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Chapter 8:  Relational Database Design 

 Features of Good Relational Design 

 Atomic Domains and First Normal Form 

 Decomposition Using Functional Dependencies 

 Functional Dependency Theory 

 Algorithms for Functional Dependencies 

 Decomposition Using Multivalued Dependencies  

 More Normal Form 

 Database-Design Process 

 Modeling Temporal Data 

 

Combine Schemas? 

 Suppose we combine instructor and department into inst_dept 

 (No connection to relationship set inst_dept) 

 Result is possible repetition of information 

 

 

 

A Combined Schema Without Repetition 

 Consider combining relations  

 sec_class(sec_id, building, room_number) and  

 section(course_id, sec_id, semester, year)  

into one relation 

 section(course_id, sec_id, semester, year,  

               building, room_number) 

 No repetition in this case 
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What About Smaller Schemas? 

 Suppose we had started with inst_dept.  How would we know to split up 

(decompose) it into instructor  and department? 

 Write a rule ―if there were a schema (dept_name, building, budget), then 

dept_name would be a candidate key‖ 

 Denote as a functional dependency:  

  dept_name → building, budget 

 In inst_dept, because dept_name is not a candidate key, the building and 

budget of a department may have to be repeated.   

l This indicates the need to decompose inst_dept 

 Not all decompositions are good.  Suppose we decompose 

 employee(ID, name, street, city, salary) into 

 employee1 (ID, name) 

 employee2 (name, street, city, salary) 

 The next slide shows how we lose information -- we cannot reconstruct 

the original employee relation -- and so, this is a lossy decomposition. 

 

 

A Lossy Decomposition 
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Example of Lossless-Join Decomposition 

 Lossless join decomposition 

 Decomposition of R = (A, B, C) 

 R
1
 = (A, B) R

2
 = (B, C) 

  
  

 First Normal Form 
 

 Domain is atomic if its elements are considered to be indivisible units 

 Examples of non-atomic domains: 

 Set of names, composite attributes 

 Identification numbers like CS101  that can be broken up 

into parts 

 A relational schema R is in first normal form if the domains of all 

attributes of R are atomic 

 Non-atomic values complicate storage and encourage redundant 

(repeated) storage of data 

 Example:  Set of accounts stored with each customer, and set of 

owners stored with each account 

 We assume all relations are in first normal form (and revisit this in 

Chapter 22: Object Based Databases) 

 

First Normal Form (Cont’d) 

 Atomicity is actually a property of how the elements of the domain are 

used. 

 Example: Strings would normally be considered indivisible  

 Suppose that students are given roll numbers which are strings of 

the form CS0012 or EE1127 

 If the first two characters are extracted to find the department, the 

domain of roll numbers is not atomic. 

 Doing so is a bad idea: leads to encoding of information in 

application program rather than in the database. 
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Goal — Devise a Theory for the Following 

 Decide whether a particular relation R is in ―good‖ form. 

 In the case that a relation R is not in ―good‖ form, decompose it into a set 

of relations {R
1
, R

2
, ..., R

n
} such that  

 each relation is in good form  

 the decomposition is a lossless-join decomposition 

 Our theory is based on: 

 functional dependencies 

 multivalued dependencies 

 

Functional Dependencies 

 Constraints on the set of legal relations. 

 Require that the value for a certain set of attributes determines uniquely 

the value for another set of attributes. 

 A functional dependency is a generalization of the notion of a key. 

 

Functional Dependencies (Cont.) 

 

Functional Dependencies (Cont.) 
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Use of Functional Dependencies 

 We use functional dependencies to: 

 test relations to see if they are legal under a given set of functional 

dependencies.  

  If a relation r is legal under a set F of functional 

dependencies, we say that r satisfies F. 

 specify constraints on the set of legal relations 

 We say that F holds on R if all legal relations on R satisfy 

the set of functional dependencies F. 

 Note:  A specific instance of a relation schema may satisfy a functional 

dependency even if the functional dependency does not hold on all legal 

instances. 

   

 For example, a specific instance of instructor may, by chance, 

satisfy  

               name → ID. 

 

Functional Dependencies (Cont.) 

 A functional dependency is trivial if it is satisfied by all instances of a 

relation 

• Example: 

  ID, name → ID 

  name → name 

• In general, α → β is trivial if β ⊆ α  

  

  Closure of a Set of Functional Dependencies 

 Given a set F  of functional dependencies, there are certain other 

functional dependencies that are logically implied by F. 

 For example:  If  A → B and  B → C,  then we can infer that A → 

C 

 The set of all functional dependencies logically implied by F is the closure 

of F. 

