

FMTOC.qxd 12/2/11 1:25 PM Page viii

This page is intentionally left blank

SSyysstteemm AAnnaallyyssiiss DDeessiiggnn
UUMMLL VVeerrssiioonn 22..00

AN OBJECT-ORIENTED APPROACH

Fourth Edition

AAllaann DDeennnniiss
Indiana University

BBaarrbbaarraa HHaalleeyy WWiixxoomm
University of Virginia

DDaavviidd TTeeggaarrddeenn
Virginia Tech

JJoohhnn WWiilleeyy && SSoonnss,, IInncc..

FMTOC.qxd 12/2/11 1:25 PM Page i

VP & PUBLISHER: Don Fowley

EXECUTIVE EDITOR: Beth Lang Golub

EDITORIAL ASSISTANT: Elizabeth Mills

MARKETING MANAGER: Christopher Ruel

DESIGNER: Maureen Eide

SENIOR PRODUCTION MANAGER: Janis Soo

ASSOCIATE PRODUCTION MANAGER: Joyce Poh

This book was set in 10/12 Minion by Aptara and printed and bound by RR Donnelley. The cover was printed
by RR Donnelley.

This book is printed on acid free paper.

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and understanding for more
than 200 years, helping people around the world meet their needs and fulfill their aspirations. Our company is
built on a foundation of principles that include responsibility to the communities we serve and where we live
and work. In 2008, we launched a Corporate Citizenship Initiative, a global effort to address the environmental,
social, economic, and ethical challenges we face in our business. Among the issues we are addressing are carbon
impact, paper specifications and procurement, ethical conduct within our business and among our vendors, and
community and charitable support. For more information, please visit our website: www.wiley.com/go/citizenship.

Copyright © 2012, 2009 John Wiley & Sons, Inc. All rights reserved. No part of this publication may be repro-
duced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photo-
copying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United
States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc. 222 Rosewood Drive, Danvers,
MA 01923, website www.copyright.com. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, (201)748-6011,
fax (201)748-6008, website http://www.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in
their courses during the next academic year. These copies are licensed and may not be sold or transferred to a
third party. Upon completion of the review period, please return the evaluation copy to Wiley. Return instruc-
tions and a free of charge return shipping label are available at www.wiley.com/go/returnlabel. Outside of the
United States, please contact your local representative.

Library of Congress Cataloging-in-Publication Data

Dennis, Alan.

Systems analysis design, UML version 2.0 : an object oriented approach/Alan Dennis, Barbara Haley
Wixom, David Tegarden.–4th ed.

p. cm.

Includes index.

ISBN 978-1-118-03742-3 (acid free paper)

1. System analysis. 2. System design. 3. UML (Computer science) I. Wixom, Barbara Haley,
1969-II. Tegarden, David Paul. III. Title.

QA402.D395 2012

003–dc23

2011044320

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

FMTOC.qxd 12/2/11 1:25 PM Page ii

http://www.copyright.com
http://www.wiley.com/go/permissions

iiiiii

CC OO NN TT EE NN TT SS

Preface IX

CChhaapptteerr 11
IInnttrroodduuccttiioonn ttoo SSyysstteemmss
AAnnaallyyssiiss aanndd DDeessiiggnn 11
INTRODUCTION 2
THE SYSTEMS DEVELOPMENT LIFE CYCLE 3

Planning 4
Analysis 4
Design 5
Implementation 6

SYSTEMS DEVELOPMENT

METHODOLOGIES 6
Structured Design 8
Rapid Application Development

(RAD) 10
Agile Development 14
Selecting the Appropriate Development

Methodology 18
TYPICAL SYSTEMS ANALYST ROLES

AND SKILLS 20
Business Analyst 21
Systems Analyst 21
Infrastructure Analyst 22
Change Management Analyst 22
Project Manager 22

BASIC CHARACTERISTICS OF OBJECT-
ORIENTED SYSTEMS 23

Classes and Objects 23
Methods and Messages 24
Encapsulation and Information

Hiding 24
Inheritance 25
Polymorphism and Dynamic Binding 27

OBJECT-ORIENTED SYSTEMS ANALYSIS

AND DESIGN (OOSAD) 28
Use-Case Driven 28
Architecture-centric 29
Iterative and Incremental 29

Benefits of Object-Oriented Systems Analysis
and Design 29

THE UNIFIED PROCESS 30
Phases 30
Wo r k fl o w s 3 2
Extensions to the Unified Process 35

THE UNIFIED MODELING LANGUAGE 39
APPLYING THE CONCEPTS AT CD

SELECTIONS 41
Summary 41

! CChhaapptteerr 22
PPrroojjeecctt MMaannaaggeemmeenntt 4488
INTRODUCTION 49
PROJECT IDENTIFICATION 51

System Request 52
FEASIBILITY ANALYSIS 54

Technical Feasibility 55
Economic Feasibility 56
Organizational Feasibility 64

PROJECT SELECTION 66
TRADITIONAL PROJECT MANAGEMENT TOOLS 69

Work Breakdown Structures 70
Gantt Chart 71
Network Diagram 71

PROJECT EFFORT ESTIMATION 73
CREATING AND MANAGING

THE WORKPLAN 79
Evolutionary Work Breakdown Structures and

Iterative Workplans 79
Managing Scope 84
Timeboxing 84
Refining Estimates 86
Managing Risk 87

STAFFING THE PROJECT 88
Characteristics of a Jelled Team 88
Staffing Plan 90
Motivation 93
Handling Conflict 94

FMTOC.qxd 12/2/11 1:25 PM Page iii

ENVIRONMENT AND INFRASTRUCTURE

MANAGEMENT 96
CASE Tools 96
Standards 97
Documentation 98

APPLYING THE CONCEPTS AT CD
SELECTIONS 100

Summary 100

! PART ONE
ANALYSIS MODELING 107

CChhaapptteerr 33
RReeqquuiirreemmeennttss
DDeetteerrmmiinnaattiioonn 110099
INTRODUCTION 110
REQUIREMENTS DETERMINATION 110

Defining a Requirement 112
Requirements Definition 115
Determining Requirements 116
Creating a Requirements Definition 117
Real-World Problems with Requirements

Determination 117
REQUIREMENTS ANALYSIS STRATEGIES 118

Business Process Automation (BPA) 118
Business Process Improvement

(BPI) 121
Business Process Reengineering 122
Selecting Appropriate Strategies 123

REQUIREMENTS-GATHERING

TECHNIQUES 125
Interviews 126
Joint Application Development

(JAD) 132
Questionnaires 136
Document Analysis 138
Observation 139
Selecting the Appropriate

Techniques 141
ALTERNATIVE REQUIREMENTS

DOCUMENTATION TECHNIQUES 143
Concept Maps 144
Story Cards and Task Lists 144

THE SYSTEM PROPOSAL 146
APPLYING THE CONCEPTS AT CD

SELECTIONS 147
Summary 148

CChhaapptteerr 44
BBuussiinneessss PPrroocceessss aanndd
FFuunnccttiioonnaall MMooddeelliinngg 115533
INTRODUCTION 154
BUSINESS PROCESS IDENTIFICATION

WITH USE CASES AND USE-CASE

DIAGRAMS 155
Elements of Use Case Diagrams 155
Identifying the Major Use Cases 160
Creating a Use-Case Diagram 161

BUSINESS PROCESS MODELING WITH

ACTIVITY DIAGRAMS 163
Elements of an Activity Diagram 165
Guidelines for Creating Activity

Diagrams 170
Creating Activity Diagrams 171

BUSINESS PROCESS DOCUMENTATION

WITH USE CASES AND USE-CASE

DESCRIPTIONS 173
Types of Use Cases 175
Elements of a Use-Case Description 175
Guidelines for Creating Use-Case

Descriptions 179
Creating Use Case Descriptions 180

VERIFYING AND VALIDATING THE BUSINESS PROCESSES

AND FUNCTIONAL

MODELS 184
Verification and Validation through

Walkthroughs 184
Functional Model Verification and

Validation 185
APPLYING THE CONCEPTS AT

CD SELECTIONS 188
Summary 188

! CChhaapptteerr 55
SSttrruuccttuurraall MMooddeelliinngg 119955
INTRODUCTION 195
STRUCTURAL MODELS 196

Classes, Attributes, and Operations 197
Relationships 197

OBJECT IDENTIFICATION 199
Textual Analysis 199
Brainstorming 201
Common Object Lists 201
Patterns 202

iivv Contents

FMTOC.qxd 12/2/11 1:25 PM Page iv

CRC CARDS 205
Responsibilities and Collaborations 205
Elements of a CRC Card 206
Role-Playing CRC Cards with Use Cases 207

CLASS DIAGRAMS 208
Elements of a Class Diagram 208
Simplifying Class Diagrams 217
Object Diagrams 217

CREATING STRUCTURAL MODELS USING

CRC CARDS AND CLASS DIAGRAMS 218
Example 220

VERIFYING AND VALIDATING THE

STRUCTURAL MODEL 227
APPLYING THE CONCEPTS AT CD SELECTIONS 230
Summary 231

CChhaapptteerr 66
BBeehhaavviioorraall MMooddeelliinngg 223366
INTRODUCTION 236
BEHAVIORAL MODELS 237
INTERACTION DIAGRAMS 238

Objects, Operations, and Messages 238
Sequence Diagrams 238
Communication Diagrams 246

BEHAVIORAL STAT E MACHINES 253
States, Events, Transitions, Actions,

and Activities 253
Elements of a Behavioral State Machine 255
Creating a Behavioral State Machine 258

CRUDE ANALYSIS 260
VERIFYING AND VALIDATING THE

BEHAVIORAL MODEL 264
APPLYING THE CONCEPTS AT CD SELECTIONS 266
Summary 266

! PART TWO
DESIGN MODELING 271

CChhaapptteerr 77
MMoovviinngg oonn ttoo DDeessiiggnn 227733
INTRODUCTION 274
VERIFYING AND VALIDATING THE ANALYSIS

MODELS 275

Balancing Functional and
Structural Models 276

Balancing Functional and
Behavioral Models 278

Balancing Structural and Behavioral
Models 287

Summary 289
EVOLVING THE ANALYSIS MODELS INTO DESIGN

MODELS 289
Factoring 291
Partitions and Collaborations 292
Layers 293

PACKAGES AND PACKAGE DIAGRAMS 296
Guidelines for Creating Package

Diagrams 298
Creating Package Diagrams 300
Verifying and Validating Package

Diagrams 302
DESIGN STRATEGIES 302

Custom Development 303
Packaged Software 304
Outsourcing 305
Selecting a Design Strategy 307

DEVELOPING THE ACTUAL DESIGN 309
Alternative Matrix 310

APPLYING THE CONCEPTS AT CD
SELECTIONS 311

Summary 311

CChhaapptteerr 88
CCllaassss aanndd MMeetthhoodd
DDeessiiggnn 331177
INTRODUCTION 317
REVIEW OF THE BASIC CHARACTERISTICS

OF OBJECT ORIENTATION 319
Classes, Objects, Methods, and Messages 320
Encapsulation and Information Hiding 320
Polymorphism and Dynamic Binding 320
Inheritance 321

DESIGN CRITERIA 325
Coupling 325
Cohesion 328
Connascence 330

OBJECT DESIGN ACTIVITIES 331
Adding Specifications 332
Identifying Opportunities for Reuse 333

Contents vv

FMTOC.qxd 12/2/11 1:25 PM Page v

Restructuring the Design 336
Optimizing the Design 337
Mapping Problem-Domain Classes to

Implementation Languages 340
CONSTRAINTS AND CONTRACTS 343

Types of Constraints 345
Elements of a Contract 348

METHOD SPECIFICATION 354
General Information 354
Events 354
Message Passing 356
Algorithm Specifications 356
Example 357

APPLYING THE CONCEPTS AT CD SELECTIONS 361
Summary 362

CChhaapptteerr 99
DDaattaa MMaannaaggeemmeenntt LLaayyeerr
DDeessiiggnn 336677
INTRODUCTION 368
OBJECT PERSISTENCE FORMATS 368

Sequential and Random Access Files 369
Relational Databases 372
Object-Relational Databases 374
Object-Oriented Databases 374
NoSQL Data Stores 375
Selecting an Object persistence

Format 377
MAPPING PROBLEM DOMAIN OBJECTS TO OBJECT

PERSISTENCE FORMATS 380
Mapping Problem Domain Objects to an

OODBMS Format 380
Mapping Problem Domain Objects to an

ORDBMS Format 384
Mapping Problem Domain Objects to a

RDBMS Format 387
OPTIMIZING RDBMS-BASED OBJECT

STORAGE 390
Optimizing Storage Efficiency 390
Optimizing Data Access Speed 396
Estimating Data Storage Size 400

DESIGNING DATA ACCESS AND

MANIPULATION CLASSES 401
NONFUNCTIONAL REQUIREMENTS AND DATA

MANAGEMENT LAYER DESIGN 405
APPLYING THE CONCEPTS AT CD SELECTIONS 406
Summary 406

CChhaapptteerr 1100
HHuummaann––CCoommppuutteerr IInntteerraaccttiioonn
LLaayyeerr DDeessiiggnn 441122
INTRODUCTION 413
PRINCIPLES FOR USER INTERFACE

DESIGN 414
Layout 414
Content Awareness 416
Aesthetics 418
User Experience 420
Consistency 420
Minimizing User Effort 421

USER INTERFACE DESIGN PROCESS 421
Use Scenario Development 422
Interface Structure Design 425
Interface Standards Design 426
Interface Design Prototyping 427
Interface Evaluation 432
Common Sense Approach to User

Interface Design 434
NAVIGATION DESIGN 435

Basic Principles 436
Types of Navigation Controls 437
Messages 440
Navigation Design Documentation 441

INPUT DESING 443
Basic Principles 443
Types of Inputs 445
Input Validation 448

OUTPUT DESING 448
Basic Principles 448
Types of Outputs 451
Media 451

MOBILE COMPUTING AND USER INTERFACE

DESIGN 453
SOCIAL MEDIA AND USER INTERFACE

DESIGN 456
INTERNATIONAL AND CULTURAL ISSUES AND USER

INTERFACE DESIGN 459
Multilingual Requirements 459
Color 460
Cultural Differences 461

NONFUNCTIONAL REQUIREMENTS AND

HUMAN–COMPUTER INTERACTION

LAYER DESIGN 463
APPLYING THE CONCEPTS AT CD

SELECTIONS 464
Summary 464

vvii Contents

FMTOC.qxd 12/2/11 1:25 PM Page vi

CChhaapptteerr 1111
PPhhyyssiiccaall AArrcchhiitteeccttuurree LLaayyeerr
DDeessiiggnn 447733
INTRODUCTION 473
ELEMENTS OF THE PHYSICAL ARCHITECTURE

LAYER 474
Architectural Components 474
Server-Based Architectures 475
Client-Based Architectures 476
Client–Server Architectures 476
Client–Server Tiers 478
Selecting a Physical Architecture 479

CLOUD COMPUTING 482
GREEN IT 485
INFRASTRUCTURE DESING 486

Deployment Diagram 486
Network Model 489

HARDWARE AND SYSTEM SOFTWARE

SPECIFICATIONS 492
NONFUNCTIONAL REQUIREMENTS AND

PHYSICAL ARCHITECTURE LAYER DESIGN 495
Operational Requirements 495
Performance Requirements 498
Security Requirements 500
Cultural and Political Requirements 503
Synopsis 504

APPLYING THE CONCEPTS AT CD SELECTIONS 507
Summary 507

! PART THREE
CONSTRUCTION, INSTALLATION,
AND OPERATIONS 513

CChhaapptteerr 1122
CCoonnssttrruuccttiioonn 551155
INTRODUCTION 515
MANAGING PROGRAMMING 517

Assigning Programmers 517
Coordinating Activities 518
Managing the Schedule 519
Cultural Issues 520

DESIGNING TESTS 525
Testing and Object Orientation 526
Test Planning 528

Unit Tests 530
Integration Tests 534
System Tests 534
Acceptance Tests 535

DEVELOPING DOCUMENTATION 535
Types of Documentation 536
Designing Documentation Structure 537
Writing Documentation Topics 538
Identifying Navigation Terms 539

APPLYING THE CONCEPTS AT CD
SELECTIONS 541

Summary 541

CChhaapptteerr 1133
IInnssttaallllaattiioonn aanndd
OOppeerraattiioonnss 554455
INTRODUCTION 545
CULTURAL ISSUES AND INFORMATION

TECHNOLOGY ADOPTION 547
CONVERSION 549

Conversion Style 550
Conversion Location 551
Conversion Modules 552
Selecting the Appropriate Conversion

Strategy 553
CHANGE MANAGEMENT 555

Understanding Resistance to Change 556
Revising Management Policies 558
Assessing Costs and Benefits 559
Motivating Adoption 561
Enabling Adoption: Training 562

POST-IMPLEMENTATION ACTIVITIES 564
System Support 564
System Maintenance 566
Project Assessment 567

APPLYING THE CONCEPTS AT CD
SELECTIONS 569

Summary 569

INDEX 574

Available on line at
www.wiley.com/college/dennis
APPENDIX 1
APPENDIX 2
APPENDIX 3

Contents vviiii

FMTOC.qxd 12/2/11 1:25 PM Page vii

FMTOC.qxd 12/2/11 1:25 PM Page viii

This page is intentionally left blank

PURPOSE OF THIS BOOK
Systems Analysis and Design (SAD) is an exciting, active field in which analysts continually
learn new techniques and approaches to develop systems more effectively and efficiently.
However there is a core set of skills that all analysts need to know—no matter what
approach or methodology is used. All information systems projects move through the four
phases of planning, analysis, design, and implementation; all projects require analysts to
gather requirements, model the business needs, and create blueprints for how the system
should be built; and all projects require an understanding of organizational behavior con-
cepts like change management and team building. Today, the cost of developing modern
software is composed primarily of the cost associated with the developers themselves and
not the computers. As such, object-oriented approaches to developing information systems
hold much promise in controlling these costs.

Today, the most exciting change to systems analysis and design is the move to object-
oriented techniques, which view a system as a collection of self-contained objects that have
both data and processes. This change has been accelerated through the creation of the Uni-
fied Modeling Language (UML). UML provides a common vocabulary of object-oriented
terms and diagramming techniques that is rich enough to model any systems development
project from analysis through implementation.

This book captures the dynamic aspects of the field by keeping students focused on
doing SAD while presenting the core set of skills that we feel every systems analyst needs to
know today and in the future. This book builds on our professional experience as systems
analysts and on our experience in teaching SAD in the classroom.

This book will be of particular interest to instructors who have students do a major
project as part of their course. Each chapter describes one part of the process, provides clear
explanations on how to do it, gives a detailed example, and then has exercises for the
students to practice. In this way, students can leave the course with experience that will
form a rich foundation for further work as a systems analyst.

OUTSTANDING FEATURES

A Focus on Doing SAD
The goal of this book is to enable students to do SAD—not just read about it, but under-
stand the issues so they can actually analyze and design systems. The book introduces
each major technique, explains what it is, explains how to do it, presents an example,
and provides opportunities for students to practice before they do it for real in a project.
After reading each chapter, the student will be able to perform that step in the system
development process.

PP RR EE FF AA CC EE

iixx

FMTOC.qxd 12/2/11 1:25 PM Page ix

xx Preface

Rich Examples of Success and Failure
The book includes a running case about a fictitious company called CD Selections. Each
chapter shows how the concepts are applied in situations at CD Selections. Unlike running
cases in other books, we have tried to focus these examples on planning, managing, and
executing the activities described in the chapter, rather than on detailed dialogue between
fictitious actors. In this way, the running case serves as a template that students can apply
to their own work. Each chapter also includes numerous Concepts in Action boxes, many
of which were written by Dr. Bruce White from Quinnipiac University, that describe how
real companies succeeded—and failed—in performing the activities in the chapter.

Real World Focus
The skills that students learn in a systems analysis and design course should mirror the
work that they ultimately will do in real organizations. We have tried to make this book as
“real” as possible by building extensively on our experience as professional systems analysts
for organizations such as Arthur Andersen, IBM, the U.S. Department of Defense, and the
Australian Army. We have also worked with a diverse industry advisory board of IS profes-
sionals and consultants in developing the book and have incorporated their stories, feed-
back, and advice throughout. Many students who use this book will eventually use the skills
on the job in a business environment, and we believe they will have a competitive edge in
understanding what successful practitioners feel is relevant in the real world.

Project Approach
We have presented the topics in this book in the order in which an analyst encounters them
in a typical project. Although the presentation is necessarily linear (because students have
to learn concepts in the way in which they build on each other), we emphasize the iterative,
complex nature of SAD as the book unfolds. The presentation of the material should align
well with courses that encourage students to work on projects because it presents topics as
students need to apply them.

WHAT’S NEW IN THIS EDITION
In this edition, we have increased the coverage of and better organized the text around the
enhanced Unified Process; provided a greater focus on nonfunctional requirements; pro-
vided a greater emphasis on the iterative and incremental development associated with
object-oriented analysis and design; added figures and examples, along with additional
explanatory text that addresses some of the more difficult concepts to learn; better aligned
the CD selections case material; and did some major reorganization. Details of the major
changes are as follows:

1. Given the lack of object-oriented programming experience of the typical student
and the importance of understanding basic object-oriented concepts to perform
object-oriented systems analysis and design, the appendix entitled “Basic Charac-
teristics of Object-Oriented Systems” has been incorporated in Chapter 1.

2. Due to the popularity of the so-called agile approaches to systems development,
we have greatly increased their coverage throughout the text. In Chapter 1, we
have expanded the coverage of both XP and SCRUM. In Chapter 2, we have
added a section regarding “Jelled” teams and their importance when considering
staffing requirements of projects. In Chapter 3, we have added story cards and

FMTOC.qxd 12/2/11 1:25 PM Page x

Preface xxii

task lists as additional approaches for gathering and documenting requirements.
We have also greatly increased the focus on testing throughout the text. For
example, the verification and validation material in the Moving On to Design
chapter has been distributed over the analysis modeling chapters and the Moving
On to Design chapter.

3. Given the differences between traditional project management and object-
oriented project management, the project management material has been
rewritten to reflect more of an object-oriented flavor. However, since much of
the traditional project management material is still useful within an object-
oriented context, we still cover it, e.g., net present value and return on invest-
ment, break-even point, work breakdown structures, Gantt charts, network
diagrams and PERT analysis. The reorganization and rewriting of project
management material allowed us to apply better the iterative and incremental
development characteristics of object-oriented systems development to project
management. Finally, we replaced the project size estimation section with an
expansion of the use case points material that was in the functional modeling
chapter in the previous edition.

4. To increase the focus on business processes, we have reorganized and expanded
the functional modeling material. In this edition, minimize the potential over-
load of different notations used for business process modeling, e.g., the business
process modeling notation or data flow diagrams, we have aligned the use case
construct with the idea of a business process. Consequently, a use case diagram
can be used to provide an overview of the different business processes and how
they interrelate. Each use case can then be decomposed by creating an activity
diagram to represent the details of each use case. Furthermore, each use case can
be described with a use case description.

5. As in the third edition, the material included within the analysis modeling
chapters has been more tightly coupled. This is especially true with regard to
the idea of iterative and incremental development. The text now emphasizes that
systems must be incrementally built by iterating over each of the models and
over the intersection of the models. For example, the normal flow of events
contained within a use-case description is associated with the activities on an
activity diagram, the operations on a class diagram, the behaviors on the CRC
cards, the messages on sequence and communication diagrams, and transitions
on behavioral state machines. As such, any change to any one of these most likely
will force changes in the others. Furthermore, we have extended CRUD analysis
to CRUDE analysis that includes the idea of simply executing a method associated
with another object.

6. With regards to the requirements determination, we have expanded the coverage
of non-functional requirements throughout the design modeling chapters.

7. We have expanded the material that addresses global concerns. For example,
we have created a new section that addresses international and cultural issues
with regard to user interface design and we have expanded the coverage of
cultural issues with regards to construction and the installation and operations
of information systems.

8. Given all of the technological changes that have taken place since the third
edition, we have also included material that addresses NoSQL data stores, mobile
computing, social media, cloud computing, and green IT in the design modeling
chapters.

FMTOC.qxd 12/2/11 1:25 PM Page xi

xxiiii Preface

9. To decrease the cognitive load required for much of the material in the text,
additional figures and explanatory material have been added.

Finally, to provide a more complete version of the CD Selection case, we have moved the
case to an online format. However, at the end of each chapter in the text, a very short
synopsis of the case is provided.

ORGANIZATION OF THIS BOOK
This edition of the book is loosely organized around the phases and workflows of the
enhanced Unified Process. Each chapter has been written to teach students specific tasks
that analysts need to accomplish over the course of a project, and the deliverables that will
be produced from the tasks. As students complete the chapters, they will realize the itera-
tive and incremental nature of the tasks in object-oriented systems development.

Chapter 1 introduces the SDLC, systems development methodologies, roles and skills
needed for a systems analyst, the basic characteristics of object-oriented systems, object-
oriented systems analysis, the Unified Process, and the UML. Chapter 2 presents topics
related to the project management workflow of the Unified Process, including project iden-
tification, system request, feasibility analysis, project selection, traditional project manage-
ment tools (including work breakdown structures, network diagrams, and PERT analysis),
project effort estimation using use case points, evolutionary work breakdown structures,
iterative workplans, scope management, timeboxing, risk management, and staffing the
project. Chapter 2 also addresses issues related to the Environment and Infrastructure
management workflows of the Unified Process.

Part One focuses on creating analysis models. Chapter 3 introduces students to an
assortment of analysis techniques to help with business automation, business improvement,
and business process reengineering, a variety of requirements-gathering techniques that are
used to determine the functional and nonfunctional requirements of the system, and to a
system proposal. Chapter 4 focuses on constructing business process and functional models
using use case diagrams, activity diagrams, and use case descriptions. Chapter 5 addresses
producing structural models using CRC cards, class diagrams, and object diagrams. Chap-
ter 6 tackles creating behavioral models using sequence diagrams, communication dia-
grams, behavioral state machines, and CRUDE analysis and matrices. Chapters 4 through 6
also cover the verification and validation of the models described in each chapter.

Part Two addresses design modeling. In Chapter 7, students learn how to verify and vali-
date the analysis models created during analysis modeling and to evolve the analysis models
into design models via the use of factoring, partitions, and layers. The students also learn to
create an alternative matrix that can be used to compare custom, packaged, and outsourcing
alternatives. Chapter 8 concentrates on designing the individual classes and their respective
methods through the use of contracts and method specifications. Chapter 9 presents the issues
involved in designing persistence for objects. These issues include the different storage formats
that can be used for object persistence, how to map an object-oriented design into the chosen
storage format, and how to design a set of data access and manipulation classes that act as a
translator between the classes in the application and the object persistence. This chapter also
focuses on the nonfunctional requirements that impact the data management layer. Chapter
10 presents the design of the human–computer interaction layer, where students learn how to
design user interfaces using use scenarios, windows navigation diagrams, storyboards, win-
dows layout diagrams, HTML prototypes, language prototypes, real use cases, interface stan-
dards, and user interface templates, to perform user interface evaluations using heuristic
evaluation, walkthrough evaluation, interactive evaluation, and formal usability testing, and to

FMTOC.qxd 12/2/11 1:25 PM Page xii

Preface xxiiiiii

address nonfunctional requirements such as user interface layout, content awareness, aesthet-
ics, user experience, and consistency. This chapter also addresses issues related to mobile com-
puting, social media, and international and cultural issues with regards to user interface
design. Chapter 11 focuses on the physical architecture and infrastructure design, which
includes deployment diagrams and hardware/software specification. In today’s world, this also
includes issues related to cloud computing and green IT. This chapter, like the previous design
chapters, covers the impact that nonfunctional requirements can have on the physical archi-
tecture layer.

Part Three provides material that is related to the construction, installation, and oper-
ations of the system. Chapter 12 focuses on system construction, where students learn how
to build, test, and document the system. Installation and operations are covered in Chap-
ter 13, where students learn about the conversion plan, change management plan, support
plan, and project assessment. Additionally, these chapters address the issues related to
developing systems in a flat world, where developers and users are distributed throughout
the world.

ACKNOWLEDGMENTS
For the fourth edition, we would like to thank the students of the ACIS 3515: Information
Systems Development I and ACIS 3516: Information Systems Development II classes at
Virginia Tech for giving many suggestions that drove most of the changes from the third
edition to the fourth edition. We would like to especially thank Ashley, Ben, Daniel, Jason,
Jason, Jason (yes, there were three of them), Kyle, Lucy, and Omar. Their suggestions were
invaluable in improving the text and examples.

We would like to thank the following reviewers for their helpful and insightful com-
ments on the fourth edition: David Champion, DeVry University, Columbus, OH campus;
Jeff Cummings, Indiana University; Junhua Ding, East Carolina University; Robert
Dollinger, University of Wisconsin-Stevens Point; Abhijit Dutt, Carnegie Mellon Univer-
sity; Yujong Hwang, DePaul University; Zongliang Jiang, North Carolina A&T State
University; Raymond Kirsch, La Salle University; Gilliean Lee, Lander University; Steve
Machon, DeVry University; Makoto Nakayama, College of CDM, DePaul University; Para-
suraman Nurani, Devry University; Selwyn Piramuthu, University of Florida; Iftikhar
Sikder, Cleveland State University; Fan Zhao, Florida Gulf Coast University; and Dan Zhu,
Iowa State University.

For the third edition, we would like to thank the students of the ACIS 3515: Informa-
tion Systems Development I and ACIS 3516: Information Systems Development II classes
at Virginia Tech for giving many suggestions that drove most of the changes from the
second edition to the third edition. Their feedback was invaluable in improving the text
and examples.

We would also like to thank the following reviewers for their helpful and insightful
comments on the first, second, and third editions: Evans Adams, Fort Lewis College;
Murugan Anandarajon, Drexel University; Ron Anson, Boise State University; Noushin
Ashrafi, University of Massachusetts, Boston; Dirk Baldwin, University of Wisconsin-
Parkside; Robert Barker, University of Louisville; Qing Cao, University of Missouri–Kansas
City; Terry Fox, Baylor University; Ahmad Ghafarian, North Georgia College & State
University; Donald Golden, Cleve-land State University; Cleotilde Gonzalez, Carnegie
Melon University; Daniel V. Goulet, University of Wisconsin–Stevens Point; Harvey
Hayashi, Loyalist College of Applied Arts and Technology; Scott James, Saginaw Valley
State University; Rajiv Kishore, State University of New York–Buffalo; Ravindra Krovi,
University of Akron; Jean-Piere Kuilboer, University of Massachusetts, Boston; Leo

FMTOC.qxd 12/2/11 1:25 PM Page xiii

xxiivv Preface

Legorreta, California State University Sacramento; Diane Lending, James Madison
University; Major Fernando Maymi, West Point University; Daniel Mittleman, DePaul
University; Fred Niederman, Saint Louis University; H. Robert Pajkowski, DeVry Insti-
tute of Technology, Scarborough, Ontario; June S. Park, University of Iowa; Graham
Peace, West Virginia University; Tom Pettay, DeVry Institute of Technology, Columbus,
Ohio; J. Drew Procaccino, Rider University; Neil Ramiller, Portland State University;
Eliot Rich, University at Albany, State University of New York; Marcus Rothenberger,
University of Wisconsin–Milwaukee; Carl Scott, University of Houston; Keng Siau,
University of Nebraska–Lincoln; Jonathan Trower, Baylor University; June Verner, Drexel
University; Anna Wachholz, Sheridan College; Bill Watson, Indiana University–Purdue
University Indianapolis; Randy S.Weinberg, Carnegie Mellon University; Eli J.Weissman,
DeVry Institute of Technology, Long Island City, NY; Heinz Roland Weistroffer, Virginia
Commonwealth University; Amy Wilson, DeVry Institute of Technology, Decatur, GA;
Amy Woszczynski, Kennesaw State University; and Vincent C.Yen, Wright State University.

SUPPLEMENTS http://www.wiley.com/college/dennis

Instructor’s Resources Web Site
! PowerPoint slides, which instructors can tailor to their classroom needs and that

students can use to guide their reading and studying activities

! Test Bank, that includes a variety of questions ranging from multiple choice to
essay style questions. A computerized version of the Test Bank will also be available.

Online Instructor’s Manual
The Instructor’s Manual provides resources to support the instructor both inside and out
of the classroom:

! Short experiential exercises that instructors can use to help students experience
and understand key topics in each chapter.

! Short stories have been provided by people working in both corporate and con-
sulting environments for instructors to insert into lectures to make concepts
more colorful and real

! Additional minicases for every chapter allow students to perform some of the key
concepts that were learned in the chapter.

! Solutions to end of chapter questions and exercises are provided.

Student Website
! Relevant Web links, including career resources Web site.

! Web quizzes help students prepare for class tests.

Cases in Systems Analysis and Design
A separate Case Book on CD-ROM provides a set of more than a dozen cases that can be
used to supplement the book and provide exercises for students to practice with. The cases
are primarily drawn from the United States and Canada, but also include a number of
international cases. We are always looking for new cases, so if you have a case that might be
appropriate please contact us directly (or your local Wiley sales representative).

FMTOC.qxd 12/2/11 1:25 PM Page xiv

Software Tools
Three Software Tools can be purchased with the text in special packages:

1. Visible Systems Corporation’s Visible Analyst Student Edition.

2. Microsoft’s Visio.

3. Microsoft’s Project.
A 60-day trial edition of Microsoft Project can be purchased with the textbook.
Note that Microsoft has changed their policy and no longer offers the 120-day
trial previously available.

Another option now available to education institutions adopting this Wiley
textbook is a free 3-year membership to the MSDN Academic Alliance. The MSDN
AA is designed to provide the easiest and most inexpensive way for academic
departments to make the latest Microsoft software available in labs, classrooms, and
on student and instructor PCs.

Microsoft Project 2007 software is available through this Wiley and Microsoft
publishing partnership, free of charge with the adoption of any qualified Wiley text-
book. Each copy of Microsoft Project is the full version of the software, with no time
limitations, and can be used indefinitely for educational purposes. For more infor-
mation about the MSDN AA program, go to http://msdn.microsoft.com/academic/.

Contact your local Wiley sales representative for details, including pricing and ordering
information.

Preface xxvv

FMTOC.qxd 12/2/11 1:25 PM Page xv

FMTOC.qxd 12/2/11 1:25 PM Page xvi

This page is intentionally left blank

Chapter 1 introduces the systems development life cycle (SDLC), the fundamental four-
phase model (planning, analysis, design, and implementation) common to all information
systems development projects. It describes the evolution of system development method-
ologies and discusses the roles and skills required of a systems analyst. The chapter then
overviews the basic characteristics of object-oriented systems and the fundamentals of
object-oriented systems analysis and design and closes with a description of the Unified
Process and its extensions and the Unified Modeling Language.

OOBBJJEECCTTIIVVEESS

! Understand the fundamental systems development life cycle and its four phases
! Understand the evolution of systems development methodologies
! Be familiar with the different roles played by and the skills of a systems analyst
! Be familiar with the basic characteristics of object-oriented systems
! Be familiar with the fundamental principles of object-oriented systems analysis and

design
! Be familiar with the Unified Process, its extensions, and the Unified Modeling

Language

CCHHAAPPTTEERR OOUUTTLLIINNEE

CC HH AA PP TT EE RR 11

INTRODUCTION TO SYSTEMS

ANALYSIS AND DESIGN

Introduction
The Systems Development Life Cycle

Planning
Analysis
Design
Implementation

Systems Development Methodologies
Structured Design
Rapid Application Development (RAD)
Agile Development
Selecting the Appropriate Development

Methodology
Typical Systems Analyst Roles and Skills

Business Analyst
Systems Analyst
Infrastructure Analyst

Change Management Analyst
Project Manager

Basic Characteristics of Object-Oriented
Systems

Classes and Objects
Methods and Messages
Encapsulation and Information Hiding
Inheritance
Polymorphism and Dynamic Binding

Object-Oriented Systems Analysis and
Design (OOSAD)

Use-Case Driven
Architecture-Centric
Iterative and Incremental
Benefits of Object-Oriented Systems

Analysis and Design

11

c01IntroductionToSystemsAnalysisAndDesign.qxd 12/2/11 7:39 PM Page 1

INTRODUCTION
The systems development life cycle (SDLC) is the process of understanding how an infor-
mation system (IS) can support business needs by designing a system, building it, and
delivering it to users. If you have taken a programming class or have programmed on your
own, this probably sounds pretty simple. Unfortunately, it is not. A 1996 survey by the
Standish Group found that 42 percent of all corporate IS projects were abandoned before
completion. A similar study done in 1996 by the General Accounting Office found 53 percent
of all U.S. government IS projects were abandoned. Unfortunately, many of the systems
that are not abandoned are delivered to the users significantly late, cost far more than
planned, and have fewer features than originally planned. Most of us would like to think
that these problems only happen to “other” people or “other” organizations, but they happen
in most companies. Even Microsoft has a history of failures and overdue projects (e.g.,
Windows 1.0, Windows 95).1 Although we would like to promote this book as a silver bul-
let that will keep you from IS failures, we readily admit that a silver bullet that guarantees
IS development success simply does not exist. Instead, this book provides you with several
fundamental concepts and many practical techniques that you can use to improve the
probability of success.

The key person in the SDLC is the systems analyst, who analyzes the business situation,
identifies opportunities for improvements, and designs an information system to imple-
ment them. Being a systems analyst is one of the most interesting, exciting, and challeng-
ing jobs around. Systems analysts work with a variety of people and learn how they conduct
business. Specifically, they work with a team of systems analysts, programmers, and others
on a common mission. Systems analysts feel the satisfaction of seeing systems that they
designed and developed make a significant business impact, knowing that they contributed
unique skills to make that happen.

However, the primary objective of a systems analyst is not to create a wonderful sys-
tem; instead, it is to create value for the organization, which for most companies means
increasing profits (government agencies and not-for-profit organizations measure value
differently). Many failed systems have been abandoned because the analysts tried to build
a wonderful system without clearly understanding how the system would fit with an orga-
nization’s goals, current business processes, and other information systems to provide
value. An investment in an information system is like any other investment, such as a new
machine tool. The goal is not to acquire the tool, because the tool is simply a means to an
end; the goal is to enable the organization to perform work better so it can earn greater
profits or serve its constituents more effectively.

This book introduces the fundamental skills a systems analyst needs. This pragmatic
book discusses best practices in systems development; it does not present a general survey
of systems development that covers everything about the topic. By definition, systems
analysts do things and challenge the current way that organizations work. To get the most

22 CChhaapptteerr 11 Introduction to Systems Analysis and Design

1 For more information on the problem, see Capers Jones, Patterns of Software System Failure and Success (London:
International Thompson Computer Press, 1996); Capers Jones, Assessment and Control of Software Project
Risks (Englewood Cliffs, NJ: Yourdon Press, 1994); Julia King, “IS Reins in Runaway Projects,” Computer world
(February 24, 1997).

The Unified Process
Phases
Workflows
Extensions to the Unified Process

The Unified Modeling Language
Applying the Concepts at CD Selections
Summary

c01IntroductionToSystemsAnalysisAndDesign.qxd 12/2/11 7:12 PM Page 2

out of this book, you will need to actively apply to your own systems development project
the ideas and concepts in the examples and in the “Your Turn” exercises that are presented
throughout. This book guides you through all the steps for delivering a successful informa-
tion system. Also, it illustrates how one organization (called CD Selections) applies the steps
in one project (developing a Web-based CD sales system). By the time you finish the book,
you won’t be an expert analyst, but you will be ready to start building systems for real.

This chapter first introduces the basic SDLC that IS projects follow. This life cycle is
common to all projects, although the focus and approach to each phase of the life cycle may
differ. The next section describes three fundamentally different types of systems development
methodologies: structured design, rapid application development, and agile development.
The third section describes the roles played by and the skills necessary for a systems analyst.
The final four sections introduce the fundamental characteristics of object-oriented systems,
object-oriented systems analysis and design, a specific object-oriented systems development
methodology (the Unified Process), and a specific object-oriented systems development
graphical notation (the Unified Modeling Language).

The Systems Development Life Cycle 3

A real-estate group in the federal government cospon-
sored a data warehouse with the information technology
(IT) department. In the formal proposal written by IT, costs
were estimated at $800,000, the project’s duration was
estimated to be eight months, and the responsibility for
funding was defined as the business unit’s. The IT depart-
ment proceeded with the project before it even knew if
the project had been accepted.

The project actually lasted two years because require-
ments gathering took nine months instead of one and a
half, the planned user base grew from 200 to 2,500, and
the approval process to buy technology for the project

took a year. Three weeks before technical delivery, the IT
director canceled the project. This failed endeavor cost the
organization and taxpayers $2.5 million.
Source: Hugh J. Watson et al., “Data Warehousing Failure: Case Studies
and Findings,” The Journal of Data Warehousing 4, (no. 1) (1999): 44–54.

Questions

1. Why did this system fail?
2. Why would a company spend money and time on a

project and then cancel it?
3. What could have been done to prevent this?

1–A An Expensive False StartCONCEPTS

IN ACTION

THE SYSTEMS DEVELOPMENT LIFE CYCLE
In many ways, building an information system is similar to building a house. First, the house
(or the information system) starts with a basic idea. Second, this idea is transformed into a
simple drawing that is shown to the customer and refined (often through several drawings,
each improving on the last) until the customer agrees that the picture depicts what he or she
wants. Third, a set of blueprints is designed that presents much more detailed information
about the house (e.g., the type of water faucets, where the telephone jacks will be placed).
Finally, the house is built following the blueprints, often with some changes directed by the
customer as the house is erected.

The SDLC has a similar set of four fundamental phases : planning, analysis, design, and
implementation. Different projects might emphasize different parts of the SDLC or approach
the SDLC phases in different ways, but all projects have elements of these four phases. Each
phase is itself composed of a series of steps, which rely upon techniques that produce deliverables
(specific documents and files that provide understanding about the project).

c01IntroductionToSystemsAnalysisAndDesign.qxd 11/3/11 1:07 PM Page 3

For example, in applying for admission to a university, all students go through the
same phases: information gathering, applying, and accepting. Each of these phases has
steps; for example, information gathering includes steps such as searching for schools,
requesting information, and reading brochures. Students then use techniques (e.g., Internet
searching) that can be applied to steps (e.g., requesting information) to create deliverables
(e.g., evaluations of different aspects of universities).

In many projects, the SDLC phases and steps proceed in a logical path from start to
finish. In other projects, the project teams move through the steps consecutively, incre-
mentally, iteratively, or in other patterns. In this section, we describe the phases, the actions,
and some of the techniques that are used to accomplish the steps at a very high level. Not
all organizations follow the SDLC in exactly the same way. As we shall shortly see, there are
many variations on the overall SDLC.

For now, there are two important points to understand about the SDLC. First, you
should get a general sense of the phases and steps through which IS projects move and
some of the techniques that produce certain deliverables. Second, it is important to under-
stand that the SDLC is a process of gradual refinement. The deliverables produced in the
analysis phase provide a general idea of the shape of the new system. These deliverables are
used as input to the design phase, which then refines them to produce a set of deliverables
that describes in much more detailed terms exactly how the system will be built. These
deliverables, in turn, are used in the implementation phase to produce the actual system.
Each phase refines and elaborates on the work done previously.

Planning
The planning phase is the fundamental process of understanding why an information system
should be built and determining how the project team will go about building it. It has two steps:

1. During project initiation, the system’s business value to the organization is identified:
How will it lower costs or increase revenues? Most ideas for new systems come from
outside the IS area (e.g., from the marketing department, accounting department) in
the form of a system request. A system request presents a brief summary of a business
need, and it explains how a system that supports the need will create business value.
The IS department works together with the person or department that generated the
request (called the project sponsor) to conduct a feasibility analysis.

The feasibility analysis examines key aspects of the proposed project:

! The idea’s technical feasibility (Can we build it?)
! The economic feasibility (Will it provide business value?)
! The organizational feasibility (If we build it, will it be used?)

The system request and feasibility analysis are presented to an information systems
approval committee (sometimes called a steering committee), which decides
whether the project should be undertaken.

2. Once the project is approved, it enters project management. During project man-
agement, the project manager creates a workplan, staffs the project, and puts tech-
niques in place to help the project team control and direct the project through the
entire SDLC. The deliverable for project management is a project plan, which
describes how the project team will go about developing the system.

Analysis
The analysis phase answers the questions of who will use the system, what the system will do,
and where and when it will be used. During this phase, the project team investigates any current
system(s), identifies opportunities for improvement, and develops a concept for the new system.

4 Chapter 1 Introduction to Systems Analysis and Design

c01IntroductionToSystemsAnalysisAndDesign.qxd 11/3/11 1:07 PM Page 4

This phase has three steps:

1. An analysis strategy is developed to guide the project team’s efforts. Such a strategy
usually includes an analysis of the current system (called the as-is system) and its
problems and then ways to design a new system (called the to-be system).

2. The next step is requirements gathering (e.g., through interviews or question-
naires). The analysis of this information—in conjunction with input from the
project sponsor and many other people—leads to the development of a concept
for a new system. The system concept is then used as a basis to develop a set of
business analysis models, which describe how the business will operate if the new
system is developed. The set of models typically includes models that represent
the data and processes necessary to support the underlying business process.

3. The analyses, system concept, and models are combined into a document called
the system proposal, which is presented to the project sponsor and other key deci-
sion makers (e.g., members of the approval committee) who decide whether the
project should continue to move forward.

The system proposal is the initial deliverable that describes what business requirements the
new system should meet. Because it is really the first step in the design of the new system,
some experts argue that it is inappropriate to use the term “analysis” as the name for this
phase; some argue a better name would be “analysis and initial design.” Most organizations
continue to use the name analysis for this phase, however, so we use it in this book as well.
Just keep in mind that the deliverable from the analysis phase is both an analysis and a
high-level initial design for the new system.

Design
The design phase decides how the system will operate, in terms of the hardware, software,
and network infrastructure; the user interface, forms and reports; and the specific pro-
grams, databases, and files that will be needed. Although most of the strategic decisions
about the system were made in the development of the system concept during the analysis
phase, the steps in the design phase determine exactly how the system will operate. The
design phase has four steps:

1. The design strategy is first developed. It clarifies whether the system will be devel-
oped by the company’s own programmers, whether the system will be outsourced
to another firm (usually a consulting firm), or whether the company will buy an
existing software package.

2. This leads to the development of the basic architecture design for the system,
which describes the hardware, software, and network infrastructure to be used. In
most cases, the system will add or change the infrastructure that already exists in
the organization. The interface design specifies how the users will move through the
system (e.g., navigation methods such as menus and on-screen buttons) and the
forms and reports that the system will use.

3. The database and file specifications are developed. These define exactly what data
will be stored and where they will be stored.

4. The analyst team develops the program design, which defines the programs that
need to be written and exactly what each program will do.

This collection of deliverables (architecture design, interface design, database and file spec-
ifications, and program design) is the system specification that is handed to the programming
team for implementation. At the end of the design phase, the feasibility analysis and project
plan are reexamined and revised, and another decision is made by the project sponsor and
approval committee about whether to terminate the project or continue.

The Systems Development Life Cycle 5

c01IntroductionToSystemsAnalysisAndDesign.qxd 11/3/11 1:07 PM Page 5

Implementation
The final phase in the SDLC is the implementation phase, during which the system is actu-
ally built (or purchased, in the case of a packaged software design). This is the phase that
usually gets the most attention, because for most systems it is the longest and most expen-
sive single part of the development process. This phase has three steps:

1. System construction is the first step. The system is built and tested to ensure it per-
forms as designed. Because the cost of bugs can be immense, testing is one of the
most critical steps in implementation. Most organizations give more time and
attention to testing than to writing the programs in the first place.

2. The system is installed. Installation is the process by which the old system is turned
off and the new one is turned on. It may include a direct cutover approach (in
which the new system immediately replaces the old system), a parallel conversion
approach (in which both the old and new systems are operated for a month or two
until it is clear that there are no bugs in the new system), or a phased conversion
strategy (in which the new system is installed in one part of the organization as an
initial trial and then gradually installed in others). One of the most important
aspects of conversion is the development of a training plan to teach users how to
use the new system and help manage the changes caused by the new system.

3. The analyst team establishes a support plan for the system. This plan usually
includes a formal or informal post-implementation review as well as a systematic
way for identifying major and minor changes needed for the system.

6 Chapter 1 Introduction to Systems Analysis and Design

Consumer electronics is a very competitive business.
What might be the success story of the year one year is

a forgotten item two years later. Rapid product commoditi-
zation makes the consumer electronics marketplace very
competitive. Getting the right products to market at the
right time with the right components is an ongoing chal-
lenge for telecommunications and consumer electronics
goods companies.

Questions

1. What external data analysis should a consumer
electronics company use to determine marketplace
needs and its abilities to compete effectively in a
marketplace?

2. Staying one step ahead of competitors requires a
corporate strategy and the support of information
systems. How can information systems and systems
analysts contribute to an aggressive corporate strategy?

1–B Keeping Up with Consumer ElectronicsCONCEPTS

IN ACTION

SYSTEMS DEVELOPMENT METHODOLOGIES
A methodology is a formalized approach to implementing the SDLC (i.e., it is a list of steps
and deliverables). There are many different systems development methodologies, and each
one is unique, based on the order and focus it places on each SDLC phase. Some method-
ologies are formal standards used by government agencies, whereas others have been
developed by consulting firms to sell to clients. Many organizations have internal method-
ologies that have been honed over the years, and they explain exactly how each phase of
the SDLC is to be performed in that company.

There are many ways to categorize methodologies. One way is by looking at whether
they focus on business processes or the data that support the business. A process-centered

c01IntroductionToSystemsAnalysisAndDesign.qxd 11/3/11 1:07 PM Page 6

methodology emphasizes process models as the core of the system concept. In Figure 1-1,
for example, process-centered methodologies would focus first on defining the processes
(e.g., assemble sandwich ingredients). Data-centered methodologies emphasize data mod-
els as the core of the system concept. In Figure 1-1, data-centered methodologies would
focus first on defining the contents of the storage areas (e.g., refrigerator) and how the con-
tents were organized.2 By contrast, object-oriented methodologies attempt to balance the
focus between process and data by incorporating both into one model. In Figure 1-1, these

Systems Development Methodologies 7

2 The classic modern process-centered methodology is that by Edward Yourdon, Modern Structured Analysis
(Englewood Cliffs, NJ: Yourdon Press, 1989). An example of a data-centered methodology is information engi-
neering; see James Martin, Information Engineering, vols. 1–3 (Englewood Cliffs, NJ: Prentice Hall, 1989). A
widely accepted standardized non–object-oriented methodology that balances processes and data is IDEF; see
FIPS 183, Integration Definition for Function Modeling, Federal Information Processing Standards Publications,
U.S. Department of Commerce, 1993.

GetJelly

GetPeanutButter

GetCookies

GetBread

CreateSandwich

GetMilk

CreateLunch

GetLunchBag

PutLunchInBag

aParent aRefrigerator aCupboard aSandwich aLunch aLunchBag

FIGURE 1-1 A Simple Behavioral Model for Making a Simple Lunch

c01IntroductionToSystemsAnalysisAndDesign.qxd 11/3/11 1:07 PM Page 7

methodologies would focus first on defining the major elements of the system (e.g., sand-
wiches, lunches) and look at the processes and data involved with each element.

Another important factor in categorizing methodologies is the sequencing of the
SDLC phases and the amount of time and effort devoted to each.3 In the early days of com-
puting, programmers did not understand the need for formal and well-planned life-cycle
methodologies. They tended to move directly from a very simple planning phase right into
the construction step of the implementation phase—in other words, from a very fuzzy,
not-well-thought-out system request into writing code. This is the same approach that you
sometimes use when writing programs for a programming class. It can work for small pro-
grams that require only one programmer, but if the requirements are complex or unclear,
you might miss important aspects of the problem and have to start all over again, throw-
ing away part of the program (and the time and effort spent writing it). This approach also
makes teamwork difficult because members have little idea about what needs to be accom-
plished and how to work together to produce a final product. In this section, we describe
three different classes of system development methodologies: structured design, rapid
application development, and agile development.

Structured Design
The first category of systems development methodologies is called structured design. These
methodologies became dominant in the 1980s, replacing the previous ad hoc and undisci-
plined approach. Structured design methodologies adopt a formal step-by-step approach
to the SDLC that moves logically from one phase to the next. Numerous process-centered
and data-centered methodologies follow the basic approach of the two structured design
categories outlined next.

Waterfall Development The original structured design methodology (still used today)
is waterfall development. With waterfall development–based methodologies, the analysts
and users proceed in sequence from one phase to the next (see Figure 1-2). The key deliv-
erables for each phase are typically very long (often hundreds of pages in length) and are
presented to the project sponsor for approval as the project moves from phase to phase.
Once the sponsor approves the work that was conducted for a phase, the phase ends and
the next one begins. This methodology is referred to as waterfall development because it
moves forward from phase to phase in the same manner as a waterfall. Although it is pos-
sible to go backward in the SDLC (e.g., from design back to analysis), it is extremely diffi-
cult (imagine yourself as a salmon trying to swim upstream against a waterfall, as shown
in Figure 1-2).

Structured design also introduced the use of formal modeling or diagramming tech-
niques to describe the basic business processes and the data that support them. Traditional
structured design uses one set of diagrams to represent the processes and a separate set of
diagrams to represent data. Because two sets of diagrams are used, the systems analyst must
decide which set to develop first and use as the core of the system: process-model diagrams
or data-model diagrams. There is much debate over which should come first, the processes
or the data, because both are important to the system. As a result, several different struc-
tured design methodologies have evolved that follow the basic steps of the waterfall model
but use different modeling approaches at different times. Those that attempt to emphasize
process-model diagrams as the core of the system are process centered, whereas those that
emphasize data-model diagrams as the core of the system concept are data centered.

8 Chapter 1 Introduction to Systems Analysis and Design

3 A good reference for comparing systems development methodologies is Steve McConnell, Rapid Development
(Redmond, WA: Microsoft Press, 1996).

c01IntroductionToSystemsAnalysisAndDesign.qxd 11/3/11 1:07 PM Page 8

The two key advantages of the structured design waterfall approach are that it identifies
system requirements long before programming begins and it minimizes changes to the
requirements as the project proceeds. The two key disadvantages are that the design must
be completely specified before programming begins and that a long time elapses between
the completion of the system proposal in the analysis phase and the delivery of the system
(usually many months or years). Lengthy deliverables often result in poor communication;
the result is that important requirements can be overlooked in the voluminous documenta-
tion. Users are rarely prepared for their introduction to the new system, which occurs long
after the initial idea for the system was introduced. If the project team misses important
requirements, expensive post-implementation programming may be needed (imagine your-
self trying to design a car on paper; how likely would you be to remember interior lights that
come on when the doors open or to specify the right number of valves on the engine?).

A system can also require significant rework because the business environment has
changed from the time that the analysis phase occurred. When changes do occur, it means
going back to the initial phases and following the change through each of the subsequent
phases in turn.

Parallel Development Parallel development methodology attempts to address the prob-
lem of long delays between the analysis phase and the delivery of the system. Instead of
doing design and implementation in sequence, it performs a general design for the whole
system and then divides the project into a series of distinct subprojects that can be designed
and implemented in parallel. Once all subprojects are complete, the separate pieces are
integrated and the system is delivered (see Figure 1-3).

The primary advantage of this methodology is that it can reduce the time to deliver
a system; thus, there is less chance of changes in the business environment causing rework.
However, the approach still suffers from problems caused by paper documents. It also
adds a new problem: Sometimes the subprojects are not completely independent; design
decisions made in one subproject can affect another, and the end of the project can
require significant integration efforts.

Systems Development Methodologies 9

System

Planning

Analysis

Design

Implementation

FIGURE 1-2
A Waterfall
Development–based
Methodology

c01IntroductionToSystemsAnalysisAndDesign.qxd 11/3/11 1:07 PM Page 9

Rapid Application Development (RAD)
A second category of methodologies includes rapid application development (RAD)-based
methodologies. These are a newer class of systems development methodologies that
emerged in the 1990s. RAD-based methodologies attempt to address both weaknesses of
structured design methodologies by adjusting the SDLC phases to get some part of the
system developed quickly and into the hands of the users. In this way, the users can better
understand the system and suggest revisions that bring the system closer to what is
needed.4

Most RAD-based methodologies recommend that analysts use special techniques and
computer tools to speed up the analysis, design, and implementation phases, such as com-
puter-aided software engineering (CASE) tools, joint application design (JAD) sessions,
fourth-generation or visual programming languages that simplify and speed up program-
ming (e.g., Visual Basic), and code generators that automatically produce programs from
design specifications. The combination of the changed SDLC phases and the use of these
tools and techniques improves the speed and quality of systems development. However,
there is one possible subtle problem with RAD-based methodologies: managing user expec-
tations. Owing to the use of the tools and techniques that can improve the speed and quality
of systems development, user expectations of what is possible can change dramatically. As a

1100 CChhaapptteerr 11 Introduction to Systems Analysis and Design

4 One of the best RAD books is Steve McConnell, Rapid Development (Redmond, WA: Microsoft Press, 1996).

System

Planning

Analysis

Design

Implementation

Design

Integration

Implementation

Design

Implementation

Design

Subproject 2

Subproject 1

Subproject 3

FFIIGGUURREE 11--33 A Parallel Development-based Methodology

c01IntroductionToSystemsAnalysisAndDesign.qxd 12/2/11 7:12 PM Page 10

user better understands the information technology (IT), the systems requirements tend to
expand. This was less of a problem when using methodologies that spent a lot of time thor-
oughly documenting requirements. Process-centered, data-centered, and object-oriented
methodologies that follow the basic approaches of the three RAD categories are described
in the following sections.

Phased Development A phased development-based methodology breaks an overall system
into a series of versions that are developed sequentially. The analysis phase identifies the
overall system concept, and the project team, users, and system sponsor then categorize the
requirements into a series of versions. The most important and fundamental requirements
are bundled into the first version of the system. The analysis phase then leads into design
and implementation—but only with the set of requirements identified for version 1 (see
Figure 1-4).

Once version 1 is implemented, work begins on version 2. Additional analysis is per-
formed based on the previously identified requirements and combined with new ideas and

Systems Development Methodologies 1111

System
version 1

Planning

Analysis

Analysis

Implementation

Design

Analysis

Implementation

Design

Analysis

Implementation

Design

System
version 2

System
version 3

FFIIGGUURREE 11--44 A Phased Development-based Methodology

c01IntroductionToSystemsAnalysisAndDesign.qxd 12/2/11 7:12 PM Page 11

issues that arose from the users’ experience with version 1. Version 2 then is designed and
implemented, and work immediately begins on the next version. This process continues
until the system is complete or is no longer in use.

Phased development–based methodologies have the advantage of quickly getting a
useful system into the hands of the users. Although the system does not perform all the
functions the users need at first, it does begin to provide business value sooner than if the
system were delivered after completion, as is the case with the waterfall and parallel
methodologies. Likewise, because users begin to work with the system sooner, they are
more likely to identify important additional requirements sooner than with structured
design situations.

The major drawback to phased development is that users begin to work with systems
that are intentionally incomplete. It is critical to identify the most important and useful
features and include them in the first version and to manage users’ expectations along the
way.

Prototyping A prototyping-based methodology performs the analysis, design, and imple-
mentation phases concurrently, and all three phases are performed repeatedly in a cycle
until the system is completed. With these methodologies, the basics of analysis and design
are performed, and work immediately begins on a system prototype, a quick-and-dirty pro-
gram that provides a minimal amount of features. The first prototype is usually the first
part of the system that is used. This is shown to the users and the project sponsor, who
provide comments. These comments are used to reanalyze, redesign, and re-implement a
second prototype, which provides a few more features. This process continues in a cycle
until the analysts, users, and sponsor agree that the prototype provides enough functionality
to be installed and used in the organization. After the prototype (now called the “system”) is
installed, refinement occurs until it is accepted as the new system (see Figure 1-5).

The key advantage of a prototyping-based methodology is that it very quickly provides
a system with which the users can interact, even if it is not ready for widespread organiza-
tional use at first. Prototyping reassures the users that the project team is working on the
system (there are no long delays in which the users see little progress), and prototyping
helps to more quickly refine real requirements. Rather than attempting to understand a sys-
tem specification on paper, the users can interact with the prototype to better understand
what it can and cannot do.

The major problem with prototyping is that its fast-paced system releases challenge
attempts to conduct careful, methodical analysis. Often the prototype undergoes such
significant changes that many initial design decisions become poor ones. This can cause

12 Chapter 1 Introduction to Systems Analysis and Design

System
prototype

System

Planning

Analysis

Design

Implementation

Implementation

FIGURE 1-5
A Prototyping-based
Methodology

c01IntroductionToSystemsAnalysisAndDesign.qxd 11/3/11 1:07 PM Page 12

problems in the development of complex systems because fundamental issues and prob-
lems are not recognized until well into the development process. Imagine building a car
and discovering late in the prototyping process that you have to take the whole engine out
to change the oil (because no one thought about the need to change the oil until after it had
been driven 10,000 miles).

Throwaway Prototyping Throwaway prototyping-based methodologies are similar to
prototyping-based methodologies in that they include the development of prototypes;
however, throwaway prototypes are done at a different point in the SDLC. These prototypes
are used for a very different purpose than those previously discussed, and they have a very
different appearance (see Figure 1-6).

The throwaway prototyping–based methodologies have a relatively thorough analysis
phase that is used to gather information and to develop ideas for the system concept. How-
ever, users might not completely understand many of the features they suggest, and there
may be challenging technical issues to be solved. Each of these issues is examined by ana-
lyzing, designing, and building a design prototype. A design prototype is not a working
system; it is a product that represents a part of the system that needs additional refinement,
and it contains only enough detail to enable users to understand the issues under consid-
eration. For example, suppose users are not completely clear on how an order-entry system
should work. The analyst team might build a series of HTML pages viewed using a Web
browser to help the users visualize such a system. In this case, a series of mock-up screens
appear to be a system, but they really do nothing. Or suppose that the project team needs
to develop a sophisticated graphics program in Java. The team could write a portion of the
program with pretend data to ensure that they could do a full-blown program successfully.

A system developed using this type of methodology probably relies on several design
prototypes during the analysis and design phases. Each of the prototypes is used to mini-
mize the risk associated with the system by confirming that important issues are under-
stood before the real system is built. Once the issues are resolved, the project moves into
design and implementation. At this point, the design prototypes are thrown away, which is
an important difference between these methodologies and prototyping methodologies, in
which the prototypes evolve into the final system.

Systems Development Methodologies 1133

Design
prototype

System

Analysis

Analysis

Design

Implementation

Planning

Implementation

Design

FFIIGGUURREE 11--66 A Throwaway Prototyping–based Methodology

c01IntroductionToSystemsAnalysisAndDesign.qxd 12/2/11 7:12 PM Page 13

Throwaway prototyping-based methodologies balance the benefits of well-thought-
out analysis and design phases with the advantages of using prototypes to refine key issues
before a system is built. It can take longer to deliver the final system as compared to proto-
typing-based methodologies (because the prototypes do not become the final system), but
this type of methodology usually produces more stable and reliable systems.

Agile Development5

A third category of systems development methodologies is still emerging today: agile devel-
opment. All agile development methodologies are based on the agile manifesto and a set of
twelve principles. The emphasis of the manifesto is to focus the developers on the working
conditions of the developers, the working software, the customers, and addressing chang-
ing requirements instead of focusing on detailed systems development processes, tools, all-
inclusive documentation, legal contracts, and detailed plans. These programming-centric
methodologies have few rules and practices, all of which are fairly easy to follow. These
methodologies are typically based only on the twelve principles of agile software. These
principles include the following:

! Software is delivered early and continuously through the development process,
satisfying the customer.

! Changing requirements are embraced regardless of when they occur in the devel-
opment process.

! Working software is delivered frequently to the customer.
! Customers and developers work together to solve the business problem.
! Motivated individuals create solutions; provide them the tools and environment

they need and trust them to deliver.
! Face-to-face communication within the development team is the most efficient

and effective method of gathering requirements.
! The primary measure of progress is working, executing software.
! Both customers and developers should work at a pace that is sustainable. That is,

the level of work could be maintained indefinitely without any worker burnout.
! Agility is heightened through attention to both technical excellence and good design.
! Simplicity, the avoidance of unnecessary work, is essential.
! Self-organizing teams develop the best architectures, requirements, and designs.
! Development teams regularly reflect on how to improve their development

processes.

Based on these principles, agile methodologies focus on streamlining the system-development
process by eliminating much of the modeling and documentation overhead and the time
spent on those tasks. Instead, projects emphasize simple, iterative application development.6

All agile development methodologies follow a simple cycle through the traditional phases
of the systems development process (see Figure 1-7). Virtually all agile methodologies are
used in conjunction with object-oriented technologies.

However, agile methodologies do have critics. One of the major criticisms deals with
today’s business environment, where much of the actual information systems development

1144 CChhaapptteerr 11 Introduction to Systems Analysis and Design

5 Three good sources of information on agile development and object-oriented systems are S. W. Ambler, Agile
Modeling: Effective Practices for Extreme Programming and The Unified Process (New York: Wiley, 2002); C.
Larman, Agile & Iterative Development: A Manager’s Guide (Boston: Addison-Wesley, 2004); and R. C. Martin,
Agile Software Development: Principles, Patterns, and Practices (Upper Saddle River, NJ: Prentice Hall, 2003).
6 See www.agilealliance.com.

c01IntroductionToSystemsAnalysisAndDesign.qxd 12/2/11 7:12 PM Page 14

is offshored, outsourced, and/or subcontracted. Given agile development methodologies
requiring co-location of the development team, this seems to be a very unrealistic assump-
tion. A second major criticism is that if agile development is not carefully managed, and by
definition it is not, the development process can devolve into a prototyping approach that
essentially becomes a “programmers gone wild” environment where programmers attempt
to hack together solutions. A third major criticism, based on the lack of actual documen-
tation created during the development of the software, raises issues regarding the auditability
of the systems being created. Without sufficient documentation, neither the system nor the
systems-development process can be assured. A fourth major criticism is based on whether
agile approaches can deliver large mission-critical systems.

Even with these criticisms, given the potential for agile approaches to address
the application backlog and to provide timely solutions to many business problems,
agile approaches should be considered in some circumstances. Furthermore, many of
the techniques encouraged by attending to the underlying purpose of the agile mani-
festo and the set of twelve agile principles are very useful in object-oriented systems
development. Two of the more popular examples of agile development methodologies
are extreme programming (XP) and Scrum. We describe both of these methodologies
in the next two sections.

Extreme Programming7 Extreme programming (XP) is founded on four core values:
communication, simplicity, feedback, and courage. These four values provide a foundation
that XP developers use to create any system. First, the developers must provide rapid feed-
back to the end users on a continuous basis. Second, XP requires developers to follow the
KISS principle.8 Third, developers must make incremental changes to grow the system, and
they must not only accept change, they must embrace change. Fourth, developers must
have a quality-first mentality. XP also supports team members in developing their own
skills. Three of the key principles that XP uses to create successful systems are continuous
testing, simple coding performed by pairs of developers, and close interactions with end
users to build systems very quickly.

Testing and efficient coding practices are the core of XP. Code is tested each day and
is placed into an integrative testing environment. If bugs exist, the code is backed out until

Systems Development Methodologies 15

Implementation

Design

Analysis

System

Planning

FIGURE 1-7
Typical Agile
Development
Methodology

7 For more information, see K. Beck, eXtreme Programming Explained: Embrace Change (Reading, MA: Addison-
Wesley, 2000), C. Larman, Agile & Iterative Development: A Manager’s Guide (Boston: Addison-Wesley, 2004), M.
Lippert, S. Roock, and H. Wolf, eXtreme Programming in Action: Practical Experiences from Real World Projects
(New York: Wiley, 2002), or www.extremeprogramming.com.
8 Keep it simple, stupid.

c01IntroductionToSystemsAnalysisAndDesign.qxd 11/3/11 1:07 PM Page 15

it is completely free of errors. XP relies heavily on refactoring, which is a disciplined way
to restructure code to keep it simple.

An XP project begins with user stories that describe what the system needs to do.
Then, programmers code in small, simple modules and test to meet those needs. Users are
required to be available to clear up questions and issues as they arise. Standards are very
important to minimize confusion, so XP teams use a common set of names, descriptions,
and coding practices. XP projects deliver results sooner than even the RAD approaches, and
they rarely get bogged down in gathering requirements for the system.

XP adherents claim many strengths associated with developing software using XP.
Programmers work closely with all stakeholders, and communication among all stake-
holders is improved. Continuous testing of the evolving system is encouraged. The system
is developed in an evolutionary and incremental manner, which allows the requirements
to evolve as the stakeholders understand the potential that the technology has in provid-
ing a solution to their problem. Estimation is task driven and is performed by the pro-
grammer who will implement the solution for the task under consideration. Because all
programming is done in pairs, a shared responsibility for each software component devel-
ops among the programmers. Finally, the quality of the final product increases during
each iteration.

For small projects with highly motivated, cohesive, stable, and experienced teams, XP
should work just fine. However, if the project is not small or the teams aren’t jelled,9 the
success of an XP development effort is doubtful. This tends to throw into doubt the whole
idea of bringing outside contractors into an existing team environment using XP.10 The
chance of outsiders jelling with insiders might simply be too optimistic. XP requires a great
deal of discipline; otherwise projects will become unfocused and chaotic. XP it is recom-
mended only for small groups of developers—no more than ten developers—and it is not
advised for large mission-critical applications. Owing to the lack of analysis and design
documentation, there is only code documentation associated with XP, so maintaining large
systems built with XP may be impossible. And because mission-critical business informa-
tion systems tend to exist for a long time, the utility of XP as a business information sys-
tem development methodology is in doubt. Finally, the methodology needs a lot of on-site
user input, something to which many business units cannot commit.11 However, some of
the techniques associated with XP are useful in object-oriented systems development. For
example, user stories, pair programming, and continuous testing are invaluable tools from
which object-oriented systems development could benefit.

Scrum12 Scrum is a term that is well known to rugby fans. In rugby, a scrum is used to
restart a game (see Figure 1-8). In a nutshell, the creators of the Scrum method believe that
no matter how much you plan, as soon as the software begins to be developed, chaos breaks

16 Chapter 1 Introduction to Systems Analysis and Design

9 A jelled team is one that has low turnover, a strong sense of identity, a sense of eliteness, a feeling that they jointly
own the product being developed, and enjoyment in working together. For more information regarding jelled
teams, see T. DeMarco and T. Lister, Peopleware: Productive Projects and Teams (New York: Dorset/House, 1987).
10 Considering the tendency for offshore outsourcing, this is a major obstacle for XP to overcome. For more infor-
mation on offshore outsourcing, see P. Thibodeau, “ITAA Panel Debates Outsourcing Pros, Cons,” Computerworld
Morning Update (September 25, 2003), and S. W. Ambler, “Chicken Little Was Right,” Software Development
(October 2003).
11 Many of the observations on the utility of XP as a development approach were based on conversations with
Brian Henderson-Sellers.
12 For more information see C. Larman, Agile & Iterative Development: A Manager’s Guide (Boston: Addison-
Wesley, 2004), K. Schwaber and M. Beedle, Agile Software Development with Scrum (Upper Saddle River,
NJ: Prentice Hall, 2001), and R. Wysocki, Effective Project Management: Traditional, Agile, Extreme, 5th Ed.
(Indianapolis, IN: Wiley Publishing, 2009).

c01IntroductionToSystemsAnalysisAndDesign.qxd 11/3/11 1:07 PM Page 16

out and the plans go out the window.13 The best you can do is to react to where the prover-
bial rugby ball squirts out. You then sprint with the ball until the next scrum. In the case of
the Scrum methodology, a sprint lasts thirty working days. At the end of the sprint, a system
is delivered to the customer.

Of all systems development approaches, on the surface, Scrum is the most chaotic. To
control some of the innate chaos, Scrum development focuses on a few key practices. Teams
are self-organized and self-directed. Unlike other approaches, Scrum teams do not have a
designated team leader. Instead, teams organize themselves in a symbiotic manner and set
their own goals for each sprint (iteration). Once a sprint has begun, Scrum teams do not
consider any additional requirements. Any new requirements that are uncovered are placed
on a backlog of requirements that still need to be addressed. At the beginning of every work-
day, a Scrum meeting takes place. At the end of each sprint, the team demonstrates the soft-
ware to the client. Based on the results of the sprint, a new plan is begun for the next sprint.

Scrum meetings are one of the most interesting aspects of the Scrum development
process. The team members attend the meetings, but anyone can attend. However, with
very few exceptions, only team members may speak. One prominent exception is manage-
ment providing feedback on the business relevance of the work being performed by the
specific team. In this meeting, all team members stand in a circle and report on what they
accomplished during the previous day, state what they plan to do today, and describe any-
thing that blocked progress the previous day. To enable continuous progress, any block
identified is dealt with within one hour. From a Scrum point of view, it is better to make a
“bad” decision about a block at this point in development than to not make a decision.
Because the meetings take place each day, a bad decision can easily be undone. Larman14

suggests that each team member should report any additional requirements that have been
uncovered during the sprint and anything that the team member learned that could be use-
ful for other team members to know.

Systems Development Methodologies 1177

FFIIGGUURREE 11--88
Rugby Scrum
(Rugby Game)
(Source: Alan Brooke/Image
Source)

13 Scrum developers are not the first to question the use of plans. One of President Eisenhower’s favorite maxims
was, “In preparing for battle I have always found that plans are useless, but planning is indispensable.” M. Dobson,
Streetwise Project Management: How to Manage People, Processes, and Time to Achieve the Results You Need (Avon,
MA: F!W Publications, 2003) p. 43.
14 C. Larman, Agile & Iterative Development: A Manager’s Guide (Boston: Addison-Wesley, 2004).

c01IntroductionToSystemsAnalysisAndDesign.qxd 11/28/11 12:01 PM Page 17

One of the major criticisms of Scrum, as with all agile methodologies, is that it is ques-
tionable whether Scrum can scale up to develop very large, mission-critical systems. A typ-
ical Scrum team size is no more than seven members. The only organizing principle put
forth by Scrum followers to address this criticism is to organize a scrum of scrums. Each
team meets every day, and after the team meeting takes place, a representative (not leader)
of each team attends a scrum-of-scrums meeting. This continues until the progress of
entire system has been determined. Depending on the number of teams involved, this
approach to managing a large project is doubtful. However, as in XP and other agile devel-
opment approaches, many of the ideas and techniques associated with Scrum development
are useful in object-oriented systems development, such as the focus of a Scrum meeting,
the evolutionary and incremental approach to identifying requirements, and the incre-
mental and iterative approach to the development of the system.

Selecting the Appropriate Development Methodology
Because there are many methodologies, the first challenge faced by analysts is selecting
which methodology to use. Choosing a methodology is not simple, because no one
methodology is always best. (If it were, we’d simply use it everywhere!) Many organizations
have standards and policies to guide the choice of methodology. You will find that organi-
zations range from having one “approved” methodology to having several methodology
options to having no formal policies at all.

Figure 1-9 summarizes some important criteria for selecting a methodology. One
important item not discussed in this figure is the degree of experience of the analyst team.
Many of the RAD-based methodologies require the use of new tools and techniques that
have a significant learning curve. Often these tools and techniques increase the complexity
of the project and require extra time for learning. However, once they are adopted and the
team becomes experienced, the tools and techniques can significantly increase the speed at
which the methodology can deliver a final system.

Clarity of User Requirements When the user requirements for a system are unclear, it
is difficult to understand them by talking about them and explaining them with written
reports. Users normally need to interact with technology to really understand what a new
system can do and how to best apply it to their needs. RAD and agile methodologies are
usually more appropriate when user requirements are unclear.

18 Chapter 1 Introduction to Systems Analysis and Design

With Unclear User Requirements Poor Poor Good Excellent Excellent Excellent Excellent

With Unfamiliar Technology Poor Poor Good Poor Excellent Good Good

That Are Complex Good Good Good Poor Excellent Good Good

That Are Reliable Good Good Good Poor Excellent Excellent Excellent

With a Short Time Schedule Poor Good Excellent Excellent Good Excellent Excellent

With Schedule Visibility Poor Poor Excellent Excellent Good Excellent Excellent

Structured Agile
Methodologies RAD Methodologies Methodologies

Ability to Develop Throwaway
Systems Waterfall Parallel Phased Prototyping Prototyping XP SCRUM

FIGURE 1-9 Criteria for Selecting a Methodology

c01IntroductionToSystemsAnalysisAndDesign.qxd 11/3/11 1:07 PM Page 18

Familiarity with Technology When the system will use new technology with which the
analysts and programmers are not familiar (e.g., the first Web development project with
Java), early application of the new technology in the methodology will improve the chance
of success. If the system is designed without some familiarity with the base technology,
risks increase because the tools might not be capable of doing what is needed. Throwaway
prototyping–based methodologies are particularly appropriate if users lack familiarity with
technology because they explicitly encourage the developers to develop design prototypes for
areas with high risks. Phased development–based methodologies are good as well, because
they create opportunities to investigate the technology in some depth before the design is
complete. Also, owing to the programming-centric nature of agile methodologies, both XP
and Scrum are appropriate. Although you might think prototyping-based methodologies are
also appropriate, they are much less so because the early prototypes that are built usually only
scratch the surface of the new technology. It is generally only after several prototypes and sev-
eral months that the developers discover weaknesses or problems in the new technology.

System Complexity Complex systems require careful and detailed analysis and design.
Throwaway prototyping–based methodologies are particularly well suited to such detailed
analysis and design, but prototyping-based methodologies are not. The traditional struc-
tured design–based methodologies can handle complex systems, but without the ability to
get the system or prototypes into the users’ hands early on, some key issues may be over-
looked. Although phased development–based methodologies enable users to interact with
the system early in the process, we have observed that project teams who follow these tend
to devote less attention to the analysis of the complete problem domain than they might
using other methodologies. Finally, agile methodologies are a mixed bag when it comes to
system complexity. If the system is going to be a large one, then, owing to the lack of formal
project management techniques used, agile methodologies will perform poorly. However,
if the system is small to medium size, then agile approaches will be excellent. We rate them
good on these criteria.

System Reliability System reliability is usually an important factor in system develop-
ment; after all, who wants an unreliable system? However, reliability is just one factor
among several. For some applications, reliability is truly critical (e.g., medical equipment,
missile-control systems), whereas for other applications (e.g., games, Internet video) it is
merely important. Because throwaway prototyping methodologies combine detailed analysis
and design phases with the ability for the project team to test many different approaches
through design prototypes before completing the design, they are appropriate when system
reliability is a high priority. Prototyping methodologies are generally not a good choice
when reliability is critical because it lacks the careful analysis and design phases that are
essential for dependable systems. However, owing to the heavy focus on testing, evolution-
ary and incremental identification of requirements, and iterative and incremental develop-
ment, agile methods may be the best overall approach.

Short Time Schedules Projects that have short time schedules are well suited for RAD-
based and agile methodologies because these methodologies are designed to increase the
speed of development. RAD-based and agile methodologies are excellent choices when
timelines are short because they best enable the project team to adjust the functionality in
the system based on a specific delivery date, and if the project schedule starts to slip, it can
be readjusted by removing functionality from the version or prototype under development.
Waterfall-based methodologies are the worst choice when time is at a premium because
they do not allow easy schedule changes.

Systems Development Methodologies 19

c01IntroductionToSystemsAnalysisAndDesign.qxd 11/3/11 1:07 PM Page 19

Schedule Visibility One of the greatest challenges in systems development is determin-
ing whether a project is on schedule. This is particularly true of the structured design
methodologies because design and implementation occur at the end of the project. The
RAD-based methodologies move many of the critical design decisions earlier in the project
to help project managers recognize and address risk factors and keep expectations in check.
However, given the daily progress meetings associated with Agile approaches, schedule
visibility is always on the proverbial front burner.

2200 CChhaapptteerr 11 Introduction to Systems Analysis and Design

SSuppose you are an analyst for the Roanoke Software
Consulting Company (RSCC), a large consulting firm
with offices around the world. The company wants to
build a new knowledge management system that can
identify and track the expertise of individual consultants
anywhere in the world based on their education and the
various consulting projects on which they have worked.
Assume that this is a new idea that has never before
been attempted in RSCC or elsewhere. RSCC has an

international network, but the offices in each country
may use somewhat different hardware and software.
RSCC management wants the system up and running
within a year.

QQuueessttiioonn

11.. What type of methodology would you recommend
that RSCC use? Why?

11--11 SSeelleeccttiinngg aa MMeetthhooddoollooggyyYYOOUURR

TURN

TYPICAL SYSTEMS ANALYST ROLES AND SKILLS
It is clear from the various phases and steps performed during the SDLC that the project
team needs a variety of skills. Project members are change agents who identify ways to
improve an organization, build an information system to support them, and train and
motivate others to use the system. Leading a successful organizational change effort is one
of the most difficult jobs that someone can do. Understanding what to change and how to
change it—and convincing others of the need for change—requires a wide range of skills.
These skills can be broken down into six major categories: technical, business, analytical,
interpersonal, management, and ethical.

Analysts must have the technical skills to understand the organization’s existing tech-
nical environment, the technology that will make up the new system, and the way both can
fit into an integrated technical solution. Business skills are required to understand how IT
can be applied to business situations and to ensure that the IT delivers real business value.
Analysts are continuous problem solvers at both the project and the organizational level,
and they put their analytical skills to the test regularly.

Analysts often need to communicate effectively one-on-one with users and business
managers (who often have little experience with technology) and with programmers (who
often have more technical expertise than the analyst). They must be able to give presentations
to large and small groups and write reports. Not only do they need to have strong interper-
sonal abilities, but they also need to manage people with whom they work and they need to
manage the pressure and risks associated with unclear situations.

Finally, analysts must deal fairly, honestly, and ethically with other project team mem-
bers, managers, and system users. Analysts often deal with confidential information or
information that, if shared with others, could cause harm (e.g., dissent among employees);
it is important to maintain confidence and trust with all people.

c01IntroductionToSystemsAnalysisAndDesign.qxd 11/28/11 7:49 AM Page 20

In addition to these six general skill sets, analysts require many specific skills associated
with roles performed on a project. In the early days of systems development, most organi-
zations expected one person, the analyst, to have all the specific skills needed to conduct a
systems development project. Some small organizations still expect one person to perform
many roles, but because organizations and technology have become more complex, most
large organizations now build project teams containing several individuals with clearly
defined responsibilities. Different organizations divide the roles differently, but Figure 1-10
presents one commonly used set of project team roles. Most IS teams include many other
individuals, such as the programmers, who actually write the programs that make up the
system, and technical writers, who prepare the help screens and other documentation (e.g.,
users manuals and systems manuals).

Business Analyst
A business analyst focuses on the business issues surrounding the system. These issues include
identifying the business value that the system will create, developing ideas and suggestions for
how the business processes can be improved, and designing the new processes and policies in
conjunction with the systems analyst. This individual likely has business experience and some
type of professional training (e.g., the business analyst for accounting systems is likely a CPA
[in the United States] or a CA [in Canada]). He or she represents the interests of the project
sponsor and the ultimate users of the system. A business analyst assists in the planning and
design phases but is most active in the analysis phase.

Systems Analyst
A systems analyst focuses on the IS issues surrounding the system. This person develops
ideas and suggestions for how information technology can improve business processes,
designs the new business processes with help from the business analyst, designs the new
information system, and ensures that all IS standards are maintained. A systems analyst

Typical Systems Analyst Roles and Skills 21

Business analyst Analyzing the key business aspects of the system
Identifying how the system will provide business value
Designing the new business processes and policies

Systems analyst Identifying how technology can improve business processes
Designing the new business processes
Designing the information system
Ensuring that the system conforms to information systems standards

Infrastructure analyst Ensuring the system conforms to infrastructure standards
Identifying infrastructure changes needed to support the system

Change management analyst Developing and executing a change management plan
Developing and executing a user training plan

Project manager Managing the team of analysts, programmers, technical writers, and
other specialists

Developing and monitoring the project plan
Assigning resources
Serving as the primary point of contact for the project

Role Responsibilities

FIGURE 1-10
Project Team Roles

c01IntroductionToSystemsAnalysisAndDesign.qxd 11/3/11 1:07 PM Page 21

likely has significant training and experience in analysis and design, programming, and even
areas of the business. He or she represents the interests of the IS department and works
intensively through the project but perhaps less so during the implementation phase.

Infrastructure Analyst
An infrastructure analyst focuses on the technical issues surrounding how the system will
interact with the organization’s technical infrastructure (e.g., hardware, software, net-
works, and databases). An infrastructure analyst’s tasks include ensuring that the new
information system conforms to organizational standards and identifying infrastructure
changes needed to support the system. This individual probably has significant training
and experience in networking, database administration, and various hardware and soft-
ware products. He or she represents the interests of the organization and IS group that will
ultimately have to operate and support the new system once it has been installed. An
infrastructure analyst works throughout the project but perhaps less so during planning
and analysis phases.

Change Management Analyst
A change management analyst focuses on the people and management issues surrounding
the system installation. The roles of this person include ensuring that the adequate docu-
mentation and support are available to users, providing user training on the new system,
and developing strategies to overcome resistance to change. This individual should have
significant training and experience in organizational behavior in general and change man-
agement in particular. He or she represents the interests of the project sponsor and users
for whom the system is being designed. A change management analyst works most actively
during the implementation phase but begins laying the groundwork for change during the
analysis and design phases.

Project Manager
A project manager is responsible for ensuring that the project is completed on time and
within budget and that the system delivers all benefits intended by the project sponsor. The
role of the project manager includes managing the team members, developing the project
plan, assigning resources, and being the primary point of contact when people outside the
team have questions about the project. This individual likely has significant experience in
project management and has probably worked for many years as a systems analyst before-
hand. He or she represents the interests of the IS department and the project sponsor. The
project manager works intensely during all phases of the project.

22 Chapter 1 Introduction to Systems Analysis and Design

Suppose you decide to become an analyst after you grad-
uate. Decide what type of analyst you would prefer to be
and what types of courses you should take before you
graduate. Then decide the type of summer job or intern-
ship you should seek.

Question

Develop a short plan that describes how you will prepare
for your career as an analyst.

1-2 Being an AnalystYOUR

TURN

c01IntroductionToSystemsAnalysisAndDesign.qxd 11/3/11 1:07 PM Page 22

BASIC CHARACTERISTICS OF OBJECT-ORIENTED SYSTEMS
Object-oriented systems focus on capturing the structure and behavior of information sys-
tems in little modules that encompass both data and process. These little modules are
known as objects. In this section, we describe the basic characteristics of object-oriented
systems, which include classes, objects, methods, messages, encapsulation, information
hiding, inheritance, polymorphism, and dynamic binding.15

Classes and Objects
A class is the general template we use to define and create specific instances, or objects. Every
object is associated with a class. For example, all the objects that capture information about
patients could fall into a class called Patient, because there are attributes (e.g., name, address,
birth date, phone, and insurance carrier) and methods (e.g., make appointment, calculate last
visit, change status, and provide medical history) that all patients share (see Figure 1-11).

An object is an instantiation of a class. In other words, an object is a person, place, or
thing about which we want to capture information. If we were building an appointment
system for a doctor’s office, classes might include Doctor, Patient, and Appointment. The
specific patients, such as Jim Maloney, Mary Wilson, and Theresa Marks, are considered
instances, or objects, of the patient class (see Figure 1-11).

Each object has attributes that describe information about the object, such as a
patient’s name, birth date, address, and phone number. Attributes are also used to repre-
sent relationships between objects; for example, there could be a department attribute in
an employee object with a value of a department object that captures in which department
the employee object works. The state of an object is defined by the value of its attributes
and its relationships with other objects at a particular point in time. For example, a patient
might have a state of new or current or former.

Each object also has behaviors. The behaviors specify what the object can do. For
example, an appointment object can probably schedule a new appointment, delete an
appointment, and locate the next available appointment. In object-oriented programming,
behaviors are implemented as methods (see the next section).

Basic Characteristics of Object-Oriented Systems 23

15 In Chapter 8, we review the basic characteristics of object-oriented systems in more detail.

Patient

-name
-address
-birthdate
-phone
-insurance carrier
+make appointment()
+calculate last visit()
+change status()
+provides medical history()
+create()

Mary Wilson : PatientJim Maloney : Patient Theresa Marks : Patient

FIGURE 1-11
Classes and Objects

c01IntroductionToSystemsAnalysisAndDesign.qxd 11/3/11 1:07 PM Page 23

One of the more confusing aspects of object-oriented systems development is the fact
that in most object-oriented programming languages, both classes and instances of classes
can have attributes and methods. Class attributes and methods tend to be used to model
attributes (or methods) that deal with issues related to all instances of the class. For example,
to create a new patient object, a message is sent to the Patient class to create a new instance
of itself. However, in this book, we focus primarily on attributes and methods of objects
and not of classes.

Methods and Messages
Methods implement an object’s behavior. A method is nothing more than an action that an
object can perform. As such, a method is analogous to a function or procedure in a tradi-
tional programming language such as C, COBOL, or Pascal. Messages are information sent
to objects to trigger methods. A message is essentially a function or procedure call from one
object to another object. For example, if a patient is new to the doctor’s office, the recep-
tionist sends a create message to the application. The patient class receives the create mes-
sage and executes its create() method (see Figure 1-12), which then creates a new object:
a Patient (see Figure 1-12).

Encapsulation and Information Hiding
The ideas of encapsulation and information hiding are interrelated in object-oriented sys-
tems. However, neither of the terms is new. Encapsulation is simply the combination of
process and data into a single entity. Traditional approaches to information systems devel-
opment tend to be either process centric (e.g., structured systems) or data centric (e.g.,
information engineering). Object-oriented approaches combine process and data into
holistic entities (objects).

