
Databases Spring

UvA H. Afsarmanesh 1

RELATIONAL DATABASE DESIGN

g “Good” database design - Avoiding anomalies

g Functional Dependencies 

g Normalization & Decomposition Using Functional Dependencies

g 1NF - Atomic Domains and First Normal Form

g 2NF - Partial Dependencies and Second Normal Form

g 3NF - Transitive dependencies and Third Normal Form

g 4NF - Multi-valued Dependencies and Fourth Normal Form

g 5NF - Decomposition and non loss-less join

g Benefits of Normalization
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AVOIDING ANOMALIES - DATABASE CONSISTENCY

How to avoid inconsistent/anomalous state in Databases

/ Integrity Constraints address/avoid anomalies that can occur 

during the Database Manipulation stage

/ e.g. Referential integrities and foreign keys

/ Normalization addresses/avoids anomalies that can occur 

during the Database Design stage - “good” database design
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FUNCTIONAL DEPENDENCY

� Relations in the database should be legal under a given set of 

Functional Dependencies (FDs)

Example: 

• Name  ���� Telephone-number

• Article-number ���� Price

� Attribute B (in relation F) is functionally dependent on attribute 

A (also in relation F) means:

� For each value of A, there is a unique value of B

� Written:    A � B

� Read:   A  “functionally determines” B

or     B is “functionally dependent” on A
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� We can extend the notion  of functional dependence to 

multiple fields

� A1, A2, …, Am � B1, B2, … Bn

�First-name, last-name ���� Student-ID

� Full functional dependence (vs. partial functional 

dependence) is a functional dependence where there is 

not a functional dependence from a subset of the      

A1, A2, …, Am  to B1, B2, …, Bn

� Normalization: decomposes the relations according to their 

FDs, to avoid anomalies (e.g. insertion, deletion, and update 

anomalies)

� Developed through a number of stages: 

1NF, 2NF, 3NF, BCNF (Boyce Codd Normal Form), 4NF and 5NF

4

FUNCTIONAL DEPENDENCY - continued



Databases Spring

UvA H. Afsarmanesh

EXAMPLE O-O DATABASE SCHEMA

� Database of ships with potentially hazardous cargo entering the coastal 

water of some country (C1)

� This is a portion of the schema

� Only major relationships are shown

HULL#

BANNED-OIL-TANKER

INSPECTION

DATE

PERSON-NAME

CAPTAIN

COUNTRY

OIL-TANKER

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(M)

(M)

(M)

Has-Hull#

Has-

Inspected

Ship-

Inspected

Country-Banning

Has-Banned

Commands

Has-

Captain

Has-Name

Date-

Licensed

Date-

Inspected

IS-A
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Consider the following relation schema: 

OIL-TANKERS (HULL#, NAME, CAPTAIN-NAME, COUNTRY-BANNING)

� primary key: HULL#, COUNTRY-BANNING

� example FDs:

o HULL# � NAME

o HULL# � CAPTAIN-NAME (full functional dependency)

o HULL#, NAME  � CAPTAIN-NAME (partial functional dependency)

FD counterexample: HULL# COUNTRY-BANNING

EXAMPLE OF FUNCTIONAL DEPENDENCIES

X

NAME 

HULL#
CAPTAIN-NAME 

** Dependencies are defined by the database designer, based on the knowledge of the 

application environment (i.e. they are data-dependent)

OIL-TANKERS

HULL#

COUNTRY-

BANNING

CAPTAIN-NAMENAME
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NORMALIZATION IN RELATIONAL DB SYSTEMS

� Functional dependencies and keys may be used to develop normalization

� In order to avoid certain types of anomalies

� Normalization steps

1.FIRST NORMAL FORM

� No multi-valued attributes (repeating groups)

** Remove multi-valued attributes

1st NORMAL FORM (1NF)

Example in theDatabase of ships environment:

OIL-TANKERS ( HULL#, NAME, CAPTAIN-NAME, COUNTRIES-BANNING* )

Modify it to:

� OIL-TANKERS (HULL#, NAME, CAPTAIN-NAME, COUNTRY-BANNING)

Or

� OIL-TANKERS (HULL#, NAME, CAPTAIN-NAME)

BANS (HULL#, COUNTRY-BANNING)

All attributes 

contain atomic 

values only
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2. SECOND NORMAL FORM

� if 1NF and every attribute not part of the primary key is fully functionally 

dependent on the primary key.

** Remove partial functional dependencies

1- Example:
INSPECTIONS (DATE, HULL#, RESULT, HOME-PORT)

2- Functional dependencies:
DATE, HULL# � RESULT
HULL# � HOME-PORT
DATE, HULL# � HOME-PORT

3- the primary key is   DATE, HULL#, but HOME-PORT is partially 

functionally dependent on the key DATE, HULL#

2nd NORMAL FORM (2NF)

DATE 
HOME-PORT

HULL#
RESULT 

X

4-

DATE HULL# RESULT HOME-PORT

d1 h1 Pass L.A.

d2 h1 Fail L.A.

1

2

d3 h1 Pass L.A.3

- Causes anomalies:
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2nd NORMAL FORM (continued)

2. SECOND NORMAL FORM (continued)

5 – anomalies:

Update:

� change HOME-PORT from L.A. to S.F. in the 1st tuple, still key is 

valid, but the information is wrong since h1 has both L.A. and S.F. as 

home-port.

Insert:

� h2 with home-port S.D. cannot be added until it is inspected.

