IT344 - DATABASE MANAGEMENT www.seul.org
CHAPTER: 22 - Concurrency Control Techniques
WEEK: 7

0. Database Concurrency Control

B 1 Purpose of Concurrency Control
B To enforce Isolation (through mutual exclusion) among conflicting transactions.

B To preserve database consistency through consistency preserving execution of transactions.
B To resolve read-write and write-write conflicts.
B Example:
In concurrent execution environment if T1 conflicts with T2 over a data item A, then the existing
concurrency control decides if T1 or T2 should get the A and if the other transaction is rolled-back or
waits
Oal 3l B aSadll ym 21 e
el @0labad) s (bl sbasia¥) JYA (pa) A3all il @
S el i e Aadlad) wa Guliil) JDA (e UL 28 (ki e Alsilaall o
A A€ 5 A g 5ol Cilia jlad Jal @
:dlia
G AV Akl il 135 o Jgeandl caay T2 5111 130 5583 5 sall ol 33l Sl a3 ¢ g iy puaie e T2 aat] (i bes 13) el jiall 2sill 4y 8 o
Dty ol gl) iy
1. Database Concurrency Control
Two-Phase Locking Techniques
B Lockingis an operation which secures
B (a) permission to Read
B (b) permission to Write a data item for a transaction.
B Example:
B Lock (X). Dataitem X is locked in behalf of the requesting transaction.
B Unlocking is an operation which removes these permissions from the data item.
B Example:
B Unlock (X): Data item X is made available to all other transactions.
B Lock and Unlock are Atomic operations.
Oila je e Jasl) class e
o Gl dles sa (il o
U sl W () e
Al clily e UG O3V () @
Jhe o

Al AS jall e dulally X clilbndl jeaie (aali 2l ock (X).
UL yeaie e il YT ads o 3 aslac sa (paalil) e lal)
:Jl

(A CBlalaall AT X llad) jaie b 8 wbUnlock (x):
AW Slleal) o b5 Ji8

1 By Shahad Alhawashi

IT344 - DATABASE MANAGEMENT www.seul.org
CHAPTER: 22 - Concurrency Control Techniques
WEEK: 7

2. Database Concurrency Control

Two-Phase Locking Techniques: Essential components
B Two locks modes:
B (a) shared (read) (b) exclusive (write).
B Shared mode: shared lock (X)
B More than one transaction can apply share lock on X for reading its value but no write lock can be
applied on X by any other transaction.
B Exclusive mode: Write lock (X)
B Only one write lock on X can exist at any time and no shared lock can be applied by any other
transaction on X.
B Conflict matrix

Read | Write

Y N

QA | PERY
z
z

danla¥) U Sl s je e JU@Y i o

bl paaliglasl @

(48) 4y (<) (51 5) S e () o

(X) S yiaall Jaal) ool yidal) 64}“ °

5] Al Al g e B (s (s (s Y 5 Lo ple A Ll (a3 3 ool aldbes (e JSY (S @
(oo) RSN J8 ;5 ppanll pagll @
‘X‘?ch)iidnhné\a@‘ﬁtﬂ)ﬁmwutﬁ\MMY}&}@\&X&QL&L\)@&J&J;ﬁO\M °

gloall ddsine o

3. Database Concurrency Control

Two-Phase Locking Techniques: Essential components
B Lock Manager:
B Managing locks on data items.
B Lock table:
B Lock manager uses it to store the identify of transaction locking a data item, the data item, lock
mode and pointer to the next data item locked. One simple way to implement a lock table is
through linked list.

Transaction ID|Data item id | lock mode | Ptr to next data item
T1 X1 Read Next

b1 il Sl la e e JEY) il e

onaill 5 ol e

Sl palie e puddls ol @

Jeanll (el e

ase Ul bl juaie J phgall g cpalill gaa g g UL peaie s Uiy paie (paliy o 68) i lalaall oy yas o)33 " el ol ardiny e
Adasi e 4aild DA (0 8 (el J s 2dsl adagsy a5 48y)l

2 By Shahad Alhawashi

IT344 - DATABASE MANAGEMENT
CHAPTER: 22 - Concurrency Control Techniques
WEEK: 7

www.seul.org

Two-Phase Locking Techniques: Essential components

B Database requires that all transactions should be well-formed. A transaction is well-formed if:
B It must lock the data item before it reads or writes to it.

