
Databases Spring

UvA H. Afsarmanesh 1

RELATIONAL DATABASE DESIGN

g “Good” database design - Avoiding anomalies

g Functional Dependencies

g Normalization & Decomposition Using Functional Dependencies

g 1NF - Atomic Domains and First Normal Form

g 2NF - Partial Dependencies and Second Normal Form

g 3NF - Transitive dependencies and Third Normal Form

g 4NF - Multi-valued Dependencies and Fourth Normal Form

g 5NF - Decomposition and non loss-less join

g Benefits of Normalization

Databases Spring

UvA H. Afsarmanesh 2

AVOIDING ANOMALIES - DATABASE CONSISTENCY

How to avoid inconsistent/anomalous state in Databases

/ Integrity Constraints address/avoid anomalies that can occur

during the Database Manipulation stage

/ e.g. Referential integrities and foreign keys

/ Normalization addresses/avoids anomalies that can occur

during the Database Design stage - “good” database design

Databases Spring

UvA H. Afsarmanesh

FUNCTIONAL DEPENDENCY

� Relations in the database should be legal under a given set of

Functional Dependencies (FDs)

Example:

• Name ���� Telephone-number

• Article-number ���� Price

� Attribute B (in relation F) is functionally dependent on attribute

A (also in relation F) means:

� For each value of A, there is a unique value of B

� Written: A � B

� Read: A “functionally determines” B

or B is “functionally dependent” on A

3

Databases Spring

UvA H. Afsarmanesh

� We can extend the notion of functional dependence to

multiple fields

� A1, A2, …, Am � B1, B2, … Bn

�First-name, last-name ���� Student-ID

� Full functional dependence (vs. partial functional

dependence) is a functional dependence where there is

not a functional dependence from a subset of the

A1, A2, …, Am to B1, B2, …, Bn

� Normalization: decomposes the relations according to their

FDs, to avoid anomalies (e.g. insertion, deletion, and update

anomalies)

� Developed through a number of stages:

1NF, 2NF, 3NF, BCNF (Boyce Codd Normal Form), 4NF and 5NF

4

FUNCTIONAL DEPENDENCY - continued

Databases Spring

UvA H. Afsarmanesh

EXAMPLE O-O DATABASE SCHEMA

� Database of ships with potentially hazardous cargo entering the coastal

water of some country (C1)

� This is a portion of the schema

� Only major relationships are shown

HULL#

BANNED-OIL-TANKER

INSPECTION

DATE

PERSON-NAME

CAPTAIN

COUNTRY

OIL-TANKER

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(M)

(M)

(M)

Has-Hull#

Has-

Inspected

Ship-

Inspected

Country-Banning

Has-Banned

Commands

Has-

Captain

Has-Name

Date-

Licensed

Date-

Inspected

IS-A

5

Name

Has-Name
(1)

Databases Spring

UvA H. Afsarmanesh

Consider the following relation schema:

OIL-TANKERS (HULL#, NAME, CAPTAIN-NAME, COUNTRY-BANNING)

� primary key: HULL#, COUNTRY-BANNING

� example FDs:

o HULL# � NAME

o HULL# � CAPTAIN-NAME (full functional dependency)

o HULL#, NAME � CAPTAIN-NAME (partial functional dependency)

FD counterexample: HULL# COUNTRY-BANNING

EXAMPLE OF FUNCTIONAL DEPENDENCIES

X

NAME

HULL#
CAPTAIN-NAME

** Dependencies are defined by the database designer, based on the knowledge of the

application environment (i.e. they are data-dependent)

OIL-TANKERS

HULL#

COUNTRY-

BANNING

CAPTAIN-NAMENAME

6

Databases Spring

UvA H. Afsarmanesh

NORMALIZATION IN RELATIONAL DB SYSTEMS

� Functional dependencies and keys may be used to develop normalization

� In order to avoid certain types of anomalies

� Normalization steps

1.FIRST NORMAL FORM

� No multi-valued attributes (repeating groups)

