into a
program variable. To simplify our notation, we assume
that the program variable is also named X.

■ write_item(X): Writes the value of program variable X
into the database item named X.

Introduction to Transaction Processing (6)

Why Concurrency Control is needed:
■ The Lost Update Problem

■ This occurs when two transactions that access the same database
items have their operations interleaved in a way that makes the value
of some database item incorrect.

■ The Temporary Update (or Dirty Read) Problem
■ This occurs when one transaction updates a database item and then

the transaction fails for some reason (see Section 21.1.4).

■ The updated item is accessed by another transaction before it is
changed back to its original value.

■ The Incorrect Summary Problem
■ If one transaction is calculating an aggregate summary function on a

number of records while other transactions are updating some of
these records, the aggregate function may calculate some values
before they are updated and others after they are updated.

Introduction to Transaction Processing

(12)

Why recovery is needed:
(What causes a Transaction to fail)

1. A computer failure (system crash):

2. 2. A transaction or system error:

3. 3. Local errors or exception conditions detected by the
transaction:

4. 4. Concurrency control enforcement:
5. Disk failure:
6. Physical problems and catastrophes:

2 Transaction and System Concepts (1)

■ A transaction is an atomic unit of work that is
either completed in its entirety or not done at all.

■ For recovery purposes, the system needs to
keep track of when the transaction starts,
terminates, and commits or aborts.

■ Transaction states:

■ Active state

■ Partially committed state

■ Committed state

■ Failed state

■ Terminated State

3/10/2015

14

Transaction and System Concepts (2)

■ Recovery manager keeps track of the following
operations:

■ begin_transaction: This marks the beginning of transaction
execution.

■ read or write: These specify read or write operations on the
database items that are executed as part of a transaction.

■ end_transaction: This specifies that read and write
transaction operations have ended and marks the end limit of
transaction execution.

■ At this point it may be necessary to check whether the
changes introduced by the transaction can be permanently
applied to the database or whether the transaction has to be
aborted because it violates concurrency control or for some
other reason.

Transaction and System Concepts (3)

■ Recovery manager keeps track of the following

operations (cont):

■ commit_transaction: This signals a successful

end of the transaction so that any changes

(updates) executed by the transaction can be

safely committed to the database and will not be

undone.

■ rollback (or abort): This signals that the

transaction has ended unsuccessfully, so that any

changes or effects that the transaction may have

applied to the database must be undone.

Transaction and System Concepts (4)

■ Recovery techniques use the following operators:

■ undo: Similar to rollback except that it applies to a

single operation rather than to a whole transaction.

■ redo: This specifies that certain transaction

operations must be redone to ensure that all the

operations of a committed transaction have been

applied successfully to the database.

Transaction and System Concepts (6)

■ The System Log

■ Log or Journal: The log keeps track of all

transaction operations that affect the values of

database items.

■ This information may be needed to permit recovery

from transaction failures.

■ The log is kept on disk, so it is not affected by any

type of failure except for disk or catastrophic failure.

■ In addition, the log is periodically backed up to

archival storage (tape) to guard against such

catastrophic failures.

Transaction and System Concepts (10)

Commit Point of a Transaction:
■ Definition a Commit Point:

■ A transaction T reaches its commit point when all its
operations that access the database have been executed
successfully and the effect of all the transaction operations on
the database has been recorded in the log.

■ Beyond the commit point, the transaction is said to be
committed, and its effect is assumed to be permanently
recorded in the database.

■ The transaction then writes an entry [commit,T] into the log.

■ Roll Back of transactions:
■ Needed for transactions that have a [start_transaction,T] entry

into the log but no commit entry [commit,T] into the log.

3 Desirable Properties of Transactions (1)

ACID properties:

■ Atomicity: A transaction is an atomic unit of processing; it is either
performed in its entirety or not performed at all.

■ Consistency preservation: A correct execution of the transaction
must take the database from one consistent state to another.

■ Isolation: A transaction should not make its updates visible to other
transactions until it is committed; this property, when enforced strictly,
solves the temporary update problem and makes cascading rollbacks
of transactions unnecessary (see Chapter 21).

■ Durability or permanency: Once a transaction changes the
database and the changes are committed, these changes must never
be lost because of subsequent failure.