 We denote the closure of F by F
+

. 

 F
+

 is a superset of F. 
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Boyce-Codd Normal Form 

A relation schema R is in BCNF with respect to a set F of functional  

dependencies if for all functional dependencies in F
+

 of the form  

               α → β 

where α ⊆ R and β ⊆ R, at least one of the following holds: 

 

 α  → β  is trivial (i.e., β ⊆ α) 

 α is a superkey for R 

 

Example schema not in BCNF: 

     instr_dept (ID, name, salary, dept_name, building, budget ) 

because dept_name→ building, budget 

holds on instr_dept, but dept_name is not a superkey 

 

Decomposing a Schema into BCNF 

 Suppose we have a schema R and a non-trivial dependency α →β  causes a 
violation of BCNF. 

 We decompose R into: 
• (α U β ) 
• ( R - ( β - α ) ) 

 In our example,  
• α = dept_name 
• β = building, budget 

and inst_dept is replaced by 
•  (α U β ) = ( dept_name, building, budget ) 
• ( R - ( β - α ) ) = ( ID, name, salary, dept_name ) 

 

BCNF and Dependency Preservation 

 Constraints, including functional dependencies, are costly to check in 

practice unless they pertain to only one relation 

 If it is sufficient to test only those dependencies on each individual 

relation of a decomposition in order to ensure that all functional 

dependencies hold, then that decomposition is dependency preserving. 

 Because it is not always possible to achieve both BCNF and dependency 

preservation, we consider a weaker normal form, known as third normal 

form. 
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Third Normal Form 

 A relation schema R is in third normal form (3NF) if for all: 

  α → β in F
+

 

at least one of the following holds: 

 α → β is trivial (i.e., β ∈ α) 

 α is a superkey for R 

 Each attribute A in β – α is contained in a candidate key for R. 

   (NOTE: each attribute may be in a different candidate key) 

 If a relation is in BCNF it is in 3NF (since in BCNF one of the first two 

conditions above must hold). 

 Third condition is a minimal relaxation of BCNF to ensure dependency 

preservation (will see why later). 

 

Goals of Normalization 

 Let R be a relation scheme with a set F of functional dependencies. 

 Decide whether a relation scheme R is in ―good‖ form. 

 In the case that a relation scheme R is not in ―good‖ form, decompose it 

into a set of relation scheme  {R
1
, R

2
, ..., R

n
} such that  

 each relation scheme is in good form  

 the decomposition is a lossless-join decomposition 

 Preferably, the decomposition should be dependency preserving. 

 

How good is BCNF? 

 There are database schemas in BCNF that do not seem to be sufficiently 

normalized  

 Consider a relation  

  inst_info (ID, child_name, phone) 

 where an instructor may have more than one phone and can have 

multiple children 
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Howgood is BCNF? (Cont.) 

 There are no non-trivial functional dependencies and therefore the 

relation is in BCNF  

 Insertion anomalies – i.e., if we add a phone 981-992-3443 to 99999, we 

need to add two tuples 

  (99999, David,   981-992-3443) 

 (99999, William, 981-992-3443) 

 

How good is BCNF? (Cont.) 

 

Functional-Dependency Theory 

 We now consider the formal theory that tells us which functional 

dependencies are implied logically by a given set of functional 

dependencies. 

 We then develop algorithms to generate lossless decompositions into 

BCNF and 3NF 

 We then develop algorithms to test if a decomposition is dependency-

preserving 

 

Closure of a Set of Functional Dependencies 

 Given a set F set of functional dependencies, there are certain other 

functional dependencies that are logically implied by F. 

 For e.g.:  If  A → B and  B → C,  then we can infer that A → C 

 The set of all functional dependencies logically implied by F is the closure 

of F. 

 We denote the closure of F by F
+

. 
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Closure of a Set of Functional Dependencies 

 We can find F
+, 

 the closure of F, by repeatedly applying Armstrong’s 

Axioms: 

 if β ⊆ α, then α → β                      (reflexivity) 

 if α → β, then γ α →  γ β               (augmentation) 

 if α → β, and β → γ, then α →  γ   (transitivity) 

 These rules are  

 sound (generate only functional dependencies that actually hold),  

and  

 complete (generate all functional dependencies that hold). 