** Remove multi-valued attributes

1st NORMAL FORM (1NF)

Example in theDatabase of ships environment:

OIL-TANKERS (HULL#, NAME, CAPTAIN-NAME, COUNTRIES-BANNING*)

Modify it to:

� OIL-TANKERS (HULL#, NAME, CAPTAIN-NAME, COUNTRY-BANNING)

Or

� OIL-TANKERS (HULL#, NAME, CAPTAIN-NAME)

BANS (HULL#, COUNTRY-BANNING)

All attributes

contain atomic

values only

7

Databases Spring

UvA H. Afsarmanesh

2. SECOND NORMAL FORM

� if 1NF and every attribute not part of the primary key is fully functionally

dependent on the primary key.

** Remove partial functional dependencies

1- Example:
INSPECTIONS (DATE, HULL#, RESULT, HOME-PORT)

2- Functional dependencies:
DATE, HULL# � RESULT
HULL# � HOME-PORT
DATE, HULL# � HOME-PORT

3- the primary key is DATE, HULL#, but HOME-PORT is partially

functionally dependent on the key DATE, HULL#

2nd NORMAL FORM (2NF)

DATE
HOME-PORT

HULL#
RESULT

X

4-

DATE HULL# RESULT HOME-PORT

d1 h1 Pass L.A.

d2 h1 Fail L.A.

1

2

d3 h1 Pass L.A.3

- Causes anomalies:

8

Databases Spring

UvA H. Afsarmanesh

2nd NORMAL FORM (continued)

2. SECOND NORMAL FORM (continued)

5 – anomalies:

Update:

� change HOME-PORT from L.A. to S.F. in the 1st tuple, still key is

valid, but the information is wrong since h1 has both L.A. and S.F. as

home-port.

Insert:

� h2 with home-port S.D. cannot be added until it is inspected.

� if we add a tuple (d4, h1, pass, S.F.), the system will not catch the

inconsistency for the homeport of h1.

Delete:

� delete the last inspection record for h1 and you also loose the

information on its home-port

6 – decompose to:

INSEPECTION (DATE, HULL#, RESULT)

SHIP-HOME-PORTS (HULL#, HOME-PORT)

9

Databases Spring

UvA H. Afsarmanesh

3rd NORMAL FORM (3NF)

3. THIRD NORMAL FORM

Example:

1- CREW (ID#, HULL#, HOME-PORT)

2- ID# HULL#

ID# HOME-PORT

HULL# HOME-PORT

3- ID# HULL#

HOME-PORT

X

4- But HULL# is not a candidate key in

the CREW relation

ID# HULL# HOME-PORT

C1 h1 L.A.

C2 h1 L.A.

C3 h2 S.F.

CREW

� If 2NF and every non-key attribute is non-transitively dependent on the
primary key

** Remove transitive dependencies

�

�

�

C4 h2 S.F.

10

Databases Spring

UvA H. Afsarmanesh

3rd NORMAL FORM (continued)

5- Anomalies

Update:

� If C1 starts to work for h2 (HULL#) and you change h1 to h2
then it is inconsistent since h2 is in S.F. but you have it in L.A.

Insert:

� h3 with S.D. cannot be added if there is no ID# for CREW

� If I add (c4 h2 S.D.), it will not be caught by the system as
inconsistency for the city home-port of h2

Delete:

� Delete the last tuple for a crew working on a ship, and you also
loose the information on the home-port of that ship

6- decompose to

CREW (ID#, HULL#)

SHIP-HOME-PORTS (HULL#, HOME-PORT)

X CREW-HOME-PORTS (ID#, HOME-PORT)

is semantically wrong and has no meaning in real life

3. THIRD NORMAL FORM (continued)

11

Databases Spring

UvA H. Afsarmanesh

4th NORMAL FORM (4NF)