3/10/2015

15

4 Characterizing Schedules Based on

Recoverability (1)

■ Transaction schedule or history:
■ When transactions are executing concurrently in an interleaved

fashion, the order of execution of operations from the various
transactions forms what is known as a transaction schedule (or
history).

■ A schedule (or history) S of n transactions T1, T2, …,
Tn:

■ It is an ordering of the operations of the transactions subject to
the constraint that, for each transaction Ti that participates in S,
the operations of T1 in S must appear in the same order in
which they occur in T1.

■ Note, however, that operations from other transactions Tj can
be interleaved with the operations of Ti in S.

Characterizing Schedules Based on

Recoverability (2)

Schedules classified on recoverability:

■ Recoverable schedule:

■ One where no transaction needs to be rolled
back.

■ A schedule S is recoverable if no transaction T
in S commits until all transactions T‘ that have
written an item that T reads have committed.

■ Cascadeless schedule:

■ One where every transaction reads only the
items that are written by committed
transactions.

Characterizing Schedules Based on

Recoverability (3)

Schedules classified on recoverability (cont.):

■ Schedules requiring cascaded rollback:

■ A schedule in which uncommitted
transactions that read an item from a failed
transaction must be rolled back.

■ Strict Schedules:

■ A schedule in which a transaction can neither read
or write an item X until the last transaction that
wrote X has committed.

5 Characterizing Schedules Based on

Serializability (1)

■ Serial schedule:

■ A schedule S is serial if, for every transaction T

participating in the schedule, all the operations of T

are executed consecutively in the schedule.

■ Otherwise, the schedule is called nonserial

schedule.

■ Serializable schedule:

■ A schedule S is serializable if it is equivalent to

some serial schedule of the same n transactions.

Characterizing Schedules Based on

Serializability (3)

■ Being serializable is not the same as being serial

■ Being serializable implies that the schedule is a

correct schedule.

■ It will leave the database in a consistent state.

■ The interleaving is appropriate and will result in a

state as if the transactions were serially executed,

yet will achieve efficiency due to concurrent

execution.

■ View equivalence:

■ A less restrictive definition of equivalence of

schedules

■ View serializability:

■ Definition of serializability based on view

equivalence.

■ A schedule is view serializable if it is view

equivalent to a serial schedule.

Characterizing Schedules Based on

Serializability (6)

3/10/2015

16

Characterizing Schedules Based on

Serializability (7)

■ Two schedules are said to be view equivalent if the
following three conditions hold:

1. The same set of transactions participates in S and S‘, and S
and S‘ include the same operations of those transactions.

2. For any operation Ri(X) of Ti in S, if the value of X read by the
operation has been written by an operation Wj(X) of Tj (or if it is
the original value of X before the schedule started), the same
condition must hold for the value of X read by operation Ri(X)
of Ti in S‘.

3. If the operation Wk(Y) of Tk is the last operation to write item Y
in S, then Wk(Y) of Tk must also be the last operation to write
item Y in S‘.

Characterizing Schedules Based on

Serializability (11)

Testing for conflict serializability: Algorithm

21.1:

■ Looks at only read_Item (X) and write_Item (X)

operations

■ Constructs a precedence graph (serialization

graph) - a graph with directed edges

■ An edge is created from Ti to Tj if one of the

operations in Ti appears before a conflicting

operation in Tj

■ The schedule is serializable if and only if the

precedence graph has no cycles.

Another Example of Serializability Testing
Another Example of Serializability Testing

Transaction Support in SQL2 (2)

Characteristics specified by a SET TRANSACTION

statement in SQL2:

■ Access mode:

■ READ ONLY or READ WRITE.

■ The default is READ WRITE unless the isolation

level of READ UNCOMITTED is specified, in which

case READ ONLY is assumed.

■ Diagnostic size n, specifies an integer value n,

indicating the number of conditions that can be

held simultaneously in the diagnostic area.

Transaction Support in SQL2 (3)

Characteristics specified by a SET TRANSACTION
statement in SQL2 (cont.):

■ Isolation level <isolation>, where <isolation> can
be READ UNCOMMITTED, READ COMMITTED,
REPEATABLE READ or SERIALIZABLE. The
default is SERIALIZABLE.

