

IT244 Final Summary
Fall 2015-2016

Eng/ Waleed Omar
0509114811 –Waledbak@hotmail.com

IT244 Final Summary By/Waleed Omar

Page 1

Database Management System (DBMS)
A database-management system (DBMS) is a collection of interrelated data (database)
and a set of programs to access those data. The primary goal of a DBMS is to provide a
way to store and retrieve database information that is both convenient and efficient.

Levels of Abstraction
 Physical level: The lowest level of abstraction describes how the data are actually
stored. The physical level describes complex low-level data structures in detail.

 Logical level:
describes what data are stored in the database, and what relationships exist among
those data. Describes the entire database in terms of a small number of relatively simple
structures. The user of the logical level does not need to be aware of this complexity.
This is referred to as physical data independence

 View level: (The highest level of abstraction) describes only part of the entire
database. Application programs hide details of data types. The view level of abstraction
exists to simplify their interaction with the system. The system may provide many views
for the same database.
The data models can be classified into four different categories:
1. Relational model: uses a collection of tables to represent both data and the
relationships among those data. Each table has multiple columns, and each column has
a unique name. Tables are also known as relations.

2. Entity-Relationship data model (mainly for database design): uses a collection of
basic objects, called entities, and relationships among these objects.

3-Object-based data models:
• object-oriented model (by Java, C++, or C#) the development of an object-oriented
data model that can be seen as extending the E-R model with notions of encapsulation,
method (functions), and object identity.

4- Semistructured Data Model. The semistructured data model permits the specification
of data where individual data items of the same type may have different sets of
attributes.
• Extensible Markup Language (XML)
• network data model and hierarchical data model

DB relatonal model components and modeling tools (ERD)
 A relational database consists of a collection of tables, each of which is assigned

a unique name.

 In the relational model the term relation is used to refer to a table, while the

term tuple is used to refer to a row. Similarly, the term attribute refers to a column of a table

IT244 Final Summary By/Waleed Omar

Page 2

 A row in a table represents a relationship among a set of values. Since a table is

a collection of such relationships.

 For each attribute of a relation, there is a set of permitted values(allowed

values), called the domain of that attribute

 A domain is atomic if elements of the domain are considered to be indivisible units

Database Schema

 The database schema, which is the logical design of the database,

 The database instance, which is a snapshot of the data in the database at a given

instant in time.

 a relation schema corresponds to the programming-language notion of type definition.

Relation schema consists of a list of attributes and their corresponding domains

 Relation instance to refer to a specific instance of a relation, i.e., containing a specific set of

rows.

An E-R diagram consists of the following major components:

 Rectangles divided into two parts represent entity sets. The first part, which in

this textbook is shaded blue, contains the name of the entity set. The second part

contains the names of all the attributes of the entity set.

 Diamonds represent relationship sets.

 Undivided rectangles represent the attributes of a relationship set. Attributes

that are part of the primary key are underlined.

 Lines link entity sets to relationship sets.

 Dashed lines link attributes of a relationship set to the relationship set.

 Double lines indicate total participation of an entity in a relationship set.

 Double diamonds represent identifying relationship sets linked to weak entity sets.

IT244 Final Summary By/Waleed Omar

Page 3

IT244 Final Summary By/Waleed Omar

Page 4

Weak Entity Sets

 An entity set that does not have a primary key is referred to as a weak entity set.

 The existence of a weak entity set depends on the existence of a identifying entity set

 It must relate to the identifying entity set via a total, one-to-many

relationship set from the identifying to the weak entity set

 Identifying relationship depicted using a double diamond

IT244 Final Summary By/Waleed Omar

Page 5

Keys

 A superkey is a set of one or more attributes that, taken collectively, allow us to

identify uniquely a tuple in the relation. For example, the ID attribute of the

relation instructor is sufficient to distinguish one instructor tuple from another.

Thus, ID is a superkey.

 No proper subset is a superkey. Such minimal superkeys are called candidate

keys.

 Primary key to denote a candidate key that is chosen by the database designer as the

principal means of identifying tuples within a relation.

IT244 Final Summary By/Waleed Omar

Page 6

 A foreign key is a set of attributes in a referencing relation, such that for each

tuple in the referencing relation, the values of the foreign key attributes are

guaranteed to occur as the primary key value of a tuple in the referenced relation.

 a referential integrity constraint; a referential integrity constraint requires that the

values appearing in specified attributes of any tuple in the referencing

relation also appear in specified attributes of at least one tuple in the referenced

relation.