B It must not lock an already locked data items and it must not try to unlock a free data item.

dla¥) U Sl s ila je e JUEY) s

A3 s 5 Aldbaall (0 S0 A s JRS 40 S0 bl 28 (4 65) ULl sacld ket

ooa Ay paie Gl elal) A laa cany Y g J2dlls A gl Ll palic Ol ade a3l

Two-Phase Locking Techniques: Essential components
B The following code performs the lock operation:
B: if LOCK (X) = 0 (*item is unlocked*)
then LOCK (X) < 1 (*lock the item*)
else begin
wait (until lock (X) = 0) and
the lock manager wakes up the transaction);
goto B
end;

a1 Sl il e e JY) s
el dlee 3655 AN e) Al

Two-Phase Locking Techniques: Essential components
B The following code performs the unlock operation:
LOCK (X) < 0 (*unlock the item*)
if any transactions are waiting then
wake up one of the waiting the transactions;

Two-Phase Locking Techniques: Essential components
B The following code performs the read operation:
B: if LOCK (X) = “unlocked” then
begin LOCK (X) < “read-locked”;
no_of_reads (X) « 1;
end
else if LOCK (X) < “read-locked” then
no_of_reads (X) < no_of_reads (X) +1
else begin wait (until LOCK (X) = “unlocked” and
the lock manager wakes up the transaction);
gotoB
end;

3 By Shahad Alhawashi

IT344 — DATABASE MANAGEMENT www.seul.org
CHAPTER: 22 - Concurrency Control Techniques
WEEK: 7

Two-Phase Locking Techniques: Essential components
B The following code performs the write lock operation:
B: if LOCK (X) = “unlocked” then
begin LOCK (X) < “read-locked”;
no_of_reads (X) < 1;
end
else if LOCK (X) < “read-locked” then
no_of_reads (X) < no_of_reads (X) +1
else begin wait (until LOCK (X) = “unlocked” and
the lock manager wakes up the transaction);
gotoB
end;

Two-Phase Locking Techniques: Essential components
B The following code performs the unlock operation:
if LOCK (X) = “write-locked” then
begin LOCK (X) < “unlocked”;
wakes up one of the transactions, if any
end
else if LOCK (X) < “read-locked” then
begin
no_of_reads (X) < no_of_reads (X) -1
if no_of_reads (X) =0 then
begin
LOCK (X) = “unlocked”;
wake up one of the transactions, if any
end
end;

Two-Phase Locking Techniques: Essential components
B Lock conversion
B Lock upgrade: existing read lock to write lock
if Ti has a read-lock (X) and Tj has no read-lock (X) (i # j) then
convert read-lock (X) to write-lock (X)
else
force Ti to wait until Tj unlocks X
B Lock downgrade: existing write lock to read lock
Ti has a write-lock (X) (*no transaction can have any lock on X*)
convert write-lock (X) to read-lock (X)
Asula¥) Gl &l il je e JuEy) il
Jadl) a3
Ja8 4K (Ja8 30 g gl e) y8 1408 yil) p0als

4 By Shahad Alhawashi

IT344 - DATABASE MANAGEMENT www.seul.org
CHAPTER: 22 - Concurrency Control Techniques
WEEK: 7

Two-Phase Locking Techniques: The algorithm
B Two Phases:
B (a) Locking (Growing)
B (b) Unlocking (Shrinking).
B Locking (Growing) Phase:
B Atransaction applies locks (read or write) on desired data items one at a time.
B Unlocking (Shrinking) Phase:
B Atransaction unlocks its locked data items one at a time.
B Requirement:
B For a transaction these two phases must be mutually exclusively, that is, during locking phase unlocking
phase must not start and during unlocking phase locking phase must not begin.

e)l Al sl e e Jal) il

(Ol e

(sl el (1

(ALY il (@)

‘ Als jall (saill) el

e IS ‘55 oaal g 4y glhaall il palic ‘5.‘5 (3..\\35.“ K Ec\)ﬂ\) Jady!) dlalaal) (Bukat

Al jal) (ULSSY)) i

B ds ‘55 a Lalall :LLA}AS\ QL\L._\.\S\).-.a\.'\c- Q.J_.AU ;L&JL\ dAL’-AM ?)3.._\

b

Alda el JUa) ads ye las o e W g Jasell o W) amgy Al JUa1 ads jo oL 430 (g} ¢ G ms GlLs el lila (55) aay ¢ Alalaall Al

Two-Phase Locking Techniques: The algorithm
1 T2 Result
read_lock (Y); read_lock (X); Initial values: X=20; Y=30
read_item (Y); read_item (X); Result of serial execution
unlock (Y); unlock (X); T1 followed by T2
write_lock (X); Write_lock (Y); X=50, Y=80.
read_item (X); read_item (Y); Result of serial execution
X=X+Y; Y. =X+Y; T2 followed by T1
write_item (X); write_item (Y); X=70, Y=50
unlock (X); unlock (Y);