Example 

 R = (A, B, C, G, H, I) 

F = {  A → B 

    A → C 

 CG → H 

 CG → I 

    B → H} 

 some members of F
+

 

 A → H         

 by transitivity from A → B and B → H 

 AG → I        

 by augmenting A → C with G, to get AG → CG  

                   and then transitivity with CG → I  

 CG → HI      

 by augmenting CG → I to infer CG → CGI,  

    and augmenting of CG → H to infer CGI → HI,  

                         and then transitivity 

 

Procedure for Computing F

+

 

 To compute the closure of a set of functional dependencies F: 

     F 
+

 = Frepeat 

 for each functional dependency f in F
+ 

 

       apply reflexivity and augmentation rules on f 

        add the resulting functional dependencies to F 
+ 

 

for each pair of functional dependencies f
1
and f

2
 in F 

+ 

 

       if f
1
 and f

2
 can be combined using transitivity 

   then add the resulting functional dependency to F 
+

until F 
+

 does 

not change any further 

     NOTE:  We shall see an alternative procedure for this task later 
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Closure of Functional Dependencies (Cont.) 

 Additional rules: 

 If α → β holds and α → γ holds,  then α → β γ holds (union) 

 If α → β γ holds, then α → β  holds and α → γ holds 

(decomposition) 

 If α → β  holds and γ β → δ holds, then α γ → δ holds 

(pseudotransitivity) 

The above rules can be inferred from Armstrong’s axioms. 

Closure of Attribute Sets 

 Given a set of attributes α, define the closure of α under F (denoted by α
+

) 

as the set of attributes that are functionally determined by α under F 

  Algorithm to compute α
+

, the closure of α under F 

       result := α; 

 while (changes to result) do 

  for each β → γ in F do 

   begin 

    if β ⊆ result then  result := result ∪ γ  

   end 

Example of Attribute Set Closure 

 R = (A, B, C, G, H, I) 
 F = {A → B 

 A → C  
 CG → H 
 CG → I 
 B → H} 

 (AG)
+

 

1. result = AG 

2. result = ABCG (A → C and A → B) 

3. result = ABCGH (CG → H and CG ⊆ AGBC) 

4. result = ABCGHI (CG → I and CG ⊆ AGBCH) 
 Is AG a candidate key?   

1. Is AG a super key? 

1. Does AG → R? == Is (AG)
+ 

⊇ R 
2. Is any subset of AG a superkey? 

1. Does A → R? == Is (A)
+ 

⊇ R 

2. Does G → R? == Is (G)
+ 

⊇ R 
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Uses of Attribute Closure 

There are several uses of the attribute closure algorithm: 

 Testing for superkey: 

 To test if α is a superkey, we compute α
+,

 and check if α
+ 

contains 

all attributes of R. 

 Testing functional dependencies 

 To check if a functional dependency α → β holds (or, in other 

words, is in F
+

), just check if β ⊆ α
+

.  

 That is, we compute α
+ 

by using attribute closure, and then check 

if it contains β.  

 Is a simple and cheap test, and very useful 

 Computing closure of F 

 For each γ ⊆ R, we find the closure γ
+

, and for each S ⊆ γ
+

, we 

output a functional dependency γ → S. 

Canonical Cover 

 Sets of functional dependencies may have redundant dependencies that 

can be inferred from the others 

 For example:  A → C is redundant in:   {A → B,   B → C, A→ C} 

 Parts of a functional dependency may be redundant 

 E.g.: on RHS:   {A → B,   B → C,   A → CD}  can be 

simplified to  

                         {A → B,   B → C,   A → D}  

 E.g.: on LHS:    {A → B,   B → C,   AC → D}  can be 

simplified to  

                         {A → B,   B → C,   A → D}  

 Intuitively, a canonical cover of F is a ―minimal‖ set of functional 

dependencies equivalent to F, having no redundant dependencies or 

redundant parts of dependencies  

 

Extraneous Attributes 

 Consider a set F of functional dependencies and the functional 

dependency α → β in F. 

 Attribute A is extraneous in α if A ∈ α  

   and F logically implies (F – {α → β}) ∪ {(α  – A) → β}. 

 Attribute A is extraneous in β if A ∈ β  

  and the set of functional dependencies  

  (F  – {α → β}) ∪ {α →(β – A)} logically implies F. 

 Note: implication in the opposite direction is trivial in each of the cases 

above, since a ―stronger‖ functional dependency always implies a weaker 

one 

 Example: Given F = {A → C, AB → C } 

 B is extraneous in AB → C because {A → C, AB → C} logically 

implies A → C (I.e. the result of dropping B from AB → C). 

 Example:  Given F = {A → C, AB → CD} 
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 C is extraneous in AB → CD since  AB → C can be inferred even 

after deleting C 

 

Testing if an Attribute is Extraneous 

 Consider a set F of functional dependencies and the functional 

dependency α → β in F. 