Information hiding was first promoted in structured systems development. The
principle of information hiding suggests that only the information required to use a soft-
ware module be published to the user of the module. Typically, this implies that the
information required to be passed to the module and the information returned from the
module are published. Exactly how the module implements the required functionality is
not relevant. We really do not care how the object performs its functions, as long as the
functions occur.

In object-oriented systems, combining encapsulation with the information-hiding
principle suggests that the information-hiding principle be applied to objects instead of
merely applying it to functions or processes. Thus, objects are treated like black boxes.

The fact that we can use an object by calling methods is the key to reusability because
it shields the internal workings of the object from changes in the outside system, and it

24 Chapter 1 Introduction to Systems Analysis and Design

Receptionist

create

Patient

-name
-address
-birthdate
-phone
-insurance carrier
+make appointment()
+calculate last visit()
+change status()
+provides medical history()
+create()

aPatient

FIGURE 1-12
Messages and
Methods

c01IntroductionToSystemsAnalysisAndDesign.qxd 11/3/11 1:07 PM Page 24

keeps the system from being affected when changes are made to an object. In Figure 1-12,
notice how a message (create) is sent to an object, yet the internal algorithms needed to
respond to the message are hidden from other parts of the system. The only information
that an object needs to know is the set of operations, or methods, that other objects can
perform and what messages need to be sent to trigger them.

Basic Characteristics of Object-Oriented Systems 25

Come up with a set of examples of using encapsulation
and information hiding in everyday life. For example, is
there any information about yourself that you would not
mind if everyone knew? How would someone retrieve

this information? What about personal information that
you would prefer to be private? How would you prevent
someone from retrieving it?

1-3 Encapsulation and Information HidingYOUR

TURN

Inheritance
Inheritance, as an information systems development characteristic, was proposed in data
modeling in the late 1970s and the early 1980s. The data modeling literature suggests using
inheritance to identify higher-level, or more general, classes of objects. Common sets of
attributes and methods can be organized into superclasses. Typically, classes are arranged
in a hierarchy whereby the superclasses, or general classes, are at the top and the subclasses,
or specific classes, are at the bottom. In Figure 1-13, Person is a superclass to the classes
Doctor and Patient. Doctor, in turn, is a superclass to General Practitioner and Specialist.
Notice how a class (e.g., Doctor) can serve as a superclass and subclass concurrently. The
relationship between the class and its superclass is known as the a-kind-of relationship. For
example in Figure 1-13, a General Practitioner is a-kind-of Doctor, which is a-kind-of
Person.

Person

Doctor Patient

SpecialistGeneral Practitioner

Abstract classes

Concrete classes

FIGURE 1-13
Class Hierarchy with
Abstract and Concrete
Classes

c01IntroductionToSystemsAnalysisAndDesign.qxd 11/3/11 1:07 PM Page 25

Subclasses inherit the appropriate attributes and methods from the superclasses above
them. That is, each subclass contains attributes and methods from its parent superclass. For
example, Figure 1-13 shows that both Doctor and Patient are subclasses of Person and
therefore inherit the attributes and methods of the Person class. Inheritance makes it sim-
pler to define classes. Instead of repeating the attributes and methods in the Doctor and
Patient classes separately, the attributes and methods that are common to both are placed
in the Person class and inherited by the classes below it. Notice how much more efficient
inheritance hierarchies of object classes are than the same objects without an inheritance
hierarchy (see Figure 1-14).

Most classes throughout a hierarchy lead to instances; any class that has instances
is called a concrete class. For example, if Mary Wilson and Jim Maloney are instances of
the Patient class, Patient would be considered a concrete class (see Figure 1-11). Some
classes do not produce instances because they are used merely as templates for other,
more-specific classes (especially classes located high up in a hierarchy). The classes
are referred to as abstract classes. Person is an example of an abstract class. Instead of cre-
ating objects from Person, we create instances representing the more-specific classes of
Specialist and Patient, both types of Person (see Figure 1-13). What kind of class is the
General Practitioner class? Why?

26 Chapter 1 Introduction to Systems Analysis and Design

Patient

-name
-address
-birthdate
-phone
-insurance carrier
+updateBirthDate()
+updateInsuranceCarrier()

Person

-name
-address
-birthdate
-phone
+updateBirthDate()

Doctor

Doctor

-name
-address
-birthdate
-phone
-medicalSchoolSpecialty
+updateBirthDate()
+updateMedicalSchoolSpecialty()

VS.

-medicalSchoolSpecialty
+updateMedicalSchoolSpecialty()

Patient

-insurance carrier
+updateInsuranceCarrier()

FIGURE 1-14 Inheritance Advantage?

See if you can come up with at least three different
classes that you might find in a typical business situation.
Select one of the classes and create at least a three-level

inheritance hierarchy using the class. Which of the classes
are abstract, if any, and which ones are concrete?

1-4 InheritanceYOUR

TURN

c01IntroductionToSystemsAnalysisAndDesign.qxd 11/3/11 1:07 PM Page 26

Polymorphism and Dynamic Binding
Polymorphism means that the same message can be interpreted differently by different
classes of objects. For example, inserting a patient means something different than
inserting an appointment. Therefore, different pieces of information need to be collected
and stored. Luckily, we do not have to be concerned with how something is done when
using objects. We can simply send a message to an object, and that object will be respon-
sible for interpreting the message appropriately. For example, if an artist sent the mes-
sage Draw yourself to a square object, a circle object, and a triangle object, the results
would be very different, even though the message is the same. Notice in Figure 1-15
how each object responds appropriately (and differently) even though the messages are
identical.

Polymorphism is made possible through dynamic binding. Dynamic, or late, binding
is a technique that delays typing the object until run-time. The specific method that is
actually called is not chosen by the object-oriented system until the system is running.
This is in contrast to static binding. In a statically bound system, the type of object is
determined at compile-time. Therefore, the developer has to choose which method
should be called instead of allowing the system to do it. This is why most traditional
programming languages have complicated decision logic based on the different types
of objects in a system. For example, in a traditional programming language, instead
of sending the message Draw yourself to the different types of graphical objects in
Figure 1-15, we would have to write decision logic using a case statement or a set of
if statements to determine what kind of graphical object we wanted to draw, and we
would have to name each draw function differently (e.g., draw square, draw circle, or
draw triangle). This obviously makes the system much more complicated and difficult to
understand.

Basic Characteristics of Object-Oriented Systems 27

Draw
Yo

ur
se

lf

DrawYourself

DrawYourself

aTriangle

aSquare

aCircle

anArtist

FIGURE 1-15
Polymorphism

c01IntroductionToSystemsAnalysisAndDesign.qxd 11/3/11 1:07 PM Page 27

OBJECT-ORIENTED SYSTEMS ANALYSIS AND DESIGN (OOSAD)
Object-oriented approaches to developing information systems, technically speaking, can
use any of the traditional methodologies. However, the object-oriented approaches are
most associated with a phased development RAD or agile methodology. The primary dif-
ference between a traditional approach like structured design and an object-oriented
approach is how a problem is decomposed. In traditional approaches, the problem-
decomposition process is either process-centric or data-centric. However, processes and
data are so closely related that it is difficult to pick one or the other as the primary focus.
Based on this lack of congruence with the real world, new object-oriented methodologies
have emerged that use the RAD-based sequence of SDLC phases but attempt to balance
the emphasis between process and data by focusing the decomposition of problems on
objects that contain both data and processes.

According to the creators of the Unified Modeling Language (UML), Grady Booch,
Ivar Jacobson, and James Rumbaugh,16 any modern object-oriented approach to develop-
ing information systems must be use-case driven, architecture-centric, and iterative and
incremental.

Use-Case Driven
Use-case driven means that use cases are the primary modeling tools defining the behavior
of the system. A use case describes how the user interacts with the system to perform some
activity, such as placing an order, making a reservation, or searching for information. The use
cases are used to identify and to communicate the requirements for the system to the pro-
grammers who must write the system. Use cases are inherently simple because they focus
on only one business process at a time. In contrast, the process model diagrams used by tra-
ditional structured and RAD methodologies are far more complex because they require the
systems analyst and user to develop models of the entire system. With traditional method-
ologies, each system is decomposed into a set of subsystems, which are, in turn, decomposed
into further subsystems, and so on. This goes on until no further process decomposition
makes sense, and it often requires dozens of pages of interlocking diagrams. In contrast, a use
case focuses on only one business process at a time, so developing models is much simpler.17

28 Chapter 1 Introduction to Systems Analysis and Design

Can you think of any way you use polymorphism and/or
dynamic binding in your everyday life? For example,
when you are told to do some task, do you always per-
form the task the same way everyone else you know does?

Do you always perform the task the same way or does the
method of performance depend on where you are when
you perform the task?

1-5 Polymorphism and Dynamic BindingYOUR

TURN

16 Grady Booch, Ivar Jacobson, and James Rumbaugh, The Unified Modeling Language User Guide (Reading, MA:
Addison-Wesley, 1999).
17 For those of you that have experience with traditional structured analysis and design, this is one of the most unusual
aspects of object-oriented analysis and design using UML. Unlike structured approaches, object-oriented approaches
stress focusing on just one use case at a time and distributing that single use case over a set of communicating and
collaborating objects.

c01IntroductionToSystemsAnalysisAndDesign.qxd 11/3/11 1:07 PM Page 28

Architecture-centric
Any modern approach to systems analysis and design should be architecture-centric.
Architecture-centric means that the underlying software architecture of the evolving system
specification drives the specification, construction, and documentation of the system. Mod-
ern object-oriented systems analysis and design approaches should support at least three
separate but interrelated architectural views of a system: functional, static, and dynamic.
The functional, or external, view describes the behavior of the system from the perspective
of the user. The structural, or static, view describes the system in terms of attributes, meth-
ods, classes, and relationships. The behavioral, or dynamic, view describes the behavior of
the system in terms of messages passed among objects and state changes within an object.

Iterative and Incremental
Modern object-oriented systems analysis and design approaches emphasize iterative and
incremental development that undergoes continuous testing and refinement throughout
the life of the project. This implies that the systems analysts develop their understanding of
a user’s problem by building up the three architectural views little by little. The systems
analyst does this by working with the user to create a functional representation of the sys-
tem under study. Next, the analyst attempts to build a structural representation of the
evolving system. Using the structural representation of the system, the analyst distributes
the functionality of the system over the evolving structure to create a behavioral represen-
tation of the evolving system. As an analyst works with the user in developing the three
architectural views of the evolving system, the analyst iterates over each of and among the
views. That is, as the analyst better understands the structural and behavioral views, the
analyst uncovers missing requirements or misrepresentations in the functional view. This,
in turn, can cause changes to be cascaded back through the structural and behavioral views.
All three architectural views of the system are interlinked and dependent on each other (see
Figure 1-16). As each increment and iteration is completed, a more-complete representa-
tion of the user’s real functional requirements is uncovered.

Benefits of Object-Oriented Systems Analysis and Design
Concepts in the object-oriented approach enable analysts to break a complex system into
smaller, more-manageable modules, work on the modules individually, and easily piece the
modules back together to form an information system. This modularity makes systems devel-
opment easier to grasp, easier to share among members of a project team, and easier to com-
municate to users, who are needed to provide requirements and confirm how well the system
meets the requirements throughout the systems development process. By modularizing

Object-Oriented Systems Analysis and Design (OOSAD) 29

FIGURE 1-16
Iterative and
Incremental
Development

Functional
view

Structural
view

Behavioral
view

Object-Oriented

c01IntroductionToSystemsAnalysisAndDesign.qxd 11/3/11 1:07 PM Page 29

systems development, the project team actually is creating reusable pieces that can be plugged
into other systems efforts or used as starting points for other projects. Ultimately, this can
save time because new projects don’t have to start completely from scratch.

Many people argue that “object-think” is a much more realistic way to think about the
real world. Users typically do not think in terms of data or process; instead, they see their
business as a collection of logical units that contain both, so communicating in terms of
objects improves the interaction between a user and an analyst or developer.

THE UNIFIED PROCESS
The Unified Process is a specific methodology that maps out when and how to use the var-
ious Unified Modeling Language (UML) techniques for object-oriented analysis and design.
The primary contributors were Grady Booch, Ivar Jacobsen, and James Rumbaugh of
Rational. Whereas the UML provides structural support for developing the structure and
behavior of an information system, the Unified Process provides the behavioral support.
The Unified Process, of course, is use-case driven, architecture-centric, and iterative and
incremental. Furthermore, the Unified Process is a two-dimensional systems development
process described by a set of phases and workflows. The phases are inception, elaboration,
construction, and transition. The workflows include business modeling, requirements,
analysis, design, implementation, test, deployment, configuration and change manage-
ment, project management, and environment. In the remainder of this section, we describe
the phases and workflows of the Unified Process.18 Figure 1-17 depicts the Unified Process.

Phases
The phases of the Unified Process support an analyst in developing information systems in an
iterative and incremental manner. The phases describe how an information system evolves
through time. Depending on which development phase the evolving system is currently in,
the level of activity varies over the workflows. The curve in Figure 1-17 associated with each
workflow approximates the amount of activity that takes place during the specific phase. For
example, the inception phase primarily involves the business modeling and requirements
workflows, while practically ignoring the test and deployment workflows. Each phase contains
a set of iterations, and each iteration uses the various workflows to create an incremental
version of the evolving information system. As the system evolves through the phases, it
improves and becomes more complete. Each phase has objectives, a focus of activity over the
workflows, and incremental deliverables. Each of the phases is described next.

Inception In many ways, the inception phase is very similar to the planning phase of a
traditional SDLC approach. In this phase, a business case is made for the proposed system.
This includes feasibility analysis that should answer questions such as the following:

Do we have the technical capability to build it (technical feasibility)?

If we build it, will it provide business value (economic feasibility)?

If we build it, will it be used by the organization (organizational feasibility)?

30 Chapter 1 Introduction to Systems Analysis and Design

18 The material in this section is based on Khawar Zaman Ahmed and Cary E. Umrysh, Developing Enterprise Java
Applications with J2EE and UML (Boston, MA: Addison-Wesley, 2002); Jim Arlow and Ila Neustadt, UML and
The Unified Process: Practical Object-Oriented Analysis & Design (Boston, MA: Addison-Wesley, 2002); Peter Eeles,
Kelli Houston, Wojtek Kozacynski, Building J2EE Applications with the Rational Unified Process, (Boston, MA:
Addison-Wesley, 2003); Ivar Jacobson, Grady Booch, and James Rumbaugh, The Unified Software Development
Process (Reading, MA: Addison-Wesley, 1999); Phillipe Krutchten, The Rational Unified Process: An Introduction,
2nd ed. (Boston, MA: Addison-Wesley, 2000).

c01IntroductionToSystemsAnalysisAndDesign.qxd 11/3/11 1:07 PM Page 30

To answer these questions, the development team performs work related primarily to
the business modeling, requirements, and analysis workflows. In some cases, depending on
the technical difficulties that could be encountered during the development of the system,
a throwaway prototype is developed. This implies that the design, implementation, and test
workflows could also be involved. The project management and environment supporting
workflows are very relevant to this phase. The primary deliverables from the inception
phase are a vision document that sets the scope of the project, identifies the primary
requirements and constraints, sets up an initial project plan, and describes the feasibility of
and risks associated with the project, the adoption of the necessary environment to develop
the system, and some aspects of the problem domain classes being implemented and tested.

Elaboration When we typically think about object-oriented systems analysis and design,
the activities related to the elaboration phase of the Unified Process are the most relevant.
The analysis and design workflows are the primary focus during this phase. The elaboration
phase continues with developing the vision document, including finalizing the business
case, revising the risk assessment, and completing a project plan in sufficient detail to allow
the stakeholders to be able to agree with constructing the actual final system. It deals with

The Unified Process 31

FIGURE 1-17 The Unified Process

Business Modeling

Phases Inception

Supporting Workflows

Elaboration Construction Transition

Requirements

Analysis

Design

Implementation

Configuration and
Change Management

Iter
1

… Iter
i

Iter
i + 1

… Iter
j

Iter
j + 1

… Iter
k

Iter
k + 1

… Iter
m

Project Management

Environment

Test

Deployment

Phases Inception

Engineering Workflows

Elaboration Construction Transition

c01IntroductionToSystemsAnalysisAndDesign.qxd 11/3/11 1:07 PM Page 31

gathering the requirements, building the UML structural and behavioral models of the
problem domain, and detailing how the problem domain models fit into the evolving system
architecture. Developers are involved with all but the deployment engineering workflow in
this phase. As the developers iterate over the workflows, the importance of addressing
configuration and change management becomes apparent. Also, the development tools
acquired during the inception phase become critical to the success of the project during
this phase.19 The primary deliverables of this phase include the UML structure and behav-
ior diagrams and an executable of a baseline version of the evolving information system.
The baseline version serves as the foundation for all later iterations. By providing a solid
foundation at this point, the developers have a basis for completing the system in the con-
struction and transition phases.

Construction The construction phase focuses heavily on programming the evolving
information system. This phase is primarily concerned with the implementation workflow.
However, the requirements workflow and the analysis and design workflows also are involved
with this phase. It is during this phase that missing requirements are identified and the
analysis and design models are finally completed. Typically, there are iterations of the work-
flows during this phase, and during the last iteration, the deployment workflow kicks into
high gear. The configuration and change management workflow, with its version-control
activities, becomes extremely important during the construction phase. At times, an itera-
tion has to be rolled back. Without good version controls, rolling back to a previous ver-
sion (incremental implementation) of the system is nearly impossible. The primary
deliverable of this phase is an implementation of the system that can be released for beta
and acceptance testing.

Transition Like the construction phase, the transition phase addresses aspects typi-
cally associated with the implementation phase of a traditional SDLC approach. Its
primary focus is on the testing and deployment workflows. Essentially, the business
modeling, requirements, and analysis workflows should have been completed in earlier
iterations of the evolving information system. Furthermore, the testing workflow will
have been executing during the earlier phases of the evolving system. Depending on the
results from the testing workflow, some redesign and programming activities on the
design and implementation workflows could be necessary, but they should be minimal
at this point. From a managerial perspective, the project management, configuration
and change management, and environment are involved. Some of the activities that take
place are beta and acceptance testing, fine-tuning the design and implementation, user
training, and rolling out the final product onto a production platform. Obviously, the
primary deliverable is the actual executable information system. The other deliverables
include user manuals, a plan to support the users, and a plan for upgrading the infor-
mation system in the future.

Workflows
The workflows describe the tasks or activities that a developer performs to evolve an infor-
mation system over time. The workflows of the Unified Process are grouped into two broad
categories: engineering and supporting.

32 Chapter 1 Introduction to Systems Analysis and Design

19 With UML comprising fourteen different, related diagramming techniques, keeping the diagrams coordinated
and the different versions of the evolving system synchronized is typically beyond the capabilities of a mere mortal
systems developer. These tools typically include project management and CASE tools. We describe the use of
these tools in Chapter 2.

c01IntroductionToSystemsAnalysisAndDesign.qxd 11/3/11 1:07 PM Page 32

Engineering Workflows Engineering workflows include business-modeling, require-
ments, analysis, design, implementation, test, and deployment workflows. The engineering
workflows deal with the activities that produce the technical product (i.e., the information
system).

Business Modeling Workflow The business-modeling workflow uncovers problems and
identifies potential projects within a user organization. This workflow aids management in
understanding the scope of the projects that can improve the efficiency and effectiveness of
a user organization. The primary purpose of business modeling is to ensure that both
developer and user organizations understand where and how the to-be-developed infor-
mation system fits into the business processes of the user organization. This workflow
is primarily executed during the inception phase to ensure that we develop information
systems that make business sense. The activities that take place on this workflow are most
closely associated with the planning phase of the traditional SDLC; however, requirements
gathering, and use-case and business process modeling techniques also help us to under-
stand the business situation.

Requirements Workflow In the Unified Process, the requirements workflow includes
eliciting both functional and nonfunctional requirements. Typically, requirements are
gathered from project stakeholders, such as end users, managers within the end user orga-
nization, and even customers. There are many different ways to capture requirements,
including interviews, observation techniques, joint application development, document
analysis, and questionnaires. The requirements workflow is used the most during the
inception and elaboration phases. The identified requirements are very helpful for devel-
oping the vision document and the use cases used throughout the development process.
Additional requirements tend to be discovered throughout the development process. In
fact, only the transition phase tends to have few, if any, additional requirements identified.

Analysis Workflow The analysis workflow primarily addresses the creation of an analy-
sis model of the problem domain. In the Unified Process, the analyst begins designing the
architecture associated with the problem domain; using the UML, the analyst creates struc-
tural and behavior diagrams that depict a description of the problem domain classes and
their interactions. The primary purpose of the analysis workflow is to ensure that both the
developer and user organizations understand the underlying problem and its domain with-
out overanalyzing. If they are not careful, analysts can create analysis paralysis, which
occurs when the project becomes so bogged down with analysis that the system is never
actually designed or implemented. A second purpose of the analysis workflow is to identify
useful reusable classes for class libraries. By reusing predefined classes, the analyst can avoid
reinventing the wheel when creating the structural and behavior diagrams. The analysis
workflow is predominantly associated with the elaboration phase, but like the require-
ments workflow, it is possible that additional analysis will be required throughout the
development process.

Design Workflow The design workflow transitions the analysis model into a form that
can be used to implement the system: the design model. Whereas the analysis workflow con-
centrated on understanding the problem domain, the design workflow focuses on devel-
oping a solution that will execute in a specific environment. Basically, the design workflow
simply enhances the description of the evolving information system by adding classes that
address the environment of the information system to the evolving analysis model. The
design workflow uses activities such as detailed problem domain class design, optimization

The Unified Process 33

c01IntroductionToSystemsAnalysisAndDesign.qxd 11/3/11 1:07 PM Page 33

of the evolving information system, database design, user-interface design, and physical
architecture design. The design workflow is associated primarily with the elaboration and
construction phases of the Unified Process.

Implementation Workflow The primary purpose of the implementation workflow is to
create an executable solution based on the design model (i.e., programming). This includes
not only writing new classes but also incorporating reusable classes from executable class
libraries into the evolving solution. As with any programming activity, the new classes and
their interactions with the incorporated reusable classes must be tested. Finally, in the case
of multiple groups performing the implementation of the information system, the imple-
menters also must integrate the separate, individually tested modules to create an exe-
cutable version of the system. The implementation workflow is associated primarily with
the elaboration and construction phases.

Testing Workflow The primary purpose of the testing workflow is to increase the qual-
ity of the evolving system. Testing goes beyond the simple unit testing associated with
the implementation workflow. In this case, testing also includes testing the integration
of all modules used to implement the system, user acceptance testing, and the actual
alpha testing of the software. Practically speaking, testing should go on throughout the
development of the system; testing of the analysis and design models occurs during the
elaboration and construction phases, whereas implementation testing is performed
primarily during the construction and, to some degree, transition phases. Basically, at
the end of each iteration during the development of the information system, some type
of test should be performed.

Deployment Workflow The deployment workflow is most associated with the transition
phase of the Unified Process. The deployment workflow includes activities such as software
packaging, distribution, installation, and beta testing. When actually deploying the new
information system into a user organization, the developers might have to convert the cur-
rent data, interface the new software with the existing software, and train the end user to
use the new system.

Supporting Workflows The supporting workflows include the project management,
configuration and change management, and environment workflows. The supporting
workflows focus on the managerial aspects of information systems development.

Project Management Workflow Whereas the other workflows associated with the
Unified Process are technically active during all four phases, the project management
workflow is the only truly cross-phase workflow. The development process supports
incremental and iterative development, so information systems tend to grow or evolve
over time. At the end of each iteration, a new incremental version of the system is ready
for delivery. The project management workflow is quite important owing to the com-
plexity of the two-dimensional development model of the Unified Process (workflows
and phases). This workflow’s activities include risk identification and management,
scope management, estimating the time to complete each iteration and the entire pro-
ject, estimating the cost of the individual iteration and the whole project, and tracking
the progress being made toward the final version of the evolving information system.

Configuration and Change Management Workflow The primary purpose of the con-
figuration and change management workflow is to keep track of the state of the evolving

34 Chapter 1 Introduction to Systems Analysis and Design

c01IntroductionToSystemsAnalysisAndDesign.qxd 11/3/11 1:07 PM Page 34

system. In a nutshell, the evolving information system comprises a set of artifacts, includ-
ing, for example, diagrams, source code, and executables. During the development process,
these artifacts are modified. A substantial amount of work—and, hence, money—is
involved in developing the artifacts. The artifacts themselves should be handled as any
expensive asset would be handled—access controls must be put into place to safeguard the
artifacts from being stolen or destroyed. Furthermore, because the artifacts are modified on
a regular, if not continuous, basis, good version control mechanisms should be established.
Finally, a good deal of project management information needs to be captured (e.g., author,
time, and location of each modification). The configuration and change management
workflow is associated mostly with the construction and transition phases.

Environment Workflow During the development of an information system, the devel-
opment team needs to use different tools and processes. The environment workflow
addresses these needs. For example, a CASE tool that supports the development of an
object-oriented information system via the UML could be required. Other tools necessary
include programming environments, project management tools, and configuration man-
agement tools. The environment workflow involves acquiring and installing these tools.
Even though this workflow can be active during all of the phases of the Unified Process, it
should be involved primarily with the inception phase.

Extensions to the Unified Process
As large and as complex as the Unified Process is, many authors have pointed out a set of
critical weaknesses. First, the Unified Process does not address staffing, budgeting, or con-
tract management issues. These activities were explicitly left out of the Unified Process.
Second, the Unified Process does not address issues relating to maintenance, operations, or
support of the product once it has been delivered. Thus it is not a complete software
process; it is only a development process. Third, the Unified Process does not address cross-
or inter-project issues. Considering the importance of reuse in object-oriented systems
development and the fact that in many organizations employees work on many different
projects at the same time, leaving out inter-project issues is a major omission.

To address these omissions, Ambler and Constantine suggest adding a production
phase and two workflows: the operations and support workflow and the infrastructure
management workflow (see Figure 1-18).20 In addition to these new workflows, the test,
deployment, and environment workflows are modified, and the project management and
the configuration and change management workflows are extended into the production
phase. These extensions are based on alternative object-oriented software processes: the OPEN
process (Object-oriented Process, Environment, and Notation) and the Object-Oriented
Software Process.21 The new phase, the new workflows, and the modifications and exten-
sions to the existing workflows are described next.

The Unified Process 3355

20 S. W. Ambler and L. L. Constantine, The Unified Process Inception Phase: Best Practices in Implementing the UP
(Lawrence, KS: CMP Books, 2000); S. W. Ambler and L. L. Constantine, The Unified Process Elaboration Phase: Best
Practices in Implementing the UP (Lawrence, KS: CMP Books, 2000); S. W. Ambler and L. L. Constantine, The
Unified Process Construction Phase: Best Practices in Implementing the UP (Lawrence, KS: CMP Books, 2000); S. W.
Ambler and L. L. Constantine, The Unified Process Transition and Production Phases: Best Practices in Implement-
ing the UP (Lawrence, KS: CMP Books, 2002).
21 S. W. Ambler, Process Patterns—Building Large-Scale Systems Using Object Technology (Cambridge, UK: SIGS
Books/Cambridge University Press, 1998); S. W. Ambler, More Process Patterns—Delivering Large-Scale Systems
Using Object Technology (Cambridge, UK: SIGS Books/Cambridge University Press, 1999); I. Graham, B. Henderson-
Sellers, and H. Younessi, The OPEN Process Specification (Harlow, UK: Addison-Wesley, 1997); B. Henderson-Sellers
and B. Unhelkar, OPEN Modeling with UML (Harlow, UK: Addison-Wesley, 2000).

c01IntroductionToSystemsAnalysisAndDesign.qxd 12/2/11 7:12 PM Page 35

Production Phase The production phase is concerned primarily with issues related to the
software product after it has been successfully deployed. This phase focuses on issues
related to updating, maintaining, and operating the software. Unlike the previous phases,
there are no iterations or incremental deliverables. If a new release of the software is to be
developed, then the developers must begin a new run through the first four phases. Based
on the activities that take place during this phase, no engineering workflows are relevant.
The supporting workflows that are active during this phase include the configuration and
change management workflow, the project management workflow, the new operations and
support workflow, and the infrastructure management workflow.

Operations and Support Workflow The operations and support workflow, as you might
guess, addresses issues related to supporting the current version of the software and oper-
ating the software on a daily basis. Activities include creating plans for the operation and

36 Chapter 1 Introduction to Systems Analysis and Design

FIGURE 1-18 The Enhanced Unified Process

Business Modeling

Phases Inception

Supporting Workflows

Elaboration Construction Transition Production

Requirements

Analysis

Design

Implementation

Configuration and
Change Management

Infrastructure
Management

Project Management

Environment

Operations and Support

Iter
1

… Iter
i

Iter
i + 1

… Iter
j

Iter
j + 1

… Iter
k

Iter
k + 1

… Iter
m

Test

Deployment

Phases Inception

Engineering Workflows

Elaboration Construction Transition Production

c01IntroductionToSystemsAnalysisAndDesign.qxd 11/3/11 1:07 PM Page 36

support of the software product once it has been deployed, creating training and user doc-
umentation, putting into place necessary backup procedures, monitoring and optimizing
the performance of the software, and performing corrective maintenance on the software.
This workflow becomes active during the construction phase; its level of activity increases
throughout the transition and, finally, the production phase. The workflow finally drops off
when the current version of the software is replaced by a new version. Many developers are
under the false impression that once the software has been delivered to the customer, their
work is finished. In most cases, the work of supporting the software product is much more
costly and time consuming than the original development. At that point, the developer’s
work may have just begun.

Infrastructure Management Workflow The infrastructure management workflow’s primary
purpose is to support the development of the infrastructure necessary to develop object-
oriented systems. Activities such as development and modification of libraries, standards,
and enterprise models are very important. When the development and maintenance of a
problem-domain architecture model goes beyond the scope of a single project and reuse is
going to occur, the infrastructure management workflow is essential. Another very important
set of cross-project activities is the improvement of the software development process.
Because the activities on this workflow tend to affect many projects and the Unified Process
focuses only on a specific project, the Unified Process tends to ignore these activities (i.e.,
they are simply beyond the scope and purpose of the Unified Process).

Existing Workflow Modifications and Extensions In addition to the workflows that
were added to address deficiencies contained in the Unified Process, existing workflows had
to be modified and/or extended into the production phase. These workflows include the
test, deployment, environment, project management, and configuration and change man-
agement workflows.

Test Workflow For high-quality information systems to be developed, testing should be
done on every deliverable, including those created during the inception phase. Otherwise,
less than high-quality systems will be delivered to the customer.

Deployment Workflow Legacy systems exist in most corporations today, and these systems
have databases associated with them that must be converted to interact with the new systems.
Owing to the complexity of deploying new systems, the conversion requires significant
planning. Therefore, the activities on the deployment workflow need to begin in the inception
phase instead of waiting until the end of the construction phase, as suggested by the Unified
Process.

Environment Workflow The environment workflow needs to be modified to include
activities related to setting up the operations and production environment. The actual
work performed is similar to the work related to setting up the development environment
that was performed during the inception phase. In this case, the additional work is per-
formed during the transition phase.

Project Management Workflow Even though the project management workflow does
not include staffing the project, managing the contracts among the customers and vendors,
and managing the project’s budget, these activities are crucial to the success of any software
development project. We suggest extending project management to include these activities.
This workflow should additionally occur in the production phase to address issues such as
training, staff management, and client relationship management.

The Unified Process 37

c01IntroductionToSystemsAnalysisAndDesign.qxd 11/3/11 1:07 PM Page 37

Configuration and Change Management Workflow The configuration and change
management workflow is extended into the new production phase. Activities performed
during the production phase include identifying potential improvements to the opera-
tional system and assessing the potential impact of the proposed changes. Once developers
have identified these changes and understood their impact, they can schedule the changes
to be made and deployed with future releases.

Figure 1-19 shows the chapters in which the Enhanced Unified Process’s phases and
workflows are covered. Given the offshore outsourcing and automation of information
technology,22 in this textbook, we focus primarily on the elaboration phase and the busi-
ness modeling, requirements, analysis, design, and project management workflows of the
Enhanced Unified Process. However, as Figure 1-12 shows, the other phases and workflows

38 Chapter 1 Introduction to Systems Analysis and Design

22 See Thomas L. Friedman, The World Is Flat: A Brief History of the Twenty-First Century, Updated and Expanded
Edition (New York: Farrar, Straus, and Giroux, 2006); and Daniel H. Pink, A Whole New Mind: Why Right-Brainers
Will Rule the Future (New York: Riverhead Books, 2006).

Inception 2–4

Elaboration 3–11

Construction 8, 12

Transition 12–13

Production 13

Business Modeling 2–5

Requirements 3–5, 10

Analysis 3–7

Design 7–11

Implementation 9, 12

Test 4–7, 12

Deployment 13

Project Management 2, 13

Configuration and 13
Change Management

Environment 2

Operations and Support 13

Infrastructure 2
Management

Enhanced UP Phases Chapters

Enhanced UP Chapters
Engineering Workflows

Enhanced UP Chapters
Supporting Workflows

FIGURE 1-19 The Enhanced Unified Process and the Textbook Organization

c01IntroductionToSystemsAnalysisAndDesign.qxd 11/3/11 1:07 PM Page 38

are covered. In many object-oriented systems development environments today, code
generation is supported. Thus, from a business perspective, we believe the activities associ-
ated with these workflows are the most important.

The Unified Modeling Language 39

Review Figures 1-17, 1-18, and 1-19. Based on your
understanding of the Unified Process and the Enhanced
Unified Process, suggest a set of steps for an alternative

object-oriented systems development method. Be sure
that the steps are capable of delivering an executable and
maintainable system.

1-6 Object-Oriented Systems Analysis and Design MethodologyYOUR

TURN

THE UNIFIED MODELING LANGUAGE
Until 1995, object concepts were popular but implemented in many different ways by dif-
ferent developers. Each developer had his or her own methodology and notation (e.g.,
Booch, Coad, Moses, OMT, OOSE, SOMA.)23 Then in 1995, Rational Software brought
three industry leaders together to create a single approach to object-oriented systems devel-
opment. Grady Booch, Ivar Jacobson, and James Rumbaugh worked with others to create
a standard set of diagramming techniques known as the Unified Modeling Language
(UML). The objective of UML was to provide a common vocabulary of object-oriented
terms and diagramming techniques rich enough to model any systems development pro-
ject from analysis through implementation. In November 1997, the Object Management
Group (OMG) formally accepted UML as the standard for all object developers. During the
following years, the UML has gone through multiple minor revisions. The current version
of UML, Version 2.4, was released by the OMG in January 2011.

Version 2.4 of the UML defines a set of fourteen diagramming techniques used to
model a system. The diagrams are broken into two major groupings: one for modeling the
structure of a system and one for modeling behavior. Structure diagrams provide a way to
represent the data and static relationships in an information system. The structure dia-
grams include class, object, package, deployment, component, and composite structure
diagrams. Behavior diagrams provide the analyst with a way to depict the dynamic rela-
tionships among the instances or objects that represent the business information system.
They also allow modeling of the dynamic behavior of individual objects throughout
their lifetime. The behavior diagrams support the analyst in modeling the functional
requirements of an evolving information system. The behavior modeling diagrams include

23 See Grady Booch, Object-Oriented Analysis and Design with Applications, 2nd ed. (Redwood City, CA: Benjamin/
Cummings, 1994); Peter Coad and Edward Yourdon, Object-Oriented Analysis, 2nd ed. (Englewood Cliffs, NJ:
Yourdon Press, 1991); Peter Coad and Edward Yourdon, Object-Oriented Design (Englewood Cliffs, NJ: Yourdon
Press, 1991); Brian Henderson-Sellers and Julian Edwards, Book Two of Object-Oriented Knowledge: The Working
Object (Sydney, Australia: Prentice Hall, 1994); James Rumbaugh, Michael Blaha, William Premerlani, Frederick
Eddy, and William Lorensen, Object-Oriented Modeling and Design (Englewood Cliffs, NJ: Prentice Hall, 1991);
Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar Overgaard, Object-Oriented Software Engineering:
A Use Case Approach (Wokingham, England: Addison-Wesley, 1992); Ian Graham, Migrating to Object Technology
(Wokingham, England: Addison-Wesley, 1994).

c01IntroductionToSystemsAnalysisAndDesign.qxd 11/3/11 1:07 PM Page 39

activity, sequence, communication, interaction overview, timing, behavior state machine,
protocol state machine, and use-case diagrams.24 Figure 1-20 provides an overview of these
diagrams.

Depending on where in the development process the system is, different diagrams play
a more important role. In some cases, the same diagramming technique is used through-
out the development process. In that case, the diagrams start off very conceptual and

40 Chapter 1 Introduction to Systems Analysis and Design

24 The material contained in this section is based on the Unified Modeling Language: Superstructure Version 2.4,
ptc/2010-11-14 (www.uml.org). Additional useful references include Michael Jesse Chonoles and James A.
Schardt, UML 2 for Dummies (Indianapolis, IN: Wiley, 2003); Hans-Erik Eriksson, Magnus Penker, Brian Lyons,
and David Fado, UML 2 Toolkit (Indianapolis, IN: Wiley, 2004); and Kendall Scott, Fast Track UML 2.0 (Berkeley,
CA: Apress, 2004). For a complete description of all diagrams, see www.uml.org.

Structure Diagrams

Class Illustrate the relationships between classes modeled Analysis, Design
in the system

Object Illustrate the relationships between objects modeled Analysis, Design
in the system; used when actual instances of the classes
will better communicate the model

Package Group other UML elements together to form Analysis, Design,
higher-level constructs; implementation

Deployment Show the physical architecture of the system; can also Physical Design,
be used to show software components being deployed Implementation
onto the physical architecture

Component Illustrate the physical relationships among the software Physical Design,
components; implementation

Composite Structure Design Illustrate the internal structure of a class, i.e., the Analysis,
relationships among the parts of a class

Behavioral Diagrams

Activity Illustrate business workflows independent of classes, the flow Analysis, Design
of activities in a use case, or detailed design of a method

Sequence Model the behavior of objects within a use case; Analysis, Design
focuses on the time-based ordering of an activity

Communication Model the behavior of objects within a use case; Analysis, Design
focus on the communication among a set of
collaborating objects of an activity

Interaction Overview Illustrate an overview of the flow of control of a process Analysis, Design

Timing Illustrate the interaction among a set of objects and the state Analysis, Design
changes they go through along a time axis

Behavioral State Machine Examine the behavior of one class Analysis, Design

Protocol State Machine Illustrate the dependencies among the different Analysis, Design
interfaces of a class

Use-Case Capture business requirements for the system and illustrate Analysis
the interaction between the system and its environment.

FIGURE 1-20 UML 2.3 Diagram Summary

Diagram Name Used to... Primary Phase

c01IntroductionToSystemsAnalysisAndDesign.qxd 11/3/11 1:07 PM Page 40

Summary 41

abstract. As the system is developed, the diagrams evolve to include details that ultimately
lead to generating and developing code. In other words, the diagrams move from docu-
menting the requirements to laying out the design. Overall, the consistent notation, inte-
gration among the diagramming techniques, and application of the diagrams across the
entire development process makes the UML a powerful and flexible language for analysts
and developers. Later chapters provide more detail on using a subset of the UML in object-
oriented systems analysis and design. In particular, these chapters describe activity, use-
case, class, object, sequence, communication, package, and deployment diagrams and the
behavior state machines. We also introduce an optional UML diagram, the windows navi-
gation diagram, that is an extension to the behavioral state machine that is used to design
user navigation through an information system’s user interfaces.

APPLYING THE CONCEPTS AT CD SELECTIONS
Throughout this book, many new concepts about object-oriented systems analysis and
design are introduced. As a way to make these new concepts more relevant, we apply
them to a fictitious company called CD Selections. CD Selections is a chain of 50 music
stores in California, with headquarters in Los Angeles. Annual sales last year were
$50 million, and they have been growing at about 3 to 5 percent per year for the past few
years. The firm has been interested in expanding their presence beyond California.
Margaret Mooney, Vice President of Marketing, has become excited by and concerned
about the rise of Internet sites selling CDs and sites such as iTunes that sell digital music.
She believes that the Internet has great potential, but she wants to use it in the right way.
Rushing into e-commerce without considering its effect on existing brick-and-mortar
stores and the implications on existing systems at CD Selections could cause more harm
than good.

Currently, CD Selections has a website that provides basic information about the
company and about each of its stores (e.g., map, operating hours, phone number). The
website was developed by an Internet consulting firm and is hosted by a prominent local
Internet service provider (ISP) in Los Angeles. The IT department at CD Selections, has
become experienced with Internet technology as it has worked with the ISP to maintain
the site; however, it still has a lot to learn when it comes to conducting business over the
Web. Margaret is interested in investigating the possibility of creating an e-commerce
site that will work with the current systems used by CD Selections. In future chapters,
we revisit CD Selections to see how the concepts introduced in the individual chapters
affect Margaret, and the team developing a Web-based solution for CD Selections.

SUMMARY
The Systems Development Life Cycle
All systems development projects follow essentially the same fundamental process, called
the system development life cycle (SDLC). The SDLC starts with a planning phase in which
the project team identifies the business value of the system, conducts a feasibility analysis,
and plans the project. The second phase is the analysis phase, in which the team develops
an analysis strategy, gathers information, and builds a set of analysis models. In the next
phase, the design phase, the team develops the physical design, architecture design, inter-
face design, database and file specifications, and program design. In the final phase, imple-
mentation, the system is built, installed, and maintained.

c01IntroductionToSystemsAnalysisAndDesign.qxd 11/3/11 1:07 PM Page 41

The Evolution of Systems Development Methodologies
System development methodologies are formalized approaches to implementing an SDLC.
System development methodologies have evolved over the decades. Structured design
methodologies, such as waterfall and parallel development, emphasize decomposition of a
problem by focusing on either process decomposition (process-centric methodologies) or
data decomposition (data decomposition). They produce a solid, well-thought-out system
but can overlook requirements because users must specify them early in the design process
before seeing the actual system. RAD-based methodologies attempt to speed up develop-
ment and make it easier for users to specify requirements by having parts of the system
developed sooner either by producing different versions (phased development) or by using
prototypes (prototyping, throwaway prototyping) through the use of CASE tools and
fourth-generation or visual programming languages. However, RAD-based methodologies
still tend to be either process-centric or data-centric. Agile development methodologies,
such as XP and Scrum, focus on streamlining the SDLC by eliminating many of the tasks
and time associated with defining and documenting requirements. Several factors influ-
ence the choice of a methodology: clarity of the user requirements, familiarity with the base
technology, system complexity, need for system reliability, time pressures, and the need to
see progress on the time schedule.

Systems Analysts’ Roles and Skills
The project team needs a variety of skills. All analysts need to have general skills, such as
change management, ethics, communications, and technical skills. However, different
kinds of analysts require specific skills in addition to these. Business analysts usually have
business skills that help them to understand the business issues surrounding the system,
and systems analysts also have significant experience in analysis and design and program-
ming. The infrastructure analyst focuses on technical issues surrounding how the system
will interact with the organization’s technical infrastructure, and the change management
analyst focuses on people and management issues surrounding the system installation. In
addition to analysts, project teams include a project manager, programmers, technical writers,
and other specialists.

Basic Characteristics of Object-Oriented Systems
A class is a template on which objects can be instantiated. An object is a person, place, or
thing about which we want to capture information. Each object has attributes and methods.
The methods are executed by objects sending messages that trigger them. Encapsulation
and information hiding allows an object to conceal its inner processes and data from the
other objects. Polymorphism and dynamic binding allow a message to be interpreted dif-
ferently by different kinds of objects. However, if polymorphism is not used in a semanti-
cally consistent manner, it can make an object design incomprehensible. Classes can be
arranged in a hierarchical fashion in which subclasses inherit attributes and methods from
superclasses to reduce the redundancy in development.

Object-Oriented Systems Analysis and Design
Object-oriented systems analysis and design (OOSAD) is most associated with phased-
development RAD- and agile-based methodologies, where the time spent in each phase is
very short. OOSAD uses a use-case-driven, architecture-centric, iterative, and incremental
information systems development approach. It supports three different views of the
evolving system: functional, static, and dynamic. OOSAD allows the analyst to decompose

42 Chapter 1 Introduction to Systems Analysis and Design

c01IntroductionToSystemsAnalysisAndDesign.qxd 11/3/11 1:07 PM Page 42

complex problems into smaller, more manageable components using a commonly
accepted set of notations. Also, many people believe that users do not think in terms of
data or processes but instead think in terms of a collection of collaborating objects.
OOSAD allows the analyst to interact with the user with objects from the user’s environ-
ment instead of a set of separate processes and data.

The Unified Process
One of the most popular approaches to object-oriented systems analysis and design is the
Unified Process. The Unified Process is a two-dimensional systems development process
described with a set of phases and workflows. The phases consist of the inception, elabora-
tion, construction, and transition phases. The workflows are organized into two subcate-
gories: engineering and supporting. The engineering workflows include business
modeling, requirements, analysis, design, implementation, test, and deployment work-
flows, and the supporting workflows comprise the project management, configuration and
change management, and environment workflows. Depending on which development
phase the evolving system is currently in, the level of activity will vary over the workflows.

The Unified Modeling Language
The Unified Modeling Language (UML) is a standard set of diagramming techniques that
provide a graphical representation rich enough to model any systems development project
from analysis through implementation. Today most object-oriented systems analysis and
design approaches use the UML to depict an evolving system. The UML uses a set of dif-
ferent diagrams to portray the various views of the evolving system. The diagrams are
grouped into two broad classifications: structure and behavior. The structure diagrams
include class, object, package, deployment, component, and composite structure diagrams.
The behavior diagrams include activity, sequence, communication, interaction overview,
timing, behavior state machine, protocol state machine, and use-case diagrams.

Key Terms 4433

KKEEYY TTEERRMMSS

Abstract classes, 26
Agile development, 14
A-kind-of, 25
Analysis model, 5
Analysis paralysis, 33
Analysis phase, 4
Analysis strategy, 5
Analysis workflow, 33
Approval committee, 4
Architecture-centric, 29
Architecture design, 5
As-is system, 5
Attribute, 23
Behavior, 23
Behavior diagrams, 39
Behavioral view, 29
Business analyst, 21
Business modeling workflow, 33

Change agent, 20
Change management analyst, 22
Class, 23
Concrete classes, 26
Configuration and change

management workflow, 32
Construction, 6
Construction phase, 32
Database and file specification, 5
Data-centered methodology, 7
Deliverable, 3
Deployment workflow, 34
Design model, 33
Design phase, 5
Design prototype, 13
Design strategy, 5
Design workflow, 31
Dynamic binding, 27

Dynamic view, 29
Elaboration phase, 31
Encapsulation, 24
Engineering workflow, 32
Environment workflow, 35
External view, 29
Extreme programming (XP), 15
Feasibility analysis, 4
Functional view, 29
Gradual refinement, 4
Implementation phase, 6
Implementation workflow, 32
Inception phase, 30
Incremental, 29
Information hiding, 24
Infrastructure analyst, 22
Infrastructure management

workflow, 37

c01IntroductionToSystemsAnalysisAndDesign.qxd 11/28/11 7:49 AM Page 43

Inherit, 26
Inheritance, 25
Instance, 23
Interface design, 5
Iterative, 29
Message, 24
Method, 24
Methodology, 6
Object, 23
Object Management Group (OMG), 39
Object-oriented methodologies, 7
Operations and support workflow, 36
Parallel development, 9
Phased development, 11
Phases, 3
Planning phase, 4
Polymorphism, 27
Process-centered methodology, 6
Production phase, 36
Program design, 5

Programmer, 21
Project management, 4
Project management workflow, 34
Project manager, 4
Project plan, 4
Project sponsor, 4
Prototyping, 12
Rapid application development

(RAD), 10
Requirements gathering, 5
Requirements workflow, 32
Scrum, 16
State, 23
Static binding, 27
Static view, 29
Structural view, 29
Structure diagrams, 39
Structured design, 8
Subclass, 25
Superclass, 25

Support plan, 6
System proposal, 5
System prototype, 12
System request, 4
System specification, 5
Systems analyst, 21
Systems development life cycle

(SDLC), 2
Technical writer, 21
Testing workflow, 34
Throwaway prototyping, 13
Training plan, 6
Transition phase, 32
Unified Modeling Language (UML), 39
Use case, 28
Use-case driven, 28
Version, 11
Waterfall development, 8
Workflows, 30
Workplan, 4

4444 CChhaapptteerr 11 Introduction to Systems Analysis and Design

QQUUEESSTTIIOONNSS

1. Compare and contrast phases, steps, techniques, and
deliverables.

2. Describe the major phases in the SDLC.
3. Describe the principal steps in the planning phase.

What are the major deliverables?
4. Describe the principal steps in the analysis phase.

What are the major deliverables?
5. Describe the principal steps in the design phase. What

are the major deliverables?
6. Describe the principal steps in the implementation

phase. What are the major deliverables?
7. What are the roles of a project sponsor and the

approval committee?
8. What does gradual refinement mean in the context of

SDLC?
9. Compare and contrast process-centered methodolo-

gies with data-centered methodologies.
10. Compare and contrast structured design-based

methodologies in general to RAD-based methodolo-
gies in general.

11. Compare and contrast extreme programming and
throwaway prototyping.

12. Describe the major elements in and issues with water-
fall development.

13. Describe the major elements in and issues with parallel
development.

14. Describe the major elements in and issues with phased
development.

15. Describe the major elements in and issues with
prototyping.

16. Describe the major elements in and issues with throw-
away prototyping.

17. Describe the major elements in and issues with XP.
18. Describe the major elements in and issues with Scrum.
19. What are the key factors in selecting a methodology?
20. What are the major roles played by a systems analyst

on a project team?
21. Compare and contrast the role of a systems analyst,

business analyst, and infrastructure analyst.
22. What is the difference between classes and objects?
23. What are methods and messages?
24. Why are encapsulation and information hiding

important characteristics of object-oriented systems?
25. What is meant by polymorphism when applied to

object-oriented systems?
26. Compare and contrast dynamic and static binding.
27. What is a use case?
28. What is meant by use-case driven?

c01IntroductionToSystemsAnalysisAndDesign.qxd 11/28/11 7:49 AM Page 44

29. What is the Unified Modeling Language?
30. Who is the Object Management Group?
31. What is the primary purpose of structure diagrams?

Give some examples of structure diagrams.
32. For what are behavior diagrams used? Give some

examples of behavior diagrams.
33. Why is it important for an OOSAD approach to be

architecture-centric?
34. What does it mean for an OOSAD approach to be

incremental and iterative?

35. What are the phases and workflows of the Unified
Process?

36. Compare the phases of the Unified Process with the
phases of the waterfall model.

37. Which phase in the SDLC is most important? Why?
38. Describe the major elements and issues with an

object-oriented approach to developing information
systems.

Exercises 4455

EEXXEERRCCIISSEESS

A. Suppose you are a project manager using a waterfall
development–based methodology on a large and
complex project. Your manager has just read the latest
article in Computerworld that advocates replacing this
methodology with prototyping and comes to you
requesting that you switch. What would you say?

B. The basic types of methodologies discussed in this
chapter can be combined and integrated to form new
hybrid methodologies. Suppose you were to combine
throwaway prototyping with the use of waterfall devel-
opment. What would the methodology look like?
Draw a picture (similar to those in Figures 1–2
through 1–7). How would this new methodology
compare to the others?

C. Look on the web for different kinds of job opportuni-
ties that are available for people who want analyst
positions? Compare and contrast the skills that the ads
ask for to the skills that we presented in this chapter.

D. Think about your ideal analyst position. Write a ad to
hire someone for that position. What requirements
would the job have? What skills and experience would be
required? How would an applicant be able to demon-
strate having the appropriate skills and experience?

E. Using your favorite Web search engine, find alternative
descriptions of the basic characteristics of object-
oriented systems.

F. Look up object-oriented programming in Wikipedia.
Write a short report based on its entry.

G. Choose an object-oriented programming language,
such as C!!, Java, Objective-C, Smalltalk, or VB.Net,
and use the Web to find out how the language supports
the basic characteristics of object-oriented systems.

H. Assume that you have been assigned the task of creat-
ing an object-oriented system that could be used to
support students in finding an appropriate apartment

to live in next semester. What are the different types of
objects (i.e., classes) you would want to include in
your system? What attributes or methods would you
want to include in their definition? Is it possible to
arrange them into an inheritance hierarchy? If so, do
it. If not, why not?

I. Create an inheritance hierarchy that could be used to
represent the following classes: accountant, customer,
department, employee, manager, organization, and
salesperson.

J. Investigate IBM’s Rational Unified Process (RUP) on the
Web. RUP is a commercial version that extends aspects
of the Unified Process. Write a brief memo describing
how it is related to the Unified Process as described in
this chapter. (Hint: A good website with which to begin
is www.ibm.com/software/awdtools/rup/.)

K. Suppose you are a project manager who typically has
been using a waterfall development–based methodol-
ogy on a large and complex project. Your manager has
just read the latest article in Computerworld that advo-
cates replacing this methodology with the Unified
Process and comes to you requesting you to switch.
What do you say?

L. Suppose you are an analyst working for a small com-
pany to develop an accounting system. Would you use
the Unified Process to develop the system, or would
you prefer one of the other approaches? Why?

M. Suppose you are an analyst developing a new informa-
tion system to automate the sales transactions and
manage inventory for each retail store in a large chain.
The system would be installed at each store and
exchange data with a mainframe computer at the com-
pany’s head office. Would you use the Unified Process
to develop the system or would you prefer one of the
other approaches? Why?

c01IntroductionToSystemsAnalysisAndDesign.qxd 12/2/11 7:12 PM Page 45

N. Suppose you are an analyst working for a small com-
pany to develop an accounting system. What type of
methodology would you use? Why?

O. Suppose you are an analyst developing a new execu-
tive information system intended to provide key
strategic information from existing corporate data-
bases to senior executives to help in their decision
making. What type of methodology would you use?
Why?

P. Investigate the Unified Modeling Language on the
Web. Write a paragraph news brief describing the cur-
rent state of the UML. (Hint: A good website with
which to begin is www.uml.org.)

Q. Investigate the Object Management Group (OMG) on
the Web. Write a report describing the purpose of the
OMG and what it is involved with besides the UML.
(Hint: A good website with which to begin is
www.omg.org.)

R. Using the Web, find a set of CASE tools that support
the UML. A couple of examples include Poseidon,
Rational Rose, and Visual Paradigm. Find at least two
more. Write a short report describing how well they
support the UML, and make a recommendation as to
which one you believe would be best for a project team
to use in developing an object-oriented information
system using the UML.

4466 CChhaapptteerr 11 Introduction to Systems Analysis and Design

MMIINNIICCAASSEESS

1. Barbara Singleton, manager of western regional sales
at the WAMAP Company, requested that the IS
department develop a sales force management and
tracking system that would enable her to better moni-
tor the performance of her sales staff. Unfortunately,
owing to the massive backlog of work facing the IS
department, her request was given a low priority. After
six months of inaction by the IS department, Barbara
decided to take matters into her own hands. Based on
the advice of friends, Barbara purchased simple data-
base software and constructed a sales force manage-
ment and tracking system on her own.

Although Barbara’s system has been “completed”
for about six weeks, it still has many features that do
not work correctly, and some functions are full of
errors. Barbara’s assistant is so mistrustful of the sys-
tem that she has secretly gone back to using her old
paper-based system, because it is much more reliable.

Over dinner one evening, Barbara complained to
a systems analyst friend, “I don’t know what went
wrong with this project. It seemed pretty simple to me.
Those IS guys wanted me to follow this elaborate set of
steps and tasks, but I didn’t think all that really applied
to a PC-based system. I just thought I could build this
system and tweak it around until I got what I wanted
without all the fuss and bother of the methodology the
IS guys were pushing. I mean, doesn’t that just apply to
their big, expensive systems?”

Assuming you are Barbara’s systems analyst
friend, how would you respond to her complaint?

2. Marcus Weber, IS project manager at ICAN Mutual
Insurance Co., is reviewing the staffing arrangements

for his next major project, the development of an
expert system-based underwriter’s assistant. This new
system will involve a whole new way for the under-
writers to perform their tasks. The underwriter’s assis-
tant system will function as sort of an underwriting
supervisor, reviewing key elements of each applica-
tion, checking for consistency in the underwriter’s
decisions, and ensuring that no critical factors have
been overlooked. The goal of the new system is to
improve the quality of the underwriters’ decisions and
to improve underwriters’ productivity. It is expected
that the new system will substantially change the way
the underwriting staff do their jobs.

Marcus is dismayed to learn that because of bud-
get constraints, he must choose between one of two
available staff members. Barry Filmore has had con-
siderable experience and training in individual and
organizational behavior. Barry has worked on several
other projects in which the end users had to make sig-
nificant adjustments to the new system, and Barry
seems to have a knack for anticipating problems and
smoothing the transition to a new work environment.
Marcus had hoped to have Barry’s involvement in this
project.

Marcus’s other potential staff member is Kim
Danville. Prior to joining ICAN Mutual, Kim had con-
siderable work experience with the expert system tech-
nologies that ICAN has chosen for this expert system
project. Marcus was counting on Kim to help integrate
the new expert system technology into ICAN’s systems
environment, and also to provide on-the-job training
and insights to the other developers on this team.

c01IntroductionToSystemsAnalysisAndDesign.qxd 12/2/11 7:12 PM Page 46

Given that Marcus’s budget will only permit him
to add Barry or Kim to this project team, but not both,
what choice do you recommend for him? Justify your
answer.

3. Joe Brown, the president of Roanoke Manufacturing,
requested that Jack Jones, the MIS department man-
ager, investigate the viability of selling their products
over the Web. Currently, the MIS department is still
using an IBM mainframe as their primary deployment
environment. As a first step, Jack contacted his friends
at IBM to see if they had any suggestions as to how
Roanoke Manufacturing could move toward support-
ing sales in an electronic commerce environment while
keeping their mainframe as their main system. His
friends explained that IBM (www.ibm.com) now sup-
ports Java and Linux on their mainframes. Jack has also
learned that IBM owns Rational (www.rational.com),
the creator of the UML and the Unified Process. Jack’s

friends suggested that Jack investigate using object-
oriented systems as a basis for developing the new system.
They also suggested that using the Rational Unified
Process (RUP), Java, and virtual Linux machines on his
current mainframe as a way to support the move
toward a distributed electronic commerce system
would protect his current investment in his legacy sys-
tems while allowing the new system to be developed in
a more modern manner. Even though Jack’s IBM
friends were very persuasive, Jack is still a little wary
about moving his operation from a structured systems
approach to this new object-oriented approach.
Assuming that you are one of Jack’s IBM friends, how
would you convince him to move toward using an
object-oriented systems development method, such as
RUP, and using Java and Linux as a basis for develop-
ing and deploying the new system on Roanoke Manu-
facturing’s current mainframe?

Minicases 47

c01IntroductionToSystemsAnalysisAndDesign.qxd 11/3/11 1:07 PM Page 47

48

This chapter primarily describes the project management workflow of the Unified
Process. The first step in the process is to identify a project that will deliver value to the
business and to create a system request that provides basic information about the proposed
system. Second, the analysts perform a feasibility analysis to determine the technical, eco-
nomic, and organizational feasibility of the system; if appropriate, the system is selected
and the development project begins. Third, the project manager estimates the functional-
ity of the project and identifies the tasks that need to be performed. Fourth, the manager
staffs the project. Finally, the manager identifies the tools, standards, and process to be
used; identifies opportunities for reuse; determines how the current project fits into the
portfolio of projects currently under development; and identifies opportunities to update
the overall structure of the firm’s portfolio of systems current in use.

OBJECTIVES

! Understand the importance of linking the information system to business needs.
! Be able to create a system request.
! Understand how to assess technical, economic, and organizational feasibility.
! Be able to perform a feasibility analysis.
! Understand how projects are selected in some organizations.
! Become familiar with work breakdown structures, Gantt charts, and network diagrams.
! Become familiar with use-case–driven effort estimation.
! Be able to create an iterative project workplan.
! Understand how to manage the scope, refine the estimates, and manage the risk of a

project.
! Become familiar with how to staff a project.
! Understand how the environment and infrastructure workflows interact with the

project management workflow.

CHAPTER OUTLINE

C H A P T E R 2

PROJECT MANAGEMENT

Introduction
Project Identification

System Request
Feasibility Analysis

Technical Feasibility
Economic Feasibility
Organizational Feasibility

Project Selection

Traditional Project Management Tools
Work Breakdown Structures
Gantt Chart
Network Diagram

Project Effort Estimation
Creating and Managing the Workplan

Evolutionary Work Breakdown
Structures and Iterative Workplans

c02ProjectManagement.qxd 12/2/11 7:13 PM Page 48

Managing Scope
Timeboxing
Refining Estimates
Managing Risk

Staffing the Project
Characteristics of a Jelled Team
Staffing Plan
Motivation
Handling Conflict

Environment and Infrastructure
Management

CASE Tools
Standards
Documentation

Applying the Concepts at CD Selections
Summary

Introduction 49

INTRODUCTION
Think about major projects that occur in lives of people, such as throwing a big party, a
wedding or a graduation celebration. Months are spent in advance identifying and per-
forming all the tasks that need to get done, such as sending out invitations and selecting a
menu, and time and money are carefully allocated among them. Along the way, decisions
are recorded, problems are addressed, and changes are made. The increasing popularity of
the party planner, a person whose sole job is to coordinate a party, suggests how tough this
job can be. In the end, the success of any party has a lot to do with the effort that went into
planning along the way. System development projects can be much more complicated than
the projects we encounter in our personal lives—usually, more people are involved (e.g.,
the organization), the costs are higher, and more tasks need to be completed. Owing to the
complexity of software and software development, it is virtually impossible to “know” all
of the possible things that could happen during system development projects. Therefore, it
is not surprising that “party planners” exist for information systems projects: They are
called project managers.

Project management is the process of planning and controlling the development of a
system within a specified time frame at a minimum cost with the right functionality.1 In
general, a project is a set of activities with a starting point and an ending point meant to
create a system that brings value to the business. A project manager has the primary
responsibility for managing the hundreds of tasks and roles that need to be carefully coor-
dinated. Today, project management is an actual profession, and analysts spend years
working on projects before tackling the management of them. However, in many cases,
unreasonable demands set by project sponsors and business managers can make project
management very difficult. Too often, the approach of the holiday season, the chance at
winning a proposal with a low bid, or a funding opportunity pressures project managers
to promise systems long before they are able to deliver them. These overly optimistic
timetables are thought to be one of the biggest problems that projects face; instead of
pushing a project forward faster, they result in delays. Another source is the changing

1 For a very good comprehensive description of project management for information systems see R.K. Wysocki,
Effective Project Management: Traditional, Agile, Extreme, 5th Ed. (Indianapolis, IN: Wiley Publishing, 2009). Also,
the Project Management Institute (www.pmi.org) and the Information Systems Special Interest Group of the
Project Management Institute (www.pmi-issig.org) have valuable resources on information systems project
management. Finally, the following are good books on project management for object-oriented projects:
G. Booch, Object Solutions: Managing the Object-Oriented Project (Menlo Park, CA: Addison-Wesley, 1996); M. R.
Cantor, Object-Oriented Project Management with UML (New York: Wiley, 1998); A. Cockburn, Surviving Object-
Oriented Projects: A Manager’s Guide (Reading, MA: Addison-Wesley, 1998); I. Jacobson, G. Booch, and J. Rum-
baugh, The Unified Software Development Process (Reading, MA: Addison-Wesley, 1999); and W. Royce, Software
Project Management: A Unified Framework (Reading, MA: Addison-Wesley, 1998).

c02ProjectManagement.qxd 12/2/11 7:13 PM Page 49

nature of the information technology on which information systems are deployed. The
promise of new information technology innovations can appear so attractive that organi-
zations begin projects even if they are not sure what value they offer because they believe
that the technologies are somehow important in their own right. Problems can usually be
traced back to the very beginning of the development of the system, where too little atten-
tion was given to identifying the business value and understanding the risks associated
with the project.

During the inception phase of the Unified Process of a new systems development
project, someone—a manager, staff member, sales representative, or systems analyst—
typically identifies some business value that can be gained from using information tech-
nology. New systems development projects should start from a business need or
opportunity. Many ideas for new systems or improvements to existing ones arise from the
application of a new technology, but an understanding of technology is usually secondary
to a solid understanding of the business and its objectives. This does not mean that tech-
nical people should not recommend new systems projects. In fact, the ideal situation is for
both IT people (i.e., the experts in systems) and the business people (i.e., the experts in
business) to work closely to find ways for technology to support business needs. In this
way, organizations can leverage the exciting innovative technologies that are available
while ensuring that projects are based upon real business objectives, such as increasing
sales, improving customer service, and decreasing operating expenses. Ultimately, infor-
mation systems need to affect the organization’s bottom line (in a positive way!). To
ensure that a real business need is being addressed, the affected business organization
(called the project sponsor), proposes the new systems development project using a system
request. The system request effectively kicks off the inception phase for the new systems
development project. The request is forwarded to an approval committee for considera-
tion. The approval committee reviews the request and makes an initial determination of
whether to investigate the proposal or not. If the committee initially approves the request,
the systems development team gathers more information to determine the feasibility of
the project.

A feasibility analysis plays an important role in deciding whether to proceed with an
information systems development project. It examines the technical, economic, and orga-
nizational pros and cons of developing the system, and it gives the organization a slightly
more detailed picture of the advantages of investing in the system as well as any obstacles
that could arise. In most cases, the project sponsor works closely with the development
team to develop the feasibility analysis. Once the feasibility analysis has been completed, it
is submitted to the approval committee, along with a revised system request. The commit-
tee then decides whether to approve the project, decline the project, or table it until addi-
tional information is available. Projects are selected by weighing risks and return and by
making trade-offs at the organizational level.

Once the committee has approved a project, the development team must carefully plan
for the actual development of the system. Because we are following a Unified Process-based
approach, the systems development workplan will evolve throughout the development
process. Given this evolutionary approach, one critical success factor for project manage-
ment is to start with a realistic assessment of the work that needs to be accomplished and
then manage the project according to that assessment. This can be achieved by carefully
creating and managing the workplan, estimating the effort to develop the system, staffing
the project, and coordinating project activities.

In addition to covering the above material, this chapter also covers three traditional
project management tools that are very useful to manage object-oriented systems develop-
ment projects: work breakdown structures, Gantt charts, and network diagrams.

50 Chapter 2 Project Management

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 50

PROJECT IDENTIFICATION
A project is identified when someone in the organization identifies a business need to build
a system. This could occur within a business unit or IT, come from a steering committee
charged with identifying business opportunities, or evolve from a recommendation made
by external consultants. Examples of business needs include supporting a new marketing
campaign, reaching out to a new type of customer, or improving interactions with suppli-
ers. Sometimes, needs arise from some kind of “pain” within the organization, such as a
drop in market share, poor customer service levels, or increased competition. Other times,
new business initiatives and strategies are created, and a system is required to enable them.

Business needs also can surface when the organization identifies unique and compet-
itive ways of using IT. Many organizations keep an eye on emerging technology, which is
technology that is still being developed and is not yet viable for widespread business use.
For example, if companies stay abreast of technology such as the Internet, smart cards, and
mobile devices in their earliest stages, they can develop business strategies that leverage the
capabilities of these technologies and introduce them into the marketplace as a first mover.
Ideally, they can take advantage of this first-mover advantage by making money and con-
tinuing to innovate while competitors trail behind.

The project sponsor is someone who recognizes the strong business need for a system and
has an interest in seeing the system succeed. He or she will work throughout the development
process to make sure that the project is moving in the right direction from the perspective of
the business. The project sponsor serves as the primary point of contact for the system. Usu-
ally, the sponsor of the project is from a business function, such as marketing, accounting, or
finance; however, members of the IT area also can sponsor or cosponsor a project.

The size or scope of a project determines the kind of sponsor needed. A small depart-
mental system might require sponsorship from only a single manager, whereas a large orga-
nizational initiative might need support from the entire senior management team and even
the CEO. If a project is purely technical in nature (e.g., improvements to the existing IT
infrastructure or research into the viability of an emerging technology), then sponsorship

Project Identification 51

A CIO needs to have a global view when identifying and
selecting projects for her organization. I would get lost in
the trees if I were to manage on a project-by-project basis.
Given this, I categorize my projects according to my three
roles as a CIO, and the mix of my project portfolio
changes depending on the current business environment.

My primary role is to keep the business running. That
this means every day when each person comes to work,
he or she can perform his or her job efficiently. I measure
this using various service-level, cost, and productivity
measures. Projects that keep the business running could
have a high priority if the business were in the middle of
a merger or a low priority if things were running smoothly
and it were “business as usual.”

My second role is to push innovation that creates
value for the business. I manage this by looking at our
lines of business and asking which lines of business create
the most value for the company. These are the areas for
which I should be providing the most value. For example,
if we had a highly innovative marketing strategy, I would
push for innovation there. If operations were running
smoothly, I would push less for innovation in that area.

My third role is strategic, to look beyond today and
find new opportunities for both IT and the business of
providing energy. This may include investigating process
systems, such as automated meter reading, or looking into
the possibilities of wireless technologies.

—Lyn McDermid

2-A Interview with Lyn McDermid, CIO, Dominion Virginia PowerCONCEPTS

IN ACTION

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 51

from IT is appropriate. When projects have great importance to the business yet are tech-
nically complex, joint sponsorship by both the business and IT may be necessary.

The business need drives the high-level business requirements for the system. Require-
ments are what the information system will do, or the functionality it will contain. They
need to be explained at a high level so that the approval committee and, ultimately, the pro-
ject team understand what the business expects from the final product. Business require-
ments are the features and capabilities the information system will have to include, such as
the ability to collect customer orders online or the ability for suppliers to receive inventory
information as orders are placed and sales are made.

The project sponsor also should have an idea of the business value to be gained from
the system, both in tangible and intangible ways. Tangible value can be quantified and mea-
sured easily (e.g., 2 percent reduction in operating costs). An intangible value results from
an intuitive belief that the system provides important, but hard-to-measure, benefits to the
organization (e.g., improved customer service or a better competitive position).

Once the project sponsor identifies a project that meets an important business need
and he or she can identify the system’s business requirements and value, it is time to for-
mally initiate the project. In most organizations, project initiation begins with a technique
called a system request.

52 Chapter 2 Project Management

Dominion Virginia Power is one of the nation’s ten largest
investor-owned electric utilities. The company delivers
power to more than two million homes and businesses in
Virginia and North Carolina. In 1997, the company over-
hauled some of its core processes and technology. The
goal was to improve customer service and cut operations
costs by developing a new workflow and geographic
information system. When the project was finished, ser-
vice engineers who had sifted through thousands of paper
maps could use computerized searches to pinpoint the
locations of electricity poles. The project helped the utility
improve management of all its facilities, records, maps,
scheduling, and human resources. That, in turn, helped
increase employee productivity, improve customer
response times, and reduce the costs of operating crews.
Source: Computerworld (November 11, 1997).

Questions

1. What kinds of things does Dominion Virginia
Power do that require it to know power pole
locations? How often does it do these things?
Who benefits if the company can locate power
poles faster?

2. Based on your answers to question 1, describe
three tangible benefits that the company can
receive from its new computer system. How can
these be quantified?

3. Based on your answers to question 1, describe three
intangible benefits that the company can receive
from its new computer system. How can these be
quantified?

2-1 Identify Tangible and Intangible ValueYOUR

TURN

System Request
A system request is a document that describes the business reasons for building a system
and the value that the system is expected to provide. The project sponsor usually com-
pletes this form as part of a formal system project selection process within the organiza-
tion. Most system requests include five elements: project sponsor, business need, business
requirements, business value, and special issues (see Figure 2-1). The sponsor describes the
person who will serve as the primary contact for the project, and the business need pre-
sents the reasons prompting the project. The business requirements of the project refer to

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 52

Project Identification 53

FIGURE 2-1
Elements of the
System Request Form

Project Sponsor The person who initiates the Several members of the Finance
project and who serves as the department
primary point of contact for the Vice President of Marketing project
on the business side. IT Manager

Steering committee
CIO
CEO

Business Need The business-related reason for Increase sales
initiating the system. Improve market share

Improve access to information
Improve customer service
Decrease product defects
Streamline supply acquisition
Processes

Business Requirements The business capabilities that the Provide onIine access to information
system will provide. Capture customer demographic

information
Include product search capabilities
Produce management reports
Include online user support

Business Value The benefits that the system will A 3 percent increase in sales
create for the organization. A 1 percent increase in market share

Reduction in headcount by 5 FTEs*
$200,000 cost savings from

decreased supply costs
$150,000 savings from removal of

existing system

Special Issues or Issues that are relevant to the Government-mandated deadline for
Constraints implementation of the system May 30

and decisions made by the System needed in time for the
committee about the project. Christmas holiday season

Top-level security clearance needed
by project team to work with data

*Full-time equivalent

Element Description Examples

the business capabilities that the system will need to have, and the business value describes
the benefits that the organization should expect from the system. Special issues are
included on the document as a catch-all for other information that should be considered
in assessing the project. For example, the project may need to be completed by a specific
deadline. Project teams need to be aware of any special circumstances that could affect the
outcome of the system. Figure 2-2 shows a template for a system request.

Project Sponsor: Name of project sponsor

Business Need: Short description of business need

Business Requirements: Description of business requirements

Business Value: Expected value that the system will provide

Special Issues or Constraints: Any additional information that may be relevant
to the stakeholders

System Request—Name of Project

FIGURE 2-2
System Request
Template

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 53

54 Chapter 2 Project Management

At Sprint, network projects originate from two vantage
points—IT and the business units. IT projects usually address
infrastructure and support needs. The business unit projects
typically begin after a business need is identified locally,
and a business group informally collaborates with IT regard-
ing how a solution can be delivered to meet customer
expectations.

Once an idea is developed, a more formal request
process begins, and an analysis team is assigned to
investigate and validate the opportunity. This team
includes members from the user community and IT, and
they scope out at a high level what the project will do;
create estimates for technology, training, and business
development costs; and create a business case. This

contains the economic value-add and the net present
value of the project.

Of course, not all projects undergo this rigorous
process. The larger the project, the more time is allocated
to the analysis team. It is important to remain flexible and
not let the process consume the organization. At the begin-
ning of each budgetary year, specific capital expenditures
are allocated for operational improvements and mainte-
nance. Moreover, this money is set aside to fund quick pro-
jects that deliver immediate value without going through
the traditional approval process.

—Don Hallacy

2-B Interview with Don Hallacy, President, Technology Services, Sprint CorporationCONCEPTS

IN ACTION

The completed system request is submitted to the approval committee for considera-
tion. This approval committee could be a company steering committee that meets regularly
to make information systems decisions, a senior executive who has control of organiza-
tional resources, or any other decision-making body that governs the use of business
investments. The committee reviews the system request and makes an initial determina-
tion, based on the information provided, of whether to investigate the proposal or not. If
so, the next step is to conduct a feasibility analysis.

Think about your own university or college, and choose
an idea that could improve student satisfaction with the
course enrollment process. Currently can students enroll
for classes from anywhere? How long does it take? Are
directions simple to follow? Is online help available?

Next, think about how technology can help support
your idea. Would you need completely new technology?
Can the current system be changed?

Question

Create a system request that you could give to the
administration that explains the sponsor, business need,
business requirements, and potential value of the pro-
ject. Include any constraints or issues that should be
considered.

2–2 Create a System RequestYOUR

TURN

FEASIBILITY ANALYSIS
Once the need for the system and its business requirements have been defined, it is time to
create a more detailed business case to better understand the opportunities and limitations
associated with the proposed project. Feasibility analysis guides the organization in deter-
mining whether or not to proceed with a project. Feasibility analysis also identifies the

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 54

important risks associated with the project that must be addressed if the project is
approved. As with the system request, each organization has its own process and format
for the feasibility analysis, but most include three types: technical feasibility, economic
feasibility, and organizational feasibility. The results of these analyses are combined into a
feasibility study, which is given to the approval committee at the end of project initiation
(see Figure 2-3).

Although we now discuss feasibility analysis within the context of initiating a project,
most project teams will revise their feasibility study throughout the development process
and revisit its contents at various checkpoints during the project. If at any point the pro-
ject’s risks and limitations outweigh its benefits, the project team may decide to cancel the
project or make necessary improvements.

Technical Feasibility
The first type of feasibility analysis addresses the technical feasibility of the project: the
extent to which the system can be successfully designed, developed, and installed by the IT
group. Technical feasibility analysis is in essence a technical risk analysis that strives to
answer this question: Can we build it?2

Many risks can endanger the successful completion of a project. First is the users’ and
analysts’ lack of familiarity with the functional area. When analysts are unfamiliar with the
business functional area, they have a greater chance of misunderstanding the users or of
missing opportunities for improvement. The risk increases dramatically when the users
themselves are less familiar with an application, such as with the development of a system
to support a business innovation (e.g., Microsoft starting up a new Internet dating service).
In general, developing new systems is riskier than producing extensions to an existing
system because existing systems tend to be better understood.

Feasibility Analysis 55

Technical Feasibility: Can We Build It?
• Familiarity with Functional area: Less familiarity generates more risk
• Familiarity with Technology: Less familiarity generates more risk
• Project Size: Large projects have more risk
• Compatibility: The harder it is to integrate the system with the company’s existing

technology, the higher the risk

Economic Feasibility: Should We Build It?
• Development costs
• Annual operating costs
• Annual benefits (cost savings and revenues)
• Intangible costs and benefits

Organizational Feasibility: If We Build It, Will They Come?
• Project champion(s)
• Senior management
• Users
• Other stakeholders
• Is the project strategically aligned with the business?

FIGURE 2-3
Feasibility Analysis
Assessment Factors

2 We use build it in the broadest sense. Organizations can also choose to buy a commercial software package and
install it, in which case, the question might be, Can we select the right package and successfully install it?

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 55

Familiarity with the technology is another important source of technical risk. When a
system uses technology that has not been used before within the organization, there is a
greater chance that problems will occur and delays will be incurred because of the need to
learn how to use the technology. Risk increases dramatically when the technology itself is
new (e.g., Android, iPad).

Project size is an important consideration, whether measured as the number of people
on the development team, the length of time it will take to complete the project, or the
number of distinct features in the system. Larger projects present more risk, both because
they are more complicated to manage and because there is a greater chance that important
system requirements will be overlooked or misunderstood. The extent to which the project
is highly integrated with other systems (which is typical of large systems) can cause prob-
lems because complexity increases when many systems must work together.

Finally, project teams need to consider the compatibility of the new system with the
technology that already exists in the organization. Systems are rarely built in a vacuum—
they are built in organizations that already have numerous systems in place. New technol-
ogy and applications need to be able be integrated with the existing environment for many
reasons. They might rely on data from existing systems, they might produce data that feed
other applications, and they might have to use the company’s existing communications
infrastructure. A new customer relationship management (CRM) system, for example, has
little value if it does not use customer data found across the organization in existing sales
systems, marketing applications, and customer service systems.

The assessment of a project’s technical feasibility is not cut and dried because in many
cases, some interpretation of the underlying conditions is needed (e.g., how large a project
needs to grow before it becomes less feasible). One approach is to compare the project
under consideration with prior projects undertaken by the organization. Another option is
to consult with experienced IT professionals in the organization or external IT consultants;
often they are able to judge whether a project is feasible from a technical perspective.

56 Chapter 2 Project Management

Health care is a big industry in the United States, and
with the baby boomers born in the late 1940s and 1950s
(after World War II) starting to retire, there will be huge
demands for senior health care. The desire is for better
technologies to allow grandpa and grandma to live inde-
pendently in their own homes or apartments longer— and
not to use the more expensive options of nursing homes
and assisted-living centers. Some technologies include
vital-sign monitoring and reporting; motion detectors that
sense if somebody has fallen; sensors to turn off the stove

that might have been left on; and Internet portals so that
family members can check on the health of their loved
ones.

Questions

1. How can technology assist with keeping retirees
healthy?

2. How can technology help keep retirees out of
expensive nursing homes and centers?

2-C Caring for Grandpa and GrandmaCONCEPTS

IN ACTION

Economic Feasibility
The second element of a feasibility analysis is to perform an economic feasibility analysis
(also called a cost–benefit analysis), which identifies the financial risk associated with the
project. It attempts to answer the question, Should we build the system? Economic feasibility
is determined by identifying costs and benefits associated with the system, assigning values to

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 56

them, and then calculating the cash flow and return on investment for the project. The more
expensive the project, the more rigorous and detailed the analysis should be. Figure 2-4 lists
the steps in performing a cost–benefit analysis; each step is described in the following
sections.

Identifying Costs and Benefits The first task when developing an economic feasibility
analysis is to identify the kinds of costs and benefits the system will have and list them along
the left-hand column of a spreadsheet. Figure 2-5 lists examples of costs and benefits that
may be included.

Costs and benefits can be broken down into four categories: development costs, oper-
ational costs, tangible benefits, and intangibles. Development costs are tangible expenses
incurred during the construction of the system, such as salaries for the project team, hard-
ware and software expenses, consultant fees, training, and office space and equipment.
Development costs are usually thought of as one-time costs. Operational costs are tangible
costs required to operate the system, such as the salaries for operations staff, software
licensing fees, equipment upgrades, and communications charges. Operational costs are
usually thought of as ongoing costs.

Revenues and cost savings are the tangible benefits the system enables the organization to
collect or the tangible expenses the system enables the organization to avoid. Tangible bene-
fits could include increased sales, reductions in staff, and reductions in inventory. Of course,
a project also can affect the organization’s bottom line by reaping intangible benefits or incur-
ring intangible costs. Intangible costs and benefits are more difficult to incorporate into the
economic feasibility because they are based on intuition and belief rather than “hard num-
bers.” Nonetheless, they should be listed in the spreadsheet along with the tangible items.

Feasibility Analysis 57

1. Identifing Costs and Benefits List the tangible costs and benefits for the pro-
ject. Include both one-time and recurring costs.

2. Assigning Values to Costs and Benefits Work with business users and IT professionals to
create numbers for each of the costs and bene-
fits. Even intangibles should be valued if at all
possible.

3. Determining Cash Flow Project what the costs and benefits will be
over a period of time, usually three to five
years. Apply a growth rate to the numbers,
if necessary.

4. Determining Net Present Value (NPV) Calculate what the value of future costs and
benefits are if measured by today’s standards.
You will need to select a rate of growth to
apply the NPV formula.

5. Determining Return on Investment (ROI) Calculate how much money the organization
will receive in return for the investment it will
make using the ROI formula.

6. Determining the Break-Even Point Find the first year in which the system has
greater benefits than costs. Apply the break-
even formula using figures from that year. This
will help you understand how long it will take
before the system creates real value for the
organization.

7. Graphing the Break-Even Point Plot the yearly costs and benefits on a line
graph. The point at which the lines cross is the
break-even point.

FIGURE 2-4
Steps for Conducting
Economic Feasibility

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 57

Assigning Values to Costs and Benefits Once the types of costs and benefits have been
identified, analysts assign specific dollar values to them. This might seem impossible; how
can someone quantify costs and benefits that haven’t happened yet? And how can those
predictions be realistic? Although this task is very difficult, analysts have to do the best they
can to come up with reasonable numbers for all the costs and benefits. Only then can the
approval committee make an educated decision about whether or not to move ahead with
the project.

The best strategy for estimating costs and benefits is to rely on the people who have the
clearest understanding of them. For example, costs and benefits related to the technology
or the project itself can be provided by the company’s IT group or external consultants, and
business users can develop the numbers associated with the business (e.g., sales projections,
order levels). Analysts can also consider past projects, industry reports, and vendor infor-
mation, although these approaches probably will be a bit less accurate. All the estimates will
probably be revised as the project proceeds.

Sometimes it is acceptable for analysts to list intangible benefits, such as improved cus-
tomer service, without assigning a dollar value, whereas other times they have to make esti-
mates regarding the value of an intangible benefit. If at all possible, they should quantify
intangible costs or benefits. Otherwise, it will not be apparent whether the costs and bene-
fits have been realized. Consider a system that is supposed to improve customer service.
This is intangible, but assume that the greater customer service will decrease the number
of customer complaints by 10 percent each year over three years and that $200,000 is spent
on phone charges and phone operators who handle complaint calls. Suddenly there are
some very tangible numbers with which to set goals and measure the original intangible
benefit.

Figure 2-6 shows costs and benefits along with assigned dollar values. Notice that the
customer service intangible benefit has been quantified based on fewer customer com-
plaint phone calls. The intangible benefit of being able to offer services that competitors
currently offer was not quantified, but it was listed so that the approval committee will con-
sider the benefit when assessing the system’s economic feasibility.

58 Chapter 2 Project Management

FIGURE 2-5
Example Costs and
Benefits for Economic
Feasibility

Development Team Salaries Software Upgrades
Consultant Fees Software Licensing Fees
Development Training Hardware Repairs
Hardware and Software Hardware Upgrades
Vendor Installation Operational Team Salaries
Office Space and Equipment Communications Charges
Data Conversion Costs User Training

Increased Sales Increased Market Share
Reductions in Staff Increased Brand Recognition
Reductions in Inventory Higher Quality Products
Reductions in IT Costs Improved Customer Service
Better Supplier Prices Better Supplier Relations

Development Costs Operational Costs

Tangible Benefits Intangible Benefits

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 58

Feasibility Analysis 59

I conducted a case study at Carlson Hospitality, a global
leader in hospitality services, encompassing more than
1,300 hotel, resort, restaurant, and cruise ship operations
in seventy-nine countries. One of its brands, Radisson
Hotels & Resorts, researched guest stay information and
guest satisfaction surveys. The company was able to
quantify how much of a guest’s lifetime value can be
attributed to his or her perception of the stay experience.
As a result, Radisson knows how much of the collective
future value of the enterprise is at stake given the per-
ceived quality of the stay experience. Using this model,

Radisson can confidently show that a 10 Percent increase
in customer satisfaction among the 10 percent of highest-
quality customers will capture a one-point market share
for the brand. Each point in market share for the Radisson
brand is worth $20 million in additional revenue.

—Barbara Wixom
Question

How can a project team use this information to help
determine the economic feasibility of a system?

2-D Intangible Value at Carlson HospitalityCONCEPTS

IN ACTION

Benefitsa

Increased sales 500,000
Improved customer serviceb 70,000
Reduced inventory costs 68,000

Total benefits 638,000

Development costs

2 servers @ $125,000 250,000
Printer 100,000
Software licenses 34,825
Server software 10,945
Development labor 1,236,525

Total development costs 1,632,295

Operational costs

Hardware 54,000
Software 20,000
Operational labor 111,788

Total operational costs 185,788

Total costs 1,818,083

a An important yet intangible benefit will be the ability to offer ser-
vices that our competitors currently offer.
b Customer service numbers have been based on reduced costs for
customer complaint phone calls.

FIGURE 2-6
Assigning Values to
Costs and Benefits

Determining Cash Flow A formal cost–benefit analysis usually contains costs and ben-
efits over a selected number of years (usually three to five years) to show cash flow over
time (see Figure 2-7). When using this cash-flow method, the years are listed across the top
of the spreadsheet to represent the time period for analysis, and numeric values are entered
in the appropriate cells within the spreadsheet’s body. Sometimes fixed amounts are
entered into the columns. For example, Figure 2-7 lists the same amount for customer
complaint calls and inventory costs for all five years. Usually amounts are augmented by

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 59

some rate of growth to adjust for inflation or business improvements, as shown by the
6 percent increase that is added to the sales numbers in the sample spreadsheet. Finally,
totals are added to determine what the overall benefits will be; the higher the overall total,
the greater the economic feasibility of the solution.

Determining Net Present Value and Return on Investment There are several problems
with the cash-flow method because it does not consider the time value of money (i.e., a
dollar today is not worth a dollar tomorrow), and it does not show the overall “bang for the
buck” that the organization is receiving from its investment. Therefore, some project teams
add additional calculations to the spreadsheet to provide the approval committee with a
more-accurate picture of the project’s worth.

Net present value (NPV) is used to compare the present value of future cash flows with
the investment outlay required to implement the project. Consider the table in Figure 2-8,
which shows the future worth of a dollar investment today, given different numbers of
years and different rates of change. If you have a friend who owes you a dollar today but
instead gives you a dollar three years from now, you’ve been had! Given a 10 percent
increase in value, you’ll be receiving the equivalent of 75 cents in today’s terms.

60 Chapter 2 Project Management

FIGURE 2-7 Cost–Benefit Analysis

Increased sales 500,000 530,000 561,800 595,508 631,238
Reduction in customer complaint calls 70,000 70,000 70,000 70,000 70,000
Reduced inventory costs 68,000 68,000 68,000 68,000 68,000

TOTAL BENEFITS: 638,000 668,000 699,800 733,508 769,238

PV OF BENEFITS: 619,417 629,654 640,416 651,712 663,552 3,204,752

PV OF ALL BENEFITS: 619,417 1,249,072 1,889,488 2,541,200 3,204,752

2 Servers @ $125,000 250,000 0 0 0 0
Printer 100,000 0 0 0 0
Software licenses 34,825 0 0 0 0
Server software 10,945 0 0 0 0
Development labor 1,236,525 0 0 0 0

TOTAL DEVELOPMENT COSTS: 1,632,295 0 0 0 0

Hardware 54,000 81,261 81,261 81,261 81,261
Software 20,000 20,000 20,000 20,000 20,000
Operational labor 111,788 116,260 120,910 125,746 130,776

TOTAL OPERATIONAL COSTS: 185,788 217,521 222,171 227,007 232,037

TOTAL COSTS: 1,818,083 217,521 222,171 227,007 232,037

PV OF COSTS: 1,765,129 205,034 203,318 201,693 200,157 2,575,331

PV OF ALL COSTS: 1,765,129 1,970,163 2,173,481 2,375,174 2,575,331

TOTAL PROJECT BENEFITS COSTS: (1,180,083) 450,479 477,629 506,501 537,201

YEARLY NPV: (1,145,712) 424,620 437,098 450,019 463,395 629,421

CUMULATIVE NPV: (1,145,712) (721,091) (283,993) 166,026 629,421

RETURN ON INVESTMENT: 24.44% (629,421/2,575,331)

BREAK-EVEN POINT: 3.63 years [break-even occurs in year 4; (450,019 ! 166,026)/450,019 " 0.63]

INTANGIBLE BENEFITS: This service is currently provided by competitors
Improved customer satisfaction

2011 2012 2013 2014 2015 Total

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 60

NPV can be calculated in many different ways, some of which are extremely complex.
Figure 2-9 shows a basic calculation that can be used in your cash flow analysis to get more
relevant values. In Figure 2-7, the present value of the costs and benefits are calculated first
(i.e., they are shown at a discounted rate). Then, net present value is calculated, and it
shows the discounted rate of the combined costs and benefits.