Two-Phase Locking Techniques: The algorithm i i]
Two-Phase Locking Techniques: The algorithm

™ T2 Result

read_lock (Y): X=50; Y=50] ™ T2

read_item (Y). Nonseriglizable because it. read_lock (Y); read_lock (X); T1and T2 follow two-phase

unlock (Y); . violated two-phase policy. read_item (Y); read_item (X); policy but they are subject to
reag{ck %% wirite_lock (X); Write_lock (Y), deadlock, which must be

) g oEke(n;)' . unlock (Y); unlock (X); dealt with.
Tme write | ock’(Y)- read_item (X); read_item (Y);

read_item (Y); ’)C;X+Y ; . Y:?X+.Y;)
Y-=X+Y: write_item (X); write_item (Y);
write_item (Y); unlock (X); unlock (Y);
unlock (Y):

write_lock (X);

read_item (X):
Ho=X+Y,
write_item (X);
unlock (X);

5 By Shahad Alhawashi

IT344 — DATABASE MANAGEMENT www.seul.org
CHAPTER: 22 - Concurrency Control Techniques
WEEK: 7

Two-Phase Locking Techniques: The algorithm
B Two-phase policy generates two locking algorithms
B (a) Basic
B (b) Conservative
B Conservative:
B Prevents deadlock by locking all desired data items before transaction begins execution.
B Basic:
B Transaction locks data items incrementally. This may cause deadlock which is dealt with.
B Strict:
B A more stricter version of Basic algorithm where unlocking is performed after a transaction terminates
(commits or aborts and rolled-back). This is the most commonly used two-phase locking algorithm.

Al sl ipls je e Jéll ol m
Ol pels ilae)l 53 oLl Gils jall zgia iy W
4l () =
il () W
Lilae m
i) Adaall ¢y 08 4 sllaall L) jealic DS (el Ao g ol (i) Alls wiey W
L;“’L"“‘ |
Leze Jalill i ol i g5 alls) @l ga 5 38, sl 33 Sy bl pualie (aely Jalaall 053y W
:eJL*A u
Jal 4l sa o o3, (aal il (aleaY) sl) 5l Aabaall led] aay Gaalill elal) 255 oy Cus Y] aga)53l e el o JST jlaal B
Ot e e deadiad) e gui Y

Dealing with Deadlock and Starvation

= Deadlock

™ r2

read_lock (Y); T1 and T2 did follow two-phase

read_item (Y); policy but they are deadlock
read_lock (X);
read_item (Y);

write_lock (X);

(waits for X) write_lock (Y);
(waits for Y)

= Deadlock (T'1 and T'2)

Dealing with Deadlock and Starvation
B Deadlock prevention
B A transaction locks all data items it refers to before it begins execution.
B This way of locking prevents deadlock since a transaction never waits for a data item.
B The conservative two-phase locking uses this approach.

A.CL'AAS‘)J)A'L“&AJAIJ:A‘ |

dgaallpia W
) ey 0 Ll a1 L) jealic 288 (el el 2
il emial I A Y Alabaall Y Sl il alla o3 (il iyl i o
el 138 pdiy el pila e e BRI o

6 By Shahad Alhawashi

IT344 — DATABASE MANAGEMENT www.seul.org
CHAPTER: 22 -
WEEK:

B Dealing with Deadlock and Starvation
B Deadlock detection and resolution
B In this approach, deadlocks are allowed to happen. The scheduler maintains a wait-for-graph for
detecting cycle. If a cycle exists, then one transaction involved in the cycle is selected (victim) and rolled-
back.
B A wait-for-graph is created using the lock table. As soon as a transaction is blocked, it is added to the
graph. When a chain like: Ti waits for Tj waits for Tk waits for Ti or Tj occurs, then this creates a cycle.
One of the transaction o

delaally 2 seall ae Julaill W
ledasali i gialla (e i<l W
sl aaad 4y ¢33 ga ga 5y sall QS 1Y o) 90 e CaBSH Sld) s U USTY) Al sas el Jading 3 geall Gy gany e ¢ gl 18 05 W
Leela) Al il s (Lpanall) 5 sall 8 dianaiall S al)
> S ok e il Ladie | bl sl) gl &5 ¢ Alalaadl Hlaa ot Lalla | aaldl) J gas aladialy Jlal) a1 USY) oL 25 W
0 o lebaall (e saal g o) 50 (Bl 13 & ¢ Cuamy 3 sl (S WY Dl G leall iy