� if we add a tuple (d4, h1, pass, S.F.), the system will not catch the  

inconsistency for the homeport of h1. 

Delete:

� delete the last inspection record for h1 and you also loose the

information on its home-port

6 – decompose to:

INSEPECTION (DATE, HULL#, RESULT)

SHIP-HOME-PORTS (HULL#, HOME-PORT)
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3rd NORMAL FORM (3NF)

3. THIRD NORMAL FORM

Example:

1- CREW (ID#, HULL#, HOME-PORT)

2- ID#         HULL#

ID#          HOME-PORT

HULL#        HOME-PORT

3- ID#               HULL#

HOME-PORT

X

4- But HULL# is not a candidate key in 

the CREW relation

ID# HULL# HOME-PORT

C1 h1 L.A. 

C2 h1 L.A. 

C3 h2 S.F. 

CREW

� If 2NF and every non-key attribute is non-transitively dependent on the   
primary key

** Remove transitive dependencies

�

�

�

C4 h2 S.F. 
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3rd NORMAL FORM (continued)

5- Anomalies

Update:

� If C1 starts to work for h2 (HULL#) and you change h1 to h2 
then it is inconsistent since h2 is in S.F. but you have it in L.A.

Insert:

� h3 with S.D. cannot be added if there is no ID# for CREW

� If I add (c4 h2 S.D.), it will not be caught by the system as 
inconsistency for the city home-port of h2

Delete:

� Delete the last tuple for a crew working on a ship, and you also 
loose the information on the home-port of that ship

6- decompose to

CREW (ID#, HULL#)

SHIP-HOME-PORTS (HULL#, HOME-PORT)

X CREW-HOME-PORTS (ID#, HOME-PORT)

is semantically wrong and has no meaning in real life

3. THIRD NORMAL FORM (continued)
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4th NORMAL FORM (4NF)

4. FOURTH NORMAL FORM

� Even if a relation is in third normal form, there may still 

remain some anomalies (problems)

o Multi-valued dependency: more general than a 

functional dependency

o A           B   (A multi-determines B) if B has a well-

defined value (but not necessarily a single value)

** Remove multi-valued dependencies

��
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4th NORMAL FORM (continued-1)

4. FOURTH NORMAL FORM (continued)

– Example:

CAPITAIN-NAME             LICENSING-COUNTRY

* This shows that captain BLY has crew  C1, C2, C3,  and is licensed from 
both USA and GERMANY

QUERY: Find the licensing countries for  the captain of the crew c2?

CAPTAIN-NAME CREW-ID# LICENSING-

COUNTRY

BLY

BLY

C1

C1

USA

GERMANY

BLY

BLY

C2

C2

USA

GERMANY

BLY

BLY

C3

C3

USA

GERMANY

WHITE

WHITE

C4

C5

ENGLAND

ITALY XWrong

��
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4th NORMAL FORM (continued-2)

4. FOURTH NORMAL FORM (continued)

� Example decomposed relations:

CAPTAIN-CREW (CAPTAIN-NAME, CREW-ID#)

CAPTAIN-LICENSES (CAPTAIN-NAME, LICENSING-COUNTRY)

� If all relations are in fourth normal form 

– then, each tuple in each relation consists of one main key, 

plus some mutually independent attribute values

* then, the key identifies an object, and other attribute 

values describe that object
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5th NORMAL FORM

5. FIFTH NORMAL FORM

� Even if a relation is in fourth normal form, there may still 

be more anomalies

o Non-loss- decomposition: no loss of information 

(semantics) must occur with a join after a decomposition

o usually, a join after a decomposition returns the original (pre-

decomposition) relation

o BUT, there may be join dependencies

** Remove join dependencies
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RA RB RC

A1 B1 C2

A2 B1 C1

A1 B2 C1

A1 B1 C1
RA RB

A1 B1

A2 B1

A1 B2

RB RC

B1 C2

B1 C1

B2 C1

RA RC

A1 C2

A2 C1

A1 C1

RA RB RC

A1 B1 C2

A1 B1 C1

A2 B1 C2

A2 B1 C1

A1 B2 C1

RA RB RC

A1 B1 C2

A2 B1 C1

A1 B1 C1

A1 B2 C1

Lossy decomposition

X Wrong

Jo
in

 on R
A+RC

Join on RB
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Lossless Decomposition
� Let R be a relation schema 

� Let R1 and R2 form a decomposition of R

� This decomposition is a lossless (join) decomposition of R, if at least one 

of the following functional dependencies holds:

o R1          R2         R1

o R1          R2         R2

� Thus R1       R1 must form a superkey of either R1 or R2

In the previous example:   R   =   (RA, RB, RC)

R1 =  (RA, RB)

R2 =  (RB, RC)

R1         R2 =   RB

But, RB is not a superkey of either R1 or R2, thus this decomposition is lossy

NORMALIZATION cont.

5. FIFTH NORMAL FORM (continued)
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BENEFITS OF NORMALIZATION - WHY NORMALIZE?

� Avoid anomalies

� Reduce data redundancy (by decompositions)

� Capture some application environment semantics

o Key represents the object-ID

o Other attributes describe the object

� Functional dependencies capture some facts about the 

application environment

� Normalization allows us to enforce those semantics into the 

system

� however, there are many other types of semantic constraints that 

cannot be captured by functional dependencies

� relational integrity constraints are required 

e.g. No employee’s salary can be more than his manager’s salary
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