 To test if attribute A ∈ α is extraneous in α  

1. compute ({α} – A)
+

 using the dependencies in F  

2.  check that ({α} – A)
+

 contains β; if it does, A is extraneous in α  

 To test if attribute A ∈ β  is extraneous in β  

1. compute α
+ 

 using only the dependencies in   

         F’ = (F  – {α → β}) ∪ {α →(β – A)},  

2.  check that α
+ 

 contains A; if it does, A is extraneous in β  

Canonical Cover 

 A canonical cover for F is a set of dependencies F
c 
such that  

 F logically implies all dependencies in F
c,
 and  

 F
c 
logically implies all dependencies in F, and 

 No functional dependency in F
c
 contains an extraneous attribute, 

and 

 Each left side of functional dependency in F
c
 is unique. 

 
 To compute a canonical cover for F:repeat 

 Use the union rule to replace any dependencies in F 
   α

1
 → β

1
 and α

1
 → β

2
 with α

1
 → β

1
 β

2
  

 Find a functional dependency α → β with an  
  extraneous attribute either in α or in β  
                       /* Note: test for extraneous attributes done using F

c,
 not F*/ 

  If an extraneous attribute is found, delete it from α → β until F 
does not change 
 

 Note: Union rule may become applicable after some extraneous attributes 
have been deleted, so it has to be re-applied 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Fatimah AL-Shaikh13 
 

 
 

Computing a Canonical Cover 

 R = (A, B, C) 

F = {A → BC 

   B → C 

   A → B 

 AB → C} 

 Combine A → BC and A → B into A → BC 

 Set is now {A → BC, B → C, AB → C} 

 A is extraneous in AB → C 

 Check if the result of deleting A from  AB → C  is implied by the other 

dependencies 

4 Yes: in fact,  B → C is already present! 

 Set is now {A → BC, B → C} 

 C is extraneous in A → BC  

 Check if A → C is logically implied by A → B and the other dependencies 

4 Yes: using transitivity on A → B  and B → C.  

– Can use attribute closure of A in more complex cases 

 The canonical cover is:  A → B 

  B → C 

Lossless-join Decomposition 

 For the case of R = (R
1
, R

2
), we require that for all possible relations r on schema R 

  
r = ∏

R1 
(r )    ∏

R2 
(r )  

 A decomposition of R into R
1
 and R

2
 is lossless join if at least one of the following 

dependencies is in F
+

: 

 R
1
 ∩ R

2
 → R

1
 

 R
1
 ∩ R

2
 → R

2
 

 The above functional dependencies are a sufficient condition for lossless join 

decomposition; the dependencies are a necessary condition only if all constraints are 

functional dependencies 

Example 
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Dependency Preservation 

 Let F
i
 be the set of dependencies F 

+

 that include only attributes in R
i
.  

  A  decomposition is dependency preserving,  if 

         (F
1
 ∪ F

2 
∪ … ∪ F

n 
)
+

 = F 
+

 

 If it is not, then checking updates for violation of functional 

dependencies may require computing joins, which is 

expensive. 

 

 

Testing for Dependency Preservation 

 To check if a dependency α → β is preserved in a decomposition of R into 

R
1
, R

2
, …, R

n
 we apply the following test (with attribute closure done with 

respect to F) 

 result = αwhile (changes to result) do 

 for each R
i
 in the decomposition 

  t = (result ∩ R
i
)
+ 

∩ R
i 

  
result  =  result  ∪ t 

 If result contains all attributes in β, then the functional dependency  

α → β is preserved. 

 We apply the test on all dependencies in F  to check if a decomposition is 

dependency preserving 

 This procedure takes polynomial time, instead of the exponential time 

required to compute F
+

 and (F
1
 ∪ F

2
 ∪ … ∪ F

n
)
+

 
 

  

Example 

 R = (A, B, C ) 

F = {A → B 

  B → C} 

Key = {A} 

 R is not in BCNF 

 Decomposition R
1
 = (A, B),  R

2
 = (B, C) 

 R
1 

and R
2
 in BCNF 

 Lossless-join decomposition 

 Dependency preserving 
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Testing for BCNF 

 To check if a non-trivial dependency α →β  causes a violation of BCNF 

1.  compute α
+

 (the attribute closure of α), and  

2.  verify that it includes all attributes of R, that is, it is a superkey of R. 

 
 Simplified test: To check if a relation schema R is in BCNF, it suffices to 

check only the dependencies in the given set F for violation of BCNF, 

rather than checking all dependencies in F
+

. 
 

 If none of the dependencies in F causes a violation of BCNF, then 

none of the dependencies in F
+

 will cause a violation of BCNF 
either. 
 