■ With SERIALIZABLE: the interleaved execution
of transactions will adhere to our notion of
serializability.

■ However, if any transaction executes at a lower
level, then serializability may be violated.

3/10/2015

17

Transaction Support in SQL2 (4)

Potential problem with lower isolation levels:
■ Dirty Read:

■ Reading a value that was written by a transaction which failed.

■ Nonrepeatable Read:
■ Allowing another transaction to write a new value between

multiple reads of one transaction.
■ A transaction T1 may read a given value from a table. If another

transaction T2 later updates that value and T1 reads that value
again, T1 will see a different value.

■ Consider that T1 reads the employee salary for Smith. Next,
T2 updates the salary for Smith. If T1 reads Smith's salary
again, then it will see a different value for Smith's salary.

Transaction Support in SQL2 (5)

■ Potential problem with lower isolation levels
(cont.):

■ Phantoms:
■ New rows being read using the same read with a

condition.
■ A transaction T1 may read a set of rows from a table,

perhaps based on some condition specified in the SQL
WHERE clause.

■ Now suppose that a transaction T2 inserts a new row that
also satisfies the WHERE clause condition of T1, into the
table used by T1.

■ If T1 is repeated, then T1 will see a row that previously did
not exist, called a phantom.

Transaction Support in SQL2 (7)

■ Possible violation of serializabilty:
Type of Violation

Isolation Dirty nonrepeatable
level read read phantom

READ UNCOMMITTED yes yes yes
READ COMMITTED no yes yes
REPEATABLE READ no no yes
SERIALIZABLE no no no

Chapter 22

Concurrency Control Techniques

Database Concurrency Control

■ 1 Purpose of Concurrency Control
■ To enforce Isolation (through mutual exclusion) among

conflicting transactions.

■ To preserve database consistency through consistency
preserving execution of transactions.

■ To resolve read-write and write-write conflicts.

■ Example:
■ In concurrent execution environment if T1 conflicts with T2

over a data item A, then the existing concurrency control
decides if T1 or T2 should get the A and if the other
transaction is rolled-back or waits.

Database Concurrency Control

Two-Phase Locking Techniques
■ Locking is an operation which secures

■ (a) permission to Read

■ (b) permission to Write a data item for a transaction.

■ Example:

■ Lock (X). Data item X is locked in behalf of the requesting
transaction.

■ Unlocking is an operation which removes these permissions
from the data item.

■ Example:

■ Unlock (X): Data item X is made available to all other
transactions.

■ Lock and Unlock are Atomic operations.

3/10/2015

18

Database Concurrency Control

Two-Phase Locking Techniques: Essential components
■ Two locks modes:

■ (a) shared (read) (b) exclusive (write).

■ Shared mode: shared lock (X)
■ More than one transaction can apply share lock on X for

reading its value but no write lock can be applied on X by any
other transaction.

■ Exclusive mode: Write lock (X)
■ Only one write lock on X can exist at any time and no shared

lock can be applied by any other transaction on X.

■ Conflict matrix

Database Concurrency Control

Two-Phase Locking Techniques: Essential

components

■ Lock Manager:

■ Managing locks on data items.

■ Lock table:

■ Lock manager uses it to store the identify of

transaction locking a data item, the data item, lock

mode and pointer to the next data item locked. One

simple way to implement a lock table is through

linked list.

Database Concurrency Control

Two-Phase Locking Techniques: The algorithm

■ Two Phases:

■ (a) Locking (Growing)

■ (b) Unlocking (Shrinking).

■ Locking (Growing) Phase:

■ A transaction applies locks (read or write) on desired data items

one at a time.

■ Unlocking (Shrinking) Phase:

■ A transaction unlocks its locked data items one at a time.

■ Requirement:

■ For a transaction these two phases must be mutually exclusively,

that is, during locking phase unlocking phase must not start and

during unlocking phase locking phase must not begin.

Database Concurrency Control

Two-Phase Locking Techniques: The algorithm
■ Two-phase policy generates two locking algorithms

■ (a) Basic
■ (b) Conservative

■ Conservative:
■ Prevents deadlock by locking all desired data items before

transaction begins execution.
■ Basic:

■ Transaction locks data items incrementally. This may cause
deadlock which is dealt with.