B Dealing with Deadlock and Starvation
B Deadlock avoidance
There are many variations of two-phase locking algorithm.
Some avoid deadlock by not letting the cycle to complete.
That is as soon as the algorithm discovers that blocking a transaction is likely to create a cycle, it rolls
back the transaction.
Wound-Wait and Wait-Die algorithms use timestamps to avoid deadlocks by rolling-back victim.

delaall 5 2 geall e Jaladll

ALl e gl Cains

Odila pe e Jadll e) A e CEBEAY (e daaall Sllia

JLSY 5520 Lol pie VA (e 2 sanl) uin any

Alelaall damy aild ¢ 590 BI04 Jaisall (pe Alalaall Hlas o) da)) &d) Caliy o)) 0 jnan 58 Jda g

el J ghaial) Amcall Jd e (3l il agia 51 aal glall aladiul e) sadl & gall- jUsEY 5 JUSEY I jall

B Dealing with Deadlock and Starvation
B Starvation
B Starvation occurs when a particular transaction consistently waits or restarted and never gets a chance to
proceed further.
B In a deadlock resolution it is possible that the same transaction may consistently be selected as victim
and rolled-back.
B This limitation is inherent in all priority based scheduling mechanisms.
B In Wound-Wait scheme a younger transaction may always be wounded (aborted) by a long running older
transaction which may create starvation.

delaall 5 3 saall ra ol

delaa

Ladi caallaia i e Jeany a5 Jurdid saled o ety) paiuls 4iima alalas Lodie dhaay delall

 leela) i s Sl el g Aldadl) 3 2l ¢ (Saall (g0 ¢ 2 sanll s i

Agsh ¥ e Al A saal) i maas 8 Jaalia 3l 134

Aclaall (8 it 38 06Y) AL gl 48 alalae Adas 5y (Cuagal) da 5 e Laila L el Alabeall ()55 28 HUREY) # jall labada b

7 By Shahad Alhawashi

IT344 — DATABASE MANAGEMENT www.seul.org
CHAPTER: 22 -
WEEK:

B Timestamp based concurrency control algorithm
B Timestamp
B A monotonically increasing variable (integer) indicating the age of an operation or a transaction. A larger
timestamp value indicates a more recent event or operation.
B Timestamp based algorithm uses timestamp to serialize the execution of concurrent transactions.

a3l aallall) Saiiusall cpal il Sl dge) s

s

ol adee g s) 5SY) el el ded i A8 al) s duleal) jae) e (pesaa 230) a) IS5 A i) paeie
Al jiall lalaall 385 Judadil e 3l addall aadion e 31 aallall 2t 4ge)) A

B Timestamp based concurrency control algorithm
B Basic Timestamp Ordering
B 1. Transaction T issues a write_item(X) operation:
B If read_TS(X) > TS(T) or if write_TS(X) > TS(T), then an younger transaction has already read the data item
so abort and roll-back T and reject the operation.
B If the condition in part (a) does not exist, then execute write_item(X) of T and set write_TS(X) to TS(T).
2. Transaction T issues a read_item(X) operation:
B If write_TS(X) > TS(T), then an younger transaction has already written to the data item so abort and roll-
back T and reject the operation.
B If write_TS(X) < TS(T), then execute read_item(X) of T and set read_TS(X) to the larger of TS(T) and the
current read_TS(X).

@)&\@LH\QJBM\ Ol by aSaill dga 5) 53

el a3l aldall s 53

write_item (X):4alee joad T S3lalaall] -

Ul s T 8agall adly LL&\ Pt Glilall jaie sel Jaally L J&AY\ ISy AN ?3 ¢ (t) uﬁ\) > write_TS (\J\)i (t) uﬂj\) > wread_TS (13)
ilanl)

TS (t).! set write TS (x) 5 T o= write_item (X) 285 &5 ¢ 25 g0 & (1) ¢ 0 3 dadd) OIS 1)

read_item (X):4des ,a’ T dlalzall2-

Aglaall by T o252 4dl s Bbia) Capmy Gl eaie) Jadlly € 28 5 _ppieal) co5labaal) &5 ¢ (T) osil) > oo write TS (1)

).0s read_TS (a5 (T) o) e ST (09) read TS Cis T (= (04) read_item 2 3 ¢) < (t) 0s write_TS (O 13)

B Timestamp based concurrency control algorithm
B Strict Timestamp Ordering
B 1. Transaction T issues a write_item(X) operation:
B If TS(T) > read_TS(X), then delay T until the transaction T’ that wrote or read X has terminated (committed or
aborted).
B 2. Transaction T issues a read_item(X) operation:
If TS(T) > write_TS(X), then delay T until the transaction T’ that wrote or read X has terminated (committed or aborted).