 However, simplified test using only F is incorrect when testing a relation 
in a decomposition of R 
 

 Consider R = (A, B, C, D, E), with F = { A → B, BC → D} 
 Decompose R into R

1 
=

 
(A,B) and R

2 
=

 
(A,C,D, E)  

 Neither of the dependencies in F contain only attributes 
from 
 (A,C,D,E) so we might be mislead into thinking R

2
 satisfies 

BCNF.   

 In fact, dependency AC → D in F
+

 shows R
2
 is not in BCNF. 

  

Testing Decomposition for BCNF 

 To check if a relation R
i
 in a decomposition of R is in BCNF,  

 Either test R
i 
for BCNF with respect to the restriction of F to R

i
  

(that is, all FDs in F
+

 that contain only attributes from R
i
) 

 or use the original set of dependencies F that hold on R, but with 

the following test: 

– for every set of attributes α ⊆ R
i
, check that α

+

 (the 

attribute closure of α) either includes no attribute of 

R
i
- α, or includes all attributes of R

i
. 

 

 If the condition is violated by some α → β  in F, the 

dependency 

      α → (α
+ 

- α ) ∩ R
i
can be shown to hold on R

i
, and R

i
 

violates BCNF. 

 We use above dependency to decompose R
i
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BCNF Decomposition Algorithm 

 

Example of BCNF Decomposition 

 R = (A, B, C ) 

F = {A → B 

  B → C} 

Key = {A} 

 

 R is not in BCNF (B → C but B is not  superkey) 

 Decomposition 

 R
1
 = (B, C) 

 R
2
 = (A,B) 

 

 

Example of BCNF Decomposition 

 class (course_id, title, dept_name, credits, sec_id, semester, year, building, 
room_number, capacity, time_slot_id) 
 

 Functional dependencies: 
 course_id→ title, dept_name, credits 
 building, room_number→capacity 
 course_id, sec_id, semester, year→building, room_number, 

time_slot_id 
 

 A candidate key {course_id, sec_id, semester, year}. 
 

 BCNF Decomposition: 

 
 

 course_id→ title, dept_name, credits  holds 
 but course_id is not a superkey. 

  We replace class by: 
 course(course_id, title, dept_name, credits) 
 class-1 (course_id, sec_id, semester, year, building,            

             room_number, capacity, time_slot_i 
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BCNF Decomposition (Cont.) 

 course is in BCNF 

 How do we know this? 

 building, room_number→capacity  holds on class-1 

  but {building, room_number} is not a superkey for class-1. 

 We replace class-1 by: 

 classroom (building, room_number, capacity) 

 section (course_id, sec_id, semester, year, building, 

room_number, time_slot_id) 

 classroom and section are in BCNF. 

 

BCNF and Dependency Preservation 

It is not always possible to get a BCNF decomposition that is  

dependency preserving 

 R = (J, K, L ) 

F = {JK → L 

   L → K } 

Two candidate keys = JK and JL 

 R is not in BCNF 

 Any decomposition of R will fail to preserve 

   JK → L 

      This implies that testing for JK → L requires a join 

 

Third Normal Form: Motivation 

 There are some situations where  

 BCNF is not dependency preserving, and  

 efficient checking for FD violation on updates is important 

 Solution: define a weaker normal form, called Third                    Normal 

Form (3NF) 

 Allows some redundancy (with resultant problems; we will see 

examples later) 

 But functional dependencies can be checked on individual 

relations without computing a join. 

 There is always a lossless-join, dependency-preserving 

decomposition into 3NF. 
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3NF Example 

 Relation dept_advisor: 

 dept_advisor (s_ID, i_ID, dept_name) 

F = {s_ID, dept_name → i_ID,  i_ID → dept_name} 

 Two candidate keys:  s_ID, dept_name, and  i_ID, s_ID 

 R is in 3NF 

 s_ID, dept_name → i_ID   s_ID 

–  dept_name is a superkey 

  i_ID → dept_name   

– dept_name is contained in a candidate key 

Redundancy  in 3NF 

 

Testing for 3NF 

 Optimization: Need to check only FDs in F, need not check all FDs in F
+

. 

 Use attribute closure to check for each dependency α → β, if α is a 

superkey. 

 If α is not a superkey, we have to verify if each attribute in β is contained 

in a candidate key of R 

 this test is rather more expensive, since it involve finding candidate 

keys 

 testing for 3NF has been shown to be NP-hard 

 Interestingly, decomposition into third normal form (described 

shortly) can be done in polynomial time  

 

 

 

 

 

 

 



 

Fatimah AL-Shaikh19 
 

3NF Decomposition Algorithm 

 

3NF Decomposition Algorithm (Cont.) 