■ Strict:
■ A more stricter version of Basic algorithm where unlocking is

performed after a transaction terminates (commits or aborts and
rolled-back). This is the most commonly used two-phase locking
algorithm.

Database Concurrency Control

Dealing with Deadlock and Starvation

■ Deadlock

T’1 T’2

read_lock (Y); T1 and T2 did follow two-phase

read_item (Y); policy but they are deadlock

read_lock (X);

read_item (Y);

write_lock (X);

(waits for X) write_lock (Y);

(waits for Y)

■ Deadlock (T‘1 and T‘2)

Database Concurrency Control

Dealing with Deadlock and Starvation

■ Deadlock prevention

■ A transaction locks all data items it refers to before

it begins execution.

■ This way of locking prevents deadlock since a

transaction never waits for a data item.

■ The conservative two-phase locking uses this

approach.

3/10/2015

19

Database Concurrency Control

Dealing with Deadlock and Starvation

■ Deadlock detection and resolution

■ In this approach, deadlocks are allowed to happen. The

scheduler maintains a wait-for-graph for detecting cycle. If

a cycle exists, then one transaction involved in the cycle is

selected (victim) and rolled-back.

■ A wait-for-graph is created using the lock table. As soon as

a transaction is blocked, it is added to the graph. When a

chain like: Ti waits for Tj waits for Tk waits for Ti or Tj

occurs, then this creates a cycle. One of the transaction o

Database Concurrency Control

Dealing with Deadlock and Starvation

■ Deadlock avoidance

■ There are many variations of two-phase locking algorithm.

■ Some avoid deadlock by not letting the cycle to complete.

■ That is as soon as the algorithm discovers that blocking a

transaction is likely to create a cycle, it rolls back the

transaction.

■ Wound-Wait and Wait-Die algorithms use timestamps to

avoid deadlocks by rolling-back victim.

Database Concurrency Control

Timestamp based concurrency control algorithm

■ Timestamp

■ A monotonically increasing variable (integer)

indicating the age of an operation or a transaction.

A larger timestamp value indicates a more recent

event or operation.

■ Timestamp based algorithm uses timestamp to

serialize the execution of concurrent transactions.

Database Concurrency Control

Multiversion concurrency control techniques

■ This approach maintains a number of versions of a
data item and allocates the right version to a read
operation of a transaction. Thus unlike other
mechanisms a read operation in this mechanism is
never rejected.

■ Side effect:

■ Significantly more storage (RAM and disk) is
required to maintain multiple versions. To check
unlimited growth of versions, a garbage collection is
run when some criteria is satisfied.

Database Concurrency Control

Multiversion Two-Phase Locking Using Certify

Locks

■ Concept

■ Allow a transaction T‘ to read a data item X while it

is write locked by a conflicting transaction T.

■ This is accomplished by maintaining two versions

of each data item X where one version must

always have been written by some committed

transaction. This means a write operation always

creates a new version of X.

Database Concurrency Control

Multiversion Two-Phase Locking Using Certify Locks

■ Steps

1. X is the committed version of a data item.

2. T creates a second version X‘ after obtaining a write lock on X.

3. Other transactions continue to read X.

4. T is ready to commit so it obtains a certify lock on X‘.

5. The committed version X becomes X‘.

6. T releases its certify lock on X‘, which is X now.

read/write locking scheme read/write/certify locking scheme

Compatibility tables for

3/10/2015

20

Database Concurrency Control

Validation (Optimistic) Concurrency Control Schemes

■ In this technique only at the time of commit serializability
is checked and transactions are aborted in case of non-
serializable schedules.

■ Three phases:
1. Read phase

2. Validation phase

3. Write phase

Database Concurrency Control

Granularity of data items and Multiple Granularity Locking

■ A lockable unit of data defines its granularity. Granularity
can be coarse (entire database) or it can be fine (a tuple
or an attribute of a relation).

■ Data item granularity significantly affects concurrency
control performance. Thus, the degree of concurrency is
low for coarse granularity and high for fine granularity.