The return on investment (ROI) is a calculation listed somewhere on the spreadsheet
that measures the amount of money an organization receives in return for the money it
spends. A high ROI results when benefits far outweigh costs. ROI is determined by finding
the total benefits less the costs of the system and dividing that number by the total costs of
the system (see Figure 2-9). ROI can be determined per year or for the entire project over
a period of time. One drawback of ROI is that it considers only the end points of the invest-
ment, not the cash flow in between, so it should not be used as the sole indicator of a pro-
ject’s worth. The spreadsheet in Figure 2-7 shows an ROI figure.

Determining the Break-Even Point If the project team needs to perform a rigorous
cost–benefit analysis, it might need to include information about the length of time before
the project will break even, or when the returns will match the amount invested in the pro-
ject. The greater the time it takes to break even, the riskier the project. The break-even point
is determined by looking at the cash flow over time and identifying the year in which the

Feasibility Analysis 61

1 0.943 0.909 0.870
2 0.890 0.826 0.756
3 0.840 0.751 0.572
4 0.792 0.683 0.497

This table shows how much a dollar today is worth 1 to 4 years from now
in today’s terms using different interest rates.

Number of years 6% 10% 15%

FIGURE 2-8
The Value of a Future
Dollar Today

Present Value (PV) The amount of an investment today Amount
compared to that same amount in the future,
taking into account inflation and time. (1 # interest rate)n

n " number of years in future

Net Present Value (NPV) The present value of benefit less the present PV Benefits ! PV Costs
value of costs.

Return on Investment (ROI) The amount of revenues or cost savings results Total benefits ! Total costs
from a given investment. Total costs

Break-Even Point The point in time at which the costs of the Yearly NPV* ! Cumulative NPV
project equal the value it has delivered. Yearly NPV*

*Use the Yearly NPV amount from the first year in which
the project has a positive cash flow.

Add the above amount to the year in which the project
has a positive cash flow.

Calculation Definition Formula

FIGURE 2-9 Financial Calculations Used For Cost–Benefit Analysis

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 61

benefits are larger than the costs (see Figure 2-7). Then, the difference between the yearly
and cumulative NPV for that year is divided by the yearly NPV to determine how far into
the year the break-even point will occur. See Figure 2-9 for the break-even calculation. The
break-even point also can be depicted graphically, as shown in Figure 2-10. The cumulative
present value of the costs and benefits for each year are plotted on a line graph; the point
at which the lines cross is the break-even point.

62 Chapter 2 Project Management

The FBI’s failure to roll out an expanded computer system
that would help agents investigate criminals and terrorists
is the latest in a series of costly technology blunders by
the government over more than a decade. Experts blame
poor planning, rapid industry advances, and the massive
scope of some complex projects, whose price tags can
run into billions of dollars at U.S. agencies with tens of
thousands of employees. “There are very few success
stories,” said Paul Brubaker, former deputy chief informa-
tion officer at the Pentagon. “Failures are very common,
and they’ve been common for a long time.” The FBI said
earlier this month it might shelve its custom-built, $170
million “Virtual Case File” project because it is inade-
quate and outdated. The system was intended to help
agents, analysts, and others around the world share infor-
mation without using paper or time-consuming scanning
of documents. Officials said commercial software might
accomplish some of what the FBI needs. The bureau’s

mess—the subject of an investigation by the Justice
Department and an upcoming congressional hearing—
was the latest black eye among ambitious technology
upgrades by the government since the 1990s.

Questions

Some systems like this are very complex. They must have
security, and they must interface among the FBI, CIA, and
other government agencies as well as state and local law
enforcement groups. Such complexity can take years to
build and is almost guaranteed to fail because of newer
technologies that come along during the wait. How might
you keep a complex project on track? What commercial
software might work in this case (as mentioned in the
case?)
Source: www.securityfocus.com/news/10383

2-E The FBI Pulls the Plug on a ProjectCONCEPTS

IN ACTION

Break-even Point
1 2 3 54

0

500,000

1,000,000

1,500,000

2,000,000

D
ol

la
rs

2,500,000

3,500,000

Years

3,000,000
Costs
Benefits

FIGURE 2-10
Break-even Graph

Alternatives to Traditional Cost–Benefit Analysis Concerns have been raised about
the appropriateness of using traditional cost–benefit analysis with NPV and ROI to deter-
mine economic feasibility of an IT project. One of the major problems of using traditional
cost–benefit analysis to determine the economic feasibility of an IT investment is that tra-
ditional cost–benefit analysis is based on the assumption that the investor must either

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 62

invest now or not invest at all. However, in most IT investment decisions, the decision to
invest is not a now-or-never decision. In most situations, an information system is already
in place, and the decision to replace or upgrade the current information system can usu-
ally be delayed. Different proposals have been made to overcome some of the weaknesses
in traditional cost–benefit analysis. For example, economic production models, activity-
based costing, and balanced score cards have been suggested.3

In this section, we describe the primary alternative that has been proposed for
object-oriented systems: option pricing models (OPMs).4 At this point in time, OPMs
have had limited use in economic feasibility analysis for IT investment decisions in
industry. In fact, there is some controversy as to whether an instrument created for a
traded asset (stock) can be used in evaluating IT investment opportunities. However, the
preliminary research results demonstrate that their use in IT investment evaluations may
be warranted. OPMs have shown promise in evaluating the potential future value of an
investment in IT. In many cases in which traditional cost–benefit analysis of investments
in IT has predicted that the investment would be a failure, OPMs have shown that it
might indeed be feasible.

With object-oriented systems, where classes are designed not only for the current
application but also for use in future development efforts, an investment in developing a
class or a set of classes can pay dividends well beyond the original system development
effort. Furthermore, with the iterative and incremental development emphasis in object-
oriented systems development approaches, an object-oriented project can be viewed as a
sequence of smaller projects. Thus, you might treat investments in an object-oriented pro-
ject much as you would an investment in a call option in finance. A call option is essentially
a contract that gives the right to purchase an amount of stock for a given price for a spec-
ified period of time to the purchaser of the call option. However, a call option does not
create an obligation to buy the stock.

Treating an IT investment as a call option allows management, at a relevant point in
the future, to determine whether additional investment into the evolving system is reason-
able. This gives management the flexibility to determine the economic feasibility of a pro-
ject to decide whether to continue with the development as planned, to abandon the
project, to expand the scope of the project, to defer future development, or to shrink the
current development effort. In many ways, treating IT investments as call options simply
allows management to delay investment decisions until more information is available.
Once the decision is made to invest (i.e., the call option is exercised) the decision is considered

Feasibility Analysis 63

3 See, for example, Q. Hu, R. Plant, and D. Hertz, “Software Cost Estimation Using Economic Production Models,”
Journal of MIS 15, no. 1 (Summer 1998): 143–163; G. Ooi and C. Soh, “Developing an Activity-based Approach
for System Development and Implementation,” ACM Data Base for Advances in Information Systems 34, no. 3
(Summer 2003): 54–71; and K. Milis and R. Mercken,“The Use of the Balanced Scorecard for the Evaluation of
Information and Communication Technology Projects,” International Journal of Project Management 22 (2004):
87–97.
4 For more information regarding the use of option pricing models in evaluating economic feasibility of infor-
mation systems, see M. Benaroch and R. Kauffman, “A Case for Using Real Options Pricing Analysis to Evaluate
Information Technology Project Investments,” Information Systems Research 10, no. 1 (March 1999): 70–86; M.
Benaroch and R. Kauffman, “Justifying Electronic Banking Network Expansion Using Real Options Analysis,” MIS
Quarterly 24, no. 2 (June 2000): 197–225; Q. Dai, R. Kauffman, and S. March, “Analyzing Investments in Object-
Oriented Middleware,” Ninth Workshop on Information Technologies and Systems (December 1999): 45–50; A.
Kambil, J. Henderson, and H. Mohsenzadeh, Strategic Management of Information Technology Investments: An
Options Perspective, in R. D. Banker, R. J. Kauffman, and M. A. Mahmood (eds.), Strategic Information Technology
Management: Perspectives on Organizational Growth and Competitive Advantage (Harrisburg, PA: Idea Group,
1993); A. Taudes, “Software Growth Options,” Journal of Management Information Systems 15, no. 1 (Summer
1998): 165–185; A. Taudes, M. Feurstein, and A. Mild, “Options Analysis of Software Platform Decisions: A Case
Study,” MIS Quarterly 24, no. 2 (June 2000): pp. 227–243.

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 63

irreversible. The idea of irreversible decisions is one of the fundamental assumptions
on which OPMs are based. This assumption fits quite well with modern object-oriented
systems development approaches, in which, once an iteration has begun, an increment is
completed before another investment decision is made.

Researchers have studied many different OPMs in terms of their applicability to IT
investment.5 However, all OPMs share a common thread: Both the direct benefit of the
proposed project and the indirect value (option value) must be computed to determine
economic feasibility of an IT investment using an OPM. The direct benefit can be com-
puted using the traditional NPV, whereas the value of the option can be computed using
one of the OPMs in the literature. Given that the minimum expected value of an option
is always zero, the minimum estimated value for investing using an OPM will be the same
as the value given by the traditional approach. However, when the expected value of the
option (e.g., future iterations or projects) exceeds zero, an OPM will give an estimated
value greater than the traditional approach. The actual calculation of the value of an
option is quite complex and is beyond the scope of this book. However, given how well the
OPMs fit the object-oriented systems development approaches, it seems reasonable that
OPMs should be considered as alternatives to evaluating IT investments in object-oriented
systems.

Organizational Feasibility
The final type of feasibility analysis is to assess the organizational feasibility of the system,
how well the system ultimately will be accepted by its users and incorporated into the
ongoing operations of the organization. There are many organizational factors that can
have an effect on the project, and seasoned developers know that organizational feasibility
can be the most difficult feasibility dimension to assess. In essence, an organizational fea-
sibility analysis attempts to answer the question, If we build it, will they come?

One way to assess the organizational feasibility of the project is to understand how well
the goals of the project align with business objectives. Strategic alignment is the fit between
the project and business strategy—the greater the alignment, the less risky the project will
be from an organizational feasibility perspective. For example, if the marketing department
has decided to become more customer focused, then a CRM project that produces inte-
grated customer information would have strong strategic alignment with marketing’s goal.
Many IT projects fail when the IT department initiates them, because there is little or no
alignment with business unit or organizational strategies.

A second way to assess organizational feasibility is to conduct a stakeholder analysis.6 A
stakeholder is a person, group, or organization that can affect (or will be affected by) a new
system. In general, the most important stakeholders in the introduction of a new system are
the project champion, system users, and organizational management (see Figure 2-11), but
systems sometimes affect other stakeholders as well. For example, the IS department can be
a stakeholder of a system because IS jobs or roles may be changed significantly after its
implementation. One key stakeholder outside of the champion, users, and management in
Microsoft’s project that embedded Internet Explorer as a standard part of Windows was the
U.S. Department of Justice.

64 Chapter 2 Project Management

5 Two of the more important OPMs used for evaluating IT investments are the binomial OPM and the Black-
Scholes OPM. For more information on these models see J. C. Hull, Options, Futures, and Other Derivative
Securities (Englewood Cliffs, NJ: Prentice-Hall, 1993).
6 A good book that presents a series of stakeholder analysis techniques is R. O. Mason and I. I. Mittroff, Challenging
Strategic Planning Assumptions: Theory, Cases, and Techniques (New York: Wiley, 1981).

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 64

The champion is a high-level, non–information systems executive who is usually, but
not always, the project sponsor who created the system request. The champion supports
the project with time, resources (e.g., money), and political support within the organiza-
tion by communicating the importance of the system to other organizational decision
makers. More than one champion is preferable because if the champion leaves the organi-
zation, the support could leave as well.

Whereas champions provide day-to-day support for the system, organizational man-
agement also needs to support the project. Such management support conveys to the rest
of the organization the belief that the system will make a valuable contribution and that
necessary resources will be made available. Ideally, management should encourage people
in the organization to use the system and to accept the many changes that the system will
likely create.

A third important group of stakeholders are the system users who will ultimately use
the system once it has been installed in the organization. Too often, the project team meets
with users at the beginning of a project and then disappears until after the system is cre-
ated. In this situation, rarely does the final product meet the expectations and needs of
those who are supposed to use it because needs change and users become savvier as the
project progresses. User participation should be promoted throughout the development
process to make sure that the final system will be accepted and used by getting users actively
involved in the development of the system (e.g., performing tasks, providing feedback,
making decisions).

Finally, the feasibility study helps organizations make wiser investments regarding
information systems because it forces project teams to consider technical, economic, and
organizational factors that can affect their projects. It protects IT professionals from criti-
cism by keeping the business units educated about decisions and positioned as the leaders
in the decision-making process. Remember, the feasibility study should be revised several
times during the project at points where the project team makes critical decisions about the
system (e.g., before the design begins). It can be used to support and explain the critical
choices that are made throughout the development process.

Feasibility Analysis 65

Champion A champion: • Make a presentation about the objectives of the
• Initiates the project project and the proposed benefits to those executives
• Promotes the project who will benefit directly from the system
• Allocates his or her time to project • Create a prototype of the system to demonstrate its
• Provides resources potential value

Organizational Organizational managers: • Make a presentation to management about the
Management • Know about the project objectives of the project and the proposed benefits

• Budget enough money for the project • Market the benefits of the system using memos and
• Encourage users to accept and use the system organizational newsletters

• Encourage the champion to talk about the project
with his or her peers

System Users Users: • Assign users official roles on the project team
• Make decisions that influence the project • Assign users specific tasks to perform with clear
• Perform hands-on activities for the project deadlines
• Ultimately determine whether the project is • Ask for regular feedback from users (e.g., at

successful by using or not using the system weekly meetings)

Role Techniques for improvement

FIGURE 2-11 Some Important Stakeholders for Organizational Feasibility

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 65

PROJECT SELECTION
Once the feasibility analysis has been completed, it is submitted to the approval commit-
tee, along with a revised system request. The committee then decides whether to approve
the project, decline the project, or table it until additional information is available. At the
project level, the committee considers the value of the project by examining the business
need (found in the system request) and the risks of building the system (presented in the
feasibility analysis).

Before approving the project, however, the committee also considers the project from
an organizational perspective; it has to keep in mind the company’s entire portfolio of pro-
jects. This way of managing projects is called portfolio management. Portfolio management
takes into consideration the different kinds of projects that exist in an organization—large
and small, high risk and low risk, strategic and tactical. (See Figure 2-12 for the different
ways of classifying projects.) A good project portfolio has the most appropriate mix of pro-
jects for the organization’s needs. The committee acts as portfolio manager with the goal of
maximizing the cost–benefit performance and other important factors of the projects in
their portfolio. For example, an organization might want to keep high-risk projects to less
than 20 percent of its total project portfolio.

66 Chapter 2 Project Management

Think about the idea that you developed in Your Turn 2-2
to improve your university or college course enrollment.

Questions

1. List three things that influence the technical feasibility
of the system.

2. List three things that influence the economic feasi-
bility of the system.

3. List three things that influence the organizational
feasibility of the system.

4. How can you learn more about the issues that affect
the three kinds of feasibility?

2-3 Create a Feasibility AnalysisYOUR

TURN

Size What is the size? How many people are needed to work on the
project?

Cost How much will the project cost the organization?

Purpose What is the purpose of the project? Is it meant to improve the
technical infrastructure? Support a current business strategy?
Improve operations? Demonstrate a new innovation?

Length How long will the project take before completion? How much
time will go by before value is delivered to the business?

Risk How likely is it that the project will succeed or fail?

Scope How much of the organization is affected by the system? A
department? A division? The entire corporation?

Return on investment How much money does the organization expect to receive in
return for the amount the project costs?

FIGURE 2-12
Ways to Classify
Projects

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 66

The approval committee must be selective about where to allocate resources, because
the organization has limited funds. This involves trade-offs, in which the organization
must give up something in return for something else to keep its portfolio well balanced.
If there are three potentially high-payoff projects, yet all have very high risk, then perhaps
only one of the projects will be selected. Also, there are times when a system at the project
level makes good business sense, but it does not make sense at the organization level.
Thus, a project may show a very strong ROI and support important business needs for a
part of the company, but it is not selected. This could happen for many reasons—because
there is no money in the budget for another system, the organization is about to go
through some kind of change (e.g., a merger or an implementation of a company-wide
system like an enterprise resource plan [ERP]), projects that meet the same business
requirements already are under way, or the system does not align well with current or
future corporate strategy.

Project Selection 67

It seems hard to believe that an approval committee
would not select a project that meets real business needs,
has a high potential ROI, and has a positive feasibility
analysis. Think of a company you have worked for or

know about. Describe a scenario in which a project might
be very attractive at the project level but not at the
organization level.

2-4 To Select or Not to SelectYOUR

TURN

At Marriott, we don’t have IT projects—we have business
initiatives and strategies that are enabled by IT. As a result,
the only time a traditional “IT project” occurs is when we
have an infrastructure upgrade that will lower costs or
leverage better-functioning technology. In this case, IT has
to make a business case for the upgrade and prove its
value to the company.

The way IT is involved in business projects in the
organization is twofold. First, senior IT positions are
filled by people with good business understanding. Sec-
ond, these people are placed on key business commit-
tees and forums where the real business happens, such
as finding ways to satisfy guests. Because IT has a seat at
the table, we are able to spot opportunities to support
business strategy. We look for ways in which IT can
enable or better support business initiatives as they
arise.

Therefore, business projects are proposed, and IT is
one component of them. These projects are then evalu-
ated the same as any other business proposal, such as a
new resort—by examining the return on investment and
other financial measures.

At the organizational level, I think of projects as must-
do’s, should-do’s, and nice-to-do’s. The must-do’s are
required to achieve core business strategy, such as guest pref-
erence. The should-do’s help grow the business and enhance
the functionality of the enterprise. These can be somewhat
untested, but good drivers of growth. The nice-to-do’s are
more experimental and look farther out into the future.

The organization’s project portfolio should have a
mix of all three kinds of projects, with a much greater pro-
portion devoted to the must-do’s.

—Carl Wilson

2-F Interview with Carl Wilson, CIO, Marriott CorporationCONCEPTS

IN ACTION

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 67

68 Chapter 2 Project Management

Hygeia Travel Health is a Toronto-based health insurance
company whose clients are the insurers of foreign tourists
to the United States and Canada. Its project selection
process is relatively straightforward. The project evalua-
tion committee, consisting of six senior executives, splits
into two groups. One group includes the CIO, along with
the heads of operations and research and development,
and it analyzes the costs of every project. The other group
consists of the two chief marketing officers and the head
of business development, and they analyze the expected
benefits. The groups are permanent, and to stay objective,
they don’t discuss a project until both sides have evalu-
ated it. The results are then shared, both on a spreadsheet
and in conversation. Projects are then approved, passed
over, or tabled for future consideration.

Last year, the marketing department proposed pur-
chasing a claims database filled with detailed information
on the costs of treating different conditions at different facil-
ities. Hygeia was to use this information to estimate how
much money insurance providers were likely to owe on a
given claim if a patient was treated at a certain hospital as
opposed to any other. For example, a 45-year-old man suf-
fering a heart attack might accrue $5,000 in treatment costs
at hospital A but only $4,000 at hospital B. This information

would allow Hygeia to recommend the cheaper hospital to
its customer. That would save the customer money and help
differentiate Hygeia from its competitors.

The benefits team used the same three-meeting
process to discuss all the possible benefits of implement-
ing the claims database. Members of the team talked to
customers and made a projection using Hygeia’s past
experience and expectations about future business trends.
The verdict: The benefits team projected a revenue
increase of $210,000. Client retention would rise by 2
percent. Overall, profits would increase by 0.25 percent.

The costs team, meanwhile, came up with large esti-
mates: $250,000 annually to purchase the database and
an additional $71,000 worth of internal time to make the
information usable. Putting it all together, it was a finan-
cial loss of $111,000 in the first year.

The project still could have been good for marketing—
maybe even good enough to make the loss acceptable.
But some of Hygeia’s clients were also in the claims infor-
mation business and therefore were potential competi-
tors. This, combined with the financial loss, was enough
to make the company reject the project.
Source: Ben Worthen, “Two Teams are Better than One” CIO Magazine,
(July 15, 2001).

2-G A Project That Does Not Get SelectedCONCEPTS

IN ACTION

In April 1999, one of Capital Blue Cross’s health-care
insurance plans had been in the field for three years but
hadn’t performed as well as expected. The ratio of premi-
ums to claims payments wasn’t meeting historic norms. To
revamp the product features or pricing to boost perfor-
mance, the company needed to understand why it was
underperforming. The stakeholders came to the discus-
sion already knowing they needed better extraction and
analysis of usage data to understand product shortcom-
ings and recommend improvements.

After listening to input from the user teams, the stake-
holders proposed three options. One was to persevere
with the current manual method of pulling data from flat
files via ad hoc reports and retyping it into spreadsheets.

The second option was to write a program to dynam-
ically mine the needed data from Capital’s customer
information control system (CICS). While the system was

processing claims, for instance, the program would pull
out up-to-the-minute data at a given point in time for
users to analyze.

The third alternative was to develop a decision sup-
port system to allow users to make relational queries from
a data mart containing a replication of the relevant claims
and customer data. Each of these alternatives was evalu-
ated on cost, benefits, risks, and intangibles.

Questions

1. What are three costs, benefits, risks, and intangibles
associated with each project?

2. Based on your answer to question 1, which project
would you choose?

Source: Richard Pastore, “Capital Blue Cross,” CIO Magazine
(February 15, 2000).

2-5 Project SelectionYOUR

TURN

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 68

TRADITIONAL PROJECT MANAGEMENT TOOLS
Before we get to actually creating a workplan that is suitable to manage and control an
object-oriented systems development project, we need to introduce a set of project man-
agement tools that have been used to successfully manage traditional software develop-
ment projects (and many other types of projects): a work-breakdown structure, a Gantt
chart, and a network diagram. However, before we can begin covering these tools, we must
first understand what a task is. A task is a unit of work that will be performed by a mem-
ber or members of the development team, such as feasibility analysis. Each task is described
by information such as its name, start and completion dates, person assigned to complete
the task, deliverables, completion status, priority, resources needed, estimated time to com-
plete the task, and the actual time it took to complete the task (see Figure 2-13). The first
thing a project manager must do is to identify the tasks that need to be accomplished and
determine how long each task will take. Tasks and their identification and documentation
are the basis of all three of these tools. Once the tasks have been identified and documented,

Traditional Project Management Tools 69

I was once on a project to develop a system that should
have taken a year to build. Instead, the business need
demanded that the system be ready within five months—
impossible!

On the first day of the project, the project manager
drew a triangle on a white board to illustrate some trade-offs
that he expected to occur over the course of the project. The
corners of the triangle were labeled Functionality, Time, and
Money. The manager explained, “We have too little time.
We have an unlimited budget. We will not be measured
by the bells and whistles that this system contains. So over
the next several weeks, I want you as developers to keep
this triangle in mind and do everything it takes to meet
this five-month deadline.”

At the end of the five months, the project was deliv-
ered on time; however, the project was incredibly over

budget, and the final product was “thrown away” after it
was used because it was unfit for regular use. Remarkably,
the business users felt that the project was very successful
because it met the very specific business needs for which
it was built. They believed that the trade-offs that were
made were worthwhile.

—Barbara Wixom

Questions

1. What are the risks in stressing only one corner of
the triangle?

2. How would you have managed this project? Can
you think of another approach that might have been
more effective?

2-H Trade-offsCONCEPTS

IN ACTION

Name of the task Perform economic feasibility
Start date Jan 05, 2010
Completion date Jan 19, 2010
Person assigned to the task Project sponsor: Mary Smith
Deliverable(s) Cost–benefit analysis
Completion status Open
Priority High
Resources that are needed Spreadsheet software
Estimated time 16 hours
Actual time 14.5 hours

Workplan Information Example

FIGURE 2-13
Task Information

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 69

they are organized within a work breakdown structure that is used to drive the creation of
Gantt charts and network diagrams that can be used to graphically portray a traditional
workplan. These techniques help a project manager understand and manage the project’s
progress over time.

Work Breakdown Structures
If a project manager prefers to begin from scratch, he or she can use a structured, top-
down approach whereby high-level tasks are first defined and then broken down into
subtasks. For example, Figure 2-14 shows a list of high-level tasks needed to implement
a new IT training class. Some of the main steps in the process include identifying ven-
dors, creating and administering a survey, and building new classrooms. Each step is then
broken down in turn and numbered in a hierarchical fashion. There are eight subtasks
(i.e., 7.1–7.8) for creating and administering a survey, and there are three subtasks
(7.2.1–7.2.3) that make up the review initial survey task. A list of tasks hierarchically
numbered in this way is called a work breakdown structure (WBS). The number of tasks
and level of detail depend on the complexity and size of the project. At a minimum, the
WBS must include the duration of the task, the current statuses of the tasks (i.e., open,
complete), and the task dependencies, which occur when one task cannot be performed
until another task is completed. For example, Figure 2-14 shows that incorporating
changes to the survey (task 7.4) takes a week to perform, but it cannot occur until after
the survey is reviewed (task 7.2) and pilot tested (task 7.3). Key milestones, or important
dates, are also identified on the workplan.

There are two basic approaches to organizing a traditional WBS: by development
phase or by product. For example, if a firm decided that it needed to develop a website,
the firm could create a WBS based on the inception, elaboration, construction, and

70 Chapter 2 Project Management

1 Identify vendors 2 Complete
2 Review training materials 6 1 Complete
3 Compare vendors 2 2 In Progress
4 Negotiate with vendors 3 3 Open
5 Develop communications information 4 1 In Progress
6 Disseminate information 2 5 Open
7 Create and administer survey 4 6 Open
7.1 Create initial survey 1 Open
7.2 Review initial survey 1 7.1 Open

7.2.1 Review by Director of IT Training 1 Open
7.2.2 Review by Project Sponsor 1 Open
7.2.3 Review by Representative Trainee 1 Open

7.3 Pilot test initial survey 1 7.1 Open
7.4 Incorporate survey changes 1 7.2, 7.3 Open
7.5 Create distribution list 0.5 Open
7.6 Send survey to distribution list 0.5 7.4, 7.5 Open
7.7 Send follow-up message 0.5 7.6 Open
7.8 Collect completed surveys 1 7.6 Open

8 Analyze results and choose vendor 2 4, 7 Open
9 Build new classrooms 11 1 In Progress

10 Develop course options 3 8, 9 Open

Task Duration
Number Task Name (in weeks) Dependency Status

FIGURE 2-14
Work Breakdown
Structure

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 70

transition phases of the Unified Process. In this case, a typical task that would take place
during inception would be feasibility analysis. This task would be broken down into the
different types of feasibility analysis: technical, economic, and organizational. Each of
these would be further broken down into a set of subtasks. Alternatively, the firm could
organize the workplan along the lines of the different products to be developed. For exam-
ple, in the case of a website, the products could include applets, application servers, data-
base servers, the various sets of Web pages to be designed, a site map, and so on. Then
these would be further decomposed into the different tasks associated with the phases of
the development process. Either way, once the overall structure is determined, tasks are
identified and included in the WBS. We return to the topic of WBSs and their use in iter-
ative planning later in this chapter.

Gantt Chart
A Gantt chart is a horizontal bar chart that shows the same task information as the
project WBS but in a graphical way. Sometimes a picture really is worth a thousand words,
and the Gantt chart can communicate the high-level status of a project much faster and
easier than the WBS. Creating a Gantt chart is simple and can be done using a spreadsheet
package, graphics software (e.g., Microsoft Visio), or a project management package.

First, tasks are listed as rows in the chart, and time is listed across the top in increments
based on the needs of the projects (see Figure 2-15). A short project may be divided into
hours or days, whereas a medium-sized project may be represented using weeks or months.
Horizontal bars are drawn to represent the duration of each task; the bar’s beginning and
end mark exactly when the task will begin and end. As people work on tasks, the appro-
priate bars are filled in proportionately to how much of the task is finished. Too many tasks
on a Gantt chart can become confusing, so it’s best to limit the number of tasks to around
twenty or thirty. If there are more tasks, break them down into subtasks and create Gantt
charts for each level of detail.

There are many things a project manager can see quickly by looking at a Gantt chart.
In addition to seeing how long tasks are and how far along they are, the project manager
also can tell which tasks are sequential, which tasks occur at the same time, and which tasks
overlap in some way. He or she can get a quick view of tasks that are ahead of schedule and
behind schedule by drawing a vertical line on today’s date. If a bar is not filled in and is to
the left of the line, that task is behind schedule.

There are a few special notations that can be placed on a Gantt chart. Project milestones
are shown using upside-down triangles or diamonds. Arrows are drawn between the task
bars to show task dependencies. Sometimes, the names of people assigned to each task are
listed next to the task bars to show what human resources have been allocated to the tasks.

Network Diagram
A second graphical way to look at project workplan information is the network diagram
that lays out the project tasks in a flowchart (see Figure 2-16). Program Evaluation and
Review Technique (PERT) is a network analysis technique that can be used when the indi-
vidual task time estimates are fairly uncertain. Instead of simply putting a point estimate
for the duration estimate, PERT uses three time estimates: optimistic, most likely, and a
pessimistic. It then combines the three estimates into a single weighted average estimate
using the following formula:

PERT weighted average !

optimistic estimate " (4 * most likely estimate)
+ pessimistic estimate

6

Traditional Project Management Tools 71

c02ProjectManagement.qxd 12/2/11 7:13 PM Page 71

The network diagram is drawn as a node-and-arc type of graph that shows time estimates
in the nodes and task dependencies on the arcs. Each node represents an individual task,
and a line connecting two nodes represents the dependency between two tasks. Partially
completed tasks are usually displayed with a diagonal line through the node, and com-
pleted tasks contain crossed lines.

Network diagrams are the best way to communicate task dependencies because they
lay out the tasks in the order in which they need to be completed. The critical path method
(CPM) simply allows the identification of the critical path in the network. The critical path
is the longest path from the project inception to completion. The critical path shows all the
tasks that must be completed on schedule for a project as a whole to finish on schedule. If
any tasks on the critical path take longer than expected, the entire project will fall behind.
Each task on the critical path is a critical task, and they are usually depicted in a unique way;

72 Chapter 2 Project Management

ID

1

2

3

4

5

Identify
vendors

Review
training
materials
Compare
vendors

Negotiate
with
vendors
Develop
communications
information
Disseminate
information

Create and
administer
survey
Analyze results
and choose

Build new
classroom

Develop
course
options
Budget
Meeting

Software
Installation

6

7

8

9

10

11

12

2 wks Wed
1/1/12

Wed
1/1/12

Wed
2/12/12

Wed
2/26/12

Wed
1/15/12

Wed
2/12/12

Wed
2/26/12

Wed
3/26/12

Wed
1/15/12

Wed
4/9/12

Wed
1/15/12

Tue
4/1/12

6 wks
Barbara

Barbara

Barbara

Alan

Alan

Alan

Alan

Alan

David

D

2 wks

3 wks

4 wks

2 wks

4 wks

2 wks

11 wks

3 wks

2

3

1

5

6

4, 7

1

8, 9

1 day

1 day

Task
Name Duration Start

Tue
1/14/12

Tue
2/11/12

Tue
2/25/12

Tue
3/8/12

Tue
2/11/12

Tue
2/25/12

Tue
3/25/12

Tue
4/8/12

Tue
4/1/12

Tue
4/29/12

Wed
1/15/12

Tue
4/1/12

Finish
12/29 1/5 1/12

1/15

4/1

1/19 1/26 2/2 2/9 2/16 2/23 3/2 3/9 3/16 3/23 3/30 4/6 4/13 4/20 4/27
Prede

January February March April M

FIGURE 2-15 Gantt Chart

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 72

in Figure 3-8 they are shown with double borders (see tasks 5, 6, 7, 8, and 10). CPM can be
used with or without PERT.

PROJECT EFFORT ESTIMATION
The science (or art) of project management is in making trade-offs among three important
concepts: the functionality of the system, the time to complete the project (when the project
will be finished), and the cost of the project. Think of these three things as interdependent
levers that the project manager controls throughout the development of the system. When-
ever one lever is pulled, the other two levers are affected in some way. For example, if a pro-
ject manager needs to readjust a deadline to an earlier date, then the only solutions are to
decrease the functionality of the system or to increase costs by adding more people or hav-
ing them work overtime. Often, a project manager has to work with the project sponsor to
change the goals of the project, such as developing a system with less functionality or
extending the deadline for the final system, so that the project has reasonable goals that can
be met. In the beginning of the project, the manager needs to estimate each of these levers
and then continuously assess how to roll out the project in a way that meets the organiza-
tion’s needs. Estimation is the process of assigning projected values for time and effort. The
estimates developed at the start of a project are usually based on a range of possible values
and gradually become more specific as the project moves forward. That is, the range of val-
ues for the inception phase will be much greater than for the transition phase.

The numbers used to calculate these estimates can come from several sources. For
example they can be taken from projects with similar tasks and technologies or provided
by experienced developers. Generally speaking, the numbers should be conservative. A
good practice is to keep track of the actual values for time and effort during the develop-
ment process so that numbers can be refined along the way and the next project can benefit

Project Effort Estimation 73

Budget meeting

11
Wed 1/15/12

1 day Wed
Wed 1/15/12

Software installation

12
Tue 4/1/12

1 day Tue
Tue 4/1/12

Identify vendors

1
Wed 1/1/12

2 wks Tue
Tue 1/14/12

Build new classroom

9
Wed 1/15/12

11 wks Tue
Tue 4/1/12

Compare vendors

3
Wed 2/12/12

2 wks Tue
Tue 2/25/12

Negotiate with vendors

4
Wed 2/26/12

3 wks Tue
Tue 3/18/12

Review training materials

2
Wed 1/1/12

6 wks Tue
Tue 2/11/12

Develop communications
Information
5
Wed 1/15/12

4 wks Tue
Tue 2/11/12

Disseminate information

6
Wed 2/12/12

2 wks Tue
Tue 2/25/12

Create and administer
survey
7
Wed 2/26/12

4 wks Tue
Tue 3/25/12

Analyze results and
choose vendor
8
Wed 3/26/12

2 wks Tue
Tue 4/8/12

Develop course options

10
Wed 4/9/12

3 wks Tue
Tue 4/29/12

FIGURE 2-16 Network Diagram

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 73

from real data. One of the greatest strengths of information systems consulting firms is the
past experience they offer to a project; they have estimates and methodologies that have
been developed and honed over time and applied to hundreds of projects.

There are a variety of ways to estimate the time required to build a system. Because the
Unified Process is use-case driven, we use an approach that is based on use cases: use-case
points.7 Use-case points, originally developed by Gustav Karner of Objectory AB,8 are based on
unique features of use cases and object orientation. From a practical point of view, to estimate
effort using use-case points, the use cases and the use-case diagram must have been created.9

Use-case models have two primary constructs: actors and use cases. An actor represents
a role that a user of the system plays, not a specific user. For example, a role could be secre-
tary or manager. Actors can also represent other information systems that will interact with
the system under development. For use-case point estimation purposes, actors can be classi-
fied as simple, average, or complex. Simple actors are separate systems with which the current
system must communicate through a well-defined application program interface (API). Average
actors are separate systems that interact with the current system using standard communica-
tion protocols, such as TCP/IP, FTP, or HTTP, or an external database that can be accessed
using standard SQL. Complex actors are typically end users communicating with the system.
Once all of the actors have been categorized as being simple, average, or complex, the project
manager counts the number of actors in each category and enters the values into the unad-
justed actor-weighting table contained in the use-case point–estimation worksheet (see
Figure 2-17). The project manager then computes the Unadjusted Actor Weight Total (UAW).
This is computed by summing the individual results that were computed by multiplying the
weighting factor by the number of actors of each type. For example, if we assume that the
use-case diagram has zero simple, zero average, and four complex actors that interact with the
system being developed, the UAW will equal 12 (see Figure 2-18).

A use case represents a major business process that the system will perform that bene-
fits the actor(s) in some manner. Depending on the number of unique transactions that the
use case must address, such as actors, a use case can be categorized as being simple, aver-
age, or complex. A use case is classified as a simple use case if it supports one to three trans-
actions, as an average use case if it supports four to seven transactions, or as a complex use
case if it supports more than seven transactions. Once all of the use cases have been suc-
cessfully categorized, the project manager enters the number of each type of use case into
the unadjusted use-case weighting table contained in the use-case point–estimation work-
sheet (see Figure 2-17). By multiplying by the appropriate weights and summing the
results, we get the value for the unadjusted use-case weight total (UUCW). For example, if
we assume that we have three simple use cases, four average use cases, and one complex use
case, the value for the unadjusted use-case weight total is 70 (see Figure 2-18). Next, the
project manager computes the value of the unadjusted use-case points (UUCP) by simply
summing the unadjusted actor weight total and the unadjusted use-case weight total. In
this case the value of the UUCP equals 82 (see Figure 2-18).

Use-case point–based estimation also has a set of factors that are used to adjust the use-
case point value. In this case, there are two sets of factors: technical complexity factors (TCFs)
and environmental factors (EFs). There are thirteen separate technical factors and eight sepa-
rate environmental factors. The purpose of these factors is to allow the project as a whole to

74 Chapter 2 Project Management

7 The material in this section is based on descriptions of use-case points contained in Raul R. Reed, Jr., Developing
Applications with Java and UML (Reading, MA: Addison-Wesley, 2002); Geri Schneider and Jason P. Winters,
Applying Use Cases: A Practical Guide (Reading, MA: Addison-Wesley, 1998); and Kirsten Ribu, “Estimating
Object-Oriented Software Projects with Use Cases” (Master’s thesis, University of Oslo, 2001).
8 Objectory AB was acquired by Rational in 1995 and Rational is now part of IBM.
9 We cover the details of use-case modeling in Chapter 4.

c02ProjectManagement.qxd 12/2/11 7:13 PM Page 74

Project Effort Estimation 75

FIGURE 2-17 Use-Case Point–Estimation Worksheet

Unadjusted Actor Weighting Table:

Actor Type Description Weighting Factor Number Result

Simple External System with well-defined API 1
Average External System using a protocol-based 2

interface, e.g., HTTP, TCT/IP, or a database
Complex Human 3

Unadjusted Actor Weight Total (UAW)

Unadjusted Use Case Weighting Table:

Use-Case Type Description Weighting Factor Number Result

Simple 1–3 transactions 5
Average 4–7 transactions 10
Complex >7 transactions 15

Unadjusted Use-Case Weight Total (UUCW)

Unadjusted Use Case Points (UUCP) ! UAW " UUCW

Technical Complexity Factors:

Factor Number Description Weight Assigned Value (0 – 5) Weighted Value Notes

T1 Distributed system 2.0
T2 Response time or throughput 1.0

performance objectives
T3 End-user online efficiency 1.0
T4 Complex internal processing 1.0
T5 Reusability of code 1.0
T6 Ease of installation 0.5
T7 Ease of use 0.5
T8 Portability 2.0
T9 Ease of change 1.0
T10 Concurrency 1.0
T11 Special security objectives included 1.0
T12 Direct access for third parties 1.0
T13 Special user training required 1.0

Technical Factor Value (TFactor)

Technical Complexity Factor (TCF) ! 0.6 " (0.01 * TFactor)

Environmental Factors:

Factor Number Description Weight Assigned Value (0 – 5) Weighted Value Notes

E1 Familiarity with system 1.5
development process being used

E2 Application experience 0.5
E3 Object-oriented experience 1.0
E4 Lead analyst capability 0.5
E5 Motivation 1.0
E6 Requirements stability 2.0
E7 Part time staff –1.0
E8 Difficulty of programming language –1.0

Environmental Factor Value (EFactor)

Environmental Factor (EF) ! 1.4 " (#0.03 * EFactor)
Adjusted Use Case Points (UCP) ! UUCP * TCF * ECF
Effort in Person Hours ! UCP * PHM

TEMPLATE
can be found at
www.wiley.com
/college/dennis

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 75

76 Chapter 2 Project Management

FIGURE 2-18 Use-Case Point Estimation for the Appointment System

Unadjusted Actor Weighting Table:

Actor Type Description Weighting Factor Number Result

Simple External system with well-defined API 1 0 0
Average External system using a protocol-based 2 0 0

interface, e.g., HTTP, TCT/IP, or a database
Complex Human 3 4 12

Unadjusted Actor Weight Total (UAW) 12

Unadjusted Use-Case Weighting Table:

Use Case Type Description Weighting Factor Number Result

Simple 1–3 transactions 5 3 15
Average 4–7 transactions 10 4 40
Complex >7 transactions 15 1 15

Unadjusted Use Case Weight Total (UUCW) 70

Unadjusted Use-Case Points (UUCP) ! UAW " UUCW 82 ! 12 " 70

Technical Complexity Factors:

Factor Number Description Weight Assigned Value (0 – 5) Weighted Value Notes

T1 Distributed system 2.0 0 0
T2 Response time or throughput 1.0 5 5

performance objectives
T3 End-user online efficiency 1.0 3 3
T4 Complex internal processing 1.0 1 1
T5 Reusability of code 1.0 1 1
T6 Ease of installation 0.5 2 1
T7 Ease of use 0.5 4 2
T8 Portability 2.0 0 0
T9 Ease of change 1.0 2 2
T10 Concurrency 1.0 0 0
T11 Special security objectives included 1.0 0 0
T12 Direct access for third parties 1.0 0 0
T13 Special user training required 1.0 0 0

Technical Factor Value (TFactor) 15

Technical Complexity Factor (TCF) " 0.6 # (0.01 * TFactor) 0.75 " 0.6 " (0.01 * 15)

Environmental Factors:

Factor Number Description Weight Assigned Value (0 – 5) Weighted Value Notes

E1 Familiarity with system 1.5 4 6
development process being used

E2 Application experience 0.5 4 2
E3 Object-oriented experience 1.0 4 4
E4 Lead analyst capability 0.5 5 2.5
E5 Motivation 1.0 5 5
E6 Requirements stability 2.0 5 10
E7 Part-time staff –1.0 0 0
E8 Difficulty of programming language –1.0 4 –4.0

Environmental Factor Value (EFactor) 25.5

Environmental Factor (EF) ! 1.4 " (#0.03 * EFactor) 0.635 ! 1.4 " (#0.03 * 25.5)
Adjusted Use Case Points (UCP) ! UUCP * TCF * ECF 33.3375 ! 70 * 0.75 * 0.635
Effort in person-hours ! UCP * PHM 666.75 ! 20 * 33.3375

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 76

Project Effort Estimation 77

be evaluated for the complexity of the system being developed and the experience levels of
the development staff, respectively. Obviously, these types of factors can affect the effort that
a team requires to develop a system. Each of these factors is assigned a value between 0 and
5, 0 indicating that the factor is irrelevant to the system under consideration and 5 indicating
that the factor is essential for the system to be successful. The assigned values are then multi-
plied by their respective weights. These weighted values are then summed up to create a tech-
nical factor value (TFactor) and an environmental factor value (EFactor) (see Figure 2-17).

The technical factors include the following (see Figure 2-17):

! Whether the system is going to be a distributed system
! The importance of response time
! The efficiency level of the end user using the system
! The complexity of the internal processing of the system
! The importance of code reuse
! How easy the installation process has to be
! The importance of the ease of using the system
! How important it is for the system to be able to be ported to another platform
! Whether system maintenance is important
! Whether the system is going to have to handle parallel and concurrent processing
! The level of special security required
! The level of system access by third parties
! Whether special end user training is to be required.

Assuming the values for the technical factors are T1 (0), T2 (5), T3 (3), T4 (1), T5 (1),
T6 (2), T7 (4), T8 (0), T9 (2), T10 (0), T11 (0), T12 (0), and T13 (0), respectively, the
technical factor value (TFactor) is computed as the weighted sum of the individual technical
factors. In this case TFactor equals 15 (see Figure 2-18). Plugging this value into the technical
complexity factor (TCF) equation (0.6 # (.01 * TFactor) of the use-case point worksheet gives
a value of .75 for the TCF of the system (see Figures 2-17 and 2-18).

The environmental factors include the following (see Figure 2-17):

! The level of experience the development staff has with the development process
being used

! The application being developed
! The level of object-oriented experience
! The level of capability of the lead analyst
! The level of motivation of the development team to deliver the system
! The stability of the requirements
! Whether part-time staff have to be included as part of the development team
! The difficulty of the programming language being used to implement the system

Assuming the values for the environmental factors were E1 (4), E2 (4), E3 (4), E4 (5), E5
(5), E6 (5), E7 (0), and E8 (4) gives an environmental factor value (EFactor) of 25.5 (See Fig-
ure 2-14). Like the TFactor, Efactor is simply the sum of the weighted values. Using the
environmental factor (EF) equation (1.4 # (!0.03 * EFactor) of the use-case point work-
sheet produces a value of .635 for the EF of the system (see Figures 2-17 and 2-18). Plugging
the TCF and EF values, along with the UUCP value computed earlier, into the adjusted use-
case points equation (UUCP * TCF * EF) of the worksheet yields a value of 33.3375
adjusted use-case points (UCP) (see Figure 2-18).

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 77

78 Chapter 2 Project Management

Imagine that job hunting has been going so well that you
need to develop a system to support your efforts. The sys-
tem should allow you to input information about the
companies with which you interview, the interviews and
office visits that you have scheduled, and the offers you
receive. It should be able to produce reports, such as a
company contact list, an interview schedule, and an
office visit schedule, as well as produce thank-you letters
to be brought into a word processor to customize. You
also need the system to answer queries, such as the num-
ber of interviews by city and your average offer amount.

Questions

1. Determine the number and type (simple, average, and
complex) of actors there are for this system. Compute
the value for the Unadjusted Actor Weight Total.

2. Determine the number and type (simple, average,
and complex) of uses cases there are for this system.

Compute the value for the Unadjusted Use Case
Weight Total.

3. Compute the value for the Unadjusted Use Case
Points.

4. Assume values for the technical complexity factors
are T1(0), T2(1), T3(2), T4(2), T5(0), T6(1), T7(2),
T8(0), T9(0), T10(0), T11(0), T12(0), and T13(0).
Compute the Technical Factor Value.

5. Compute the value for the Technical Complexity
Factor.

6. Assume values for the environmental factors are
E1(4), E2(3), E3(3), E4(3), E5(4), E6(3), E7(0), and
E8(3). Compute the Environmental Factor Value.

7. Compute the value for the Environmental Factor.
8. Compute the value for the Adjusted Use Case

Points.
9. Compute the estimated effort in person hours.

2-6 Project EstimationYOUR

TURN

Now that we know the estimated size of the system by means of the value of the
adjusted use-case points, we are ready to estimate the effort required to build the system.
In Karner’s original work, he suggested simply multiplying the number of use-case points
by 20 to estimate the number of person-hours required to build the system. However,
based on additional experiences using use-case points, a decision rule to determine the
value of the person-hours multiplier (PHM) has been created that suggests using either 20
or 28, based on the values assigned to the individual environmental factors. The decision
rule is:

If the sum of (number of Efactors E1 through E6 assigned value < 3) and
(number of Efactors E7 and E8 assigned value > 3)

$ 2
PHM " 20

Else If the sum of (number of Efactors E1 through E6 assigned value < 3) and
(number of Efactors E7 and E8 assigned value > 3)

" 3 or 4
PHM " 28

Else
Rethink project; it has too high of a risk for failure

Based on these rules, because none of Efactors E1 through E6 have a value less than 3
and only Efactors E8 has a value greater than 3, the sum of the number EFactors is 1. Thus,
the system should use a PHM of 20. Plugging the values for UCP (33.3375) and PHM (20)
into the effort equation (UCP * PHM) gives an estimated number of person-hours of
666.75 hours (see Figures 2-17 and 2-18).

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 78

CREATING AND MANAGING THE WORKPLAN
Once a project manager has a general idea of the functionality and effort for the project, he
or she creates a workplan, which is a dynamic schedule that records and keeps track of all
the tasks that need to be accomplished over the course of the project. The workplan lists
each task, along with important information about it, such as when it needs to be com-
pleted, the person assigned to do the work, and any deliverables that will result. The level
of detail and the amount of information captured by the workplan depend on the needs of
the project, and the detail usually increases as the project progresses.

The overall objectives for the system should be listed on the system request, and it is
the project manager’s job to identify all the tasks that need to be accomplished to meet
those objectives. This sounds like a daunting task. How can someone know everything that
needs to be done to build a system that has never been built before?

One approach for identifying tasks is to get a list of tasks that has already been devel-
oped and to modify it. There are standard lists of tasks, or methodologies, that are avail-
able for use as a starting point. As we stated in Chapter 1, a methodology is a formalized
approach to implementing a systems development process (i.e., it is a list of steps and
deliverables). A project manager can take an existing methodology, select the steps and
deliverables that apply to the current project, and add them to the workplan. If an exist-
ing methodology is not available within the organization, methodologies can be pur-
chased from consultants or vendors, or books such as this textbook can serve as a guide.
Because most organizations have a methodology they use for projects, using an existing
methodology is the most popular way to create a workplan. In our case, because we are
using a Unified Process–based methodology, we can use the phases, workflows, and itera-
tions as a starting point to create an evolutionary work breakdown structure and an iter-
ative workplan.

Evolutionary Work Breakdown Structures and Iterative Workplans
Because object-oriented systems approaches to systems analysis and design support incre-
mental and iterative development, any project planning approach for object-oriented sys-
tems development also requires an incremental and iterative process. In the description of
the enhanced Unified Process in Chapter 1, the development process was organized around
iterations, phases, and workflows. In many ways, a workplan for an incremental and itera-
tive development process is organized in a similar manner. For each iteration, there are dif-
ferent tasks executed on each workflow. This section describes an incremental and iterative
process using evolutionary WBSs for project planning that can be used with object-oriented
systems development.

According to Royce,10 most approaches to developing conventional WBSs tend to have
three underlying problems:

! They tend to be focused on the design of the information system being developed.
The creation of the WBS forces the premature decomposition of the system
design and the tasks associated with creating the design of the system. Where
the problem domain is well understood, tying the structure of the workplan to
the product to be created makes sense. However, in cases where the problem
domain is not well understood, the analyst must commit to the architecture of
the system being developed before the requirements of the system are fully
understood.

Creating and Managing the Workplan 79

10 Walker Royce, Software Project Management: A Unified Framework (Reading, MA: Addison-Wesley, 1998).

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 79

! They tend to force too many levels of detail very early on in the systems
development process for large projects or they tend to allow too few levels of detail
for small projects. Because the primary purpose of a WBS is to allow cost
estimation and scheduling to take place, in conventional approaches to planning,
the WBS must be done correctly and completely at the beginning of the
development process. To say the least, this is a very difficult task to accomplish
with any degree of validity. In such cases, it is no wonder that cost and schedule
estimation for many information systems development projects tend to be wildly
inaccurate.

! Because they are project specific, they are very difficult to compare across projects.
This leads to ineffective learning across the organization. Without some standard
approach to create WBSs, it is difficult for project managers to learn from
previous projects managed by others. This tends to encourage the reinventing the
wheel and allows managers to make the same mistakes that previous managers
have made.

Evolutionary WBSs allow the analyst to address all three problems by allowing the
development of an iterative workplan. First, evolutionary WBSs are organized in a standard
manner across all projects: by workflows, phases, and then the specific tasks that are accom-
plished during an individual iteration. This decouples the structure of an evolutionary
WBS from the structure of the design of the product and prevents prematurely commit-
ting to a specific architecture of a new system. Second, evolutionary WBSs are created in an
incremental and iterative manner. This encourages a more realistic view of both cost and
schedule estimation. Third, because the structure of an evolutionary WBS is not tied to any
specific project, evolutionary WBSs enable the comparison of the current project to earlier
projects. This supports learning from past successes and failures.

In the case of the enhanced Unified Process, the workflows are the major points listed
in the WBS. Next, each workflow is decomposed along the phases of the enhanced Unified
Process. After that, each phase is decomposed along the tasks that are to be completed to
create the deliverables associated with an individual iteration contained in each phase (see
Figure 1-18). The template for the first two levels of an evolutionary WBS for the enhanced
Unified Process would look like Figure 2-19.

As each iteration through the development process is completed, additional iterations
and tasks are added to the WBS (i.e., the WBS evolves along with the evolving information
system).11 For example, typical activities for the inception phase of the project management
workflow would include identifying the project, performing the feasibility analysis, selecting
the project, and estimating the effort. The inception phase of the requirements workflow
would include determining the requirements gathering and analysis techniques, identifying
functional and nonfunctional requirements, interviewing stakeholders, developing a vision
document, and developing use cases. Probably no tasks are associated with the inception
phase of the operations and support workflow. A sample evolutionary WBS for planning the
inception phase of the enhanced Unified Process, based on Figures 1-18 and 2-19, is shown
in Figure 2-20. Notice the last two tasks for the project management workflow are “create
workplan for first iteration of the elaboration phase” and “assess the inception phase”; the last
two things to do are to plan for the next iteration in the development of the evolving system
and to assess the current iteration. As the project moves through later phases, each workflow

80 Chapter 2 Project Management

11 Good sources that help explain this approach are Phillippe Krutchen, “Planning an Iterative Project,” The Rational
Edge (October 2002); and Eric Lopes Cordoza and D. J. de Villiers,“Project Planning Best Practices,” The Rational
Edge (August 2003).

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 80

I. Business Modeling
a. Inception
b. Elaboration
c. Construction
d. Transition
e. Production

II. Requirements
a. Inception
b. Elaboration
c. Construction
d. Transition
e. Production

III. Analysis
a. Inception
b. Elaboration
c. Construction
d. Transition
e. Production

IV. Design
a. Inception
b. Elaboration
c. Construction
d. Transition
e. Production

V. Implementation
a. Inception
b. Elaboration
c. Construction
d. Transition
e. Production

VI. Test
a. Inception
b. Elaboration
c. Construction
d. Transition
e. Production

VII. Deployment
a. Inception
b. Elaboration
c. Construction
d. Transition
e. Production

VIII. Configuration and
Change Management
a. Inception
b. Elaboration
c. Construction
d. Transition
e. Production

IX. Project Management
a. Inception
b. Elaboration
c. Construction
d. Transition
e. Production

X. Environment
a. Inception
b. Elaboration
c. Construction
d. Transition
e. Production

XI. Operations and Support
a. Inception
b. Elaboration
c. Construction
d. Transition
e. Production

XII. Infrastructure Management
a. Inception
b. Elaboration
c. Construction
d. Transition
e. Production

FIGURE 2-19
Evolutionary WBS
Template for the
Enhanced Unified
Process

FIGURE 2-20
Evolutionary WBS for a
Single Iteration–based
Inception Phase

81

Duration Dependency

I. Business Modeling
a. Inception

1. Understand current business situation 0.50 days
2. Uncover business process problems 0.25 days
3. Identify potential projects 0.25 days

b. Elaboration
c. Construction
d. Transition
e. Production

II. Requirements
a. Inception

1. Identify appropriate requirements-analysis technique 0.25 days
2. Identify appropriate requirements-gathering techniques 0.25 days
3. Identify functional and nonfunctional requirements II.a.1, II.a.2

A. Perform JAD sessions 3 days
B. Perform document analysis 5 days II.a.3.A
C. Conduct interviews II.a.3.A

1. Interview project sponsor 0.5 days
2. Interview inventory system contact 0.5 days
3. Interview special order system contact 0.5 days
4. Interview ISP contact 0.5 days
5. Interview CD Selection Web contact 0.5 days
6. Interview other personnel 1 day

D. Observe retail store processes 0.5 days II.a.3.A

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 81

82 Chapter 2 Project Management

FIGURE 2-20
Continued

Duration Dependency

4. Analyze current systems 4 days II.a.1, II.a.2
5. Create requirements definition II.a.3, II.a.4

A. Determine requirements to track 1 day
B. Compile requirements as they are elicited 5 days II.a.5.A
C. Review requirements with sponsor 2 days II.a.5.B

b. Elaboration
c. Construction
d. Transition
e. Production

III. Analysis
a. Inception

1. Identify business processes 3 days
2. Identify use cases 3 days III.a.1

b. Elaboration
c. Construction
d. Transition
e. Production

IV. Design
a. Inception

1. Identify potential classes 3 days III.a
b. Elaboration
c. Construction
d. Transition
e. Production

V. Implementation
a. Inception
b. Elaboration
c. Construction
d. Transition
e. Production

VI. Test
a. Inception
b. Elaboration
c. Construction
d. Transition
e. Production

VII. Deployment
a. Inception
b. Elaboration
c. Construction
d. Transition
e. Production

VIII. Configuration and Change Management
a. Inception

1. Identify necessary access controls for developed artifacts 0.25 days
2. Identify version control mechanisms for developed artifacts 0.25 days

b. Elaboration
c. Construction
d. Transition
e. Production

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 82

Creating and Managing the Workplan 83

FIGURE 2-20
Continued

Duration Dependency

IX. Project Management
a. Inception

1. Create workplan for the inception phase 1 day
2. Create system request 1 day
3. Perform feasibility analysis IX.a.2

A. Perform technical feasibility analysis 1 day
B. Perform economic feasibility analysis 2 days
C. Perform organizational feasibility analysis 2 days

4. Identify project effort 0.50 days IX.a.3
5. Identify staffing requirements 0.50 days IX.a.4
6. Compute cost estimate 0.50 days IX.a.5
7. Create workplan for first iteration of the

elaboration phase 1 day IX.a.1
8. Assess inception phase 1 day I.a, II.a, III.a

IV.a, V.a, VI.a
VII.a, VIII.a,
IX.a, X.a, XI.a
XII.a

b. Elaboration
c. Construction
d. Transition
e. Production

X. Environment
a. Inception

1. Acquire and install CASE tool 0.25 days
2. Acquire and install programming environment 0.25 days
3. Acquire and install configuration and change

management tools 0.25 days
4. Acquire and install project management tools 0.25 days

b. Elaboration
c. Construction
d. Transition
e. Production

XI. Operations and Support
a. Inception
b. Elaboration
c. Construction
d. Transition
e. Production

XII. Infrastructure Management
a. Inception

1. Identify appropriate standards and enterprise models 0.25 days
2. Identify reuse opportunities, such as patterns,

frameworks, and libraries 0.50 days
3. Identify similar past projects 0.25 days

b. Elaboration
c. Construction
d. Transition
e. Production

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 83

84 Chapter 2 Project Management

has tasks added to its iterations. For example, the analysis workflow will have the creation of
the functional, structural, and behavioral models during the elaboration phase. Finally, when
an iteration includes a lot of complex tasks, traditional tools, such as Gantt charts and net-
work diagrams, can be used to detail the workplan for that specific iteration.

Managing Scope
An analyst may assume that a project will be safe from scheduling problems because he or
she carefully estimated and planned the project up front. However, the most common rea-
son for schedule and cost overruns—scope creep—occurs after the project is under way.
Scope creep happens when new requirements are added to the project after the original
project scope was defined and frozen. It can happen for many reasons: Users might sud-
denly understand the potential of the new system and realize new functionality that would
be useful; developers might discover interesting capabilities to which they become very
attached; a senior manager might decide to let this system support a new strategy that was
developed at a recent board meeting.

Fortunately, using an iterative and incremental development process allows the team
to deal with changing requirements in an effective way. However, the more extensive the
change becomes, the greater the impact on cost and schedule. Therefore, the project man-
ager plays a critical role in managing this change to keep scope creep to a reasonable level.

The keys are to identify the requirements as well as possible in the beginning of the
project and to apply analysis techniques effectively. For example, if needs are fuzzy at the
project’s onset, a combination of intensive meetings with the users and prototyping would
allow users to “experience” the requirements and better visualize how the system could sup-
port their needs. In fact, the use of meetings and prototyping has been found to reduce
scope creep to less than 5 percent on a typical project.

Of course, some requirements may be missed no matter what precautions are taken,
but several practices can help control additions to the task list. First, the project manager
should allow only absolutely necessary requirements to be added after the project begins.
Even at that point, members of the project team should carefully assess the ramifications
of the addition and present the assessment to the users. For example, it may require two
more person-months of work to create a newly defined report, which would throw off the
entire project deadline by several weeks. Any change that is implemented should be care-
fully tracked so that an audit trail exists to measure the change’s impact.

Sometimes changes cannot be incorporated into the present system even though they
truly would be beneficial. In this case, these additions to scope should be recorded as future
enhancements to the system. The project manager can offer to provide functionality in
future releases of the system, thus getting around telling someone “no.”

Timeboxing
Another approach to scope management is a technique called timeboxing. Up until now, we
have described task-oriented projects. In other words, we have described projects that have
a schedule driven by the tasks that need to be accomplished, so the greater number of tasks
and requirements, the longer the project will take. Some companies have little patience for
development projects that take a long time, and these companies take a time-oriented
approach that places meeting a deadline above delivering functionality.

Think about the use of word processing software. For 80 percent of the time, only 20
percent of the features, such as the spelling checker, boldfacing, and cutting and pasting,
are used. Other features, such as document merging and creating mailing labels, may be
nice to have, but they are not a part of day-to-day needs. The same goes for other software
applications; most users rely on only a small subset of their capabilities. Ironically, most

c02ProjectManagement.qxd 11/28/11 8:38 AM Page 84

developers agree that typically 75 percent of a system can be provided relatively quickly,
with the remaining 25 percent of the functionality demanding most of the time.

To resolve this incongruency, the technique of timeboxing has become quite popular,
especially when using RAD and agile methodologies. This technique sets a fixed deadline
for a project and delivers the system by that deadline no matter what, even if functionality
needs to be reduced. Timeboxing ensures that project teams don’t get hung up on the final
finishing touches that can drag out indefinitely, and it satisfies the business by providing a
product within a relatively short time frame.

Several steps are involved in implementing timeboxing on a project (see Figure 2-21).
First, set the date of delivery for the proposed goals. The deadline should not be impossi-
ble to meet, so it is best to let the project team determine a realistic due date. If you recall
from Chapter 1, the Scrum agile methodology sets all of its timeboxes to 30 working days.
Next, build the core of the system to be delivered; you will find that timeboxing helps cre-
ate a sense of urgency and helps keep the focus on the most important features. Because
the schedule is absolutely fixed, functionality that cannot be completed needs to be post-
poned. It helps if the team prioritizes a list of features beforehand to keep track of what
functionality the users absolutely need. Quality cannot be compromised, regardless of
other constraints, so it is important that the time allocated to activities is not shortened
unless the requirements are changed (e.g., don’t reduce the time allocated to testing with-
out reducing features). At the end of the time period, a high-quality system is delivered, but
it is likely that future iterations will be needed to make changes and enhancements. In that
case, the timeboxing approach can be used once again.

Creating and Managing the Workplan 85

1. Set the date for system delivery.
2. Prioritize the functionality that needs to be included in the system.
3. Build the core of the system (the functionality ranked as most important).
4. Postpone functionality that cannot be provided within the time frame.
5. Deliver the system with core functionality.
6. Repeat steps 3 through 5 to add refinements and enhancements.

FIGURE 2-21
Steps for Timeboxing

Travelers Insurance Company of Hartford, Connecticut, has
adopted agile development methodologies. The insurance
field can be competitive, and Travelers wanted to have the
shortest “time to implement” in the field. Travelers set up
development teams of six people: two systems analysts,
two representatives from the user group (such as claim
services), a project manager, and a clerical support person.
In the agile approach, the users are physically assigned to
the development team for the project. Although at first it
might seem that the users might just be sitting around drink-
ing coffee and watching the developers come up with
appropriate software solutions, this is not the case. The
rapport that is developed within the team allows instant

communication. The interaction is very profound. The
resulting software product is delivered quickly—and
generally with all the features and nuances that the users
wanted.

Questions

1. Could this be done differently, such as having the
users review the program on a weekly basis rather
than taking the users away from their real job to
work on development?

2. What mindset does an analyst need to work on
such an approach?

2-I Faster Products to Market—with ITCONCEPTS

IN ACTION

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 85

Refining Estimates
The estimates that are produced during inception need to be refined as the project pro-
gresses. This does not mean that estimates were poorly done at the start of the project;
rather, it is virtually impossible to develop an exact assessment of the project’s schedule at
the beginning of the development process. A project manager should expect to be satisfied
with broad ranges of estimates that become more and more specific as the project’s prod-
uct becomes better defined.

In many respects, estimating what an IS development project will cost, how long it will
take, and what the final system will actually do follows a hurricane model. When storms and
hurricanes first appear in the Atlantic or Pacific, forecasters watch their behavior and, on
the basis of minimal information about them (but armed with lots of data on previous
storms), attempt to predict when and where the storms will hit and what damage they will
do when they arrive. As storms move closer to North America, forecasters refine their
tracks and develop better predictions about where and when they are most likely to hit and
their force when they do. The predictions become more and more accurate as the storms
approach a coast, until they finally arrive.

In planning, when a system is first requested, the project sponsor and project manager
attempt to predict how long the development process will take, how much it will cost, and
what it will ultimately do when it is delivered (i.e., its functionality). However, the estimates
are based on very little knowledge of the system. As the system moves into the elaboration,
more information is gathered, the system concept is developed, and the estimates become
even more accurate and precise. As the system moves closer to completion, the accuracy
and precision increase, until the final system is delivered (see Figure 2-22).

According to one of the leading experts in software development,12 a well-done pro-
ject plan (prepared at the end of inception) has a 100 percent margin of error for project

86 Chapter 2 Project Management

12 Barry W. Boehm et al., “Cost Models for Future Software Life Cycle Processes: COCOMO 2.0,” in J. D. Arthur
and S. M. Henry (eds.), Annals of Software Engineering: Special Volume on Software Process and Product Measure-
ment (Amsterdam: J. C. Baltzer AG Science Publishers, 1995).

FIGURE 2-22
Hurricane Model

Inception

Size of circle
indicates

estimated cost

Estimated
schedule time

Elaboration Construction Transition

Pr
oj

ec
t s

ch
ed

ul
e

tim
e

(T
im

e
ne

ed
ed

 to
 c

om
pl

et
e

pr
oj

ec
t)

Stage at which estimate is made

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 86

cost and a 25 percent margin of error for schedule time. In other words, if a carefully done
project plan estimates that a project will cost $100,000 and take twenty weeks, the project
will actually cost between $0 and $200,000 and take between fifteen and twenty-five weeks.

What happens if you overshoot an estimate (e.g., analysis ends up lasting two weeks
longer than expected)? There are a number of ways to adjust future estimates. If the pro-
ject team finishes a step ahead of schedule, most project managers shift the deadlines
sooner by the same amount but do not adjust the promised completion date. The chal-
lenge, however, occurs when the project team is late in meeting a scheduled date. Three
possible responses to missed schedule dates are presented in Figure 2-23. If an estimate
proves too optimistic early in the project, planners should not expect to make up for lost
time—very few projects end up doing this. Instead, they should change future estimates to
include an increase similar to the one that was experienced. For example, if the first phase
was completed 10 percent over schedule, planners should increase the rest of their esti-
mates by 10 percent.

Managing Risk
One final facet of project management is risk management, the process of assessing and
addressing the risks that are associated with developing a project. Many things can cause
risks: weak personnel, scope creep, poor design, and overly optimistic estimates. The pro-
ject team must be aware of potential risks so that problems can be avoided or controlled
well ahead of time.

Typically, project teams create a risk assessment, or a document that tracks potential
risks along with an evaluation of the likelihood of each risk and its potential impact on the

Creating and Managing the Workplan 87

If you assume the rest of the project is Do not change schedule. High risk
simpler than the part that was late
and is also simpler than believed
when the original schedule estimates
were made, you can make up lost time.

If you assume the rest of the project is Increase the entire schedule by the Moderate risk
simpler than the part that was late total amount of time that you are
and is no more complex than the behind (e.g., if you missed the
original estimate assumed, you can’t scheduled date by two weeks, move
make up the lost time, but you will the rest of the schedule dates to two
not lose time on the rest of the weeks later). If you included padded
project. time at the end of the project in the

original schedule, you might not have
to change the promised system
delivery date; you’ll just use up the
padded time.

If you assume that the rest of the Increase the entire schedule by the Low risk
project is as complex as the part percentage of weeks that you are
that was late (your original estimates behind (e.g., if you are two weeks
were too optimistic), then all the late on part of the project that was
scheduled dates in the future supposed to take eight weeks, you
underestimate the real time required need to increase all remaining
by the same percentage as the part time estimates by 25 percent). If
that was late. this moves the new delivery date

beyond what is acceptable to the
project sponsor, the scope of the
project must be reduced.

Assumptions Actions Level of Risk

FIGURE 2-23
Possible Actions When
a Schedule Date Is
Missed

c02ProjectManagement.qxd 11/28/11 8:38 AM Page 87

project (Figure 2-24). A paragraph or two is also included to explain potential ways that the
risk can be addressed. There are many options: the risk could be publicized, avoided, or
even eliminated by dealing with its root cause. For example, imagine that a project team
plans to use new technology but its members have identified a risk in the fact that its mem-
bers do not have the right technical skills. They believe that tasks may take much longer to
perform because of a high learning curve. One plan of attack could be to eliminate the root
cause of the risk—the lack of technical experience by team members—by finding the time
and resources needed to provide proper training to the team.

Most project managers keep abreast of potential risks, even prioritizing them accord-
ing to their magnitude and importance. Over time, the list of risks will change as some
items are removed and others surface. The best project managers, however, work hard to
keep risks from having an impact on the schedule and costs associated with the project.

STAFFING THE PROJECT
Staffing the project includes determining how many people should be assigned to the pro-
ject, matching people’s skills with the needs of the project, motivating them to meet the
project’s objectives, and minimizing the conflict that will occur over time. The deliverables
for this part of project management are a staffing plan, which describes the number and
kinds of people who will work on the project, the overall reporting structure, and the pro-
ject charter, which describes the project’s objectives and rules. However, before describing
the development of a staffing plan, how to motivate people, and how to handle conflict, we
describe a set of characteristics of jelled teams.

Characteristics of a Jelled Team13

The idea of a jelled team has existed for a long time. To begin with, most (if not all) stu-
dent groups are not representative of the idea of a jelled team, and you may have never had

88 Chapter 2 Project Management

Risk Assessment

RISK 1: The development of this system likely will be slowed
considerably because project team members have not
programmed in Java prior to this project.

Likelihood of risk: High probability of risk.

Potential impact on the project: This risk will probably increase the time to complete
programming tasks by 50 percent.

Ways to address this risk:

It is very important that time and resources are allocated to up-front training in Java for the
programmers who are used for this project. Adequate training will reduce the initial learning
curve for Java when programming begins. Additionally, outside Java expertise should be
brought in for at least some part of the early programming tasks. This person should be used
to provide experiential knowledge to the project team so that Java-related issues (of which
novice Java programmers would be unaware) are overcome.

RISK 2: …

FIGURE 2-24
Sample Risk
Assessment

13 The material in the section is based on T. DeMarco and T. Lister, Peopleware: Productive Projects and Teams, 2nd
Ed. (New York: Dorset House, 1999); and P. Lencioni, The Five Dysfunctions of a Team: A Leadership Fable (San
Francisco: Jossey-Bass, 2002).

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 88

the opportunity to appreciate the effectiveness of a true team and not simply a group. In
fact, DeMarco and Lister point out that teams are not created; they are grown. And, given
typical class projects, the ability to grow a team, compared to being assigned to or forming
a group, is very limited. However, growing development teams is crucial in information
systems development. The whole set of agile software development approaches hinges on
growing jelled teams. Otherwise, agile development approaches would totally fail.

In this section, we describe some of the characteristics of jelled teams. But before we
do this, we should define the phrase jelled team. According to DeMarco and Lister,14 “[a]
jelled team is a group of people so strongly knit that the whole is greater than the sum of
the parts. The production of such a team is greater than that of the same people working
in unjelled form.” They go on to state that a jelled “team can become almost unstoppable,
a juggernaut for success.” When is the last time that you worked with a group on a class pro-
ject that could be described “a juggernaut for success”? Demarco and Lister identify five
characteristics of a jelled team.

First, jelled teams have a very low turnover during a project. Typically, members of a
jelled team feel a responsibility to the other team members. This responsibility is felt so
intensely that for a member to leave the team, the member would feel that they were let-
ting the team down and that they were breaking a bond of trust. Lencioni also identifies the
“absence of trust” as the primary cause for dysfunctional teams.

Second, jelled teams have a strong sense of identity. In many classes, when you are part
of a group, the group chooses some cute name to identify the group and differentiate it
from the other groups. However, in this case, it is not simply the choosing of a name. It is
instead evolving every member into something that only exists within the team. This can
be seen when members of the team tend to do non–work-related activities together, e.g.,
do lunch together as a team or form a basketball team composed of only members of the
development team.

Third, the strong sense of identity tends to lead the team into feeling a sense of elite-
ness. The members of a jelled development team almost have a swagger about the way they
relate to nonteam employees. That is, if you are not a member of the team, then what are
you? Good examples that come to mind that possess this sense of eliteness outside of the
scope of information systems development teams are certain sports teams, U.S. Navy Seal
teams, or big city police force SWAT teams. In all three examples, each team member is
highly competent in their specialty area and each other team member knows (not thinks)
that they can depend on the team members performing their individual jobs with a very
high-level of skill.

Fourth, during the development process, jelled teams feel that the team owns the
information system being developed and not any one individual member. In many ways,
you could almost say that jelled teams are a little communistic in nature. By this we mean
that the individual contributions to the effort are not important to a true team. The only
things that matter are the output of the team. However, this is not to imply that a member
who does not deliver their fair share will not go unpunished. In a jelled team, any member
who is not producing is actually breaking their bond of trust with the other team members
(see the first characteristic).

The final characteristic of a jelled team is that they really enjoy (have fun) doing their
work. The members actually like to go to work and be with their team members. Much of
this can be attributed to the level of challenge they receive. If the project is challenging and
the members of the team are going to learn something from completing the project, the
members of a jelled team will enjoy tackling the project.

Staffing the Project 89

14 T. DeMarco and T. Lister, Peopleware: Productive Projects and Teams, 2nd Ed., p. 123.

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 89

When a team jells, they will avoid Lencioni’s dysfunctions. The lack of trust is the pri-
mary cause of a team’s becoming dysfunctional. Lencioni describes four other causes of a
team’s becoming dysfunctional that can come from the lack of trust. First, dysfunctional
teams fear conflict, whereas members of a jelled team never fear conflict.15 Going to a
member of a jelled team and admitting that you do not know how to do something is no
big deal. In fact, it provides a method for the team member to help out, which would
increase the level of trust between the two members. Second, dysfunctional teams do not
have a commitment to the team from the individual members. Instead, they tend to focus
on their individual performance instead of the team’s performance. This can even be to the
detriment of the development team. Obviously, this is not an issue for jelled teams. Third,
dysfunctional teams try to avoid accountability. With jelled teams, accountability is not an
issue. Members of a jelled team feel a high level of responsibility to the other team mem-
bers. No team member ever wants to let down the team. Furthermore, owing to the bond
that holds jelled teams together, no member has any problem with holding other members
accountable for their performance (or lack of performance). Fourth, dysfunctional teams
do not pay attention to the team’s results. Again, in this case, the cause of this dysfunction
is that the individual members only focus on their individual goals. From a team manage-
ment perspective, the team leader should focus on getting the goals of the team aligned; a
jelled team will attain the goals.

Staffing Plan
The first step to staffing is determining the average number of staff needed for the pro-
ject. To calculate this figure, divide the total person-months of effort by the optimal
schedule. So to complete a forty-person-month project in ten months, a team should
have an average of four full-time staff members, although this may change over time as
different specialists enter and leave the team (e.g., business analysts, programmers, tech-
nical writers).

Many times, the temptation is to assign more staff to a project to shorten the project’s
length, but this is not a wise move. Adding staff resources does not translate into increased
productivity; staff size and productivity share a disproportionate relationship, mainly
because it is more difficult to coordinate a large number of staff members. The more a team
grows, the more difficult it becomes to manage. Imagine how easy it is to work on a two-
person project team: the team members share a single line of communication. But adding
two people increases the number of communication lines to six, and greater increases lead
to more dramatic gains in communication complexity. Figure 2-25 illustrates the impact of
adding team members to a project team.

One way to reduce efficiency losses on teams is to understand the complexity that is
created in numbers and to build in a reporting structure that tempers its effects. The gen-
eral rule is to keep team sizes to fewer than eight to ten people; therefore, if more people
are needed, create sub-teams. In this way, the project manager can keep the communica-
tion effective within small teams, which, in turn, communicate to a contact at a higher level
in the project.

After the project manager understands how many people are needed for the project, he
or she creates a staffing plan that lists the roles and the proposed reporting structure that are
required for the project. Typically, a project has one project manager, who oversees the over-
all progress of the development effort, with the core of the team comprising the various
types of analysts described in Chapter 1. A functional lead is usually assigned to manage

90 Chapter 2 Project Management

15 When conflict occurs, it is necessary to address it in an effective manner. We discuss how to handle conflict later
in the chapter.

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 90

a group of analysts, and a technical lead oversees the progress of a group of programmers
and more technical staff members.

There are many structures for project teams; Figure 2-26 illustrates one possible con-
figuration of a project team. After the roles are defined and the structure is in place, the
project manager needs to think about which people can fill each role. Often, one person fills
more than one role on a project team.

When you make assignments, remember that people have technical skills and inter-
personal skills, and both are important on a project. Technical skills are useful when
working with technical tasks (e.g., programming in Java) and in trying to understand
the various roles that technology plays in the particular project (e.g., how a Web server
should be configured on the basis of a projected number of hits from customers). Inter-
personal skills, on the other hand, include interpersonal and communication abilities
that are used when dealing with business users, senior management executives, and other
members of the project team. They are particularly critical when performing the require-
ments-gathering activities and when addressing organizational feasibility issues. Each
project requires unique technical and interpersonal skills. For example, a Web-based

Staffing the Project 91

Two-person team Four-person team

Eight-person teamSix-person team

FIGURE 2-25
Increasing Complexity
with Larger Teams

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 91

project might require Internet experience or Java programming knowledge, whereas a
highly controversial project may need analysts who are particularly adept at managing
political or volatile situations.

Ideally, project roles are filled with people who have the right skills for the job. How-
ever, the people who fit the roles best might not be available; they may be working on other
projects, or they might not exist in the company. Therefore, assigning project team mem-
bers really is a combination of finding people with the appropriate skill sets and finding
people who are available. When the skills of the available project team members do not
match what is actually required by the project, the project manager has several options to
improve the situation. First, people can be pulled off other projects, and resources can be
shuffled around. This is the most disruptive approach from the organization’s perspective.
Another approach is to use outside help—such as a consultant or contractor—to train
team members and start them off on the right foot. Training classes are usually available
for both technical and interpersonal instruction if time is available. Mentoring may also be
an option; a project team member can be sent to work on another similar project so that
he or she can return with skills to apply to the current job.

92 Chapter 2 Project Management

Functional
lead

Project
manager

ProgrammerAnalyst Analyst Analyst Programmer

Technical
lead

FIGURE 2-26
Possible Reporting
Structure

Now it is time to staff the project that was described in
Your Turn 2-6. On the basis of the effort required for the
project, how many people will be needed on the project?
Given this number, select classmates who will work with
you on your project.

Questions

1. What roles will be needed to develop the project?
List them and write short descriptions for each of

these roles, almost as if you had to advertise for the
positions.

2. Which roles will each classmate perform? Will
some people perform multiple roles?

3. What will the reporting structure be for the project?

2-7 Staffing PlanYOUR

TURN

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 92

Motivation
Assigning people to tasks isn’t enough; project managers need to motivate the people to
make the project a success. Motivation has been found to be the number one influence on
people’s performance,16 but determining how to motivate the team can be quite difficult.
You might think that good project managers motivate their staff by rewarding them with
money and bonuses, but most project managers agree that this is the last thing that should
be done. The more often managers reward team members with money, the more they
expect it—and most times monetary motivation won’t work. Pink17 has suggested a set of
principles to follow to motivate individuals in twenty-first century firms. In this section we
adapt his suggestions to information systems development teams.

Pink suggests that to motivate individuals we should consider some form of the 20 percent
time rule. This rule suggests that 20 percent of an employee’s time should be spent on some
idea in which they believe. The project does not have to be related in any way to the pro-
ject at hand. On the surface, this sounds like a colossal waste of time, but you should not
throw this idea away. Have you used Gmail? This is how Google’s Gmail and Google News
became software products. If 20 percent sounds too high, Pink suggests that you consider
10 percent to begin with.

He recommends that firms should be willing to fund small “Now That” awards. These
awards are given as small signs of appreciation for doing a great job. However, these awards
are not given by a manager to an employee but from an employee to a peer of the employee.
The awards are monetary, but they are very small, typically $50. As such, they really are not
relevant from a monetary perspective. However, they are very relevant because they are
given by one of the employee’s colleagues to show that some action that the employee did
was appreciated.

He endorses the idea of applying Robert Reich’s (President’s Clinton’s Secretary of Labor)
pronoun test. If an employee (or team member) refers to the firm (the team) as “they,” then
there is the real possibility that the employee feels disengaged or possibly alienated. On the other
hand, when employees refer to the firm as “we,” they obviously feel like they are part of the orga-
nization. From a team perspective, this could be an indication that the team has begun to jell.

Pink suggests that management should periodically consider giving each employee a
day on which they can work on anything they want. In some ways, this is related to the
20 percent rule. It does not necessarily require one day a week (20 percent), but it does
require some deliverable. The deliverable can be a new utility program that could be used
by lots of different projects, it could be a new prototype of a new software product, or it
could be an improvement for a business process that is used internally. The major point
here is to provide team members with the ability to focus on interesting and challenging
problems that might (or might not) provide results to the firm’s bottom line. Regardless, it
demonstrates an amount of trust and respect that the firm has for its employees.

He recommends that managers to remove the issue of compensation from the motiva-
tion equation. By this, he means that all employees should be paid a sufficient amount so that
compensation awards are not an issue. Technical employees on project teams are much more
motivated by recognition, achievement, the work itself, responsibility, advancement, and the
chance to learn new skills.18 Simplistic financial awards, such as raises that are perceived as
being unjust, can actually demotivate the overall team and lower overall performance.

Staffing the Project 93

16 Barry W. Boehm, Software Engineering Economics (Englewood Cliffs, NJ: Prentice Hall, 1981). One of the best
books on managing project teams is that by Tom DeMarco and Timothy Lister, Peopleware: Productive Projects and
Teams (New York: Dorset House, 1987).
17 D. H. Pink, Drive: The Surprising Truth About What Motivates Us (New York, NY: Riverhead Books, 2009).
18 F. H. Hertzberg, “One More Time: How Do You Motivate Employees?” Harvard Business Review (January–
February 1968).

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 93

He advocates that twenty-first century bosses (team leaders) need to be willing to
give up control. Many of the agile development approaches make similar suggestions.
Appelo19 suggests that an open door policy that is supported by a team leader actually
can be self-defeating. In the case of software development teams, an open door policy
implies that the team leader has a door that can be left open, whereas the poor individ-
ual team member does not have an office with a door. In this case, Appelo suggests that
the team leader move from the office with a door to the same shared space in which the
team resides. One of Pink’s other ideas is for the team leader to not use controlling lan-
guage such as telling the team member that they “must” do something. Instead, the team
leader should ask the team member to “consider” or “think about” the idea instead. In
some ways, a true team leader should never receive credit for any ideas associated with
the team. Instead, a team leader should make suggestions and encourage the team mem-
bers to consider ideas and, most importantly, let the team member and the team receive
the credit.

Pink provides evidence that intrinsic motivation is very important for twenty-first
century knowledge workers. In this case, he states that to intrinsically motivate individu-
als, you must provide them with a degree of autonomy, support them in such a way that
they can master their area of expertise, and encourage them to pursue projects with a pur-
pose. Providing team members with autonomy relates to the jelled team concept of trust.
Team leaders need to trust the team members to deliver the software for which they are
responsible. Supporting team members so that they can master their area of expertise can
be as simple as providing support to attend conferences, seminars, and training sessions
that deal with the member’s area of expertise. It also could imply providing the team
member with a high-end development environment. For example, when building infor-
mation visualization and virtual reality applications, special hardware and software envi-
ronments can make it much easier to master the technology to develop the application.
Finally, today it is very important for team members to feel that what they are doing can
make a difference. A team leader should encourage the team members to tackle problems
that can make a difference in people’s lives. This can easily be accomplished through the
use of the 20 percent rule. Figure 2-27 lists some motivational don’ts to avoid demotivat-
ing team members.

Handling Conflict
The third component of staffing is organizing the project to minimize conflict among
group members. Group cohesiveness (the attraction that members feel to the group and to
other members) contributes more to productivity than do project members’ individual
capabilities or experiences.20 Clearly defining the roles on the project and holding team
members accountable for their tasks is a good way to begin mitigating potential conflict on
a project. Some project managers develop a project charter, which lists the project’s norms
and ground rules. For example, the charter may describe when the project team should be
at work, when staff meetings will be held, how the group will communicate with each
other, and the procedures for updating the workplan as tasks are completed. Figure 2-28
lists additional techniques that can be used at the start of a project to keep conflict to a
minimum.

94 Chapter 2 Project Management

19 J. Appelo, Management 3.0: Leading Agile Developers, Developing Agile Leaders (Upper Saddle River, NJ: Addison-
Wesley, 2011).
20 B. Lakhanpal, “Understanding the Factors Influencing the Performance of Software Development Groups: An
Exploratory Group-Level Analysis,” Information and Software Technology 35, no. 8 (1993): 468–473.

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 94

Staffing the Project 95

Assign unrealistic deadlines Few people will work hard if they realize that a deadline is
impossible to meet.

Ignore good efforts People will work harder if they feel like their work is appreciated.
Often, all it takes is public praise for a job well done.

Create a low-quality product Few people can be proud of working on a project that is
of low quality.

Give everyone on the project If everyone is given the same reward, then high-quality
a raise people will believe that mediocrity is rewarded—and they

will resent it.

Make an important decision Buy-in is very important. If the project manager needs to
without the team’s input make a decision that greatly affects the members of her team,

she should involve them in the decision-making process.

Maintain poor working A project team needs a good working environment or
conditions motivation will go down the tubes. This includes lighting,

desk space, technology, privacy from interruptions, and
reference resources.

Source: Steve McConnell, Adapted Rapid Development (Redmond, WA: Microsoft Press, 1996).

Don’ts Reasons

FIGURE 2-27
Motivational Don’ts

Some animals are extremely valuable. For centuries, horse
thieves have stolen horses, so now most horses have tat-
toos in their mouths. Likewise, purebred pets, such as dog
show winners, are valuable animals. What if there were a
better way to positively identify valuable animals?

Radio frequency identification (or RFID) has been
used for many years in airplanes and on toll roads (like
EZPass and FaneLane in the United States) as well as in
libraries so that books and materials are not taken out of
the library without being checked out. With RFID, a low-
frequency radio transmitter, when bombarded with a radio
wave, replies with a unique signal. Some animal owners
have inserted RFID chips into their pets’ shoulders so that
they can be identified. The code is unique and cannot be
changed. It would be possible to Track a stolen race horse

if the horse came into range of an RFID device. Likewise,
a pet shop or a veterinarian could identify a valuable pet.

Questions

1. If you were working for a state consumer-protection
agency, what requirements might you place on pet
shops to ensure that animals for sale have not been
stolen?

2. What technological requirements might be needed
in the system proposal?

3. What ethical issues might be involved?
4. If your system project team did not have the correct

technical background, what might you do?

2-J RFID—Promising Technology?CONCEPTS

IN ACTION

• Clearly define plans for the project.
• Make sure the team understands how the project is important to the organization.
• Develop detailed operating procedures and communicate these to the team members.
• Develop a project charter.
• Develop schedule commitments ahead of time.
• Forecast other priorities and their possible impact on the project.

Source: H. J. Thamhain and D. L. Wilemon, “Conflict Management in Project Life Cycles,” Sloan Management
Review (Spring 1975).

FIGURE 2-28
Conflict-Avoidance
Strategies

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 95

ENVIRONMENT AND INFRASTRUCTURE MANAGEMENT
The environment and infrastructure management workflows support the development
team throughout the development process. The environment workflow primarily deals
with choosing the correct set of tools that will be used throughout the development process
and identifying the appropriate set of standards to be followed during the development
process. Infrastructure management workflow deals with choosing the appropriate level
and type of documentation that will be created during the development process. Other
activities associated with the infrastructure management workflow include developing,
modifying, and reusing predefined components, frameworks, libraries, and patterns. The
topic of reuse is discussed in later chapters (see Chapters 5 and 8).

CASE Tools
Computer-aided software engineering (CASE) is a category of software that automates all or
part of the development process. Some CASE software packages are used primarily to sup-
port the analysis workflow to create integrated diagrams of the system and to store infor-
mation regarding the system components (often called upper CASE), whereas others
support the design workflow that can be used to generate code for database tables and sys-
tem functionality (often called lower CASE). Integrated CASE, or I-CASE, contains func-
tionality found in both upper CASE and lower CASE tools in that it supports tasks that
happen throughout the system-development process. CASE comes in a wide assortment of
flavors in terms of complexity and functionality, and many good tools are available in the
marketplace to support object-oriented systems development (e.g., ArgoUml, Enterprise
Architect, Metamill, Poseidon, Visual Paradigm, and Rational Rose).

