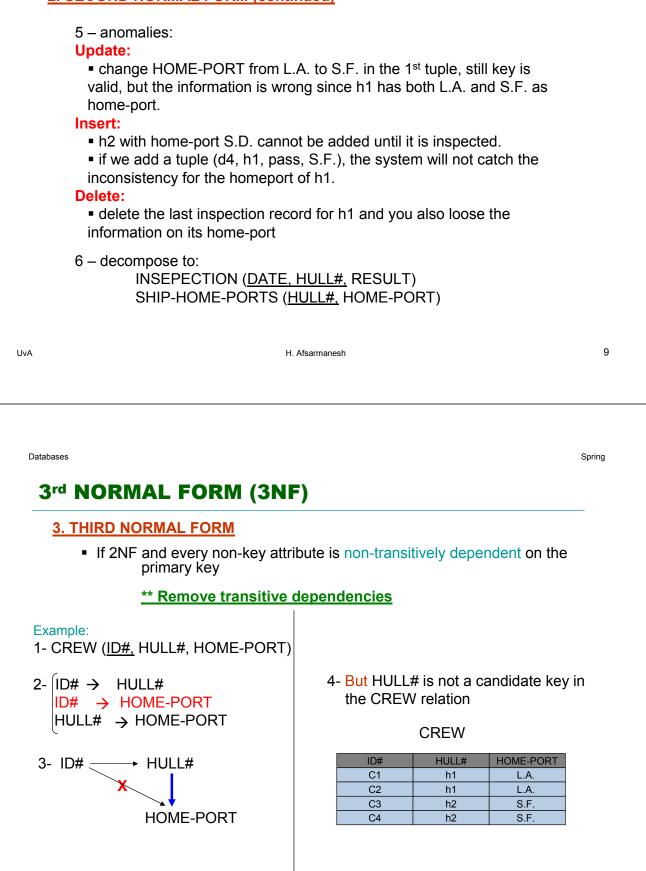
Databases

RELATIONAL DATABASE DESIGN "Good" database design - Avoiding anomalies Functional Dependencies Normalization & Decomposition Using Functional Dependencies 1NF - Atomic Domains and First Normal Form 2NF - Partial Dependencies and Second Normal Form 3NF - Transitive dependencies and Third Normal Form 4NF - Multi-valued Dependencies and Fourth Normal Form 5NF - Decomposition and non loss-less join Benefits of Normalization 1 UvA H Afsarmanesh Databases Spring **AVOIDING ANOMALIES - DATABASE CONSISTENCY** How to avoid inconsistent/anomalous state in Databases / Integrity Constraints address/avoid anomalies that can occur during the Database Manipulation stage / e.g. Referential integrities and foreign keys / Normalization addresses/avoids anomalies that can occur during the Database Design stage - "good" database design

	Relations in the database should be legal under a given set of Functional Dependencies (FDs)	
F	ixample:	
	Name → Telephone-number	
•	Article-number → Price	
	Attribute B (in relation F) is functionally dependent on attribute	
	A (also in relation F) means:	
	 For each value of A, there is a unique value of B Written: A → B 	
	 Read: A "functionally determines" B 	
	or B is "functionally dependent" on A	
	H. Afsarmanesh	
bases		Sprinç
	CTIONAL DEPENDENCY - continued	Spring
	 TIONAL DEPENDENCY - continued We can extend the notion of functional dependence to multiple fields 	Sprinç
	 We can extend the notion of functional dependence to 	Spring
	 We can extend the notion of functional dependence to multiple fields 	Spring
	 We can extend the notion of functional dependence to multiple fields A1, A2,, Am → B1, B2, Bn 	Spring
	 We can extend the notion of functional dependence to multiple fields A1, A2,, Am → B1, B2, Bn <i>First-name, last-name → Student-ID</i> Full functional dependence (vs. partial functional dependence) is a functional dependence where there is 	Spring
	 We can extend the notion of functional dependence to multiple fields A1, A2,, Am → B1, B2, Bn <i>First-name, last-name → Student-ID</i> Full functional dependence (<i>vs. partial functional dependence</i>) is a functional dependence where there is not a functional dependence from a subset of the 	Sprins
	 We can extend the notion of functional dependence to multiple fields A1, A2,, Am → B1, B2, Bn <i>First-name, last-name → Student-ID</i> Full functional dependence (vs. partial functional dependence) is a functional dependence where there is 	Spring
	 We can extend the notion of functional dependence to multiple fields A1, A2,, Am → B1, B2, Bn <i>First-name, last-name → Student-ID</i> Full functional dependence (vs. partial functional dependence) is a functional dependence where there is not a functional dependence from a subset of the A1, A2,, Am to B1, B2,, Bn 	Sprinç
UNC	 We can extend the notion of functional dependence to multiple fields A1, A2,, Am → B1, B2, Bn <i>First-name, last-name → Student-ID</i> Full functional dependence (vs. partial functional dependence) is a functional dependence where there is not a functional dependence from a subset of the A1, A2,, Am to B1, B2,, Bn 	Sprinţ
UNC	 We can extend the notion of functional dependence to multiple fields A1, A2,, Am → B1, B2, Bn <i>First-name, last-name → Student-ID</i> Full functional dependence (<i>vs. partial functional dependence</i>) is a functional dependence where there is not a functional dependence from a subset of the A1, A2,, Am to B1, B2,, Bn Normalization: decomposes the relations according to their FDs, to avoid anomalies (e.g. <i>insertion, deletion, and update</i> 	Sprins
UNC	 We can extend the notion of functional dependence to multiple fields A1, A2,, Am → B1, B2, Bn <i>First-name, last-name → Student-ID</i> Full functional dependence (vs. partial functional dependence) is a functional dependence where there is not a functional dependence from a subset of the A1, A2,, Am to B1, B2,, Bn Normalization: decomposes the relations according to their FDs, to avoid anomalies (e.g. <i>insertion, deletion, and update anomalies</i>) 	Sprin