 Above algorithm ensures: 

 each relation schema R
i
 is in 3NF 

 decomposition is dependency preserving and lossless-join 
 Proof of correctness is at end of this presentation (click here) 

3NF Decomposition: An Example 

 Relation schema: 

cust_banker_branch = (customer_id, employee_id, branch_name, type ) 

 The functional dependencies for this relation schema are: 

1. customer_id, employee_id → branch_name, type 

2. employee_id → branch_name 

3. customer_id, branch_name → employee_id 

 We first compute a canonical cover 

1. branch_name is extraneous in the r.h.s. of the 1
st

 dependency 

2. No other attribute is extraneous, so we get F
C 

= 

             customer_id, employee_id → type 

     employee_id → branch_name 

        customer_id, branch_name → employee_id 

 

 

 

 

 

 

 

 

slide.xml
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3NF Decompsition Example (Cont.) 

 The for loop generates following 3NF schema: 

             (customer_id, employee_id, type ) 

                  (employee_id, branch_name) 

                  (customer_id, branch_name, employee_id) 

 
 Observe that (customer_id, employee_id, type ) contains a candidate 

key of the original schema, so no further relation schema needs be 
added 
 

 At end of for loop, detect and delete schemas, such as  (employee_id, 

branch_name), which are subsets of other schemas 

 

 result will not depend on the order in which FDs are considered 

 

 The resultant simplified 3NF schema is: 

      (customer_id, employee_id, type) 

                (customer_id, branch_name, employee_id) 

 

Comparison of BCNF and 3NF 

 It is always possible to decompose a relation into a set of  relations that 

are in 3NF such that: 

 the decomposition is lossless 

 the dependencies are preserved 

 It is always possible to decompose a relation into a set of relations that are 

in BCNF such that: 

 the decomposition is lossless 

 it may not be possible to preserve dependencies. 

Design Goals 

 Goal for a relational database design is: 

 BCNF. 

 Lossless join. 

 Dependency preservation. 

 If we cannot achieve this, we accept one of 

 Lack of dependency preservation  

 Redundancy due to use of 3NF 

 Interestingly, SQL does not provide a direct way of specifying functional 

dependencies other than superkeys. 

 Can specify FDs using assertions, but they are expensive to test, (and 

currently not supported by any of the widely used databases!) 

 Even if we had a dependency preserving decomposition, using SQL we 

would not be able to efficiently test a functional dependency whose left 

hand side is not a key. 
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Multivalued Dependencies 

 Suppose we record names of children, and phone numbers for 

instructors: 

 

 inst_child(ID, child_name) 

 inst_phone(ID, phone_number) 

 

 If we were to combine these schemas to get 

 

 inst_info(ID, child_name, phone_number) 

 Example data: 

(99999, David, 512-555-1234) 

(99999, David, 512-555-4321) 

(99999, William, 512-555-1234) 

(99999, William, 512-555-4321) 

 

 This relation is in BCNF 

 Why? 

 

Multivalued Dependencies (MVDs) 

 Let R be a relation schema and let α ⊆ R and β ⊆ R.   The 

multivalued dependency  

   α →→ β 

 holds on R if in any legal relation r(R), for all pairs for tuples t
1 
and t

2
 in r 

such that t
1
[α] = t

2 
[α], there exist tuples t

3
 and t

4
 in r such that: 

  

   t
1
[α] = t

2 
[α] = t

3
 [α] = t

4 
[α]  

  t
3
[β]         =  t

1 
[β]  

  t
3
[R  – β] =  t

2
[R  – β]  

  t
4 

[β]         =  t
2
[β]  

  t
4
[R  – β] =  t

1
[R  – β] 

MVD (Cont.) 

 Tabular representation of α →→ β 
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Example 

 Let R be a relation schema with a set of attributes that are partitioned 

into 3 nonempty subsets. 

   Y, Z, W 

 We say that Y →→ Z (Y multidetermines Z )if and only if for all possible 

relations r (R ) 

  < y
1
, z

1
, w

1
 > ∈ r and < y

1
, z

2
, w

2
 > ∈ r 

 then 

  < y
1
, z

1
, w

2
 > ∈ r and < y

1
, z

2
, w

1
 > ∈ r 

 Note that since the behavior of Z and W are identical it follows that  

 Y →→ Z if Y →→ W  

Example (Cont.) 