The benefits of using CASE are numerous. With CASE tools, tasks can be completed
and altered much faster, development information is centralized, and information is illus-
trated through diagrams, which are typically easier to understand. Potentially, CASE can
reduce maintenance costs, improve software quality, and enforce discipline. Some project
teams even use CASE to assess the magnitude of changes to the project. Many modern
CASE tools that support object-oriented systems development support a development
technique known as round-trip engineering. Round-trip engineering supports not only
code generation but also the reverse engineering of UML diagrams from code. For exam-
ple, Poseidon for UML can generate Java that can be modified by the programmers, at
which point the UML diagrams will be out of date and no longer accurately represent the
code. However, Poseidon for UML also supports the generation of UML diagrams from
code. In this way, the system can evolve via diagrams and via code in a round-trip manner.

Of course, like anything else, CASE should not be considered a silver bullet for project
development. The advanced CASE tools are complex applications that require significant

96 Chapter 2 Project Management

Get together with several of your classmates and pretend
that you are all staff on the project described in Your Turn
2-6. Discuss what would most motivate each of you to
perform well on the project. List three potential sources of
conflict that could surface as you work together.

Question

Develop a project charter that lists five rules that all team
members need to follow. How might these rules help
avoid potential team conflict?

2-8 Project CharterYOUR

TURN

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 96

training and experience to achieve real benefits. Our experience has shown that CASE is a help-
ful way to support the communication and sharing of project diagrams and technical specifi-
cations so long as it is used by trained developers who have applied CASE on past projects.

The central component of any CASE tool is the CASE repository, otherwise known as
the information repository or data dictionary. The CASE repository stores the diagrams
and other project information, such as screen and report designs, and it keeps track of how
the diagrams fit together. For example, most CASE tools warn you if you place a field on a
screen design that doesn’t exist in your structural model. As the project evolves, project
team members perform their tasks using CASE.

Standards
Members of a project team need to work together, and most project management software
and CASE tools provide access privileges to everyone working on the system. When people
work together, however, things can get pretty confusing. To make matters worse, people
sometimes are reassigned in the middle of a project. It is important that their project knowl-
edge does not leave with them and that their replacements can get up to speed quickly.

One way to make certain that everyone is performing tasks in the same way and fol-
lowing the same procedures is to create standards that the project team must follow. Stan-
dards can include formal rules for naming files, forms that must be completed when goals
are reached, and programming guidelines. Figure 2-29 shows some examples of the types

Environment and Infrastructure Management 97

FIGURE 2-29
A Sampling of Project
Standards

Documentation standards The date and project name should appear as a header on
all documentation.

All margins should be set to 1 inch.
All deliverables should be added to the project binder and

recorded in its table of contents.

Coding standards All modules of code should include a header that lists the
programmer, last date of update, and a short description
of the purpose of the code.

Indentation should be used to indicate loops, if-then-else
statements, and case statements.

On average, every program should include one line of
comments for every five lines of code.

Procedural standards Record actual task progress in the work plan every Monday
morning by 10 AM.

Report to project update meeting on Fridays at 3:30 PM.
All changes to a requirements document must be approved

by the project manager.

Specification requirement standards Name of program to be created
Description of the program’s purpose
Special calculations that need to be computed
Business rules that must be incorporated into the program
Pseudocode
Due date

User interface design standards Labels will appear in boldface text, left-justified, and
followed by a colon.

The tab order of the screen will move from top left to
bottom right.

Accelerator keys will be provided for all updatable fields.

Types of Standards Examples

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 97

98 Chapter 2 Project Management

21 See www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html.
22 See www.gentleware.com/fileadmin/media/viewlets/text/UMLdoc.viewlet/UMLdoc_viewlet_swf.html.

Select a CASE tool—one that you will use for class, a pro-
gram that you own, or a tool that you can examine over
the Web. Create a list of the capabilities that are offered
by the CASE tool.

Question

Would you classify the CASE tool as upper CASE, lower
CASE, or I-CASE? Why?

2-9 Computer-Aided Software Engineering Tool AnalysisYOUR

TURN

of standards that a project can create. When a team forms standards and then follows them,
the project can be completed faster because task coordination becomes less complex.

Standards work best when they are created at the beginning of each major phase of the
project and communicated clearly to the entire project team. As the team moves forward,
new standards are added when necessary. Some standards (e.g., file naming conventions,
status reporting) are applied during the entire development process, whereas others (e.g.,
programming guidelines) are appropriate only for certain tasks.

Documentation
Finally, during the inception phase of the infrastructure workflow, project teams put into
place good documentation standards that include detailed information about the tasks of
the Unified Process. Typically, the standards for the required documentation are set by the
development organization. The development team only needs to ascertain which docu-
mentation standards are appropriate for the current systems development project. Often,
the documentation is stored in a project binder(s) that contain all the deliverables and all
the internal communication that takes place—the history of the project. The good news is
that Unified Process has a set of standard documentation that is expected. The documen-
tation typically includes the system request, the feasibility analysis, the original and later
versions of the effort estimation, the evolving workplan, and UML diagrams for the func-
tional, structural and behavioral models.

A poor project management practice is waiting until the last minute to create docu-
mentation; this typically leads to an undocumented system that no one understands. In
fact, many problems that companies had updating their systems to handle the year 2000
crisis were the result of the lack of documentation. Good project teams learn to document
a system’s history as it evolves while the details are still fresh in their memory. In most case
tools that support object-oriented systems development, some of the documentation can
be automated. For example, if the programming language chosen to implement the system
in is Java, then it is possible to automatically create HTML manual pages that will describe
the classes being implemented. This is accomplished through the javadoc21 tool that is part
of the Java development environment. Other tools enable the developer to automatically
generate HTML documentation for the UML diagrams, e.g., umldoc, which is part of the
Poseidon for UML CASE tool.22 Even though virtually all developers hate creating docu-
mentation and documentation takes valuable time, it is a good investment that will pay off
in the long run.

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 98

Environment and Infrastructure Management 99

I once started on a small project (four people) in which
the original members of the project team had not set up
any standards for naming electronic files. Two weeks
into the project, I was asked to write a piece of code
that would be referenced by other files that had already
been written. When I finished my piece, I had to go
back to the other files and make changes to reflect
my new work. The only problem was that the lead pro-
grammer decided to name the files using his initials
(e.g., GG1.prg, GG2.prg, GG3.prg)—and there were more
than 200 files! I spent two days opening every one of
those files because there was no way to tell what their
contents were.

Needless to say, from then on, the team created a
code for file names that provided basic information
regarding the file’s contents, and they kept a log that
recorded the file name, its purpose, the date of the last
update, and the programmer for every file on the project.

—Barbara Wixom

Question

Think about a program that you have written in the past.
Would another programmer be easily able to make
changes to it? Why or why not?

2-K Poor Naming StandardsCONCEPTS

IN ACTION

As Seattle University’s David Umphress has pointed out,
watching most organizations develop systems is like
watching reruns of Gilligan’s Island. At the beginning of
each episode, someone comes up with a cockamamie
scheme to get off the island, and it seems to work for a
while, but something goes wrong and the castaways find
themselves right back where they started—stuck on the
island. Similarly, most companies start new projects with
grand ideas that seem to work, only to make a classic mis-
take and deliver the project behind schedule, over bud-
get, or both. Here we summarize four classic mistakes in
the planning and project management aspects of the pro-
ject and discuss how to avoid them:

1. Overly optimistic schedule: Wishful thinking can
lead to an overly optimistic schedule that causes
analysis and design to be cut short (missing key
requirements) and puts intense pressure on the
programmers, who produce poor code (full of
bugs).
Solution: Don’t inflate time estimates; instead,
explicitly schedule slack time at the end of each
phase to account for the variability in estimates.

2. Failing to monitor the schedule: If the team does not
regularly report progress, no one knows if the pro-
ject is on schedule.

Solution: Require team members to report progress
(or the lack of progress) honestly every week. There is
no penalty for reporting a lack of progress, but there
are immediate sanctions for a misleading report.

3. Failing to update the schedule: When a part of the
schedule falls behind (e.g., information gathering
uses all the slack in item 1 plus 2 weeks), a project
team often thinks it can make up the time later by
working faster. It can’t. This is an early warning that
the entire schedule is too optimistic.
Solution: Immediately revise the schedule and
inform the project sponsor of the new end date or
use timeboxing to reduce functionality or move it
into future versions.

4. Adding people to a late project: When a project
misses a schedule, the temptation is to add more
people to speed it up. This makes the project take
longer because it increases coordination problems
and requires staff to take time to explain what has
already been done.
Solution: Revise the schedule, use timeboxing,
throw away bug-filled code, and add people only to
work on an isolated part of the project.

Source: Adapted from Steve McConnell, Rapid Development
(Redmond, WA: Microsoft Press, 1996), pp. 29–50.

Avoiding Classic Planning MistakesPRACTICAL

TIP

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 99

APPLYING THE CONCEPTS AT CD SELECTIONS
In this chapter, we introduced how object-oriented systems development projects were
managed. Specifically, we described how projects were identified and how the identifi-
cation led to a system request. Next, we presented the three different types of feasibil-
ity analysis and how their results helped in selecting a project. After that, we reviewed
a set of traditional project management tools that can be applied to planning and man-
aging of an object-oriented systems development project and demonstrated employing
use-case points as a method that can be used to estimate the effort it will take to
develop an object-oriented system. We next discussed the use of evolutionary work
breakdown structures and iterative workplans in conjunction with the Unified Process.
We then covered the issues related to assigning the right people to the development
team. Finally, we described topics associated with the environment and infrastructure
management workflows of the Unified Process. In this installment of the CD Selec-
tions case, we see how Margaret and the development team work through all of these
topics with regard to the Web-based solution that they hope to create.

SUMMARY
Project Identification
Potential projects can be identified by a member of an organization that has identified a
business need that can be addressed through the application of information technology.
The first step in the process is to identify the business value for the system by developing
a system request that provides basic information about the proposed system. Next, the
analysts perform a feasibility analysis to determine the technical, economic, and organi-
zational feasibility of the system; if appropriate, the system is approved and the development
project begins.

Feasibility Analysis
A feasibility analysis is used to provide more detail about the risks associated with the pro-
posed system, and it includes technical, economic, and organizational feasibilities. The
technical feasibility focuses on whether the system can be built by examining the risks asso-
ciated with the users’ and analysts’ familiarity with the functional area, familiarity with the
technology, and the project’s size. The economic feasibility addresses whether the system
should be built. It includes a cost–benefit analysis of development costs, operational costs,
tangible benefits, and intangible costs and benefits. Finally, the organizational feasibility
assesses how well the system will be accepted by its users and incorporated into the ongo-
ing operations of the organization. The strategic alignment of the project and a stakeholder
analysis can be used to assess this feasibility dimension.

Project Selection
Once the feasibility analysis has been completed, it is submitted to the approval committee,
along with a revised system request. The committee then decides whether to approve the
project, decline the project, or table it until additional information is available. The project

100 Chapter 2 Project Management

c02ProjectManagement.qxd 11/28/11 8:38 AM Page 100

selection process uses portfolio management to take into account all the projects in the
organization. The approval committee weighs many factors and makes trade-offs before a
project is selected.

Traditional Project Management Tools
Even though object-oriented systems development projects are significantly different from
traditional systems development projects, a set of useful traditional project management
tools can be used to manage object-oriented systems development projects. These tools
include work breakdown structures, Gantt charts, and network diagrams. Work breakdown
structures can be structured either by phase or by product. Gantt charts are drawn using
horizontal bars to represent the duration of each task, and as people work on tasks, the
appropriate bars are filled in proportionately to how much of the task is finished. Network
diagrams are the best way to communicate task dependencies because they lay out the tasks
as a flowchart in the order in which they need to be completed. The longest path from the
project inception to completion is referred to as the critical path.

Estimating Project Effort
Use-case points are an effort-estimation technique that is based on the unique characteris-
tics of a use-case–driven systems development method. Use-case points are founded on the
two primary constructs associated with use-case analysis: actors and use cases. Use-case
points have a set of factors used to modify their raw value: technical complexity factors and
environmental factors. Technical complexity factors address the complexity of the project
under consideration, whereas the environmental factors deal with the level of experience of
the development staff. Based on the number of use-case points, the estimated effort
required can be computed.

Creating and Managing the Workplan
Once a project manager has a general idea of the effort to develop the project, he or she cre-
ates a workplan, which is a dynamic schedule that records and keeps track of all the tasks
that need to be accomplished over the course of the project. To create an iterative work-
plan, the project manager first begins with an evolutionary work breakdown structure that
allows the project manager to provide more realistic estimates for each iteration, or build,
of a system. Iterative workplans are decoupled from the architecture of the system, thus
allowing projects to be comparable. By supporting comparability among projects, evolu-
tionary WBSs enable organizational learning to take place.

Scope creep has always been a problem with systems development projects. Essentially,
the farther along the development process, the better the understanding of the underlying
problem and the technology being used becomes. Estimating what an IS development pro-
ject will cost, how long it will take, and what the final system will actually do tends to fol-
low a hurricane model. Iterative workplans support changing requirements by simply
supporting development in an incremental and iterative manner. One approach that has
been used quite successfully to address scope creep is timeboxing. Timeboxing sets a fixed
deadline for a project and delivers the system by that deadline no matter what, even if func-
tionality must be reduced. Finally, managing risks through the development process is
essential. A risk assessment is used to help mitigate risk because it identifies potential risks
and evaluates the likelihood of risk and its potential impact on the project.

Summary 101

c02ProjectManagement.qxd 11/28/11 8:38 AM Page 101

Staffing the Project
Staffing involves determining how many people should be assigned to the project, assign-
ing project roles to team members, developing a reporting structure for the team, and
matching people’s skills with the needs of the project. Staffing also includes motivating
the team to meet the project’s objectives and minimizing conflict among team members.
Both motivation and cohesiveness have been found to greatly influence performance
of team members in project situations. Team members are motivated most by such
nonmonetary rewards as recognition, achievement, and the work itself. Clearly defining
the roles on a project and holding team members accountable for their tasks can mini-
mize conflict. Some managers create a project charter that lists the project’s norms and
ground rules.

Environment and Infrastructure Management
The environment workflow supports the development team throughout the develop-
ment process by ensuring that the team has access to the appropriate set of CASE tools
and standards that will be used during the development process. Case tools are a type of
software that automates all or part of the development process. Standards are formal
rules or guidelines that project teams must follow during the project to allow projects to
be comparable. The infrastructure management workflow deals with setting up the pro-
ject documentation and identifying possible reusable components, frameworks, libraries,
and patterns.

102 Chapter 2 Project Management

KEY TERMS

Actor, 74
Adjusted use-case points (UCP), 77
Application program

interface (API), 74
Approval committee, 50
Average actors, 74
Average use case, 74
Break-even point, 61
Business need, 51
Business requirement, 52
Business value, 52
Call option, 63
Cash flow method, 59
Champion, 65
Compatibility, 56
Complex actors, 74
Complex use case, 74
Computer-aided software

engineering (CASE), 96
CASE repository, 97
Cost–benefit analysis, 56
Critical path method, 72

Critical task, 72
Development costs, 57
Documentation, 98
Economic feasibility, 56
Effort, 78
Emerging Technology, 51
Environmental factor (EF), 77
Environmental factor value

(EFactor), 77
Estimation, 73
Evolutionary WBS, 80
Familiarity with the functional area, 55
Familiarity with the technology, 56
Feasibility analysis, 50
Feasibility study, 55
First mover, 51
Functional lead, 90
Functionality, 52
Gantt chart, 71
Group cohesiveness, 94
Hurricane model, 86
Intangible benefits, 57

Intangible costs, 57
Intangible value, 52
Integrated CASE, 96
Iterative workplan, 80
Interpersonal skills, 91
Lower CASE, 96
Methodology, 79
Milestone, 70
Motivation, 93
Net present value (NPV), 60
Network Diagram, 71
Node, 72
Operational costs, 57
Option pricing models (OPMs), 63
Organizational feasibility, 64
Organizational management, 65
Person-hours multiplier (PHM), 78
Program evaluation and review

technique (PERT), 71
Portfolio management, 66
Project, 49
Project binder, 98

c02ProjectManagement.qxd 11/28/11 8:38 AM Page 102

Questions 103

Project charter, 94
Project initiation, 103
Project management, 49
Project management software, 103
Project manager, 49
Project size, 56
Project sponsor, 50
Reporting structure, 90
Return on investment (ROI), 61
Risk assessment, 87
Risk management, 87
Risks, 55
Round-trip engineering, 96
Scope creep, 84
Simple actors, 74
Simple use case, 74

Special issues, 52
Staffing plan, 90
Stakeholder, 64
Stakeholder analysis, 64
Standards, 97
Strategic alignment, 64
System request, 50
System users, 65
Tangible benefits, 57
Tangible value, 52
Task, 69
Task dependency, 70
Technical complexity factor

(TCF), 77
Technical factor value (TFactor), 77
Technical feasibility, 55

Technical lead, 91
Technical risk analysis, 55
Technical skills, 91
Timeboxing, 84
Trade-offs, 67
Unadjusted actor weight

total (UAW), 74
Unadjusted use-case points

(UUCP), 74
Unadjusted use-case weight total

(UUCW), 74
Upper CASE, 96
Use case, 74
Use-case points, 74
Work breakdown structure (WBS), 70
Workplan, 79

QUESTIONS

1. Give three examples of business needs for a system.
2. What is the purpose of an approval committee? Who

is usually on this committee?
3. Why should the system request be created by a busi-

ness person as opposed to an IS professional?
4. What is the difference between intangible value and

tangible value? Give three examples of each.
5. What are the purposes of the system request and the

feasibility analysis? How are they used in the project
selection process?

6. Describe two special issues that may be important to
list on a system request.

7. Describe the three techniques for feasibility analysis.
8. Describe a risky project in terms of technical feasibil-

ity. Describe a project that would not be considered
risky.

9. What are the steps for assessing economic feasibility?
Describe each step.

10. List two intangible benefits. Describe how these bene-
fits can be quantified.

11. List two tangible benefits and two operational costs
for a system. How would you determine the values
that should be assigned to each item?

12. Explain the net present value and return on invest-
ment for a cost–benefit analysis. Why would these cal-
culations be used?

13. What is the break-even point for the project? How is it
calculated?

14. What is stakeholder analysis? Discuss three stakeholders
that would be relevant for most projects.

15. Why do many projects end up having unreasonable
deadlines? How should a project manager react to
unreasonable demands?

16. What are the trade-offs that project managers must
manage?

17. Compare and contrast the Gantt chart with the net-
work diagram.

18. Some companies hire consulting firms to develop the
initial project plans and manage the project but use
their own analysts and programmers to develop the
system. Why do you think some companies do this?

19. What is a use-case point? For what is it used?
20. What process do we use to estimate systems develop-

ment based on use cases?
21. Name two ways to identify the tasks that need to be

accomplished over the course of a project.
22. What are the problems associated with conventional

WBSs?
23. What is an evolutionary WBS? How does it address

the problems associated with a conventional WBS?
24. What is an iterative workplan?
25. What is scope creep, and how can it be managed?
26. What is timeboxing, and why is it used?
27. Describe the hurricane model.
28. Create a list of potential risks that could affect the out-

come of a project.

c02ProjectManagement.qxd 11/28/11 12:10 PM Page 103

104 Chapter 2 Project Management

EXERCISE

A. Locate a news article in an IT trade magazine (e.g.,
Computerworld) about an organization that is imple-
menting a new computer system. Describe the tangible
and intangible value that the organization is likely to
realize from the new system.

B. Car dealers have realized how profitable it can be to
sell automobiles using the Web. Pretend you work for
a local car dealership that is part of a large chain such
as CarMax. Create a system request you might use to
develop a Web-based sales system. Remember to list
special issues that are relevant to the project.

C. Suppose that you are interested in buying a new com-
puter. Create a cost–benefit analysis that illustrates the
return on investment that you would receive from
making this purchase. Computer-related websites
(e.g., Apple, Dell, HP) should have real tangible costs
that you can include in your analysis. Project your
numbers out to include a three-year period and pro-
vide the net present value of the final total.

D. The Amazon.com website originally sold books; then
the management of the company decided to extend
their Web-based system to include other products.
How would you have assessed the feasibility of this
venture when the idea first came up? How risky would
you have considered the project that implemented this
idea? Why?

E. Interview someone who works in a large organization
and ask him or her to describe the approval process
that exists for approving new development projects.
What do they think about the process? What are the
problems? What are the benefits?

F. Reread Your Turn 2-1 (Identify Tangible and Intangi-
ble Value). Create a list of the stakeholders that should
be considered in a stakeholder analysis of this project.

G. Visit a project management website, such as the Project
Management Institute (www.pmi.org). Most have links
to project management software products, white
papers, and research. Examine some of the links for
project management to better understand a variety of

Internet sites that contain information related to this
chapter.

H. Select a specific project management topic such as
CASE, project management software, or timeboxing
and search for information on that topic using the
Web. Any search engine (e.g., Bing, Google) can provide
a starting point for your efforts.

I. Pretend that the career services office at your university
wants to develop a system that collects student résumés
and makes them available to students and recruiters
over the Web. Students should be able to input their
résumé information into a standard résumé template.
The information then is presented in a résumé format,
and it also is placed in a database that can be queried
using an online search form. You have been put in
charge of the project. Develop a plan for estimating the
project. How long do you think it would take for you
and three other students to complete the project? Pro-
vide support for the schedule that you propose.

J. Refer to the situation in exercise I. You have been told
that recruiting season begins a month from today and
that the new system must be used. How would you
approach this situation? Describe what you can do as
the project manager to make sure that your team does
not burn out from unreasonable deadlines and com-
mitments.

K. Consider the system described in exercise I. Create a
workplan listing the tasks that will need to be com-
pleted to meet the project’s objectives. Create a Gantt
chart and a network diagram in a project management
tool (e.g., Microsoft Project) or using a spreadsheet
package to graphically show the high-level tasks of the
project.

L. Suppose that you are in charge of the project that is
described in exercise I and the project will be staffed by
members of your class. Do your classmates have all the
right skills to implement such a project? If not, how
will you go about making sure that the proper skills
are available to get the job done?

29. Describe the differences between a technical lead and
a functional lead. How are they similar?

30. Describe three technical skills and three interpersonal
skills that are very important to have on any project.

31. What are the best ways to motivate a team? What are
the worst ways?

32. List three techniques to reduce conflict.

33. What is the difference between upper CASE and lower
CASE?

34. Describe three types of standards and provide exam-
ples of each.

35. What belongs in the project binder? How is the project
binder organized?

c02ProjectManagement.qxd 11/28/11 12:10 PM Page 104

Minicases 105

M. Complete a use-case point worksheet to estimate the
effort to build the system described in exercises I, J, K,
and L. You will need to make assumptions regarding
the actors, the use cases, and the technical complexity
and environmental factors.

N. Consider the application that is used at your school to
register for classes. Complete a use-case point work-
sheet to estimate the effort to build such an applica-
tion. You will need to make some assumptions about
the application’s interfaces and the various factors that
affect its complexity.

O. Read Your Turn 2-6. Create a risk assessment that lists
the potential risks associated with performing the pro-
ject, along with ways to address the risks.

P. Pretend that your instructor has asked you and two
friends to create a Web page to describe the course to
potential students and provide current class informa-
tion (e.g., syllabus, assignments, readings) to current
students. You have been assigned the role of leader, so
you will need to coordinate your activities and those of
your classmates until the project is completed.
Describe how you would apply the project manage-

ment techniques that you have learned in this chapter
in this situation. Include descriptions of how you
would create a workplan, staff the project, and coordi-
nate all activities—yours and those of your classmates.

Q. Select two project management software packages and
research them using the Web or trade magazines.
Describe the features of the two packages. If you were
a project manager, which one would you use to help
support your job? Why?

R. In 1997, Oxford Health Plans had a computer problem
that caused the company to overestimate revenue and
underestimate medical costs. Problems were caused by
the migration of its claims processing system from the
Pick operating system to a UNIX-based system that
uses Oracle database software and hardware from
Pyramid Technology. As a result, Oxford’s stock price
plummeted, and fixing the system became the num-
ber-one priority for the company. Suppose that you
have been placed in charge of managing the repair of
the claims processing system. Obviously, the project
team will not be in good spirits. How will you moti-
vate team members to meet the project’s objectives?

MINICASES

1. The Amberssen Specialty Company is a chain of twelve
retail stores that sell a variety of imported gift items,
gourmet chocolates, cheeses, and wines in the Toronto
area. Amberssen has an IS staff of three people who have
created a simple but effective information system of net-
worked point-of-sale registers at the stores and a central-
ized accounting system at the company headquarters.
Harry Hilman, the head of Amberssens IS group, has
just received the following memo from Bill Amberssen,
Sales Director (and son of Amberssen’s founder).

Harry—it’s time Amberssen Specialty launched
itself on the Internet. Many of our competitors
are already there, selling to customers without the
expense of a retail storefront, and we should be
there too. I project that we could double or triple
our annual revenues by selling our products on
the Internet. I’d like to have this ready by Thanks-
giving, in time for the prime holiday gift-shopping
season. Bill
After pondering this memo for several days, Harry

scheduled a meeting with Bill so that he could clarify
Bill’s vision of this venture. Using the standard content
of a system request as your guide, prepare a list of

questions that Harry needs to have answered about
this project.

2. The Decker Company maintains a fleet of ten service
trucks and crews that provide a variety of plumbing,
heating, and cooling repair services to residential cus-
tomers. Currently, it takes on average about six hours
before a service team responds to a service request.
Each truck and crew averages twelve service calls per
week, and the average revenue earned per service call
is $150. Each truck is in service fifty weeks per year.
Owing to the difficulty in scheduling and routing,
there is considerable slack time for each truck and
crew during a typical week.

In an effort to more efficiently schedule the trucks
and crews and improve their productivity, Decker man-
agement is evaluating the purchase of a prewritten rout-
ing and scheduling software package. The benefits of
the system will include reduced response time to service
requests and more productive service teams, but man-
agement is having trouble quantifying these benefits.

One approach is to make an estimate of how much
service response time will decrease with the new sys-
tem, which then can be used to project the increase in

c02ProjectManagement.qxd 11/28/11 12:10 PM Page 105

106 Chapter 2 Project Management

the number of service calls made each week. For
example, if the system permits the average service
response time to fall to four hours, management
believes that each truck will be able to make sixteen
service calls per week on average—an increase of four
calls per week. With each truck making four additional
calls per week and the average revenue per call at $150,
the revenue increase per truck per week is $600 (4 %
$150). With ten trucks in service fifty weeks per year,
the average annual revenue increase will be $300,000
($600 % 10 % 50).

Decker Company management is unsure whether
the new system will enable response time to fall to four
hours on average or if it will be some other number.
Therefore, management has developed the following
range of outcomes that may be possible outcomes of
the new system, along with probability estimates of
each outcome’s occurring.

New Response Time # Calls/Truck/Week Likelihood
2 hours 20 20%
3 hours 18 30%
4 hours 16 50%

Given these figures, prepare a spreadsheet model that
computes the expected value of the annual revenues to
be produced by this new system.

3. Emily Pemberton is an IS project manager facing a dif-
ficult situation. Emily works for the First Trust Bank,
which has recently acquired the City National Bank.
Before the acquisition, First Trust and City National
were bitter rivals, fiercely competing for market share
in the region. Following the acrimonious takeover,

numerous staff were laid off in many banking areas,
including IS. Key individuals were retained from both
banks’ IS areas, however, and were assigned to a new
consolidated IS department. Emily has been made pro-
ject manager for the first significant IS project since the
takeover, and she faces the task of integrating staffers
from both banks on her team. The project they are
undertaking will be highly visible within the organiza-
tion, and the time frame for the project is somewhat
demanding. Emily believes that the team can meet the
project goals successfully, but success will require that
the team become cohesive quickly and that potential
conflicts be avoided. What strategies do you suggest
that Emily implement in order to help ensure a suc-
cessfully functioning project team?

4. Tom, Jan, and Julie are IS majors at Great State Uni-
versity. These students have been assigned a class pro-
ject by one of their professors, requiring them to
develop a new Web-based system to collect and update
information on the IS program’s alumni. This system
will be used by the IS graduates to enter job and
address information as they graduate and then make
changes to that information as they change jobs
and/or addresses. Their professor also has a number of
queries that she is interested in being able to imple-
ment. Based on their preliminary discussions with
their professor, the students have determined that the
only actor is an IS graduate. They identified one sim-
ple use case, four average use cases, and two complex
use cases. You need to assign reasonable values to each
of the technical complexity and environmental fac-
tors. Calculate the effort for this project.

c02ProjectManagement.qxd 11/3/11 3:02 PM Page 106

CRU
D

E
M

atrix
O

bject
D

iagram
s

PART ONE

Analysis Modeling

Analysis modeling answers the questions of who will
use the system, what the system will do, and where
and when it will be used. During analysis, detailed re-
quirements are identified and a system proposal is
created. The team then produces the functional model
(use case diagram, activity diagrams, and use-case
descriptions), structural model (CRC cards and class
diagram, and object diagrams), and behavioral mod-
els (sequence diagrams, communication diagrams,
behavioral state machines, and a CRUDE matrix).

CHAPTER 4
Business Process

and functional
Modeling

Requirem
ents

D
efinition

System

Proposal
CHAPTER 3

Requirements
Determination

Class
D

iagram
s

CHAPTER 5
Structural

Modeling

Sequence
D

iagram
s

CHAPTER 6
Behavioral

Modeling

U
se Case

D
escriptions

U
se Case

D
iagram

s
Activity

D
iagram

s
Com

m
unication

D
iagram

s
Behavioral

State M
achines

CRC
Cards

c03RequirementsDetermination.qxd 11/28/11 9:14 PM Page 107

c03RequirementsDetermination.qxd 11/7/11 1:23 PM Page 108

This page is intentionally left blank

One of the first activities of an analyst is to determine the business requirements for a
new system. This chapter begins by presenting the requirements definition, a document
that lists the new system’s capabilities. It then describes how to analyze requirements using
business process automation, business process improvement, and business process reengi-
neering techniques and how to gather requirements using interviews, JAD sessions, ques-
tionnaires, document analysis, and observation. The chapter also describes a set of
alternative requirements-documentation techniques and describes the system proposal
document that pulls everything together.

OBJECTIVES

! Understand how to create a requirements definition
! Become familiar with requirements-analysis techniques
! Understand when to use each requirements-analysis technique
! Understand how to gather requirements using interviews, JAD sessions, question-

naires, document analysis, and observation
! Understand the use of concept maps, story cards, and task lists as requirements-

documentation techniques
! Understand when to use each requirements-gathering technique
! Be able to begin creating a system proposal

CHAPTER OUTLINE

109

C H A P T E R 3

REQUIREMENTS DETERMINATION

Introduction
Requirements Determination

Defining a Requirement
Requirements Definition
Determining Requirements
Creating a Requirements Definition
Real-World Problems with

Requirements Determination
Requirements Analysis Strategies

Business Process Automation
Business Process Improvement
Business Process Reengineering
Selecting the Appropriate

Strategies

Requirements-Gathering Techniques
Interviews
Joint Application Development (JAD)
Questionnaires
Document Analysis
Observation
Selecting Appropriate Techniques

Alternative Requirements-Documentation
Techniques

Concept Maps
Story Cards and Task Lists

The System Proposal
Applying the Concepts at CD Selections
Summary

c03RequirementsDetermination.qxd 12/2/11 7:14 PM Page 109

110 Chapter 3 Requirements Determination

INTRODUCTION
The systems development process aids an organization in moving from the current system
(often called the as-is system) to the new system (often called the to-be system). The output
of planning, discussed in Chapter 2, is the system request, which provides general ideas for
the to-be system, defines the project’s scope, and provides the initial workplan. Analysis
takes the general ideas in the system request and refines them into a detailed requirements
definition (this chapter), functional models (Chapter 4), structural models (Chapter 5),
and behavioral models (Chapter 6) that together form the system proposal. The system pro-
posal also includes revised project management deliverables, such as the feasibility analysis
and the workplan (Chapter 2).

The system proposal is presented to the approval committee, who decides if the project
is to continue. This usually happens at a system walkthrough, a meeting at which the
concept for the new system is presented to the users, managers, and key decision makers.
The goal of the walkthrough is to explain the system in moderate detail so that the users,
managers, and key decision makers clearly understand it, can identify needed improve-
ments, and can make a decision about whether the project should continue. If approved,
the system proposal moves into design, and its elements (requirements definition and
functional, structural, and behavioral models) are used as inputs to the steps in design. This
further refines them and defines in much more detail how the system will be built.

The line between analysis and design is very blurry. This is because the deliverables created
during analysis are really the first step in the design of the new system. Many of the major design
decisions for the new system are found in the analysis deliverables. In fact, a better name for
analysis is really analysis and initial design, but because this is a rather long name and because
most organizations simply call it analysis, we do too. Nonetheless, it is important to remember
that the deliverables from analysis are really the first step in the design of the new system.

In many ways, because it is here that the major elements of the system first emerge,
the requirements-determination step is the single most critical step of the entire system devel-
opment process. During requirements determination, the system is easy to change because
little work has been done yet. As the system moves through the system development process,
it becomes harder and harder to return to requirements determination and to make major
changes because of all of the rework that is involved. Several studies have shown that more
than half of all system failures are due to problems with the requirements.1 This is why the
iterative approaches of many object-oriented methodologies are so effective—small batches
of requirements can be identified and implemented in incremental stages, allowing the
overall system to evolve over time. In this chapter, we focus on the requirements workflow of
the Unified Process. We begin by explaining what a requirement is and the overall process of
requirements gathering and requirements analysis. We then present a set of techniques that
can be used to analyze and gather requirements.

REQUIREMENTS DETERMINATION
The purpose of requirements determination is to turn the very high-level explanation of the
business requirements stated in the system request into a more precise list of requirements
that can be used as inputs to the rest of analysis (creating functional, structural, and behav-
ioral models). This expansion of the requirements ultimately leads to the design of the
system. However, the most difficult aspect of determining the actual requirements is
analogous to the story of the blind men and the elephant (see Figure 3-1). In this story,
depending on which part of the elephant each blind man touches, each “sees” the elephant

1 For example, see The Scope of Software Development Project Failures (Dennis, MA: The Standish Group, 1995).

c03RequirementsDetermination.qxd 11/7/11 1:23 PM Page 110

Requirements Determination 111

It was six men of Indostan
To learning much inclined,
Who went to see the Elephant
(Though all of them were blind),
That each by observation
Might satisfy his mind

The First approached the Elephant,
And happening to fall
Against his broad and sturdy side,
At once began to bawl:
God bless me! but the Elephant
Is very like a wall!

The Second, feeling of the tusk,
Cried, Ho! what have we here
So very round and smooth and sharp?
To me tis mighty clear
This wonder of an Elephant
Is very like a spear!

The Third approached the animal,
And happening to take
The squirming trunk within his hands,
Thus boldly up and spake:
I see, quoth he, the Elephant
Is very like a snake!

The Fourth reached out an eager hand,
And felt about the knee.
What most this wondrous beast is like
Is mighty plain, quoth he;
’Tis clear enough the Elephant
Is very like a tree!

The Fifth, who chanced to touch the ear,
Said: Even the blindest man
Can tell what this resembles most;
Deny the fact who can
This marvel of an Elephant
Is very like a fan!?

The Sixth no sooner had begun
About the beast to grope,
Than, seizing on the swinging tail
That fell within his scope,
I see, quoth he, the Elephant
Is very like a rope!

And so these men of Indostan
Disputed loud and long,
Each in his own opinion
Exceeding stiff and strong,
Though each was partly in the right,
And all were in the wrong!

FIGURE 3-1
The Blind Men and the
Elephant

Moral:
So oft in theologic wars,
The disputants, I ween,
Rail on in utter ignorance
Of what each other mean,
And prate about an Elephant
Not one of them has seen!

– John Godfrey Saxe

c03RequirementsDetermination.qxd 11/7/11 3:07 PM Page 111

differently. In many ways, the analyst is like one of the blind men. Depending on which part
of the proverbial elephant the analyst touches, the analyst sees the requirements differently.
Also, like the blind men, the analyst may only be able to perceive the individual part in a
biased manner. Therefore, the analyst must be on guard to prevent the poor elephant
(requirements) from being misrepresented.

Defining a Requirement
A requirement is simply a statement of what the system must do or what characteristic
it must have. During analysis, requirements are written from the perspective of the
businessperson, and they focus on the “what” of the system. Because they focus on the
needs of the business user, they are usually called business requirements (and some-
times user requirements). Later in design, business requirements evolve to become
more technical, and they describe how the system will be implemented. Requirements
in design are written from the developer’s perspective, and they are usually called
system requirements.

Before we continue, we want to stress that there is no black-and-white line dividing a
business requirement and a system requirement—and some companies use the terms
interchangeably. The important thing to remember is that a requirement is a statement of
what the system must do, and requirements will change over time as the project moves
from inception to elaboration to construction. Requirements evolve from detailed state-
ments of the business capabilities that a system should have to detailed statements of the
technical way the capabilities will be implemented in the new system.

Requirements can be either functional or nonfunctional in nature. A functional
requirement relates directly to a process a system has to perform or information it
needs to contain. For example, requirements that state that a system must have the
ability to search for available inventory or to report actual and budgeted expenses are
functional requirements. Functional requirements flow directly into the creation of
functional, structural, and behavioral models that represent the functionality of the
evolving system.

Nonfunctional requirements refer to behavioral properties that the system must have, such
as performance and usability. The ability to access the system using a Web browser is considered
a nonfunctional requirement. Nonfunctional requirements can influence the rest of analysis
(functional, structural, and behavioral models) but often do so only indirectly; nonfunctional
requirements are used primarily in design when decisions are made about the user interface, the
hardware and software, and the system’s underlying physical architecture.

Figure 3-2 lists different kinds of nonfunctional requirements and examples of each
kind. Notice that the nonfunctional requirements describe a variety of characteristics
regarding the system: operational, performance, security, and cultural and political. For
example, the project team needs to know if a system must be highly secure, requires sub-
second response time, or has to reach a multicultural customer base.

These characteristics do not describe business processes or information, but they are
very important in understanding what the final system should be like. Nonfunctional
requirements primarily affect decisions that will be made during the design of a system. We
will return to this topic later in the book when we discuss design. The goal in this chapter
is to identify any major issues.

Four topics that have influenced information system requirements are the Sarbanes-
Oxley Act, COBIT (Control OBjectives for Information and related Technology) compli-
ance, ISO 9000 compliance, and Capability Maturity Model compliance. Depending on the
system being considered, these four topics could affect the definition of a system’s func-
tional requirements, nonfunctional requirements, or both. The Sarbanes-Oxley Act, for
example, mandates additional functional and nonfunctional requirements. These include

112 Chapter 3 Requirements Determination

c03RequirementsDetermination.qxd 11/7/11 1:23 PM Page 112

Yaxing Yao

additional security concerns (nonfunctional) and specific information requirements that
management must now provide (functional). When developing financial information sys-
tems, information system developers should be sure to include Sarbanes-Oxley expertise in
the development team. In another example, a client could insist on COBIT compliance,
ISO 9000 compliance, or that a specific Capability Maturity Model level had been reached
for the firm to be considered as a possible vendor to supply the system under considera-
tion. Obviously, these types of requirements add to the nonfunctional requirements. Fur-
ther discussion of these topics is beyond the scope of this book.2

Another recent topic that influences requirements for some systems is the whole area of
globalization. The idea of having a global information supply chain brings to bear a large
number of additional nonfunctional requirements. For example, if the necessary opera-
tional environments do not exist for a mobile solution to be developed, it is important to
adapt the solution to the local environment. Or, it may not be reasonable to expect to deploy
a high-technology-based solution in an area that does not have the necessary power and
communications infrastructure. In some cases, we may need to consider some parts of the
global information supply chain to be supported with manual—rather than automated—
information systems.

Requirements Determination 113

2A concise discussion of the Sarbanes-Oxley Act is presented in G. P. Lander, What is Sarbanes-Oxley? (New York:
McGraw-Hill, 2004). A good reference for Sarbanes-Oxley Act–based security requirements is D. C. Brewer, Security
Controls for Sarbanes-Oxley Section 404 IT Compliance: Authorization, Authentication, and Access (Indianapolis,
IN: Wiley, 2006). For detailed information on COBIT, see www.isaca.org, for ISO 9000, see www.iso.org, and for
details on the Capability Maturity Model, see www.sei.cmu.edu/cmmi/.

Operational The physical and technical environments in ! The system should be able to fit in a pocket or purse.
which the system will operate ! The system should be able to integrate with the

existing inventory system.
! The system should be able to work on any Web

browser.

Performance The speed, capacity, and reliability of the system ! Any interaction between the user and the system
should not exceed 2 seconds.

! The system should receive updated inventory infor-
mation every 15 minutes.

! The system should be available for use 24 hours per
day, 365 days per year.

Security Who has authorized access to the system under ! Only direct managers can see personnel records
what circumstances of staff.

! Customers can see their order history only during
business hours.

Cultural and political Cultural, political factors and legal requirements ! The system should be able to distinguish between
that affect the system United States and European currency.

! Company policy says that we buy computers only
from Dell.

! Country managers are permitted to authorize
customer user interfaces within their units.

! The system shall comply with insurance industry
standards.

Source: The Atlantic Systems Guild, http://www.systemsguild.com/GuildSite/Robs/Template.html

FIGURE 3-2 Nonfunctional Requirements

Nonfunctional
Requirement Description Examples

c03RequirementsDetermination.qxd 11/7/11 1:23 PM Page 113

114 Chapter 3 Requirements Determination

One of the most common mistakes by new analysts is to
confuse functional and nonfunctional requirements. Pre-
tend that you received the following list of requirements
for a sales system.

Requirements for Proposed System
The system should

1. be accessible to the Web users;
2. include the company standard logo and color

scheme;
3. restrict access to profitability information;
4. include actual and budgeted cost information;
5. provide management reports;
6. include sales information that is updated at least

daily;

7. have two-second maximum response time for pre-
defined queries and ten-minute maximum response
time for ad hoc queries;

8. include information from all company subsidiaries;
9. print subsidiary reports in the primary language of

the subsidiary;
10. provide monthly rankings of salesperson performance.

Questions

1. Which requirements are functional business
requirements? Provide two additional examples.

2. Which requirements are nonfunctional business
requirements? What kind of nonfunctional require-
ments are they? Provide two additional examples.

3-1 Identifying RequirementsYOUR

TURN

I once worked on a consulting project in which my man-
ager created a requirements definition without listing non-
functional requirements. The project was then estimated
based on the requirements definition and sold to the client
for $5,000. In my manager’s mind, the system that we
would build for the client would be a very simple stand-
alone system running on current technology. It shouldn’t
take more than a week to analyze, design, and build.

Unfortunately, the clients had other ideas. They
wanted the system to be used by many people in three
different departments, and they wanted the ability for any
number of people to work on the system concurrently.
The technology they had in place was antiquated;

nonetheless, they wanted the system to run effectively on
the existing equipment. Because we didn’t set the project
scope properly by including our assumptions about non-
functional requirements in the requirements definition,
we basically had to do whatever they wanted.

The capabilities they wanted took weeks to design
and program. The project ended up taking four months,
and the final project cost was $250,000. Our company
had to pick up the tab for everything except the agreed-
upon $5,000. This was by far the most frustrating project
situation I ever experienced.

Barbara Wixom

3-A What Can Happen If You Ignore Nonfunctional RequirementsCONCEPTS

IN ACTION

Manual systems have an entirely different set of requirements that create different per-
formance expectations and additional security concerns. Furthermore, cultural and politi-
cal concerns are potentially paramount. A simple example that affects the design of user
interfaces is the proper use of color on forms (on a screen or paper). Different cultures
interpret different colors differently. In other words, in a global, multicultural business
environment, addressing cultural concerns goes well beyond simply having a multilingual
user interface. We must be able to adapt the global solution to the local realities. Friedman

c03RequirementsDetermination.qxd 11/7/11 1:23 PM Page 114

refers to these concerns as glocalization.3 Otherwise, we will simply create another example
of a failed information system development project.

Requirements Definition
The requirements definition report—usually just called the requirements definition—is a
straightforward text report that simply lists the functional and nonfunctional requirements
in an outline format. Figure 3-3 shows a sample requirements definition for an appointment
system for a typical doctor’s office. Notice it contains both functional and nonfunctional
requirements. The functional requirements include managing appointments, producing
schedules, and recording the availability of the individual doctors. The nonfunctional

Requirements Determination 115

3 T. L. Friedman, The World is Flat: A Brief History of the Twenty-First Century, Updated and Expanded Edition.
(New York: Farrar, Straus, and Giroux, 2006). For a criticism of Friedman’s view, see R. Aronica and M. Ramdoo,
The World is FLAT? A Critical Analysis of Thomas L. Friedman’s New York Times Bestseller (Tampa, FL: Meghan-
Kiffer Press, 2006).

Functional Requirements

 1. Manage Appointments
 1.1. Patient makes new appointment.
 1.2. Patient changes appointment.
 1.3. Patient cancels appointment.

2. Produce Schedule
 2.1. Office Manager checks daily schedule.
 2.2. Office Manager prints daily schedule.

3. Record Doctor Availability
 3.1. Doctor updates schedule

Nonfunctional Requirements

 1. Operational Requirements
 1.1. The system will operate in Windows environment.
 1.2. The system should be able to connect to printers wirelessly.
 1.3. The system should automatically back up at the end of each day.

 2. Performance Requirements
 2.1. The system will store a new appointment in 2 seconds or less.
 2.2. The system will retrieve the daily appointment schedule in 2 seconds or less.

 3. Security Requirements
 3.1. Only doctors can set their availability.
 3.2. Only a manager can produce a schedule.

 4. Cultural and Political Requirements
 4.1. No special cultural and political requirements are anticipated.

FIGURE 3-3
Sample Requirements
Definition

c03RequirementsDetermination.qxd 11/7/11 1:23 PM Page 115

requirements includes items such as the expected amount of time that it takes to store a new
appointment, the need to support wireless printing, and which types of employees have
access to the different parts of the system.

The requirements are numbered in a legal or outline format so that each requirement
is clearly identified. The requirements are first grouped into functional and nonfunctional
requirements; within each of those headings, they are further grouped by the type of non-
functional requirement or by function.

Sometimes business requirements are prioritized on the requirements definition. They
can be ranked as having high, medium, or low importance in the new system, or they can
be labeled with the version of the system that will address the requirement (e.g., release 1,
release 2, release 3). This practice is particularly important when using object-oriented
methodologies because they deliver requirements in batches by developing incremental
versions of the system.

The most obvious purpose of the requirements definition is to provide the informa-
tion needed by the other deliverables in analysis, which include functional, structural, and
behavioral models, and to support activities in design. The most important purpose of the
requirements definition, however, is to define the scope of the system. The document
describes to the analysts exactly what the system needs to end up doing. When discrepan-
cies arise, the document serves as the place to go for clarification.

Determining Requirements
Determining requirements for the requirements definition is both a business task and an
information technology task. In the early days of computing, there was a presumption that
the systems analysts, as experts with computer systems, were in the best position to define
how a computer system should operate. Many systems failed because they did not ade-
quately address the true business needs of the users. Gradually, the presumption changed
so that the users, as the business experts, were seen as being the best position to define how
a computer system should operate. However, many systems failed to deliver performance
benefits because users simply automated an existing inefficient system, and they failed to
incorporate new opportunities offered by technology.

A good analogy is building a house or an apartment. We have all lived in a house or
apartment, and most of us have some understanding of what we would like to see in one.
However, if we were asked to design one from scratch, it would be a challenge because we
lack appropriate design skills and technical engineering skills. Likewise, an architect acting
alone would probably miss some of our unique requirements.

Therefore, the most effective approach is to have both business people and analysts
working together to determine business requirements. Sometimes, however, users don’t
know exactly what they want, and analysts need to help them discover their needs. Three
kinds of strategies have become popular to help analysts do this: business process automa-
tion (BPA), business process improvement (BPI), and business process reengineering (BPR).
Analysts can use these tools when they need to guide the users in explaining what is wanted
from a system.

The three kinds of strategies work similarly. They help users critically examine the cur-
rent state of systems and processes (the as-is system), identify exactly what needs to change,
and develop a concept for a new system (the to-be system). A different amount of change
is associated with each technique; BPA creates a small amount of change, BPI creates a
moderate amount of change, and BPR creates significant change that affects much of the
organization.

Although BPA, BPI, and BPR enable the analyst to help users create a vision for the
new system, they are not sufficient for extracting information about the detailed business

116 Chapter 3 Requirements Determination

c03RequirementsDetermination.qxd 11/7/11 1:23 PM Page 116

requirements that are needed to build it. Therefore, analysts use a portfolio of
requirements-gathering techniques to acquire information from users. The analyst has
many techniques from which to choose: interviews, questionnaires, observation, joint
application development (JAD), and document analysis. The information gathered using
these techniques is critically analyzed and used to craft the requirements definition report.
A later section of this chapter describes each of the requirements-gathering techniques in
greater depth.

Creating a Requirements Definition
Creating a requirements definition is an iterative and ongoing process whereby the analyst
collects information with requirements-gathering techniques (e.g., interviews, document
analysis), critically analyzes the information to identify appropriate business requirements
for the system, and adds the requirements to the requirements definition report. The
requirements definition is kept up to date so that the project team and business users can
refer to it and get a clear understanding of the new system.

To create a requirements definition, the project team first determines the kinds of
functional and nonfunctional requirements that they will collect about the system (of
course, these may change over time). These become the main sections of the document.
Next, the analysts use a variety of requirements-gathering techniques (e.g., interviews,
observation) to collect information, and they list the business requirements that were iden-
tified from that information. Finally, the analysts work with the entire project team and the
business users to verify, change, and complete the list and to help prioritize the importance
of the requirements that were identified.

This process continues throughout analysis, and the requirements definition evolves
over time as new requirements are identified and as the project moves into later phases of
the Unified Process. Beware: The evolution of the requirements definition must be carefully
managed. The project team cannot keep adding to the requirements definition, or the
system will keep growing and growing and never get finished. Instead, the project team care-
fully identifies requirements and evaluates which ones fit within the scope of the system.
When a requirement reflects a real business need but is not within the scope of the current
system or current release, it is either added on a list of future requirements or given a low
priority. The management of requirements (and system scope) is one of the hardest parts of
managing a project.

Real-World Problems with Requirements Determination
Avison and Fitzgerald provide us with a set of problems that can arise with regard to deter-
mining the set of requirements to be dealt with. 4 First, the analyst might not have access to
the correct set of users to uncover the complete set of requirements. This can lead to
requirements being missed, misrepresented, and/or overspecified. This is analogous to the
blind men and the elephant metaphor described earlier. Second, the specification of the
requirements may be inadequate. This can be especially true with the lightweight tech-
niques associated with agile methodologies. Third, some requirements are simply unknow-
able at the beginning of a development process. However, as the system is developed, the
users and analysts will get a better understanding of both the domain issues and the applic-
able technology. This can cause new functional and nonfunctional requirements to be
identified and current requirements to evolve or be canceled. Iterative and incremental-
based development methodologies, such as the Unified Process and agile, can help in this

Requirements Determination 117

4 See D. Avison and G. Fitzgerald, Information Systems Development: Methodologies, Techniques, & Tools, 4th Ed.
(London: McGraw-Hill, 2006).

c03RequirementsDetermination.qxd 11/7/11 1:23 PM Page 117

case. Fourth, verifying and validating of requirements can be very difficult. We take up this
topic in the chapters that deal with the creation of functional (Chapter 4), structural
(Chapter 5), and behavioral (Chapter 6) models.

REQUIREMENTS ANALYSIS STRATEGIES
Before the project team can determine what requirements are appropriate for a given sys-
tem, they need to have a clear vision of the kind of system that will be created and the level
of change that it will bring to the organization. The basic process of analysis is divided into
three steps: understanding the as-is system, identifying improvements, and developing
requirements for the to-be system.

Sometimes the first step (i.e., understanding the as-is system) is skipped or is per-
formed in a cursory manner. This happens when no current system exists, if the existing
system and processes are irrelevant to the future system, or if the project team is using a
RAD or agile development methodology in which the as-is system is not emphasized. Users
of traditional design methods such as waterfall and parallel development (see Chapter 1)
typically spend significant time understanding the as-is system and identifying improve-
ments before moving to capture requirements for the to-be system. However, newer RAD,
agile, and object-oriented methodologies, such as phased development, prototyping,
throwaway prototyping, extreme programming, and Scrum (see Chapter 1) focus almost
exclusively on improvements and the to-be system requirements, and they spend little time
investigating the current as-is system.

Three requirements-analysis strategies—business process automation, business
process improvement, and business process reengineering—help the analyst lead users
through the analysis steps so that the vision of the system can be developed. Require-
ments analysis strategies and requirements-gathering techniques go hand in hand.
Analysts need to use requirements-gathering techniques to collect information; require-
ments analysis strategies drive the kind of information that is gathered and how it is ulti-
mately analyzed. Although we now focus on the analysis strategies and then discuss
requirements gathering at the end of the chapter, they happen concurrently and are com-
plementary activities.

The choice of analysis technique to be used is based on the amount of change the sys-
tem is meant to create in the organization. BPA is based on small change that improves
process efficiency, BPI creates process improvements that lead to better effectiveness, and
BPR revamps the way things work so that the organization is transformed on some level.

To move the users from here to there, an analyst needs strong critical thinking skills.
Critical thinking is the ability to recognize strengths and weaknesses and recast an idea in
an improved form, and critical thinking skills are needed to really understand issues and
develop new business processes. These skills are also needed to thoroughly examine the
results of requirements gathering, to identify business requirements, and to translate those
requirements into a concept for the new system.

Business Process Automation (BPA)
BPA leaves the basic way the organization operates unchanged and uses computer tech-
nology to do some of the work. BPA can make the organization more efficient but has
the least impact on the business. Planners in BPA projects spend a significant time
understanding the current as-is system before moving on to improvements and to-be
system requirements. Problem analysis and root cause analysis are two popular BPA
techniques.

118 Chapter 3 Requirements Determination

c03RequirementsDetermination.qxd 11/7/11 1:23 PM Page 118

Problem Analysis The most straightforward (and probably the most commonly used)
requirements-analysis technique is problem analysis. Problem analysis means asking the
users and managers to identify problems with the as-is system and to describe how to
solve them in the to-be system. Most users have a very good idea of the changes they
would like to see, and most are quite vocal about suggesting them. Most changes tend to
solve problems rather than capitalize on opportunities, but the latter is possible as well.
Improvements from problem analysis tend to be small and incremental (e.g., provide
more space in which to type the customer’s address; provide a new report that currently
does not exist).

This type of improvement often is very effective at improving a system’s efficiency or
ease of use. However, it often provides only minor improvements in business value—the
new system is better than the old, but it may be hard to identify significant monetary ben-
efits from the new system.

Root Cause Analysis The ideas produced by problem analysis tend to be solutions to
problems. All solutions make assumptions about the nature of the problem, assumptions
that might or might not be valid. In our experience, users (and most people in general)
tend to quickly jump to solutions without fully considering the nature of the problem.
Sometimes the solutions are appropriate, but many times they address a symptom of the
problem, not the true problem or root cause itself.5

For example, suppose a firm notices that its users report that inventory stock-outs are
common. The cost of inventory stock-outs can be quite significant. For example, in this case,
because they happen frequently, customers could find another source for the items that they
are purchasing from the firm. It is in the firm’s interest to determine the underlying cause and
not simply provide a knee-jerk reaction such as arbitrarily increasing the amount of inven-
tory kept on hand. In the business world, the challenge lies in identifying the root cause—few
real-world problems are simple. The users typically propose a set of causes for the problem
under consideration. The solutions that users propose can address either symptoms or root
causes, but without a careful analysis, it is difficult to tell which one is addressed. The analyst
must keep in mind the parable of the blind men and the elephant, where the blind men, in
this case, are the users.

Root cause analysis, therefore, focuses on problems, not solutions. The analyst starts
by having the users generate a list of problems with the current system and then priori-
tize the problems in order of importance. Starting with the most important, the users
and/or the analysts then generate all the possible root causes for the problems. Each pos-
sible root cause is investigated (starting with the most likely or easiest to check) until the
true root causes are identified. If any possible root causes are identified for several prob-
lems, those should be investigated first, because there is a good chance they are the real
root causes influencing the symptom problems. In our example, there are several
possible root causes:

! The firm’s supplier might not be delivering orders to the firm in a timely manner.
! There could be a problem with the firm’s inventory controls.
! The reorder level and quantities could be set wrong.

Sometimes, using a hierarchical chart to represent the causal relationships helps with the
analysis. As Figure 3-4 shows, there are many possible root causes that underlie the higher-level
causes identified. The key point in root cause analysis is always to challenge the obvious.

Requirements Analysis Strategies 119

5 Two good books that discuss the difficulty in finding the root causes to problems are: E. M. Goldratt and J. Cox,
The Goal (Croton-on-Hudson, NY: North River Press, 1986); and E. M. Goldratt, The Haystack Syndrome
(Croton-on-Hudson, NY: North River Press, 1990).

c03RequirementsDetermination.qxd 11/7/11 1:23 PM Page 119

120 Chapter 3 Requirements Determination

Frequent
Inventory Stock-Outs

Order Approval
Late

Identifying Vendor
Delayed

Delay in Sending
Order to Vendor

Delays in Order
Processing

Late Recording of
Sales

Late Recording of
Purchases Received

Infrequent Manual
Inventory Reconciliation

Problems with
Inventory Controls

Reorder point set
too low

Reorder Quantity
(EOQ) set too low

Incorrect Reorder
Level and Quantities

In the gold rush days of the late 1990s, getting on the Inter-
net was a hot topic. Many companies (many of which no
longer exist) created computers for the home Internet mar-
ket, many with built-in dial-up connectivity and contracts
for that connectivity. The AtHome company made such an
Internet appliance. Taken out of the box, connected to a
phone line, and provided with initial start-up, it “phoned
home” (made the connection to an Internet service
provider).

But, the days of the Internet appliance were short lived.
Consumers wanted more than just Internet access—they
wanted to be able to have and share files, photos, and mate-
rials with others. The basic AtHome Internet Appliance did
not have any storage and was useful only for connecting to
the Internet (by phone modem) and browsing the Internet.

The stock price dropped and sales dropped; even with
prices that were comparable to giving away the device, con-
sumers were no longer interested as 2001 came to an end.

When faced with such a situation, what does a com-
pany do? The company faced a real challenge—go out of
business or reorganize. In this case AtHome, which had
expertise in hardware and telecommunications, restruc-
tured into a security company. With September 11, 2001,

bringing calls for better security, AtHome scrambled to
create a hardware device that would sit between the
Internet connection and a business network. To keep their
stock listed on the New York Stock Exchange, AtHome did
a 15-to-1 reverse stock split and changed their name to
indicate a new focus. Having been burned by consumers’
whims, they set their sights on capturing major corporate
business. It took two long years before their device started
to be noticed—and just paying the employees almost ate
up the available funds before sales of the new device
started to kick in. The reorganized company is now rec-
ognized as a leader in the intrusion-prevention field.

A company that falls from consumer favor cannot
always restructure itself to become successful in an alter-
native area. In this case, there was success from failure.

Questions

1. When should a company that has lost in the consumer
marketplace re-create itself for the corporate market?

2. How might a systems analyst for the AtHome com-
pany learn to change with the times and adapt to
the new environment?

3-B Success from FailureCONCEPTS

IN ACTION

FIGURE 3-4 Root-Cause Analysis for Inventory Stock-Outs

c03RequirementsDetermination.qxd 11/7/11 1:23 PM Page 120

Business Process Improvement (BPI)
BPI makes moderate changes to the way the organization operates in order to take advan-
tage of new opportunities offered by technology or to copy what competitors are doing.
BPI can improve efficiency (i.e., doing things right) and improve effectiveness (i.e., doing
the right things). Planners of BPI projects also spend time understanding the as-is system,
but much less time than with BPA projects; their primary focus is on improving business
processes, so time is spent on the as-is only to help with the improvement analyses and the
to-be system requirements. Duration analysis, activity-based costing, and informal bench-
marking are three popular BPI activities.

Duration Analysis Duration analysis requires a detailed examination of the amount of
time it takes to perform each process in the current as-is system. The analysts begin by
determining the total amount of time it takes, on average, to perform a set of business
processes for a typical input. They then time each of the individual steps (or subprocesses)
in the business process. The time to complete the basic steps are then totaled and compared
to the total for the overall process. A significant difference between the two—and in our
experience the total time often can be 10 or even 100 times longer than the sum of the
parts—indicates that this part of the process is badly in need of a major overhaul.

For example, suppose that the analysts are working on a home mortgage system and
discover that on average, it takes thirty days for the bank to approve a mortgage. They then
look at each of the basic steps in the process (e.g., data entry, credit check, title search,
appraisal) and find that the total amount of time actually spent on each mortgage is about
eight hours. This is a strong indication that the overall process is badly broken, because it
takes thirty days to perform one day’s work.

These problems probably occur because the process is badly fragmented. Many differ-
ent people must perform different activities before the process finishes. In the mortgage
example, the application probably sits on many people’s desks for long periods of time
before it is processed.

Processes in which many different people work on small parts of the inputs are prime
candidates for process integration or parallelization. Process integration means changing the
fundamental process so that fewer people work on the input, which often requires chang-
ing the processes and retraining staff to perform a wider range of duties. Process paral-
lelization means changing the process so that all the individual steps are performed at the
same time. For example, in the mortgage application case, there is probably no reason that
the credit check cannot be performed at the same time as the appraisal and title check.

Requirements Analysis Strategies 121

A group of executives from a Fortune 500 company used
duration analysis to discuss their procurement process.
Using a huge wall of Velcro and a handful of placards, a
facilitator mapped out the company’s process for procur-
ing a $50 software upgrade. Having quantified the time it
took to complete each step, she then assigned costs based
on the salaries of the employees involved. The fifteen-

minute exercise left the group stunned. Their procurement
process had gotten so convoluted that it took eighteen
days, countless hours of paperwork, and nearly $22,000
in employee time to get the product ordered, received,
and up and running on the requester’s desktop.
Source: “For Good Measure” Debby Young, CIO Magazine
(March 1, 1999).

3-C Duration AnalysisCONCEPTS

IN ACTION

c03RequirementsDetermination.qxd 11/7/11 1:23 PM Page 121

Activity-Based Costing Activity-based costing is a similar analysis; it examines the cost
of each major process or step in a business process rather than the time taken.6 The ana-
lysts identify the costs associated with each of the basic functional steps or processes, iden-
tify the most costly processes, and focus their improvement efforts on them.

Assigning costs is conceptually simple. Analysts simply examine the direct cost of labor and
materials for each input. Materials costs are easily assigned in a manufacturing process, whereas
labor costs are usually calculated based on the amount of time spent on the input and the hourly
cost of the staff. However, as you may recall from a managerial accounting course, there are indi-
rect costs such as rent, depreciation, and so on, that also can be included in activity costs.

Informal Benchmarking Benchmarking refers to studying how other organizations per-
form a business process in order to learn how your organization can do something better.
Benchmarking helps the organization by introducing ideas that employees may never have
considered but that have the potential to add value.

Informal benchmarking is fairly common for customer-facing business processes (i.e.,
processes that interact with the customer). With informal benchmarking, the managers and
analysts think about other organizations or visit them as customers to watch how the busi-
ness process is performed. In many cases, the business studied may be a known leader in the
industry or simply a related firm. For example, suppose the team is developing a website for
a car dealer. The project sponsor, key managers, and key team members would likely visit the
websites of competitors as well as those of others in the car industry (e.g., manufacturers,
accessories suppliers) and those in other industries that have won awards for their websites.

Business Process Reengineering
BPR means changing the fundamental way the organization operates, obliterating the
current way of doing business and making major changes to take advantage of new ideas
and new technology. Planners of BPR projects spend little time understanding the as-is,
because their goal is to focus on new ideas and new ways of doing business. Outcome
analysis, technology analysis, and activity elimination are three popular BPR activities.

Outcome Analysis Outcome analysis focuses on understanding the fundamental out-
comes that provide value to customers. Although these outcomes sound as though they
should be obvious, they often are not. For example, consider an insurance company. One
of its customers has just had a car accident. What is the fundamental outcome from the cus-
tomer’s perspective? Traditionally, insurance companies have answered this question by
assuming the customer wants to receive the insurance payment quickly. To the customer,
however, the payment is only a means to the real outcome: a repaired car. The insurance
company might benefit by extending its view of the business process past its traditional
boundaries to include not paying for repairs but performing the repairs or contracting with
an authorized body shop to do them.

With this approach, system analysts encourage the managers and project sponsor to
pretend they are customers and to think carefully about what the organization’s products
and services enable the customers to do—and what they could enable the customer to do.

Technology Analysis Many major changes in business since the turn of the century have
been enabled by new technologies. Technology analysis starts by having the analysts and

122 Chapter 3 Requirements Determination

6 Many books have been written on activity-based costing. Useful ones include K. B. Burk and D. W. Webster,
Activity-Based Costing (Fairfax, VA: American Management Systems, 1994); and D. T. Hicks, Activity-Based Cost-
ing: Making It Work for Small and Mid-sized Companies (New York: Wiley, 1998). The two books by Eli Goldratt
mentioned previously (The Goal and The Haystack Syndrome) also offer unique insights into costing.

c03RequirementsDetermination.qxd 11/7/11 1:23 PM Page 122

managers develop a list of important and interesting technologies. Then the group system-
atically identifies how every technology could be applied to the business process and iden-
tifies how the business would benefit.

For example, one useful technology is the Internet. Saturn, the car manufacturer, took
this idea and developed an extranet application for its suppliers. Rather than ordering parts
for its cars, Saturn made its production schedule available electronically to its suppliers,
who shipped the parts Saturn needed so that they arrived at the plant just in time. This
saved Saturn significant costs because it eliminated the need for people to monitor the pro-
duction schedule and issue purchase orders.

Activity Elimination Activity elimination is exactly what it sounds like. The analysts and
managers work together to identify how the organization could eliminate each activity in
the business process, how the function could operate without it, and what effects are likely
to occur. Initially, managers are reluctant to conclude that processes can be eliminated, but
this is a force-fit exercise in that they must eliminate each activity. In some cases the results
are silly; nonetheless, participants must address every activity in the business process.

For example, in the home mortgage approval process discussed earlier, the managers
and analysts would start by eliminating the first activity, entering the data into the mort-
gage company’s computer. This leads to two obvious possibilities: eliminate the use of a
computer system or make someone else do the data entry (e.g., the customer over the
Web). They would then eliminate the next activity, the credit check. Silly, right? After all,
making sure the applicant has good credit is critical in issuing a loan. Not really. The real
answer depends upon how many times the credit check identifies bad applications. If all or
almost all applicants have good credit and are seldom turned down by a credit check, then
the cost of the credit check might not be worth the cost of the few bad loans it prevents.
Eliminating it might actually result in lower costs, even with the cost of bad loans.

Selecting Appropriate Strategies
Each technique discussed in this chapter has its own strengths and weaknesses (see Figure 3-5).
No one technique is inherently better than the others, and in practice most projects use a
combination of techniques.

Potential Business Value Potential business value varies with the analysis strategy.
Although BPA has the potential to improve the business, most of the benefits from BPA are
tactical and small. Because BPA does not seek to change the business processes, it can only
improve their efficiency. BPI usually offers moderate potential benefits, depending upon
the scope of the project, because it seeks to change the business in some way. It can increase
both efficiency and effectiveness. BPR creates large potential benefits because it seeks to
radically improve the nature of the business.

Project Cost Project cost is always important. In general, BPA has the lowest cost because it
has the narrowest focus and seeks to make the fewest changes. BPI can be moderately expen-
sive, depending upon the scope of the project. BPR is usually expensive, because of the amount
of time required of senior managers and the amount of redesign to business processes.

Breadth of Analysis Breadth of analysis refers to the scope of analysis, or whether analysis
includes business processes within a single business function, processes that cross the orga-
nization, or processes that interact with those in customer or supplier organizations. BPR
takes a broad perspective, often spanning several major business processes, even across
multiple organizations. BPI has a much narrower scope that usually includes one or several
business functions. BPA typically examines a single process.

Requirements Analysis Strategies 123

c03RequirementsDetermination.qxd 11/7/11 1:23 PM Page 123

Risk One final issue is risk of failure, which is the likelihood of failure due to poor design,
unmet needs, or too much change for the organization to handle. BPA and BPI have low to
moderate risk because the to-be system is fairly well defined and well understood, and its
potential impact on the business can be assessed before it is implemented. BPR projects, on
the other hand, are less predictable. BPR is extremely risky and is not something to be

124 Chapter 3 Requirements Determination

Potential business value Low–moderate Moderate High

Project cost Low Low–moderate High

Breadth of analysis Narrow Narrow–moderate Very broad

Risk Low–moderate Low–moderate Very high

FIGURE 3-5
Characteristics of
Analysis Strategies

Business Process Business Process Business Process
Automation Improvement Reengineering

IBM Credit was a wholly owned subsidiary of IBM
responsible for financing mainframe computers sold by
IBM. Although some customers bought mainframes out-
right or obtained financing from other sources, financing
computers provided significant additional profit.

When an IBM sales representative made a sale, he or
she would immediately call IBM Credit to obtain a financ-
ing quote. The call was received by a credit officer, who
would record the information on a request form. The form
would then be sent to the credit department to check the
customer’s credit status. This information would be recorded
on the form, which was then sent to the business practices
department, who would write a contract (sometimes reflect-
ing changes requested by the customer). The form and the
contract would then go to the pricing department, which
used the credit information to establish an interest rate and
recorded it on the form. The form and contract were then
sent to the clerical group, where an administrator would
prepare a cover letter quoting the interest rate and send the
letter and contract via Federal Express to the customer.

The problem at IBM Credit was a major one. Getting
a financing quote took anywhere for four to eight days (six
days on average), giving the customer time to rethink the
order or find financing elsewhere. While the quote was
being prepared, sales representatives would often call to
find out where the quote was in the process so they could
tell the customer when to expect it. However, no one at
IBM Credit could answer the question because the paper
forms could be in any department, and it was impossible
to locate one without physically walking through the

departments and going through the piles of forms on
everyone’s desk.

IBM Credit examined the process and changed it so
that each credit request was logged into a computer system
and each department could record an application’s status
as they completed it and sent it to the next department. In
this way, sales representatives could call the credit office
and quickly learn the status of each application. IBM used
some sophisticated management science queuing theory
analysis to balance workloads and staff across the different
departments so none would be overloaded. They also
introduced performance standards for each department
(e.g., the pricing decision had to be completed within one
day after that department received an application).

However, process times got worse, even though each
department was achieving almost 100 percent compli-
ance on its performance goals. After some investigation,
managers found that when people got busy, they conve-
niently found errors that forced them to return credit
requests to the previous department for correction,
thereby removing it from their time measurements.

Questions

1. What techniques can you use to identify
improvements?

2. Choose one technique and apply it to this situation.
What improvements did you identify?

Source: M. Hammer and J. Champy, Reengineering the Corporation (1993).
New York, NY: Harper Business.

3-2 IBM CreditYOUR

TURN

c03RequirementsDetermination.qxd 11/7/11 1:23 PM Page 124

REQUIREMENTS-GATHERING TECHNIQUES
An analyst is very much like a detective (and business users are sometimes like elusive sus-
pects). He or she knows that there is a problem to be solved and therefore must look for
clues that uncover the solution. Unfortunately, the clues are not always obvious (and are
often missed), so the analyst needs to notice details, talk with witnesses, and follow leads
just as Sherlock Holmes would have done. The best analysts thoroughly gather require-
ments using a variety of techniques and make sure that the current business processes and
the needs for the new system are well understood before moving into design. Analysts don’t
want to discover later that they have key requirements wrong—such surprises late in the
development process can cause all kinds of problems.

The requirements-gathering process is used for building political support for the pro-
ject and establishing trust and rapport between the project team building the system and
the users who ultimately will choose to use or not use the system. Involving someone in the
process implies that the project teams view that person as an important resource and value
his or her opinions. All the key stakeholders (the people who can affect the system or who
will be affected by the system) must be included in the requirements-gathering process.

Requirements-Gathering Techniques 125

Suppose you are the analyst charged with developing a
new website for a local car dealer who wants to be very

innovative and try new things. What analysis strategies
would you recommend? Why?

3-3 Analysis StrategyYOUR

TURN

A major retail store recently spent $24 million on a large
private satellite communication system. The system pro-
vides state-of-the-art voice, data, and video transmission
between stores and regional headquarters. When an item
is sold, the scanner software updates the inventory system
in real time. As a result, store transactions are passed on to
regional and national headquarters instantly, which keeps
inventory records up to date. One of their major competi-
tors has an older system, where transactions are uploaded
at the end of a business day. The first company feels such
instant communication and feedback allows them to react
more quickly to changes in the market and gives them a
competitive advantage. For example, if an early winter
snowstorm causes stores across the upper Midwest to start

selling high-end (and high-profit) snowblowers, the near-
est warehouse can quite quickly prepare next-day ship-
ments to maintain a good inventory balance, whereas the
competitor might not move quite as quickly and thus will
lose out on such quick inventory turnover.

Questions

1. Do you think a $24 million investment in a private
satellite communication system could be justified
by a cost–benefit analysis? Could this be done with
a standard communication line (with encryption)?

2. How might the competitor in this example attempt
to close the information gap?

3-D Implementing a Satellite Data NetworkCONCEPTS

IN ACTION

undertaken unless the organization and its senior leadership are committed to making signif-
icant changes. Mike Hammer, the father of BPR, estimates that 70 percent of BPR projects fail.

c03RequirementsDetermination.qxd 11/7/11 1:23 PM Page 125

The stakeholders might include managers, employees, staff members, and even some cus-
tomers and suppliers. If a key person is not involved, that individual might feel slighted,
which can cause problems during implementation (e.g., How could they have developed
the system without my input?).

The second challenge of requirements gathering is choosing the way(s) information is
collected. There are many techniques for gathering requirements that vary from asking peo-
ple questions to watching them work. In this section, we focus on the five most commonly
used techniques: interviews, JAD sessions (a special type of group meeting), questionnaires,
document analysis, and observation. Each technique has its own strengths and weaknesses,
many of which are complementary, so most projects use a combination of techniques.7

Interviews
An interview is the most commonly used requirements-gathering technique. After all, it is
natural— if you need to know something, you usually ask someone. In general, interviews
are conducted one-on-one (one interviewer and one interviewee), but sometimes, owing
to time constraints, several people are interviewed at the same time. There are five basic
steps to the interview process: selecting interviewees, designing interview questions,
preparing for the interview, conducting the interview, and postinterview follow-up.8

The first step in interviewing is to create an interview schedule listing all the people who will
be interviewed, when, and for what purpose (see Figure 3-6). The schedule can be an infor-
mal list that is used to help set up meeting times or a formal list that is incorporated into
the workplan. The people who appear on the interview schedule are selected based on the
analyst’s information needs. The project sponsor, key business users, and other members of
the project team can help the analyst determine who in the organization can best provide
important information about requirements. These people are listed on the interview
schedule in the order in which they should be interviewed.

People at different levels of the organization have different perspectives on the system,
so it is important to include both managers who manage the processes and staff who actu-
ally perform the processes to gain both high-level and low-level perspectives on an issue.
Also, the kinds of interview subjects needed can change over time. For example, at the start
of the project, the analyst has a limited understanding of the as-is business process. It is
common to begin by interviewing one or two senior managers to get a strategic view and
then to move to midlevel managers, who can provide broad, overarching information
about the business process and the expected role of the system being developed. Once the
analyst has a good understanding of the big picture, lower-level managers and staff mem-
bers can fill in the exact details of how the process works. Like most other things about sys-
tems analysis, this is an iterative process—starting with senior managers, moving to
midlevel managers, then staff members, back to midlevel managers, and so on, depending
upon what information is needed along the way.

It is quite common for the list of interviewees to grow, often by 50 to 75 percent. As
people are interviewed, more information that is needed and additional people who can
provide the information will probably be identified.

126 Chapter 3 Requirements Determination

7 Some excellent books that address the importance of gathering requirements and various techniques include
Alan M. Davis, Software Requirements: Objects, Functions, & States, Revision (Englewood Cliffs, NJ: Prentice Hall,
1993); Gerald Kotonya and Ian Sommerville, Requirements Engineering (Chichester, England: Wiley, 1998); and
Dean Leffingwell and Don Widrig, Managing Software Requirements: A Unified Approach (Reading, MA: Addison-
Wesley, 2000).
8 A good book on interviewing is that by Brian James, The Systems Analysis Interview (Manchester, England: NCC
Blackwell, 1989).

1. Select
Interviewees

c03RequirementsDetermination.qxd 11/7/11 1:23 PM Page 126

There are three types of interview questions: closed-ended questions, open-ended questions,
and probing questions. Closed-ended questions are those that require a specific answer. They
are similar to multiple-choice or arithmetic questions on an exam (see Figure 3-7). Closed-
ended questions are used when an analyst is looking for specific, precise information (e.g.,
how many credit card requests are received per day). In general, precise questions are best.
For example, rather than asking, Do you handle a lot of requests? it is better to ask, How
many requests do you process per day? Closed-ended questions enable analysts to control
the interview and obtain the information they need. However, these types of questions don’t
uncover why the answer is the way it is, nor do they uncover information that the inter-
viewer does not think to ask for ahead of time.

Open-ended questions are those that leave room for elaboration on the part of the
interviewee. They are similar in many ways to essay questions that you might find on an
exam (see Figure 3-7 for examples). Open-ended questions are designed to gather rich
information and give the interviewee more control over the information that is revealed
during the interview. Sometimes the information that the interviewee chooses to discuss
uncovers information that is just as important as the answer (e.g., if the interviewee talks
only about other departments when asked for problems, it may suggest that he or she is
reluctant to admit his or her own problems).

The third type of question is the probing question. Probing questions follow up on what
has just been discussed in order to learn more, and they often are used when the interviewer
is unclear about an interviewee’s answer. They encourage the interviewee to expand on or to
confirm information from a previous response, and they signal that the interviewer is listen-
ing and is interested in the topic under discussion. Many beginning analysts are reluctant to
use probing questions because they are afraid that the interviewee might be offended at being
challenged or because they believe it shows that they didn’t understand what the interviewee
said. When done politely, probing questions can be a powerful tool in requirements gathering.

In general, an interviewer should not ask questions about information that is readily
available from other sources. For example, rather than asking what information is used to
perform to a task, it is simpler to show the interviewee a form or report (see the section on
document analysis) and ask what information on it is used. This helps focus the intervie-
wee on the task and saves time, because the interviewee does not need to describe the infor-
mation detail—he or she just needs to point it out on the form or report.

Requirements-Gathering Techniques 127

Andria McClellan Director, Accounting Strategic vision for new Mon., March 1
accounting system 8:00–10:00 AM

Jennifer Draper Manager, Accounts Current problems with Mon., March 1
Receivable accounts receivable 2:00–3:15 PM

process; future goals

Mark Goodin Manager, Accounts Current problems with Mon., March 1
Payable accounts payable 4:00–5:15 PM

process; future goals

Anne Asher Supervisor, Data Entry Accounts receivable and Wed., March 3
payable processes 10:00–11:00 AM

Fernando Merce Data Entry Clerk Accounts receivable and Wed., March 3
payable processes 1:00–3:00 PM

FIGURE 3-6
Sample Interview
Schedule

Purpose of
Name Position Interview Meeting

2. Design
Interview Questions

c03RequirementsDetermination.qxd 11/7/11 1:23 PM Page 127

No type of question is better than another, and a combination of questions is usually
used during an interview. At the initial stage of an IS development project, the as-is process
can be unclear, so the interview process begins with unstructured interviews, interviews that
seek broad and roughly defined information. In this case, the interviewer has a general
sense of the information needed but has few closed-ended questions to ask. These are the
most challenging interviews to conduct because they require the interviewer to ask open-
ended questions and probe for important information on the fly.

As the project progresses, the analyst comes to understand the business process much bet-
ter and needs very specific information about how business processes are performed (e.g.,
exactly how a customer credit card is approved). At this time, the analyst conducts structured
interviews, in which specific sets of questions are developed before the interviews. There usually
are more closed-ended questions in a structured interview then in the unstructured approach.

No matter what kind of interview is being conducted, interview questions must be
organized into a logical sequence so that the interview flows well. For example, when trying
to gather information about the current business process, it can be useful to move in logical
order through the process or from the most important issues to the least important.

There are two fundamental approaches to organizing the interview questions: top
down or bottom up (see Figure 3-8). With the top-down interview, the interviewer starts
with broad, general issues and gradually works toward more-specific ones. With the
bottom-up interview, the interviewer starts with very specific questions and moves to broad
questions. In practice, analysts mix the two approaches, starting with broad, general issues,
moving to specific questions, and then returning to general issues.

The top-down approach is an appropriate strategy for most interviews (it is certainly the
most common approach). The top-down approach enables the interviewee to become accus-
tomed to the topic before he or she needs to provide specifics. It also enables the interviewer
to understand the issues before moving to the details because the interviewer might not have
sufficient information at the start of the interview to ask very specific questions. Perhaps most
importantly, the top-down approach enables the interviewee to raise a set of big-picture issues
before becoming enmeshed in details, so the interviewer is less likely to miss important issues.

One case in which the bottom-up strategy may be preferred is when the analyst already
has gathered a lot of information about issues and just needs to fill in some holes with details.
Bottom-up interviewing may be appropriate if lower-level staff members feel threatened or
unable to answer high-level questions. For example, How can we improve customer service?
might be too broad a question for a customer service clerk, whereas a specific question is
readily answerable (e.g., How can we speed up customer returns?). In any event, all interviews
should begin with noncontroversial questions and then gradually move into more con-
tentious issues after the interviewer has developed some rapport with the interviewee.

128 Chapter 3 Requirements Determination

Closed-ended questions • How many telephone orders are received per day?
• How do customers place orders?
• What information is missing from the monthly sales report?

Open-ended questions • What do you think about the current system?
• What are some of the problems you face on a daily basis?
• What are some of the improvements you would like to see in a

new system?

Probing questions • Why?
• Can you give me an example?
• Can you explain that in a bit more detail?

FIGURE 3-7
Three Types of
Questions

Types of Questions Examples

c03RequirementsDetermination.qxd 11/7/11 1:23 PM Page 128

It is important to prepare for the interview in the same way that you would prepare to
give a presentation. The interviewer should have a general interview plan listing the
questions to be asked in the appropriate order, should anticipate possible answers and
provide follow-up with them, and should identify segues between related topics. The
interviewer should confirm the areas in which the interviewee has knowledge so as not
to ask questions that the interviewee cannot answer. Review the topic areas, the ques-
tions, and the interview plan, and clearly decide which have the greatest priority in case
time runs short.

In general, structured interviews with closed-ended questions take more time to
prepare than unstructured interviews. Some beginning analysts prefer unstructured inter-
views, thinking that they can wing it. This is very dangerous and often counterpro-
ductive, because any information not gathered in the first interview will require
follow-up efforts, and most users do not like to be interviewed repeatedly about the same
issues.

The interviewer should be sure to prepare the interviewee as well. When the inter-
view is scheduled, the interviewee should be told the reason for the interview and the
areas that will be discussed far enough in advance so that he or she has time to think
about the issues and organize his or her thoughts. This is particularly important when
the interviewer is an outsider to the organization and for lower-level employees, who
often are not asked for their opinions and who may be uncertain about why they are
being interviewed.

In starting the interview, the first goal is to build rapport with the interviewee, so that
he or she trusts the interviewer and is willing to tell the whole truth, not just give the
answers that he or she thinks are wanted. The interviewer should appear to be profes-
sional and an unbiased, independent seeker of information. The interview should start
with an explanation of why the interviewer is there and why he or she has chosen to
interview the person; then the interviewer should move into the planned interview
questions.

It is critical to carefully record all the information that the interviewee provides. In our
experience, the best approach is to take careful notes—write down everything the interviewee

Requirements-Gathering Techniques 129

FIGURE 3-8 Top-Down and Bottom-Up Questioning Strategies

High-level:
Very general

Top-Down

Bottom-Up

Medium-level:
Moderately specific

Low-level:
Very specific

How
can

order
processing be

improved?

How can we reduce the
number of times that

customers return items they’ve
ordered?

How can we reduce the number of
errors in order processing (e.g., shipping

the wrong products)?

3. Prepare for the
Interview

4. Conduct the
Interview

c03RequirementsDetermination.qxd 11/7/11 1:23 PM Page 129

says, even if it does not appear immediately relevant. The interviewer shouldn’t be afraid
to ask the person to slow down or to pause while writing, because this is a clear indication
that the interviewee’s information is important. One potentially controversial issue is
whether or not to tape-record an interview. Recording ensures that the interviewer does
not miss important points, but it can be intimidating for the interviewee. Most organiza-
tions have policies or generally accepted practices about the recording of interviews, so they
should be determined before an interview. If the interviewer is worried about missing
information and cannot tape the interview, then he or she can bring along a second person
to take detailed notes.

As the interview progresses, it is important to understand the issues that are dis-
cussed. If the interviewer does not understand something, he or she should be sure to
ask. The interviewer should not be afraid to ask dumb questions, because the only thing
worse than appearing dumb is to be dumb by not understanding something. If the inter-
viewer doesn’t understand something during the interview, he or she certainly won’t
understand it afterwards. Jargon should be recognized and defined; any jargon not
understood should be clarified. One good strategy to increase understanding during an
interview is to periodically summarize the key points that the interviewee is communi-
cating. This avoids misunderstandings and also demonstrates that the interviewer is
listening.

Finally, facts should be separated from opinion. The interviewee may say, for example,
We process too many credit card requests. This is an opinion, and it is useful to follow this
up with a probing question requesting support for the statement (e.g., Oh, how many do
you process in a day?). It is helpful to check the facts because any differences between the
facts and the interviewee’s opinions can point out key areas for improvement. Suppose the
interviewee complains about a high or increasing number of errors, but the logs show that
errors have been decreasing. This suggests that errors are viewed as a very important prob-
lem that should be addressed by the new system, even if they are declining.

As the interview draws to a close, the interviewee should have time to ask questions or
provide information that he or she thinks is important but was not part of the interview
plan. In most cases, the interviewee has no additional concerns or information, but in some
cases this leads to unanticipated, but important, information. Likewise, it can be useful to
ask the interviewee if there are other people who should be interviewed. The interview
should end on time (if necessary, some topics can be omitted or another interview can be
scheduled).

As a last step in the interview, the interviewer should briefly explain what will happen.
The interviewer shouldn’t prematurely promise certain features in the new system or a spe-
cific delivery date, but he or she should reassure the interviewee that his or her time was
well spent and very helpful to the project.

After the interview is over, the analyst needs to prepare an interview report that describes
the information from the interview (Figure 3-9). The report contains interview notes,
information that was collected over the course of the interview and is summarized in a use-
ful format. In general, the interview report should be written within forty-eight hours of
the interview, because the longer the interviewer waits, the more likely he or she is to for-
get information.

Often, the interview report is sent to the interviewee with a request to read it and
inform the analyst of clarifications or updates. The interviewee needs to be convinced that
the interviewer genuinely wants his or her corrections to the report. Usually there are few
changes, but the need for any significant changes suggests that a second interview will be
required. Never distribute someone’s information without prior approval.

130 Chapter 3 Requirements Determination

5. Post-Interview
Follow-up

c03RequirementsDetermination.qxd 11/7/11 1:23 PM Page 130

Requirements-Gathering Techniques 131

FIGURE 3-9 Interview Report

Interview Notes Approved by: Linda Estey

Person Interviewed: Linda Estey,
Director, Human Resources

Interviewer: Barbara Wixom

Purpose of Interview:
• Understand reports produced for Human Resources by the current system
• Determine information requirements for future system

Summary of Interview:
• Sample reports of all current HR reports are attached to this report. The information that is not

used and missing information are noted on the reports.
• Two biggest problems with the current system are:

1. The data are too old (the HR Department needs information within two days of month end;
currently information is provided to them after a three-week delay)

2. The data are of poor quality (often reports must be reconciled with departmental HR
database)

• The most common data errors found in the current system include incorrect job level information
and missing salary information.

Open Items:
• Get current employee roster report from Mary Skudrna (extension 4355).
• Verify calculations used to determine vacation time with Mary Skudrna.
• Schedule interview with Jim Wack (extension 2337) regarding the reasons for data quality

problems.

Detailed Notes: See attached transcript.

In 1990, I led a consulting team for a major development
project for the U.S. Army. The goal was to replace eight
existing systems used on virtually every Army base across
the United States. The as-is process and data models for
these systems had been built, and our job was to identify
improvement opportunities and develop to-be process
models for each of the eight systems.

For the first system, we selected a group of
midlevel managers (captains and majors) recommended
by their commanders as being the experts in the system
under construction. These individuals were the first-
and second-line managers of the business function. The

individuals were expert at managing the process but did
not know the exact details of how the process worked.
The resulting to-be process model was very general and
nonspecific.

Alan Dennis

Question

Suppose you were in charge of the project. What
interview schedule for the remaining seven projects
would you use?

3-E Selecting the Wrong PeopleCONCEPTS

IN ACTION

c03RequirementsDetermination.qxd 11/7/11 1:23 PM Page 131

132 Chapter 3 Requirements Determination

Interpersonal skills are skills that enable you to develop
rapport with others, and they are very important for inter-
viewing. They help you to communicate with others
effectively. Some people develop good interpersonal
skills at an early age; they simply seem to know how to
communicate and interact with others. Other people are
less lucky and need to work hard to develop their skills.

Interpersonal skills, like most skills, can be learned.
Here are some tips:

• Don’t worry, be happy. Happy people radiate confi-
dence and project their feelings on others. Try inter-
viewing someone while smiling and then interviewing
someone else while frowning and see what happens.