a3 bl) Sl cpal il Sl dge) s

e gdall s 3 e sl

write_item (X):4akee juad T S3lalaall] -

(Camgal sl Ao yildl) gil 8 (ol 8) € 1 £ Aldbaall i £ 88 8 ¢ () (1) > read _TS ol 13
read_item (X):4dee jaal T Alaleall2-

(omgad 5l A yilall) gl 8 o) 8 ol i€ il ¢ Alebaall ia t Al a3 ¢ (o) (1) > write TS o) 13)

O 0O O O O O

8 By Shahad Alhawashi

IT344 — DATABASE MANAGEMENT www.seul.org
CHAPTER: 22 -
WEEK:

B Timestamp based concurrency control algorithm
B Thomas’s Write Rule
o Ifread_TS(X) > TS(T) then abort and roll-back T and reject the operation.
o If write_TS(X) > TS(T), then just ignore the write operation and continue execution. This is because the
most recent writes counts in case of two consecutive writes.
o If the conditions given in 1 and 2 above do not occur, then execute write_item(X) of T and set write_TS(X)
to TS(T).

el)) il (gl Sl aSaill 43e 5) 55

sac @l 4US jala g3

Alanll (b)5 T o350 adl g Ll &5 (L) oal) > (e read TS (1)

Orllial) EUS) alla 8 Jgad LUSH Caaal o) lId aa s, 28 a5 LUSH aglec T Jalas o5 ¢ (T) ail) > cswrite TS (1)
TS (t)..) set write TS (x) s T o write_item (X) 28 & Gasi ¥ odlel 2 5 1 b dshanall oy il il 13)

B Multiversion concurrency control techniques
o This approach maintains a number of versions of a data item and allocates the right version to a read
operation of a transaction. Thus unlike other mechanisms a read operation in this mechanism is never
rejected.
B Side effect:
o Significantly more storage (RAM and disk) is required to maintain multiple versions. To check unlimited
growth of versions, a garbage collection is run when some criteria is satisfied.

Gl eyl daxiall cpal b a8l s W

alee b ¢ 5 AV Al e e s @l jall (5aa ool adlaa] mniall JaaYl Gacady s Gl jaie G jlaa) e aie Slo zgill 13a Lilsy W
'\.\j uaﬁ):\'?l‘g\.“ XYY L;ﬁ'i;\)ﬂ\

el A m

il de sana Jsndi wd ¢ @l laadl 3ganall je saill e iaill 3aaaie) jlacal Bl (Gajis RAM) bsale IS ST (poas sl W
el (an cladin) die Alagall

Multiversion technique based on timestamp ordering
o This approach maintains a number of versions of a data item and allocates the right version to a read operation of a
transaction.
e Thus unlike other mechanisms a read operation in this mechanism is never rejected.
o Side effects: Significantly more storage (RAM and disk) is required to maintain multiple versions. To check
unlimited growth of versions, a garbage collection is run when some criteria is satisfied.

Multiversion technique based on timestamp ordering
o Assume X1, X2, ..., Xn are the version of a data item X created by a write operation of transactions. With each Xi a
read_TS (read timestamp) and a write_TS (write timestamp) are associated.
o read_TS(Xi): The read timestamp of Xi is the largest of all the timestamps of transactions that have successfully read
version Xi.
o write_TS(Xi): The write timestamp of Xi that wrote the value of version Xi.
o A new version of Xi is created only by a write operation.

9 By Shahad Alhawashi

IT344 — DATABASE MANAGEMENT www.seul.org
CHAPTER: 22 -
WEEK:

Multiversion technique based on timestamp ordering

B To ensure serializability, the following two rules are used.

B If transaction T issues write_item (X) and version i of X has the highest write_TS(Xi) of all versions of X that is also
less than or equal to TS(T), and read _TS(Xi) > TS(T), then abort and roll-back T; otherwise create a new version Xi
and read_TS(X) = write_TS(Xj) = TS(T).