 In our example: 

  ID →→ child_name  

 ID →→ phone_number 

 The above formal definition is supposed to formalize the notion that given 

a particular value of Y (ID) it has associated with it a set of values of Z 

(child_name) and a set of values of W (phone_number), and these two sets 

are in some sense independent of each other. 

 Note:  

 If Y → Z  then  Y →→ Z 

 Indeed we have (in above notation) Z
1
 = Z

2
The claim follows. 

Use of Multivalued Dependencies 

 We use multivalued dependencies in two ways:  

1. To test relations to determine whether they are legal under a given 

set of functional and multivalued dependencies 

2. To specify constraints on the set of legal relations.  We shall thus 

concern ourselves only with relations that satisfy a given set of 

functional and multivalued dependencies. 

 If a relation r fails to satisfy a given multivalued dependency, we can 

construct a relations r′  that does satisfy the multivalued dependency by 

adding tuples to r.  
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Theory of MVDs 

 From the definition of multivalued dependency, we can derive the 

following rule: 

 If α → β, then α →→ β 

 That is, every functional dependency is also a multivalued dependency 

 The closure D
+

 of D is the set of all functional and multivalued 

dependencies logically implied by D.  

 We can compute D
+

 from D, using the formal definitions of 

functional dependencies and multivalued dependencies. 

 We can manage with such reasoning for very simple multivalued 

dependencies, which seem to be most common in practice 

 For complex dependencies, it is better to reason about sets of 

dependencies using a system of inference rules (see Appendix C). 

Fourth Normal Form 

 A relation schema R is in 4NF with respect to a set D of functional and 

multivalued dependencies if for all multivalued dependencies in D
+

 of the 

form α →→ β, where α ⊆ R and β ⊆ R, at least one of the following hold: 

 α →→ β is trivial (i.e., β ⊆ α or α ∪ β = R) 

 α is a superkey for schema R 

 If a relation is in 4NF it is in BCNF 

 

Restriction of Multivalued Dependencies 

n The restriction of  D to R
i
 is the set D

i
 consisting of 

l All functional dependencies in D
+

 that include only attributes of R
i
 

l All multivalued dependencies of the form 

   α →→ (β ∩ R
i
) 

    where α ⊆ R
i 
 and  α →→ β is in D

+

  

4NF Decomposition Algorithm 

result: = {R};done := false;compute D
+

; 

Let D
i
 denote the restriction of D

+

 to R
i
 

      while (not done)  

    if (there is a schema R
i
 in result that is not in 4NF) then 

       begin 

   let α →→ β be a nontrivial multivalued dependency that holds 

            on R
i
 such that α → R

i  
is not in D

i
, and α∩β=φ;  

          result :=  (result - R
i
) ∪ (R

i 
- β)  ∪ (α, β);        end    else done:= true; 

      Note: each R
i
 is in 4NF, and decomposition is lossless-join 
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Example 

 R =(A, B, C, G, H, I) 

 F ={ A →→ B 

  B →→ HI 

  CG →→ H } 
 R is not in 4NF since A →→ B and A is not a superkey for R 
 Decomposition 

 a) R
1
 = (A, B)    (R

1
 is in 4NF) 

 b) R
2
 = (A, C, G, H, I)    (R

2
 is not in 4NF, decompose into R

3 
and R

4
) 

 c) R
3
 = (C, G, H)   (R

3
 is in 4NF) 

 d) R
4
 = (A, C, G, I)    (R

4
 is not in 4NF, decompose into R

5 
and R

6
) 

 
 A →→ B and B →→ HI ➔ A →→ HI, (MVD 

transitivity), and 

 and hence A →→ I (MVD restriction to R
4
) 

 e) R
5
 = (A, I)     (R

5
 is in 4NF) 

 f)R
6
 = (A, C, G)    (R

6
 is in  4NF) 

Further Normal Forms 

 Join dependencies generalize multivalued dependencies 

 lead to project-join normal form (PJNF) (also called 

fifth normal form) 

 A class of even more general constraints, leads to a normal form 

called domain-key normal form. 

 Problem with these generalized constraints:  are hard to reason 

with, and no set of sound and complete set of inference rules exists. 

Hence rarely used 

Overall Database Design Process 

 We have assumed schema R is given 

 R could have been generated when converting E-R diagram to a 

set of tables. 

 R could have been a single relation containing all attributes that 

are of interest (called universal relation). 

 Normalization breaks R into smaller relations. 

 R could have been the result of some ad hoc design of relations, 

which we then test/convert to normal form. 

 

 

 

 

 



 

Fatimah AL-Shaikh25 
 

ER Model and Normalization 

 When an E-R diagram is carefully designed, identifying all entities 

correctly, the tables generated from the E-R diagram should not need 

further normalization. 