SQL – chapter 3

Types in SQL

 char(n). Fixed length character string, with user-specified length n.

 varchar(n). Variable length character strings, with user-specified maximum

length n.

 int. Integer (a finite subset of the integers that is machinedependent).

 smallint. Small integer (a machine-dependent subset of the integer domain

type).

 numeric(p,d). Fixed point number, with user-specified precision of p digits, with

n digits to the right of decimal point.

DDL

The SQL data-definition language (DDL) allows the specification of information about

relations, including:

 The schema for each relation.

 The domain of values associated with each attribute.

 Integrity constraints

create table instructor (

ID char(5),

name varchar(20) not null,

dept_name varchar(20),

salary numeric(8,2),

primary key (ID),

foreign key (dept_name) references department)

 Drop and Alter Table Constructs

drop table student

  Deletes the table and its contents

IT244 Final Summary By/Waleed Omar

Page 7

delete from student

  Deletes all contents of table, but retains table

alter table

add coulmn

 alter table instructor add commision float

drop column

 alter table instructor drop commision

Select

To find all instructors in Comp. Sci. dept with salary > 80000

select name

from instructor

where dept_name = ‘Comp. Sci.' and salary > 80000

Joins

For all instructors who have taught some course, find their names and the course ID of

the courses they taught.

select name, course_id

from instructor, teaches

where instructor.ID = teaches.ID

Find the course ID, semester, year and title of each course offered by the Comp. Sci.

department

select section.course_id, semester, year, title

from section, course

where section.course_id = course.course_id and

dept_name = ‘Comp. Sci.'

Natural Join

Natural join matches tuples with the same values for all common attributes, and retains

only one copy of each common column

select *

from instructor natural join teaches;

IT244 Final Summary By/Waleed Omar

Page 8

List the names of instructors along with the the titles of courses that they teach

select name, title

from instructor natural join teaches, course

where teaches.course_id = course.course_id;

The Rename Operation

The SQL allows renaming relations and attributes using the as clause: old-name as new-name

select ID, name, salary/12 as monthly_salary

from instructor

Find the names of all instructors who have a higher salary than some instructor in

‘Comp. Sci’.

select distinct T. name

from instructor as T, instructor as S

where T.salary > S.salary and S.dept_name = ‘Comp. Sci.’

Ordering the Display of Tuples

List in alphabetic order the names of all instructors

select distinct name
from instructor
order by name asc
We may specify desc for descending order or asc for ascending order, for each attribute;
ascending order is the default. Example: order by name desc

Where Clause Predicates

Find the names of all instructors whose name includes the substring “dar”.

select name

from instructor

where name like '%dar%'

Find the names of all instructors with salary between $90,000 and $100,000 (that is, 

$90,000 and  $100,000)

select name

from instructor

where salary between 90000 and 100000

IT244 Final Summary By/Waleed Omar

Page 9

Set Operations

 Find courses that ran in Fall 2009 or in Spring 2010?

(select course_id from section where sem = ‘Fall’ and year = 2009)

union

(select course_id from section where sem = ‘Spring’ and year = 2010)

 Find courses that ran in Fall 2009 and in Spring 2010?

(select course_id from section where sem = ‘Fall’ and year = 2009)

intersect

(select course_id from section where sem = ‘Spring’ and year = 2010)

 Find courses that ran in Fall 2009 but not in Spring 2010?

(select course_id from section where sem = ‘Fall’ and year = 2009)

except

(select course_id from section where sem = ‘Spring’ and year = 2010)

Null Values

 It is possible for tuples to have a null value for some of their attributes

 null signifies an unknown value or that a value does not exist.

 The result of any arithmetic expression involving null is null as 5 + null returns null

 The predicate is null can be used to check for null values.

Find all instructors whose salary is null?
select name
from instructor
where salary is null
Aggregate Functions
 Find the average salary of instructors in the Computer Science department?
select avg (salary)
from instructor
where dept_name= ’Comp. Sci.’;

 Find the total number of instructors who teach a course in the Spring 2010 semester?

select count (distinct ID)

from teaches

where semester = ’Spring’ and year = 2010

 Find the number of tuples in the course relation?

select count (*)

from course;

IT244 Final Summary By/Waleed Omar

Page 10

 Find the average salary of instructors in each department?