B If transaction T issues read_item (X), find the version i of X that has the highest write_TS(Xi) of all versions of X that
is also less than or equal to TS(T), then return the value of Xi to T, and set the value of read _TS(Xi) to the largest of
TS(T) and the current read_TS(Xi).

e 3 adall i 3) taliia) saatiall plaall 48 e

ol Gae Gl alasiul &5 ¢ Juludll 4084l Glal o

O g sben ol e B Ll (8 i) X G laca) 488 Crawrite TS (i) sle) 4al x e Y1 a5 (09) write item dilwall t dlalaall cuilS 1Y) @
) = write_TS (xsi) = o= read_TS (5 sbe galadl maall jlaall olis) Wiy ¢ 5 pelall adls Bl & ¢ (1) o) > e galall s (oe) 85 «(t)
(T). v

Sl a8 Laad S x Ol jlaca) 4S e write TS (xi) o) bl Gl x 0o J s Jlaal) e sl read item (X), dibed) T @llaall 13 @
read_TS (Xi)..alls (T) ol e ST G (xi) 3218 4 aanis ¢ T () e (galall dnd gla) o ¢ (1) o) (s sbow

Multiversion technique based on timestamp ordering
e To ensure serializability, the following two rules are used.
= If transaction T issues write_item (X) and version i of X has the highest write_TS(Xi) of all versions
of X that is also less than or equal to TS(T), and read _TS(Xi) > TS(T), then abort and roll-back T;
otherwise create a new version Xi and read_TS(X) = write_TS(Xj) = TS(T).
= If transaction T issues read_item (X), find the version i of X that has the highest write_TS(Xi) of all
versions of X that is also less than or equal to TS(T), then return the value of Xi to T, and set the
value of read _TS(Xi) to the largest of TS(T) and the current read_TS(Xi).
e Rule 2 guarantees that a read will never be rejected.

e gl i 5) bl sasidl jlaaYl 4E e

Lol ae Bl Al o ¢ Juladll 4il&al glaal @

C(1) 05 s sl e B Ll (& 3 x Q) jlanal DS e write TS (x1) sle) 4 x o0 V) Jlaal¥l s (00) write item Jibal) t dleledl) cilS 13 @
(T) ol = WriteiTS (xsi) = (u.u) readﬁTS 5 s Lﬁé\;j\ A,géaj\ ‘)\J..a:z“ sl Wl)@.H\ Aﬂj LL\A‘\ (:.l ¢ (t) ol < ()uc Lﬁd\aﬂ) ts bc\ﬁ}

sl sl (e J81 Lyl o 3 X @l laa) 38K e write TS (xi) o) bl 3 x o0 Y plaa) e)5l read item (X) Jibsal) T cBlelaall 13 @
read_TS (Xi) Aol (T) o) oo Sl A (i) el Al 4ad i « T (Y e galadl dad gl) & ¢ (1)
Nl 3el jall (b yaae 2 sacldll JiSSs

Multiversion Two-Phase Locking Using Certify Locks
B Concept
= Allow a transaction T’ to read a data item X while it is write locked by a conflicting transaction T.
= This is accomplished by maintaining two versions of each data item X where one version must always have
been written by some committed transaction. This means a write operation always creates a new version of
X.
Gl pald aladiinly AUl Als jall cpalill Gl laal) 22t W
pseie W
t.Aca laie alalas :tku\ﬁ e ge UK LW X Glly paie el 48l t ' adalaa CL«A\ "
138 5, Lo o il COlaall Gany J8 (e Laila L siSa aad gl Hlaal) (58 o g s X DUy peaie JS e Gpplaaly Blaia YL el jladil o3
X.oe wa) oLy Ll LSl dplee iy

10 By Shahad Alhawashi

IT344 — DATABASE MANAGEMENT www.seul.org
CHAPTER: 22 - Concurrency Control Techniques
WEEK: 7

Multiversion Two-Phase Locking Using Certify Locks
= Steps

O hWN=

Read | ves no Read [ves no no
rite | no no Write |[no no no

X is the committed version of a data item.

T creates a second version X' after obtaining a write lock on X.
Other transactions continue to read X.

T is ready to commit so it obtains a certify lock on X'.

The committed version X becomes X'

T releases its certify lock on X', which is X now.

Compatibility tables for
Read Write Read Write Certifyr

Certify Ino no no
read/write locking scheme read/write/certify locking scheme
B Multiversion Two-Phase Locking Using Certify Locks
B Note:

Jie S0 Jaloa) Allial) iy 4, 4 Aal) LESY 28S e (el ilaled e J peanl Cannas o) 30 Alalaall 3 50 38 43S0yl 331 cpuiny 130 5

= In multiversion 2PL read and write operations from conflicting transactions can be processed concurrently.

= This improves concurrency but it may delay transaction commit because of obtaining certify locks on all its
writes. It avoids cascading abort but like strict two phase locking scheme conflicting transactions may get
deadlocked.