• Pay attention. Pay attention to what the other person
is saying (which is harder than you might think). See
how many times you catch yourself with your mind
on something other than the conversation at hand.

• Summarize key points. At the end of each major
theme or idea that someone explains, repeat the key
points back to the speaker (e.g., Let me make sure I

understand. The key issues are. . . .”). This demon-
strates that you consider the information important,
and it also forces you to pay attention (you can’t
repeat what you didn’t hear).

• Be succinct. When you speak, be succinct. The goal
in interviewing (and in much of life) is to learn, not
to impress. The more you speak, the less time you
give to others.

• Be honest. Answer all questions truthfully, and if you
don’t know the answer, say so.

• Watch body language (yours and theirs). The way a
person sits or stands conveys much information. In
general, a person who is interested in what you are
saying sits or leans forward, makes eye contact, and
often touches his or her face. A person leaning away
from you or with an arm over the back of a chair is
uninterested. Crossed arms indicate defensiveness or
uncertainty, and steepling (sitting with hands raised
in front of the body with fingertips touching) indi-
cates a feeling of superiority.

3-1 Developing Interpersonal SkillsPRACTICAL

TIP

Interviewing is not as simple as it first appears. Select two
people from class to go to the front of the room to demon-
strate an interview. (This also can be done in groups.)
Have one person be the interviewer and the other be the
interviewee. The interviewer should conduct a five-
minute interview regarding the school’s course registra-
tion system. Gather information about the existing system
and how the system can be improved. If there is time,
repeat with another pair.

Questions

1. What was the body language of the interview pair
like?

2. What kind of interview was conducted?
3. What kinds of questions were asked?
4. What was done well? How could the interview be

improved?

3-4 Interview PracticeYOUR

TURN

Joint Application Development (JAD)
JAD is an information-gathering technique that allows the project team, users, and management
to work together to identify requirements for the system. IBM developed the JAD technique in
the late 1970s, and it is often the most useful method for collecting information from users.9

9 More information on JAD can be found in J. Wood and D. Silver, Joint Application Development (New York:
Wiley, 1989); and Alan Cline, “Joint Application Development for Requirements Collection and Management,”
http://www.carolla.com/wp-jad.htm.

c03RequirementsDetermination.qxd 11/7/11 1:23 PM Page 132

Capers Jones claims that JAD can reduce scope creep by 50 percent, and it prevents the system’s
requirements from being too specific or too vague, both of which cause trouble during later
stages of the development process.10

JAD is a structured process in which ten to twenty users meet together under the direc-
tion of a facilitator skilled in JAD techniques. The facilitator is a person who sets the meet-
ing agenda and guides the discussion but does not join in the discussion as a participant.
He or she does not provide ideas or opinions on the topics under discussion so as to remain
neutral during the session. The facilitator must be an expert in both group-process
techniques and systems-analysis and design techniques. One or two scribes assist the facil-
itator by recording notes, making copies, and so on. Often the scribes use computers and
CASE tools to record information as the JAD session proceedings.

The JAD group meets for several hours, several days, or several weeks until all the issues
have been discussed and the needed information is collected. Most JAD sessions take place
in a specially prepared meeting room, away from the participants’ offices so that they are not
interrupted. The meeting room is usually arranged in a U-shape so that all participants can
easily see each other (see Figure 3-10). At the front of the room (the open part of the U),
are a whiteboard, flip chart, and/or overhead projector for use by the facilitator leading the
discussion.

One problem with JAD is that it suffers from the traditional problems associated with
groups: Sometimes people are reluctant to challenge the opinions of others (particularly
their boss), a few people often dominate the discussion, and not everyone participates. In
a fifteen-member group, for example, if everyone participates equally, then each person can
talk for only four minutes each hour and must listen for the remaining fifty-six minutes—
not a very efficient way to collect information.

A new form of JAD called electronic JAD, or e-JAD, attempts to overcome these prob-
lems by using groupware. In an e-JAD meeting room, each participant uses special soft-
ware on a networked computer to send anonymous ideas and opinions to everyone else.
In this way, all participants can contribute at the same time without fear of reprisal from
people with differing opinions. Initial research suggests that e-JAD can reduce the time
required to run JAD sessions by 50 to 80 percent.11 A good JAD approach follows a set of
five steps.

First, selecting JAD participants is done in the same basic way as selecting interview participants.
Participants are selected based on the information they can contribute in order to provide a broad
mix of organizational levels and to build political support for the new system. The need for all JAD
participants to be away from their office at the same time can be a major problem. The office might
need to be closed or operate with a skeleton staff until the JAD sessions are complete.

Ideally, the participants who are released from regular duties to attend the JAD sessions
should be the very best people in that business unit. However, without strong management
support, JAD sessions can fail because those selected to attend the JAD session are people
who are less likely to be missed (i.e., the least competent people).

The facilitator should be someone who is an expert in JAD or e-JAD techniques and,
ideally, someone who has experience with the business under discussion. In many cases, the
JAD facilitator is a consultant external to the organization because the organization might
not have a recurring need for JAD or e-JAD expertise. Developing and maintaining this
expertise in-house can be expensive.

Requirements-Gathering Techniques 133

10 See Kevin Strehlo, “Catching up with the Jones and ‘Requirement’ Creep,” Infoworld (July 29, 1996); and Kevin
Strehlo, “The Makings of a Happy Customer: Specifying Project X,” Infoworld (November 11, 1996).
11 For more information on e-JAD, see A. R. Dennis, G. S. Hayes, and R. M. Daniels, “Business Process Modeling
with Groupware,” Journal of Management Information Systems 15, no. 4 (1999): 115–142.

1. Select Participants

c03RequirementsDetermination.qxd 11/7/11 1:23 PM Page 133

Second, JAD sessions can run from as little as half a day to several weeks, depending upon the
size and scope of the project. In our experience, most JAD sessions tend to last five to ten days,
spread over a three-week period. Most e-JAD sessions tend to last one to four days in a one-
week period. JAD and e-JAD sessions usually go beyond collecting information and move
into analysis. For example, the users and the analysts collectively can create analysis deliver-
ables, such as the functional models or the requirements definition.

As with interviewing, success depends upon a careful plan. JAD sessions usually are
designed and structured using the same principles as interviews. Most JAD sessions are
designed to collect specific information from users, and this requires developing a set of
questions before the meeting. One difference between JAD and interviewing is that all
JAD sessions are structured—they must be carefully planned. In general, closed-ended
questions are seldom used because they do not spark the open and frank discussion that
is typical of JAD. In our experience, it is better to proceed top down in JAD sessions when
gathering information. Typically thirty minutes is allocated to each separate agenda item,
and frequent breaks are scheduled throughout the day because participants tire easily.

134 Chapter 3 Requirements Determination

Flip chart sheets

Whiteboard Screen

Computers

Projectors Printer

Name cards

Name cards

FIGURE 3-10 JAD Meeting Room

2. Design a JAD
Session

c03RequirementsDetermination.qxd 11/7/11 1:23 PM Page 134

Third, as with interviewing, it is important to prepare the analysts and participants for a
JAD session. Because the sessions can go beyond the depth of a typical interview and are
usually conducted off-site, participants can be more concerned about how to prepare. It is
important that the participants understand what is expected of them. If the goal of the JAD
session, for example, is to develop an understanding of the current system, then partici-
pants can bring procedure manuals and documents with them. If the goal is to identify
improvements for a system, then before they come to the JAD session they can think about
how they would improve the system.

Fourth, most JAD sessions try to follow a formal agenda, and most have formal ground rules that
define appropriate behavior. Common ground rules include following the schedule, respecting
others’ opinions, accepting disagreement, and ensuring that only one person talks at a time.

The role of a JAD facilitator can be challenging. Many participants come to a JAD session
with strong feelings about the system to be discussed. Channeling these feelings so that the ses-
sion moves forward in a positive direction and getting participants to recognize and accept—
but not necessarily agree on—opinions and situations different from their own requires
significant expertise in systems analysis and design, JAD, and interpersonal skills. Few systems
analysts attempt to facilitate JAD sessions without being trained in JAD techniques, and most
apprentice with a skilled JAD facilitator before they attempt to lead their first session.

The JAD facilitator performs three key functions. First, he or she ensures that the
group sticks to the agenda. The only reason to digress from the agenda is when it becomes
clear to the facilitator, project leader, and project sponsor that the JAD session has pro-
duced some new information that is unexpected and requires the JAD session (and perhaps
the project) to move in a new direction. When participants attempt to divert the discussion
away from the agenda, the facilitator must be firm but polite in leading discussion back to
the agenda and getting the group back on track.

Second, the facilitator must help the group understand the technical terms and jargon
that surround the system-development process and help the participants understand the spe-
cific analysis techniques used. Participants are experts in their area, or their part of the busi-
ness, but they are not experts in systems analysis. The facilitator must, therefore, minimize the
learning required and teach participants how to effectively provide the right information.

Third, the facilitator records the group’s input on a public display area, which can be
a whiteboard, flip chart, or computer display. He or she structures the information that the
group provides and helps the group recognize key issues and important solutions. Under
no circumstance should the facilitator insert his or her opinions into the discussion. The
facilitator must remain neutral at all times and simply help the group through the process.
The moment the facilitator offers an opinion on an issue, the group will see him or her not
as a neutral party but rather as someone who could be attempting to sway the group into
some predetermined solution.

However, this does not mean that the facilitator should not try to help the group resolve
issues. For example, if two items appear to be the same to the facilitator, the facilitator should
not say, “I think these may be similar.” Instead, the facilitator should ask, “Are these similar?” If
the group decides they are, the facilitator can combine them and move on. However, if the
group decides they are not similar (despite what the facilitator believes), the facilitator should
accept the decision and move on. The group is always right, and the facilitator has no opinion.

Fifth, as with interviews, a JAD post-session report is prepared and circulated among ses-
sion attendees. The post-session report is essentially the same as the interview report in
Figure 3-9. Because the JAD sessions are longer and provide more information, it usually
takes a week or two after the JAD session before the report is complete.

Requirements-Gathering Techniques 135

5. Post-JAD Follow-up

3. Preparing for a
JAD Session

4. Conducting a JAD
Session

c03RequirementsDetermination.qxd 12/2/11 7:14 PM Page 135

136 Chapter 3 Requirements Determination

Managing Problems in JAD Sessions

I have run more than a hundred JAD sessions and have
learned several standard “facilitator tricks.” Here are some
common problems and some ways to deal with them.

• Domination. The facilitator should ensure that no
one person dominates the group discussion. The
only way to deal with someone who dominates is
head on. During a break, approach the person,
thank him or her for his or her insightful comments,
and ask the person to help you make sure that
others also participate.

• Noncontributors. Drawing out people who have par-
ticipated very little is challenging because you want
to bring them into the conversation so that they will
contribute again. The best approach is to ask a direct
factual question that you are certain they can answer.
And it helps to ask the question in a long way to give
them time to think. For example, “Pat, I know you’ve
worked shipping orders a long time. You’ve probably
been in the shipping department longer than anyone
else. Could you help us understand exactly what
happens when an order is received in shipping?”

• Side discussions. Sometimes participants engage in
side conversations and fail to pay attention to the
group. The easiest solution is simply to walk close
to the people and continue to facilitate right in front
of them. Few people will continue a side conver-
sion when you are two feet from them and the
entire group’s attention is on you and them.

• Agenda merry-go-round. The merry-go-round
occurs when a group member keeps returning to
the same issue every few minutes and won’t let go.
One solution is to let the person have five minutes
to ramble on about the issue while you carefully
write down every point on a flip chart or computer
file. This flip chart or file is then posted conspicu-
ously on the wall. When the person brings up the
issue again, you interrupt them, walk to the paper
and ask them what to add. If they mention some-

thing already on the list, you quickly interrupt,
point out that it is there, and ask what other infor-
mation to add. Don’t let them repeat the same
point, but write any new information.

• Violent agreement. Some of the worst disagree-
ments occur when participants really agree on the
issues but don’t realize that they agree because they
are using different terms. An example is arguing
whether a glass is half empty or half full; they agree
on the facts but can’t agree on the words. In this
case, the facilitator has to translate the terms into
different words and find common ground so the
parties recognize that they really agree.

• Unresolved conflict. In some cases, participants
don’t agree and can’t understand how to determine
what alternatives are better. You can help by struc-
turing the issue. Ask for criteria by which the group
will identify a good alternative (e.g., “Suppose this
idea really did improve customer service. How
would I recognize the improved customer ser-
vice?”). Then once you have a list of criteria, ask the
group to assess the alternatives using them.

• True conflict. Sometimes, despite every attempt,
participants just can’t agree on an issue. The solution
is to postpone the discussion and move on. Docu-
ment the issue as an open issue and list it promi-
nently on a flip chart. Have the group return to the
issue hours later. Often the issue will have resolved
itself by then and you haven’t wasted time on it. If
the issue cannot be resolved later, move it to the list
of issues to be decided by the project sponsor or
some other more senior member of management.

• Humor. Humor is one of the most powerful tools a
facilitator has and thus must be used judiciously.
The best JAD humor is always in context; never tell
jokes but take the opportunity to find the humor in
the situation.

Alan Dennis

PRACTICAL

TIP

Questionnaires
A questionnaire is a set of written questions used to obtain information from individuals.
Questionnaires are often used when there is a large number of people from whom infor-
mation and opinions are needed. In our experience, questionnaires are a common technique
with systems intended for use outside the organization (e.g., by customers or vendors) or for

c03RequirementsDetermination.qxd 11/7/11 1:23 PM Page 136

systems with business users spread across many geographic locations. Most people auto-
matically think of paper when they think of questionnaires, but today more questionnaires
are being distributed in electronic form, either via e-mail or on the Web. Electronic distrib-
ution can save a significant amount of money as compared to distributing paper question-
naires. A good process to use when using questionnaires follows four steps.

First, as with interviews and JAD sessions, the first step is to identify the individuals to
whom the questionnaire will be sent. However, it is not usual to select every person who
could provide useful information. The standard approach is to select a sample, or subset, of
people who are representative of an entire group. Sampling guidelines are discussed in
most statistics books, and most business schools include courses that cover the topic, so we
do not discuss it here. The important point in selecting a sample, however, is to realize that
not everyone who receives a questionnaire will actually complete it. On average, only 30 to
50 percent of paper and e-mail questionnaires are returned. Response rates for Web-based
questionnaires tend to be significantly lower (often only 5 to 30 percent).

Second, because the information on a questionnaire cannot be immediately clarified for a
confused respondent, developing good questions is critical for questionnaires. Questions on
questionnaires must be very clearly written and leave little room for misunderstanding, so
closed-ended questions tend to be most commonly used. Questions must clearly enable the
analyst to separate facts from opinions. Opinion questions often ask respondents the extent
to which they agree or disagree (e.g., Are network problems common?), whereas factual
questions seek more precise values (e.g., How often does a network problem occur: once an
hour, once a day, once a week?). See Figure 3-11 for guidelines on questionnaire design.

Perhaps the most obvious issue—but one that is sometimes overlooked—is to have a
clear understanding of how the information collected from the questionnaire will be
analyzed and used. This issue must be addressed before the questionnaire is distributed,
because it is too late afterward.

Questions should be relatively consistent in style, so that the respondent does not have
to read instructions for each question before answering it. It is generally good practice to
group related questions together to make them simpler to answer. Some experts suggest
that questionnaires should start with questions important to respondents, so that the ques-
tionnaire immediately grabs their interest and induces them to answer it. Perhaps the most
important step is to have several colleagues review the questionnaire and then pretest it
with a few people drawn from the groups to whom it will be sent. It is surprising how often
seemingly simple questions can be misunderstood.

Requirements-Gathering Techniques 137

Organize yourselves into groups of four to seven people,
and pick one person in each group to be the JAD facilita-
tor. Using a blackboard, whiteboard or flip chart, gather
information about how the group performs some process
(e.g., working on a class assignment, making a sandwich,
paying bills, getting to class).

Questions

1. How did the JAD session go?
2. Based on your experience, what are pros and cons

of using JAD in a real organization?

3-5 JAD PracticeYOUR

TURN

1. Select Participants

2. Designing a
Questionnaire

c03RequirementsDetermination.qxd 11/7/11 1:23 PM Page 137

Third, the key issue in administering the questionnaire is getting participants to complete
the questionnaire and send it back. Dozens of marketing research books have been written
about ways to improve response rates. Commonly used techniques include clearly explain-
ing why the questionnaire is being conducted and why the respondent has been selected;
stating a date by which the questionnaire is to be returned; offering an inducement to com-
plete the questionnaire (e.g., a free pen); and offering to supply a summary of the ques-
tionnaire responses. Systems analysts have additional techniques to improve response rates
inside the organization, such as personally handing out the questionnaire and personally
contacting those who have not returned them after a week or two, as well as requesting the
respondents’ supervisors to administer the questionnaires in a group meeting.

Fourth, it is helpful to process the returned questionnaires and develop a questionnaire report
soon after the questionnaire deadline. This ensures that the analysis process proceeds in a timely
fashion and that respondents who requested copies of the results receive them promptly.

138 Chapter 3 Requirements Determination

Organize yourselves into small groups. Have each person
develop a short questionnaire to collect information
about how often group members perform some process
(e.g., working on a class assignment, making a sandwich,
paying bills, getting to class), how long it takes them, how
they feel about the process, and opportunities for improv-
ing the process.

Once everyone has completed his or her question-
naire, ask each member to pass it to the right and then
complete his or her neighbor’s questionnaire. Pass the
questionnaire back to the creator when it is completed.

Questions

1. How did the questionnaire you completed differ
from the one you created?

2. What are the strengths of each questionnaire?
3. How would you analyze the survey results if you

had received fifty responses?
4. What would you change about the questionnaire

that you developed?

3-6 Questionnaire PracticeYOUR

TURN

• Begin with nonthreatening and interesting questions.
• Group items into logically coherent sections.
• Do not put important items at the very end of the questionnaire.
• Do not crowd a page with too many items.
• Avoid abbreviations.
• Avoid biased or suggestive items or terms.
• Number questions to avoid confusion.
• Pretest the questionnaire to identify confusing questions.
• Provide anonymity to respondents.

FIGURE 3-11
Good Questionnaire
Design

Document Analysis
Project teams often use document analysis to understand the as-is system. Under ideal cir-
cumstances, the project team that developed the existing system will have produced docu-
mentation that was then updated by all subsequent projects. In this case, the project team
can start by reviewing the documentation and examining the system itself.

Unfortunately, most systems are not well documented because project teams fail to
document their projects along the way, and when the projects are over, there is no time to

3. Administering the
Questionnaire

4. Questionnaire
Follow-up

c03RequirementsDetermination.qxd 11/7/11 1:23 PM Page 138

go back and document. Therefore, there might not be much technical documentation
about the current systems available, or it might not contain updated information about
recent system changes. However, many helpful documents do exist in an organization:
paper reports, memorandums, policy manuals, user-training manuals, organization charts,
forms, and, of course, the user interface with the existing system.

But these documents tell only part of the story. They represent the formal system that the
organization uses. Quite often, the real, or informal, system differs from the formal one, and
these differences, particularly large ones, give strong indications of what needs to be changed.
For example, forms or reports that are never used should probably be eliminated. Likewise,
boxes or questions on forms that are never filled in (or are used for other purposes) should be
rethought. See Figure 3-12 for an example of how a document can be interpreted.

The most powerful indication that the system needs to be changed is when users
create their own forms or add additional information to existing ones. Such changes clearly
demonstrate the need for improvements to existing systems. Thus, it is useful to review
both blank and completed forms to identify these deviations. Likewise, when users access
multiple reports to satisfy their information needs, it is a clear sign that new information
or new information formats are needed.

Requirements-Gathering Techniques 139

At my neighborhood Publix grocery store, the cashiers
always hand-write the total amount of the charge on
every credit-card charge form, even though it is printed
on the form. Why? Because the “back office” staff people
who reconcile the cash in the cash drawers with the
amount sold at the end of each shift find it hard to read
the small print on the credit-card forms. Writing in large
print makes it easier for them to add the values up. How-
ever, cashiers sometimes make mistakes and write the
wrong amount on the forms, which causes problems.

Questions

1. What does the credit-card charge form indicate
about the existing system?

2. How can you make improvements with a new
system?

Barbara Wixom

3-F Publix Credit-Card FormsCONCEPTS

IN ACTION

Observation
Observation, the act of watching processes being performed, is a powerful tool for gather-
ing information about the as-is system because it enables the analyst to see the reality of a
situation, rather than listening to others describe it in interviews or JAD sessions. Several
research studies have shown that many managers really do not remember how they work
and how they allocate their time. (Quick, how many hours did you spend last week on each
of your courses?) Observation is a good way to check the validity of information gathered
from indirect sources such as interviews and questionnaires.

In many ways, the analyst becomes an anthropologist as he or she walks through the
organization and observes the business system as it functions. The goal is to keep a low pro-
file, to not interrupt those working, and to not influence those being observed. Nonethe-
less, it is important to understand that what analysts observe may not be the normal
day-to-day routine because people tend to be extremely careful in their behavior when they
are being watched. Even though normal practice may be to break formal organizational
rules, the observer is unlikely to see this. (Remember how you drove the last time a police
car followed you?) Thus, what you see might not be what you get.

c03RequirementsDetermination.qxd 12/2/11 7:14 PM Page 139

140 Chapter 3 Requirements Determination

Visit the library at your college or university and observe
how the book checkout process occurs. First watch
several students checking books out, and then check one
out yourself. Prepare a brief summary report of your
observations.

When you return to class, share your observations
with others.

Questions

1. Why might the reports present different information?
2. How would the information be different had you

used the interview or JAD technique?

3-7 Observation PracticeYOUR

TURN

Name: Buffy Pat Smith

Pet’s Name: Buffy Collie 7/6/99

Address: 100 Central Court. Apartment 10

Toronto, Ontario K7L 3N6

Phone Number: 555-3400

416-

Do you have insurance: yes

Insurance Company: Pet’s Mutual

Policy Number: KA-5493243

CENTRAL VETERINARY CLINIC
Patient Information Card

The staff had to add additional
information about the type of animal
and the animal’s date of birth. This
information should be added to the
new form in the to-be system.

The customer made a mistake.
This should be labeled
Owner’s Name to prevent
confusion.

The customer did not include
area code in the phone
number. This should be made
more clear.

FIGURE 3-12
Performing a
Document Analysis

c03RequirementsDetermination.qxd 11/7/11 1:23 PM Page 140

Observation is often used to supplement interview information. The location of a per-
son’s office and its furnishings give clues to the person’s power and influence in the organi-
zation and can be used to support or refute information given in an interview. For example,
an analyst might become skeptical of someone who claims to use the existing computer sys-
tem extensively if the computer is never turned on while the analyst visits. In most cases,
observation supports the information that users provide in interviews. When it does not, it
is an important signal that extra care must be taken in analyzing the business system.

Selecting the Appropriate Techniques
Each of the requirements-gathering techniques discussed earlier has strengths and weak-
nesses. No one technique is always better than the others, and in practice most projects use
a combination of techniques. Thus, it is important to understand the strengths and weak-
nesses of each technique and when to use each (see Figure 3-13). One issue not discussed
is that of the analysts’ experience. In general, document analysis and observation require
the least amount of training, whereas JAD sessions are the most challenging.

Type of Information The first characteristic is type of information. Some techniques are
more suited for use at different stages of the analysis process, whether understanding the
as-is system, identifying improvements, or developing the to-be system. Interviews and
JAD are commonly used in all three stages. In contrast, document analysis and observation
usually are most helpful for understanding the as-is, although occasionally they provide
information about current problems that need to be improved. Questionnaires are often
used to gather information about the as-is system as well as general information about
improvements.

Depth of Information The depth of information refers to how rich and detailed the
information is that the technique usually produces and the extent to which the technique
is useful for obtaining not only facts and opinions but also an understanding of why those
facts and opinions exist. Interviews and JAD sessions are very useful for providing a good
depth of rich and detailed information and helping the analyst to understand the reasons
behind them. At the other extreme, document analysis and observation are useful for
obtaining facts, but little beyond that. Questionnaires can provide a medium depth of
information, soliciting both facts and opinions with little understanding of why they exist.

Breadth of Information Breadth of information refers to the range of information and
information sources that can be easily collected using the chosen technique. Questionnaires

Requirements-Gathering Techniques 141

FIGURE 3-13 Table of Requirements-Gathering Techniques

Type of information As-is, improvements, As-is, improvements, As-is, improvements As-is As-is
to-be to-be

Depth of information High High Medium Low Low

Breadth of information Low Medium High High Low

Integration of information Low High Low Low Low

User involvement Medium High Low Low Low

Cost Medium Low–Medium Low Low Low to Medium

Joint Application Document
Interviews Design Questionnaires Analysis Observation

c03RequirementsDetermination.qxd 11/7/11 1:23 PM Page 141

and document analysis are both easily capable of soliciting a wide range of information
from a large number of information sources. In contrast, interviews and observation require
the analyst to visit each information source individually and, therefore, take more time. JAD
sessions are in the middle because many information sources are brought together at the
same time.

Integration of Information One of the most challenging aspects of requirements
gathering is integrating the information from different sources. Simply put, different
people can provide conflicting information. Combining this information and attempting
to resolve differences in opinions or facts is usually very time consuming because it
means contacting each information source in turn, explaining the discrepancy, and
attempting to refine the information. In many cases, the individual wrongly perceives
that the analyst is challenging his or her information, when in fact it is another user in
the organization who is doing so. This can make the user defensive and make it hard to
resolve the differences.

All techniques suffer integration problems to some degree, but JAD sessions are
designed to improve integration because all information is integrated when it is collected,
not afterward. If two users provide conflicting information, the conflict becomes immedi-
ately obvious, as does the source of the conflict. The immediate integration of information
is the single most important benefit of JAD that distinguishes it from other techniques, and
this is why most organizations use JAD for important projects.

User Involvement User involvement refers to the amount of time and energy the
intended users of the new system must devote to the analysis process. It is generally agreed
that as users become more involved in the analysis process, the chance of success increases.
However, user involvement can have a significant cost, and not all users are willing to con-
tribute valuable time and energy. Questionnaires, document analysis, and observation
place the least burden on users, whereas JAD sessions require the greatest effort.

Cost Cost is always an important consideration. In general, questionnaires, document
analysis, and observation are low-cost techniques (although observation can be quite time
consuming). The low cost does not imply that they are more or less effective than the other
techniques. Interviews and JAD sessions generally have moderate costs. In general, JAD ses-
sions are much more expensive initially, because they require many users to be absent from
their offices for significant periods of time, and they often involve highly paid consultants.
However, JAD sessions significantly reduce the time spent in information integration and
thus can cost less in the long term.

Combining Techniques In practice, requirements gathering combines a series of different
techniques. Most analysts start by using interviews with senior manager(s) to gain an under-
standing of the project and the big-picture issues. From these interviews, it becomes clear
whether large or small changes are anticipated. These interviews are often followed with
analysis of documents and policies to gain some understanding of the as-is system. Usually
interviews come next to gather the rest of the information needed for the as-is picture.

In our experience, identifying improvements is most commonly done using JAD ses-
sions because the JAD session enables the users and key stakeholders to work together
through an analysis technique and come to a shared understanding of the possibilities for
the to-be system. Occasionally, these JAD sessions are followed by questionnaires sent to a
much wider set of users or potential users to see whether the opinions of those who par-
ticipated in the JAD sessions are widely shared.

142 Chapter 3 Requirements Determination

c03RequirementsDetermination.qxd 11/7/11 1:23 PM Page 142

Developing the concept for the to-be system is often done through interviews with
senior managers, followed by JAD sessions with users of all levels to make sure the key
needs of the new system are well understood.

Alternative Requirements Documentation Techniques 143

Colleges and universities need to stay current with tech-
nologies. Many campuses have adopted laptop programs,
where students are expected to purchase or lease a par-
ticular model of laptop that will be preloaded with appro-
priate software and used for the students’ collegiate
careers. Likewise, the campuses need to update their
infrastructure—such as increasing bandwidth (to handle
more video, such as YouTube)—and to provide wireless
communication.

The University of Northern Wisconsin is a campus
that is trying to remain current with technology. Campus
budgets are almost always tight. UNW offers programs from
its Superior, Wisconsin, main campus as well as programs
on two satellite campuses in Ashland and Rhinelander.
Users on the two satellite campuses frequently do not get

the same level of service as students on the main campus.
Internet access is generally slower and not all the software
is the same. For example, students at the main campus
have access to Bloomberg systems for analysis of finan-
cial trading data. The campus opted to build an Internet
portal for all students to get to the same software and
systems, set up by student ID and student profiles and
permissions.

Questions

1. What technologies would be needed to make your
campus a premier technology-oriented school?

2. How might a college campus be like a business
with multiple locations and software needs?

3-G Campus Technology UpdatesCONCEPTS

IN ACTION

ALTERNATIVE REQUIREMENTS DOCUMENTATION
TECHNIQUES

Some other very useful requirements-gathering and documentation techniques include
throwaway prototyping, use cases, role-playing CRC cards with use case–based scenarios,
concept mapping, recording user stories on story cards, and task lists. Throwaway proto-
typing was described in Chapter 1. In essence, throwaway prototypes are created to better
understand some aspect of the new system. In many cases, they are used to test out some
technical aspect of a nonfunctional requirement, such as connecting a client workstation
to a server. If you have never done this before, it will be a lot easier to develop a very small
example system to test out the necessary design of the connection from the client worksta-
tion to the server instead of trying to do it the first time with the full blown system. Throw-
away prototyping is very useful when designing the physical architecture of the system (see
Chapter 11). Throwaway prototyping can also be very useful in designing user interfaces
(see Chapter 10).

Use cases, as described in Chapter 1, are the fundamental approach that the Unified
Process and Unified Modeling Language (UML) use to document and gather functional
requirements. We describe them in Chapter 4. Role-playing CRC cards with use
case–based scenarios are very useful when creating functional (see Chapter 4), structural
(see Chapter 5), and behavioral (see Chapter 6) models. We describe this approach in
Chapter 5. The remainder of this section describes the use of concept mapping, story
cards, and task lists.

c03RequirementsDetermination.qxd 11/7/11 1:23 PM Page 143

Concept Maps
Concept maps represent meaningful relationships between concepts. They are useful for
focusing individuals on the small number of key ideas on which they should concentrate.
A concept map is essentially a node-and-arc representation, where the nodes represent the
individual requirements and the arcs represent the relationships among the requirements.
Each arc is labeled with a relationship name. Concept maps also have been recommended
as a possible technique to support modeling requirements for object-oriented systems
development and knowledge-management systems.12 Concept mapping is an educational
psychology technique that has been used in schools, corporations, and health-care agencies
to facilitate learning, understanding, and knowledge creation.13 The advantage of the concept-
mapping approach to representing requirements over the typical textual approach (see
Figure 3-3) is that a concept map is not limited to a hierarchical representation. Concept
maps allow the relationships among the functional and nonfunctional requirements to be
explicitly represented. Figure 3-14 shows a concept map that portrays the information
contained in the requirements definition shown in Figure 3-3. By using a concept map to
represent the requirements instead of the textual approach, the relationship between the
functional and nonfunctional requirements can be made explicit. For example, the two
security requirements, Only Doctors Set Availability and Only Managers Can Produce
Schedule are explicitly linked to the Record Doctor Availability and Produce Schedule
functional requirements, respectively. This is very difficult to represent in a text-only ver-
sion of the requirements definition. Also, by having the user and analyst focus on the
graphical layout of the map, additional requirements can be discovered. One obvious issue
with this approach is that if the number of requirements become many and the relation-
ships between them become complex, then the number of nodes and arcs will become so
intertwined that the advantage of being able to explicitly see the relationships will be lost.
However, by combining both text and concept-map representations, it is possible to
leverage the strength of both textual and graphical representations to more completely
represent the requirements.

Story Cards and Task Lists
The use of story cards and task lists is associated with the agile development approaches.
From an agile perspective, documentation is only a necessary evil and should be mini-
mized. Both story cards and task lists are considered to be lightweight approaches to doc-
umenting and gathering requirements.14 A story card is typically an index card with a
single requirement (functional or nonfunctional) written on it. For example, with regard
to the doctor’s office appointment example, a story card could simply have “Make Appoint-
ment” written on it, while another could have “Back up Schedule Daily” written on it (see
Figure 3-15). Once the requirement is written down, it is discussed to determine the
amount of effort it will take to implement it. During the discussion, a task list is created for

144 Chapter 3 Requirements Determination

12 See B. Henderson-Sellers, A. Simons, and H. Younessi, The OPEN Toolbox of Techniques (Harlow, England:
Addison-Wesley, 1998).
13 For more information on concept mapping, see J. D. Novak and D. B. Gowin, Learning How to Learn (Cambridge,
UK: Cambridge University Press, 1984); and J. D. Novak, Learning, Creating, and Using Knowledge: Concept Maps TM

as Facilitative Tools in Schools and Corporations (Mahwah, NJ: Lawrence Erlbaum Associates, Publishers, 1998). Also,
a free concept mapping tool is available from the Institute of Human and Machine Cognition at cmap.ihmc.us.
14 For more information on story cards and task lists see M. Lippert, S. Roock, H. Wolf, eXtreme Programming in
Action: Practical Experiences from Real World Projects (Chichester, England: Wiley & Sons, Ltd., 2002); and
C. Larman, Agile & Iterative Development: A Manager’s Guide (Boston, MA: Addison-Wesley, 2004).

c03RequirementsDetermination.qxd 12/2/11 7:14 PM Page 144

Re
qu

ir
em

en
ts

C
ul

tu
ra

l a
nd

Po

lit
ic

al

Re
qu

ir
em

en
ts

N
on

fu
nc

tio
na

l
Re

qu
ir

em
en

ts
Se

cu
ri

ty
 R

eq
ui

re
m

en
ts

O
pe

ra
tio

na
l R

eq
ui

re
m

en
ts

Pe
rf

or
m

an
ce

Re

qu
ir

em
en

ts

Ba
ck

up
 S

ch
ed

ul
e

D
ai

ly

Su
pp

or
t W

ir
el

es
s

Pr
in

tin
g

St
or

e
N

ew

A
pp

oi
nt

m
en

t
in

 2
 S

ec
on

ds
 o

r
Le

ss
Re

tr
ie

ve
 D

ai
ly

A
pp

oi
nt

m
en

t
Sc

he
du

le
 in

 2
Se

co
nd

s
or

 L
es

s

O
pe

ra
te

 in
 W

in
do

w
s

En
vi

ro
nm

en
t

M
ak

e
A

pp
oi

nt
m

en
t

C
an

ce
l A

pp
oi

nt
m

en
t Pr

in
t S

ch
ed

ul
e

U
pd

at
e

Sc
he

du
le

C
he

ck
 S

ch
ed

ul
e

C
ha

ng
e

A
pp

oi
nt

m
en

t

M
an

ag
e

A
pp

oi
nt

m
en

ts
Pr

od
uc

e
Sc

he
du

le

Fu
nc

tio
na

l
Re

qu
ir

em
en

ts

Re
co

rd
 D

oc
to

r
A

va
ila

bi
lit

y

O
nl

y
M

an
ag

er
s

C
an

Pr

od
uc

e
Sc

he
du

le

O
nl

y
D

oc
to

rs
 S

et

A
va

ila
bi

lit
y

im
pa

ct
s

im
pa

ct
s

im
pa

ct
s

im
pa

ct
s

im
pa

ct
s

im
pa

ct
s

in
cl

ud
e

in
cl

ud
e

in
cl

ud
e

in
cl

ud
e

in
cl

ud
e

in
cl

ud
e

in
cl

ud
e

in
cl

ud
e

in
cl

ud
e

FI
G

U
R

E
3

-1
4

 S

am
pl

e
Re

qu
ir

em
en

ts
 C

on
ce

pt
 M

ap

145

c03RequirementsDetermination.qxd 11/7/11 1:23 PM Page 145

the requirement (story). If the requirement is deemed to be too large—for example, there
are too many tasks on the task list—the requirement is split up into multiple story cards
and the tasks are allocated across the new stories. In many shops, once a set of tasks have
been identified with a story, the story and its tasks are taped on a wall together so that all
members of the development team can see the requirements. The story can be prioritized
by importance by placing a rating on the card. The story can also be evaluated for the level
of risk associated with it. The importance level and amount of risk associated with the story
can be used to help choose which requirements to implement first. Advantages of using
story cards and task lists to document requirements is that they are very low tech, high
touch, easily updatable, and very portable.

THE SYSTEM PROPOSAL
A system proposal brings together into a single comprehensive document the material cre-
ated during planning and analysis. The system proposal typically includes an executive
summary, the system request, the workplan, the feasibility analysis, the requirements defi-
nition, and the evolving models that describe the new system. The evolving models include
functional models (see Chapter 4), structural models (see Chapter 5), and behavioral models
(see Chapter 6).15 The executive summary provides all critical information in a very
concise form. It can be thought of as a summary of the complete proposal. Its purpose is
to allow a busy executive to quickly read through it and determine which parts of the
proposal he or she needs to go through more thoroughly. The executive summary is typically
no more than a single page long. Figure 3-16 provides a template for a system proposal and
references to where the other sections of the proposal are described.

146 Chapter 3 Requirements Determination

FIGURE 3-15 Sample Story Cards

15 Depending on the client, much more detailed specifications may be required; for example Department of
Defense, NASA, IEEE/ANSI, and the Naval Research Laboratory all have very specific formats that must be
followed. For more information on these more detailed specifications see A. M Davis, Software Requirements,
Revision (Upper Saddle River, NJ: Prentice Hall, 1993); G. Kotonya and I. Sommerville, Requirements Engineering
(Chichester, England: Wiley, 1998); and R. H. Thayer and M. Dorfman (eds.), Software Requirements Engineering,
2nd ed. (Los Alamitos, CA: IEEE Computer Society Press, 1997).

c03RequirementsDetermination.qxd 11/7/11 1:23 PM Page 146

APPLYING THE CONCEPTS AT CD SELECTIONS
In this chapter, we introduced how the requirements are determined in object-oriented
systems development projects. Specifically, we described what a requirement is, how to
create a requirements definition, and a set of problems that can arise when determining
requirements. Next, we reviewed three different requirements analysis strategies, along
with a set of techniques that can be used in conjunction with the strategies. After that,
we reviewed a set of generic requirements-gathering techniques and a couple of alter-
native techniques that can be used with an object-oriented system development project.
Finally, we showed how the results of the requirements determination processes, along
with an updated system request, feasibility analysis, and workplan, are organized into
and documented by a system proposal. In this installment of the CD Selections case,
we see how Alec and Margaret work through all of these topics with regards to the
Web-based solution that they hope to create.

Summary 147

1. Table of Contents
2. Executive Summary

A summary of all the essential information in the proposal so a busy executive can read it
quickly and decide what parts of the proposal to read in more depth.

3. System Request
The revised system request form (see Chapter 2).

4. Workplan
The original workplan, revised after having completed analysis (see Chapter 2).

5. Feasibility Analysis
A revised feasibility analysis, using the information from analysis (see Chapter 2).

6. Requirements Definition
A list of the functional and nonfunctional business requirements for the system (this chapter).

7. Functional Model
An activity diagram, a set of use case descriptions, and a use-case diagram that illustrate the
basic processes or external functionality that the system needs to support (see Chapter 4).

8. Structural Models
A set of CRC cards, class diagram, and object diagrams that describe the structural aspects of
the to-be system (see Chapter 5). This may also include structural models of the current as-is
system that will be replaced.

9. Behavioral Models
A set of sequence diagrams, communication diagrams, behavioral-state machines, and a CRUDE
matrix that describe the internal behavior of the to-be system (see Chapter 6). This may include
behavioral models of the as-is system that will be replaced.

10. Appendices
These contain additional material relevant to the proposal, often used to support the recom-
mended system. This might include results of a questionnaire survey or interviews, industry
reports and statistics, and so on.

FIGURE 3-16
System Proposal
Template

SUMMARY
Requirements Determination
Requirements determination is the part of analysis whereby the project team turns the very
high-level explanation of the business requirements stated in the system request into a
more precise list of requirements. A requirement is simply a statement of what the system

c03RequirementsDetermination.qxd 11/28/11 8:46 AM Page 147

must do or what characteristic it needs to have. Business requirements describe the “what”
of the systems, and system requirements describe how the system will be implemented. A
functional requirement relates directly to a process the system has to perform or informa-
tion it needs to contain. Nonfunctional requirements refer to behavioral properties that the
system must have, such as performance and usability. All the functional and nonfunctional
business requirements that fit within the scope of the system are written in the require-
ments definition, which is used to create other analysis deliverables and leads to the initial
design for the new system.

Requirements Analysis Strategies
The basic process of analysis is divided into three steps: understanding the as-is system,
identifying improvements, and developing requirements for the to-be system. Three
requirements analysis strategies—BPA, BPI, and BPR—help the analyst lead users
through the analysis steps so that the vision of the system can be developed. BPA means
leaving the basic way the organization operates unchanged and using computer technology
to do some of the work. Problem analysis and root-cause analysis are two popular BPA
techniques. BPI means making moderate changes to the way the organization operates to
take advantage of new opportunities offered by technology or to copy what competitors
are doing. Duration analysis, activity-based costing, and information benchmarking are
three popular BPI activities. BPR means changing the fundamental way the organization
operates. Outcome analysis, technology analysis, and activity elimination are three popular
BPR activities.

Requirements-Gathering Techniques
Five techniques can be used to gather the business requirements for the proposed system:
interviews, joint application development, questionnaires, document analysis, and obser-
vation. Interviews involve meeting one or more people and asking them questions. There
are five basic steps in the interview process: selecting interviewees, designing interview
questions, preparing for the interview, conducting the interview, and performing postin-
terview follow-up. JAD allows the project team, users, and management to work together
to identify requirements for the system. Electronic JAD attempts to overcome common
problems associated with groups by using groupware. A questionnaire is a set of written
questions for obtaining information from individuals. Questionnaires are often used when
information and opinions are needed from a large number of people. Document analysis
entails reviewing the documentation and examining the system itself. It can provide
insights into the formal and informal system. Observation, the act of watching processes
being performed, is a powerful tool for gathering information about the as-is system
because it enables the analyst to see the reality of a situation firsthand.

Alternative Requirements Documentation Techniques
In addition to the five traditional approaches to gathering and documenting requirements,
a set of alternative approaches may be useful. Concept maps are not limited to supporting
hierarchical relationships; they support networked or Web-based relationships. Concept
maps, therefore, can provide a more complete picture of the relationships among the func-
tional and nonfunctional requirements. Story cards and task lists from the agile method-
ologies provide a low-tech, high-touch, easily updatable, and very portable approach that
users find simple and intuitive to use to document both functional and nonfunctional
requirements.

148 Chapter 3 Requirements Determination

c03RequirementsDetermination.qxd 11/28/11 8:46 AM Page 148

The System Proposal
The system proposal documents the results of the planning and analysis activities in a sin-
gle comprehensive document. The actual format of the system proposal depends somewhat
on the client. For example, the federal government has very specific requirements that a
system proposal must meet, whereas a small locally owned bike shop would be willing to
use a much simpler format.

Questions 149

KEY TERMS

Activity elimination, 123
Activity-based costing, 121
Analysis, 118
As-is system, 110
Benchmarking, 121
Bottom-up interview, 128
Breadth of analysis, 123
Business process automation

(BPA), 116
Business process improvement

(BPI), 116
Business process reengineering

(BPR), 116
Business requirements, 112
Closed-ended question, 127
Concept mapping, 144
Concept maps, 144
Critical thinking skills, 118
Document analysis, 138
Duration analysis, 121
Electronic JAD (e-JAD), 133
Facilitator, 133

Formal system, 139
Functional requirements, 112
Ground rules, 135
Informal benchmarking, 121
Informal system, 139
Interpersonal skills, 132
Interview, 126
Interview notes, 130
Interview report, 130
Interview schedule, 126
JAD (joint application

development), 132
Nonfunctional requirements, 112
Observation, 139
Open-ended question, 127
Outcome analysis,122
Parallelization, 121
Process Integration, 121
Post-session report, 135
Potential business value, 123
Probing question, 127
Problem analysis, 119

Project cost, 123
Questionnaire, 136
Requirement, 112
Requirements definition, 115
Requirements determination, 110
Risk, 124
Root cause, 119
Root-cause analysis, 119
Sample, 137
Scribe, 133
Story cards, 144
Structured interview, 128
System proposal, 110
System requirements, 112
Task lists, 144
Technology analysis, 122
To-be system, 110
Top-down interview, 128
Unstructured interview, 128
Walkthrough, 110

QUESTIONS

1. What are the key deliverables that are created during
analysis? What is the final deliverable from analysis,
and what does it contain?

2. What is the difference between an as-is system and a
to-be system?

3. What is the purpose of the requirements definition?
4. What are the three basic steps of the analysis process?

Which step is sometimes skipped or done in a cursory
fashion? Why?

5. Compare and contrast the business goals of BPA, BPI,
and BPR.

6. Compare and contrast problem analysis and root-
cause analysis. Under what conditions would you use
problem analysis? Under what conditions would you
use root-cause analysis?

7. Compare and contrast duration analysis and activity-
based costing.

8. Assuming time and money were not important con-
cerns, would BPR projects benefit from additional time
spent understanding the as-is system? Why or why not?

9. What are the important factors in selecting an appro-
priate analysis strategy?

c03RequirementsDetermination.qxd 11/28/11 8:46 AM Page 149

10. Describe the five major steps in conducting interviews.
11. Explain the differences among a closed-ended question,

an open-ended question, and a probing question.
When would you use each?

12. Explain the differences between unstructured inter-
views and structured interviews. When would you use
each approach?

13. Explain the difference between a top-down and
bottom-up interview approach. When would you use
each approach?

14. How are participants selected for interviews and JAD
sessions?

15. How can you differentiate between facts and opinions?
Why can both be useful?

16. Describe the five major steps in conducting JAD
sessions.

17. How does a JAD facilitator differ from a scribe?
18. What are the three primary things that a facilitator

does in conducting the JAD session?
19. What is e-JAD and why might a company be inter-

ested in using it?
20. How does designing questions for questionnaires differ

from designing questions for interviews or JAD sessions?

21. What are typical response rates for questionnaires and
how can you improve them?

22. What is document analysis?
23. How does the formal system differ from the informal

system? How does document analysis help you under-
stand both?

24. What are the key aspects of using observation in the
information-gathering process?

25. Explain factors that can be used to select information-
gathering techniques.

26. What is the primary advantage that concept maps
have over traditional textual requirements documents
techniques?

27. What are some of the advantages of using story cards
and task lists as a requirements-gathering and docu-
mentation technique?

28. What information is typically included in a system
proposal?

29. What is the purpose of the executive summary of the
system proposal?

EXERCISE

A. Review the Amazon.com website. Develop the require-
ments definition for the site. Create a list of functional
business requirements that the system meets. What dif-
ferent kinds of nonfunctional business requirements
does the system meet? Provide examples for each kind.

B. Suppose you are going to build a new system that auto-
mates or improves the interview process for the career
services department of your school. Develop a require-
ments definition for the new system. Include both
functional and nonfunctional system requirements.
Pretend you will release the system in three different
versions. Prioritize the requirements accordingly.

C. Describe in very general terms the as-is business process
for registering for classes at your university. What BPA
technique would you use to identify improvements?
With whom would you use the BPA technique? What
requirements-gathering technique would help you
apply the BPA technique? List some examples of
improvements that you would expect to find.

D. Describe in very general terms the as-is business process
for registering for classes at your university. What BPI
technique would you use to identify improvements?

With whom would you use the BPI technique? What
requirements-gathering technique would help you
apply the BPI technique? List some examples of
improvements that you would expect to find.

E. Describe in very general terms the as-is business process
for registering for classes at your university. What BPR
technique would you use to identify improvements?
With whom would you use the BPR technique? What
requirements-gathering technique would help you
apply the BPR technique? List some examples of
improvements that you would expect to find.

F. Suppose your university is having a dramatic increase
in enrollment and is having difficulty finding enough
seats in courses for students. Perform a technology
analysis to identify new ways to help students com-
plete their studies and graduate.

G. Suppose you are the analyst charged with developing a
new system for the university bookstore so students can
order books online and have them delivered to their
dorms or off-campus housing. What requirements-
gathering techniques will you use? Describe in detail
how you would apply the techniques.

150 Chapter 3 Requirements Determination

c03RequirementsDetermination.qxd 11/7/11 1:23 PM Page 150

MINICASES

1. The State Firefighter’s Association has a membership
of 15,000. The purpose of the organization is to pro-
vide some financial support to the families of deceased
member firefighters and to organize a conference each
year bringing together firefighters from all over the
state. Members are billed dues and calls annually. Calls
are additional funds required to take care of payments
made to the families of deceased members. The book-
keeping work for the association is handled by the
elected treasurer, Bob Smith, although it is widely
known that his wife, Laura, does all the work. Bob runs
unopposed each year at the election, because no one
wants to take over the tedious and time-consuming
job of tracking memberships. Bob is paid a stipend of
$8,000 per year, but his wife spends well over twenty
hours per week on the job. The organization, however,
is not happy with their performance.

A computer system is used to track the billing and
receipt of funds. This system was developed in 1984 by
a computer science student and his father. The system
is a DOS-based system written using dBase 3. The most
immediate problem facing the treasurer and his wife is
the fact that the software package no longer exists, and
there is no one around who knows how to maintain the
system. One query, in particular, takes seventeen hours
to run. Over the years, they have just avoided running
this query, although the information in it would be
quite useful. Questions from members concerning
their statements cannot easily be answered. Usually

Bob or Laura just jots down the inquiry and returns a
call with the answer. Sometimes it takes three to five
hours to find the information needed to answer the
question. Often, they have to perform calculations
manually because the system was not programmed to
handle certain types of queries. When member infor-
mation is entered into the system, each field is pre-
sented one at a time, which makes it very difficult to
return to a field and correct a value that was entered.
Sometimes a new member is entered but disappears
from the records. The report of membership used in
the conference materials does not alphabetize members
by city. Only cities are listed in the correct order.

What requirements analysis strategy or strategies
would you recommend for this situation? Explain
your answer.

2. Brian Callahan, IS project manager, is just about ready
to depart for an urgent meeting called by Joe Camp-
bell, manager of manufacturing operations. A major
BPI project sponsored by Joe recently cleared the
approval hurdle, and Brian helped bring the project
through project initiation. Now that the approval
committee has given the go-ahead, Brian has been
working on the project’s analysis plan.

One evening, while playing golf with a friend who
works in the manufacturing operations department,
Brian learned that Joe wants to push the project’s time
frame up from Brian’s original estimate of 13 months.
Brian’s friend overheard Joe say, “I can’t see why that IS

H. Suppose you are the analyst charged with developing a
new system to help senior managers make better
strategic decisions. What requirements-gathering
techniques will you use? Describe in detail how you
would apply the techniques.

I. Find a partner and interview each other about what
tasks each did in the last job you held (full-time,
part-time, past, or current). If you haven’t worked
before, then assume your job is being a student.
Before you do this, develop a brief interview plan.
After your partner interviews you, identify the type
of interview, interview approach, and types of ques-
tions used.

J. Find a group of students and run a 60-minute JAD
session on improving alumni relations at your univer-
sity. Develop a brief JAD plan, select two techniques
that will help identify improvements, and then

develop an agenda. Conduct the session using the
agenda, and write your post-session report.

K. Find a questionnaire on the Web that has been created
to capture customer information. Describe the pur-
pose of the survey, the way questions are worded, and
how the questions have been organized. How can it be
improved? How will the responses be analyzed?

L. Develop a questionnaire that will help gather informa-
tion regarding processes at a popular restaurant or the
college cafeteria (e.g., ordering, customer service). Give
the questionnaire to ten to fifteen students, analyze the
responses, and write a brief report that describes the
results.

M. Contact the career services department at your univer-
sity and find all the pertinent documents designed to
help students find permanent and/or part-time jobs.
Analyze the documents and write a brief report.

Minicases 151

c03RequirementsDetermination.qxd 11/7/11 1:23 PM Page 151

152 Chapter 3 Requirements Determination

project team needs to spend all that time analyzing
things. They’ve got two weeks scheduled just to look at
the existing system! That seems like a real waste. I want
that team to get going on building my system.”

Because Brian has a little inside knowledge about
Joe’s agenda for this meeting, he has been considering
how to handle Joe. What do you suggest Brian tell Joe?

3. Barry has recently been assigned to a project team that
will be developing a new retail store management sys-
tem for a chain of submarine sandwich shops. Barry
has several years of experience in programming, but
he has not done much analysis in his career. He was a
little nervous about the new work he would be doing,
but he was confident he could handle any assignment
he was given.

One of Barry’s first assignments was to visit one of
the submarine sandwich shops and prepare an obser-
vation report on how the store operates. Barry
planned to arrive at the store around noon, but he
chose a store in an area of town he was unfamiliar
with, and due to traffic delays and difficulty in finding
the store, he did not arrive until 1:30. The store man-
ager was not expecting him and refused to let a
stranger behind the counter until Barry had her contact
the project sponsor (the director of store management)
at company headquarters to verify who he was and
what his purpose was.

After finally securing permission to observe, Barry
stationed himself prominently in the work area behind
the counter so that he could see everything. The staff
had to maneuver around him as they went about their
tasks, but there were only minor occasional collisions.
Barry noticed that the store staff seemed to be going
about their work very slowly and deliberately, but he
supposed that was because the store wasn’t very busy.
At first, Barry questioned each worker about what he
or she was doing, but the store manager eventually
asked him not to interrupt their work so much—he
was interfering with their service to the customers.

By 3:30, Barry was a little bored. He decided to
leave, figuring he could get back to the office and pre-
pare his report before 5:00 that day. He was sure his
team leader would be pleased with his quick comple-
tion of his assignment. As he drove, he reflected,
“There really won’t be much to say in this report. All
they do is take the order, make the sandwich, collect

the payment, and hand over the order. It’s really sim-
ple!” Barry’s confidence in his analytical skills soared
as he anticipated his team leader’s praise.

Back at the store, the store manager shook her head,
commenting to her staff, “He comes here at the slow-
est time of day on the slowest day of the week. He
never even looked at all the work I was doing in the
back room while he was here—summarizing yester-
day’s sales, checking inventory on hand, making up
resupply orders for the weekend . . . plus he never even
considered our store-opening and -closing procedures.
I hate to think that the new store management system
is going to be built by someone like that. I’d better
contact Chuck [the director of store management]
and let him know what went on here today.”

Evaluate Barry’s conduct of the observation
assignment.

4. Anne has been given the task of conducting a survey of
sales clerks who will be using a new order-entry system
being developed for a household products catalog
company. The goal of the survey is to identify the
clerks’ opinions on the strengths and weaknesses of
the current system. There are about 50 clerks who
work in three different cities, so a survey seemed like
an ideal way of gathering the needed information
from the clerks.

Anne developed the questionnaire carefully and
pretested it on several sales supervisors who were
available at corporate headquarters. After revising it
based on their suggestions, she sent a paper version of
the questionnaire to each clerk, asking that it be
returned within one week. After one week, she had
only three completed questionnaires returned. After
another week, Anne received just two more completed
questionnaires. Feeling somewhat desperate, Anne
then sent out an e-mail version of the questionnaire,
again to all the clerks, asking them to respond to the
questionnaire by e-mail as soon as possible. She
received two e-mail questionnaires and three messages
from clerks who had completed the paper version
expressing annoyance at being bothered with the same
questionnaire a second time. At this point, Anne has
just a 14 percent response rate, which she is sure will
not please her team leader. What suggestions do you
have that could have improved Anne’s response rate to
the questionnaire?

c03RequirementsDetermination.qxd 11/7/11 1:23 PM Page 152

Functional models describe business processes and the interaction of an information sys-
tem with its environment. In object-oriented systems development, two types of models are
used to describe the functionality of an information system: use cases and activity diagrams.
Use cases are used to describe the basic functions of the information system. Activity dia-
grams support the logical modeling of business processes and workflows. Both can be used
to describe the current as-is system and the to-be system being developed. This chapter
describes business process and functional modeling as a means to document and under-
stand requirements and to understand the functional or external behavior of the system.

OOBBJJEECCTTIIVVEESS

! Understand the process used to identify business processes and use cases.
! Understand the process used to create use-case diagrams.
! Understand the process used to model business processes with activity diagrams.
! Understand the rules and style guidelines for activity diagrams.
! Understand the process used to create use case descriptions.
! Understand the rules and style guidelines for use case descriptions.
! Be able to create functional models of business processes using use-case diagrams,

activity diagrams, and use case descriptions.

CCHHAAPPTTEERR OOUUTTLLIINNEE

CC HH AA PP TT EE RR 44

BUSINESS PROCESS AND

FUNCTIONAL MODELING

Introduction
Business Process Identification with Use

Cases and Use-Case Diagrams
Elements of Use Case Diagrams
Identify Major Use Cases
Creating Use-Case Diagrams

Business Process Modeling with Activity
Diagrams

Elements of an Activity Diagram
Guidelines for Creating Activity

Diagrams
Creating Activity Diagrams

Business Process Documentation with Use
Cases and Use-Case Descriptions

Types of Use Cases
Elements of Use-Case Descriptions
Guidelines for Creating Use-Case

Descriptions
Creating Use Case Descriptions

Verifying and Validating the Business
Processes and Functional Models

Verification and Validation through
Walkthroughs

Functional Model Verification and
Validation

Applying the Concepts at CD Selections
Summary

115533

c04BusinessProcessAndFunctionalModeling.qxd 12/2/11 8:11 PM Page 153

INTRODUCTION
The previous chapter discussed the more popular requirements-gathering techniques, such
as interviewing, JAD, and observation. Using these techniques, the analyst determined the
requirements and created a requirements definition. The requirements definition defined
what the system is to do. In this chapter, we discuss how the information that is gathered
using these techniques is organized and presented in the form of use-case and activity dia-
grams and use-case descriptions. Because Unified Modeling Language (UML) has been
accepted as the standard notation by the Object Management Group (OMG), almost all
object-oriented development projects today use these models to document and organize
the requirements that are obtained during the analysis workflow.1

A use case is a formal way of representing the way a business system interacts with
its environment. It illustrates the activities performed by the users of the system. Use-
case modeling is often thought of as an external or functional view of a business process
in that it shows how the users view the process rather than the internal mechanisms by
which the process and supporting systems operate. Use cases can document the current
system (i.e., as-is system) or the new system being developed (i.e., to-be system).

An activity diagram can be used for any type of process-modeling activity.2 In this
chapter, we describe their use in the context of business process modeling. Process models
depict how a business system operates. They illustrate the processes or activities that are
performed and how objects (data) move among them. A process model can be used to
document a current system (i.e., as-is system) or a new system being developed (i.e., to-
be system), whether computerized or not. Many different process-modeling techniques
are in use today:3

Activity diagrams and use cases are logical models—models that describe the business
domain’s activities without suggesting how they are conducted. Logical models are some-
times referred to as problem domain models. Reading a use-case or activity diagram, in prin-
ciple, should not indicate if an activity is computerized or manual, if a piece of information
is collected by paper form or via the Web, or if information is placed in a filing cabinet or a
large database. These physical details are defined during design when the logical models are
refined into physical models. These models provide information that is needed to ultimately
build the system. By focusing on logical activities first, analysts can focus on how the business
should run without being distracted with implementation details.

As a first step, the project team gathers requirements from the users (see Chapter 3).
Next, using the gathered requirements, the project team identifies the business processes
and their environment using use cases and use-case diagrams. Use cases are the discrete

154 Chapter 4 Business Process and Functional Modeling

1 Other, similar techniques that are commonly used in non-UML projects are task modeling and scenario-based
design. For task modeling, see Ian Graham, Migrating to Object Technology (Reading, MA: Addison-Wesley, 1995);
and Ian Graham, Brian Henderson-Sellers, and Houman Younessi, The OPEN Process Specification, (Reading, MA:
Addison-Wesley, 1997). For scenario-based design—see John M. Carroll, Scenario-Based Design: Envisioning Work
and Technology in System Development (New York: Wiley, 1995).
2 We actually used an activity diagram to describe a simple process in Chapter 1 (see Figure 1-1).
3 Another commonly used process-modeling technique is IDEF0. IDEF0 is used extensively throughout the U.S.
federal government. For more information about IDEF0, see FIPS 183: Integration Definition for Function
Modeling (IDEF0), Federal Information Processing Standards Publications (Washington, DC: U.S. Department
of Commerce, 1993). From an object-oriented perspective, a good book that uses the UML to address business
process modeling is Hans-Erik Eriksson and Magnus Penker, Business Modeling with UML (New York: Wiley,
2000). Finally, a new process modeling technique is BPMN (Business Process Modeling Notation). A good book
that compares the notation and use of BPMN to UML’s activity diagram is Martin Schedlbauer, The Art of
Business Process Modeling: The Business Analysts Guide to Process Modeling with UML & BPMN (Sudbury, MA: The
Cathris Group, 2010).

c04BusinessProcessAndFunctionalModeling.qxd 11/7/11 1:32 PM Page 154

activities that the users perform, such as selling CDs, ordering CDs, and accepting returned
CDs from customers. Next, users work closely with the team to model the business
processes in the form of activity diagrams. Next, the team documents the business
processes described in the use-case and activity diagrams by creating a use-case description
for each use case. Finally, the team verifies and validates the current understanding of the
business processes by ensuring that all three models (use-case diagram, activity diagram(s),
and use-case descriptions) agree with one another. Once the current understanding of the
business processes are fully documented in the functional models, the team is ready to
move on to structural modeling (see Chapter 5).

In this chapter, we first describe business process identification using use cases and
use-case diagrams. Second, we describe business process modeling with activity diagrams.
Third, we describe use-case descriptions, their elements, and a set of guidelines for
creating them. Fourth, we describe the process of verification and validation of the busi-
ness process and functional models.

BUSINESS PROCESS IDENTIFICATION WITH USE CASES
AND USE-CASE DIAGRAMS

In the previous chapter, we learned about different strategies and techniques that are useful
in identifying the different business processes of a system so that a requirements definition
could be created. In this section, we learn how to begin modeling business processes with use
cases and the use-case diagram. An analyst can employ use cases and the use-case diagram to
better understand the functionality of the system at a very high level. Typically, because a use-
case diagram provides a simple, straightforward way of communicating to the users exactly
what the system will do, a use-case diagram is drawn when gathering and defining require-
ments for the system. In this manner, the use-case diagram can encourage the users to pro-
vide additional high-level requirements. A use-case diagram illustrates in a very simple way
the main functions of the system and the different kinds of users that will interact with it.
Figure 4-1 describes the basic syntax rules for a use-case diagram. Figure 4-2 presents a use-
case diagram for the doctor’s office appointment system introduced in the previous chapter.
We can see from the diagram that patients, doctors, and management personnel will use the
appointment system to manage appointments, record availability, and produce schedules,
respectively. In this section, we describe how to identify the major use cases (business
processes) for the new system. However, before we do this, we introduce the elements of the
use-case diagram.

Elements of Use Case Diagrams
The elements of a use-case diagram include actors, use cases, subject boundaries, and a set
of relationships among actors, actors and use cases, and use cases. These relationships con-
sist of association, include, extend, and generalization relationships. Each of these elements
is described next.

Actors The stick figures on the diagram represent actors (see Figure 4-1). An actor is not
a specific user but instead is a role that a user can play while interacting with the system.
An actor can also represent another system in which the current system interacts. In this
case, the actor optionally can be represented by a rectangle containing <<actor>> and the
name of the system. Basically, actors represent the principal elements in the environment
in which the system operates. Actors can provide input to the system, receive output from

Business Process Identification with Use Cases and Use-Case Diagrams 155

c04BusinessProcessAndFunctionalModeling.qxd 11/7/11 1:32 PM Page 155

156 Chapter 4 Business Process and Functional Modeling

An actor:

! Is a person or system that derives benefit from and is external to the subject.
! Is depicted as either a stick figure (default) or, if a nonhuman actor is involved, as

a rectangle with <<actor>> in it (alternative).
! Is labeled with its role.
! Can be associated with other actors using a specialization/superclass association,

denoted by an arrow with a hollow arrowhead.
! Is placed outside the subject boundary.

A use case:

! Represents a major piece of system functionality.
! Can extend another use case.
! Can include another use case.
! Is placed inside the system boundary.
! Is labeled with a descriptive verb–noun phrase.

A subject boundary:

! Includes the name of the subject inside or on top.
! Represents the scope of the subject, e.g., a system or an individual

business process.

An include relationship:

! Represents the inclusion of the functionality of one use case within another.
! Has an arrow drawn from the base use case to the used use case.

An extend relationship:

! Represents the extension of the use case to include optional behavior.
! Has an arrow drawn from the extension use case to the base use case.

A generalization relationship:

! Represents a specialized use case to a more generalized one.
! Has an arrow drawn from the specialized use case to the base use case.

An association relationship:

! Links an actor with the use case(s) with which it interacts.

<<actor>>
Actor/Role

Subject

Actor/Role

Use Case

<<include>>

<<extend>>

* *

FIGURE 4-1 Syntax for Use-Case Diagram

the system, or both. The diagram in Figure 4-2 shows that three actors will interact with
the appointment system (a patient, a doctor, and management).

Sometimes an actor plays a specialized role of a more general type of actor. For example,
there may be times when a new patient interacts with the system in a way that is somewhat
different from a general patient. In this case, a specialized actor (i.e., new patient) can be
placed on the model, shown using a line with a hollow triangle at the end of the more-
general actor (i.e., patient). The specialized actor inherits the behavior of the more general

c04BusinessProcessAndFunctionalModeling.qxd 11/7/11 1:32 PM Page 156

actor and extends it in some way (see Figure 4-3). Can you think of some ways a new
patient might behave differently from an existing patient?

Association Use cases are connected to actors through association relationships; these
relationships show with which use cases the actors interact (see Figure 4-1). A line drawn
from an actor to a use case depicts an association. The association typically represents two-
way communication between the use case and the actor. If the communication is only one

Business Process Identification with Use Cases and Use-Case Diagrams 157

Appointment System

Patient

Produce Schedules

Manage
Appointments

Management

Doctor

Record
Availability

* *

* *

* *

Appointment System

Patient

New Patient

Produce Schedules

Manage
Appointments

Management

Doctor

Record
Availability

FIGURE 4-3
Use-Case Diagram
with a Specialized
Actor

FIGURE 4-2
Use-Case Diagram
for the Appointment
System

c04BusinessProcessAndFunctionalModeling.qxd 11/7/11 1:32 PM Page 157

way, then a solid arrowhead can be used to designate the direction of the flow of informa-
tion. For example, in Figure 4-2 the Patient actor communicates with the Manage Appoint-
ments use case. Because there are no arrowheads on the association, the communication is
two-way. Finally, it is possible to represent the multiplicity of the association. Figure 4-2
shows an asterisk (*) at either end of the association between the Patient and the Manage
Appointments use case. This simply indicates that an individual patient (instance of the
Patient actor) executes the Manage Appointments use case as many times as he or she
wishes and that it is possible for the appointment part of the Manage Appointments use
case to be executed by many different patients. In most cases, this type of many-to-many
relationship is appropriate. However, it is possible to restrict the number of patients that
can be associated with the Manage Appointments use case. We discuss the multiplicity issue
in detail in the next chapter in regard to class diagrams.

Use Case A use case, depicted by an oval in the UML, is a major process that the system
performs and that benefits an actor or actors in some way (see Figure 4-1); it is labeled
using a descriptive verb–noun phrase. We can tell from Figure 4-2 that the system has three
primary use cases: Manage Appointments, Produce Schedule, and Record Availability.

There are times when a use case includes, extends, or generalizes the functionality of
another use case in the diagram. These are shown using include, extend, and generalization
relationships. To increase the ease of understanding a use-case diagram, higher-level use
cases are normally drawn above the lower-level ones. It may be easier to understand these
relationships with the help of examples. Let’s assume that every time a patient makes an
appointment, the patient is asked to verify payment arrangements. However, it is occa-
sionally necessary to actually make new payment arrangements. Therefore, we may want to
have a use case called Make Payment Arrangements that extends the Manage Appointments
use case to include this additional functionality. In Figure 4-4, an arrow labeled with extend
was drawn between the Make Payment Arrangements use case and the Manage Appoint-
ment use case to denote this special use-case relationship. The Make Payment Arrange-
ments use case was drawn lower than the Manage Appointments use case.

Similarly, there are times when a single use case contains common functions that are
used by other use cases. For example, suppose there is a use case called Manage Schedule
that performs some routine tasks needed to maintain the doctor’s office appointment
schedule, and the two use cases Record Availability and Produce Schedule both perform
the routine tasks. Figure 4-4 shows how we can design the system so that Manage Sched-
ule is a shared use case that is used by others. An arrow labeled with include is used to
denote the include relationship, and the included use case is drawn below the use cases
that contain it.

Finally, there are times when it makes sense to use a generalization relationship to
simplify the individual use cases. For example in Figure 4-4, the Manage Appointments
use case has been specialized to include a use case for an Old Patient and a New Patient.
The Make Old Patient Appt use case inherits the functionality of the Manage Appoint-
ments use case (including the Make Payment Arrangements use-case extension) and
extends its own functionality with the Update Patient Information use case. The Make
New Patient Appt use case also inherits all the functionality of the generic Manage
Appointments use case and calls the Create New Patient use case, which includes the func-
tionality necessary to insert the new patient into the patient database. The generalization
relationship is represented as an unlabeled hollow arrow with the more general use case
being higher than the lower use cases. Also, notice that we have added a second special-
ized actor, Old Patient, and that the Patient actor is now simply a generalization of the Old
and New Patient actors.

158 Chapter 4 Business Process and Functional Modeling

c04BusinessProcessAndFunctionalModeling.qxd 11/7/11 1:32 PM Page 158

Subject Boundary The use cases are enclosed within a subject boundary, which is a box
that defines the scope of the system and clearly delineates what parts of the diagram are
external or internal to it (see Figure 4-1). One of the more difficult decisions to make is
where to draw the subject boundary. A subject boundary can be used to separate a soft-
ware system from its environment, a subsystem from other subsystems within the soft-
ware system, or an individual process in a software system. They also can be used to
separate an information system, including both software and internal actors, from its
environment. Care should be taken to decide what the scope of the information system
is to be.

The name of the subject can appear either inside or on top of the box. The subject
boundary is drawn based on the scope of the system. In the appointment system, we
assumed that the Management and Doctor actors are outside of the scope of the system,
that is, they use the system. We could have included a receptionist as an actor. However, in
this case, we assumed that the receptionist is an internal actor who is part of the Manage

Business Process Identification with Use Cases and Use-Case Diagrams 159

Appointment System

Patient

New Patient

Old Patient

Produce Schedules

Update Patient
Information

Make Payment
Arrangements

Make Old
Patient Appt

Make New
Patient Appt

Create New
Patient

Manage
Appointments

Management

Doctor

Record
Availability

Manage
Schedule

<<ex
ten

d>
>

<<extend>>

<<
in

cl
ud

e>
>

<<include>>

<<include>>

* *

*

*

*
*

*
*

FIGURE 4-4 Extend and Include Relationships

c04BusinessProcessAndFunctionalModeling.qxd 11/7/11 1:32 PM Page 159

Appointments use case with which the Patient actor interacts. Therefore, the receptionist is
not drawn on the diagram.4

Identifying the Major Use Cases
The first step is to review the requirements definition (see Figure 3-3). This helps the
analyst to get a complete overview of the underlying business process being modeled.

The second step is to identify the subject’s boundaries. This helps the analyst to identify the
scope of the system. However, as we work through the development process, the boundary
of the system most likely will change.

The third step is to identify the primary actors and their goals. The primary actors involved
with the system comes from a list of stakeholders and users. Recall that a stakeholder is a
person, group, or organization that can affect (or will be affected by) a new system, whereas
an actor is a role that a stakeholder or user plays, not a specific user (e.g., doctor, not Dr.
Jones). The goals represent the functionality that the system must provide the actor for the
system to be a success. Identifying the tasks that each actor must perform can facilitate this.
For example, does the actor need to create, read, update, delete, or execute (CRUDE)5 any
information currently in the system, are there any external changes of which an actor must
inform the system, or is there any information that the system should give the actor? Steps 2
and 3 are intertwined. As actors are identified and their goals are uncovered, the boundary
of the system will change.

The fourth step is to simply identify the business processes and major use cases. Rather
than jumping into one use case and describing it completely at this point, we only want to
identify the use cases. Identifying only the major use cases at this time prevents the users
and analysts from forgetting key business processes and helps the users explain the overall
set of business processes for which they are responsible. It is important at this point to
understand and define acronyms and jargon so that the project team and others from out-
side the user group can clearly understand the use cases. Again, the requirements definition
is a very useful beginning point for this step.

The fifth step is to carefully review the current set of use cases. It may be necessary to split
some of them into multiple use cases or merge some of them into a single use case. Also,
based on the current set, a new use case may be identified. You should remember that
identifying use cases is an iterative process, with users often changing their minds about
what a use case is and what it includes. It is very easy to get trapped in the details at this
point, so you need to remember that the goal at this step is to only identify the major use
cases. For example, in the doctor’s office example in Figure 4-2, we defined one use case
as Manage Appointments. This use case included the cases for both new patients and
existing patients, as well as for when a patient changes or cancels an appointment. We
could have defined each of these activities (makes an appointment, changes an appoint-
ment, or cancels an appointment) as separate use cases, but this would have created a huge
set of small use cases.

160 Chapter 4 Business Process and Functional Modeling

4 In other non-UML approaches to object-oriented systems development, it is possible to represent external
actors along with internal actors. In this example, the receptionist would be considered an internal actor (see
Graham, Migrating to Object Technology, and Graham, Henderson-Sellers, and Younessi, The OPEN Process
Specification).
5 We describe the use of CRUDE analysis and matrices in Chapter 6.

1. Review Require-
ments Definition

2. Identify Subject’s
Boundaries

3. Identify Primary
Actors & Goals

Review Current Set
of Use Cases

Identify Business
Processes & Major

Use Cases

c04BusinessProcessAndFunctionalModeling.qxd 11/7/11 1:32 PM Page 160

The trick is to select the right size so that you end up with three to nine use cases in each
system. If the project team discovers many more than eight use cases, this suggests that the
use cases are too small or that the system boundary is too big. If more than nine use cases
exist, the use cases should be grouped together into packages (i.e., logical groups of use cases)
to make the diagrams easier to read and keep the models at a reasonable level of complexity.
It is simple at that point to sort the use cases and group together these small use cases into
larger use cases that include several small ones or to change the system boundaries.6

Creating a Use-Case Diagram
Basically, drawing the use-case diagram is very straightforward once use cases have been
detailed. The actual use-case diagram encourages the use of information hiding. The only
parts drawn on the use-case diagram are the system boundary, the use cases themselves, the
actors, and the various associations between these components. The major strength of the
use-case diagram is that it provides the user with an overview of the business processes.
However, remember that any time a use case changes, it could affect the use case diagram.
There are four major steps in drawing a use-case diagram.

First, we place and draw the use cases on the diagram. These are taken directly from the
major use cases previously identified. Special use-case associations (include, extend, or gen-
eralization) are also added to the model at this point. Be careful in laying out the diagram.
There is no formal order to the use cases, so they can be placed in whatever fashion is
needed to make the diagram easy to read and to minimize the number of lines that cross.
It often is necessary to redraw the diagram several times with use cases in different places
to make the diagram easy to read. Also, for understandability purposes, there should be no
more than three to nine use cases on the model so the diagram is as simple as possible.
These include use cases that have been factored out and now are associated with another
use case through the include, extend, or generalization relationships.

Second, the actors are placed and drawn on the diagram. Like use-case placement, to min-
imize the number of lines that cross on the diagram, the actors should be placed near the
use cases with which they are associated.

Third, the subject boundary is drawn. This forms the border of the subject, separating use
cases (i.e., the subject’s functionality) from actors (i.e., the roles of the external users).

The fourth and last step is to add associations by drawing lines to connect the actors to the use
cases with which they interact. No order is implied by the diagram, and the items added along
the way do not have to be placed in a particular order; therefore, it might help to rearrange the
symbols a bit to minimize the number of lines that cross, making the diagram less confusing.

Business Process Identification with Use Cases and Use-Case Diagrams 161

6 For those familiar with structured analysis and design, packages serve a similar purpose as the leveling and
balancing processes used in data flow diagramming. Packages are described in Chapter 7.

2. Place & Draw
Actors

3. Draw Subject
Boundary

4. Add Associations

Look at the use-case diagram in Figure 4-4. Consider if a use
case were added to maintain patient insurance information.

Make assumptions about the details of this use case
and add it to the existing use-case diagram.

4-1 Use–Case DiagramYOUR

TURN

1. Place & Draw
Use Cases

c04BusinessProcessAndFunctionalModeling.qxd 11/7/11 1:32 PM Page 161

Example The functional requirements for an automated university library circulation sys-
tem include the need to support searching, borrowing, and book-maintenance activities. The
system should support searching by title, author, keywords, and ISBN. Searching the library’s
collection database should be available on terminals in the library and available to potential
borrowers via the Web. If the book of interest is currently checked out, a valid borrower
should be allowed to request the book to be returned. Once the book has been checked back
in, the borrower requesting the book should be notified of the book’s availability.

The borrowing activities are built around checking books out and returning books by
borrowers. There are three types of borrowers: students, faculty or staff, and guests.
Regardless of the type of borrower, the borrower must have a valid ID card. If the borrower
is a student, having the system check with the registrar’s student database validates the ID
card. If the borrower is a faculty or staff member, having the system check with the per-
sonnel office’s employee database validates the ID card. If the borrower is a guest, the ID
card is checked against the library’s own borrower database. If the ID card is valid, the sys-
tem must also check to determine whether the borrower has any overdue books or unpaid
fines. If the ID card is invalid, the borrower has overdue books, or the borrower has unpaid
fines, the system must reject the borrower’s request to check out a book, otherwise the bor-
rower’s request should be honored. If a book is checked out, the system must update the
library’s collection database to reflect the book’s new status.

The book-maintenance activities deal with adding and removing books from the
library’s book collection. This requires a library manager to both logically and physically
add and remove the book. Books being purchased by the library or books being returned
in a damaged state typically cause these activities. If a book is determined to be damaged
when it is returned and it needs to be removed from the collection, the last borrower will
be assessed a fine. However, if the book can be repaired, depending on the cost of the repair,
the borrower might not be assessed a fine. Every Monday, the library sends reminder emails
to borrowers who have overdue books. If a book is overdue more than two weeks, the bor-
rower is assessed a fine. Depending on how long the book remains overdue, the borrower
can be assessed additional fines every Monday.

To begin with, we need to identify the major use cases and create a use-case diagram that
represents the high-level business processes in the business situation just described. Based on
the steps to identify the major use cases, we need to review the requirements definition and
identify the boundaries (scope) of the problem. Based on the description of the problem, it is
obvious that the system to be created is limited to managing the library’s book collection. The
next thing we need to do is to identify the primary actors and business processes that need to
be supported by the system. Based on the functional requirements described, the primary

162 Chapter 4 Business Process and Functional Modeling

Identify a set of major use cases for the following high-level
business processes in a housing system run by the campus
housing service. The campus housing service helps students
find apartments. Apartment owners fill in information forms
about the rental units they have available (e.g., location,
number of bedrooms, monthly rent), which are then
entered into a database. Students can search through this

database via the Web to find apartments that meet their
needs (e.g., a two-bedroom apartment for $400 or less per
month within a half mile of campus). They then contact the
apartment owners directly to see the apartment and possi-
bly rent it. Apartment owners call the service to delete their
listing when they have rented their apartment(s).

Based on those use cases, create a use-case diagram.

4-2 Campus HousingYOUR

TURN

c04BusinessProcessAndFunctionalModeling.qxd 11/7/11 1:32 PM Page 162

actors are borrowers and librarians, whereas the primary business processes are borrowing
books, returning books, searching the book collection, maintaining the book collection, and
processing overdue books. Now that we have identified all of the actors and major use cases, we
can draw the use-case diagram that represents an overview of the library’s book collection man-
agement system (see Figure 4-5). Notice the nonhuman actors (Personnel Office and Registrar
Office) that were added.

BUSINESS PROCESS MODELING WITH ACTIVITY DIAGRAMS
Business process models describe the different activities that, when combined, support a
business process. Business processes typically cut across functional departments (e.g., the
creation of a new product involves many different activities that combine the efforts of many
employees in many departments). From an object-oriented perspective, they cut across mul-
tiple objects. Many of the earlier object-oriented systems development approaches tended to
ignore business process modeling. However, today we realize that modeling business
processes themselves is a very constructive activity that can be used to make sense of the
gathered requirements (see Chapter 3). The one potential problem of building business
process models, from an object-oriented systems development perspective, is that they tend
to reinforce a functional decomposition mindset. However, as long as they are used prop-
erly, business process models are very powerful tools for communicating the analyst’s
current understanding of the requirements to the user.

Business Process Modeling with Activity Diagrams 163

Library Book
Collection

Management
System

Maintain Book
Collection

Process Overdue
Books

Librarian

Borrow Books
* *

* *

*

*

*

Borrower
*

*

* *

*

<<actor>>
Personnel Office

*
<<actor>>

Registrar Office

Search Collection

Return Books
FIGURE 4-5
Library Book Collection
Management System
Use Case Diagram

c04BusinessProcessAndFunctionalModeling.qxd 11/7/11 1:32 PM Page 163

Martin Schedlbauer provides a set of best practices to follow when modeling business
processes.7

! Be realistic, because it is virtually impossible to identify everything that is
included in a business process at this point in the evolution of the system. Even if
we could identify everything, everything is not equally important.

! Be agile because even though we might not identify every single feature of a business
process, the features that we do identify should be identified in a rigorous manner.

! All modeling is a collaborative/social activity. Therefore, business process
modeling must be performed with teams, not by individuals. When an individual
creates a model, the chance of mixing up or omitting important tasks is greatly
increased.

! Do not use a CASE tool to do the modeling but use whiteboards instead.
However, once the process is understood, it is a good idea to use a CASE tool to
document the process.

! Process modeling should be done in an iterative manner. In other words, as you
better understand a business process, you will need to return to the documented
version of the process and revise it. Remember, object-oriented system develop-
ment is an iterative (and incremental) process.

! When modeling a business process, stay focused on that specific process. If tasks
associated with other business processes are identified, simply record them on a
to-do list and get back to the business process that you are currently modeling.

! Remember that a business process model is an abstraction of reality. By that, we
mean that you should not include every minor task in the current description
of the business process. Remember, you cannot afford to lose sight of the
proverbial forest for the sake of detailed understanding of a single tree. Too
many details at this point in the evolution of the system can cause confusion
and actually prevent you from solving the underlying problem being addressed
by the new system.

In this section of the chapter, we introduce the use of UML’s activity diagrams as a
means to document business process models. Activity diagrams are used to model the
behavior in a business process independent of objects. In many ways, activity diagrams can
be viewed as sophisticated data flow diagrams that are used in conjunction with structured
analysis; however, unlike data flow diagrams, activity diagrams include notation that
addresses the modeling of parallel, concurrent activities and complex decision processes.8

Activity diagrams can be used to model everything from a high-level business workflow
that involves many different use cases, to the details of an individual use case, all the way
down to the specific details of an individual method. In a nutshell, activity diagrams can be
used to model any type of process.9 In this chapter, we restrict our coverage of activity dia-
grams to documenting and modeling high-level business processes.

164 Chapter 4 Business Process and Functional Modeling

7 Martin Schedlbauer, The Art of Business Process Modeling: The Business Analysts Guide to Process Modeling with
UML & BPMN (Sudbury, MA: The Cathris Group, 2010).
8 For a good introduction to data flow diagrams and structured approaches to systems analysis and design, see Alan
Dennis, Barbara Haley Wixom, and Roberta M. Roth, Systems Analysis & Design, 4th ed. (New York: Wiley, 2009).
9 Technically speaking, activity diagrams combine process-modeling ideas from many different techniques includ-
ing event models, statecharts, and Petri nets. However, UML 2.0’s activity diagram has more in common with Petri
nets than the other process-modeling techniques. For a good description of using Petri nets to model business
workflows, see Wil van der Aalst and Kees van Hee, Workflow Management: Models, Methods, and Systems
(Cambridge, MA: MIT Press, 2002).

c04BusinessProcessAndFunctionalModeling.qxd 11/7/11 1:32 PM Page 164

Business Process Modeling with Activity Diagrams 165

Elements of an Activity Diagram
Activity diagrams portray the primary activities and the relationships among the activities
in a process. Figure 4-6 shows the syntax of an activity diagram. Figure 4-7 presents a
simple activity diagram that represents the Manage Appointments use case of the appoint-
ment system for the doctor’s office example.10

Actions and Activities Actions and activities are performed for some specific business
reason. Actions and activities can represent manual or computerized behavior. They are
depicted in an activity diagram as a rounded rectangle (see Figure 4-6). They should have
a name that begins with a verb and ends with a noun (e.g., Get Patient Information or
Make Payment Arrangements). Names should be short, yet contain enough information so
that the reader can easily understand exactly what they do. The only difference between an
action and an activity is that an activity can be decomposed further into a set of activities
and/or actions, whereas an action represents a simple nondecomposable piece of the over-
all behavior being modeled. Typically, only activities are used for business process or work-
flow modeling. In most cases, each activity is associated with a use case. The activity
diagram in Figure 4-7 shows a set of separate but related activities for the Manage Appoint-
ments use case (see Figures 4-2, 4-3, and 4-4): Get Patient Information, Update Patient
Information, Create New Patient, Make Payment Arrangements, Make New Appointment,
Change Appointment, and Cancel Appointment. Notice that the Make Payment Arrange-
ments and Make New Appointment activities appear twice in the diagram; once for an
“old” patient and once for a “new” patient.

Object Nodes Activities and actions typically modify or transform objects. Object nodes
model these objects in an activity diagram. Object nodes are portrayed in an activity dia-
gram as rectangles (see Figure 4-6). The name of the class of the object is written inside the
rectangle. Essentially, object nodes represent the flow of information from one activity to
another activity. The simple appointment system portrayed in Figure 4-7 shows object
nodes flowing from Get Patient Information activity.

Control Flows and Object Flows There are two different types of flows in activity dia-
grams: control and object (see Figure 4-6). Control flows model the paths of execution
through a business process. A control flow is portrayed as a solid line with an arrowhead on
it showing the direction of flow. Control flows can be attached only to actions or activities.
Figure 4-7 portrays a set of control flows through the doctor’s office’s appointment system.
Object flows model the flow of objects through a business process. Because activities and
actions modify or transform objects, object flows are necessary to show the actual objects that
flow into and out of the actions or activities.11 An object flow is depicted as a dashed line with
an arrowhead on it showing the direction of flow. An individual object flow must be attached
to an action or activity on one end and an object node on the other end. Figure 4-9 portrays
a set of control and object flows through the appointment system of a doctor’s office.

10 Owing to the actual complexity of the syntax of activity diagrams, we follow a minimalist philosophy in our
coverage [see John M. Carrol, The Nurnberg Funnel: Designing Minimalist Instruction for Practical Computer Skill
(Cambridge, MA: MIT Press, 1990)]. However, the material contained in this section is based on the Unified Mod-
eling Language: Superstructure Version 2.5, ptc/2010-11-14 (www.uml.org). Additional useful references include
Michael Jesse Chonoles and James A. Schardt, UML 2 for Dummies (Indianapolis, IN: Wiley, 2003); Hans-Erik
Eriksson, Magnus Penker, Brian Lyons, and David Fado, UML 2 Toolkit (Indianapolis: Wiley, 2004); and Kendall
Scott, Fast Track UML 2.0 (Berkeley, CA: Apress, 2004). For a complete description of all diagrams, see
www.uml.org.
11 These are identical to data flows in data flow diagrams.

c04BusinessProcessAndFunctionalModeling.qxd 11/7/11 1:32 PM Page 165

116666 CChhaapptteerr 44 Business Process and Functional Modeling

An action:
! Is a simple, nondecomposable piece of behavior.
! Is labeled by its name.

An activity:
! Is used to represent a set of actions.
! Is labeled by its name.

Activity

Action

An object node:
! Is used to represent an object that is connected to a set of object flows.
! Is labeled by its class name.

A decision node:

! Is used to represent a test condition to ensure that the control flow or object flow
 only goes down one path.

! Is labeled with the decision criteria to continue down the specific path.

A control flow:

! Shows the sequence of execution.

A final-activity node:

! Is used to stop all control flows and object flows in an activity (or action).

An initial node:

! Portrays the beginning of a set of actions or activities.

A merge node:

! Is used to bring back together different decision paths that were created using a
 decision node.

A fork node:

 Is used to split behavior into a set of parallel or concurrent flows of activities (or

A swimlane:

A join node:

 Is used to bring back together a set of parallel or concurrent flows of activities (or

An object flow:

! Shows the flow of an object from one activity (or action) to another activity (or action).

A final-flow node:

! Is used to stop a specific control flow or object flow.