Select dept_name, avg (salary)
from instructor
group by dept_name;

 Find the names and average salaries of all departments whose average salary is

greater than 42000?

select dept_name, avg (salary)

from instructor

group by dept_name

having avg (salary) > 42000

Note: predicates in the having clause are applied after the formation of groups whereas

predicates in the where clause are applied before forming groups

Subquery

 Find courses offered in Fall 2009 and in Spring 2010?
select distinct course_id
from section
where semester = ’Fall’ and year= 2009 and
course_id in (select course_id
 from section
 where semester = ’Spring’ and year= 2010)

 Find courses offered in Fall 2009 but not in Spring 2010?

select distinct course_id
from section
where semester = ’Fall’ and year= 2009
and course_id not in (select course_id
 from section
 where semester = ’Spring’ and year= 2010);
Modification of the Database – DML

Deletion
Delete all instructors?
 delete from instructor

Delete all instructors from the Finance department?

 delete from instructor

 where dept_name= ’Finance’

IT244 Final Summary By/Waleed Omar

Page 11

Delete all tuples in the instructor relation for those instructors associated with a
department located in the Watson building?

delete from instructor
where dept_name in (select dept_name
 from department
 where building = ’Watson’);

Insertion
Add a new tuple to course?
 insert into course
 values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);
or equivalently

 insert into course (course_id, title, dept_name, credits)

 values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

Add a new tuple to student with tot_creds set to null

 insert into student

 values (’3003’, ’Green’, ’Finance’, null);

Updates

Increase salaries of instructors whose salary is over $100,000 by 3%

update instructor

set salary = salary * 1.03

where salary > 100000;

Relational Algebra-Chapter 6

Select Operation

Project operator

To eliminate the dept_name attribute of instructor?

 ID, name, salary (instructor)

IT244 Final Summary By/Waleed Omar

Page 12

Set operators
To find all courses taught in the Fall 2009 semester, or in the Spring 2010 semester, or in
both?

 course_id ( semester=“Fall” Λ year=2009 (section)) 

 course_id ( semester=“Spring” Λ year=2010 (section))

To find all courses taught in the Fall 2009 semester, but not in the Spring 2010
semester?

 course_id ( semester=“Fall” Λ year=2009 (section)) −

 course_id ( semester=“Spring” Λ year=2010 (section))

Cartesian-Product Operation

 r x s

 Find the ids of all instructors in the Physics department, along with the course_id of all
courses they have taught?

 instructor.ID,course_id ( dept_name=“Physics” ( instructor.ID=teaches.ID
(instructor x teaches)))

Natural Join

Find the names of all instructors in the Comp. Sci. department together with

the course titles of all the courses that the instructors teach

Outer join

IT244 Final Summary By/Waleed Omar

Page 13

Aggregate Operation

Find the average salary in each department

  dept_name , avg(salary) (instructor)

Bank relations
 branch(branchname, branchcity, assets)
 customer(customername,customerstreet, customercity)
 loan(loan number, branchname, amount)
 borrower(customername,loan number)
 account(accountnumber,branchname, balance)
 depositor(customername,accountnumber)

IT244 Final Summary By/Waleed Omar

Page 14

Exercise 2.7

employee (person_name, street, city)

works (person_name, company name, salary)

company (company name, city)

Give an expression in the relational algebra to express each of the following queries:

a. Find the names of all employees who live in city “Miami”.

b. Find the names of all employees whose salary is greater than $100,000.

c. Find the names of all employees who live in “Miami” and whose salary is greater than

$100,000.

Answer

a. Π person_name (σ city = “Miami” (employee))

b. Π person_name (σ salary >= 100000 (works))

c. Π person_name (σ salary >= 100000 ∧ city = “Miami” (employee⋈ works))

Normal forms

The functional dependency

  

Holds on R if and only if for any legal relations r(R), whenever any two tuples t1 and t2

of r agree on the attributes , they also agree on the attributes .

That is, t1[] = t2 []  t1[] = t2 []

t(ID, name)

ID  building

Atomic Domains and First Normal Form

 Domain is atomic if its elements are considered to be indivisible units
Examples of non-atomic domains:
  Set of names, composite attributes
  Identification numbers like CS101 that can be broken up into parts.
 A relational schema R is in first normal form if the domains of all attributes of R are
atomic.
 Non-atomic values complicate storage and encourage redundant (repeated)
storage of data

 K is a superkey for relation schema R if and only if K  R

 K is a candidate key for R if and only if

  K  R, and

  for no   K,   R

IT244 Final Summary By/Waleed Omar

Page 15

Closure of a Set of Functional Dependencies

 Given a set F of functional dependencies, there are certain other functional

dependencies that are logically implied by F.

o For example: If A  B and B  C, then we can infer that A  C

 The set of all functional dependencies logically implied by F is the closure of F.

 We denote the closure of F by F+.

 F+ is a superset of F.

Boyce–Codd Normal Form

A relation schema R is in BCNF with respect to a set F of functional dependencies if

for all functional dependencies in F+ of the form

  

Where   R and   R, at least one of the following holds:

    is trivial (i.e.,   )

  is a superkey for R

Example1:

Inst_dept (ID, name, salary, dept_name, building, budget)

 The functional dependency dept_name → budget holds on inst_dept, but

dept_name is not a superkey (because, a department may have a number of

different instructors).