Slalesl) s aladinly Al Aa jall caelill & jlaal) daeia
o Sk
el e JS L jlatiall o alaall (e Gl Y] sanmiall AU 5 56 il Cililee 4allas ¢ Sa

i ik e Jpeaall 58 A jlaiall @Slebaal ala pals opila e da sl

[IRl |

Validation (Optimistic) Concurrency Control Schemes

In this technique only at the time of commit serializability is checked and transactions are aborted in case of non-

serializable schedules.

Three phases:

Read phase

Validation phase

Write phase

1. Read phase:

= Atransaction can read values of committed data items. However, updates are applied only to local copies

(versions) of the data items (in database cache).

(313&145\) el) = ?Saﬂ\ Gllalads
LJeeloall LS e d}\A;l\AJ\A‘;éQ\S)AJ\.]n\,\Aj éﬁéﬁ;ﬂ\&&a\uﬂ\e\ﬂ\ &é}‘éﬁhﬁ@ﬂ\ alm‘;é
dal e m
Bc«\)ﬂ\ ‘UA)A 1
inall (e Baadll ads jo 2
llials e 3
Al yalleel 51 W

a)S\J ‘5&) QL\L._\AS\)...a\.\n‘. e (Q\)\M\‘){\) 2_)1;.“1\ C...un ‘5.‘.; Jass Q\:\:\JA:\S\ LB:"‘L:' ?3.._\ ¢ elld S L@_\ ?‘)ﬂd\ «Lh\.;.d\).-.41.\“— ?:\é a;\)§ ASJAM US"“ﬁ |

(UL sac 8] 2 all (5 A

11 By Shahad Alhawashi

IT344 - DATABASE MANAGEMENT www.seul.org
CHAPTER: 22 - Concurrency Control Techniques
WEEK: 7

ey A Ja g) aaf Gld ¢ 43 Talall Aaaall (e Gsiaill als ja 3 a1 5 L ol i) i S codlebaal) JSI sailly 431 (e iy T J s yall 038

OIS 130y @Rl 4y (2) &5 43S g (1) O 1), Gaaill oy Tl 58 (1) Qe ¢ o (5 Alalaa JSIY 5l J Y1 a8l and oy ¢ T daaa (e Giadll 2ie

Validation (Optimistic) Concurrency Control Schemes
2. Validation phase: Serializability is checked before transactions write their updates to the database.
This phase for Ti checks that, for each transaction Tj that is either committed or is in its validation phase, one of
the following conditions holds:
= Tjcompletes its write phase before Ti starts its read phase.
= Tistarts its write phase after Tj completes its write phase, and the read_set of Ti has no items in common
with the write_set of Tj
= Both the read_set and write_set of Ti have no items in common with the write_set of Tj, and Tj completes its
read phase.
= When validating Ti, the first condition is checked first for each transaction Tj, since (1) is the simplest
condition to check. If (1) is false then (2) is checked and if (2) is false then (3) is checked. If none of these
conditions holds, the validation fails and Ti is aborted.

(Aiiall) (yal 311 3 aSall cillalada
) a3e) Les Aal il cilipanl) iy S jall a5 o J Juaducl) 45lSal o (33 2y Aaall (e (3l dls)

'Bc«\)ﬂ\‘da)n \%Tldﬁhm\&fdéuauﬁ
&> 5 O writeset ge4S jisia jualic 4l pal (S e read set s ¢ AUST ala jo JaSy dpa (5 ey LUK als e lauti
Bel il s je JaSy oa (J 5 ¢ o> S O writeset g A8 jiiall jualiall agal (ud Ti 0= write set s read set ¢« JS

Tibba) dby daall (o Goadll Jad ¢ day p8ll o2 (e gl 39 g a2 alla A Gaaill 4y (3) Q43S a(2)

B Validation (Optimistic) Concurrency Control Schemes
B 3. Write phase: On a successful validation transactions’ updates are applied to the database; otherwise,
transactions are restarted.
(ALiiall) el 31 b oSl ilalaie W
S pall Qe onle | ady ¢ W1p ¢ cililll sael e daall (o Ginil cilleal daalill clipnail) Gl o5 AUl 4ls 03, W
B Granularity of data items and Multiple Granularity Locking
B Alockable unit of data defines its granularity. Granularity can be coarse (entire database) or it can be fine (a
tuple or an attribute of a relation).
B Data item granularity significantly affects concurrency control performance. Thus, the degree of concurrency is
low for coarse granularity and high for fine granularity.
B Example of data item granularity:
1. Afield of a database record (an attribute of a tuple)
2. A database record (a tuple or a relation)
3. Adisk block
4. An entire file
5. The entire database

12 By Shahad Alhawashi

IT344 - DATABASE MANAGEMENT www.seul.org
CHAPTER: 22 - Concurrency Control Techniques
WEEK: 7

B Granularity of data items and Multiple Granularity Locking
B The following diagram illustrates a hierarchy of granularity from coarse (database) to fine (record).