 However, in a real (imperfect) design, there can be functional 

dependencies from non-key attributes of an entity to other attributes of 

the entity 

 Example: an employee entity with attributes  

   department_name and building,  

and  a functional dependency  

   department_name→ building 

 Good design would have made department an entity 

 Functional dependencies from non-key attributes of a relationship set 

possible, but rare --- most relationships are binary  

 

Denormalization for Performance 

 

Other Design Issues 

 Some aspects of database design are not caught by normalization 

 Examples of bad database design, to be avoided:  

 Instead of earnings (company_id, year, amount ), use  

 earnings_2004, earnings_2005, earnings_2006, etc., all on the 

schema (company_id, earnings). 

 Above are in BCNF, but make querying across years 

difficult and needs new table each year 

 company_year (company_id, earnings_2004, earnings_2005,   

                         earnings_2006) 

 Also in BCNF, but also makes querying across years 

difficult and requires new attribute each year. 

 Is an example of a crosstab, where values for one attribute 

become column names 

 Used in spreadsheets, and in data analysis tools 
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Modeling Temporal Data 

 Temporal data have an association time interval during which the data 
are valid. 

 A snapshot is the value of the data at a particular point in time 
 Several proposals to extend ER model by adding valid time to 

 attributes, e.g., address of an instructor at different points in time 
 entities, e.g., time duration when a student entity exists 
 relationships, e.g., time during which an instructor was associated 

with a student as an advisor. 
 But no accepted standard 
 Adding a temporal component results in functional dependencies like 

  ID → street, city 

 not to hold, because the address varies over time 
 A temporal functional dependency  X → Y holds on schema R if the 

functional dependency X → Y holds on all snapshots for all legal 
instances r (R). 

Modeling Temporal Data (Cont.) 

 In practice, database designers may add start and end time attributes to 

relations 

 E.g., course(course_id, course_title) is replaced by 

     course(course_id, course_title, start, end) 

 Constraint: no two tuples can have overlapping valid times 

– Hard to enforce efficiently 

 Foreign key references may be to current version of data, or to data at a 

point in time 

 E.g., student transcript should refer to course information at the 

time the course was taken 

End of Chapter 

Proof of Correctness of 3NF Decomposition Algorithm 

Correctness of 3NF Decomposition Algorithm 

 3NF decomposition algorithm is dependency preserving (since there is a 

relation for every FD in F
c
) 

 Decomposition is lossless 

 A candidate key (C ) is in one of the relations R
i
 in decomposition 

 Closure of candidate key under F
c
 must contain all attributes in R.   

 Follow the steps of attribute closure algorithm to show there is 

only one tuple in the join result for each tuple in R
i
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Correctness of 3NF Decomposition Algorithm (Cont’d.) 

Claim: if a relation R
i
 is in the decomposition generated by the  

above algorithm, then R
i
 satisfies 3NF. 

 

 Let R
i
 be generated from the dependency α → β 

 Let γ → B be any non-trivial functional dependency on R
i
. (We need only 

consider FDs whose right-hand side is a single attribute.) 

 Now, B can be in either β or α but not in both. Consider each case 

separately. 

 

 

 Case 1: If B in β: 

 

 If γ is a superkey, the 2nd condition of 3NF is satisfied 

 Otherwise α must contain some attribute not in γ 

 Since γ → B is in F
+

 it must be derivable from F
c
, by using 

attribute closure on γ. 

 Attribute closure not have used α →β.  If it had been used, α must 

be contained in the attribute closure of γ, which is not possible, 

since we assumed γ is not a superkey. 

 Now, using α→  (β- {B}) and γ → B, we can derive α →B 

 (since γ ⊆ α β, and B ∉ γ since γ → B is non-trivial) 

 Then, B is extraneous in the right-hand side of α →β; which is not 

possible since α →β is in F
c
. 

 Thus, if B is in β then γ  must be a superkey, and the second 

condition of 3NF must be satisfied. 

 

Correctness of 3NF Decomposition (Cont’d.) 

 Case 2:  B is in α. 

 Since α  is a candidate key, the third alternative in the definition of 

3NF is trivially satisfied. 

 In fact, we cannot show that γ is a superkey. 

 This shows exactly why the third alternative is present in the 

definition of 3NF. 

Q.E.D. 
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Figure 8.02 

 

Figure 8.03 

 

Figure 8.04 
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Figure 8.05 

 

Figure 8.06 

 

Figure 8.14 

 

Figure 8.15 

 

Figure 8.17 
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