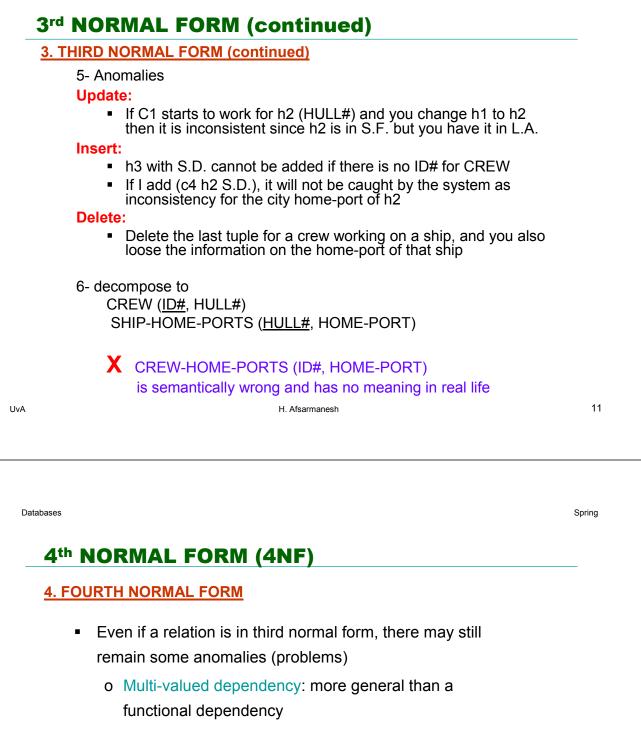
EXAMPLE O-O DATABASE SCHEMA Database of ships with potentially hazardous cargo entering the coastal water of some country (C1) This is a portion of the schema Only major relationships are shown • Country-Banning (M) IS-COUNTRY Has-Hull# **OIL-TANKER** (M) Has-Banned (1) HULL# Commands (M)∖<mark>Has-</mark> Has-Nam Inspected (1) CAPTAIN (1) Ship-Name Has (1) Inspected Captain Has-Name INSPECTION (1) Dateicensed (1)**PERSON-NAME** Date Inspected (1) 5 UvA H Afsarmanesh DATE Databases Spring EXAMPLE OF FUNCTIONAL DEPENDENCIES Consider the following relation schema: OIL-TANKERS (HULL#, NAME, CAPTAIN-NAME, COUNTRY-BANNING) primary key: <u>HULL#, COUNTRY-BANNING</u> CAPTAIN-NAME COUNTRY-(HULL# BANNING example FDs: o HULL# \rightarrow NAME **OIL-TANKERS** o HULL# \rightarrow CAPTAIN-NAME (full functional dependency) o HULL#, NAME \rightarrow CAPTAIN-NAME (partial functional dependency) FD counterexample: HULL# * COUNTRY-BANNING HULL# **CAPTAIN-NAME**


** Dependencies are defined by the database designer, based on the knowledge of the application environment (i.e. they are data-dependent)