D‘B
| \
fl 2
| | ‘ | || |
pll pl2 pln pll pl2 w. pln

r111 .. rllj rﬁllj r111 .1y el el o110l .orllj el

Al Gailiadll (e apall (el s UL ealing alall Jualisl) W
(Dol Aal_jadl) (bl sae) (5 (e e i Ao ganal o Juidest) el s Sl e sy M

Granularity of data items and Multiple Granularity Locking
B To manage such hierarchy, in addition to read and write, three additional locking modes, called intention lock
modes are defined:
B [Intention-shared (IS): indicates that a shared lock(s) will be requested on some descendent nodes(s).
B [ntention-exclusive (IX): indicates that an exclusive lock(s) will be requested on some descendent node(s).
B Shared-intention-exclusive (SIX): indicates that the current node is locked in shared mode but an
exclusive lock(s) will be requested on some descendent nodes(s).

Lpa) (ailadll (e aad) (pueli 5 clild) yuabing dalall Jualil)

Al (i p Ll e ¢ 4pilal (el gL 51 4B iy ety ¢ S 5 30 1) Alia¥ ¢ e sl ualiil] 134 Jia o 1Y

Al sial) (may Sl (5) ke (ael3 s s i)) iy 1(58) A jidkall 2

Al lial) Giany e acali (Clas 5) (el bl i 43)) i (IX): _peasd) 3

Al Sl mny e Gala (5) (el bl w815 o yiall i gl 8 4 e Al Bakad) (o)) [adi o4 Ay yean)-AS jidall 2l

Granularity of data items and Multiple Granularity

Locking
= These locks are applied using the following
compatibility matrix: Intention-shared (IS

Intention-exclusive (1X)
IS X S SIX X Shared-intention-exclusive
(SIX)

IS [ves ves ves vyves no
IX |[ves ves no no no
S |[ves no ves no no
SIX|ves no no no no
X |no no no no no

13 By Shahad Alhawashi

IT344 — DATABASE MANAGEMENT
CHAPTER: 22 - Concurrency Control Techniques

WEEK: 7

www.seul.org

Granularity of data items and Multiple Granularity Locking
B The set of rules which must be followed for producing serializable schedule are

1.
2.
3.

The lock compatibility must adhered to.
The root of the tree must be locked first, in any mode..
A node N can be locked by a transaction T in S or IX mode only if the parent node is already locked by T in

either IS or IX mode.

Gnall Gaibadll e aall uali s bl pealing alal) Juoalal)
o Gl Q8 Jan #L8Y Leelal gy Al 2e) 58l 4o gana
bl (380 5 ol 501 g

s) B Vsl 5Bl jia cpali any

el i el g 8t Adanl g Wi 4ie e Jua) 3adal) Cul€ 1) il x5 S aua 1) At 4lelas ddausl oo N 3381 (el (S
(el Al i il gl 8t e 50 Lia a1 (0o Joa¥) S 1) Jath Al ia g f alill 5 Xt A 53 008 1) (el (S
(S) i) odie (g) (puali oLl a1 13 W) odie (aali T J (S ¥

t el 5o Wla N e JELY (e g) (el s ol 13) Lah e ¢ odie (el o) (St

A node N can be locked by T in X, IX, or SIX mode only if the parent of N is already locked by T in either IX
or SIX mode.

T can lock a node only if it has not unlocked any node (to enforce 2PL policy).

T can unlock a node, N, only if none of the children of N are currently locked by T.

» Granularity of data items and Multiple Granularity Locking: An
example of a serializable execution (continued):

™ T2 T3
unlock(p12)
unlock(f1)
unlock(db)
unlock(r111)
unlock(p11)
unlock(f1)
unlock(db)
unlock (r111j)
unlock (p11)
unlock (f1)
Granularity of data items and Multiple Granularity Locking: An example of a unlock(f2)
serializable execution: unlock(db)
T T2 T3
IX(db)
IX(f1)
IX(db)
IS(db)
IS(f1)
IS(p11)
IX(p11)
X(r111)
IX(F1)
X{p12)
S(r11j)
IX(f2)
IX(p21)
X(r211)
Unlock (r211)
Unlock (p21)
Unlock (f2)
s(f2)

14

By Shahad Alhawashi