 The instructor schema is in BCNF. All of the nontrivial functional dependencies

that hold, such as:

ID→name, dept name, salary

General rule for decomposing that are not in BCNF

R be a schema that is not in BCNF.

Then there is at least one nontrivial functional dependency    such that  is

not a superkey for R. We replace R in our design with two schemas:

 ( ∪ )

 (R − ( − ))

In the case of inst_dept above,  = dept_name,  = {building, budget}, and inst_dept

is replaced by

• (( ∪ )= (dept_name, building,budget)

• (R − ( − ))= (ID, name, dept_name, salary)

IT244 Final Summary By/Waleed Omar

Page 16

Example

dept advisor (s_ID, i_ID, dept_name)
i_ID→dept_name
s_ID, dept_name→i_ID

Notice that with this design, we are forced to repeat the department name once for
each time an instructor participates in a dept_advisor relationship. We see that
dept_advisor is not in BCNF because i_ID is not a superkey

BCNF decomposition, we get:
(s_ID, i_ID)
(i_ID, dept_name)

Third Normal Form
Third normal form prevents dependency preserving.
A relation schema R is in third normal form with respect to a set F of functional

dependencies if, for all functional dependencies in F+ of the form   

where  ⊆ R and  ⊆ R, at least one of the following holds:-

1.    is trivial (i.e.,   )

2.  is a superkey for R

3. Each attribute A in  –  is contained in a candidate key for R.

 If a relation is in BCNF it is in 3NF (since in BCNF one of the first two conditions
above must hold).
 Third condition is a minimal relaxation of BCNF to ensure dependency preservation.

Now, let us again consider the dept_advisor relationship set, which has the following
functional dependencies:

i_ID→dept_name
s_ID, dept_name→i_ID

 The functional dependency “i_ID → dept name” caused the dept_advisor schema

not to be in BCNF. Note that here  = i_ID,  =deptname, and −= dept name.

 Since the functional dependency s_ID, dept name→i_ID holds on dept_advisor,

the attribute dept_name is contained in a candidate key , so dept_advisor is in 3NF.

IT244 Final Summary By/Waleed Omar

Page 17

Example of BCNF Decomposition

R = (A, B, C)

F = {A  B

 B  C}

Key = {A}

R is not in BCNF (B  C but B is not superkey)

Decomposition

R1 = (B, C)

R2 = (A,B)

Example
class(course_id, title, dept_name, credits, sec_id, semester, year, building,
room_number, capacity, time_slot_id)

Functional dependencies:
course_id→ title, dept_name, credits
building, room_number→capacity
course_id, sec_id, semester,year→building,room_number,time_slot_id

A candidate key {course_id, sec_id,semester,year}

BCNF Decomposition:

course_id→ title, dept_name, credits holds

  but course_id is not a superkey.

We replace class by:

  course(course_id, title, dept_name, credits)

  class-1 (course_id, sec_id, semester, year, building,room_number, capacity, time_slot_id)

building, room_number→capacity holds on class-1

 but {building, room_number} is not a superkey for class-1.

 We replace class-1 by:
classroom (building, room_number, capacity)
section (course_id, sec_id, semester, year, building, room_number,time_slot_id)
Now classroom and section are in BCNF.

IT244 Final Summary By/Waleed Omar

Page 18

Chapter 9

Application Architecture Evolution
 Three distinct era’s of application architecture
 mainframe (1960’s and 70’s)
 personal computer era (1980’s)
 Web era (1990’s onwards)

Application Architectures
Application layers
 Presentation or user interface
 model-view-controller (MVC) architecture
 – model: business logic
 – view: presentation of data, depends on display device
 – controller: receives events, executes actions, and returns a view to the user

business-logic layer
 provides high level view of data and actions on data
 – often using an object data model
 hides details of data storage schema

data access layer
 interfaces between business logic layer and the underlying database
 provides mapping from object model of business layer to relational model of
database.

Business Logic Layer

Provides abstractions of entities

  e.g. students, instructors, courses, etc

 Enforces business rules for carrying out actions

  E.g. student can enroll in a class only if she has completed prerequsites, and has

 paid her tuition fees

 Supports workflows which define how a task involving multiple participants is to be

carried out

IT244 Final Summary By/Waleed Omar

Page 19

  E.g. how to process application by a student applying to a university

  Sequence of steps to carry out task

  Error handling

  e.g. what to do if recommendation letters not received on time

Web fundamentals

1-Uniform Resources Locators

 In the Web, functionality of pointers is provided by Uniform Resource Locators (URLs).