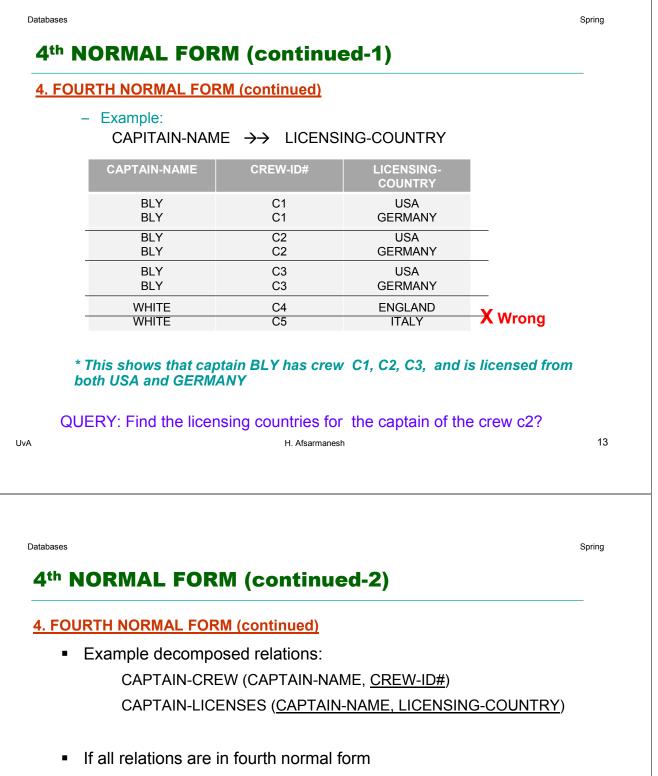
NAME

1st NORMAL FORM (1NF) NORMALIZATION IN RELATIONAL DB SYSTEMS Functional dependencies and keys may be used to develop normalization In order to avoid certain types of anomalies Normalization steps All attributes **1. FIRST NORMAL FORM** No multi-valued attributes (repeating groups) contain atomic ** Remove multi-valued attributes values only Example in theDatabase of ships environment: OIL-TANKERS (HULL#, NAME, CAPTAIN-NAME, COUNTRIES-BANNING*) Modify it to: OIL-TANKERS (HULL#, NAME, CAPTAIN-NAME, COUNTRY-BANNING) Or OIL-TANKERS (HULL#, NAME, CAPTAIN-NAME) BANS (HULL#, COUNTRY-BANNING) 7 H Afsarmanesh UvA Databases Spring 2nd NORMAL FORM (2NF) 2. SECOND NORMAL FORM • if 1NF and every attribute not part of the primary key is fully functionally dependent on the primary key. ** Remove partial functional dependencies 1- Example: INSPECTIONS (DATE, HULL#, RESULT, HOME-PORT) 2- Functional dependencies: DATE. HULL# → RESULT HULL# → HOME-PORT DATE. HULL# → HOME-PORT 3- the primary key is DATE, HULL#, but HOME-PORT is partially functionally <u>dependent</u> on the key DATE, HULL# RESULT HULL# 4-HOME-PORT DATE X DATE HULL# RESULT HOME-PORT d1 h1 Pass L.A. 1 - Causes anomalies: 2 d2 h1 Fail L.A. 3 d3 h1 Pass L.A.

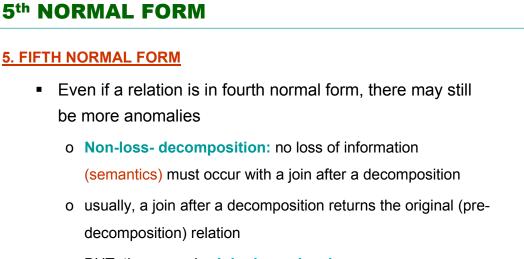
2nd NORMAL FORM (continued)


2. SECOND NORMAL FORM (continued)

H. Afsarmanesh


Spring

10



o A \rightarrow B (A multi-determines B) if B has a welldefined value (but not necessarily a single value)

** Remove multi-valued dependencies

- then, each tuple in each relation consists of one main key, plus some <u>mutually independent</u> attribute values
 - * then, the key identifies an **object**, and other attribute values describe that object

** Remove join dependencies

UvA				H. Afsarmanesh						1
Databa				1						Spring
- 1	RA	RB	RC							
_ /	41	B1	C2							
ŀ	42	B1	C1	Lossy decomposition						$\mathbf{)}$
ŀ	41	B2	C1	RA	RB	RB	RC		RA	RC
ŀ	41	B1	C1	A1	B1	B1	C2		A1	C2
				A2	B1	B1	C1		A2	
				A1	B2	B2	C1		A1	C1
			Join on RB)	01	
		RA	RB	RC			Join on	RC		
		A1	B1	C2			n	RAT.		
		A1	B1	C1			Join U.	RA	RB	RC
Х	X Wrong	A2	B1	C2				A1	B1	C2
		A2	B1	C1				A2	B1	C1
		A1	B2	C1				A1	B1	C1
								A1	B2	C1

NORMALIZATION cont. 5. FIFTH NORMAL FORM (continued) **Lossless Decomposition** Let R be a relation schema Let R1 and R2 form a decomposition of R This decomposition is a lossless (join) decomposition of R, if at least one of the following functional dependencies holds: o R1 \bigcap R2 \rightarrow R1 o R1 \bigcap R2 \rightarrow R2 Thus R1 \bigcap R1 must form a superkey of either R1 or R2 In the previous example: R = (RA, RB, RC)R1 = (RA, RB)R2 = (RB, RC)R1 \bigcap R2 = RB But, RB is not a superkey of either R1 or R2, thus this decomposition is lossy 17 UvA H Afsarmanesh Databases Spring **BENEFITS OF NORMALIZATION - WHY NORMALIZE?** Avoid anomalies Reduce data redundancy (by decompositions) Capture some application environment semantics o Key represents the object-ID o Other attributes describe the object □ Functional dependencies capture some facts about the application environment Normalization allows us to enforce those semantics into the system however, there are many other types of semantic constraints that cannot be captured by functional dependencies

- relational integrity constraints are required
- e.g. No employee's salary can be more than his manager's salary

18