4. FOURTH NORMAL FORM

� Even if a relation is in third normal form, there may still

remain some anomalies (problems)

o Multi-valued dependency: more general than a

functional dependency

o A B (A multi-determines B) if B has a well-

defined value (but not necessarily a single value)

** Remove multi-valued dependencies

��

12

Databases Spring

UvA H. Afsarmanesh

4th NORMAL FORM (continued-1)

4. FOURTH NORMAL FORM (continued)

– Example:

CAPITAIN-NAME LICENSING-COUNTRY

* This shows that captain BLY has crew C1, C2, C3, and is licensed from
both USA and GERMANY

QUERY: Find the licensing countries for the captain of the crew c2?

CAPTAIN-NAME CREW-ID# LICENSING-

COUNTRY

BLY

BLY

C1

C1

USA

GERMANY

BLY

BLY

C2

C2

USA

GERMANY

BLY

BLY

C3

C3

USA

GERMANY

WHITE

WHITE

C4

C5

ENGLAND

ITALY XWrong

��

13

Databases Spring

UvA H. Afsarmanesh

4th NORMAL FORM (continued-2)

4. FOURTH NORMAL FORM (continued)

� Example decomposed relations:

CAPTAIN-CREW (CAPTAIN-NAME, CREW-ID#)

CAPTAIN-LICENSES (CAPTAIN-NAME, LICENSING-COUNTRY)

� If all relations are in fourth normal form

– then, each tuple in each relation consists of one main key,

plus some mutually independent attribute values

* then, the key identifies an object, and other attribute

values describe that object

14

Databases Spring

UvA H. Afsarmanesh

5th NORMAL FORM

5. FIFTH NORMAL FORM

� Even if a relation is in fourth normal form, there may still

be more anomalies

o Non-loss- decomposition: no loss of information

(semantics) must occur with a join after a decomposition

o usually, a join after a decomposition returns the original (pre-

decomposition) relation

o BUT, there may be join dependencies

** Remove join dependencies

15

Databases Spring

UvA H. Afsarmanesh

RA RB RC

A1 B1 C2

A2 B1 C1

A1 B2 C1

A1 B1 C1
RA RB

A1 B1

A2 B1

A1 B2

RB RC

B1 C2

B1 C1

B2 C1

RA RC

A1 C2

A2 C1

A1 C1

RA RB RC

A1 B1 C2

A1 B1 C1

A2 B1 C2

A2 B1 C1

A1 B2 C1

RA RB RC

A1 B1 C2

A2 B1 C1

A1 B1 C1

A1 B2 C1

Lossy decomposition

X Wrong

Jo
in

 on R
A+RC

Join on RB

16

Databases Spring

UvA H. Afsarmanesh

Lossless Decomposition
� Let R be a relation schema

� Let R1 and R2 form a decomposition of R

� This decomposition is a lossless (join) decomposition of R, if at least one

of the following functional dependencies holds:

o R1 R2 R1

o R1 R2 R2

� Thus R1 R1 must form a superkey of either R1 or R2

In the previous example: R = (RA, RB, RC)

R1 = (RA, RB)

R2 = (RB, RC)

R1 R2 = RB

But, RB is not a superkey of either R1 or R2, thus this decomposition is lossy

NORMALIZATION cont.

5. FIFTH NORMAL FORM (continued)

17

�

�U
U

U

U

Databases Spring

UvA H. Afsarmanesh

BENEFITS OF NORMALIZATION - WHY NORMALIZE?

� Avoid anomalies

� Reduce data redundancy (by decompositions)

� Capture some application environment semantics

o Key represents the object-ID

o Other attributes describe the object

� Functional dependencies capture some facts about the

application environment

� Normalization allows us to enforce those semantics into the

system

� however, there are many other types of semantic constraints that

cannot be captured by functional dependencies

� relational integrity constraints are required

e.g. No employee’s salary can be more than his manager’s salary
18