Swimlane

[Decision
Criteria]

[Decision
Criteria]

Is used to break up an activity diagram into rows and columns to assign the
individual activities (or actions) to the individuals or objects that are responsible
for executing the activity (or action)

Is labeled with the name of the individual or object responsible

Class Name

actions)

actions)

FFIIGGUURREE 44--66 Syntax for an Activity Diagram

Control Nodes There are seven different types of control nodes in an activity diagram: initial,
final-activity, final-flow, decision, merge, fork, and join (see Figure 4-6). An initial node portrays
the beginning of a set of actions or activities.12 An initial node is shown as a small filled-in cir-
cle. A final-activity node is used to stop the process being modeled. Any time a final-activity

12 For those familiar with IBM flowcharts, this is similar to the start node.

c04BusinessProcessAndFunctionalModeling.qxd 11/28/11 9:26 AM Page 166

Business Process Modeling with Activity Diagrams 167

Get Patient Information

Appt
Request Info

Appt
Request Info

Create New Patient

Update Patient Information

[New Patient][Old Patient]

[Create] [Change]

Cancel Appointment Change AppointmentCreate Appointment

Make Payment Arrangements

Create Appointment

Make Payment Arrangements

[New Info]

[New Arrange]

[Cancel]

FIGURE 4-7 Activity Diagram for the Manage Appointments Use Case

node is reached, all actions and activities are ended immediately, regardless of whether they
are completed. A final-activity node is represented as a circle surrounding a small, filled-in
circle, making it resemble a bull’s-eye. A final-flow node is similar to a final-activity node,
except that it stops a specific path of execution through the business process but allows
the other concurrent or parallel paths to continue. A final-flow node is shown as a small
circle with an X in it.

c04BusinessProcessAndFunctionalModeling.qxd 11/7/11 1:32 PM Page 167

The decision and merge nodes support modeling the decision structure of a business
process. The decision node is used to represent the actual test condition that determines which
of the paths exiting the decision node is to be traversed. In this case, each exiting path must
be labeled with a guard condition. A guard condition represents the value of the test for that
particular path to be executed. For example, in Figure 4-7, the decision node immediately
below the Get Patient Information activity has two mutually exclusive paths that could be
executed: one for old, or previous, patients, the other for new patients. The merge node is used
to bring back together multiple mutually exclusive paths that have been split based on an ear-
lier decision (e.g., the old- and new-patient paths in Figure 4-7 are brought back together
near the bottom of the diagram). However, sometimes, for clarity, it is better not to use a
merge node. For example, in Figure 4-8, which of the two activity diagrams, both represent-
ing an overview level of an order process, is easier to understand, the one on the left or the
one on the right? The one on the left contains a merge node for the More Items on Order
question, but the one on the right does not. In a sense, the decision node is playing double
duty in the diagram on the right: It also serves as a merge node. Technically speaking, we

168 Chapter 4 Business Process and Functional Modeling

[Item Available] [Item Not Available]

[More Items
on Order]

[No More Items on Order]

Place Order

Process Order

Back Order ItemProcess Item Process Item

[Item Available] [Item Not Available]

[More Items
on Order]

[No More Items on Order]

Place Order

Process Order

Back Order Item

FIGURE 4-8 Two Very Similar Activity Diagrams

c04BusinessProcessAndFunctionalModeling.qxd 11/7/11 1:32 PM Page 168

should not omit the merge node; however, sometimes being technically correct according to
the UML’s diagramming rules actually causes the diagram to become confusing. From a busi-
ness process modeling perspective, a good deal of common sense can go a long way.

The fork and join nodes allow parallel and concurrent processes to be modeled (see
Figure 4-6). The fork node is used to split the behavior of the business process into multiple
parallel or concurrent flows. Unlike the decision node, the paths are not mutually exclusive
(i.e., both paths are executed concurrently). For example, in Figure 4-9, the fork node

Business Process Modeling with Activity Diagrams 169

firstParent secondParent

GetJelly GetBread

GetDrink GetDessert

GetPeanutButter

CreateSandwich

CreateLunch

GetLunchBox

PutLunchInBox

FIGURE 4-9
Activity Diagram for
Making a School Box
Lunch

c04BusinessProcessAndFunctionalModeling.qxd 11/7/11 1:32 PM Page 169

is used to show that two concurrent, parallel processes are to be executed. In this case, each
process is executed by two separate processors (parents). The purpose of the join node is
similar to that of the merge node. The join node simply brings back together the separate
parallel or concurrent flows in the business process into a single flow.

Swimlanes Activity diagrams can model a business process independent of any object
implementation. However, there are times when it helps to break up an activity diagram in
such a way that it can be used to assign responsibility to objects or individuals who would
actually perform the activity. This is especially useful when modeling a business workflow
and is accomplished through the use of swimlanes. In Figure 4-9, the swimlanes are used to
break up among two parents the making of a school lunch comprising a peanut butter and
jelly sandwich, a drink, and dessert. In this case, we use vertical swimlanes. We could also
draw the activity diagram using more of a left-to-right orientation instead of a top-down
orientation. In that case, the swimlanes are drawn horizontally.

In an actual business workflow, there would be activities that should be associated with
roles of individuals involved in the business workflow (e.g., employees or customers) and
the activities to be accomplished by the information system being created. This association
of activities with external roles, internal roles, and the system is very useful when creating
the use-case descriptions described later in this chapter.

170 Chapter 4 Business Process and Functional Modeling

Look at the activity diagram for the appointment system
in Figure 4-7. Think of one more activity that a user might
ask for when gathering requirements for this system
(e.g., maintaining patient insurance information).

Questions

1. How would you depict this on the existing diagram?

2. After adding the activity to the diagram, what is
your recommendation?

3. Would you keep the new activity within the scope
of this system? Why or why not?

4-3 Activity DiagramsYOUR

TURN

Guidelines for Creating Activity Diagrams
Scott Ambler suggests the following guidelines when creating activity diagrams:13

! Because an activity diagram can be used to model any kind of process, you should
set the context or scope of the activity being modeled. Once you have determined
the scope, you should give the diagram an appropriate title.

! You must identify the activities, control flows, and object flows that occur
between the activities.

! You should identify any decisions that are part of the process being modeled.
! You should attempt to identify any prospects for parallelism in the process.
! You should draw the activity diagram.

13 The guidelines presented here are based on work done by Scott Ambler. For more details, see Scott W. Ambler,
The Object Primer: The Application Developer’s Guide to Object Orientation and the UML, 2nd ed. (Cambridge,
England: Cambridge University Press/SIGS Books, 2001); and Scott W. Ambler, The Elements of UML Style
(Cambridge, England: Cambridge University Press, 2003).

c04BusinessProcessAndFunctionalModeling.qxd 11/7/11 1:32 PM Page 170

When drawing an activity diagram, the diagram should be limited to a single initial
node that starts the process being modeled. This node should be placed at the top or top
left of the diagram, depending on the complexity of the diagram. For most business
processes, there should only be a single final-activity node. This node should be placed at
the bottom or bottom right of the diagram (see Figures 4-7, 4-8, and 4-9). Because most
high-level business processes are sequential, not parallel, the use of a final-flow node
should be limited.

When modeling high-level business processes or workflows, only the more important
decisions should be included in the activity diagrams. In those cases, the guard conditions
associated with the outflows of the decision nodes should be mutually exclusive. The out-
flows and guard conditions should form a complete set (i.e., all potential values of the deci-
sion are associated with one of the flows).

As in decision modeling, forks and joins should be included only to represent the more
important parallel activities in the process. For example, an alternative version of Figure 4-9
might not include the forks and joins associated with the Get Jelly, Get Bread, Get Peanut
Butter, Get Drink, and Get Dessert activities. This would greatly simplify the diagram.14

When laying out the activity diagram, line crossings should be minimized to enhance
the readability of the diagram. The activities on the diagram should also be laid out in a
left-to-right and/or top-to-bottom order based on the order in which the activities are
executed. For example, in Figure 4-9, the Create Sandwich activity takes place before the
Create Lunch activity.

Swimlanes should be used only to simplify the understanding of an activity diagram.
Furthermore, the swimlanes should enhance the readability of a diagram. For example,
when using a horizontal orientation for swimlanes, the top swimlane should represent the
most important object or individual involved with the process. The order of the remaining
swimlanes should be based on minimizing the number of flows crossing the different
swimlanes. Also, when there are object flows among the activities associated with the dif-
ferent individuals (swimlanes) executing the activities of the process, it is useful to show the
actual object flowing from one individual to another individual by including an object
node between the two individuals (i.e., between the two swimlanes). This, of course, affects
how the swimlanes should be placed on the diagram.

Finally, any activity that does not have any outflows or any inflows should be chal-
lenged. Activities with no outflows are referred to as black-hole activities. If the activity is
truly an end point in the diagram, the activity should have a control flow from it to a final-
activity or final-flow node. An activity that does not have any inflow is known as a miracle
activity. In this case, the activity is missing an inflow either from the initial node of the dia-
gram or from another activity.

Creating Activity Diagrams
There are five steps in creating an activity diagram to document and model a business
process. First, you must choose a business process that was previously identified to model.
To do this, you should review the requirements definition (see Figure 3-3) and the use-case
diagram (see Figures 4-2, 4-3, and 4-4) created to represent the requirements. You should
also review all of the documentation created during the requirements-gathering process
(see Chapter 3), for example, reports created that documented interviews or observations,
any output from any JAD sessions, any analysis of any questionnaires used, and any story
cards or task lists created. In most cases, the use cases on the use-case diagram will be the

Business Process Modeling with Activity Diagrams 171

14 In fact, the only reason we depicted the diagram in Figure 4-9 with the multiple fork and join nodes was to
demonstrate that it could be done.

1. Choose a Business
Process

c04BusinessProcessAndFunctionalModeling.qxd 11/7/11 1:32 PM Page 171

best place to start. For example, in the appointment system, we had identified three primary
use cases: Manage Appointments, Produce Schedule, and Record Doctor Availability. We also
identified a whole set of minor use cases (these will be useful in identifying the elements of
the activity diagram).

Second, identify the set of activities necessary to support the business process. For exam-
ple, in Figure 3-3, three processes are identified as being part of the Manage Appointments
business process. Also, by reviewing the use-case diagram (see Figure 4-4), we see that five
minor use cases are associated with the Manage Appointments major use case. Based on
this information, we can identify a set of activities. In this case, the activities are Update
Patient Information, Make Payment Arrangements, Create New Patient, Create Appoint-
ment, Cancel Appointment, and Change Appointment.

Third, identify the control flows and nodes necessary to document the logic of the business
process. For example, in Figure 4-4, the Make Payment Arrangements and Update Patient
Information use cases are extensions to the Manage Appointments and Make Old Patient
Appt uses cases. We know that these use cases are executed only in certain circumstances.
From this we can infer that the activity diagram must include some decision and merge
nodes. Based on the requirements definition (see Figure 3-3), we can infer another set of
decision and merge nodes based on the Create Appointment, Cancel Appointment, and
Change Appointment activities identified in the previous step.

Fourth, identify the object flows and nodes necessary to support the logic of the business
process. Typically object nodes and flows are not shown on many activity diagrams used to
model a business process. The primary exception is if information captured by the system
in one activity is used in an activity that is performed later, but not immediately after the
activity that captured the information. In the appointment example, it is obvious that we
need to be able to determine whether the patient is an old or new patient and the type of
action that the patient would like to have performed (create, cancel, or change an appoint-
ment). It is obvious that a new patient cannot cancel or change an appointment because
the patient is by definition a new patient. Obviously, we need to capture this type of infor-
mation at the beginning of the business process and use it when required. For example, in
the appointment problem, we need to have a Get Patient Information activity that captures
the appropriate information and makes it available at the appropriate time in the process.

Fifth, lay out and draw the activity diagram to document the business process. For esthetic
and understandability reasons, just as when drawing a use-case diagram, you should
attempt to minimize potential line crossings. Based on the previous steps and carefully
laying out the diagram, the activity diagram in Figure 4-7 was created to document the
Manage Appointments business process.

Example The first step is to choose a business process to model. In this case, we want to
create an activity diagram for the Borrow Books use case (see Figure 4-5). The functional
requirements for this use case were:

The borrowing activities are built around checking books out and returning books
by borrowers. There are three types of borrowers: students, faculty or staff, and
guests. Regardless of the type of borrower, the borrower must have a valid ID card. If
the borrower is a student, having the system check with the registrar’s student data-
base validates the ID card. If the borrower is a faculty or staff member, having the
system check with the personnel office’s employee database validates the ID card.

172 Chapter 4 Business Process and Functional Modeling

2. Identify Activities

3. Identify Control
Flows & Nodes

4. Identify Object
Flows & Nodes

5. Lay Out & Draw
Diagram

c04BusinessProcessAndFunctionalModeling.qxd 11/7/11 1:32 PM Page 172

If the borrower is a guest, the ID card is checked against the library’s own borrower
database. If the ID card is valid, the system must also check to determine whether the
borrower has any overdue books or unpaid fines. If the ID card is invalid, the
borrower has overdue books, or the borrower has unpaid fines, the system must
reject the borrower’s request to check out a book, otherwise the borrower’s request
should be honored.

The second step to model a business process is to identify the activities that make up the
process. Based on the requirements for the Borrow Books use case, we can identify three
major activities: Validate ID Card, Check for Overdue Books and Fines, and Check Out
Books. The third step is to identify the control flows and control nodes necessary to model
the decision logic of the business process. In this case there obviously will have to be an
initial node, a final-flow node, and a set of decision and merge nodes for each decision
to be made. The fourth step is to identify the object flows and object nodes necessary
to complete the description of the business process. In this case, there really is no need to
include object nodes and flows. Finally, we can lay out the diagram (see Figure 4-10).

BUSINESS PROCESS DOCUMENTATION WITH USE CASES
AND USE-CASE DESCRIPTIONS

Use-case diagrams provided a bird’s-eye view of the basic functionality of the business
processes contained in the evolving system. Activity diagrams, in a sense, open up the black
box of each business process by providing a more-detailed graphical view of the underlying

Business Process Documentation with Use Cases and Use-Case Descriptions 173

[Valid Crad]

[No Overdue Books & No Fines]

Validate ID Card

Check Out Books

Check for Overdue Books and Fines

FIGURE 4-10
Activity Diagram for
the Borrow Books Use
Case

c04BusinessProcessAndFunctionalModeling.qxd 11/7/11 1:32 PM Page 173

activities that support each business process. Use-case descriptions provide a means to
more fully document the different aspects of each individual use case.15 The use-case
descriptions are based on the identified requirements, use-case diagram, and the activity
diagram descriptions of the business processes. Use-case descriptions contain all the infor-
mation needed to document the functionality of the business processes.16

Use cases are the primary drivers for all the UML diagramming techniques. A use case
communicates at a high level what the system needs to do, and all the UML diagramming
techniques build on this by presenting the use-case functionality in a different way for a dif-
ferent purpose. Use cases are the building blocks by which the system is designed and built.

Use cases capture the typical interaction of the system with the system’s users (end
users and other systems). These interactions represent the external, or functional, view of
the system from the perspective of the user. Each use case describes one and only one func-
tion in which users interact with the system.17 Although a use case may contain several
paths that a user can take while interacting with the system (e.g., when searching for a book
in a Web bookstore, the user might search by subject, by author, or by title), each possible
execution path through the use case is referred to as a scenario. Another way to look at a
scenario is as if a scenario is an instantiation of a specific use case. Scenarios are used exten-
sively in behavioral modeling (see Chapter 6). Finally, by identifying all scenarios and try-
ing to execute them through role-playing CRC cards (see Chapter 5), you will be testing the
clarity and completeness of your evolving understanding of the system being developed.18

When creating use-case descriptions, the project team must work closely with the
users to fully document the functional requirements. Organizing the functional require-
ments and documenting them in a use-case description is a relatively simple process, but it
takes considerable practice to ensure that the descriptions are complete enough to use in
structural (Chapter 5) and behavioral (Chapter 6) modeling. The best place to begin is to
review the use-case and activity diagrams. The key thing to remember is that each use case
is associated with one and only one role that users have in the system. For example, a recep-
tionist in a doctor’s office may play multiple roles—he or she can make appointments,
answer the telephone, file medical records, welcome patients, and so on. It is possible that

174 Chapter 4 Business Process and Functional Modeling

15 For a more detailed description of use-case modeling, see Alistair Cockburn, Writing Effective Use Cases (Reading,
MA: Addison-Wesley, 2001).
16 Nonfunctional requirements, such as reliability requirements and performance requirements, are often docu-
mented outside of the use case through more traditional requirements documents. See Gerald Kotonya and Ian
Sommerville, Requirements Engineering (Chichester, England: Wiley, 1998); Benjamin L. Kovitz, Practical Software
Requirements: A Manual of Content & Style (Greenwich, CT: Manning, 1999); Dean Leffingwell and Don Widrig,
Managing Software Requirements: A Unified Approach (Reading, MA: Addison-Wesley, 2000); and Richard H.
Thayer, M. Dorfman, and Sidney C. Bailin (eds.), Software Requirements Engineering, 2nd ed. (Los Alamitos, CA:
IEEE Computer Society, 1997).
17 This is one key difference between traditional structured analysis and design approaches and object-oriented
approaches. If you have experience using traditional structured approaches (or have taken a course on them), then
this is an important change for you. If you have no experience with structured approaches, then you can skip this
footnote.

The traditional structured approach is to start with one overall view of the system and to model processes via
functional decomposition—the gradual decomposition of the overall view of the system into the smaller and
smaller parts that make up the whole system. On the surface, this is similar to business-process modeling using
activity diagrams. However, functional decomposition is not used with object-oriented approaches. Instead, each
of the use cases documents one individual piece of the system; there is no overall use case that documents the
entire system in the same way that a level 0 data flow diagram attempts to document the entire system. By remov-
ing this overall view, object-oriented approaches make it easier to decouple the system’s objects so they can be
designed, developed, and reused independently of the other parts of the system. Although this lack of an overall
view might prove unsettling initially, it is very liberating over the long term.
18 For presentation purposes, we defer discussion of role-playing to Chapter 5.

c04BusinessProcessAndFunctionalModeling.qxd 11/7/11 1:32 PM Page 174

multiple users will play the same role. Therefore, use cases should be associated with the
roles played by the users and not with the users themselves.

Types of Use Cases
There are many different types of use cases. We suggest two separate dimensions on which
to classify a use case based on the purpose of the use case and the amount of information
that the use case contains: overview versus detail and essential versus real.

An overview use case is used to enable the analyst and user to agree on a high-level
overview of the requirements. Typically, overview use cases are created very early in the
process of understanding the system requirements, and they document only basic infor-
mation about the use case, such as its name, ID number, primary actor, type, a brief
description, and the relationships among the actors, actors and use cases, and use cases.
These can easily be created immediately after the creation of the use-case diagram.

Once the user and the analyst agree upon a high-level overview of the requirements,
the overview use cases can be converted to detail use cases. A detail use case typically doc-
uments, as far as possible, all the information needed for the use case. These can be based
on the activities and control flows contained in the activity diagrams.

An essential use case is one that describes only the minimum essential issues necessary
to understand the required functionality. A real use case goes farther and describes a specific
set of steps. For example, an essential use case in a doctor office might say that the recep-
tionist should attempt to match the patient’s desired appointment times with the available
times, whereas a real use case might say that the receptionist should look up the available
dates on the calendar using MS Exchange to determine if the requested appointment times
were available. The primary difference is that essential use cases are implementation
independent, whereas real use cases are detailed descriptions of how to use the system once
it is implemented. Thus real use cases tend to be used only in the design, implementation,
and testing.

Elements of a Use-Case Description
A use-case description contains all the information needed to build the structural (Chap-
ter 5) and behavioral (Chapter 6) diagrams that follow, but it expresses the information in
a less-formal way that is usually simpler for users to understand. Figure 4-11 shows a sample
use-case description.19 A use-case description has three basic parts: overview information,
relationships, and the flow of events.

Overview Information The overview information identifies the use case and provides
basic background information about the use case. The use-case name should be a verb–noun
phrase (e.g., Make Old Patient Appt). The use-case ID number provides a unique way to find
every use case and also enables the team to trace design decisions back to a specific require-
ment. The use-case type is either overview or detail and essential or real. The primary actor
is usually the trigger of the use case—the person or thing that starts the execution of the use
case. The primary purpose of the use case is to meet the goal of the primary actor. The brief
description is typically a single sentence that describes the essence of the use case.

Business Process Documentation with Use Cases and Use-Case Descriptions 175

19 Currently there is no standard set of elements for a use case. The elements described in this section are based
on recommendations contained in Alistair Cockburn, Writing Effective Use Cases (Reading, MA: Addison-Wesley,
2001); Craig Larman, Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and the
Unified Process, 2nd ed. (Upper Saddle River, NJ: Prentice Hall, 2002); and Brian Henderson-Sellers and Bhuvan
Unhelkar, OPEN Modeling with UML (Reading, MA: Addison-Wesley, 2000). Also see Graham, Migrating to Object
Technology.

c04BusinessProcessAndFunctionalModeling.qxd 11/7/11 1:32 PM Page 175

176 Chapter 4 Business Process and Functional Modeling

Use Case Name:

Primary Actor:

Stakeholders and Interests:

Brief Description:

ID: Importance Level:

Trigger:

Normal Flow of Events:

SubFlows:

Alternate/Exceptional Flows:

Type: External

Make Old Patient Appt 2 Low

Old Patient

Old Patient – wants to make, change, or cancel an appointment
Doctor – wants to ensure patient’s needs are met in a timely manner

Use Case Type: Detail, Essential

Patient calls and asks for a new appointment or asks to cancel or change an existing appointment

Old Patient

Update Patient Information
Manage Appointments

1. The Patient contacts the office regarding an appointment.
2. The Patient provides the Receptionist with his or her name and address.
3. If the Patient’s information has changed
 Execute the Update Patient Information use case.
4. If the Patient’s payment arrangements has changed
 Execute the Make Payments Arrangements use case.
5. The Receptionist asks Patient if he or she would like to make a new appointment, cancel an existing appointment, or change
 an existing appointment.

S-1: New Appointment
1. The Receptionist asks the Patient for possible appointment times.
2. The Receptionist matches the Patient’s desired appointment times with available dates and
times and schedules the new appointment.

S-2: Cancel Appointment
1. The Receptionist asks the Patient for the old appointment time.
2. The Receptionist finds the current appointment in the appointment file and cancels it.

S-3: Change Appointment
1. The Receptionist performs the S-2: cancel appointment subflow.
2. The Receptionist performs the S-1: new appointment subflow.

S-1, 2a1: The Receptionist proposes some alternative appointment times based on what is available in the
 appointment schedule.

S-1, 2a2: The Patient chooses one of the proposed times or decides not to make an appointment.

6. The Receptionist provides the results of the transaction to the Patient.

This use case describes how we make an appointment as well as changing or canceling
an appointment for a previously seen patient.

Relationships:
Association:
Include:
Extend:
Generalization:

If the patient wants to make a new appointment,
 the S-1: new appointment subflow is performed.
If the patient wants to cancel an existing appointment,
 the S-2: cancel appointment subflow is performed.
If the patient wants to change an existing appointment,
 the S-3: change appointment subflow is performed.

FIGURE 4-11 Sample Use-Case Description

The importance level can be used to prioritize the use cases. The importance level
enables the users to explicitly prioritize which business functions are most important and
need to be part of the first version of the system and which are less important and can wait
until later versions if necessary. The importance level can use a fuzzy scale, such as high,
medium, and low (e.g., in Figure 4-11 we have assigned an importance level of high to the

TEMPLATE
can be found at
www.wiley.com
/college/dennis

c04BusinessProcessAndFunctionalModeling.qxd 11/7/11 1:32 PM Page 176

Business Process Documentation with Use Cases and Use-Case Descriptions 177

20 Larman, Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design.

Make Old Patient Appt use case). It can also be done more formally using a weighted
average of a set of criteria. For example, Larman20 suggests rating each use case over the
following criteria using a scale from zero to five:

! The use case represents an important business process.
! The use case supports revenue generation or cost reduction.
! Technology needed to support the use case is new or risky and therefore requires

considerable research.
! Functionality described in the use case is complex, risky, and/or time critical.

Depending on a use case’s complexity, it may be useful to consider splitting its
implementation over several different versions.

! The use case could increase understanding of the evolving design relative to the
effort expended.

A use case may have multiple stakeholders that have an interest in the use case. Each
use case lists each of the stakeholders with each one’s interest in the use case (e.g., Old
Patient and Doctor). The stakeholders’ list always includes the primary actor (e.g., Old
Patient).

Each use case typically has a trigger —the event that causes the use case to begin (e.g.,
Old Patient calls and asks for a new appointment or asks to cancel or change an existing
appointment). A trigger can be an external trigger, such as a customer placing an order or
the fire alarm ringing, or it can be a temporal trigger, such as a book being overdue at the
library or the need to pay the rent.

Relationships Use-case relationships explain how the use case is related to other use
cases and users. There are four basic types of relationships: association, extend, include, and
generalization. An association relationship documents the communication that takes place
between the use case and the actors that use the use case. An actor is the UML representa-
tion for the role that a user plays in the use case. For example, in Figure 4-11, the Make Old
Patient Appt use case is associated with the actor Old Patient (see Figure 4-4). In this case,
a patient makes an appointment. All actors involved in the use case are documented with
the association relationship.

An include relationship represents the mandatory inclusion of another use case.
The include relationship enables functional decomposition—the breaking up of a complex
use case into several simpler ones. For example, in Figure 4-4, the Manage Schedule use
case was considered to be complex and complete enough to be factored out as a separate
use case that could be executed by the Produce Schedules and Record Availability use
cases. The include relationship also enables parts of use cases to be reused by creating
them as separate use cases.

An extend relationship represents the extension of the functionality of the use case to
incorporate optional behavior. In Figure 4-11, the Make Old Patient Appt use case condi-
tionally uses the Update Patient Information use case. This use case is executed only if the
patient’s information has changed.

The generalization relationship allows use cases to support inheritance. For example,
the use case in Figure 4-4, the Manage Appointments use case, was specialized so that a
new patient would be associated with the Make New Patient Appt and an old patient
could be associated with a Make Old Patient Appt. The common, or generalized, behavior
that both the Make New Patient Appointment and Make Old Patient Appointment use

c04BusinessProcessAndFunctionalModeling.qxd 11/7/11 1:32 PM Page 177

cases contain would be placed in the generalized Manage Appointments use case.
In other words, the Make New Patient Appointment and Make Old Patient Appointment
use cases would inherit the common functionality from the Manage Appointments use
case. The specialized behavior would be placed in the appropriate specialized use case.
For example, the extend relationship to the Update Patient Information use case would
be placed with the specialized Make Old Patient Appointment use case.

Flow of Events Finally, the individual steps within the business process are described.
Three different categories of steps, or flows of events, can be documented: normal flow of
events, subflows, and alternative, or exceptional, flows:

! The normal flow of events includes only steps that normally are executed in a use
case. The steps are listed in the order in which they are performed. In Figure 4-11,
the patient and the receptionist have a conversation regarding the patient’s name,
address, and action to be performed.

! In some cases, the normal flow of events should be decomposed into a set of subflows
to keep the normal flow of events as simple as possible. In Figure 4-11, we have
identified three subflows: Create Appointment, Cancel Appointment, and Change
Appointment. Each of the steps of the subflows is listed. These subflows are based on
the control flow logic in the activity diagram representation of the business process
(see Figure 4-6). Alternatively, we could replace a subflow with a separate use case
that could be incorporated via the include relationships (see the earlier discussion).
However, this should be done only if the newly created use case makes sense by itself.
For example, in Figure 4-11, does it make sense to factor out a Create Appointment,
Cancel Appointment, and/or Change Appointment use case? If it does, then the spe-
cific subflow(s) should be replaced with a call to the related use case, and the use case
should be added to the include relationship list.

! Alternative or exceptional flows are ones that do happen but are not considered
to be the norm. These must be documented. For example, in Figure 4-11, we
have identified two alternative or exceptional flows. The first one simply
addresses the situation that occurs when the set of requested appointment
times are not available. The second one is simply a second step to the alterna-
tive flow. Like the subflows, the primary purpose of separating out alternate or
exceptional flows is to keep the normal flow of events as simple as possible.
Again, as with the subflows, replace the alternate or exceptional flows with
separate use cases that could be integrated via the extend relationship (see the
earlier discussion).

When should events be factored out from the normal flow of events into subflows or
subflows and/or alternative or exceptional flows be factored out into separate use cases? Or
when should things simply be left alone? The primary criteria should be based on the level
of complexity that the use case entails. The more difficult it is to understand the use case,
the more likely events should be factored out into subflows, or subflows and/or alternative
or exceptional flows should be factored out into separate use cases that are called by the
current use case. This, of course, creates more use cases. Therefore, the use-case diagram
will become more cluttered. Practically speaking, we must decide which makes more sense.
This varies greatly, depending on the problem and the client. Remember, we are trying to
represent, in a manner as complete and concise as possible, our understanding of the busi-
ness processes that we are investigating so that the client can validate the requirements that
we are modeling. Therefore, there really is no single right answer. It really depends on the
analyst, the client, and the problem.

178 Chapter 4 Business Process and Functional Modeling

c04BusinessProcessAndFunctionalModeling.qxd 11/7/11 1:32 PM Page 178

Optional Characteristics Other characteristics of use cases can be documented by
use-case descriptions. These include the level of complexity of the use case, the estimated
amount of time it takes to execute the use case, the system with which the use case is asso-
ciated, specific data flows between the primary actor and the use case, any specific attribute,
constraint, or operation associated with the use case, any preconditions that must be satis-
fied for the use case to execute, or any guarantees that can be made based on the execution
of the use case. As we noted at the beginning of this section, there is no standard set of
characteristics of a use case that must be captured. In this book, we suggest that the
information contained in Figure 4-11 is the minimal amount to be captured.

Guidelines for Creating Use-Case Descriptions
The essence of a use case is the flow of events. Writing the flow of events in a manner that
is useful for later stages of development generally comes with experience. Figure 4-12 pro-
vides a set of guidelines that have proved to be useful.21

First, write each individual step in the form subject–verb–direct object and, optionally,
preposition–indirect object. This form has become known as SVDPI sentences. This form
of sentence has proved to be useful in identifying classes and operations (see Chapter 5).
For example, in Figure 4-11, the first step in the normal flow of events, the Patient contacts
the office regarding an appointment, suggests the possibility of three classes of objects:
Patient, Office, and Appointment. This approach simplifies the process of identifying the
classes in the structural model (see Chapter 5). SVDPI sentences cannot be used for all
steps, but they should be used whenever possible.

Second, make clear who or what is the initiator of the action and who or what is the
receiver of the action in each step. Normally, the initiator should be the subject of the
sentence and the receiver should be the direct object of the sentence. For example, in
Figure 4-11, the second step, Patient provides the Receptionist with his or her name and
address, clearly portrays the Patient as the initiator and the Receptionist as the receiver.

Third, write the step from the perspective of an independent observer. To accomplish
this, each step might have to be written first from the perspective of both the initiator and
the receiver. Based on the two points of view, the bird’s-eye view version can then be writ-
ten. For example, in Figure 4-11, the Patient provides the Receptionist with his or her name
and address, neither the patient’s nor the receptionist’s perspective is represented.

Fourth, write each step at the same level of abstraction. Each step should make about
the same amount of progress toward completing the use case as each of the other steps. On
high-level use cases, the amount of progress could be very substantial, whereas in a low-
level use case, each step could represent only incremental progress. For example, in
Figure 4-11, each step represents about the same amount of effort to complete.

Business Process Documentation with Use Cases and Use-Case Descriptions 179

21 These guidelines are based on Cockburn, Writing Effective Use Cases, and Graham, Migrating to Object Technology.

1. Write each set in the form of subject–verb–direct object (and sometimes preposition–indirect object).
2. Make sure it is clear who the initiator of the step is.
3. Write the steps from the perspective of the independent observer.
4. Write each step at about the same level of abstraction.
5. Ensure the use case has a sensible set of steps.
6. Apply the KISS principle liberally.
7. Write repeating instructions after the set of steps to be repeated.

FIGURE 4-12
Guidelines for Writing
Effective Use-Case
Descriptions

c04BusinessProcessAndFunctionalModeling.qxd 11/7/11 1:32 PM Page 179

Fifth, ensure that the use case contains a sensible set of actions. Each use case should
represent a transaction. Therefore, each use case should comprise four parts:

1. The primary actor initiates the execution of the use case by sending a request
(and possibly data) to the system.

2. The system ensures that the request (and data) is valid.

3. The system processes the request (and data) and possibly changes its own internal state.

4. The system sends the primary actor the result of the processing.

For example, in Figure 4-11, the patient requests an appointment (steps 1 and 2), the
receptionist determines whether any of the patient’s information has changed or not (step 3),
the receptionist determines whether the patient’s payments arrangements has changed or
not (step 4), the receptionist sets up the appointment transaction (step 5), and the recep-
tionist provides the results of the transaction to the patient (step 6).

The sixth guideline is the KISS principle. If the use case becomes too complex and/or too
long, the use case should be decomposed into a set of use cases. Furthermore, if the normal
flow of events of the use case becomes too complex, subflows should be used. For example, in
Figure 4-11, the fifth step in the normal flow of events was sufficiently complex to decompose
it into three separate subflows. However, care must be taken to avoid the possibility of decom-
posing too much. Most decomposition should be done with classes (see Chapter 5).

The seventh guideline deals with repeating steps. Normally, in a programming lan-
guage such as Visual Basic or C, we put loop definition and controls at the beginning of the
loop. However, because the steps are written in simple English, it is normally better to sim-
ply write Repeat steps A through E until some condition is met after step E. It makes the
use case more readable to people unfamiliar with programming.

180 Chapter 4 Business Process and Functional Modeling

Look at the activity diagram for the appointment system
in Figure 4-7 and the use case description that was cre-
ated in Figure 4-11. Create your own use case description

for the Make New Patient Appt or the activity that you
created in Your Turn 4-3. Use Figure 4-11 to guide your
efforts.

4-4 Use-Cases DescriptionsYOUR

TURN

Creating Use Case Descriptions
Use cases provide a bird’s-eye view of the business processes contained in the evolving system.
The use-case diagram depicts the communication path between the actors and the system.
Use cases and their use-case description documentation tend to be used to model both
the contexts of the system and the detailed requirements for the system. Even though the
primary purpose of use cases is to document the functional requirements of the system, they
also are used as a basis for testing the evolving system. In this section, we provide a set of
steps that can be used to guide the actual creation of a use-case description for each use case
in the use-case diagram based on the requirements definition and the use-case and activity
diagrams.22 These steps are performed in order, but of course the analyst often cycles among
them in an iterative fashion as he or she moves from one use case to another use case.

22 The approach in this section is based on the work of Cockburn, Writing Effective Use Cases; Graham, Migrating
to Object Technology; George Marakas and Joyce Elam,“Semantic Structuring in Analyst Acquisition and Repre-
sentation of Facts in Requirements Analysis,” Information Systems Research 9, no. 1 (1998): 37–63; and Alan
Dennis, Glenda Hayes, and Robert Daniels, “Business Process Modeling with Group Support Systems,” Journal of
Management Information Systems 15, no. 4 (1999): 115–142.

c04BusinessProcessAndFunctionalModeling.qxd 11/7/11 1:32 PM Page 180

The first step is to choose one of the use cases to document with a use-case description. Using
the importance level of the use case can help do this. For example, in Figure 4-11, the Make
Old Patient Appt use case has an importance level of high. As such, it should be one of the ear-
lier use cases to be expanded. The criteria suggested by Larman23 can also be used to set the
prioritization of the use cases, as noted earlier. An alternative approach suggests that each use
case should be voted on by each member of the development team. In this approach, each
team member is given a set of “dots” that they can use to vote on the use cases. They can use
all of their dots to vote for a single use case, or they can spread them over a set of use cases. The
use cases then can be ranked in order of the number of dots received. Use case descriptions are
created for the individual use cases based on the rank order.24

The second step is to create an overview description of the use case, that is, name the
primary actor, set the type for the use case, list all of the identified stakeholders and their
interests in the use case, identify the level of importance of the use case, give a brief descrip-
tion of the use case, give the trigger information for the use case, and list the relationships
in which the use case participates.

The third step is to fill in the steps of the normal flow of events required to describe each
use case. The steps focus on what the business process does to complete the use case, as
opposed to what actions the users or other external entities do. In general, the steps should
be listed in the order in which they are performed, from first to last. Remember to write the
steps in an SVDPI form whenever possible. In writing the use case, remember the seven
guidelines described earlier. The goal at this point is to describe how the chosen use case
operates. One of the best ways to begin to understand how an actor works through a use
case is to visualize performing the steps in the use case—that is, role play. The techniques
of visualizing how to interact with the system and of thinking about how other systems
work (informal benchmarking) are important techniques that help analysts and users
understand how systems work and how to write a use case. Both techniques (visualization
and informal benchmarking) are common in practice. It is important to remember that at
this point in the development of a use case, we are interested only in the typical successful
execution of the use case. If we try to think of all of the possible combinations of activities
that could go on, we will never get anything written down. At this point, we are looking
only for the three to seven major steps. Focus only on performing the typical process that
the use case represents.

The fourth step is to ensure that the steps listed in the normal flow of events are not too
complex or too long. Each step should be about the same size as the others. For example,
if we were writing steps for preparing a meal, steps such as take fork out of drawer and put
fork on table are much smaller than prepare cake using mix. If we end up with more than
seven steps or steps that vary greatly in size, we should go back and review each step care-
fully and possibly rewrite the steps.

One good approach to produce the steps for a use case is to have the users visualize
themselves actually performing the use case and to have them write down the steps as if
they were writing a recipe for a cookbook. In most cases the users will be able to quickly
define what they do in the as-is model. Defining the steps for to-be use cases might take a
bit more coaching. In our experience, the descriptions of the steps change greatly as users

Business Process Documentation with Use Cases and Use-Case Descriptions 181

23 Larman, Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design.
24 C. Larman, Agile & Iterative Development: A Manager’s Guide (Boston, MA: Addison-Wesley, 2004).

3. Describe the Normal
Flow of Events

4. Check the Normal
Flow of Events

1. Choose a Use Case

2. Create Overview
Description

c04BusinessProcessAndFunctionalModeling.qxd 11/7/11 1:32 PM Page 181

work through a use case. Our advice is to use a blackboard or whiteboard (or paper with
pencil) that can be easily erased to develop the list of steps, and then write the list on the
use-case form. It should be written on the use-case form only after the set of steps is fairly
well defined.

The fifth step focuses on identifying and writing the alternative or exceptional flows. Alter-
native or exceptional flows are flows of success that represent optional or exceptional
behavior. They tend to occur infrequently or as a result of a normal flow failing. They
should be labeled so that there is no doubt as to which normal flow of events it is related.
For example in Figure 4-11, alternative/exceptional flow S-1, 2a1 executes when step 2 of
subflow S-1 fails (i.e., the requested appointment time was not available). Like the normal
flows and subflows, alternative or exceptional flows should be written in the SVDPI form
whenever possible.

The sixth step is to carefully review the use case description and confirm that the use case
is correct as written, which means reviewing the use case with the users to make sure each
step is correct.25 The review should look for opportunities to simplify a use case by decom-
posing it into a set of smaller use cases, merging it with others, looking for common aspects
in both the semantics and syntax of the use cases, and identifying new use cases. This is also
the time to look into adding the include, extend, and/or generalization relationships
between use cases. The most powerful way to confirm a use case is to ask the user to role-
play, or execute the process using the written steps in the use case. The analyst hands the
user pieces of paper labeled with the major inputs to the use case and has the user follow
the written steps like a recipe to make sure that those steps really can produce the outputs
defined for the use case using its inputs.

The seventh and final step is to iterate the entire set of steps again. Users often change their
minds about what is a use case and what it includes. It is very easy to get trapped in the
details at this point, so remember that the goal is to just address the major use cases. There-
fore, the analyst should continue to iterate these steps until he or she and the users believe
that a sufficient number of use cases has been documented to begin identifying candidate
classes for the structural model (see Chapter 5). As candidate classes are identified, it is
likely that additional use cases will be uncovered.

Example The first step to document business processes with use-case descriptions is
to choose a use case. Because we previously chose the Borrow Books use case in the
Library Collection Management System example, we will stay with it. Next, we need to
create the overview description. In this case, we have to go back and look at the use case
diagram (see Figure 4-5) that describes the external behavior of the Library Collection
Management System and the activity diagram (see Figure 4-10) that describes the
functionality of the Borrow Books use case. It also is a good idea to refer back, once
again, to the functional requirements that drove the creation of the Borrow Books use
case. Here they are:

The borrowing activities are built around checking books out and returning books
by borrowers. There are three types of borrowers: students, faculty or staff, and
guests. Regardless of the type of borrower, the borrower must have a valid ID card.

182 Chapter 4 Business Process and Functional Modeling

25 This process is related to role-playing, which is discussed in Chapter 5.

5. Identify Alternative
or Exceptional Flows

6. Review the Use-Case
Description

7. Repeat Uitil Done

c04BusinessProcessAndFunctionalModeling.qxd 11/7/11 1:32 PM Page 182

If the borrower is a student, having the system check with the registrar’s student
database validates the ID card. If the borrower is a faculty or staff member, having
the system check with the personnel office’s employee database validates the ID card.
If the borrower is a guest, the ID card is checked against the library’s own borrower
database. If the ID card is valid, the system must also check to determine whether the
borrower has any overdue books or unpaid fines. If the ID card is invalid, the bor-
rower has overdue books, or the borrower has unpaid fines, the system must reject
the borrower’s request to check out a book, otherwise the borrower’s request should
be honored.

Based on these three critical pieces of information and using the use-case description tem-
plate (see Figure 4-11), we can create the overview description of the Borrow Books use
case (see Figure 4-13).

By carefully reviewing the functional requirements (above) and the activity diagram
(Figure 4-10), we can easily identify the Normal Flow of Events for the Borrow Books use
case. Furthermore, it is possible to decide whether any of the events contained in the Normal
Flow of Events list should be decomposed using Subflows or other use cases that would need
to be included. In the latter case, we would have to modify the Relationships section of the
overview description and modify the use-case diagram to reflect this addition. Also, based
on the logic structure of the activity diagram, it is possible to identify the alternative/-
exceptional flows to the normal flow of events for the Borrow Books use case. Based on the
overall simplicity of the Borrow Books use case, we decided not to decompose the process
using either subflows or included use cases. However, due to the logic structure laid out in
the activity diagram, there were two alternate/exceptional flows identified. Figure 4-14
depicts the Normal Flow of Events, Subflows, and Alternative/Exceptional Flows sections of
the Borrow Books use-case description.

Business Process Documentation with Use Cases and Use-Case Descriptions 183

Association: Borrower, Personnel Office, Registrar’s Office
Include:

Extend:
Generalization:

Use Case Name:

Primary Actor:

Stakeholders and Interests:

Brief Description:

Trigger:

Type: External

Use Case Type:

Relationships:

Borrow Books ID: 2 Importance Level: High

Borrower

Borrower brings books to check out desk.

Detail, Essential

This use case describes how books are checked out of the library.

Borrower - wants to check outbooks
Librarian - wants to ensure borrower only gets books deserved

FIGURE 4-13 Overview Description for the Borrow Books Use Case

c04BusinessProcessAndFunctionalModeling.qxd 11/7/11 1:32 PM Page 183

VERIFYING AND VALIDATING THE BUSINESS PROCESSES
AND FUNCTIONAL MODELS26

Before we move on to structural (Chapter 5) and behavioral (Chapter 6) modeling, we
need to verify and validate the current set of functional models to ensure that they faith-
fully represent the business processes under consideration. This includes testing the fidelity
of each model; for example, we must be sure that the activity diagram(s), use-case descrip-
tions, and use-case diagrams all describe the same functional requirements. Before we
describe the specific tests to consider, we describe walkthroughs, a manual approach that
supports verifying and validating the evolving models.27

Verification and Validation through Walkthroughs
A walkthrough is essentially a peer review of a product. In the case of the functional
models, a walkthrough is a review of the different models and diagrams created during
functional modeling. This review typically is completed by a team whos members come
from the development team and the client. The purpose of a walkthrough is to thor-
oughly test the fidelity of the functional models to the functional requirements and to
ensure that the models are consistent. That is, a walkthrough uncovers errors or faults in
the evolving specification. However, a walkthrough does not correct errors—it simply
identifies them. Error correction is to be accomplished by the team after the walk-
through is completed.

Walkthroughs are very interactive. As the presenter walks through the representation,
members of the walkthrough team should ask questions regarding the representation. For

184 Chapter 4 Business Process and Functional Modeling

26 The material in this section has been adapted from E. Yourdon, Modern Structured Analysis (Englewood Cliffs,
NJ: Prentice Hall, 1989). Verifying and validating are types of testing.
27 Even though many modern CASE tools can automate much of the verifying and validating of the analysis models,
we feel that it is paramount that systems analysts understand the principles of verification and validation.
Furthermore, some tools, such as Visio, that support UML diagramming are only diagramming tools. Regardless,
the analyst is expected to perform all diagramming correctly.

FIGURE 4-14 Flow Descriptions for the Borrow Books Use Case

Normal Flow of Events:

SubFlows:

1. The Borrower brings books to the Librarian at the check out desk.
2. The Borrower provides Librarian their ID card.
3. The Librarian checks the validity of the ID Card.
 If the Borrower is a Student Borrower, Validate ID Card against Registrar's Database.
 If the Borrower is a Faculty/Staff Borrower, Validate ID Card against Personnel Database.
 If the Borrower is a Guest Borrower, Validate ID Card against Library's Guest Database.
4. The Librarian checks whether the Borrower has any overdue books and or fines
5. The Borrower checks out the books

Alternate/Exceptional Flows:
4a The ID Card is invalid, the book request is rejected.
5a The Borrower either has overdue books, fines, or both, the book request is rejected.

c04BusinessProcessAndFunctionalModeling.qxd 11/7/11 1:32 PM Page 184

example, if the presenter is walking through an activity diagram, another member of the
team could ask why certain activities or objects were not included. The actual process of
simply presenting the representation to a new set of eyes can uncover obvious misunder-
standings and omissions. In many cases, the representation creator can get lost in the
proverbial trees and not see the forest.28 In fact, many times the act of walking through the
representation causes a presenter to see the error himself or herself. For psychological rea-
sons, hearing the representation helps the analyst to see the representation more com-
pletely.29 Therefore, the representation creators should regularly do a walkthrough of the
models themselves by reading the representations out loud to themselves, regardless of how
they think it might make them look.

There are specified roles that different members of the walkthrough team can play. The
first is the presenter role. This should be played by the person who is primarily responsible
for the specific representation being reviewed. This individual presents the representation
to the walkthrough team. The second role is recorder, or scribe. The recorder should be a
member of the analysis team. This individual carefully takes the minutes of the meeting by
recording all significant events that occur during the walkthrough. In particular, all errors
that are uncovered must be documented so that the analysis team can address them.
Another important role is to have someone who raises issues regarding maintenance of the
representation. Yourdon refers to this individual as a maintenance oracle.30 Owing to the
emphasis on reusability in object-oriented development, this role becomes particularly
crucial. Finally, someone must be responsible for calling, setting up, and running the walk-
through meetings.

For a walkthrough to be successful, the members of the walkthrough team must be
fully prepared. All materials to be reviewed must be distributed with sufficient time for the
team members to review them before the actual meeting. All team members should be
expected to mark up the representations so that during the walkthrough meeting, all rele-
vant issues can be discussed. Otherwise, the walkthrough will be inefficient and ineffective.
During the actual meeting, as the presenter is walking through the representation, the team
members should point out any potential errors or misunderstandings. In many cases, the
errors and misunderstandings are caused by invalid assumptions that would not be uncov-
ered without the walkthrough.

One potential danger of walkthroughs is when management decides the results of
uncovering errors in the representation are a reflection of an analyst’s capability. This
must be avoided at all costs. Otherwise, the underlying purpose of the walkthrough—
to improve the fidelity of the representation—will be thwarted. Depending on the orga-
nization, it may be necessary to omit management from the walkthrough process. If
not, the walkthrough process could break down into a slugfest to make some team
members to look good by destroying the presenter. To say the least, this is obviously
counterproductive.

Functional Model Verification and Validation
In this book, we have suggested three different representations for the functional
model: activity diagrams, use-case descriptions, and use-case diagrams In this section,

Verifying and Validating the Business Processes and Functional Models 185

28 In fact, all joking aside, in many cases the developer is down at the knothole level and can’t even see the tree, let
alone the forest.
29 This has to do with using different senses. Because our haptic senses are the most sensitive, touching the repre-
sentation would be best. However, it is not clear how one can touch a use case or a class.
30 See Appendix D of Yourdon, Modern Structured Analysis.

c04BusinessProcessAndFunctionalModeling.qxd 11/7/11 1:32 PM Page 185

we describe a set of rules to ensure that these three representations are consistent among
themselves.

First, when comparing an activity diagram to a use-case description, there should be at
least one event recorded in the normal flow of events, subflows, or alternative/exceptional
flows of the use-case description for each activity or action that is included on an activity
diagram, and each event should be associated with an activity or action. For example, in
Figure 4-4, there is an activity labeled Get Patient Information that is associated with the
first two events contained in the normal flow of events of the use-case description shown in
Figure 4-11.

Second, all objects portrayed as an object node in an activity diagram must be men-
tioned in an event in the normal flow of events, subflows, or alternative/exceptional flows
of the use-case description. For example, the activity diagram in Figure 4-4 portrays an
Appt object, and the use-case description refers to a new appointment and changing or
canceling an existing appointment.

Third, sequential order of the events in a use-case description should occur in the
same sequential order of the activities contained in an activity diagram. For example in
Figures 4-4 and 4-11, the events associated with the Get Patient Information activity
(events 1 and 2) should occur before the events associated with the Make Payment
Arrangements activity (event 4).

Fourth, when comparing a use-case description to a use-case diagram, there must be
one and only one use-case description for each use case, and vice versa. For example,
Figure 4-11 portrays the use-case description of the Make Old Patient Appt use case. How-
ever, the use-case diagram shown in Figures 4-4, the activity diagram shown in Figure 4-7,
and the use-case description given in Figure 4-11 are inconsistent with each other. In this
case, the use case diagram implies that the Make Payment Arrangements use case is
optional regardless of whether the patient is a new or old patient. However, when we review
the activity diagram, we see that it is an optional activity for old patients, but a required
activity for a new patient. Therefore, only one of the diagrams is correct. In this instance,
the use-case diagram needs to be corrected. The new corrected use-case diagram is shown
in Figure 4-15.

Fifth, all actors listed in a use-case description must be portrayed on the use-case dia-
gram. Each actor must have an association link that connects it to the use case and must
be listed with the association relationships in the use-case description. For example, the
Old Patient actor is listed in the use-case description of the Make Old Patient Appt use
case (see Figure 4-11), it is listed with the association relationships in the Make Old
Patient Appt use-case description, and it is connected to the use case in the use-case
diagram (see Figure 4-15).

Sixth, in some organizations, we should also include the stakeholders listed in the
use-case description as actors in the use-case diagram. For example, there could have
been an association between the Doctor actor and the Make Old Patient Appt use case
(see Figures 4-11 and 4-15). However, in this case it was decided not to include this
association because the Doctor never participates in the Make Old Patient Appt
use case.31

Seventh, all other relationships listed in a use-case description (include, extend, and
generalization) must be portrayed on a use-case diagram. For example, in Figure 4-11,

186 Chapter 4 Business Process and Functional Modeling

31 Another possibility could have been to include a Receptionist actor. However, we had previously decided that
the Receptionist was in fact part of the Appointment System and not simply a user of the system. If UML sup-
ported the idea of internal actors, or actor-to-actor associations, this implicit association could easily be made
explicit by having the Patient actor communicate with the Receptionist actor directly, regardless of whether the
Receptionist actor was part of the system or not. See footnote 4.

c04BusinessProcessAndFunctionalModeling.qxd 11/7/11 1:32 PM Page 186

there is an extend relationship listed with the Update Patient Information use case,
and in Figure 4-15, we see that it appears on the diagram between the two use
cases.

Finally, there are many diagram-specific requirements that must be enforced. For
example, in an activity diagram a decision node can be connected to activity or action
nodes only with a control flow, and for every decision node there should be a matching
merge node. Every type of node and flow has different restrictions. However, the complete
restrictions for all the UML diagrams are beyond the scope of this text.32 The concept map
in Figure 4-16 portrays the associations among the functional models.

Verifying and Validating the Business Processes and Functional Models 187

Appointment System

Patient

New Patient

Old Patient

Produce Schedules

Update Patient
Information

Make Old
Patient Appt

Make New
Patient Appt

Make Payment
Arrangements

Create New
Patient

Manage
Appointments

Management

Doctor

Record
Availability Manage

Schedule

<<ex
ten

d>
>

<<
ex

te
nd

>>

<<
in

cl
ud

e>
>

<<include>>

<<include>>

*

*

*

*

**

**

<<include>>

32 A good reference for these types of restrictions is S.W. Ambler, The Elements of UML 2.0 Style (Cambridge, UK:
Cambridge University Press, 2005).

FIGURE 4-15 Modified Use-Case Diagram for the Appointment System

c04BusinessProcessAndFunctionalModeling.qxd 11/7/11 1:32 PM Page 187

APPLYING THE CONCEPTS AT CD SELECTIONS
In this chapter, we introduced how business processes are identified, modeled, and docu-
mented using the functional models of the UML. Specifically, we described how the func-
tional requirements of business processes are identified by use cases and use-case diagrams.
We described how activity diagrams model business processes and we described how use-
case descriptions are used to more fully document the business processes. Finally, we
described how to verify and validate the evolving representations of the business processes
contained in the functional models. In this installment of the CD Selections case, we see how
Alec and Margaret work through all of these topics with regard to the Web-based solution
that they hope to create.

118888 CChhaapptteerr 44 Business Process and Functional Modeling

Use Cases

Scenarios

Activity Diagram

Object Nodes

Object Flows

Activities/Actions

Stakeholders

Relationships

Control Flows

Events

Actors

Flows

Including

Contains

HasKinds

Contains

Contains

Have

AssociatedWith
AssociatedWith

AssociatedWith

AssociatedWith

AssociatedWith
AssociatedWith

AssociatedWith

Use-Case Diagram

Functional Models

Use Case Descriptions

FFIIGGUURREE 44--1166 Interrelationships among Functional Models

c04BusinessProcessAndFunctionalModeling.qxd 12/2/11 11:24 AM Page 188

Summary 118899

SUMMARY
Business Process Identification with Use Cases
and Use-Case Diagrams
Use-case diagrams are simply a graphical overview of the set of use cases contained in the
system. They illustrate the main functionality of a system and the actors that interact
with the system. The diagram includes actors, which are people or things that derive
value from the system, and use cases that represent the functionality of the system. The
actors and use cases are separated by a system boundary and connected by lines repre-
senting associations. At times, actors are specialized versions of more general actors. Sim-
ilarly, use cases can extend or include other use cases. Creating use-case diagrams is a
four-step process whereby the analyst draws the use cases, places the actors near the asso-
ciated use cases, adds the system boundary, and finally draws the associations to connect
use cases and actors.

Business Process Modeling with Activity Diagrams
Even from an object-oriented systems development point of view, business process mod-
eling has been shown to be valuable. The one major hazard of business process model-
ing is that it focuses the systems development process in a functional decomposition
direction. However, if used carefully, it can enhance the development of object-oriented
systems. UML supports process modeling using an activity diagram. Activity diagrams
comprise activities or actions, objects, control flows, object flows, and a set of seven dif-
ferent control nodes (initial, final-activity, final-flow, decision, merge, fork, and join).
Swimlanes can be used to enhance the readability of the diagrams. An activity diagram is
very useful for helping the analyst to identify the relevant use cases for the information system
being developed.

Business Process Documentation with Use Cases
and Use-Case Descriptions
Use cases are the primary method of documenting requirements for object-oriented sys-
tems. They represent a functional view of the system being developed. There are overview
and detail use cases. Overview use cases comprise the use-case name, ID number, primary
actor, type, a brief description, and the relationships in which the use case participates
(association, extend, generalization, and include). Detailed use cases extend the overview
use case with the identification and description of the stakeholders and their interest, the
trigger and its type, the normal flow of events, the subflows, and any alternative or excep-
tion flows to the normal flow of events. There are seven guidelines and seven steps for writ-
ing effective use case descriptions.

Verifying and Validating the Business Processes
and Functional Models
Before actually adding system environment details to the analysis models, the various rep-
resentations need to be verified and validated. One very useful approach to test the fidelity
of the representations is to perform a walkthrough in which developers walk through the
representations by presenting the different models to members of the development team
and representatives of the client. The walkthrough must validate each model to be sure that
the different representations within the model all agree with one another; for example, the

c04BusinessProcessAndFunctionalModeling.qxd 12/2/11 11:24 AM Page 189

119900 CChhaapptteerr 44 Business Process and Functional Modeling

QQUUEESSTTIIOONNSS

1. Why is business process modeling important?
2. How do you create use cases?
3. Why do we strive to have about three to nine major

use cases in a business process?
4. How do you create use-case diagrams?
5. How is use-case diagramming related to functional

modeling?
6. Explain the following terms. Use layperson’s language,

as though you were describing them to a user: actor;
use case; system boundary; relationship.

7. Every association must be connected to at least one
_______ and one _________. Why?

8. What are some heuristics for creating a use-case
diagram?

9. Why is iteration important in creating use cases?
10. What is the purpose of an activity diagram?
11. What is the difference between an activity and an action?
12. What is the purpose of a fork node?
13. What are the different types of control nodes?
14. What is the difference between a control flow and an

object flow?
15. What is an object node?
16. How does a detail use case differ from an overview use

case?

activity diagrams, use-case descriptions, and use-case diagrams must be consistent with
one another. Care must be taken during the walkthroughs to ensure that the presenter is
not simply degraded and destroyed.

KKEEYY TTEERRMMSS

Action, 165
Activity, 165
Activity diagram, 154
Actor, 155
Alternative flows, 178
Association relationship, 177
Black-hole activities, 171
Brief description, 175
Control flow, 165
Control node, 166
Decision node, 168
Detail use case, 175
Errors, 184
Essential use case, 175
Exceptional flows, 178
Extend relationship, 177
External trigger, 177
Faults, 184
Final-activity node, 166
Final-flow node, 167
Flow of events, 178
Fork node, 169
Functional decomposition, 177

Generalization relationship, 177
Guard condition, 168
Importance level, 176
Include relationship, 177
Inheritance, 177
Initial node, 166
Iterate, 182
Join node, 170
Logical model, 154
Maintenance oracle, 185
Merge node, 168
Miracle activity, 171
Normal flow of events, 178
Object flow, 165
Object node, 165
Overview use cases, 175
Packages, 161
Physical model, 154
Presenter, 185
Primary actor, 175
Process models, 154
Real use case, 175
Recorder, 185

Relationships, 177
Role, 174
Scenario, 174
Scribe, 185
Specialized actor, 156
Stakeholders, 177
Subflows, 178
Subject boundary, 159
SVDPI, 179
Swim lanes, 170
Temporal trigger, 177
Test, 184
Trigger, 177
Use case, 154
Use-case description, 155
Use-case diagram, 154
Use-case ID number, 175
Use-case name, 175
Use-case type, 175
Validation, 184
Verification, 184
Walkthrough, 184

c04BusinessProcessAndFunctionalModeling.qxd 12/2/11 11:24 AM Page 190

Exercises 119911

EEXXEERRCCIISSEESS

A. Investigate the website for Rational Software (www.ibm.
com/software/rational/) and its repository of infor-
mation about UML. Write a paragraph news brief on
the current state of UML (e.g., the current version
and when it will be released, future improvements).

B. Investigate the Object Management Group. Write a
brief memo describing what it is, its purpose, and its
influence on UML and the object approach to
systems development. (Hint: A good resource is
www.omg.org.)

C. Draw a use-case diagram and a set of activity dia-
grams for the process of buying glasses from the
viewpoint of the patient. The first step is to see an eye
doctor who will give you a prescription. Once you
have a prescription, you go to an optical dispensary,
where you select your frames and place the order for
your glasses. Once the glasses have been made, you
return to the store for a fitting and pay for the glasses.

D. Create a set of detailed use-case descriptions for the
process of buying glasses in exercise C.

E. Draw a use-case diagram and a set of activity dia-
grams for the following doctor’s office system. When-
ever new patients are seen for the first time, they
complete a patient information form that asks their
name, address, phone number, and brief medical his-
tory, which are stored in the patient information file.
When a patient calls to schedule a new appointment
or change an existing appointment, the receptionist
checks the appointment file for an available time.
Once a good time is found for the patient, the
appointment is scheduled. If the patient is a new
patient, an incomplete entry is made in the patient’s
file; the full information will be collected when the

patient arrives for the appointment. Because appoint-
ments are often made far in advance, the receptionist
usually mails a reminder postcard to each patient two
weeks before the appointment.

F. Create a set of detail use-case descriptions for the den-
tist’s office system in exercise E.

G. Draw a use-case diagram and a set of activity dia-
grams for an online university registration system.
The system should enable the staff of each academic
department to examine the courses offered by their
department, add and remove courses, and change the
information about them (e.g., the maximum number
of students permitted). It should permit students to
examine currently available courses, add and drop
courses to and from their schedules, and examine the
courses for which they are enrolled. Department staff
should be able to print a variety of reports about the
courses and the students enrolled in them. The sys-
tem should ensure that no student takes too many
courses and that students who have any unpaid fees
are not permitted to register (assume that fees data
are maintained by the university’s financial office,
which the registration system accesses but does not
change).

H. Create a set of detailed use-case descriptions for the
online university registration system in exercise G.

I. Draw a use-case diagram and a set of activity dia-
grams for the following system. A Real Estate Inc.
(AREI) sells houses. People who want to sell their
houses sign a contract with AREI and provide infor-
mation on their house. This information is kept in a
database by AREI, and a subset of this information is
sent to the citywide multiple-listing service used by all

17. How does an essential use case differ from a real use case?
18. What are the major elements of an overview use case?
19. What are the major elements of a detail use case?
20. What is the viewpoint of a use case, and why is it

important?
21. What are some guidelines for designing a set of use

cases? Give two examples of the extend associations on
a use-case diagram. Give two examples for the include
associations.

22. Which of the following could be an actor found on a
use case diagram? Why?

Ms. Mary Smith
Supplier

Customer
Internet customer
Mr. John Seals
Data entry clerk
Database administrator

23. What is CRUD? Why is it useful?
24. What is a walkthrough? How does it relate to verifica-

tion and validation?
25. What are the different roles played during a walk-

through? What are their purposes?
26. How are the different functional models related and

how does this affect the verification and validation of
the models?

c04BusinessProcessAndFunctionalModeling.qxd 12/2/11 11:24 AM Page 191

119922 CChhaapptteerr 44 Business Process and Functional Modeling

real estate agents. AREI works with two types of
potential buyers. Some buyers have an interest in one
specific house. In this case, AREI prints information
from its database, which the real estate agent uses to
help show the house to the buyer (a process beyond
the scope of the system to be modeled). Other buyers
seek AREI’s advice in finding a house that meets their
needs. In this case, the buyer completes a buyer infor-
mation form that is entered into a buyer database, and
AREI real estate agents use its information to search
AREI’s database and the multiple-listing service for
houses that meet their needs. The results of these
searches are printed and used to help the real estate
agent show houses to the buyer.

J. Create a set of detailed use-case descriptions for the
real estate system in exercise I.

K. Perform a verification and validation walkthrough of
the functional models of the real estate system
described in exercises I and J.

L. Draw a use-case diagram and a set of activity diagrams
for the following system. A Video Store (AVS) runs a
series of fairly standard video stores. Before a video
can be put on the shelf, it must be cataloged and
entered into the video database. Every customer must
have a valid AVS customer card in order to rent a
video. Customers rent videos for three days at a time.
Every time a customer rents a video, the system must
ensure that he or she does not have any overdue
videos. If so, the overdue videos must be returned and
an overdue fee paid before customer can rent more
videos. Likewise, if the customer has returned overdue
videos but has not paid the overdue fee, the fee must
be paid before new videos can be rented. Every morn-
ing, the store manager prints a report that lists overdue
videos. If a video is two or more days overdue, the
manager calls the customer to remind him or her to
return the video. If a video is returned in damaged
condition, the manager removes it from the video
database and may sometimes charge the customer.

M. Create a set of detailed use-case descriptions for the
video system in exercise L.

N. Perform a verification and validation walkthrough of
the functional models of the video store system
described in exercises L and M.

O. Draw a use-case diagram and a set of activity dia-
grams for a gym membership system. When mem-
bers join the gym, they pay a fee for a certain length
of time. Most memberships are for one year, but
memberships as short as two months are available.
Throughout the year, the gym offers a variety of dis-

counts on their regular membership prices (e.g., two
memberships for the price of one for Valentine’s
day). It is common for members to pay different
amounts for the same length of membership. The
gym wants to mail out reminder letters to members
asking them to renew their memberships one month
before their memberships expire. Some members
have become angry when asked to renew at a much
higher rate than their original membership contract,
so the club wants to track the prices paid so that the
manager can override the regular prices with special
prices when members are asked to renew. The system
must track these new prices so that renewals can be
processed accurately. One of the problems in the
industry is the high turnover rate of members.
Although some members remain active for many
years, about half of the members do not renew their
memberships. This is a major problem, because the
gym spends a lot in advertising to attract each new
member. The manager wants the system to track each
time a member comes into the gym. The system will
then identify the heavy users and generate a report so
the manager can ask them to renew their member-
ships early, perhaps offering them a reduced rate for
early renewal. Likewise, the system should identify
members who have not visited the gym in more than
a month, so the manager can call them and attempt to
reinterest them in the gym.

P. Create a set of detailed use-case descriptions for the
system in exercise O.

Q. Perform a verification and validation walkthrough of
the functional models of the gym membership system
described in exercises O and P.

R. Draw a use-case diagram and a set of activity diagrams
for the following system. Picnics R Us (PRU) is a small
catering firm with five employees. During a typical
summer weekend, PRU caters fifteen picnics with
twenty to fifty people each. The business has grown
rapidly over the past year and the owner wants to
install a new computer system for managing the
ordering and buying process. PRU has a set of ten
standard menus. When potential customers call, the
receptionist describes the menus to them. If the cus-
tomer decides to book a picnic, the receptionist
records the customer information (e.g., name, address,
phone number) and the information about the picnic
(e.g., place, date, time, which one of the standard
menus, total price) on a contract. The customer is then
faxed a copy of the contract and must sign and return
it along with a deposit (often a credit card or by debit

c04BusinessProcessAndFunctionalModeling.qxd 12/2/11 11:24 AM Page 192

card) before the picnic is officially booked. The
remaining money is collected when the picnic is deliv-
ered. Sometimes, the customer wants something spe-
cial (e.g., birthday cake). In this case, the receptionist
takes the information and gives it to the owner, who
determines the cost; the receptionist then calls the cus-
tomer back with the price information. Sometimes the
customer accepts the price, other times, the customer
requests some changes that have to go back to the
owner for a new cost estimate. Each week, the owner
looks through the picnics scheduled for that weekend
and orders the supplies (e.g., plates) and food (e.g.,
bread, chicken) needed to make them. The owner
would like to use the system for marketing as well. It
should be able to track how customers learned about
PRU and identify repeat customers, so that PRU can
mail special offers to them. The owner also wants to
track the picnics for which PRU sent a contract, but
the customer never signed the contract and actually
booked a picnic.

S. Create a set of detailed use-case descriptions for the
system in exercise R.

T. Perform a verification and validation walkthrough of
the functional models of the catering system described
in exercises R and S.

U. Draw a use-case diagram and a set of activity diagrams
for the following system. Of-the-Month Club (OTMC)
is an innovative young firm that sells memberships to

people who have an interest in certain products. People
pay membership fees for one year and each month
receive a product by mail. For example, OTMC has a
coffee-of-the-month club that sends members one
pound of special coffee each month. OTMC currently
has six memberships (coffee, wine, beer, cigars, flowers,
and computer games), each of which costs a different
amount. Customers usually belong to just one, but some
belong to two or more. When people join OTMC, the
telephone operator records the name, mailing address,
phone number, e-mail address, credit-card information,
start date, and membership service(s) (e.g., coffee).
Some customers request a double or triple membership
(e.g., two pounds of coffee, three cases of beer). The
computer game membership operates a bit differently
from the others. In this case, the member must also
select the type of game (action, arcade, fantasy/science
fiction, educational, etc.) and age level. OTMC is plan-
ning to greatly expand the number of memberships it
offers (e.g., video games, movies, toys, cheese, fruit, and
vegetables), so the system needs to accommodate this
future expansion. OTMC is also planning to offer three-
month and six-month memberships.

V. Create a set of detailed use-case descriptions for the
system in exercise U.

W. Perform a verification and validation walkthrough of
the functional models of the Of-the-Month Club sys-
tem described in exercises U and V.

Minicases 119933

MMIINNIICCAASSEESS

1. Williams Specialty Company is a small printing and
engraving organization. When Pat Williams, the
owner, brought computers into the business office five
years ago, the business was very small and very simple.
Pat was able to use an inexpensive PC-based account-
ing system to handle the basic information-processing
needs of the firm. As time has gone on, however, the
business has grown and the work being performed has
become significantly more complex. The simple
accounting software still in use is no longer adequate
to keep track of many of the company’s sophisticated
deals and arrangements with its customers.

Pat has a staff of four people in the business office
who are familiar with the intricacies of the company’s
record-keeping requirements. Pat recently met with
her staff to discuss her plan to hire an IS consulting
firm to evaluate their information system needs and
recommend a strategy for upgrading their computer

system. The staff is excited about the prospect of a new
system, because the current system causes them much
annoyance. No one on the staff has ever done anything
like this before, however, and they are a little wary of
the consultants who will be conducting the project.

Assume that you are a systems analyst on the con-
sulting team assigned to the Williams Specialty Co.
engagement. At your first meeting with the Williams
staff, you want to be sure that they understand the
work that your team will be performing and how they
will participate in that work.
a. Explain, in clear, nontechnical terms, the goals of

the analysis of the project.
b. Explain, in clear, nontechnical terms, how func-

tional models will be used by the project team to
model the identified business processes. Explain
what these models are, what they represent in the
system, and how they will be used by the team.

c04BusinessProcessAndFunctionalModeling.qxd 12/2/11 11:24 AM Page 193

119944 CChhaapptteerr 44 Business Process and Functional Modeling

2. Professional and Scientific Staff Management (PSSM)
is a unique type of temporary staffing agency. Many
organizations today hire highly skilled technical
employees on a short-term, temporary basis to assist
with special projects or to provide a needed technical
skill. PSSM negotiates contracts with its client compa-
nies in which it agrees to provide temporary staff in
specific job categories for a specified cost. For exam-
ple, PSSM has a contract with an oil and gas explo-
ration company in which it agrees to supply geologists
with at least a master’s degree for $5,000 per week.
PSSM has contracts with a wide range of companies
and can place almost any type of professional or sci-
entific staff members, from computer programmers to
geologists to astrophysicists.

When a PSSM client company determines that it
will need a temporary professional or scientific
employee, it issues a staffing request against the con-
tract it had previously negotiated with PSSM. When
PSSM’s contract manager receives a staffing request,
the contract number referenced on the staffing request
is entered into the contract database. Using informa-
tion from the database, the contract manager reviews
the terms and conditions of the contract and deter-
mines whether the staffing request is valid. The
staffing request is valid if the contract has not expired,
the type of professional or scientific employee
requested is listed on the original contract, and the
requested fee falls within the negotiated fee range. If
the staffing request is not valid, the contract manager
sends the staffing request back to the client with a let-
ter stating why the staffing request cannot be filled,
and a copy of the letter is filed. If the staffing request is
valid, the contract manager enters the staffing request
into the staffing request database as an outstanding

staffing request. The staffing request is then sent to the
PSSM placement department.

In the placement department, the type of staff
member, experience, and qualifications requested on
the staffing request are checked against the database of
available professional and scientific staff. If a qualified
individual is found, he or she is marked “reserved” in
the staff database. If a qualified individual cannot be
found in the database or is not immediately available,
the placement department creates a memo that
explains the inability to meet the staffing request and
attaches it to the staffing request. All staffing requests
are then sent to the arrangements department.

In the arrangements department the prospective
temporary employee is contacted and asked to agree to
the placement. After the placement details have been
worked out and agreed to, the staff member is marked
“placed” in the staff database. A copy of the staffing
request and a bill for the placement fee is sent to the
client. Finally, the staffing request, the “unable-to-fill”
memo (if any), and a copy of the placement fee bill is
sent to the contract manager. If the staffing request
was filled, the contract manager closes the open
staffing request in the staffing request database. If the
staffing request could not be filled, the client is noti-
fied. The staffing request, placement fee bill, and
unable-to-fill memo are then filed in the contract
office.
a. Create a use-case diagram for the system described

here.
b. Create an activity diagram for the business process

described here.
c. Develop a use-case description for each major use

case.
d. Verify and validate the functional models.

c04BusinessProcessAndFunctionalModeling.qxd 12/2/11 11:24 AM Page 194

A structural, or conceptual, model describes the structure of the objects that supports the
business processes in an organization. During analysis, the structural model presents the
logical organization of the objects without indicating how they are stored, created, or
manipulated so that analysts can focus on the business, without being distracted by tech-
nical details. Later during design, the structural model is updated to reflect exactly how
the objects will be stored in databases and files. This chapter describes class–responsibility–
collaboration (CRC) cards, class diagrams, and object diagrams, which are used to create the
structural model.

OBJECTIVES

! Understand the rules and style guidelines for creating CRC cards, class diagrams, and
object diagrams.

! Understand the processes used to create CRC cards, class diagrams, and object diagrams.
! Be able to create CRC cards, class diagrams, and object diagrams.
! Understand the relationship among the structural models.
! Understand the relationship between the structural and functional models.

CHAPTER OUTLINE

C H A P T E R 5

STRUCTURAL MODELING

Introduction
Structural Models

Classes, Attributes, and Operations
Relationships

Object Identification
Textual Analysis
Brainstorming
Common Object Lists
Patterns

CRC Cards
Responsibilities and Collaborations
Elements of a CRC Card
Role-Playing CRC Cards with Use Cases

Class Diagrams
Elements of a Class Diagram
Simplifying Class Diagrams
Object Diagrams

Creating Structural Models Using
CRC Cards and Class Diagrams

Example
Verifying and Validating the Structural

Model
Applying the Concepts at CD Selections
Summary

195

INTRODUCTION
During analysis, analysts create functional models to represent how the business system
will behave. At the same time, analysts need to understand the information that is used and
created by the business system (e.g., customer information, order information). In this

c05StructuralModeling.qxd 11/7/11 1:40 PM Page 195

chapter, we discuss how the objects underlying the behavior modeled in the use cases are
organized and presented.

A structural model is a formal way of representing the objects that are used and created
by a business system. It illustrates people, places, or things about which information is cap-
tured and how they are related to one another. The structural model is drawn using an iter-
ative process in which the model becomes more detailed and less conceptual over time. In
analysis, analysts draw a conceptual model, which shows the logical organization of the
objects without indicating how the objects are stored, created, or manipulated. Because this
model is free from any implementation or technical details, the analysts can focus more
easily on matching the model to the real business requirements of the system.

In design, analysts evolve the conceptual structural model into a design model that
reflects how the objects will be organized in databases and software. At this point, the
model is checked for redundancy and the analysts investigate ways to make the objects easy
to retrieve. The specifics of the design model are discussed in detail in the design chapters.

In this chapter, we focus on creating a conceptual structural model of the objects using
CRC cards and class diagrams. Using these techniques, it is possible to show all the objects
of a business system. We first describe structural models and their elements. Next, we
describe a set of useful approaches that have been used to identify potential objects. Then
we describe CRC cards, class diagrams, and object diagrams. Next, we describe how to create
structural models using CRC cards and class diagrams and how the structural model
relates to the functional models that we learned about in Chapter 4. Finally, we describe the
process to verify and validate the objects in the structural model.

STRUCTURAL MODELS
Every time a systems analyst encounters a new problem to solve, the analyst must learn the
underlying problem domain. The goal of the analyst is to discover the key data contained
in the problem domain and to build a structural model of the objects. Object-oriented
modeling allows the analyst to reduce the semantic gap between the underlying problem
domain and the evolving structural model. However, the real world and the world of soft-
ware are very different. The real world tends to be messy, whereas the world of software
must be neat and logical. Thus an exact mapping between the structural model and the
problem domain may not be possible. In fact, it might not even be desirable.

One of the primary purposes of the structural model is to create a vocabulary that can
be used by the analyst and the users. Structural models represent the things, ideas, or
concepts—that is, the objects—contained in the domain of the problem. They also allow
the representation of the relationships among the things, ideas, or concepts. By creating a
structural model of the problem domain, the analyst creates the vocabulary necessary for
the analyst and users to communicate effectively.

One important thing to remember is that at this stage of development, the structural
model does not represent software components or classes in an object-oriented program-
ming language, even though the structural model does contain analysis classes, attributes,
operations, and relationships among the analysis classes. The refinement of these initial
classes into programming-level objects comes later. Nonetheless, the structural model at
this point should represent the responsibilities of each class and the collaborations among
the classes. Typically, structural models are depicted using CRC cards, class diagrams, and,
in some cases, object diagrams. However, before describing CRC cards, class diagrams, and
object diagrams, we describe the basic elements of structural models: classes, attributes,
operations, and relationships.

119966 CChhaapptteerr 55 Structural Modeling

c05StructuralModeling.qxd 12/2/11 7:15 PM Page 196

Classes, Attributes, and Operations
A class is a general template that we use to create specific instances, or objects, in the prob-
lem domain. All objects of a given class are identical in structure and behavior but contain
different data in their attributes. There are two different general kinds of classes of interest
during analysis: concrete and abstract. Normally, when an analyst describes the application
domain classes, he or she is referring to concrete classes; that is, concrete classes are used to
create objects. Abstract classes do not actually exist in the real world; they are simply useful
abstractions. For example, from an employee class and a customer class, we may identify a
generalization of the two classes and name the abstract class person. We might not actually
instantiate the person class in the system itself, instead creating and using only employees
and customers.1

A second classification of classes is the type of real-world thing that a class represents.
There are domain classes, user-interface classes, data structure classes, file structure classes,
operating environment classes, document classes, and various types of multimedia classes. At
this point in the development of our evolving system, we are interested only in domain
classes. Later in design and implementation, the other types of classes become more relevant.

An attribute of an analysis class represents a piece of information that is relevant to the
description of the class within the application domain of the problem being investigated.
An attribute contains information the analyst or user feels the system should store. For
example, a possible relevant attribute of an employee class is employee name, whereas one
that might not be as relevant is hair color. Both describe something about an employee, but
hair color is probably not all that useful for most business applications. Only attributes that
are important to the task should be included in the class. Finally, only attributes that are
primitive or atomic types (i.e., integers, strings, doubles, date, time, Boolean, etc.) should
be added. Most complex or compound attributes are really placeholders for relationships
between classes. Therefore, they should be modeled as relationships, not as attributes (see
the next section).

The behavior of an analysis class is defined in an operation or service. In later phases,
the operations are converted to methods. However, because methods are more related to
implementation, at this point in the development we use the term operation to describe the
actions to which the instances of the class are capable of responding. Like attributes, only
problem domain–specific operations that are relevant to the problem being investigated
should be considered. For example, it is normally required that classes provide means of
creating instances, deleting instances, accessing individual attribute values, setting individ-
ual attribute values, accessing individual relationship values, and removing individual rela-
tionship values. However, at this point in the development of the evolving system, the
analyst should avoid cluttering up the definition of the class with these basic types of oper-
ations and focus only on relevant problem domain–specific operations.

Relationships
There are many different types of relationships that can be defined, but all can be classified
into three basic categories of data abstraction mechanisms: generalization relationships,
aggregation relationships, and association relationships. These data-abstraction mechanisms

Structural Models 197

1 Because abstract classes are essentially not necessary and are not instantiated, arguments have been made that it
would be better not to include any of them in the description of the evolving system at this stage of development
(see J. Evermann and Y. Wand, “Towards Ontologically Based Semantics for UML Constructs,” in H. S. Junii,
S. Jajodia, and A. Solvberg (eds.) ER 2001, Lecture Notes in Computer Science 2224 (Berlin: Springer-Verlag, 2001):
354–367. However, because abstract classes traditionally have been included at this stage of development, we also
include them.

c05StructuralModeling.qxd 11/7/11 1:40 PM Page 197

allow the analyst to focus on the important dimensions while ignoring nonessential dimen-
sions. Like attributes, the analyst must be careful to include only relevant relationships.

Generalization Relationships The generalization abstraction enables the analyst to cre-
ate classes that inherit attributes and operations of other classes. The analyst creates a
superclass that contains the basic attributes and operations that will be used in several sub-
classes. The subclasses inherit the attributes and operations of their superclass and can also
contain attributes and operations that are unique just to them. For example, a customer
class and an employee class can be generalized into a person class by extracting the attrib-
utes and operations they have in common and placing them into the new superclass,
person. In this way, the analyst can reduce the redundancy in the class definitions so that
the common elements are defined once and then reused in the subclasses. Generalization
is represented with the a-kind-of relationship, so that we say that an employee is a-kind-of
person.

The analyst also can use the flip side of generalization, specialization, to uncover addi-
tional classes by allowing new subclasses to be created from an existing class. For example,
an employee class can be specialized into a secretary class and an engineer class. Further-
more, generalization relationships between classes can be combined to form generalization
hierarchies. Based on the previous examples, a secretary class and an engineer class can be
subclasses of an employee class, which in turn could be a subclass of a person class. This
would be read as a secretary and an engineer are a-kind-of employee and a customer and
an employee are a-kind-of person.

The generalization data abstraction is a very powerful mechanism that encourages the
analyst to focus on the properties that make each class unique by allowing the similarities
to be factored into superclasses. However, to ensure that the semantics of the subclasses are
maintained, the analyst should apply the principle of substitutability. By this we mean that
the subclass should be capable of substituting for the superclass anywhere that uses the
superclass (e.g., anywhere we use the employee superclass, we could also logically use its
secretary subclass). By focusing on the a-kind-of interpretation of the generalization rela-
tionship, the principle of substitutability is applied.

Aggregation Relationships There have been many different types of aggregation or
composition relationships proposed in data modeling, knowledge representation, and lin-
guistics, for example, a-part-of (logically or physically), a-member-of (as in set member-
ship), contained-in, related-to, and associated-with. However, generally speaking, all
aggregation relationships relate parts to wholes or parts to assemblies. For our purposes, we
use the a-part-of or has-parts semantic relationship to represent the aggregation abstrac-
tion. For example, a door is a-part-of a car, an employee is a-part-of a department, or a
department is a-part-of an organization. Like the generalization relationship, aggregation
relationships can be combined into aggregation hierarchies. For example, a piston is
a-part-of an engine, and an engine is a-part-of a car.

Aggregation relationships are bidirectional. The flip side of aggregation is decomposi-
tion. The analyst can use decomposition to uncover parts of a class that should be modeled
separately. For example, if a door and an engine are a-part-of a car, then a car has-parts
door and engine. The analyst can bounce around between the various parts to uncover new
parts. For example, the analyst can ask, What other parts are there to a car? or To which
other assemblies can a door belong?

Association Relationships There are other types of relationships that do not fit neatly into
a generalization (a-kind-of) or aggregation (a-part-of) framework. Technically speaking,

119988 CChhaapptteerr 55 Structural Modeling

c05StructuralModeling.qxd 12/2/11 7:16 PM Page 198

these relationships are usually a weaker form of the aggregation relationship. For example, a
patient schedules an appointment. It could be argued that a patient is a-part-of an appoint-
ment. However, there is a clear semantic difference between this type of relationship and one
that models the relationship between doors and cars or even workers and unions. Thus they
are simply considered to be associations between instances of classes.

OBJECT IDENTIFICATION
Many different approaches have been suggested to aid the analyst in identifying a set of
candidate objects for the structural model. The four most common approaches are textual
analysis, brainstorming, common object lists, and patterns. Most analysts use a combina-
tion of the techniques to make sure that no important objects and object attributes, oper-
ations, and relationships have been overlooked.

Textual Analysis
Textual analysis is an analysis of the text in the use-case descriptions. The analyst starts by
reviewing the use-case descriptions and the use-case diagrams. The text in the descriptions
is examined to identify potential objects, attributes, operations, and relationships. The
nouns in the use case suggest possible classes, and the verbs suggest possible operations.
Figure 5-1 presents a summary of guidelines we have found useful. The textual analysis of
use-case descriptions has been criticized as being too simple, but because its primary pur-
pose is to create an initial rough-cut structural model, its simplicity is a major advantage.
For example, if we applied these rules to the Make Old Patient Appt use case described in
Chapter 4 and replicated in Figure 5-2, we can easily identify potential objects for an old
patient, doctor, appointment, patient, office, receptionist, name, address, patient informa-
tion, payment, date, and time. We also can easily identify potential operations that can be
associated with the identified objects. For example, patient contacts office, make a new
appointment, cancel an existing appointment, change an existing appointment, match
requested appointment times and dates with requested times and dates, and find current
appointment.

Object Identification 199

• A common or improper noun implies a class of objects.

• A proper noun or direct reference implies an instance of a class.

• A collective noun implies a class of objects made up of groups of instances of another class.

• An adjective implies an attribute of an object.

• A doing verb implies an operation.

• A being verb implies a classification relationship between an object and its class.

• A having verb implies an aggregation or association relationship.

• A transitive verb implies an operation.

• An intransitive verb implies an exception.

• A predicate or descriptive verb phrase implies an operation.

• An adverb implies an attribute of a relationship or an operation.

Source: These guidelines are based on Russell J. Abbott, “Program Design by Informal English Descriptions,”
Communications of the ACM 26, no. 11 (1983): 882–894; Peter P-S Chen, “English Sentence Structure and
Entity-Relationship Diagrams,” Information Sciences: An International Journal 29, no. 2–3 (1983): 127–149;
and Ian Graham, Migrating to Object Technology (Reading, MA: Addison Wesley Longman, 1995).

FIGURE 5-1
Textual Analysis
Guidelines

c05StructuralModeling.qxd 11/7/11 1:40 PM Page 199

200 Chapter 5 Structural Modeling

Use Case Name:

Primary Actor:

Stakeholders and Interests:

Brief Description:

ID: Importance Level:

Trigger:

Normal Flow of Events:

SubFlows:

Alternate/Exceptional Flows:

Type: External

Make Old Patient Appt 2 Low

Old Patient

Old Patient – wants to make, change, or cancel an appointment
Doctor – wants to ensure patient’s needs are met in a timely manner

Use Case Type: Detail, Essential

Patient calls and asks for a new appointment or asks to cancel or change an existing appointment.

Old Patient

Update Patient Information
Manage Appointments

1. The Patient contacts the office regarding an appointment.
2. The Patient provides the Receptionist with his or her name and address.
3. If the Patient’s information has changed
 Execute the Update Patient Information use case.
4. If the Patient’s payment arrangements has changed
 Execute the Make Payments Arrangements use case.
5. The Receptionist asks Patient if he or she would like to make a new appointment, cancel an existing appointment, or change
 an existing appointment.

S-1: New Appointment
1. The Receptionist asks the Patient for possible appointment times.
2. The Receptionist matches the Patient’s desired appointment times with available dates and
times and schedules the new appointment.

S-2: Cancel Appointment
1. The Receptionist asks the Patient for the old appointment time.
2. The Receptionist finds the current appointment in the appointment file and cancels it.

S-3: Change Appointment
1. The Receptionist performs the S-2: cancel appointment subflow.
2. The Receptionist performs the S-1: new appointment subflow.

S-1, 2a1: The Receptionist proposes some alternative appointment times based on what is available in the
 appointment schedule.

S-1, 2a2: The Patient chooses one of the proposed times or decides not to make an appointment.

6. The Receptionist provides the results of the transaction to the Patient.

This use case describes how we make an appointment as well as changing or canceling
an appointment for a previously seen patient.

Relationships:
Association:
Include:
Extend:
Generalization:

If the patient wants to make a new appointment,
 the S-1: new appointment subflow is performed.
If the patient wants to cancel an existing appointment,
 the S-2: cancel appointment subflow is performed.
If the patient wants to change an existing appointment,
 the S-3: change appointment subflow is performed.

FIGURE 5-2 Use Case Description (Figure 4-11)

TEMPLATE
can be found at
www.wiley.com
/college/dennis

c05StructuralModeling.qxd 11/7/11 1:40 PM Page 200

Brainstorming
Brainstorming is a discovery technique that has been used successfully in identifying can-
didate classes. Essentially, in this context, brainstorming is a process of a set of individuals
setting around a table and suggesting potential classes that could be useful for the problem
under consideration. Typically, a brainstorming session is kicked off by a facilitator who
asks the set of individuals to address a specific question or statement that frames the ses-
sion. For example, using the appointment problem described previously, the facilitator
could ask the development team and users to think about their experiences of making
appointments and to identify candidate classes based on their past experiences. Notice that
this approach does not use the functional models developed earlier. It simply asks the par-
ticipants to identify the objects with which they have interacted. For example, a potential
set of objects that come to mind are doctors, nurses, receptionists, appointment, illness,
treatment, prescriptions, insurance card, and medical records. Once a sufficient number of
candidate objects have been identified, the participants should discuss and select which of
the candidate objects should be considered further. Once these have been identified, fur-
ther brainstorming can take place to identify potential attributes, operations, and relation-
ships for each of the identified objects.

Bellin and Simone2 have suggested a set of useful principles to guide a brainstorming
session. First, all suggestions should be taken seriously because they could be good sugges-
tions. At this point in the development of the system, it is much better to have to delete
something later than to accidentally leave something critical out. Second, all participants
should think fast and furiously first. After everything is out on the proverbial table, then
the participants can be encouraged to ponder the candidate classes they have identified.
Third, based on the second principle, the facilitator must manage the process. Otherwise,
the process will be chaotic. Furthermore, the facilitator should ensure all participants are
involved and that a few participants do not dominate the process. You want to get a view
of the problem that is as complete as possible. One way that this can be executed is to use
a round-robin approach to suggesting candidate classes where each participant takes a turn
in suggesting a class. Another approach is to use an electronic brainstorming tool that sup-
ports anonymity.3 Fourth, the facilitator can use humor to break the ice so that all partici-
pants can feel comfortable in making suggestions.