 URL example:

http://www.acm.org/sigmod

  The first part indicates how the document is to be accessed

  “http” indicates that the document is to be accessed using the Hyper Text Transfer Protocol.

  The second part gives the unique name of a machine on the Internet.

  The rest of the URL identifies the document within the machine.

The local identification can be:

  The path name of a file on the machine, or

  An identifier (path name) of a program, plus arguments to be passed to the program

 – E.g., http://www.google.com/search?q=silberschatz

2- HTML and HTTP

 HTML provides formatting, hypertext link, and image display features

  including tables, stylesheets (to alter default formatting), etc.

 HTML also provides input features

 Select from a set of options

 – Pop-up menus, radio buttons, check lists

 Enter values

 – Text boxes

  Filled in input sent back to the server, to be acted upon by an executable at the server

 HyperText Transfer Protocol (HTTP) used for communication with the Web server

3- Web Servers

A Web server can easily serve as a front end to a variety of information services.

 The document name in a URL may identify an executable program, that, when run,

generates a HTML document.

  When an HTTP server receives a request for such a document, it executes the

 program, and sends back the HTML document that is generated.

  The Web client can pass extra arguments with the name of the document.

http://www.google.com/search?q=silberschatz

IT244 Final Summary By/Waleed Omar

Page 20

 To install a new service on the Web, one simply needs to create and install an executable

that provides that service.

  The Web browser provides a graphical user interface to the information service.

 Common Gateway Interface (CGI): a standard interface between web and application server

Application Security

1-SQL Injection

 Suppose query is constructed using

  "select * from instructor where name = ’" + name + "’"

 Suppose the user, instead of entering a name, enters:

  X’ or ’Y’ = ’Y

 then the resulting statement becomes:

  "select * from instructor where name = ’" + "X’ or ’Y’ = ’Y" + "’"

  which is:

  select * from instructor where name = ’X’ or ’Y’ = ’Y’

  User could have even used

  X’; update instructor set salary = salary + 10000;

 Prepared statement internally uses:

 "select * from instructor where name = ’X\’ or \’Y\’ = \’Y’

 Always use prepared statements, with user inputs as parameters

 Is the following prepared statemen secure?

  conn.prepareStatement("select * from instructor where name = ’" + name + "’“)

2-Cross Site Scripting
 HTML code on one page executes action on another page
  E.g.
  Risk: if user viewing page with above code is currently logged into mybank, the
 transfer may succeed

  Above example simplistic, since GET method is normally not used for updates, but if
 the code were instead a script, it could execute POST methods

 Above vulnerability called cross-site scripting (XSS) or cross-site request forgery
(XSRF or CSRF)

 Prevent your web site from being used to launch XSS or XSRF attacks
  Disallow HTML tags in text input provided by users, using functions to detect and
 strip such tags
 Protect your web site from XSS/XSRF attacks launched from other sites

IT244 Final Summary By/Waleed Omar

Page 21

 Protect your web site from XSS/XSRF attacks launched from other sites

  Use referer value (URL of page from where a link was clicked) provided by the HTTP

 protocol, to check that the link was followed from a valid page served from same

 site, not another site

  Ensure IP of request is same as IP from where the user was authenticated

  prevents hijacking of cookie by malicious user

  Never use a GET method to perform any updates, recommended by HTTP standard 21

3- Password Leakage

Never store passwords, such as database passwords, in clear text in scripts that may

be accessible to users

  E.g. in files in a directory accessible to a web server

  Normally, web server will execute, but not provide source of script files

 Restrict access to database server from IPs of machines running application servers

  Most databases allow restriction of access by source IP address

4- Application Authentication

Single factor authentication such as passwords too risky for critical applications

  guessing of passwords, sniffing of packets if passwords are not encrypted

  passwords reused by user across sites

  spyware which captures password

 Two-factor authentication

  e.g. password plus one-time password sent by SMS

  e.g. password plus one-time password devices

  device generates a new pseudo-random number every minute, and displays to user

  user enters the current number as password

  application server generates same sequence of pseudorandom numbers to check

 that the number is correct.

 Man-in-the-middle attack
  E.g. web site that pretends to be mybank.com, and passes on requests from user to

 mybank.com, and passes results back to user
  Even two-factor authentication cannot prevent such attacks

  Solution: authenticate Web site to user, using digital certificates, along with secure
http protocol
 Central authentication within an organization
  application redirects to central authentication service for authentication
  avoids multiplicity of sites having access to user’s password
  LDAP or Active Directory used for authentication