Common Object Lists
As its name implies, a common object list is simply a list of objects common to the business
domain of the system. Several categories of objects have been found to help the analyst in
creating the list, such as physical or tangible things, incidents, roles, and interactions.4 Ana-
lysts should first look for physical, or tangible, things in the business domain. These could
include books, desks, chairs, and office equipment. Normally, these types of objects are the
easiest to identify. Incidents are events that occur in the business domain, such as meetings,
flights, performances, or accidents. Reviewing the use cases can readily identify the roles that
the people play in the problem, such as doctor, nurse, patient, or receptionist. Typically, an
interaction is a transaction that takes place in the business domain, such as a sales transac-
tion. Other types of objects that can be identified include places, containers, organizations,

Object Identification 201

2 D. Bellin and S. S. Simone, The CRC Card Book (Reading, MA: Addison-Wesley, 1997).
3 A.R. Dennis, J.S. Valacich, T. Connolly, and B.E. Wynne, “Process Structuring in Electronic Brainstorming,”
Information Systems Research 7, no. 2 (June 1996): 268-277.
4 For example, see C. Larman, Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design
(Englewood Cliffs, NJ: Prentice Hall, 1998); and S. Shlaer and S. J. Mellor, Object-Oriented Systems Analysis: Mod-
eling the World in Data (Englewood Cliffs, NJ: Yourdon Press, 1988).

c05StructuralModeling.qxd 11/7/11 1:40 PM Page 201

business records, catalogs, and policies. In rare cases, processes themselves may need infor-
mation stored about them. In these cases processes may need an object, in addition to a use
case, to represent them. Finally, there are libraries of reusable objects that have been created
for different business domains. For example, with regard to the appointment problem, the
Common Open Source Medical Objects5 could be useful to investigate for potential objects
that should be included.

Patterns
The idea of using patterns is a relatively new area in object-oriented systems development.6

There have been many definitions of exactly what a pattern is. From our perspective, a pat-
tern is simply a useful group of collaborating classes that provide a solution to a commonly
occurring problem. Because patterns provide a solution to commonly occurring problems,
they are reusable.

An architect, Christopher Alexander, has inspired much of the work associated with
using patterns in object-oriented systems development. According to Alexander and his
colleagues,7 it is possible to make very sophisticated buildings by stringing together com-
monly found patterns, rather than creating entirely new concepts and designs. In a very
similar manner, it is possible to put together commonly found object-oriented patterns to
form elegant object-oriented information systems. For example, many business transac-
tions involve the same types of objects and interactions. Virtually all transactions would
require a transaction class, a transaction line item class, an item class, a location class, and
a participant class. By simply reusing these existing patterns of classes, we can more quickly
and more completely define the system than if we start with a blank piece of paper.

Many different types of patterns have been proposed, ranging from high-level
business-oriented patterns to more low-level design patterns. For example, Figure 5-3
depicts a set of useful analysis patterns8. Figure 5-4 portrays a class diagram that we
created by merging the patterns contained in Figure 5-3 into a single reusable pattern.
In this case, we merged the Account–Entry–Transaction pattern (located at the bottom
left of Figure 5-3) with the Place–Transaction–Participant–Transaction Line Item–Item
pattern (located at the top left of Figure 5-3) on the common Transaction class. Next,
we merged the Party–Person–Organization (located at the top right of Figure 5-3) by
merging the Participant and Party classes. Finally, we extended the Item class by merg-
ing the Item class with the Product class of the Product–Good–Service pattern (located
at the bottom right of Figure 5-3).

202 Chapter 5 Structural Modeling

5 See sourceforge.net/projects/cosmos/.
6 Many books have been devoted to this topic. For example, see P. Coad, D. North, and M. Mayfield, Object Models:
Strategies, Patterns, & Applications, 2nd Ed. (Englewood Cliffs, NJ: Prentice Hall, 1997); H-E. Eriksson and M. Penker,
Business Modeling with UML: Business Patterns at Work (New York: Wiley, 2000); M. Fowler, Analysis Patterns:
Reusable Object Models (Reading, MA: Addison-Wesley, 1997); E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design Patterns: Elements of Reusable Object-Oriented Software (Reading, MA: Addison-Wesley, 1995); David C. Hay,
Data Model Patterns: Conventions of Thought (New York: Dorset House, 1996), and L. Silverston, The Data Model
Resource Book: A Librbary of Universal Data Models for All Enterprises, Volume 1, Revised Ed. (New York, NY; Wiley,
2001).
7 C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, and S. Angel, A Pattern Language (New
York: Oxford University Press, 1977).
8 The patterns are portrayed using UML Class Diagrams. We describe the syntax of the diagrams later in this chapter.
The specific patterns shown have been adapted from patterns described in P. Coad, D. North, and M. Mayfield,
Object Models: Strategies, Patterns, & Applications, 2nd Ed.; M. Fowler, Analysis Patterns: Reusable Object Models;
and L. Silverston, The Data Model Resource Book: A Library of Universal Data Models for All Enterprises, Volume 1,
Revised Edition.

c05StructuralModeling.qxd 11/7/11 1:40 PM Page 202

Object Identification 203

Place

Transaction Transaction Line Item Item

Participant

0..*

0..*

1..*

1..1

1..1

1..1 1..10..*

Account Transaction

0..*1..1

1..12..2

OrganizationPerson

Party

ServiceGood

Product

Entry

Place

Transaction Transaction Line Item Item

Participant

0..*

0..*

1..*

1..1

1..1

1..1 1..10..*

1..12..2

OrganizationPerson

ServiceGood

Account

0..*1..1

Entry

FIGURE 5-3 Sample Patterns

FIGURE 5-4 Sample Integration of Sample Patterns

c05StructuralModeling.qxd 11/7/11 1:40 PM Page 203

Using patterns from different sources in this manner enables the development team to
leverage knowledge beyond that of the immediate team members and allows the team to
develop more complete and robust models of the problem domain. For example, in the
case of the appointment problem, we can look at the objects previously identified through
textual analysis, brainstorming, and/or common object lists and see if it makes sense to
map any of them into any predefined reusable patterns. In this specific case, in many ways
we can look at an appointment as a type of transaction in which a doctor’s office partici-
pates. By looking at an appointment as a type of transaction, we can apply the pattern we
created in Figure 5-4 and discover a set of previously unidentified objects, such as Place,
Patient as a type of Participant, and Transaction Line Items that are associated with differ-
ent types of Items (Goods and/or Services). Discovering these specific additional objects
could be useful in developing the billing side of the appointment system. Even though these
additional objects could be applicable, they were not uncovered using the other techniques.

Based on this simple example, it is obvious that using patterns to develop structural
models can be essential. Figure 5-5 lists some common business domains for which pat-
terns have been developed and their source. If we are developing a business information
system in one of these business domains, then the patterns developed for that domain may
be a very useful starting point in identifying needed classes and their attributes, operations,
and relationships.

220044 CChhaapptteerr 55 Structural Modeling

Accounting 3, 4
Actor-Role 2
Assembly-Part 1
Container-Content 1
Contract 2, 4
Document 2, 4
Employment 2, 4
Financial Derivative Contracts 3
Geographic Location 2, 4
Group-Member 1
Interaction 1
Material Requirements Planning 4
Organization and Party 2, 3
Plan 1, 3
Process Manufacturing 4
Trading 3
Transactions 1, 4

1. Peter Coad, David North, and Mark Mayfield, Object Models: Strate-
gies, Patterns, and Applications, 2nd ed. (Englewood Cliffs, NJ: Prentice
Hall, 1997).

2. Hans-Erik Eriksson and Magnus Penker, Business Modeling with UML:
Business Patterns at Work (New York: Wiley, 2000).

3. Martin Fowler, Analysis Patterns: Reusable Object Models (Reading,
MA: Addison-Wesley, 1997).

4. David C. Hay, Data Model Patterns: Conventions of Thought (New York,
NY, Dorset House, 1996).

BBuussiinneessss DDoommaaiinnss SSoouurrcceess ooff PPaatttteerrnnss

FFIIGGUURREE 55--55
Useful Patterns

c05StructuralModeling.qxd 12/2/11 7:16 PM Page 204

CRC CARDS
CRC (Class–Responsibility–Collaboration) cards are used to document the responsibilities
and collaborations of a class. In some object-oriented systems-development methodolo-
gies, CRC cards are seen to be an alternative competitor to the Unified Process employment
of use cases and class diagrams. However, we see them as a useful, low-tech approach that
can compliment a typical high-tech Unified Process approach that uses CASE tools. We use
an extended form of the CRC card to capture all relevant information associated with a
class.9 We describe the elements of our CRC cards later, after we explain responsibilities
and collaborations.

Responsibilities and Collaborations
Responsibilities of a class can be broken into two separate types: knowing and doing. Know-
ing responsibilities are those things that an instance of a class must be capable of knowing.
An instance of a class typically knows the values of its attributes and its relationships. Doing
responsibilities are those things that an instance of a class must be capable of doing. In this
case, an instance of a class can execute its operations or it can request a second instance,
which it knows about, to execute one of its operations on behalf of the first instance.

The structural model describes the objects necessary to support the business processes
modeled by the use cases. Most use cases involve a set of several classes, not just one class.
These classes form collaborations. Collaborations allow the analyst to think in terms of
clients, servers, and contracts.10 A client object is an instance of a class that sends a request
to an instance of another class for an operation to be executed. A server object is the
instance that receives the request from the client object. A contract formalizes the interac-
tions between the client and server objects. For example, a patient makes an appointment
with a doctor. This sets up an obligation for both the patient and doctor to appear at the
appointed time. Otherwise, consequences, such as billing the patient for the appointment
regardless of whether he or she appears, can be dealt out. Also, the contract should spell out
what the benefits of the contract will be, such as a treatment being prescribed for whatever
ails the patient and a payment to the doctor for the services provided. Chapter 8 provides
a more-detailed explanation of contracts and examples of their use.

An analyst can use the idea of class responsibilities and client–server–contract collabo-
rations to help identify the classes, along with the attributes, operations, and relationships,
involved with a use case. One of the easiest ways to use CRC cards in developing a structural
model is through anthropomorphism—pretending that the classes have human character-
istics. Members of the development team can either ask questions of themselves or be asked
questions by other members of the team. Typically the questions asked are of the form:

Who or what are you?
What do you know?
What can you do?

CRC Cards 205

9 Our CRC cards are based on the work of D. Bellin and S. S. Simone, The CRC Card Book (Reading, MA: Addison-
Wesley, 1997); I. Graham, Migrating to Object Technology (Wokingham, England: Addison-Wesley, 1995); and
B. Henderson-Sellers and B. Unhelkar, OPEN modeling with UML (Harlow, England: Addison-Wesley, 2000).
10 For more information, see K. Beck and W. Cunningham, “A Laboratory for Teaching Object-Oriented Think-
ing,” Proceedings of OOPSLA, SIGPLAN Notices, 24, no. 10 (1989): 1–6; B. Henderson-Sellers and B. Unhelkar,
OPEN Modeling with UML (Harlow, England: Addison-Wesley, 2000); C. Larman, Applying UML and Patterns: An
Introduction to Object-Oriented Analysis and Design (Englewood Cliffs, NJ: Prentice Hall, 1998); B. Meyer, Object-
Oriented Software Construction (Englewood Cliffs, NJ: Prentice Hall, 1994); and R. Wirfs-Brock, B. Wilkerson, and
L. Wiener, Designing Object-Oriented Software (Englewood Cliffs, NJ, Prentice Hall, 1990).

c05StructuralModeling.qxd 11/7/11 1:40 PM Page 205

The answers to the questions are then used to add detail to the evolving CRC cards. For
example, in the appointment problem, a member of the team can pretend that he or she is
an appointment. In this case, the appointment would answer that he or she knows about
the doctor and patient who participate in the appointment and they would know the date
and time of the appointment. Furthermore, an appointment would have to know how to
create itself, delete itself, and to possibly change different aspects of itself. In some cases,
this approach will uncover additional objects that have to be added to the evolving struc-
tural model.

Elements of a CRC Card
The set of CRC cards contains all the information necessary to build a logical structural
model of the problem under investigation. Figure 5-6 shows a sample CRC card. Each CRC
card captures and describes the essential elements of a class. The front of the card contains

206 Chapter 5 Structural Modeling

Front:

Class Name: Old Patient ID: 3

Calculate last visit

Make appointment

Change status

Provide medical history

Responsibilities

Associated Use Cases: 2Description: An individual that needs to receive or has received
medical attention

Type: Concrete, Domain

Appointment

Medical history

Collaborators

Back:

Attributes:

Insurance carrier (text)

Amount (double)

Relationships:
Generalization (a-kind-of): Person

Aggregation (has-parts): Medical History

Other Associations: Appointment

FIGURE 5-6
Sample CRC Card

c05StructuralModeling.qxd 11/7/11 1:40 PM Page 206

the class’s name, ID, type, description, associated use cases, responsibilities, and collabora-
tors. The name of a class should be a noun (but not a proper noun, such as the name of a
specific person or thing). Just like the use cases, in later stages of development, it is impor-
tant to be able to trace back design decisions to specific requirements. In conjunction with
the list of associated use cases, the ID number for each class can be used to accomplish this.
The description is simply a brief statement that can be used as a textual definition for the
class. The responsibilities of the class tend to be the operations that the class must contain
(i.e., the doing responsibilities).

The back of a CRC card contains the attributes and relationships of the class. The
attributes of the class represent the knowing responsibilities that each instance of the class
has to meet. Typically, the data type of each attribute is listed with the name of the attribute
(e.g., the amount attribute is double and the insurance carrier is text). Three types of rela-
tionships typically are captured at this point: generalization, aggregation, and other associ-
ations. In Figure 5-6, we see that a Patient is a-kind-of Person and that a Patient is
associated with Appointments.

CRC cards are used to document the essential properties of a class. However, once
the cards are filled out, the analyst can use the cards and anthropomorphisms in role-
playing (described in the next section) to uncover missing properties by executing the
different scenarios associated with the use cases (see Chapter 4). Role-playing also can
be used as a basis to test the clarity and completeness of the evolving representation of
the system.

Role-Playing CRC Cards with Use Cases11, 12

In addition to the object identification approaches described earlier (textual analysis, brain-
storming, common object lists, and patterns), CRC cards can be used in a role-playing exer-
cise that has been shown to be useful in discovering additional objects, attributes,
relationships, and operations. In general, members of the team perform roles associated
with the actors and objects previously identified with the different use cases. Technically
speaking, the members of the team perform the different steps associated with a specific sce-
nario of a use case. Remember, a scenario is a single, unique execution path through a use
case. A useful place to look for the different scenarios of a use case is the activity diagrams
(e.g., see Figures 4-7, 4-8, 4-9, and 4-10). A different scenario exists for each time a decision
node causes a split in the execution path of the use case. Also, scenarios can be identified
from the alternative/exceptional flows in a use-case description. Even though the activity
diagrams and use-case descriptions should contain the same information and given the
incremental and iterative nature of object-oriented systems development, at this point in the
evolution of the system, we suggest that you review both representations to ensure that you
do not miss any relevant scenarios.

The first step is to review the use-case descriptions (see Figure 5-2). This allows the team
to pick a specific use case to role-play. Even though it is tempting to try to complete as
many use cases as possible in a short time, the team should not choose the easiest use cases
first. Instead, at this point in the development of the system, the team should choose the
use case that is the most important, the most complex, or the least understood.

CRC Cards 207

11 This step is related to the verification and validation of the analysis models (functional, structural, and behav-
ioral). Because this deals with verification and validation that takes place between the models, in this case func-
tional and structural, we will return to this topic in Chapter 7.
12 Our role-playing approach is based on the work of D. Bellin and S. S. Simone, The CRC Card Book (Reading,
MA: Addison-Wesley, 1997).

1. Review Use Cases

c05StructuralModeling.qxd 11/7/11 1:40 PM Page 207

The second step is to identify the relevant roles that are to be played. Each role is associated
with either an actor or an object. To choose the relevant objects, the team reviews each of
the CRC cards and picks the ones that are associated with the chosen use case. For exam-
ple, in Figure 5-6, we see that the CRC card that represents the Old Patient class is associ-
ated with Use Case number 2. So if we were going to role-play the Make Old Patient Appt
use case (see Figure 5-2), we would need to include the Old Patient CRC card. By review-
ing the use-case description, we can easily identify the Old Patient and Doctor actors (see
Primary Actor and Stakeholders section of the use case description in Figure 5-2). By read-
ing the event section of the use-case description, we identify the internal actor role of
Receptionist. After identifying all of the relevant roles, we assign each one to a different
member of the team.

The third step is to role-play scenarios of the use case by having the team members per-
form each one. To do this, each team member must pretend that they are an instance of the
role assigned to them. For example, if a team member was assigned the role of the Recep-
tionist, then he or she would have to be able to perform the different steps in the scenario
associated with the Receptionist. In the case of the change appointment scenario, this
would include steps 2, 5, 6, S-3, S-1, and S-2. However, when this scenario is performed
(role-played), it would be discovered that steps 1, 3, and 4 were incomplete. For example,
in Step 1, what actually occurs? Does the Patient make a phone call? If so, who answers the
phone? In other words, a lot of information contained in the use-case description is only
identified in an implicit, not explicit, manner. When the information is not identified
explicitly, there is lots of room for interpretation, which requires the team members to
make assumptions. It is much better to remove the need to make an assumption by mak-
ing each step explicit. In this case, Step 1 of the Normal Flow of Events should be modified.
Once the step has been fixed, the scenario is tried again. This process is repeated until the
scenario can be executed to a successful conclusion. Once the scenario has successfully con-
cluded, the next scenario is performed. This is repeated until all of the scenarios of the use
case can be performed successfully. 13

The fourth step is to simply repeat steps 1 through 3 for the remaining use cases.

CLASS DIAGRAMS
A class diagram is a static model that shows the classes and the relationships among classes
that remain constant in the system over time. The class diagram depicts classes, which
include both behaviors and states, with the relationships between the classes. The follow-
ing sections present the elements of the class diagram, different approaches that can be
used to simplify a class diagram, and an alternative structure diagram: the object diagram.

Elements of a Class Diagram
Figure 5-7 shows a class diagram that was created to reflect the classes and relationships
associated with the appointment system. This diagram is based on the classes uncovered

208 Chapter 5 Structural Modeling

13 In some cases, some scenarios are only executed in very rare circumstances. So, from a practical perspective, each
scenario could be prioritized individually and only “important” scenarios would have to be implemented for the
first release of the system. Only those scenarios would have to be tested at this point in the evolution of the system.

2. Identify Relevant
Actors and Objects

3. Role-Play Scenarios

4. Repeat Steps 1
through 3

c05StructuralModeling.qxd 11/7/11 1:40 PM Page 208

A
cc

ou
nt

Em
pl

oy
ee0.

.*

0.
.*

0.

.*

0.
.*

0.
.*

0.
.*

0.
.*

0.
.*

1.
.*

1.
.*

1.
.*

1.
.*

1.
.1

1.
.1

1.
.*

1.
.1

1.
.1

0.
.1

1.
.1

1.
.1

1.
.1

1.
.1

1.

.1

1.
.1

D
eb

it

C
re

di
t

En
tr

y
A

pp
oi

nt
m

en
t

-ti
m

e
-d

at
e

-r
ea

so
n

+c
an

ce
l w

ith
ou

t n
ot

ic
e(

)

Pa
tie

nt

-in
su

ra
nc

e
ca

rr
ie

r

+m
ak

e
ap

po
in

tm
en

t()

+c
al

cu
la

te
 la

st
 v

is
it(

)
+c

ha
ng

e
st

at
us

()
+p

ro
vi

de
s

m
ed

ic
al

 h
is

to
ry

()

Pa
rt

ic
ip

an
t

-la
st

na
m

e
-fi

rs
tn

am
e

-a
dd

re
ss

-p

ho
ne

-b

irt
hd

at
e

-/a
ge

It
em

Tr
an

sa
ct

io
n

Li
ne

 It
em

ha
s

ha
s

co
nt

ai
ns

A
ss

ig
ne

dT
o

+
pr

im
ar

y
in

su
ra

nc
e

ca
rr

ie
r

D
oc

to
r

Re
ce

pt
io

ni
st

N
ur

se

M
ed

ic
al

 H
is

to
ry

-h
ea

rt
di

se
as

e
-h

ig
h

bl
oo

d
pr

es
su

re

-d
ia

be
tie

s
-a

le
rg

ie
s

pr
ov

id
es

su
ffe

rs
schedules

lo
ca

te
dA

t

G
oo

d
Se

rv
ic

e

Pr
es

cr
ip

tio
n

Br
ac

e
Ph

ys
ic

al
C

he
ck

up

Sy
m

pt
om

Ill
ne

ss

Pl
ac

e

Tr
ea

tm
en

t

m
ed

ic
at

io
n

in
st

ru
ct

io
ns

sy

m
pt

om
 s

ev
er

ity

-a
m

ou
nt

-n
am

e
-d

es
cr

ip
tio

n

FI
G

U
R

E
5

-7

 S
am

pl
e

C
la

ss
 D

ia
gr

am

209

c05StructuralModeling.qxd 11/7/11 1:40 PM Page 209

through the object identification techniques and the role-playing of the CRC cards
described earlier.

Class The main building block of a class diagram is the class, which stores and man-
ages information in the system (see Figure 5-8). During analysis, classes refer to the peo-
ple, places, and things about which the system will capture information. Later, during
design and implementation, classes can refer to implementation-specific artifacts such as
windows, forms, and other objects used to build the system. Each class is drawn using a

210 Chapter 5 Structural Modeling

A class:

• Has a name typed in bold and centered in its top
 compartment.

• Has a list of attributes in its middle compartment.

• Represents a kind of person, place, or thing about
 which the system will need to capture and store
 information.

• Has a list of operations in its bottom compartment.

attribute name
/derived attribute name

operation name ()

• Does not explicitly show operations that are
 available to all classes.

An attribute:
• Represents properties that describe the state of an
 object.
• Can be derived from other attributes, shown by
 placing a slash before the attribute’s name.

An operation:
• Represents the actions or functions that a class
 can perform.
• Can be classified as a constructor, query, or
 update operation.
• Includes parentheses that may contain parameters
 or information needed to perform the operation.

An association:
• Represents a relationship between multiple
 classes or a class and itself.

A generalization:

• Is labeled using a verb phrase or a role name,
 whichever better represents the relationship.

An aggregation:
• Represents a logical a-part-of relationship
 between multiple classes or a class and itself.
• Is a special form of an association.

A composition:
• Represents a physical a-part-of relationship
 between multiple classes or a class and itself
• Is a special form of an association.

• Can exist between one or more classes.

• Represents a-kind-of relationship between
 multiple classes.

• Contains multiplicity symbols, which represent
 the minimum and maximum times a class
 instance can be associated with the related class
 instance.

Class1

-Attribute-1
+Operation-1()

AssociatedWith

0..* 1

0..* 1IsPartOf

1..* 1IsPartOf

FIGURE 5-8
Class Diagram Syntax

c05StructuralModeling.qxd 11/7/11 1:40 PM Page 210

three-part rectangle, with the class’s name at top, attributes in the middle, and operations
at the bottom. We can see that the classes identified earlier, such as Participant, Doctor,
Patient, Receptionist, Medical History, Appointment, and Symptom, are included in Fig-
ure 5-7. The attributes of a class and their values define the state of each object created
from the class, and the behavior is represented by the operations.

Attributes are properties of the class about which we want to capture information
(see Figure 5-8). Notice that the Participant class in Figure 5-7 contains the attributes
lastname, firstname, address, phone, and birthdate. At times, you might want to store
derived attributes, which are attributes that can be calculated or derived; these special
attributes are denoted by placing a slash (/) before the attribute’s name. Notice how
the person class contains a derived attribute called /age, which can be derived by sub-
tracting the patient’s birth date from the current date. It is also possible to show the
visibility of the attribute on the diagram. Visibility relates to the level of information
hiding to be enforced for the attribute. The visibility of an attribute can be public (!),
protected (#), or private ("). A public attribute is one that is not hidden from any other
object. As such, other objects can modify its value. A protected attribute is one that is
hidden from all other classes except its immediate subclasses. A private attribute is one
that is hidden from all other classes. The default visibility for an attribute is normally
private.

Operations are actions or functions that a class can perform (see Figure 5-8). The func-
tions that are available to all classes (e.g., create a new instance, return a value for a partic-
ular attribute, set a value for a particular attribute, delete an instance) are not explicitly
shown within the class rectangle. Instead, only operations unique to the class are included,
such as the cancel without notice operation in the Appointment class and the calculate last
visit operation in the Patient class in Figure 5-7. Notice that both the operations are fol-
lowed by parentheses, which contain the parameter(s) needed by the operation. If an oper-
ation has no parameters, the parentheses are still shown but are empty. As with attributes,
the visibility of an operation can be designated public, protected, or private. The default
visibility for an operation is normally public.

There are four kinds of operations that a class can contain: constructor, query,
update, and destructor. A constructor operation creates a new instance of a class. For exam-
ple, the patient class may have a method called insert (), which creates a new patient
instance as patients are entered into the system. As we just mentioned, if an operation
implements one of the basic functions (e.g., create a new instance), it is normally not
explicitly shown on the class diagram, so typically we do not see constructor methods
explicitly on the class diagram.

A query operation makes information about the state of an object available to other
objects, but it does not alter the object in any way. For instance, the calculate last visit ()
operation that determines when a patient last visited the doctor’s office will result in the
object’s being accessed by the system, but it will not make any change to its information. If
a query method merely asks for information from attributes in the class (e.g., a patient’s
name, address, phone), then it is not shown on the diagram because we assume that all
objects have operations that produce the values of their attributes.

An update operation changes the value of some or all the object’s attributes, which may
result in a change in the object’s state. Consider changing the status of a patient from new
to current with a method called change status() or associating a patient with a particular
appointment with make appointment (appointment).

A destructor operation simply deletes or removes the object from the system. For exam-
ple, if an employee object no longer represents an actual employee associated with the firm,
the employee could need to be removed from the employee database, and a destructor

Class Diagrams 211

c05StructuralModeling.qxd 11/7/11 1:40 PM Page 211

operation would be used to implement this behavior. However, deleting an object is one of
the basic functions and therefore would not be included on the class diagram.

Relationships A primary purpose of a class diagram is to show the relationships, or asso-
ciations, that classes have with one another. These are depicted on the diagram by drawing
lines between classes (see Figure 5-8). When multiple classes share a relationship (or a class
shares a relationship with itself), a line is drawn and labeled with either the name of the
relationship or the roles that the classes play in the relationship. For example, in Figure 5-7
the two classes patient and appointment are associated with one another whenever a
patient schedules an appointment. Thus, a line labeled schedules connects patient and
appointment, representing exactly how the two classes are related to each other. Also, notice
that there is a small solid triangle beside the name of the relationship. The triangle allows
a direction to be associated with the name of the relationship. In Figure 5-7, the schedules
relationship includes a triangle, indicating that the relationship is to be read as “patient
schedules appointment.” Inclusion of the triangle simply increases the readability of the
diagram. In Figure 5-9, three additional examples of associations are portrayed: An Invoice
is AssociatedWith a Purchase Order (and vice versa), a Pilot Flies an Aircraft, and a Spare
Tire IsLocatedIn a Trunk.

Sometimes a class is related to itself, as in the case of a patient being the primary
insurance carrier for other patients (e.g., spouse, children). In Figure 5-7, notice that a
line was drawn between the patient class and itself and called primary insurance carrier
to depict the role that the class plays in the relationship. Notice that a plus (!) sign is
placed before the label to communicate that it is a role as opposed to the name of the
relationship. When labeling an association, we use either a relationship name or a role
name (not both), whichever communicates a more thorough understanding of the
model.

Relationships also have multiplicity, which documents how an instance of an object
can be associated with other instances. Numbers are placed on the association path to
denote the minimum and maximum instances that can be related through the association
in the format minimum number.. maximum number (see Figure 5-10). The numbers
specify the relationship from the class at the far end of the relationship line to the end with
the number. For example, in Figure 5-7, there is a 0..* on the appointment end of the
patient schedules appointment relationship. This means that a patient can be associated

212 Chapter 5 Structural Modeling

Purchase Order

Aircraft

TrunkSpare Tire

Pilot

Invoice

0..* 1

0..* 0..*

Flies

0..1 0..1

IsLocatedIn

AssociatedWith

FIGURE 5-9
Sample Association

c05StructuralModeling.qxd 11/7/11 1:40 PM Page 212

with zero through many different appointments. At the patient end of this same relation-
ship there is a 1..1, meaning that an appointment must be associated with one and only
one (1) patient. In Figure 5-9, we see that an instance of the Invoice class must be Associ-
atedWith one instance of the Purchase Order class and that an instance of the Purchase
Order class may be AssociatedWith zero or more instances of the Invoice class, that an
instance of the Pilot class Flies zero or more instances of the Aircraft class, and that an
instance of the Aircraft class may be flown by zero or more instances of the Pilot class.
Finally, we see that an instance the Spare Tire class IsLocatedIn zero or one instance of the
Trunk class, whereas an instance of the Trunk class can contain zero or one instance of the
Spare Tire class.

There are times when a relationship itself has associated properties, especially when
its classes share a many-to-many relationship. In these cases, a class called an association
class is formed, which has its own attributes and operations.14 It is shown as a rectangle
attached by a dashed line to the association path, and the rectangle’s name matches the
label of the association. Think about the case of capturing information about illnesses and
symptoms. An illness (e.g., the flu) can be associated with many symptoms (e.g., sore
throat, fever), and a symptom (e.g., sore throat) can be associated with many illnesses

Class Diagrams 213

1

0..*

1..*

0..1

2..4

1..3,5

Exactly one
A department has
one and only one
boss.

Zero or more

One or more

Zero or one

Specified range

Multiple, disjoint
ranges

An employee has
zero to many
children.

A boss is responsible
for one or more
employees.

An employee can
be married to zero
or one spouse.

An employee can
take from two to
four vacations each
year.

An employee is a
member of one to
three or five
committees.

Department Boss
1

Employee Child
0..*

Boss Employee
1..*

Employee Spouse
0..1

Employee Vacation
2..4

Employee Committee
1..3,5

14 For those familiar with data modeling, associative classes serve a purpose similar to the one the associative entity
serves in ER diagramming.

FIGURE 5-10
Multiplicity

c05StructuralModeling.qxd 11/7/11 1:40 PM Page 213

(e.g., the flu, strep throat, the common cold). Figure 5-7 shows how an association class
can capture information about remedies that change depending on the various combi-
nations. For example, a sore throat caused by strep throat requires antibiotics, whereas
treatment for a sore throat from the flu or a cold could be throat lozenges or hot tea.
Another way to decide when to use an association class is when attributes that belong to
the intersection of the two classes involved in the association must be captured. We can
visually think about an association class as a Venn diagram. For example, in Figure 5-11,
the Grade idea is really an intersection of the Student and Course classes, because a
grade exists only at the intersection of these two ideas. Another example shown in Fig-
ure 5-11 is that a job may be viewed as the intersection between a Person and a Com-
pany. Most often, classes are related through a normal association; however, there are
two special cases of an association that you will see appear quite often: generalization
and aggregation.

Generalization and Aggregation Associations A generalization association shows that
one class (subclass) inherits from another class (superclass), meaning that the properties
and operations of the superclass are also valid for objects of the subclass. The general-
ization path is shown with a solid line from the subclass to the superclass and a hollow
arrow pointing at the superclass (see Figure 5-8). For example, Figure 5-7 communicates
that doctors, nurses, and receptionists are all kinds of employees and those employees
and patients are kinds of participants. Remember that the generalization relationship
occurs when you need to use words like “is a kind of ” to describe the relationship. Some
additional examples of generalization are given in Figure 5-12. For example, Cardinal is
a-kind-of Bird, which is a-kind-of Animal; a General Practitioner is a-kind-of Physician,
which is a-kind-of Person; and a Truck is a-kind-of Land Vehicle, which is a-kind-of
Vehicle.

An aggregation association is used when classes actually comprise other classes. For
example, think about a doctor’s office that has decided to create health-care teams that
include doctors, nurses, and administrative personnel. As patients enter the office, they are
assigned to a health-care team, which cares for their needs during their visits. We could
include this new knowledge in Figure 5-7 by adding two new classes (Administrative Per-
sonnel and Health Team) and aggregation relationships from the Doctor, the Nurse, and

214 Chapter 5 Structural Modeling

CourseStudent
0..* 0..*

Grade

Student CourseGrade

CompanyPerson
0..* 0..*

Job

Person CompanyJob

FIGURE 5-11 Sample Association Classes

c05StructuralModeling.qxd 11/7/11 1:40 PM Page 214

the new Administrative Personnel classes to the new Health Team class. A diamond is
placed nearest the class representing the aggregation (health-care team), and lines are
drawn from the diamond to connect the classes that serve as its parts (doctors, nurses, and
administrative personnel). Typically, you can identify these kinds of associations when you
need to use words like “is a part of” or “is made up of” to describe the relationship. How-
ever, from a UML perspective, there are two types of aggregation associations: aggregation
and composition (see Figure 5-8).

Aggregation is used to portray logical a-part-of relationships and is depicted on a
UML class diagram by a hollow or white diamond. For example in Figure 5-13, three log-
ical aggregations are shown. Logical implies that it is possible for a part to be associated
with multiple wholes or that is relatively simple for the part to be removed from

Class Diagrams 215

TroutCardinal

FishBird

Animal

CarTruck

Land

HelicopterPlane

Air

SubmarineShip

Sea

PatientPhysician

SpecialistGeneral Practitioner

Person

Vehicle

FIGURE 5-12 Sample Generalizations

c05StructuralModeling.qxd 11/7/11 1:40 PM Page 215

the whole. For example, an instance of the Employee class IsPartOf an instance of at least
one instance of the Department class, an instance of the Wheel class IsPartOf an instance
of the Vehicle class, and an instance of the Desk class IsPartOf an instance of the Office
class. Obviously, in many cases an employee can be associated with more than one
department, and it is relatively easy to remove a wheel from a vehicle or move a desk
from an office.

Composition is used to portray a physical part of relationships and is shown by a black
diamond. Physical implies that the part can be associated with only a single whole. For
example in Figure 5-14, three physical compositions are illustrated: an instance of a door can
be a part of only a single instance of a car, an instance of a room can be a part of an instance
only of a single building; and an instance of a button can be a part of only a single mouse.
However, in many cases, the distinction that you can achieve by including aggregation
(white diamonds) and composition (black diamonds) in a class diagram might not be worth
the price of adding additional graphical notation for the client to learn. Therefore, many
UML experts view the inclusion of aggregation and composition notation to the UML class
diagram as simply “syntactic sugar” and not necessary because the same information can
always be portrayed by simply using the association syntax.

216 Chapter 5 Structural Modeling

Department

Vehicle

OfficeDesk

Wheel

Employee
1..* 1..*

1..* 1

IsPartOf

IsPartOf

IsPartOf0..* 1

Car

Building

MouseButton

Room

Door
1..* 1

1..* 1

IsPartOf

IsPartOf

IsPartOf1..* 1

FIGURE 5-13
Sample Aggregation
Associations

FIGURE 5-14
Sample Composition
Associations

c05StructuralModeling.qxd 11/7/11 1:40 PM Page 216

Simplifying Class Diagrams
When a class diagram is fully populated with all the classes and relationships for a real-
world system, the class diagram can become very difficult to interpret (i.e., can be very
complex). When this occurs, it is sometimes necessary to simplify the diagram. One way to
simplify the class diagram is to show only concrete classes.15 However, depending on the
number of associations that are connected to abstract classes—and thus inherited down to
the concrete classes—this particular suggestion could make the diagram more difficult to
comprehend.

A second way to simplify the class diagram is through the use of a view mechanism.
Views were developed originally with relational database management systems and are
simply a subset of the information contained in the database. In this case, the view would
be a useful subset of the class diagram, such as a use-case view that shows only the classes
and relationships relevant to a particular use case. A second view could be to show only a
particular type of relationship: aggregation, association, or generalization. A third type of
view is to restrict the information shown with each class, for example, show only the name
of the class, the name and attributes, or the name and operations. These view mechanisms
can be combined to further simplify the diagram.

A third approach to simplifying a class diagram is through the use of packages (i.e.,
logical groups of classes). To make the diagrams easier to read and keep the models at a
reasonable level of complexity, the classes can be grouped together into packages. Pack-
ages are general constructs that can be applied to any of the elements in UML models. In
Chapter 4, we introduced the package idea to simplify use-case diagrams. In the case of
class diagrams, it is simple to sort the classes into groups based on the relationships that
they share.16

Object Diagrams
Although class diagrams are necessary to document the structure of the classes, there are
times when a second type of static structure diagram, called an object diagram, can be use-
ful. An object diagram is essentially an instantiation of all or part of a class diagram.
Instantiation means to create an instance of the class with a set of appropriate attribute
values.

Object diagrams can be very useful when trying to uncover details of a class. Generally
speaking, it is easier to think in terms of concrete objects (instances) rather than abstrac-
tions of objects (classes). For example in Figure 5-15, a portion of the class diagram in Fig-
ure 5-7 has been copied and instantiated. The top part of the figure simply is a copy of a
small view of the overall class diagram. The lower portion is the object diagram that instan-
tiates that subset of classes. By reviewing the actual instances involved, John Doe, Appt1,
Symptom1, and Dr. Smith, we may discover additional relevant attributes, relationships,
and/or operations or possibly misplaced attributes, relationships, and/or operations. For
example, an appointment has a reason attribute. Upon closer examination, the reason
attribute might have been better modeled as an association with the Symptom class. Cur-
rently, the Symptom class is associated with the Patient class. After reviewing the object dia-
gram, this seems to be in error. Therefore, we should modify the class diagram to reflect
this new understanding of the problem.

Class Diagrams 217

15 See footnote 1.
16 For those familiar with structured analysis and design, packages serve a purpose similar to the leveling and bal-
ancing processes used in data flow diagramming. Packages and package diagrams are described in more detail in
Chapter 7.

c05StructuralModeling.qxd 11/7/11 1:40 PM Page 217

CREATING STRUCTURAL MODELS USING CRC CARDS
AND CLASS DIAGRAMS

Creating a structural model is an incremental and iterative process whereby the analyst
makes a rough cut of the model and then refines it over time. Structural models can
become quite complex—in fact, there are systems that have class diagrams containing
hundreds of classes. It is important to remember that CRC cards and class diagrams can
be used to describe both the as-is and to-be structural models of the evolving system, but
they are most often used for the to-be model. There are many different ways to identify a
set of candidate objects and to create CRC cards and class diagrams. Today most object

218 Chapter 5 Structural Modeling

Patient

-amount
-insurance carrier

+make appointment()
+calculate last visit()
+change status()
+provide medical history()

0..*

0..*

0..*
0..*

1..*

1..*

1..1

1..1

Appointment

-time
-date
-reason

+cancel without notice()
+primary
insurance
carrier

Doctor

Symptom

-name
suffers

schedules

assignedTo

Participant

-lastname
-firstname
-address
-phone
-birthdate
-/age

Symptom1: Symptom

name = Muscle Pain

John Doe: Patient

lastname = Doe
firstname = John
address = 1000 Main St
phone = 555-555-5555
birthdate = 01/01/72
/ age = 40
amount = 0.00
insurance carrier = JD Health Ins

time = 3:00
date = 7/7/2012
reason = Pain in Neck

Appt1: Appointment

lastname = Smith
firstname = Jane
address = Doctor’s Clinic
phone = 999-999-9999
birthdate : 12/12/64
/ age = 48

Dr. Smith: Doctor

FIGURE 5-15 Sample Object Diagram

c05StructuralModeling.qxd 11/7/11 1:40 PM Page 218

identification begins with the use cases identified for the problem (See Chapter 4). In this
section, we describe a use-case–driven process that can be used to create the structural
model of a problem domain.

We could begin creating the structural model with a class diagram instead of CRC cards.
However, owing to the low-tech nature and the ease of role-playing use-case scenarios with
CRC cards, we prefer to create the CRC cards first and then transfer the information from
the CRC cards into a class diagram later. As a result, the first step of our recommended
process is to create CRC cards. Performing textual analysis on the use-case descriptions
does this. If you recall, the normal flow of events, subflows, and alternative/
exceptional flows of the use-case description were written in a special form called Sub-
ject–Verb–Direct-Object–Preposition–Indirect object (SVDPI). By writing the use-case
events in this form, it is easier to use the guidelines for textual analysis in Figure 5-1 to iden-
tify the objects. Reviewing the primary actors, stakeholders and interests, and brief descrip-
tions of each use case allows additional candidate objects to be identified. It is useful to go
back and review the original requirements to look for information that was not included
in the text of the use cases. Record all the uncovered information for each candidate object
on a CRC card.

The second step is to review the CRC cards to determine if additional candidate objects,
attributes, operations, and relationships are missing. In conjunction with this review, using
the brainstorming and common object list approaches described earlier can aid the team
in identifying missing classes, attributes, operations, and relationships. For example, the
team could start a brainstorming session with a set of questions such as:

! What are the tangible things associated with the problem?
! What are the roles played by the people in the problem domain?
! What incidents and interactions take place in the problem domain?

As you can readily see, by beginning with the use-case descriptions, many of these questions
already have partial answers. For example, the primary actors and stakeholders are the roles
that are played by the people in the problem domain. However, it is possible to uncover addi-
tional roles not thought of previously. This obviously would cause the use-case descriptions,
and possibly the use-case diagram, to be modified and possibly expanded. As in the previous
step, be sure to record all the uncovered information onto the CRC cards. This includes any
modifications uncovered for any previously identified candidate objects and any information
regarding any new candidate objects identified.

The third step is to role-play each use-case scenario using the CRC cards. Each CRC card
should be assigned to an individual, who will perform the operations for the class on the
CRC card. As the performers play out their roles, the system tends to break down. When
this occurs, additional objects, attributes, operations, or relationships will be identified.
Again, as in the previous steps, any time any new information is discovered, new CRC cards
are created or modifications to existing CRC cards are made.

The fourth step is to create the class diagram based on the CRC cards. Information con-
tained on the CRC cards is simply transferred to the class diagrams. The responsibilities are
transferred as operations, the attributes are drawn as attributes, and the relationships are
drawn as generalization, aggregation, or association relationships. However, the class
diagram also requires that the visibility of the attributes and operations be known. As a
general rule, attributes are private and operations are public. Therefore, unless the analyst

Creating Structural Models Using CRC Cards and Class Diagrams 221199

11.. CCrreeaattee CCRRCC
CCaarrddss

22.. RReevviieeww CCRRCC
CCaarrddss

33.. RRoollee--PPllaayy tthhee CCRRCC
CCaarrddss

44.. CCrreeaattee CCllaassss
DDiiaaggrraamm

c05StructuralModeling.qxd 12/2/11 7:16 PM Page 219

has a good reason to change the default visibility of these properties, then the defaults
should be accepted. Finally, the analyst should examine the model for additional opportu-
nities to use aggregation or generalization relationships. These types of relationships can
simplify the individual class descriptions. As in the previous steps, all changes must be
recorded on the CRC cards.

The fifth step is to review the structural model for missing and/or unnecessary classes,
attributes, operations, and relationships. Up until this step, the focus of the process has
been on adding information to the evolving model. At this point, the focus begins to switch
from simply adding information to also challenging the reasons for including the infor-
mation contained in the model. One very useful approach here is to play devil’s advocate,
where a team member, just for the sake of being a pain in the neck, challenges the reason-
ing for including all aspects of the model.

The sixth step is to incorporate useful patterns into the evolving structural model. A use-
ful pattern is one that would allow the analyst to more fully describe the underlying
domain of the problem being investigated. Looking at the collection of patterns available
(Figure 5-5) and comparing the classes contained in the patterns with those in
the evolving class diagram does this. After identifying the useful patterns, the analyst incor-
porates the identified patterns into the class diagram and modifies the affected CRC cards.
This includes adding and removing classes, attributes, operations, and/or relationships.

The seventh and final step is to validate the structural model, including both the CRC cards
and the class diagram. We discuss this content in the next section of the chapter and in
Chapter 7.

Example
The first step is to create the CRC cards that represent the classes in the structural model.
In the previous chapter, we used the Library Book Collection Management System exam-
ple to describe the process of creating the functional models (use-case and activity dia-
grams and use-case descriptions). In this chapter, we follow the same familiar example.
Because we are following a use-case–driven approach to object-oriented systems develop-
ment, we first review the events described in the use case descriptions (see Figure 5-16).

220 Chapter 5 Structural Modeling

Normal Flow of Events:

SubFlows:

1. The Borrower brings books to the Librarian at the check out desk.
2. The Borrower provides Librarian their ID card.
3. The Librarian checks the validity of the ID Card.
 If the Borrower is a Student Borrower, Validate ID Card against Registrar’s Database.
 If the Borrower is a Faculty/Staff Borrower, Validate ID Card against Personnel Database.
 If the Borrower is a Guest Borrower, Validate ID Card against Library’s Guest Database.
4. The Librarian checks whether the Borrower has any overdue books and/or fines.
5. The Borrower checks out the books.

Alternate/Exceptional Flows:
4a. The ID Card is invalid, the book request is rejected.
5a. The Borrower either has overdue books fines, or both, the book request is rejected.

FIGURE 5-16 Flow Descriptions for the Borrow Books Use Case (Figure 4-14)

7. Review the
Model

5. Review Class
Diagram

6. Incorporate
Patterns

c05StructuralModeling.qxd 11/7/11 1:40 PM Page 220

Next, we perform textual analysis on the events by applying the textual analysis
rules described in Figure 5-1. In this case, we can quickly identify the need to include
classes for Borrower, Books, Librarian, Check Out Desk, ID Card, Student Borrower,
Faculty/Staff Borrower, Guest Borrower, Registrar’s Database, Personnel Database,
Library’s Guest Database, Overdue Books, Fines, Book Request. We also can easily iden-
tify provide operations to “check the validity” of a book request, to “check out” the
books, and to “reject” a book request. Furthermore, the events suggest a “brings” rela-
tionship between Borrower and Books and a “provides” relationship between Borrower
and Librarian. This step also suggests that we should review the overview section of the
use-case description (see Figure 5-17). In this case, the only additional information
gleaned from the use-case description is the possible inclusion of classes for Personnel
Office and Registrar’s Office. This same process would also be completed for the
remaining use cases contained in the functional model: Process Overdue Books, Main-
tain Book Collection, Search Collection, and Return Books (see Figure 4-5). Because we
did discuss these use cases in the previous chapter, we will review the problem descrip-
tion as a basis for beginning the next step (see Figure 5-18).

The second step is to review the CRC cards to determine if there are any informa-
tion missing. In the case of the library system, because we only used the Borrow Books
use case description, some information is obviously missing. By reviewing Figure 5-18,
we see that we need to include the ability to search the book collection by title, author,
keywords, and ISBN. This obviously implies a Book Collection class with four different
search operations: Search By Title, Search By Author, Search By Keywords, and Search
By ISBN. Interestingly, the description also implies either a set of subclasses or states for
the Book class: Checked Out, Overdue, Requested, Available, and Damaged. We will
return to the issue of states versus subclasses in the next chapter. The description
implies many additional operations including Returning Books, Requesting Books,

Creating Structural Models Using CRC Cards and Class Diagrams 221

Association: Borrower, Personnel Office, Registrar’s Office
Include:
Extend:
Generalization :

Use Case Name:

Primary Actor:

Stakeholders and Interests:

Brief Description:

ID: Importance Level:

Trigger:

Type: External

Use Case Type:

Relationships:

Borrow Books 2 High

Borrower

Borrower brings books to check out desk.

Detail, Essential

This use case describes how books are checked out of the library.

Borrower—wants to check out books
Librarian—wants to ensure borrower only gets books deserved

FIGURE 5-17 Overview Description for the Borrow Books Use Case (Figure 4-13)

c05StructuralModeling.qxd 11/7/11 1:40 PM Page 221

Adding Books, Removing Books, Repairing Books, Fining Borrowers, and Emailing
Reminders.

Next, we should use our own library experience to brainstorm potential additional
classes, attributes, operations, and relationships that could be useful to include in the
Library Book Collection Management System. In our library, there is also the need to
Retrieve Books From Storage, Move Books To Storage, Request Books from the Interli-
brary Loan System, Return Books to the Interlibrary Loan System, and deal with
E-Books. You also could include classes for Journals, DVDs, and other media. As you can
see, with very little information, many classes, attributes, operations, and relationships
can be identified.

The third step, role-playing the CRC cards, requires us to apply the three role-playing
steps described earlier:

! Review Use Cases
! Identify Relevant Actors and Objects
! Role Play Scenarios

For our purposes, we will use the Borrow Books use case to demonstrate. The relevant
actors include Student Borrowers, Faculty/Staff Borrowers, Guest Borrowers, Librari-
ans, Personnel Office, and Registrar’s Office. These can be easily gleaned from the
overview section of the use case description (see Figure 5-17) and the use-case diagram
(see Figure 4-5). The relevant objects seem to include Books, Borrower, and ID Card.

222 Chapter 5 Structural Modeling

FIGURE 5-18
Overview Description
of the Library Book
Collection Management
System

The functional requirements for an automated university library circulation system include the need
to support searching, borrowing, and book-maintenance activities. The system should support
searching by title, author, keywords, and ISBN. Searching the library’s collection database should be
available on terminals in the library and available to potential borrowers via the World Wide Web.
If the book of interest is currently checked out, a valid borrower should be allowed to request the
book to be returned. Once the book has been checked back in, the borrower requesting the book
should be notified of the book’s availability.

The borrowing activities are built around checking books out and returning books by
borrowers. There are three types of borrowers: students, faculty and staff, and guests. Regardless
of the type of borrower, the borrower must have a valid ID card. If the borrower is a student,
having the system check with the registrar’s student database validates the ID card. If the
borrower is a faculty or staff member, having the system check with the personnel office’s
employee database validates the ID card. If the borrower is a guest, the ID card is checked
against the library’s own borrower database. If the ID card is valid, the system must also check
to determine whether the borrower has any overdue books or unpaid fines. If the ID card is
invalid, the borrower has overdue books, or the borrower has unpaid fines, the system must
reject the borrower’s request to check out a book; otherwise the borrower’s request should be
honored. If a book is checked out, the system must update the library’s collection database to
reflect the book’s new status.

The book-maintenance activities deal with adding and removing books from the library’s
book collection. This requires a library manager to both logically and physically add and remove
the book. Books being purchased by the library or books being returned in a damaged state
typically cause these activities. If a book is determined to be damaged when it is returned and it
needs to be removed from the collection, the last borrower will be assessed a fine. However, if
the book can be repaired, depending on the cost of the repair, the borrower might not be
assessed a fine. Finally, every Monday, the library sends reminder emails to borrowers who have
overdue books. If a book is overdue more than two weeks, the borrower is assessed a fine.
Depending on how long the book remains overdue, the borrower can be assessed additional
fines every Monday.

c05StructuralModeling.qxd 11/7/11 1:40 PM Page 222

Finally, to role-play the scenarios, we need to assign the roles to the different members
of the team and try to perform each of the paths through the events of the use case (see
Figure 5-16). Based on the Events of the use case and the use case’s activity diagram (see
Figure 5-19.), we can quickly identify nine scenarios, three for each type of Borrower
(Student, Faculty/Staff, and Guest): Valid ID and No Overdue Books & No Fines, Valid ID
only, and no Valid ID. When role-playing these scenarios, one question should come up.
What happens to the books that are requested when the request is rejected? Based on the
current functional and structural models, the books are left sitting on the check out desk.
That doesn’t quite seem right. In reality, the books are reshelved. In fact, the notion of
reshelving books is also relevant to when books are checked back in or after books have
been repaired. Furthermore, the idea of adding books to the collection should also include
the operation of shelving the books. As you should readily see, building structural models
will also help uncover behavior that was omitted when building the functional models.
Remember, object-oriented systems development is not only use-case driven but also is
incremental and iterative.

The fourth step is to put everything together and to draw the class diagram. Figure 5-20
represents the first cut at drawing the class diagram for the Library Book Collection Man-
agement System. The classes identified in the previous steps have been hooked up with
other classes via association, aggregation, and generalization relationships. For simplicity

Creating Structural Models Using CRC Cards and Class Diagrams 223

[Valid Crad]

[No Overdue Books & No Fines]

Validate ID Card

Check Out Books

Check for Overdue Books and Fines

FIGURE 5-19 Activity Diagram for the Borrow Books
Use Case (Figure 4-10)

c05StructuralModeling.qxd 11/7/11 1:40 PM Page 223

Bo
ok

 C
ol

le
ct

io
n

Bo
rr

ow
er

ID

St
ud

en
t

Li
br

ar
ia

n

St
ud

en
t I

D

Re
gi

st
ra

r’s
 D

B
Pe

rs
on

ne
l D

B

Fa
c/

St
af

f I
D

Li
br

ar
y

D
B

G
ue

st
 ID

Fa
cu

lty
/S

ta
ff

G
ue

st
Fi

ne
Re

qu
es

t

Li
br

ar
y

Sh
el

f
Re

sh
el

vi
ng

C
he

ck
 O

ut
 D

es
k

St
or

ag
e

Pe
rs

 O
ff

Re
gi

st
ra

r
O

ff
In

te
rL

ib
ra

ry
 L

oa
n

Sy
st

em

Bo
ok

D
V

D

Lo
ca

tio
n

Bo
ok

 L
oc

at
io

n

Jo
ur

na
l

O
th

er
 M

ed
ia

M
ed

ia

* 1

FI
G

U
R

E
5

-2
0

 F

ir
st

-C
ut

 C
la

ss
 D

ia
gr

am
 fo

r
th

e
Li

br
ar

y
Bo

ok
 C

ol
le

ct
io

n
Sy

st
em

224

c05StructuralModeling.qxd 11/7/11 1:40 PM Page 224

purposes, we only show the classes and their relationships; not their attributes, operations,
or even the multiplicities on the association relationships.

The fifth step is to take a step back and carefully review what has been created. Not
only should you see if there are any missing classes, attributes, operations, and/or rela-
tionships, but you should also challenge every aspect of the current model. Specifically, are
there classes, attributes, operations, and/or relationships that should be removed from the
model? In this case, there seem to be many classes on the diagram that should have been
modeled as attributes. For example, the whole idea of IDs should have been attributes.
Furthermore, because this is supposed to be a book collection management system, the
inclusion of other media seems to be inappropriate. Finally, the Personnel Office and Reg-
istrar’s Office were actually only actors in the system, not objects. Based on all of these dele-
tions, a new version of the class diagram was drawn (see Figure 5-21). This diagram is
much simpler and easier to understand.

The sixth step, incorporating useful patterns, enables us to take advantage of knowl-
edge that was developed elsewhere. In this case, the pattern used in the library problem
includes too many ideas that are not relevant to the current problem. However, by looking
back to Figure 5-3, we see that one of the original patterns (the one in the top left of the
figure) is relevant. We incorporate that pattern into the class diagram by replacing Place by
Check Out Desk, Participant by Borrower, Transaction by Check Out Trans, and Item by
Book (Figure 5-22). Technically speaking, each of these replacements is simply a version
that is customized to the problem at hand. We also then add the Transaction Line Item class
that we had missed in the original structural model.

The seventh step is to review the current state of the structural model. Needless to say,
the CRC card version and the class diagram version are no longer in agreement with each
other. We return to this step in the next section of the chapter.

Creating Structural Models Using CRC Cards and Class Diagrams 225

Student

Borrower Book

Guest Storage

Book Location

LibraryInterLibrary Loan System

Book Collection

Faculty/Staff

Librarian

0..* 0..* 1..10..*

1
*

FIGURE 5-21 Second-Cut Class Diagram for the Library Book Collection System

c05StructuralModeling.qxd 11/7/11 1:40 PM Page 225

226 Chapter 5 Structural Modeling

Check Out Trans Transaction Line Item Book

Check Out Desk

Storage

Book Location

LibraryInterLibrary Loan System

Book Collection

Student

Borrower

GuestFaculty/Staff

Librarian

1..1 0..* 1..10..*

1..1
0..*

0..*
1..1

1..11..*

1
*

FIGURE 5-22 Class Diagram with Incorporated Pattern for the Library Book Collection System

In Your Turn 4-4, you created a set of use cases from the
campus housing service that helps students find apart-
ments. Using the same use cases, create a structural model
(CRC cards and class diagram). See if you can identify at

least one potential derived attribute, aggregation relation-
ship, generalization relationship, and association relation-
ship for the model.

5-2 Campus HousingYOUR

TURN

Using Figure 5-6 as a template, complete the CRC cards for the remaining identified classes in Figure 5-7.

5-1 Appointment SystemYOUR

TURN

c05StructuralModeling.qxd 11/7/11 1:40 PM Page 226

VERIFYING AND VALIDATING THE STRUCTURAL MODEL17

Before we move on to creating behavioral models (see Chapter 6) of the problem domain,
we need to verify and validate the structural model. In the previous chapter, we intro-
duced the notion of walkthroughs as a way to verify and validate business processes and
functional models. In this chapter, we combine walkthroughs with the powerful idea of
role-playing as a way to more completely verify and validate the structural model that will
underlie the business processes and functional models. Because we have already intro-
duced the idea of role-playing the CRC cards, in this section we focus on performing
walkthroughs.

In this case, the verification and validation of the structural model is accomplished
during a formal review meeting using a walkthrough approach in which an analyst presents
the model to a team of developers and users. The analyst walks through the model, explain-
ing each part of the model and all the reasoning that went into the decision to include each
of the classes in the structural model. This explanation includes justifications for the attrib-
utes, operations, and relationships associated with the classes. Each class should be linked
back to at least one use case; otherwise, the purpose of including the class in the structural
model will not be understood. It is often best if the review team also includes people out-
side the development team that produced the model because these individuals can bring a
fresh perspective to the model and uncover missing objects.

Previously, we suggested three representations that could be used for structural
modeling: CRC cards, class diagrams, and object diagrams. Because an object diagram
is simply an instantiation of some part of a class diagram, we limit our discussion to
CRC cards and class diagrams. As in the previous chapter regarding verification and val-
idation of business process and functional models, we provide a set of rules that will test

Verifying and Validating the Structural Model 227

A large direct health and insurance medical provider
needed an Enterprise Information Management (EIM)
system to enable enterprise-wide information management
and support the effective use of data for critical cross-
functional decision making. In addition, the client needed
to resolve issues related to data redundancy, inconsistency
and unnecessary expenditure. The client faced information
challenges such as these: The company data resided in mul-
tiple sources and was developed for department-specific
use, with limited enterprise access. In addition, departments
created varied data definitions and data were being man-
aged by multiple departments within the company.

Source: http://www.deloitte.com/dtt/case_study/0,1005,sid%
253D26562%02526cid%253D132760,00.html

Questions

1. Should the company assess their current informa-
tion management?

2. How would a structural model aid the firm in under-
standing their current information management?
What solution would you propose?

5-A Health and Insurance Medical Provider—Implementing an EIM SystemCONCEPTS

IN ACTION

17 The material in this section has been adapted from E. Yourdon, Modern Structured Analysis (Englewood Cliffs,
NJ: Prentice Hall, 1989).

c05StructuralModeling.qxd 11/7/11 1:40 PM Page 227

the consistency within the structural models. For example purposes, we use the
appointment problem described in Chapter 4 and in this chapter. An example CRC card
for the old patient class is shown in Figure 5-6 and the associated class diagram is por-
trayed in Figure 5-7.

First, every CRC card should be associated with a class on the class diagram, and vice
versa. For example, the Old Patient class represented by the CRC card does not seem to
be included on the class diagram. However, there is a Patient class on the class diagram
(see Figures 5-6 and 5-7). The Old Patient CRC card most likely should be changed to
simply Patient.

Second, the responsibilities listed on the front of the CRC card must be included as
operations in a class on a class diagram, and vice versa. For example, the make appoint-
ment responsibility on the new Patient CRC card also appears as the make appointment()
operation in the Patient class on the class diagram. Every responsibility and operation
must be checked.

Third, collaborators on the front of the CRC card imply some type of relationship
on the back of the CRC card and some type of association that is connected to the asso-
ciated class on the class diagram. For example, the appointment collaborator on the
front of the CRC card also appears as an other association on the back of the CRC card
and as an association on the class diagram that connects the Patient class with the
Appointment class.

Fourth, attributes listed on the back of the CRC card must be included as attributes
in a class on a class diagram, and vice versa. For example, the amount attribute on the
new Patient CRC card is included in the attribute list of the Patient class on the class
diagram.

Fifth, the object type of the attributes listed on the back of the CRC card and with the
attributes in the attribute list of the class on a class diagram implies an association from
the class to the class of the object type. For example, technically speaking, the amount
attribute implies an association with the double type. However, simple types such as int
and double are never shown on a class diagram. Furthermore, depending on the problem
domain, object types such as Person, Address, or Date might not be explicitly shown
either. However, if we know that messages are being sent to instances of those object types,
we probably should include these implied associations as relationships.

Sixth, the relationships included on the back of the CRC card must be portrayed
using the appropriate notation on the class diagram. For example in Figure 5-6,
instances of the Patient class are a-kind-of Person, it has instances of the Medical His-
tory class as part of it, and it has an association with instances of the Appointment class.
Thus the association from the Patient class to the Person class should indicate that the
Person class is a generalization of its subclasses, including the Patient class; the associa-
tion from the Patient class to the Medical History class should be in the form of an
aggregation association (a white diamond); and the association between instances of
the Patient class and instances of the Appointment class should be a simple association.
However, when we review the class diagram in Figure 5-7, this is not what we find.
If you recall, we included in the class diagram the transaction pattern portrayed in Fig-
ure 5-4. When we did this, many changes were made to the classes contained in the class
diagram. All of these changes should have been cascaded back through all of the CRC
cards. In this case, the CRC card for the Patient class should show that a Patient is a-
kind-of Participant (not Person) and that the relationship from Patient to Medical His-
tory should be a simple association (see Figure 5-23).

Seventh, an association class, such as the Treatment class in Figure 5-7, should be cre-
ated only if there is indeed some unique characteristic (attribute, operation, or relationship)

228 Chapter 5 Structural Modeling

c05StructuralModeling.qxd 11/7/11 1:40 PM Page 228

about the intersection of the connecting classes. If no unique characteristic exists, then the
association class should be removed and only an association between the two connecting
classes should be displayed.

Finally, as in the functional models, specific representation rules must be enforced. For
example, a class cannot be a subclass of itself. The Patient CRC card cannot list Patient with
the generalization relationships on the back of the CRC card, nor can a generalization rela-
tionship be drawn from the Patient class to itself. Again, all the detailed restrictions for each
representation are beyond the scope of this book.18 Figure 5-24 portrays the associations
among the structural models.

Verifying and Validating the Structural Model 229

FIGURE 5-23
Patient CRC Card

Front:

Class Name: Patient ID: 3

Medical history

Make appointment Appointment

Change status

Calculate last visit

Provide medical history

Responsibilities

Associated Use Cases: 2Description: An individual that needs to recieve or has received
 medical attention

Type: Concrete, Domain

Collaborators

Back:

Attributes:

Insurance carrier (text)

Amount (double)

Relationships:
Generalization (a-kind-of):

Aggregation (has-parts):

Other Associations: Appointment, Medical History

Participant

18 A good reference for these types of restrictions is S.W. Ambler, The Elements of UML 2.0 Style (Cambridge, UK:
Cambridge University Press, 2005).

c05StructuralModeling.qxd 11/7/11 1:40 PM Page 229

APPLYING THE CONCEPTS AT CD SELECTIONS
In the previous chapter’s installment of the CD Selections case, we saw how Alec, Mar-
garet, and the team worked through building functional models of the business
processes contained in their evolving Web-based solution. In this chapter, we introduced
how structural models using CRC cards and class and object diagrams could be created,
verified, and validated. In this installment of the CD Selections case, we see how Alec
and Margaret work through creating, verifying, and validating the structural models of
the Web-based solution that they hope to create.

223300 CChhaapptteerr 55 Structural Modeling

FFIIGGUURREE 55--2244 Interrelationships among Structural Models

Structural Models

Including

Contains Contains

Contains

Class Diagram

Responsibilities

Collaborators

Association Aggregation

Composition

Attributes

Classes

Type

CRC Cards

Objects

Object Diagram

Contains

Represents

Associations/
Relationships

Have

HasKinds

Generalization

Association Class

HasKindsHasKinds

AssociatedWith

AssociatedWith

AssociatedWith

AssociatedWith

Operations

InstanceOf

c05StructuralModeling.qxd 12/2/11 11:26 AM Page 230

SUMMARY
Structural Models
Structural models describe the underlying structure of an object-oriented system.
Whereas functional models provide an external view of the evolving system (i.e., what
the system does), structural models provide an internal static view of the evolving sys-
tem (i.e., how the objects are organized in the system). At this point in the develop-
ment of the system, the structural model represents only a logical model of the
underlying problem domain. One of the primary purposes of the structural model is
to create a vocabulary that allows the users and developers to communicate effectively
about the problem under investigation. Structural models comprise classes, attributes,
operations, and relationships. Three basic types of relationships that normally are
depicted on structural models: aggregation, generalization, and association. Structural
models typically are represented by CRC cards, class diagrams, and, in some cases,
object diagrams.

Object Identification
There are many different ways to identify the objects that make up a problem domain.
Four of the more popular approaches include textual analysis of use case descriptions,
brainstorming, using common object lists, and using patterns. By combining these
approaches, it is relatively straightforward to uncover the objects for a given problem
domain.

CRC Cards
CRC cards model the classes, their responsibilities, and their collaborations. There are two
different types of responsibilities: knowing and doing. Knowing responsibilities are asso-
ciated mostly with attributes of instances of the class, whereas doing responsibilities are
associated mostly with operations of instances of the class. Collaborations support the
concepts of clients, servers, and contracts between objects. CRC cards capture all the essen-
tial elements of the instances of a class. The front of the card contains the class’s name, ID,
type, description, list of associated use cases, responsibilities, and collaborators, and the
back of the card contains the attributes and relationships. CRC cards are used to role-play
the use-case scenarios. Through role-playing, additional classes, attributes, operations, and
relationships can be discovered.

Class Diagrams
A class diagram is a graphical description of the information contained on the CRC
cards. It shows the classes and the relationships among the classes. The class diagram
portrays additional information not included on the CRC cards, such as the visibility of
the attributes and operations and the multiplicity of the relationships. When relation-
ship itself contains information, an associated class is created. There are special arcs for
each of the relationships (aggregation, generalization, and association) contained in the
diagram.

In real-world systems that can have hundreds of classes, the class diagram can
become overly complicated. To simplify the diagram, a view mechanism can be used. A
view restricts the amount of information portrayed on the diagram. Some useful views
include hiding all information about the class except for its name and relationships,

Summary 223311

c05StructuralModeling.qxd 12/2/11 11:26 AM Page 231

223322 CChhaapptteerr 55 Structural Modeling

showing only the classes that are associated with a particular use case, and limiting the
relationships included to only one specific type (aggregation, generalization, and
association).

When attempting to uncover additional information about the details of a class, it can
be useful to portray specific instances of a class instead of the classes themselves. In those
cases, an object diagram is used to depict a set of objects that represent an instantiation of
all or part of a class diagram.

Creating Structural Models Using CRC Cards and Class Diagrams
Creating a structural model of a problem domain is an incremental and iterative process.
The process described includes seven steps. The recommended process begins with creat-
ing CRC cards through the textual analysis of the use-case descriptions. Next, the CRC
cards are reviewed. During the review, team members brainstorm and review common
object lists for additional classes, attributes, operations, and relationships. At this point, the
team role-plays the CRC cards using the use-case scenarios. After this, a class diagram is
drawn and reviewed. Finally, useful patterns are incorporated into the class diagram and
the diagram is verified and validated.

Verifying and Validating the Structural Model
Verifying and validating the structural model is very similar to verifying and validating the
functional model. In this case, the CRC cards, class diagrams, and, in some cases, object
diagrams are carefully checked for consistency. This is done, typically, through role-play,
walkthroughs, or both.

KKEEYY TTEERRMMSS

A-kind-of, 198
A-part-of, 198
Abstract class, 197
Aggregation association, 214
Assemblies, 198
Association, 199
Association class, 213
Attribute, 197
Brainstorming, 201
Class, 197
Class diagram, 195
Client, 205
Collaboration, 205
Common object list, 201
Conceptual model, 196
Concrete class, 197
Constructor operation, 211
Contract, 205
Class–Responsibility–

Collaboration (CRC), 195
CRC cards, 205

Decomposition, 198
Derived attribute, 211
Doing responsibility, 205
Destructor operation, 211
Generalization association, 214
Has-parts, 198
Incidents, 201
Instance, 197
Interactions, 201
Knowing responsibility, 205
Method, 197
Multiplicity, 212
Object, 197
Object diagram, 195
Operation, 197
Package, 217
Parts, 198
Pattern, 202
Private, 211
Protected, 211
Public, 211

Query operation, 211
Responsibility, 205
Role-playing, 207
Roles, 201
Server, 205
State, 211
Static model, 208
Static structure diagram, 217
Structural model, 196
Subclass, 198
Substitutability, 198
Superclass, 198
SVDPI, 219
Tangible things, 201
Textual analysis, 199
Update operation, 211
View, 217
Visibility, 211
Wholes, 198

c05StructuralModeling.qxd 12/2/11 11:26 AM Page 232

Exercises 223333

QQUUEESSTTIIOONNSS

1. Describe to a businessperson the multiplicity of a rela-
tionship between two classes.

2. Why are assumptions important to a structural model?
3. What is an association class?
4. Contrast the following sets of terms: object, class,

method, attribute, superclass, subclass, concrete class,
abstract class.

5. Give three examples of derived attributes that may
exist on a class diagram. How would they be denoted
on the class diagram?

6. What are the different types of visibility? How would
they be denoted on a class diagram?

7. Draw the relationships that are described by the fol-
lowing business rules. Include the multiplicities for
each relationship.

A patient must be assigned to only one doctor and a
doctor can have one or many patients.

An employee has one phone extension, and a unique
phone extension is assigned to an employee.

A movie theater shows at least one movie, and a movie
can be shown at up to four other movie theaters
around town.

A movie either has one star, two costars, or more than
ten people starring together. A star must be in at
least one movie.

8. How do you designate the reading direction of a rela-
tionship on a class diagram?

9. For what is an association class used in a class dia-
gram? Give an example of an association class that
may be found in a class diagram that captures students
and the courses that they have taken.

10. Give two examples of aggregation, generalization, and
association relationships. How is each type of associa-
tion depicted on a class diagram?

11. Identify the following operations as constructor,
query, or update. Which operations would not need to
be shown in the class rectangle?

Calculate employee raise (raise percent)
Calculate sick days ()
Increment number of employee vacation days ()
Locate employee name ()
Place request for vacation (vacation day)
Find employee address ()
Insert employee ()
Change employee address ()
Insert spouse ()

12. How are the different structural models related and
how does this affect verification and validation of the
model?

EEXXEERRCCIISSEESS

A. Create a CRC card for each of the following classes:

Movie (title, producer, length, director, genre)
Ticket (price, adult or child, showtime, movie)
Patron (name, adult or child, age)

B. Create a class diagram based on the CRC cards you
created for exercise A.

C. Create a CRC card for each of the following classes.
Consider that the entities represent a system for a
patient billing system. Include only the attributes that
would be appropriate for this context.

Patient (age, name, hobbies, blood type, occupation,
insurance carrier, address, phone)
Insurance carrier (name, number of patients on plan,
address, contact name, phone)
Doctor (specialty, provider identification number, golf
handicap, age, phone, name)

D. Create a class diagram based on the CRC cards you
created for exercise C.

E. Create a class diagram showing the following relation-
ships:

1. A patient must be assigned to only one doctor and
a doctor can have many patients.

2. An employee has one phone extension, and a
unique phone extension is assigned to an employee.

3. A movie theater shows many different movies, and
the same movie can be shown at different movie
theaters around town.

F. Draw a class diagram for each of the following situa-
tions:

1. Whenever new patients are seen for the first time,
they complete a patient information form that asks
their name, address, phone number and insurance
carrier, which are stored in the patient information
file. Patients can be signed up with only one carrier,
but they must be signed up to be seen by the doctor.
Each time a patient visits the doctor, an insurance

c05StructuralModeling.qxd 12/2/11 11:26 AM Page 233

223344 CChhaapptteerr 55 Structural Modeling

claim is sent to the carrier for payment. The claim
must contain information about the visit, such as the
date, purpose, and cost. It would be possible for a
patient to submit two claims on the same day.

2. The state of Georgia is interested in designing a sys-
tem that will track its researchers. Information of
interest includes researcher name, title, position,
researcher’s university name, university location, uni-
versity enrollment, and researcher’s research interests.
Researchers are associated with one institution, and
each researcher has several research interests.

3. A department store has a wedding registry. This
registry keeps information about the customer
(usually the bride), the products that the store car-
ries, and the products for which each customer reg-
isters. Customers typically register for a large
number of products and many customers register
for the same products.

4. Jim Smith’s dealership sells Fords, Hondas, and
Toyotas. The dealership keeps information about
each car manufacturer with whom they deal so
that they can get in touch with them easily. The
dealership also keeps information about the mod-
els of cars that they carry from each manufacturer.
They keep information such as list price, the price
the dealership paid to obtain the model, and the
model name and series (e.g., Honda Civic LX).
They also keep information about all sales that
they have made (for instance, they record the
buyer’s name, the car they bought, and the amount
they paid for the car). To contact the buyers in the
future, contact information is also kept (e.g.,
address, phone number).

G. Create object diagrams based on the class diagrams
you drew for exercise F.

H. Examine the class diagrams that you created for exer-
cise F. How would the models change (if at all) based
on these new assumptions?

1. Two patients have the same first and last names.
2. Researchers can be associated with more than one

institution.
3. The store would like to keep track of purchase items.
4. Many buyers have purchased multiple cars from

Jim over time because he is such a good dealer.

I. Visit a website that allows customers to order a prod-
uct over the Web (e.g., Amazon.com). Create a struc-
tural model (CRC cards and class diagram) that the

site must need to support its business process. Include
classes to show what they need information about. Be
sure to include the attributes and operations to repre-
sent the type of information they use and create.
Finally, draw relationships, making assumptions about
how the classes are related.

J. Using the seven-step process described in this chapter,
create a structural model (CRC cards and class dia-
gram) for exercise C in Chapter 4.

K. Perform a verification and validation walkthrough for
the structural model created for exercise J.

L. Using the seven-step process described in this
chapter, create a structural model for exercise E in
Chapter 4.

M. Perform a verification and validation walkthrough for
the structural model created for exercise L.

N. Using the seven-step process described in this
chapter, create a structural model for exercise G in
Chapter 4.

O. Perform a verification and validation walkthrough for
the structural model created for exercise N.

P. Using the seven-step process described in this
chapter, create a structural model for exercise I in
Chapter 4.

Q. Perform a verification and validation walkthrough for
the structural model created for exercise P.

R. Using the seven-step process described in this chapter,
create a structural model for exercise L in Chapter 4.

S. Perform a verification and validation walkthrough for
the structural model created for exercise R.

T. Using the seven-step process described in this
chapter, create a structural model for exercise O in
Chapter 4.

U. Perform a verification and validation walkthrough for
the structural model created for exercise T.

V. Using the seven-step process described in this
chapter, create a structural model for exercise R in
Chapter 4.

W. Perform a verification and validation walkthrough for
the structural model created for exercise V.

X. Using the seven-step process described in this
chapter, create a structural model for exercise U in
Chapter 4.

Y. Perform a verification and validation walkthrough for
the structural model created for exercise X.

c05StructuralModeling.qxd 12/2/11 11:26 AM Page 234

Minicases 223355

MMIINNIICCAASSEESS

1. West Star Marinas is a chain of twelve marinas that offer
lakeside service to boaters; service and repair of boats,
motors, and marine equipment; and sales of boats,
motors, and other marine accessories. The systems
development project team at West Star Marinas has been
hard at work on a project that eventually will link all the
marina’s facilities into one unified, networked system.

The project team has developed a use-case dia-
gram of the current system. This model has been care-
fully checked. Last week, the team invited a number of
system users to role-play the various use cases, and the
use cases were refined to the users’ satisfaction. Right
now, the project manager feels confident that the as-is
system has been adequately represented in the use-case
diagram.

The director of operations for West Star is the
sponsor of this project. He sat in on the role-playing of
the use cases and was very pleased by the thorough job
the team had done in developing the model. He made
it clear to you, the project manager, that he was anx-
ious to see your team begin work on the use cases for
the to-be system. He was a little skeptical that it was
necessary for your team to spend any time modeling
the current system in the first place but grudgingly
admitted that the team really seemed to understand
the business after going through that work.

The methodology you are following, however,
specifies that the team should now turn its attention to
developing the structural models for the as-is system.
When you stated this to the project sponsor, he
seemed confused and a little irritated. “You are going
to spend even more time looking at the current sys-
tem? I thought you were done with that! Why is this
necessary? I want to see some progress on the way
things will work in the future!”

What is your response to the director of opera-
tions? Why do we perform structural modeling? Is there
any benefit to developing a structural model of the
current system at all? How do the use cases and use-case
diagram help us develop the structural model?

2. Holiday Travel Vehicles sells new recreational vehicles
and travel trailers. When new vehicles arrive at Holiday
Travel Vehicles, a new vehicle record is created. Included
in the new vehicle record are a vehicle serial number,
name, model, year, manufacturer, and base cost.

When a customer arrives at Holiday Travel Vehi-
cles, he or she works with a salesperson to negotiate a
vehicle purchase. When a purchase has been agreed

upon, a sales invoice is completed by the salesperson.
The invoice summarizes the purchase, including full
customer information, information on the trade-in
vehicle (if any), the trade-in allowance, and informa-
tion on the purchased vehicle. If the customer requests
dealer-installed options, they are listed on the invoice
as well. The invoice also summarizes the final negoti-
ated price, plus any applicable taxes and license fees.
The transaction concludes with a customer signature
on the sales invoice.

a. Identify the classes described in the preceding scenario
(you should find six). Create CRC cards for each class.

Customers are assigned a customer ID when they
make their first purchase from Holiday Travel Vehicles.
Name, address, and phone number are recorded for
the customer. The trade-in vehicle is described by a
serial number, make, model, and year. Dealer-installed
options are described by an option code, description,
and price.

b. Develop a list of attributes for each class. Place the
attributes onto the CRC cards.

Each invoice lists just one customer. A person
does not become a customer until he or she purchases
a vehicle. Over time, a customer may purchase a num-
ber of vehicles from Holiday Travel Vehicles.

Every invoice must be filled out by only one sales-
person. A new salesperson might not have sold any
vehicles, but experienced salespeople have probably
sold many vehicles.

Each invoice only lists one new vehicle. If a new
vehicle in inventory has not been sold, there will be no
invoice for it. Once the vehicle sells, there will be just
one invoice for it.

A customer may decide to have no options added
to the vehicle or may choose to add many options. An
option may be listed on no invoices or it may be listed
on many invoices.

A customer may trade in no more than one vehicle
on a purchase of a new vehicle. The trade-in vehicle
may be sold to another customer who later trades it in
on another Holiday Travel vehicle.

c. Based on the preceding business rules in force at
Holiday Travel Vehicles and CRC cards, draw a class
diagram and document the relationships with the
appropriate multiplicities. Remember to update the
CRC cards.

c05StructuralModeling.qxd 12/2/11 11:26 AM Page 235

223366

Behavioral models describe the internal dynamic aspects of an information system that
supports the business processes in an organization. During analysis, behavioral models
describe what the internal logic of the processes is without specifying how the processes
are to be implemented. Later, in the design and implementation phases, the detailed design
of the operations contained in the object is fully specified. In this chapter, we describe three
Unified Modeling Language (UML) diagrams that are used in behavioral modeling
(sequence diagrams, communication diagrams, and behavioral state machines) and
CRUDE (create, read, update, delete, execute) matrices.

OOBBJJEECCTTIIVVEESS

! Understand the rules and style guidelines for sequence and communication diagrams
and behavioral state machines

! Understand the processes used to create sequence and communication diagrams,
behavioral state machines, and CRUDE matrices

! Be able to create sequence and communication diagrams, behavioral state machines,
and CRUDE matrices

! Understand the relationship between the behavioral models and the structural and
functional models

CCHHAAPPTTEERR OOUUTTLLIINNEE

CC HH AA PP TT EE RR 66

BEHAVIORAL MODELING

Introduction
Behavioral Models
Interaction Diagrams

Objects, Operations, and Messages
Sequence Diagrams
Communication Diagrams

Behavioral State Machines
States, Events, Transitions, Actions,

and Activities

Elements of a Behavioral State
Machine

Creating Behavioral State Machines
CRUDE Analysis
Verifying and Validating the Behavioral

Model
Applying the Concepts at CD Selections
Summary

INTRODUCTION
The previous two chapters discussed functional models and structural models. Systems
analysts use functional models to describe the external behavioral view of an information
system, and they use structural models to depict the static view of an information system.

c06BehavioralModeling.qxd 12/2/11 7:18 PM Page 236

Behavioral Models 237

In this chapter, we discuss how analysts use behavioral models to represent the internal
behavior or dynamic view of an information system.

There are two types of behavioral models. First, there are behavioral models used to
represent the underlying details of a business process portrayed by a use-case model. In
UML, interaction diagrams (sequence and communication) are used for this type of
behavioral model. Practically speaking, interaction diagrams allow the analyst to model the
distribution of the behavior of the system over the actors and objects in the system. In this
way, we can easily see how actors and objects collaborate to provide the functionality
defined in a use case. Second, a behavioral model is used to represent the changes that
occur in the underlying data. UML uses behavioral state machines for this.

During analysis, analysts use behavioral models to capture a basic understanding of
the dynamic aspects of the underlying business process. Traditionally, behavioral models
have been used primarily during design, where analysts refine the behavioral models to
include implementation details (see Chapter 8). For now, our focus is on what the dynamic
view of the evolving system is and not on how the dynamic aspect of the system will be
implemented.

In this chapter, we concentrate on creating behavioral models of the underlying busi-
ness process. Using the interaction diagrams (sequence and communication diagrams) and
behavioral state machines, it is possible to give a complete view of the dynamic aspects of
the evolving business information system. We first describe behavioral models and their
components. We then describe each of the diagrams, how they are created, and how they
are related to the functional and structural models described in Chapters 4 and 5.

BEHAVIORAL MODELS
When an analyst is attempting to understand the underlying application domain of a prob-
lem, he or she must consider both structural and behavioral aspects of the problem. Unlike
other approaches to the development of information systems, object-oriented approaches
attempt to view the underlying application domain in a holistic manner. By viewing the
problem domain as a set of use cases that are supported by a set of collaborating objects,
object-oriented approaches allow an analyst to minimize the semantic gap between the
real-world set of objects and the evolving object-oriented model of the problem domain.
However, as we pointed out in the previous chapter, the real world tends to be messy, which
makes perfect modeling of the application domain practically impossible in software. This
is because software must be neat and logical to work.

One of the primary purposes of behavioral models is to show how the underlying
objects in a problem domain will work together to form a collaboration to support each of
the use cases. Whereas structural models represent the objects and the relationships between
them, behavioral models depict the internal view of the business process that a use case
describes. The process can be shown by the interaction that takes place between the objects
that collaborate to support a use case through the use of interaction (sequence and com-
munication) diagrams. It is also possible to show the effect that the set of use cases that make
up the system has on the objects in the system through the use of behavioral state machines.

Creating behavioral models is an iterative process that iterates not only over the indi-
vidual behavioral models [e.g., interaction (sequence and communication) diagrams and
behavioral state machines] but also over the functional (see Chapter 4) and structural
models (see Chapter 5). As the behavioral models are created, it is not unusual to make
changes to the functional and structural models. In this chapter, we describe interaction
diagrams, behavioral state machines, and CRUDE analysis and when to use each.

c06BehavioralModeling.qxd 11/7/11 1:45 PM Page 237

INTERACTION DIAGRAMS
One of the primary differences between class diagrams and interaction diagrams, besides
the obvious difference that one describes structure and the other behavior, is that the mod-
eling focus on a class diagram is at the class level, whereas the interaction diagrams focus
on the object level. In this section we review objects, operations, and messages and we cover
the two different diagrams (sequence and communication) that can be used to model the
interactions that take place between the objects in an information system.

Objects, Operations, and Messages
An object is an instantiation of a class, that is, an actual person, place, or thing about which
we want to capture information. If we were building an appointment system for a doctor’s
office, classes might include doctor, patient, and appointment. The specific patients, such
as Jim Maloney, Mary Wilson, and Theresa Marks, are considered objects—that is,
instances of the patient class.

Each object has attributes that describe information about the object, such as a
patient’s name, birth date, address, and phone number. Each object also has behaviors.
At this point in the development of the evolving system, the behaviors are described by
operations. An operation is nothing more than an action that an object can perform. For
example, an appointment object can probably schedule a new appointment, delete an
appointment, and locate the next available appointment. Later on during the development
of the evolving system, the behaviors will be implemented as methods.

Each object also can send and receive messages. Messages are information sent to
objects to tell an object to execute one of its behaviors. Essentially, a message is a function
or procedure call from one object to another object. For example, if a patient is new to the
doctor’s office, the system sends an insert message to the application. The patient object
receives the instruction (the message) and does what it needs to do to insert the new patient
into the system (the behavior).

Sequence Diagrams
Sequence diagrams are one of two types of interaction diagrams. They illustrate the objects
that participate in a use case and the messages that pass between them over time for one use
case. A sequence diagram is a dynamic model that shows the explicit sequence of messages
that are passed between objects in a defined interaction. Because sequence diagrams
emphasize the time-based ordering of the activity that takes place among a set of objects,
they are very helpful for understanding real-time specifications and complex use cases.

The sequence diagram can be a generic sequence diagram that shows all possible sce-
narios1 for a use case, but usually each analyst develops a set of instance sequence diagrams,
each of which depicts a single scenario within the use case. If you are interested in under-
standing the flow of control of a scenario by time, you should use a sequence diagram to
depict this information. The diagrams are used throughout the analysis and design phases.
However, the design diagrams are very implementation specific, often including database
objects or specific user interface components as the objects.

Elements of a Sequence Diagram Figure 6-1 shows an instance sequence diagram that
depicts the objects and messages for the Make Old Patient Appt use case, which describes the
process by which an existing patient creates a new appointment or cancels or reschedules an

223388 CChhaapptteerr 66 Behavioral Modeling

1 Remember that a scenario is a single executable path through a use case.

c06BehavioralModeling.qxd 11/28/11 10:33 AM Page 238

appointment for the doctor’s office appointment system. In this specific instance, the Make
Old Patient Appt process is portrayed.

Actors and objects that participate in the sequence are placed across the top of the dia-
gram using actor symbols from the use-case diagram and object symbols from the object
diagram (see Figure 6-2). Notice that the actors and objects in Figure 6-1 are aPatient, aRe-
ceptionist, aPatient, UnpaidBill, and Appointment.2 They are not placed in any particular
order, although it is nice to organize them in some logical way, such as the order in which
they participate in the sequence. For each of the objects, the name of the class of which they
are an instance is given after the object’s name (e.g., aPatient means that aPatient is an
instance of the Patient class).

A dotted line runs vertically below each actor and object to denote the lifeline of the
actors and objects over time (see Figure 6-1).3 Sometimes an object creates a temporary
object; in this case an X is placed at the end of the lifeline at the point where the object is
destroyed (not shown). For example, think about a shopping cart object for a Web com-
merce application. The shopping cart is used for temporarily capturing line items for an
order, but once the order is confirmed, the shopping cart is no longer needed. In this case,
an X would be located at the point at which the shopping cart object is destroyed. When
objects continue to exist in the system after they are used in the sequence diagram, then the
lifeline continues to the bottom of the diagram (this is the case with all of the objects in
Figure 6-1).

Interaction Diagrams 239

2 In some versions of the sequence diagram, object symbols are used as surrogates for the actors. However, for
clarity, we recommend using actor symbols for actors instead.
3 Technically speaking, in UML 2.0 the lifeline actually refers to both the object (actor) and the dashed line drawn
vertically underneath the object (actor). However, we prefer to use the older terminology because it is more
descriptive of what is actually being represented.

RequestAppt(name, address)

NewCancelChangeAppt?()

ApptTimes?()

aPatient

LookUpPatient()

aReceptionist

[aPatient Exists] LookupBills()

MatchAppts()

CreateAppt()

aPatient:Patient :UnpaidBill :Appointment

sd Make Appt Use Case

FIGURE 6-1 Example Sequence Diagram

c06BehavioralModeling.qxd 11/7/11 1:45 PM Page 239

A thin rectangular box, called the execution occurrence, is overlaid onto the lifeline to
show when the classes are sending and receiving messages (see Figure 6-2). A message is a
communication between objects that conveys information with the expectation that activ-
ity will ensue. Many different types of messages can be portrayed on a sequence diagram.

240 Chapter 6 Behavioral Modeling

Context

An actor:

! Is a person or system that derives benefit from and is external to the system.
! Participates in a sequence by sending and/or receiving messages.
! Is placed across the top of the diagram.
! Is depicted either as a stick figure (default) or, if a nonhuman actor is involved, as

a rectangle with <<actor>> in it (alternative).

An object:

! Participates in a sequence by sending and/or receiving messages.
! Is placed across the top of the diagram.

A lifeline:

! Denotes the life of an object during a sequence.
! Contains an X at the point at which the class no longer interacts.

An execution occurrence:

! Is a long narrow rectangle placed atop a lifeline.
! Denotes when an object is sending or receiving messages.

A message:

! Conveys information from one object to another one.
! A operation call is labeled with the message being sent and a solid arrow, whereas

a return is labeled with the value being returned and shown as a dashed arrow.

A guard condition:

! Represents a test that must be met for the message to be sent.

<<actor>>
anActor

anActor

aMessage()

[aGuardCondition]:aMessage()

ReturnValue

For object destruction:

! An X is placed at the end of an object’s lifeline to show that it is going out
of existence.

A frame:

! Indicates the context of the sequence diagram.

X

Term and Definition Symbol

anObject : aClass

FIGURE 6-2 Sequence Diagram Syntax

c06BehavioralModeling.qxd 11/7/11 1:45 PM Page 240

However, in the case of using sequence diagrams to model use cases, two types of messages
are typically used: operation call and return. Operation call messages passed between objects
are shown using solid lines connecting two objects with an arrow on the line showing
which way the message is being passed. Argument values for the message are placed in
parentheses next to the message’s name. The order of messages goes from the top to the
bottom of the page, so messages located higher on the diagram represent messages that
occur earlier on in the sequence, versus the lower messages that occur later. A return mes-
sage is depicted as a dashed line with an arrow on the end of the line portraying the direc-
tion of the return. The information being returned is used to label the arrow. However,
because adding return messages tends to clutter the diagram, unless the return messages
add a lot of information to the diagram, they can be omitted. For example, in Figure 6-1,
no return messages are depicted.4 In Figure 6-1, LookUpPatient() is a message sent from
the actor aReceptionist to the object aPatient to determine whether the aPatient actor is a
current patient.

At times a message is sent only if a condition is met. In those cases, the condition is
placed between a set of brackets, []—for example, [aPatient Exists] LookupBills(). The
condition is placed in front of the message name. However, when using a sequence dia-
gram to model a specific scenario, conditions are typically not shown on any single
sequence diagram. Instead, conditions are implied only through the existence of different
sequence diagrams.

There are times that a message is repeated. This is designated with an asterisk (*) in
front of the message name (e.g., * Request CD). An object can also send a message to itself.
This is known as self-delegation. Sometimes, an object creates another object. This is shown
by the message being sent directly to an object instead of its lifeline.

Figure 6-3 portrays two additional examples of instance-specific sequence diagrams.
The first one is related to the Make Lunch use case that was described in the activity dia-
gram portrayed in Figure 4-9. The second one is related to the Place Order use case associ-
ated with the activity diagram in Figure 4-8. In both examples, the diagrams simply
represent a single scenario. Notice in the Make Lunch sequence diagram there is a message
being sent from an actor to itself [CreateSandwich()]. Depending on the complexity of the
scenario being modeled, this particular message could have been eliminated. Obviously,
both the process of making a lunch and placing an order can be quite a bit more complex.
However, from a learning point of view, you should be able to see how the sequence dia-
grams and the activity diagrams relate to one another.

Guidelines for Creating Sequence Diagrams Ambler5 provides a set of guidelines when
drawing sequence diagrams (see Figure 6-4). In this section, we review six of them.

! Try to have the messages not only in a top to bottom order but also, when possible,
in a left to right order. Given that western cultures tend to read left to right and
top to bottom, a sequence diagram is much easier to interpret if the messages are
ordered as much as possible in the same way. To accomplish this, order the actors
and objects along the top of the diagram in the order that they participate in the
scenario of the use case.

! If an actor and an object conceptually represent the same idea, one inside of the
software and the other outside, label them with the same name. In fact, this
implies that they exist in both the use-case diagram (as an actor) and in the class

Interaction Diagrams 241

4 However, some CASE tools require the return messages to be displayed. Obviously, when you are using these
tools, you have to include the return messages on the diagram.
5 S.W. Ambler, The Elements of UML 2.0 Style (Cambridge, England: Cambridge University Press, 2005).

c06BehavioralModeling.qxd 11/7/11 1:45 PM Page 241

242 Chapter 6 Behavioral Modeling

sd Make Lunch Use Case

sd Submit Order Use Case

MakeLunch

Lunch

aChild:Child firstParent:Parent secondParent:Parent

CreateLunch

Sandwich

Lunch

GetSandwich

Create Sandwich

SubmitOrderRequest()

OrderRejected

aCustomer:Customer aSalesPerson:SalesPerson

SubmitCreditRequest()

CreditDenied

aCustomer:Customer

FIGURE 6-3
Additional Sample
Instance-Specific
Sequence Diagrams

FIGURE 6-4
Guidelines for
Creating Sequence
Diagrams

• Strive for left to right ordering of messages

• If an actor and object represent the same idea, name them the same.

• Place the initiator of the scenario on the left of diagram.

• When there are multiple objects of the same type, be sure to name them.

• Only show return values when they are not obvious.

• Justify message names and return values near the arrowhead.

diagram (as a class). At first glance, this might seem to lead to confusion. However,
if they do indeed represent the same idea, then they should have the same name.
For example, a customer actor interacts with the system and the system stores
information about the customer. In this case, they do indeed represent the same
conceptual idea.

c06BehavioralModeling.qxd 11/7/11 1:45 PM Page 242

! The initiator of the scenario—actor or object—should be the drawn as the farthest
left item in the diagram. This guideline is essentially a specialization of the first
guideline. In this case, it relates specifically to the actor or object that triggers the
scenario.

! When there are multiple objects of the same type, be sure to include a name for
the object in addition to the class of the object. For example, in the making a lunch
example (see Figure 6-3) there are two objects of type Parent. As such, they should
be named. Otherwise, you can simply use the class name. This will simplify the
diagram. In this case, the Child object did not have to be named. We could have
simply placed a colon in front of the classname instead.

! Show return values only when they are not obvious. Showing all of the returns
tends to make a sequence diagram more complex and potentially difficult to
comprehend. In many cases, less is more. Only show the returns that actually add
information for the reader of the diagram.

! Justify message names and return values near the arrowhead of the message and
return arrows, respectively. This makes it much easier to interpret the messages
and their return values.

Creating a Sequence Diagram In this section we describe a six-step process used to
create a sequence diagram.6 The first step in the process is to determine the context of the
sequence diagram. The context of the diagram can be a system, a use case, or a scenario of
a use case. The context of the diagram is depicted as a labeled frame around the diagram
(see Figures 6-1, 6-2, and 6-3). Most commonly, it is one use-case scenario. Figure 6-1 por-
trays the instance-specific sequence diagram for the scenario from the Make Old Patient
Appt use case given in Figure 4-11 for making a new appointment for an existing patient.
For each possible scenario for the Make Old Patient Appt use case, a separate instance-
specific sequence diagram would be created. On the surface, this seems to be a lot of poten-
tially redundant and useless work. However, at this point in the representation of a system,
we are still trying to completely understand the problem. This process of creating instance-
specific sequence diagrams for each scenario instead of creating a single generic sequence
diagram for the entire use case will enable the developers to attain a more complete under-
standing of the problem being addressed. Each instance-specific sequence diagram is fairly
simple to interpret, whereas a generic sequence diagram can be very complex. The testing
of a specific use case is accomplished in a much easier manner by validating and verifying
the completeness of the set of instance-specific sequence diagrams instead of trying to
work through a single complex generic sequence diagram.

The second step is to identify the actors and objects that participate in the sequence being
modeled—that is, the actors and objects that interact with each other during the use-case
scenario. The actors were identified during the creation of the functional model, whereas the
objects are identified during the development of the structural model. These are the classes
on which the objects of the sequence diagram for this scenario will be based. One very use-
ful approach to identifying all of the scenarios associated with a use case is to role-play the
CRC cards (see Chapter 5). This can help you identify potentially missing operations that
are necessary to support the business process, which the use case is representing, in a com-
plete manner. Also, during role-playing, it is likely that new classes, and hence new objects,

Interaction Diagrams 224433

6 The approach described in this section are adapted from Grady Booch, James Rumbaugh, Ivar Jacobson, The
Unified Modeling Language User Guide (Reading, MA: Addison-Wesley, 1999).

22.. IIddeennttiiffyy AAccttoorrss
aanndd OObbjjeeccttss

11.. SSeett CCoonntteexxtt

c06BehavioralModeling.qxd 11/28/11 10:33 AM Page 243

will be uncovered.7 Don’t worry too much about identifying all the objects perfectly;
remember that the behavioral modeling process is iterative. Usually, the sequence diagrams
are revised multiple times during the behavioral modeling processes.

The third step is to set the lifeline for each object. To do this, you need to draw a vertical
dotted line below each class to represent the class’s existence during the sequence. An X
should be placed below the object at the point on the lifeline where the object goes out of
existence.

The fourth step is to add the messages to the diagram. This is done by drawing arrows to
represent the messages being passed from object to object, with the arrow pointing in the
message’s transmission direction. The arrows should be placed in order from the first mes-
sage (at the top) to the last (at the bottom) to show time sequence. Any parameters passed
along with the messages should be placed in parentheses next to the message’s name. If a
message is expected to be returned as a response to a message, then the return message is
not explicitly shown on the diagram.

The fifth step is to place the execution occurrence on each object’s lifeline by drawing a nar-
row rectangle box over the lifelines to represent when the classes are sending and receiving
messages.

The sixth and final step is to validate the sequence diagram. The purpose of this step is to
guarantee that the sequence diagram completely represents the underlying process. This is
done by guaranteeing that the diagram depicts all the steps in the process.8

244 Chapter 6 Behavioral Modeling

7 This obviously will cause you to go back and modify the structural model (see Chapter 5).
8 We describe validation in more detail later in this chapter.

In Your Turn 4-4, you were asked to create a set of use cases
and a use-case diagram for the campus housing service that
helps students find apartments. In Your Turn 5-2, you were
asked to create a structural model (CRC cards and class

diagram) for those use cases. Select one of the use cases
from the use-case diagram and create a set of instance-
specific sequence diagrams that represents the interaction
among classes in the different scenarios of the use case.

6-1 Drawing a Sequence DiagramYOUR

TURN

Example In the previous chapters, we have demonstrated the diagramming and model-
ing processes using the Borrow Books use case of the Library Book Collection Management
System. When considering instance-specific scenario diagrams, we need to draw one sequence
diagram per scenario. In the case of the Borrow Books use case in Chapter 4, there are nine
different scenarios. Therefore, for this one use case, there would be nine separate diagrams.
In this example, we are setting the context of the sequence diagram to only one specific
scenario of the Borrow Books use case: Students who have a valid ID and do not have any
overdue books or any fines. The other scenarios include Students without a valid ID,
Students with a valid ID but who owe fines or have overdue books, and the same three

3. Set Lifeline

4. Add Messages

5. Place Execution
Occurrence

6. Validate

c06BehavioralModeling.qxd 11/7/11 1:45 PM Page 244

scenarios for the other two types of Borrowers: Faculty/Staff and Guest. In this example,
we are only drawing the one sequence diagram for the Students with a valid ID scenario. To
begin with, we should review the Flow of Events of the use-case description (see Figure 6-5),
the activity diagram (see Figure 6-6), and the use-case diagram (see Figure 6-7).

The next step is to identify the actors and objects involved in the scenario. By study-
ing the flow of events and the use-case diagram we identify students, librarians, and the
registrar’s database as actors and borrowers, the book collection, and books as the objects.
We place the actors and objects across the top of the diagram based on the ordering of

Interaction Diagrams 245

FIGURE 6-5 Flow of Events section of the Use Case Description of the Borrow
Books Use Case

Normal Flow of Events:

SubFlows:

1. The Borrower brings books to the Librarian at the check out desk.
2. The Borrower provides Librarian their ID card.
3. The Librarian checks the validity of the ID Card.
 If the Borrower is a Student Borrower, Validate ID Card against Registrar’s Database.
 If the Borrower is a Faculty/Staff Borrower, Validate ID Card against Personnel Database.
 If the Borrower is a Guest Borrower, Validate ID Card against Library’s Guest Database.
4. The Librarian checks whether the Borrower has any overdue books and/or fines.
5. The Borrower checks out the books.

Alternate/Exceptional Flows:
4a. The ID Card is invalid, the book request is rejected.
5a. The Borrower either has overdue books, fines, or both, the book request is rejected.

Validate ID Card

Check for Overdue Books and Fines

Check Out Books

[Valid Card]

[No Overdue Books & No Fines]

FIGURE 6-6
Activity Diagram of the
Borrow Books Use
Case (Figure 4-10)

c06BehavioralModeling.qxd 11/7/11 1:45 PM Page 245

their appearance in the normal flow of events. The next step involves simply drawing the
lifelines beneath the actors and objects in the scenario. The fourth step is to add the actual
messages to the diagram. To do this, we again review the actual steps taken when execut-
ing this scenario by reviewing the flow of events (see Figure 6-5) and the activity diagram
(see Figure 6-6). We also should review any results from the role-playing of the CRC cards
(see Chapter 5). This will help us to properly portray where the functionality is located.
For example, in Figure 6-8, the Librarian executes the CheckOutBooks() procedure (the
Student sends the message CheckOutBooks () to ask the Librarian to execute the Check-
OutBooks () procedure) when the student hands the librarian the books to check out. The
Librarian in return asks the Student for the ID card. When the student hands the ID
Card to the Librarian, the Librarian asks the Registrar’s Database to execute the ValidID()
procedure when the Librarian passes the student’s ID number over to the database system
to ask the database system to validate the student’s ID number. This continues until the
ID Card and Books are returned to the student. Once we have decided from whom the
messages are to be sent and to whom they are sent, we can place the messages on the dia-
gram. The fifth step then is to add the execution occurrence to the diagrams to show when
each actor or object is in the process of executing one of its operations. Next, we must val-
idate the diagram. Finally, we should replicate this process for the other eight scenarios.

Communication Diagrams
Communication diagrams, like sequence diagrams, essentially provide a view of the
dynamic aspects of an object-oriented system. They can show how the members of a set
of objects collaborate to implement a use case or a use-case scenario. They can also be
used to model all the interactions among a set of collaborating objects, in other words,

246 Chapter 6 Behavioral Modeling

Process Overdue
Books

Library Book
Collection

Management
System

Maintain Book
Collection

Borrow Books

Search Collection

Return Books

*

* *
*

*

*

*

*

* *

*

*

<<actor>>
Personnel Office

<<actor>>
Registrar Office

Librarian

*

BorrowerFIGURE 6-7
Use Case Diagram
for the Library
Book Collection
Management System
(Figure 4-5)

c06BehavioralModeling.qxd 11/7/11 1:45 PM Page 246

a collaboration (see CRC cards in Chapter 5). In this case, a communication diagram
can portray how dependent the different objects are on one another.9 A communication
diagram is essentially an object diagram that shows message-passing relationships instead
of aggregation or generalization associations. Communication diagrams are very useful to
show process patterns (i.e., patterns of activity that occur over a set of collaborating
classes).

Communication diagrams are equivalent to sequence diagrams, but they emphasize
the flow of messages through a set of objects, whereas the sequence diagrams focus on the
time ordering of the messages being passed. Therefore, to understand the flow of control
over a set of collaborating objects or to understand which objects collaborate to support
business processes, a communication diagram can be used. For time ordering of the mes-
sages, a sequence diagram should be used. In some cases, both can be used to more fully
understand the dynamic activity of the system.

Elements of a Communication Diagram Figure 6-9 shows a communication diagram
for the Make Old Patient Appt use case. Like the sequence diagram in Figure 6-1, the Make
Old Patient Appt process is portrayed.

Actors and objects that collaborate to execute the use case are placed on the com-
munication diagram in a manner to emphasize the message passing that takes place

Interaction Diagrams 247

sd Borrow Books Use Case

:Student

Books

BookAccts

FindBook(BookID)

BookAcct

FindBooks(BookID)

No

ValidID(ID
Number)

Ye s

ID

IDCard?()

CheckOutBooks(Books)

:Librarian
Registrar’s Database :Book:Fine Database :BookCollection

Overdue Books or Fines(ID)

FIGURE 6-8 Sequence Diagram of the Borrow Books Use Case for Students with a Valid
ID and No Overdue Books or Fines

9 We return to this idea of dependency in Chapters 7 and 8.

c06BehavioralModeling.qxd 11/7/11 1:45 PM Page 247

between them. Notice that the actors and objects in Figure 6-9 are the same ones in
Figure 6-1: aPatient, aReceptionist, aPatient, UnpaidBill, and Appointment.10 Again, as
with the sequence diagram, for each of the objects, the name of the class of which they
are an instance is given after the object’s name (e.g., aPatient: Patient). (The commu-
nication diagram syntax is given in Figure 6-10.) Unlike the sequence diagram, the
communication diagram does not have a means to explicitly show an object being
deleted or created. It is assumed that when a delete, destroy, or remove message is sent
to an object, it will go out of existence, and a create or new message will cause a new
object to come into existence. Another difference between the two interaction dia-
grams is that the communication diagram never shows returns from message sends,
whereas the sequence diagram can optionally show them.

An association is shown between actors and objects with an undirected line. For exam-
ple, an association is shown between the aPatient and aReceptionist actors. Messages are
shown as labels on the associations. Included with the labels are lines with arrows showing
the direction of the message being sent. For example, in Figure 6-9, the aPatient actor
sends the RequestAppt() message to the aReceptionist actor, and the aReceptionist actor
sends the NewCancelChangeAppt?() and the ApptTimes?() messages to the aPatient actor.
The sequence of the message sends is designated with a sequence number. In Figure 6-9, the
RequestAppt() message is the first message sent, whereas the NewCancelChangeAppt?() and
the ApptTimes?() messages are the fourth and fifth message sent, respectively.

Like the sequence diagram, the communication diagram can represent conditional
messages. For example, in Figure 6-9, the LookupBills() message is sent only if the
[aPatient exists] condition is met. If a message is repeatedly sent, an asterisk is placed
after the sequence number. Finally, an association that loops onto an object shows self-
delegation. The message is shown as the label of the association.

When a communication diagram is fully populated with all the objects, it can become
very complex and difficult to understand. When this occurs, it is necessary to simplify the
diagram. One approach to simplifying a communication diagram, like use-case diagrams

248 Chapter 6 Behavioral Modeling

10 In some versions of the communication diagram, object symbols are used as surrogates for the actors. How-
ever, again we recommend using actor symbols for actors instead.

sd Make Appt Use Case

aPatient

1: RequestAppt(name, address)

4: NewCancelChangeAppt?

5: ApptTimes?

aReceptionist

2: LookUpPatient()

3: [aPatient Exists] LookupBills()

7: CreateAppt()

6: MatchAppts()

:Appointment

aPatient:Patient

:UnpaidBill

FIGURE 6-9 Sample Communication Diagram

c06BehavioralModeling.qxd 11/7/11 1:45 PM Page 248

(see Chapter 4) and class diagrams (see Chapter 5), is through the use of packages (i.e.,
logical groups of classes). In the case of communication diagrams, its objects are grouped
together based on the messages sent to and received from the other objects.11

Figure 6-11 provides two additional examples of communication diagrams. These dia-
grams are equivalent to the sequence diagrams contained in Figure 6-3. However, when
comparing the communication diagrams to the sequence diagrams in these figures, you see
that quite a bit of information is lost. For example, the CreateSandwich() message is
nowhere to be found. However, the primary purpose of the communication diagram is to
show how the different actors and classes interact, and this is exactly the information that
is included.

Interaction Diagrams 249

11 For those familiar with structured analysis and design, packages serve a purpose similar to the leveling and
balancing processes used in data flow diagramming. Packages and package diagrams are described in Chapter 7.

An actor:

! Is a person or system that derives benefit from and is external to the system.
! Participates in a collaboration by sending and/or receiving messages.

An object:

! Participates in a collaboration by sending and/or receiving messages.

An association:

! Shows an association between actors and/or objects.
! Is used to send messages.

A message:

! Conveys information from one object to another one.
! Has direction shown using an arrowhead.
! Has sequence shown by a sequence number.

A frame:

! Indicates the context of the communication diagram.

A guard condition:

! Represents a test that must be met for the message to be sent.

<<actor>>
anActor

anActor

Context

SeqNumber: aMessage

SeqNumber: [aGuardCondition]: aMessage

Term and Definition Symbol

! Is depicted either as a stick figure (default) or, if a nonhuman actor is involved,
 as a rectangle with <<actor>> in it (alternative).

anObject : aClass

FIGURE 6-10 Communication Diagram Syntax

c06BehavioralModeling.qxd 11/7/11 1:45 PM Page 249

Guidelines for Creating Communication Diagrams Ambler12 provides a set of guide-
lines when drawing communication diagrams (see Figure 6-12). In this section, in addition
to the first four guidelines for drawing sequence diagrams, we consider two more.

! Use the correct diagram for the information you are interested in communicating
with the user. In this case, do not use communication diagrams to model process
flow. Instead, you should use an activity diagram with swimlanes that represent
objects (see Chapter 4). Communication diagrams allow the team to easily
identify a set of objects that are intertwined. On the other hand, it would be very
difficult to “see” how the objects collaborated in an activity diagram.

! When trying to understand the sequencing of messages, a sequence diagram
should be used instead of a communication diagram. As in the previous
guideline, this guideline essentially suggests that you should use the diagram that
was designed to deal with the issue at hand. Even though communication
diagrams can show sequencing of messages, this was never meant to be their
primary purpose.

Creating a Communication Diagram13 Remember that a communication diagram is
basically an object diagram that shows message-passing relationships instead of aggrega-
tion or generalization associations. In this section, we describe a five-step process used to
build a communication diagram. The first step in the process is to determine the context
of the communication diagram. Like a sequence diagram, the context of the diagram can
be a system, a use case, or a scenario of a use case. The context of the diagram is depicted
as a labeled frame around the diagram (see Figures 6-9, 6-10, and 6-11).

250 Chapter 6 Behavioral Modeling

12 S.W. Ambler, The Elements of UML 2.0 Style (Cambridge, England: Cambridge University Press, 2005).
13 The approach described in this section is adapted from Booch, Rumbaugh, and Jacobson, The Unified Modeling
Language User Guide.

sd Make Lunch Use Case

2: CreateLunch
3: GetSandwich1: MakeLunch

aChild:Child firstParent:Parent secondParent:Parent

sd Submit Order Use Case

aCustomer:Customer
1: SubmitOrderRequest() 2: SubmitCreditRequest()

aCustomer:Customer aSalesPerson:SalesPerson

FIGURE 6-11
Additional Sample
Communication
Diagrams

• Apply sequence diagram guidelines 1 through 4.
• Do not use communication diagrams to model process flow.
• Use a sequence diagram instead of a communication diagram when sequencing

is important.

FIGURE 6-12
Guidelines for Creat-
ing Communication
Diagrams

1. Set Context

c06BehavioralModeling.qxd 11/7/11 1:45 PM Page 250

The second step is to identify the objects (actors) and the associations that link the
objects (actors) that participate in the collaboration together. Remember, the objects that
participate in the collaboration are instances of the classes identified during the devel-
opment of the structural model (see Chapter 5). Like the sequence-diagramming
process, it is likely that additional objects, and hence classes, will be discovered. Again,
this is normal because the underlying development process is iterative and incremental.
In addition to the communication diagram being modified, the sequence diagrams and
structural model probably also have to be modified. Additional functional requirements
might also be uncovered, hence requiring the functional models to be modified as well
(see Chapter 4).

The third step is to lay out the objects (actors) and their associations on the communica-
tion diagram by placing them together based on the associations that they have with the
other objects in the collaboration. By focusing on the associations between the objects
(actors) and minimizing the number of associations that cross over one another, we can
increase the understandability of the diagram.

The fourth step is to add the messages to the associations between the objects.
We do this by adding the name of the message(s) to the association link between
the objects and an arrow showing the direction of the message being sent. Each message
has a sequence number associated with it to portray the time-based ordering of the
message.14

The fifth and final step is to validate the communication diagram. The purpose of this
step is to guarantee that the communication diagram faithfully portrays the underlying
process(es). This is done by ensuring that all steps in the process are depicted on the
diagram.

Interaction Diagrams 251

14 However, remember the sequence diagram portrays the time-based ordering of the messages in a top-down
manner. If your focus is on the time-based ordering of the messages, we recommend that you also use the
sequence diagram.

In Your Turn 6-1 you were asked to create a set of
instance-specific sequence diagrams for a use case of

housing service. Draw a communication diagram for the
same situation.

6-2 Drawing a Communication DiagramYOUR

TURN

Example As with the sequence diagramming example, we return to the Borrow Books
use case of the Library Book Collection Management System. In this case, to set the con-
text of the diagram, we visit the Student without a valid ID and Student with a Valid ID but
owes fines or has overdue books scenarios. We create two communication diagrams, one for
each scenario. As with the sequence-diagramming process, we review the Flow of Events of
the use-case description (see Figure 6-5), the activity diagram (see Figure 6-6), and the use
case diagram (see Figure 6-7).

3. Lay Out Diagram

4. Add Messages

2. Identify Objects,
Actors, &

Associations

5. Validate

c06BehavioralModeling.qxd 11/7/11 1:45 PM Page 251

The next step is to identify the actor, objects, and associations involved in the scenario.
In both scenarios, the actors are Student, Librarian, and the Registrar’s Database. However,
because the process is aborted very early in the Student without a valid ID scenario, there
are no objects in the scenario. The Student with a Valid ID but owes fines or has overdue
books scenario does include one object: Borrower. Both scenarios have an association
between the Student and Librarian actors and the Librarian and Registrar’s Database actor.
The Student with a Valid ID but owes fines or has overdue books scenario also has an asso-
ciation between the Librarian actor and the Borrower object.

The next step is to lay out the diagram. In both cases, because the student initiates the
process, we place the Student actor to the far left of the diagram. We then place the other
actors on the diagram in the order in which they participate in the process. We also place
the :Borrower object to the far bottom right of the diagram that represents the Student
with a Valid ID but owes fines or has overdue books scenario to reflect the left to right and
top to bottom direction of reading for most western cultures.

Now we place the relevant associations between the actors and objects that partici-
pate in the scenarios. In this step we add the messages to the associations. We again review
the flow of events (see Figure 6-5) of the use case description to identify the directional-
ity and content of the messages. Figures 6-13 and 6-14 portray the communication dia-
grams created.

The last step is to validate the diagrams. As with sequence diagrams, because we are
drawing instance specific versions of the communication diagram, we must also draw the
remaining seven diagrams for the other scenarios.

252 Chapter 6 Behavioral Modeling

sd Borrow Books Use Case

:Student

1: Chekout Books (Books)

2: IDCard?()

:Librarian

3: ValidID(IDNumber)
Registrar’s Database

sd Borrow Books Use Case

:Student

1: Chekout Books (Books)

2: IDCard?()

:Librarian

3: ValidID(IDNumber)
4: Overdue Books or Fines()

:Borrower

Registrar’s Database

FIGURE 6-13
Communication
Diagram for the
Student Without a
Valid ID

FIGURE 6-14
Communication
Diagram for the
Student With a Valid ID
but Owes Fines or has
Overdue Books

c06BehavioralModeling.qxd 11/7/11 1:45 PM Page 252

BEHAVIORAL STATE MACHINES
Some of the classes in the class diagrams represent a set of objects that are quite dynamic in
that they pass through a variety of states over the course of their existence. For example, a
patient can change over time from being new to current to former based on his or her
status with the doctor’s office. A behavioral state machine is a dynamic model that shows
the different states through which a single object passes during its life in response to events,
along with its responses and actions. Typically, behavioral state machines are not used for
all objects but just to further define complex objects to help simplify the design of algo-
rithms for their methods. The behavioral state machine shows the different states of the
object and what events cause the object to change from one state to another. In compari-
son to the interaction diagrams, behavioral state machines should be used to help under-
stand the dynamic aspects of a single class and how its instances evolve over time15 and not
with seeing how a particular use case or use-case scenario is executed over a set of classes.

In this section, we describe states, events, transitions, actions, and activities and the use
of the behavioral state machine to model the state changes through which complex objects
pass. As in the creation of the interaction diagrams, when we create a behavioral state
machine for an object, it is possible that we will uncover additional events that need to be
included in your functional model (see Chapter 4) and additional operations that need to
be included in the structural model (see Chapter 5), so our interaction diagrams might
have to be modified again. Because object-oriented development is iterative and incre-
mental, this continuous modification of the evolving models (functional, structural, and
behavioral) of the system is to be expected.

States, Events, Transitions, Actions, and Activities
The state of an object is defined by the value of its attributes and its relationships with other
objects at a particular point in time. For example, a patient might have a state of new, cur-
rent, or former. The attributes or properties of an object affect the state that it is in; how-
ever, not all attributes or attribute changes will make a difference. For example, think about
a patient’s address. Those attributes make very little difference to changes in a patient’s
state. However, if states were based on a patient’s geographic location (e.g., in-town patients
were treated differently than out-of-town patients), changes to the patient’s address would
influence state changes.

An event is something that takes place at a certain point in time and changes a value
or values that describe an object, which, in turn, changes the object’s state. It can be a
designated condition becoming true, the receipt of the call for a method by an object, or
the passage of a designated period of time. The state of the object determines exactly
what the response will be.

A transition is a relationship that represents the movement of an object from one state
to another state. Some transitions have a guard condition. A guard condition is a Boolean
expression that includes attribute values, which allows a transition to occur only if the con-
dition is true. An object typically moves from one state to another based on the outcome
of an action triggered by an event. An action is an atomic, non-decomposable process that
cannot be interrupted. From a practical perspective, actions take zero time, and they are
associated with a transition. In contrast, an activity is a nonatomic, decomposable process
that can be interrupted. Activities take a long period of time to complete, and they can be
started and stopped by an action.

Behavioral State Machines 225533

15 Some authors refer to this as modeling an object’s life cycle.

c06BehavioralModeling.qxd 11/28/11 10:33 AM Page 253

254 Chapter 6 Behavioral Modeling

Patient

Enters Hospital Checks In [Diagnosis = Healthy] [> 2 weeks]
Entering Admitted Released

Under Observation

[Diagnosis = Unhealthy]

[Diagnosis = Healthy]

FIGURE 6-15 Sample Behavioral State Machine Diagram

A state:

! Is shown as a rectangle with rounded corners.
! Has a name that represents the state of an object.

An initial state:

! Is shown as a small, filled-in circle.
! Represents the point at which an object begins to exist.

A final state:

! Is shown as a circle surrounding a small, filled-in circle (bull's-eye).
! Represents the completion of activity.

An event:

! Is a noteworthy occurrence that triggers a change in state.
! Can be a designated condition becoming true, the receipt of an explicit signal

from one object to another, or the passage of a designated period of time.
! Is used to label a transition.

A transition:

! Indicates that an object in the first state will enter the second state.
! Is triggered by the occurrence of the event labeling the transition.
! Is shown as a solid arrow from one state to another, labeled by the event name.

A frame:

! Indicates the context of the behavioral state machine.
Context

anEvent

aState

Term and Definition Symbol

FIGURE 6-16 Behavioral State Machine Diagram Syntax

c06BehavioralModeling.qxd 11/7/11 1:45 PM Page 254

Elements of a Behavioral State Machine
Figure 6-15 presents an example of a behavioral state machine representing the patient
class in the context of a hospital environment. From this diagram we can tell that a patient
enters a hospital and is admitted after checking in. If a doctor finds the patient to be
healthy, he or she is released and is no longer considered a patient after two weeks elapses.
If a patient is found to be unhealthy, he or she remains under observation until the diag-
nosis changes.

A state is a set of values that describes an object at a specific point in time, and it rep-
resents a point in an object’s life in which it satisfies some condition, performs some action,
or waits for something to happen (see Figure 6-16). In Figure 6-15 states include entering,
admitted, released, and under observation. A state is depicted by a state symbol, which is a
rectangle with rounded corners with a descriptive label that communicates a particular
state. There are two exceptions. An initial state is shown using a small, filled-in circle, and
an object’s final state is shown as a circle surrounding a small, filled-in circle. These excep-
tions depict when an object begins and ceases to exist, respectively.

Arrows are used to connect the state symbols, representing the transitions between
states. Each arrow is labeled with the appropriate event name and any parameters or con-
ditions that may apply. For example, the two transitions from admitted to released and
under observation contain guard conditions. As in the other behavioral diagrams, in
many cases it is useful to explicitly show the context of the behavioral state machine using
a frame.

Figure 6-17 depicts two additional behavioral state machines. The first one is for
the lunch object that was associated with the Make Lunch use-case scenario of Fig-
ures 6-3 and 6-11. In this case, there is obviously additional information that has been
captured about the lunch object. For example, the scenario of Figures 6-3 and 6-11 did
not include information regarding the lunch being taken out of the box or being eaten.
This implies additional use cases and/or use-case scenarios that would have to be
included in a system that dealt with lunch processing. The second behavioral state
machine deals with the life cycle of an order. The order object is associated with the sub-
mit order use-case scenario described in Figures 6-3 and 6-11. As in the lunch example,
there is quite a bit of additional information contained in this behavioral state machine.
For an order-processing system, quite a few additional sequence and communication
diagrams would be necessary to completely represent all the processing associated with
an order object. Obviously, because behavioral state machines can uncover additional
processing requirements, they can be very useful in filling out the complete description
of an evolving system.

Sometimes, states and subclasses can be confused. For example, in Figure 6-18, are
the classes Freshman, Sophomore, Junior, and Senior subclasses of the class Undergrad-
uate or are they simply states that an instance of the Undergraduate class goes through
during its lifetime? In this case, the latter is the better answer. When trying to identify all
potential classes when the structural model is created (see Chapter 5), you might actu-
ally identify states of the relevant superclass instead of subclasses. This is another exam-
ple of how tightly intertwined the functional, structural, and behavioral models can be.
From a modeling perspective, even though we had to remove the Freshman, Sophomore,
Junior, and Senior subclasses from the structural model, it was better to capture that
information as part of the structural model and remove it when we were creating the
behavioral models than to omit it and take the chance of missing a crucial piece of infor-
mation about the problem domain. Remember, object-oriented development is iterative
and incremental. As we progress to a correct model of the problem domain, we will make
many mistakes.

Behavioral State Machines 255

c06BehavioralModeling.qxd 11/7/11 1:45 PM Page 255

Order

Denied

Order is
created

Customer
submits order

Customer
edits order
information

Authorization
= Denied

Order sent
for credit

authorization

Customer
withdraws
order request

Order sent to
customer

Customer
accepts

shipment
Received

Authorization
= Approved

Order is
closed

In Process Ordered Processing Placed Shipped

Lunch

[Created] [PlacedInBox] [TakenOutOfBox] [Eaten]
Created Packed Being Eaten

FIGURE 6-17 Additional Behavioral State Machine Diagrams

256

c06BehavioralModeling.qxd 11/7/11 1:45 PM Page 256

Behavioral State Machines 257

Graduate

Student

DoctoralMasters

Freshman

VS.

&

[Accepted]

SophomoreFreshman

Undergraduate

Undergraduate

SeniorJunior DoctoralMasters

Graduate

Student

Sophomore

[>30 Hours Earned]

Junior

[>60 Hours Earned]

Senior

[>90 Hours Earned]

[Graduate]

Guidelines for Creating Behavioral State Machines As with the sequence and commu-
nication diagrams, Amble suggests a set of guidelines when drawing behavior state
machines. In this case, we consider seven of his recommendations (see Figure 6-19).16

! Create a behavioral state machine for objects whose behavior changes based on
the state of the object. In other words, do not create a behavioral state machine
for an object whose behavior is always the same regardless of its state. These
objects are too simple.

FIGURE 6-18 States versus Subclasses

16 S.W. Ambler, The Elements of UML 2.0 Style (Cambridge, England: Cambridge University Press, 2005).

c06BehavioralModeling.qxd 11/7/11 1:45 PM Page 257

! Owing to the way western cultures learn to read, from left to right and top to
bottom, the initial state should be drawn in the top left corner of the diagram and
the final state should be drawn in the bottom right of the diagram.

! Make sure that the names of the states are simple, intuitively obvious, and
descriptive. For example in Figure 6-15, the state names of the patient object are
Entering, Admitted, Under Observation, and Released.

! Question black hole and miracle states. These types of states are problematic
for the same reason black hole and miracle activities are a problem for activity
diagrams (see Chapter 4). Black hole states, states that an object goes into
and never comes out of, most likely are actually final states. Miracle states, states
that an object comes out of but never went into, most likely are initial states.

! Be sure that all guard conditions are mutually exclusive, (not overlapping). For
example, in Figure 6-15, the guard condition [Diagnosis = Healthy] and the guard
condition [Diagnosis = Unhealthy] do not overlap. However, if you created a
guard condition of [x >= 0] and a second guard condition [x <= 0], the guard
conditions overlap when x = 0, and it is not clear to which state the object would
transition. This would obviously cause confusion.

! All transitions should be associated with a message and operation. Otherwise,
the state of the object could never change. Even though this may be stating the
obvious, there have been numerous times that analysts forget to go back and
ensure that this is indeed true.

Creating a Behavioral State Machine
Behavioral state machines are drawn to depict an instance of a single class from a class dia-
gram. Typically, the classes are very dynamic and complex, requiring a good understanding
of their states over time and events triggering changes. You should examine your class dia-
gram to identify which classes need to undergo a complex series of state changes and draw
a diagram for each of them. In this section, we describe a five-step process used to build a
behavioral state machine.17 Like the other behavioral models, the first step in the process is
to determine the context of the behavioral state machine, which is shown in the label of the
frame of the diagram. The context of a behavioral state machine is usually a class. However,
it also could be a set of classes, a subsystem, or an entire system.

The second step is to identify the various states that an object will have over its life-
time. This includes establishing the boundaries of the existence of an object by identi-
fying the initial and final states of an object. We also must identify the stable states
of an object. The information necessary to perform this is gleaned from reading the
use-case descriptions, talking with users, and relying on the requirements-gathering

258 Chapter 6 Behavioral Modeling

17 The approach described in this section is adapted from Booch, Rumbaugh, and Jacobson, The Unified
Modeling Language User Guide.

• Only create behavioral state machines for “complex” objects.
• Draw the initial state in the top left corner of the diagram.
• Draw the final state in the bottom right corner of the diagram.
• Use simple, but descriptive, names for states.
• Question black hole and miracle states.
• Make sure guard conditions are mutually exclusive.
• Make sure transitions are associated with messages and operations.

FIGURE 6-19
Guidelines for
Creating a Behavioral
State Machine

1. Set Context

2. Identify Object
States

c06BehavioralModeling.qxd 11/7/11 1:45 PM Page 258

Behavioral State Machines 259

you have been working with the system for the campus
housing service that helps students find apartments. One
of the dynamic classes in this system is probably the
apartment class. Draw a behavioral state machine to

show the various states that an apartment object transitions
throughout its lifetime. Can you think of other classes that
would make good candidates for a behavioral state
machine?

6-3 Drawing a Behavioral State MachineYOUR

TURN

techniques that you learned about in Chapter 3. An easy way to identify the states of
an object is to write the steps of what happens to an object over time, from start to
finish, similar to how the normal flow of events section of a use-case description would
be created.

The third step is to determine the sequence of the states that an object will pass through
during its lifetime. Using this sequence, the states are placed onto the behavioral state
machine in a left-to-right order.

The fourth step is to identify the transitions between the states of the objects and to add
the events, actions, and guard conditions associated with the transitions. The events are the
triggers that cause an object to move from one state to the next state. In other words, an
event causes an action to execute that changes the value(s) of an object’s attribute(s) in a
significant manner. The actions are typically operations contained within the object. Also,
guard conditions can model a set of test conditions that must be met for the transition to
occur. At this point in the process, the transitions are drawn between the relevant states and
labeled with the event, action, or guard condition.

The fifth step is to validate the behavioral state machine by making sure that each state is
reachable and that it is possible to leave all states except for final states. Obviously, if an
identified state is not reachable, either a transition is missing or the state was identified in
error. Only final states can be a dead end from the perspective of an object’s life cycle.

Example The first step in drawing a behavioral state machine is to set the context. For our
purposes, the context typically is an instance of a class that has multiple states and whose
behavior depends upon the state in which it currently resides. As suggested earlier, we should
review the class diagram (see Figure 6-20) to identify the “interesting” classes. In the case of the
Library Book Collection Management System, the obvious class to consider is the Book class.

The next step is to identify the different states through which an instance of the Book
class can traverse during its lifetime. Good places to look for possible state changes are the
use-case descriptions (see Figure 6-5), the activity diagrams (see Figure 6-6), the sequence
diagrams (see Figure 6-8), and the communication diagrams (see Figures 6-13 and 6-14).
In the case of a book, even though the states may be similar, you must be careful in identi-
fying the states associated with an instance of the Book class and not the states associated
with the physical book itself. In Chapter 5, we observed that there were a number of
implied states to consider. These included Checked Out, Overdue, Requested, Available,
and Damaged. If the book is damaged, the book could either be repaired and put back into
circulation or it could be too damaged to repair and be removed from circulation instead.
Even though a Borrower could be fined for an overdue or damaged book, being fined is not
a state of a book, it is a state of a borrower.

3. Lay Out Diagram

4. Add Transitions

5. Validate

c06BehavioralModeling.qxd 11/7/11 1:45 PM Page 259

Next, we lay out the diagram by ordering the states in a sequential manner based on the
life cycle of a book. For example, it probably makes no sense to have a book to go from a
repaired state to a damaged state. However, going from a damaged state to a repaired state
makes sense. Nor does it make sense for a book to go from an available state directly to an over-
due state. However, the converse makes sense. The states we identified for a book object include
Available, Checked Out, Overdue, Requested, Damaged, and Being Repaired. Next we added
the transitions between the states and labeled them with the appropriate guard conditions. The
behavioral state machine for an instance of the Book class is portrayed in Figure 6-21.

Finally, we validate the diagram by checking for missing states or transitions and
ensuring that there are no black hole or miracle states.

CRUDE ANALYSIS
One useful technique for identifying potential collaborations is CRUDE analysis.18

CRUDE analysis uses a CRUDE matrix , in which each interaction among objects is labeled
with a letter for the type of interaction: C for create, R for read or reference, U for update,

260 Chapter 6 Behavioral Modeling

18 CRUD analysis has typically been associated with structured analysis and design [see Alan Dennis, Barbara
Haley Wixom and Roberta M. Roth, Systems Analysis Design, 3nd ed. (New York: Wiley, 2006)] and information
engineering [see James Martin, Information Engineering, Book II Planning and Analysis (Englewood Cliffs, NJ:
Prentice Hall, 1990)]. In our case, we have simply adapted it to object-oriented systems development. In the case
of object orientation, we have added an E to allow us to document the execution of operations that do not create,
read, update, or delete but that instead simply are executed for possible side-effect purposes. Specific details on
collaborations are described in Chapter 7.

Check Out Trans

0..*

1..1

Borrower

1..1

0..*

Check Out Desk

Transaction Line Item Book Book Location

0..* 1..11..1 1..* 0..* 1..1

*
1

GuestStudent Faculty/Staff

Librarian

StorageInterLibrary Loan System Library

Book Collection

FIGURE 6-20 Class Diagram for the Library Book Collection Management System

c06BehavioralModeling.qxd 11/7/11 1:45 PM Page 260

D for delete, and E for execute. In an object-oriented approach, a class/actor-by-class/actor
matrix is used.19 Each cell in the matrix represents the interaction between instances of
the classes. For example, in Figure 6-1, an instance of the Receptionist actor creates an
instance of the Appointment class. Assuming a Row:Column ordering, a C is placed in
the cell Receptionist:Appointment. Also, in Figure 6-1, an instance of the Receptionist
actor references an instance of the Appointments class. In this case, an R is placed in the
Receptionist:Appointments cell. Figure 6-22 shows the CRUDE matrix based on the Make
Old Patient Appt use case.

Unlike the interaction diagrams and behavioral state machines, a CRUDE matrix is
most useful as a system-wide representation. Once a CRUDE matrix is completed for

CRUDE Analysis 261

19 Another useful but more-detailed form of the CRUDE matrix is a Class/Actor:Operation-by-Class/Actor:Oper-
ation matrix. For validation and verification purposes, this more-detailed matrix is more useful. However, for our
purposes at this point in our discussion, the Class/Actor-by-Class/Actor matrix is sufficient.

Receptionist RU CRUD R RU CRUD

PatientList R

Patient

UnpaidBills

Appointments R

Appointment

FIGURE 6-22 CRUDE Matrix for the Make Old Patient Apt Use Case

Book

Damaged

[Added To
Collection]

[Borrower Checks in Book]

[Borrower Checks in Book]

[Borrower Checks in Book] [Another Borrower Requests Book]

[Borrowing Time
Expires]

[Borrower Checks
Out Book]

[Borrower Returns Book Damaged]

[Book Sent to be Repaired]

[Book Too Damaged]

[Book Repaired]

[Book Too Damaged][Book Taken Out of Circulation]

[Borrower Returns Book Damaged]

[Borrower Returns Book Damaged]

[Another Borrower
Requests Book]

Checked Out Overdue

Being Repaired

Available Requested

FIGURE 6-21 Behavioral State Machine for an Instance of the Book Class in the Library Book
Collection Management System

Receptionist PatientList Patient UnpaidBills Appointments Appointment

c06BehavioralModeling.qxd 11/7/11 1:45 PM Page 261

the entire system, the matrix can be scanned quickly to ensure that every class can be
instantiated. Each type of interaction can be validated for each class. For example, if
a class represents only temporary objects, then the column in the matrix should have a
D in it somewhere. Otherwise, the instances of the class will never be deleted. Because
a data warehouse contains historical data, objects that are to be stored in one should
not have any U or D entries in their associated columns. In this way, CRUDE analysis
can be used as a way to partially validate the interactions among the objects in an
object-oriented system. Finally, the more interactions among a set of classes, the more
likely they should be clustered together in a collaboration. However, the number and
type of interactions are only an estimate at this point in the development of the system.
Care should be taken when using this technique to cluster classes to identify collabora-
tions. We return to this subject in the next chapter when we deal with partitions and
collaborations.

CRUDE analysis also can be used to identify complex objects. The more (C)reate,
(U)pdate, or (D)elete entries in the column associated with a class, the more likely the
instances of the class have a complex life cycle. As such, these objects are candidates for state
modeling with a behavioral state machine.

Example The best way to create a CRUDE matrix is to conceptually merge the
sequence and communication diagrams that model all of the scenarios of all of the use
cases in a system. The easiest way to accomplish this is simply to create an empty
class/actor-by-class/actor matrix. In the case of the Library Book Collection Manage-
ment System, we have six actors (Student, Faculty/Staff, Guest, Librarian, Personnel
Office, and Registrar’s Office) and eight classes (Book, Book Collection, Student,
Faculty/Staff, Guest, Interlibrary Loan System, Library, and Storage). Once this matrix
has been laid out, all you need to do is role-play the scenarios and see what actors and
classes interact with each other. Based on the type of interaction, you simply record a
C, R, U, D, or E in the appropriate cell of the matrix. You do this repeatedly until all of
the scenarios of all of the use cases have been executed. The CRUDE matrix for the
Library Book Collection Management System is shown in Figure 6-23. One of the func-
tions that the matrix can serve is to begin the validation process of the entire system. In
this case, by quickly reviewing the matrix we can see that absolutely nothing seems to be
interacting with the Library and Storage objects. This raises an important question as to
whether these objects should exist or not. If nothing calls or uses them and they don’t
call or use anything, then why are they part of this system? Either they should be
removed from the current representation of the system, or we have managed to miss
some interaction. Knowing this allows us to go back to the user, in this case the Librar-
ian, and ask what should be done.

262 Chapter 6 Behavioral Modeling

You have been working with the system for the campus
housing service that helps students find apartments.
Based on the work completed so far, perform a CRUDE

analysis to identify which classes collaborate the most
and to perform some validation of the evolving represen-
tation of the system.

6-4 CRUDE AnalysisYOUR

TURN

c06BehavioralModeling.qxd 11/7/11 1:45 PM Page 262

St
ud

en
t A

ct
or

E

R,
E

R
E

Fa
cu

lty
/S

ta
ff

A

ct
or

E

R,
E

R
E

G
ue

st
 A

ct
or

E

R,
E

R
E

Li
br

ar
ia

n
A

ct
or

E
E

E
R,

E
R,

E
C

,R
,U

,D
,E

R,

U,
E

R,
U

R,
U

C
,R

,U
,D

,E

R,
E

Pe
rs

on
ne

l
O

ffi
ce

 A
ct

or

Re
gi

st
ra

r’s

O
ffi

ce
 A

ct
or

Bo
ok

Bo
ok

C

ol
le

ct
io

n

St
ud

en
t

C
la

ss

Fa
cu

lty
/S

ta
ff

C

la
ss

G
ue

st
 C

la
ss

In
te

rl
ib

ra
ry

Lo

an
 S

ys
te

m

Li
br

ar
y

St
or

ag
e

FI
G

U
R

E
6

-2
3

 C

RU
D

E
M

at
ri

x
fo

r
th

e
Li

br
ar

y
Bo

ok
 C

ol
le

ct
io

n
M

an
ag

em
en

t S
ys

te
m

263

Fa
cu

lty
/

Pe
rs

on
ne

l
Re

gi
st

ra
r’s

Fa

cu
lty

/
In

te
rl

ib
ra

ry
St

ud
en

t
St

af
f

G
ue

st

Li
br

ar
ia

n
O

ffi
ce

O

ffi
ce

Bo

ok

St
ud

en
t

St
af

f
G

ue
st

Lo

an

A
ct

or

A
ct

or

A
ct

or

A
ct

or

A
ct

or

A
ct

or

Bo
ok

C

ol
le

ct
io

n
C

la
ss

C

la
ss

C

la
ss

Sy

st
em

Li

br
ar

y
St

or
ag

e

c06BehavioralModeling.qxd 11/7/11 1:45 PM Page 263

VERIFYING AND VALIDATING THE BEHAVIORAL MODEL20

In this chapter, we described three different diagrams (sequence diagram, communication
diagram, and behavioral state machine) and CRUDE matrices that could be used to repre-
sent the behavioral model. The sequence and communication diagrams modeled the inter-
action among instances of classes that worked together to support the business processes
included in a system, the behavioral state machine described the state changes through
which an object traverses during its lifetime, and the CRUDE matrix represented a system-
level overview of the interactions among the objects in the system. In this chapter, we
combine walkthroughs with CRUDE matrices to more completely verify and validate the
behavioral models. Since, in the previous section we covered CRUDE analysis and matri-
ces, we focus only on walkthroughs in this section. We again use the appointment system
and focus on Figures 6-1, 6-9, 6-15, and 6-22 to describe a set of rules that can be used to
ensure that the behavioral model is internally consistent.

First, every actor and object included on a sequence diagram must be included as an actor
and an object on a communication diagram, and vice versa. For example, in Figures 6-1 and
6-5, the aReceptionist actor and the Patients object appear on both diagrams.

Second, if there is a message on the sequence diagram, there must be an association on
the communications diagram, and vice versa. For example, Figure 6-1 portrays a message
being sent from the aReceptionist actor to the Patient object, and a matching association
appears in the corresponding communication diagram (see Figure 6-9).

Third, every message that is included on a sequence diagram must appear as a message on
an association in the corresponding communication diagram, and vice versa. For example, the
LookUpPatient() message sent by the aReceptionist actor to the Patient object on the sequence
diagram (see Figure 6-1) appears as a message on the association between the aReceptionist
actor and the Patient object on the communication diagram (see Figure 6-9).

Fourth, if a guard condition appears on a message in the sequence diagram, there must
be an equivalent guard condition on the corresponding communication diagram, and vice
versa. For example, the message sent from the aReceptionist actor to the UnpaidBills object
has a guard condition of [aPatient Exists] (see Figure 6-1). Figure 6-9 shows the matching
guard condition included on the communication diagram.

Fifth, the sequence number included as part of a message label in a communications
diagram implies the sequential order in which the message will be sent. Therefore, it must
correspond to the top-down ordering of the messages being sent on the sequence diagram.
For example, the LookUpPatient message sent from the aReceptionist actor to the Patient
object on the sequence diagram (see Figure 6-1) is the second from the top of the diagram.
The LookUpPatient message sent from the aReceptionist actor to the Patients object on the
communications diagram (see Figure 6-9) is labeled with the number 2.21

Sixth, all transitions contained in a behavior state machine must be associated with a
message being sent on a sequence and communication diagram, and it must be classified
as a (C)reate, (U)pdate, or (D)elete message in a CRUDE matrix. For example, in Figure 6-15
the Checks In transition must be associated with a message in the corresponding sequence
and communication diagrams. Furthermore, it should be associated with an (U)pdate
entry in the CRUDE matrix associated with the hospital patient system.

Seventh, all entries in a CRUDE matrix imply a message being sent from an actor or object
to another actor or object. If the entry is a (C)reate, (U)pdate, or (D)elete, then there must be
an associated transition in a behavioral state machine that represents the instances of the

264 Chapter 6 Behavioral Modeling

20 The material in this section has been adapted from E. Yourdon, Modern Structured Analysis (Englewood Cliffs,
NJ: Prentice Hall, 1989).
21 There are more complicated numbering schemes that could be used. However, for our purposes, a simple
sequential number is sufficient.

c06BehavioralModeling.qxd 11/7/11 1:45 PM Page 264

receiving class. For example in Figure 6-22 the R and U entries in the Receptionist row and
Appointments column imply that instances of the Receptionist actor will read and update
instances of the Appointments class. Thus there should be read and update messages on the
sequence and communication diagrams corresponding with the appointments processes.
Reviewing Figures 6-1 and 6-9, we see that there is a message, MatchAppts(), from the aRe-
ceptionist actor to the Appointments object. However, based on this review, it is unclear
whether the MatchAppts() message represents a read, an update, or both. Therefore, additional
analysis is required.22 Because there is an (U)pdate message involved, there must be a transi-
tion on a behavioral state machine that portrays the life cycle of an Appointments object.

Finally, many representation-specific rules have been proposed. However, as in the other
models, these rules are beyond the scope of this section on verification and validation.23

Figure 6-24 portrays the associations among the behavioral models.

Verifying and Validating the Behavioral Model 265

Including

HasKinds

Contains

HasKinds

Describe
Contains Contains

Contains

AssociatedWith
AssociatedWith

Interaction Diagram

Behavioral Models

Sequence DiagramCommunication Diagram

Objects Actors

Delete

Update

States

Create

Messages
Cell Entries Transitions

CRUD Matrix

Associations

Read

Behavioral State Machine

FIGURE 6-24 Interrelationships among Behavioral Models

22 We have delayed the description of designing operations and methods until Chapter 8. Therefore, the detailed
information required to understand a specific message has not been created yet. However, in many cases, enough
information will already have been created to validate many of the transitions in behavioral state machines and
CRUDE matrices.
23 A good reference for these types of restrictions is S.W. Ambler, The Elements of UML 2.0 Style (Cambridge,
England: Cambridge University Press, 2005).

c06BehavioralModeling.qxd 11/7/11 1:45 PM Page 265

APPLYING THE CONCEPTS AT CD SELECTIONS
Because Alec, Margaret, and the team have now completed rough functional and struc-
tural models for their evolving Web-based solution, they have decided that it was time to
move on and begin to create the behavioral models. Alec understood that in some ways,
the behavioral models allow them to complete their understanding of the problem. In
this installment of the CD Selections case, the team creates sequence diagrams, commu-
nication diagrams, behavioral state machines, and a CRUDE matrix. As in the previous
installments, we see how the team goes about creating, verifying, and validating the
behavioral models of the Web-based system they hope to implement.

SUMMARY
Behavioral Models
Behavioral models describe the internal logic of the business processes described by the
use cases associated with an information system. They provide a detailed view of how
the objects contained in the information system collaborate to support the use cases
that represent the underlying business processes. Behavioral models, like functional
and structural models, are created using an iterative and incremental process. Based on
this process, it is likely that changes will have to be made to both the functional and
structural models.

Interaction Diagrams
Interaction diagrams are used to describe how objects collaborate to support use cases.
There are two different types of interaction diagrams: sequence and communication.
Both diagrams provide a dynamic model that portrays the interaction among the objects
associated with a use case. The primary difference between the two diagrams is that
sequence diagrams focus on the time ordering or sequence of the messages being sent
between the objects, whereas communication diagrams spotlight the collaborating
nature of the objects supporting use cases. A communication diagram is essentially an
object diagram (see Chapter 5) that portrays message-sending relationships instead of
structural relationships.

Behavioral State Machine
The behavioral state machine shows the different states through which a single class passes
during its life in response to events, along with responses and actions. A state is a set of
values that describes an object at a specific point in time, and it represents a point in an
object’s life in which it satisfies some condition, performs some action, or waits for something
to happen. An event is something that takes place at a certain point in time and changes a
value that describes an object, which, in turn, changes the object’s state. As objects move
from state to state, they undergo transitions. Typically, behavioral state machines are used
to portray the dynamic aspect of a complex class.

CRUDE Analysis
CRUDE analysis is a very useful approach to identifying potential collaborations among
classes and to verify and validate a system. In a very concise format (CRUDE matrix) it

226666 CChhaapptteerr 66 Behavioral Modeling

c06BehavioralModeling.qxd 11/28/11 10:33 AM Page 266

Questions 226677

KKEEYY TTEERRMMSS

Action, 253
Activity, 253
Actor, 239
Association, 248
Attributes, 238
Behavior, 238
Behavior models, 237
Behavioral state machines, 253
Black hole states, 258
Class, 238
Class diagram, 253
Collaboration, 237
Communication diagram, 246
Condition, 241
CRC cards, 243

CRUDE analysis, 260
CRUDE matrix, 260
Dynamic model, 238
Event, 253
Execution occurrence, 240
Final state, 255
Frame, 243
Generic sequence diagram, 238
Guard condition 253
Initial state, 255
Instance, 238
Instance sequence diagram, 238
Lifeline, 239
Message, 238
Method, 238

Miracle states, 258
Object, 239
Operation, 238
Operation call message, 241
Packages, 249
Return message, 241
Scenario, 238
Self-delegation, 241
Sequence diagram, 238
State, 253
State symbol, 255
Temporary object, 239
Transition, 253
Trigger, 259
Use case, 237

QQUUEESSTTIIOONNSS

1. How is behavioral modeling related to structural
modeling?

2. How does a use case relate to a sequence diagram? A
communication diagram?

3. Contrast the following sets of terms: state, behavior,
class, object, action, and activity.

4. Why is iteration important when creating a behavioral
model?

5. What are the main building blocks for the sequence
diagram? How are they represented on the model?

6. How do you show that a temporary object is to go out
of existence on a sequence diagram?

7. Do lifelines always continue down the entire page of a
sequence diagram? Explain.

8. Describe the steps used to create a sequence diagram.
9. When drawing a sequence diagram, what guidelines

should you follow?
10. Describe the main building blocks for the communi-

cation diagram and how they are represented on the
model.

11. How do you show the sequence of messages on a com-
munication diagram?

12. How do you show the direction of a message on a
communication diagram?

allows the analyst to see what type of interactions (create, read/reference, update, delete, or
execute) the different types of objects have in the system. CRUDE analysis also supports the
identification of the more-complex objects that could benefit from state modeling using a
behavioral state machine.

Verifying and Validating Behavioral Models
Verifying and validating the behavioral models are very similar to verifying and validating
the functional, and structural models. In this case, the sequence diagrams, communica-
tion diagrams, behavioral state machines, and CRUDE matrix are carefully checked
for consistency. This is done, typically, through the creation of the CRUDE matrix,
walkthroughs, or both.

c06BehavioralModeling.qxd 12/2/11 7:24 PM Page 267

226688 CChhaapptteerr 66 Behavioral Modeling

EEXXEERRCCIISSEESS

A. Think about sending a first-class letter to an interna-
tional pen pal. Describe the process that the letter goes
through to get from your initial creation of the letter
to being read by your friend, from the letter’s perspec-
tive. Draw a behavioral state machine that depicts the
states that the letter moves through.

B. Draw a behavioral state machine that describes the
various states that a travel authorization can have
through its approval process. A travel authorization
form is used in most companies to approve travel
expenses for employees. Typically, an employee fills
out a blank form and sends it to his or her boss for a
signature. If the amount is fairly small (<$300), then
the boss signs the form and routes it to accounts
payable to be input into the accounting system. The
system cuts a check that is sent to the employee for
the right amount, and after the check is cashed, the
form is filed away with the canceled check. If the
check is not cashed within 90 days, the travel form
expires. When the amount of the travel voucher is a
large amount (>$300), then the boss signs the form
and sends it to the CFO, along with a paragraph
explaining the purpose of the travel; the CFO signs
the form and passes it along to accounts payable. Of
course, the boss and the CFO can reject the travel
authorization form if they do not feel that the
expenses are reasonable. In this case, the employee
can change the form to include more explanation or
decide to pay the expenses.

C. Think about the system that handles student admis-
sions at your university. The primary function of the
system should be able to track a student from the
request for information through the admissions

process until the student is either admitted to the
school or rejected.
1. Write a use-case description that can describe an

Admit Student use case.
Assume that applicants who are children of alumni
are handled differently from other applicants. Also,
assume that a generic Update Student Information
use case is available for your system to use.
2. Create a use-case diagram that includes all of the

above use cases.
Assume that an admissions form includes the contents
of the form, SAT information, and references. Addi-
tional information is captured about children of
alumni, such as their parent’s graduation year, contact
information, and college major.
3. Create a class diagram for the use cases identified

with questions 1 and 2. Also, be sure to include the
above information.

Assume that a temporary student object is used by the
system to hold information about people before they
send in an admission form. After the form is sent in,
these people are considered students.
4. Create sequence diagrams for the scenarios of the

above use cases.
5. Create a communication diagram for the scenarios

of the above use cases.
6. Create a behavioral state machine to depict a per-

son as he or she moves through the admissions
process.

7. Perform a CRUDE analysis to show the interactiv-
ity of the objects in the system.

D. For the A Real Estate Inc. problem in Chapters 4 (exer-
cises I, J, and K) and 5 (exercises P and Q):

13. Describe the steps used to create a communication
diagram.

14. When drawing a communication diagram, what
guidelines should you follow?

15. Are states always depicted using rounded rectangles
on a behavioral state machine? Explain.

16. What kinds of events can lead to state transitions on a
behavioral state machine?

17. What are the steps in building a behavioral state
machine?

18. When drawing a behavioral state machine, what
guidelines should you follow?

19. How are guard conditions shown on a behavioral state
machine?

20. Describe the type of class that is best represented by a
behavioral state machine. Give two examples of classes
that would be good candidates for a behavioral state
machine.

21. What is CRUDE analysis and what is it used for?
22. Identify the models that contain each of the following

components: actor, association, class, extends, asso-
ciation, final state, guard condition, initial state, links,
message, multiplicity, object, state, transition, and
update operation.

c06BehavioralModeling.qxd 11/28/11 1:56 PM Page 268

Minicases 226699

1. Refer to the functional model (use-case diagram,
activity diagrams, and use-case descriptions) you pre-
pared for the Professional and Scientific Staff Man-
agement (PSSM) Minicase in Chapter 4. Based on
your performance, PSSM was so satisfied that they
wanted you to develop both the structural and behav-
ioral models so that they could more fully understand
both the interaction that would take place between the
users and the system and the system itself in greater
detail.
a. Create both CRC cards and a class diagram based

on the functional models created in Chapter 4.

b. Create a sequence and a communication diagram
for each scenario of each use case identified in the
functional model.

c. Create a behavioral state machine for each of the
complex classes in the class diagram.

d. Perform a CRUDE analysis to show the interactiv-
ity of the objects in the system.

e. Perform a verification and validation walkthrough of
each model: functional, structural, and behavioral.

2. Refer to the structural model (CRC cards and class dia-
gram) that you created for the Holiday Travel Vehicles
Minicase in Chapter 5. Based on your performance,

MMIINNIICCAASSEESS

1. Choose one use case and, for each scenario, create
a sequence diagram.

2. Create a communication diagram for each scenario
of the use case chosen in Question 1.

3. Create a behavioral state machine to depict one of
the classes on the class diagram you created for
Chapter 5, exercise P.

4. Perform a CRUDE analysis to show the interactiv-
ity of the objects in the system.

5. Perform a verification and validation walkthrough
of the problem.

E. For the A Video Store problem in Chapters 4 (exer-
cises L, M, and N) and 5 (exercises R and S):
1. Choose one use case and, for each scenario, create

a sequence diagram.
2. Create a communication diagram for each scenario

of the use case chosen in Question 1.
3. Create a behavioral state machine to depict one of

the classes on the class diagram you created for
Chapter 5, exercise R.

4. Perform a CRUDE analysis to show the interactiv-
ity of the objects in the system.

5. Perform a verification and validation walkthrough
of the problem.

F. For the gym membership problem in Chapters 4 (exer-
cises O, P, and Q) and 5 (exercises T and U):
1. Choose one use case and, for each scenario, create

a sequence diagram.
2. Create a communication diagram for each scenario

of the use case chosen in Question 1.
3. Create a behavioral state machine to depict one of

the classes on the class diagram you created for
Chapter 5, exercise T.

4. Perform a CRUDE analysis to show the interactiv-
ity of the objects in the system.

5. Perform a verification and validation walkthrough
of the problem.

G. For the Picnics R Us problem in Chapters 4 (exercises
R, S, and T) and 5 (exercises V and W):
1. Choose one use case and, for each scenario, create

a sequence diagram.
2. Create a communication diagram for each scenario

of the use case chosen in Question 1.
3. Create a behavioral state machine to depict one of

the classes on the class diagram you created for
Chapter 5, exercise V.

4. Perform a CRUDE analysis to show the interactiv-
ity of the objects in the system.

5. Perform a verification and validation walkthrough
of the problem.

H. For the Of-the-Month-Club problem in Chapters 4
(exercises U, V, and W) and 5 (exercises X and Y):
1. Choose one use case and, for each scenario, create

a sequence diagram.
2. Create a communication diagram for each scenario

of the use case chosen in Question 1.
3. Create a behavioral state machine to depict one of

the classes on the class diagram you created for
Chapter 5, exercise X.

4. Perform a CRUDE analysis to show the interactiv-
ity of the objects in the system.

5. Perform a verification and validation walkthrough
of the problem.

c06BehavioralModeling.qxd 11/28/11 1:56 PM Page 269

270 Chapter 6 Behavioral Modeling

Holiday Travel Vehicles was so satisfied that they wanted
you to develop both the functional and behavioral mod-
els so that they could more fully understand both the
interaction that would take place between the users and
the system and the system itself in greater detail.
a. Based on the structural model you created in

Chapter 5 and the problem description in Chapter 5,
create a functional model (use case diagram, activ-
ity diagrams, and use case descriptions) for the
business processes associated with the Holiday
Travel Vehicles sales system.

b. Create a sequence and a communication diagram
for each scenario of each use case identified in the
functional model.

c. Create a behavioral state machine for each of the
complex classes in the class diagram.

d. Perform a CRUDE analysis to show the interactiv-
ity of the objects in the system.

e. Perform a verification and validation walkthrough of
each model: functional, structural, and behavioral.

c06BehavioralModeling.qxd 11/7/11 1:45 PM Page 270

Package
D

iagram
s

Storyboards

Contracts

Data Access &
Manipulation Class Design

Factored/Partitioned
Structural M

odel

Hardware/Software
Specification

Interface
Tem

plates

D
eploym

ent
D

iagram
s

W
indow

s
N

avigation
D

iagram
s

U
se Scenarios

M
ethod

Specifications
O

bject
Persistence D

esign
Class

Specifications
Factored/Partitioned

Behavioral M
odel

Alternative
M

atrix
Factored/Partitioned

Functional M
odel

Real U
se

Cases
W

indow
s Layout

D
iagram

s

U
ser Interface
Prototypes

PART TWO

Design Modeling

Whereas analysis modeling concentrated on the
functional requirements of the evolving system,
design modeling incorporates the nonfunctional
requirements. That is, design modeling focuses on
how the system will operate. First, the project team
verifies and validates the analysis models (functional,
structural, and behavioral). Next, a set of factored and
partitioned analysis models are created. The class and
method designs are illustrated using the class specifi-
cations (using CRC cards and class diagrams),
contracts, and method specifications. Next, the data
management layer is addressed by designing the actual
database or file structure to be used for object persis-
tence, and a set of classes that will map the class speci-
fications into the object persistence format chosen.
Concurrently, the team produces the user interface
layer design using use scenarios, windows navigation
diagrams, real use cases, interface templates, story-
boards, windows layout diagrams, and user interface
prototypes. The physical architecture layer design is
created using deployment diagrams and hardware
software specifications. This collection of deliverables
represents the system specification that is handed to
the programming team for implementation.

CHAPTER 7
Moving on
 to Design

CHAPTER 8
Class and

 Method Design

CHAPTER 10
Human Computer

Interaction
Layer Design

CHAPTER 9
Data

Management
Layer Design

CHAPTER 11
Physical

Architecture
Layer Design

c07MovingOnToDesign.qxd 11/29/11 7:57 AM Page 271

c07MovingOnToDesign.qxd 11/8/11 3:40 PM Page 272

This page is intentionally left blank

Object-oriented system development uses the requirements that were gathered during
analysis to create a blueprint for the future system. A successful object-oriented design
builds upon what was learned in earlier phases and leads to a smooth implementation by
creating a clear, accurate plan of what needs to be done. This chapter describes the initial
transition from analysis to design and presents three ways to approach the design for the
new system.

OBJECTIVES

! Understand the verification and validation of the analysis models
! Understand the transition from analysis to design
! Understand the use of factoring, partitions, and layers
! Be able to create package diagrams
! Be familiar with the custom, packaged, and outsource design alternatives
! Be able to create an alternative matrix.

CHAPTER OUTLINE

C H A P T E R 7

MOVING ON TO DESIGN

Introduction
Verifying and Validating the Analysis

Models
Balancing the Functional and Structural

Models
Balancing the Functional and

Behavioral Models
Balancing the Structural and Behavioral

Models
Summary

Evolving the Analysis Models into Design
Models

Factoring
Partitions and Collaborations
Layers

Packages and Package Diagrams
Guidelines for Creating Package

Diagrams
Creating Package Diagrams
Verifying and Validating Package

Diagrams
Design Strategies

Custom Development
Packaged Software
Outsourcing
Selecting a Design Strategy

Developing the Actual Design
Alternative Matrix

Applying the Concepts at CD Selections
Summary

273

c07MovingOnToDesign.qxd 11/8/11 3:40 PM Page 273

INTRODUCTION
The purpose of analysis is to figure out what the business needs are. The purpose of design
is to decide how to build the system. The major activity that takes place during design is
evolving the set of analysis representations into design representations.

Throughout design, the project team carefully considers the new system with
respect to the current environment and systems that exist within the organization as a
whole. Major considerations of the how of a system are environmental factors such as
integrating with existing systems, converting data from legacy systems, and leveraging
skills that exist in-house. Although the planning and analysis are undertaken to develop
a possible system, the goal of design is to create a blueprint for a system that makes
sense to implement.

An important initial part of design is to examine several design strategies and decide
which will be used to build the system. Systems can be built from scratch, purchased and
customized, or outsourced to others, and the project team needs to investigate the viability
of each alternative. This decision influences the tasks that are to be accomplished during
design.

At the same time, detailed design of the individual classes and methods that are used
to map out the nuts and bolts of the system and how they are to be stored must still be
completed. Techniques such as CRC cards, class diagrams, contract specification, method
specification, and database design provide the final design details in preparation for the
implementation phase, and they ensure that programmers have sufficient information to
build the right system efficiently. These topics are covered in Chapters 8 and 9.

Design also includes activities such as designing the user interface, system inputs, and
system outputs, which involve the ways that the user interacts with the system. Chapter 10
describes these three activities in detail, along with techniques such as storyboarding and
prototyping, which help the project team design a system that meets the needs of its users
and is satisfying to use.

Finally, physical architecture decisions are made regarding the hardware and software
that will be purchased to support the new system and the way that the processing of the
system will be organized. For example, the system can be organized so that its processing is
centralized at one location, distributed, or both centralized and distributed, and each solu-
tion offers unique benefits and challenges to the project team. Because global issues and
security influence the implementation plans that are made, they need to be considered
along with the system’s technical architecture. Physical architecture, security, and global
issues are described in Chapter 11.

The many steps of design are highly interrelated and, as with the steps in analysis, the
analysts often go back and forth among them. For example, prototyping in the interface
design step often uncovers additional information that is needed in the system. Alterna-
tively, a system that is being designed for an organization that has centralized systems
might require substantial hardware and software investments if the project team decides to
change to a system in which all the processing is distributed.

In this chapter, we overview the processes that are used to evolve the analysis models
into design models. But before we move on into design, we really need to be sure that the
current analysis models are consistent. Thus we next discuss how to verify and validate the
analysis models. Afterward, we describe different higher-level constructs that can be used
to evolve the analysis models into design models. Then we introduce the use of packages
and package diagrams as a means of representing the higher-level constructs used to evolve
the models. Finally, we examine the three fundamental approaches to developing new
systems: make, buy, or outsource.

274 Chapter 7 Moving on to Design

c07MovingOnToDesign.qxd 11/8/11 3:40 PM Page 274

VERIFYING AND VALIDATING THE ANALYSIS MODELS1

Before we evolve our analysis representations into design representations, we need to
verify and validate the current set of analysis models to ensure that they faithfully represent
the problem domain under consideration. This includes testing the fidelity of each model;
for example, we must be sure that the activity diagram(s), use-case descriptions, and use-
case diagrams all describe the same functional requirements. It also involves testing the
fidelity between the models; for instance, transitions on a behavioral state machine are
associated with operations contained in a class diagram. In Chapters 4, 5, and 6, we focused
on verifying and validating the individual models: function, structural, and behavioral. In
this chapter, we center our attention on ensuring that the different models are consistent.
Figure 7-1 portrays the fact that the object-oriented analysis models are highly interrelated.
For example, do the functional and structural models agree? What about the functional
and behavioral models? And finally, are the structural and behavioral models trustworthy?
In this section, we describe a set of rules that are useful to verify and validate the intersec-
tions of the analysis models. Depending on the specific constructs of each actual model,
different interrelationships are relevant. The process of ensuring the consistency among
them is known as balancing the models.

Verifying and Validating the Analysis Models 275

In Chapter 2, we discussed several classic mistakes and
how to avoid them. Here, we summarize four classic mis-
takes in design and discuss how to avoid them.

1. Reducing design time: If time is short, there is a
temptation to reduce the time spent in “unproduc-
tive” activities such as design so that the team can
jump into “productive” programming. This results in
missing important details that have to be investigated
later at a much higher time and cost (usually at
least ten times higher).
Solution: If time pressure is intense, use timeboxing
to eliminate functionality or move it into future
versions.

2. Feature creep: Even if you are successful at avoiding
scope creep, about 25 percent of system require-
ments will still change. And, changes—big and
small—can significantly increase time and cost.
Solution: Ensure that all changes are vital and that
the users are aware of the impact on cost and time.
Try to move proposed changes into future versions.

3. Silver bullet syndrome: Analysts sometimes believe
the marketing claims for some design tools that claim
to solve all problems and magically reduce time and
costs. No one tool or technique can eliminate overall
time or costs by more than 25 percent (although
some can reduce individual steps by this much).
Solution: If a design tool has claims that appear too
good to be true, just say no.

4. Switching tools midproject: Sometimes analysts
switch to what appears to be a better tool during
design in the hopes of saving time or costs. Usually,
any benefits are outweighed by the need to learn the
new tool. This also applies even to minor upgrades
to current tools.
Solution: Don’t switch or upgrade unless there is a
compelling need for specific features in the new
tool, and then explicitly increase the schedule to
include learning time.

Adapted from Steve McConnell, Rapid Development (Redmond, WA:
Microsoft Press, 1966).

Avoiding Classic DesignPRACTICAL

TIP

1 The material in this section has been adapted from E. Yourdon, Modern Structured Analysis (Englewood Cliffs,
NJ: Prentice Hall, 1989). Verifying and validating are a type of testing. We also describe testing in Chapter 12.

c07MovingOnToDesign.qxd 11/28/11 10:51 AM Page 275

Balancing Functional and Structural Models
To balance the functional and structural models, we must ensure that the two sets of
models are consistent with each other. That is, the activity diagrams, use-case descriptions,
and use-case diagrams must agree with the CRC cards and class diagrams that represent
the evolving model of the problem domain. Figure 7-2 shows the interrelationships
between the functional and structural models. By reviewing this figure, we uncover four
sets of associations between the models. This gives us a place to begin balancing the func-
tional and structural models.2

First, every class on a class diagram and every CRC card must be associated with at
least one use case, and vice versa. For example, the CRC card portrayed in Figure 7-3 and
its related class contained in the class diagram (see Figure 7-4) are associated with the Make
Old Patient Appt use case described in Figure 7-5.

Second, every activity or action contained in an activity diagram (see Figure 7-6) and
every event contained in a use-case description (see Figure 7-5) should be related to one or
more responsibilities on a CRC card and one or more operations in a class on a class dia-
gram and vice versa. For example, the Get Patient Information activity on the example
activity diagram (see Figure 7-6) and the first two events on the use-case description (see
Figure 7-5) are associated with the make appointment responsibility on the CRC card (see
Figure 7-3) and the makeAppointment() operation in the Patient class on the class diagram
(see Figure 7-4).

Third, every object node on an activity diagram must be associated with an instance
of a class on a class diagram (i.e., an object) and a CRC card or an attribute contained in a
class and on a CRC card. However, in Figure 7-6, there is an object node, Appt Request Info,
that does not seem to be related to any class in the class diagram portrayed in Figure 7-4.
Thus, either the activity or class diagram is in error or the object node must represent an
attribute. In this case, it does not seem to represent an attribute. We could add a class to the
class diagram that creates temporary objects associated with the object node on the activ-
ity diagram. However, it is unclear what operations, if any, would be associated with these
temporary objects. Therefore, a better solution would be to delete the Appt Request Info
object nodes from the activity diagram. In reality, this object node represented only a set of
bundled attribute values, that is, data that would be used in the appointment system
process (see Figure 7-7).

Fourth, every attribute and association/aggregation relationships contained on a CRC
card (and connected to a class on a class diagram) should be related to the subject or object
of an event in a use-case description. For example, in Figure 7-5, the second event states: The
Patient provides the Receptionist with his or her name and address. By reviewing the CRC

276 Chapter 7 Moving on to Design

FIGURE 7-1
Object-Oriented
Analysis Models

Functional
Models

Structural
Models

Behavioral
Models

2 Role-playing the CRC cards (see Chapter 5) also can be very useful in verifying and validating the relationships
among the functional and structural models.

c07MovingOnToDesign.qxd 11/8/11 3:40 PM Page 276

FI
G

U
R

E
7

-2

 R
el

at
io

ns
hi

ps
 a

m
on

g
Fu

nc
tio

na
l a

nd
 S

tr
uc

tu
ra

l M
od

el
s

In
cl

ud
in

g

C
on

ta
in

s

A
ss

oc
ia

te
dW

ith

A
ss

oc
ia

te
dW

ith

A
ss

oc
ia

te
dW

ith

A
ss

oc
ia

te
dW

ith

In
st

an
ce

O
f

Re
pr

es
en

ts

H
av

e

H
as

Ki
nd

s
H

as
Ki

nd
s

H
as

Ki
nd

sC
on

ta
in

s

In
cl

ud
in

g

C
on

ta
in

s

H
as

Ki
nd

s

C
on

ta
in

s

C
on

ta
in

s

H
av

e

C
on

ta
in

s

C
on

ta
in

s

St
ru

ct
ur

al
 M

od
el

s

C
RC

 C
ar

ds
O

bj
ec

t D
ia

gr
am

C
la

ss
 D

ia
gr

am

C
ol

la
bo

ra
to

rs

Re
sp

on
si

bi
lit

ie
s

Ty
 p

e

O
bj

ec
ts

C
la

ss
es

A
gg

re
ga

tio
n

A
ss

oc
ia

tio
n

G
en

er
al

iz
at

io
n

A
ss

oc
ia

tio
ns

/
Re

la
tio

ns
hi

ps

C
om

po
si

tio
n

A
ss

oc
ia

tio
n

C
la

ss

Fu
nc

tio
na

l M
od

el
s

U
se

-C
as

e
D

ia
gr

am

A
ct

iv
ity

 D
ia

gr
am

A
ct

iv
iti

es
/A

ct
io

ns

U
se

 C
as

e
D

es
cr

ip
tio

ns

Fl
ow

s
Ev

en
ts

A
ct

or
s

O
bj

ec
t N

od
es

St
ak

eh
ol

de
rs

Re
la

tio
ns

hi
ps

O
bj

ec
t F

lo
w

s

C
on

tr
ol

 F
lo

w
s

U
se

 C
as

es

Sc
en

ar
io

s

A
tt

ri
bu

te
s

O
pe

ra
tio

ns

277

c07MovingOnToDesign.qxd 11/8/11 3:40 PM Page 277

278 Chapter 7 Moving on to Design

Front:

Class Name: Patient ID: 3

Change status

Medical history

Calculate last visit
Make appointment Appointment

Provide medical history

Responsibilities

Associated Use Cases: 2Description: An individual that needs to recieve or has received
 medical attention

Type: Concrete, Domain

Collaborators

Back:

Attributes:

Insurance carrier (text)

Amount (double)

Relationships:
Generalization (a-kind-of):

Aggregation (has-parts):

Other Associations: Appointment, Medical History

Participant

FIGURE 7-3
Old Patient CRC Card
(Figure 5-23)

card in Figure 7-3 and the class diagram in Figure 7-4, we see that the Patient class is a sub-
class of the Participant class and hence inherits all the attributes, associations, and opera-
tions defined with the Participant class, where name and address attributes are defined.

Balancing Functional and Behavioral Models
As in balancing the functional and structural models, we must ensure the consistency of
the two sets of models. In this case, the activity diagrams, use-case descriptions, and use-
case diagrams must agree with the sequence diagrams, communication diagrams, behav-
ioral state machines, and CRUDE matrix. Figure 7-8 portrays the relationships between the
functional and behavioral models. Based on these interrelationships, we see that there are
four areas with which we must be concerned.3

3 Performing CRUDE analysis (see Chapter 6) could also be useful in reviewing the intersections among the func-
tional and behavioral models.

c07MovingOnToDesign.qxd 11/8/11 3:40 PM Page 278

A
cc

ou
nt

Em
pl

oy
ee0.

.*

0.
.*

0.

.*

0.
.*

0.
.*

0.
.*

0.
.*

0.
.*

1.
.*

1.
.*

1.
.*

1.
.*

1.
.*

1.
.1

v
1.

.1

1.
.1

1.
.1

1.
.1

0.
.1

1.
.1

1.
.1

1.
.1

1.
.1

1.

.1

1.
.1

D
eb

it

C
re

di
t

En
tr

y
A

pp
oi

nt
m

en
t

-ti
m

e
-d

at
e

-r
ea

so
n

+c
an

ce
l w

ith
ou

t n
ot

ic
e(

)

Pa
tie

nt

-a
m

ou
nt

-in

su
ra

nc
e

ca
rr

ie
r

+m
ak

e
ap

po
in

tm
en

t()

+c
al

cu
la

te
 la

st
 v

is
it(

)
+c

ha
ng

e
st

at
us

()
+p

ro
vi

de
s

m
ed

ic
al

 h
is

to
ry

()

Pa
rt

ic
ip

an
t

-la
st

na
m

e
-fi

rs
tn

am
e

-a
dd

re
ss

-p

ho
ne

-b

irt
hd

at
e

-/a
ge

It
em

Tr
an

sa
ct

io
n

Li
ne

 It
em

ha
s

ha
s

co
nt

ai
ns

A
ss

ig
ne

dT
o

D
oc

to
r

Re
ce

pt
io

ni
st

N
ur

se

M
ed

ic
al

 H
is

to
ry

-h
ea

rt
di

se
as

e
-h

ig
h

bl
oo

d
pr

es
su

re

-d
ia

be
tie

s
-a

le
rg

ie
s

pr
ov

id
es

su
ffe

rs

schedules

lo
ca

te
dA

t

G
oo

d
Se

rv
ic

e

Pr
es

cr
ip

tio
n

Br
ac

e
Ph

ys
ic

al
C

he
ck

up

Sy
m

pt
om

Ill
ne

ss

Pl
ac

e

Tr
ea

tm
en

t

m
ed

ic
at

io
n

in
st

ru
ct

io
ns

sy

m
pt

om
 s

ev
er

ity

+
pr

im
ar

y
in

su
ra

nc
e

ca
rr

ie
r

-n
am

e
-d

es
cr

ip
tio

n

279

FI
G

U
R

E
7

-4

 A
pp

oi
nt

m
en

t P
ro

bl
em

 C
la

ss
 D

ia
gr

am
 (F

ig
ur

e
5-

7)

c07MovingOnToDesign.qxd 11/8/11 3:40 PM Page 279

280 Chapter 7 Moving on to Design

FIGURE 7-5 Use-Case Description for the Make Old Patient Appt Use Case (Figure 4-11)

Use-Case Name:

Primary Actor:

Stakeholders and Interests:

Brief Description:

ID: Importance Level:

Trigger:

Normal Flow of Events:

SubFlows:

Alternate/Exceptional Flows:

Type: External

Make Old Patient Appt 2 Low

Old Patient

Old patient - wants to make, change, or cancel an appointment
Doctor - wants to ensure patient’s needs are met in a timely manner

Use Case Type: Detail, Essential

Patient calls and asks for a new appointment or asks to cancel or change an existing appointment

Old Patient

Update Patient Information
Manage Appointments

1. The Patient contacts the office regarding an appointment.
2. The Patient provides the Receptionist with his or her name and address.
3. If the Patient’s information has changed
 Execute the Update Patient Information use case.
4. If the Patient’s payment arrangements has changed
 Execute the Make Payments Arrangements use case.
5. The Receptionist asks Patient if he or she would like to make a new appointment, cancel an existing appointment, or change
 an existing appointment.

S-1: New Appointment
1. The Receptionist asks the Patient for possible appointment times.
2. The Receptionist matches the Patient’s desired appointment times with available dates and
 times and schedules the new appointment.

S-2: Cancel Appointment
1. The Receptionist asks the Patient for the old appointment time.
2. The Receptionist finds the current appointment in the appointment file and cancels it.

S-3: Change Appointment
1. The Receptionist performs the S-2: cancel appointment subflow.
2. The Receptionist performs the S-1: new appointment subflow.

S-1, 2a1: The Receptionist proposes some alternative appointment times based on what is available in the
 appointment schedule.

S-1, 2a2: The Patient chooses one of the proposed times or decides not to make an appointment.

6. The Receptionist provides the results of the transaction to the Patient.

This use case describes how we make an appointment as well as changing or canceling
an appointment for a previously seen patient.

Relationships:
Association:
Include:
Extend:
Generalization:

If the patient wants to make a new appointment,
 the S-1: new appointment subflow is performed.
If the patient wants to cancel an existing appointment,
 the S-2: cancel appointment subflow is performed.
If the patient wants to change an existing appointment,
 the S-3: change appointment subflow is performed.

TEMPLATE
can be found at
www.wiley.com
/college/dennis

c07MovingOnToDesign.qxd 11/8/11 3:40 PM Page 280

Verifying and Validating the Analysis Models 281

Get Patient Information

Appt
Request Info

Appt
Request InfoCreate New Patient

Update Patient Information

[New Patient][Old Patient]

[Change]

Cancel Appointment Change AppointmentCreate Appointment

Make Payment Arrangements

Create Appointment

Make Payment Arrangements

[New Info]

[New Arrange]

[Cancel]

[Create]

FIGURE 7-6 Activity Diagram for the Manage Appointments Use Case (Figure 4-7)

c07MovingOnToDesign.qxd 11/8/11 3:40 PM Page 281

282 Chapter 7 Moving on to Design

Get Patient Information

Create New Patient

Update Patient Information

[New Patient][Old Patient]

[Change]

Cancel Appointment Change AppointmentCreate Appointment

Make Payment Arrangements

Create Appointment

Make Payment Arrangements

[New Info]

[New Arrange]

[Cancel]

[Create]

FIGURE 7-7 Corrected Activity Diagram for the Manage Appointments Use Case

c07MovingOnToDesign.qxd 11/8/11 3:40 PM Page 282

In
cl

ud
in

g

A
ss

oc
ia

te
dW

ith

A
ss

oc
ia

te
dW

ith

A
ss

oc
ia

te
dW

ith

A
ss

oc
ia

te
dW

ith

C
on

ta
in

s

D
es

cr
ib

e

In
cl

ud
in

g

C
on

ta
in

s

C
on

ta
in

s

C
on

ta
in

s

H
as

Ki
nd

s

H
as

Ki
nd

s

C
on

ta
in

s
C

on
ta

in
s

H
av

e

H
as

Ki
nd

s

C
on

ta
in

s

Be
ha

vi
or

al
 M

od
el

s

C
RU

D
E

M
at

ri
x

C
om

m
un

ic
at

io
n

D
ia

gr
am

A
ss

oc
ia

tio
ns

M
es

sa
ge

s

Se
qu

en
ce

 D
ia

gr
am

C
el

l E
nt

ri
es

Tr
an

si
tio

ns
St

at
es

A
ct

iv
ity

 D
ia

gr
am

U
se

-C
as

e
D

ia
gr

am

U
se

 C
as

e
D

es
cr

ip
tio

ns

O
bj

ec
t N

od
es

A
ct

iv
iti

es
/A

ct
io

ns

St
ak

eh
ol

de
rs

Re
la

tio
ns

hi
ps

U
pd

at
e

C
re

at
e

O
bj

ec
ts

U
se

 C
as

es

C
on

tr
ol

 F
lo

w
s

O
bj

ec
t F

lo
w

s

Fl
ow

s

Ev
en

ts

A
ct

or
s

Fu
nc

tio
na

l M
od

el
s

Be
ha

vi
or

ia
l S

ta
te

 M
ac

hi
ne

In
te

ra
ct

io
n

D
ia

gr
am

Re
ad

D
el

et
e

Sc
en

ar
io

s

A
ct

or
s

283

FI
G

U
R

E
7

-8

 R
el

at
io

ns
hi

ps
 b

et
w

ee
n

Fu
nc

tio
na

l a
nd

 B
eh

av
io

ra
l M

od
el

s

c07MovingOnToDesign.qxd 11/8/11 3:40 PM Page 283

284 Chapter 7 Moving on to Design

sd Make Appt Use Case

RequestAppt(name, address)

NewCancelChangeAppt?()

ApptTimes?()

aPatient

LookUpPatient()

aReceptionist

[aPatient Exists] LookupBills()

MatchAppts()

CreateAppt()

aPatient:Patient :UnpaidBill :Appointment

FIGURE 7-9
Sequence Diagram for
a Scenario of the Make
Old Patient Appt Use
Case (Figure 6-1)

sd Make Appt Use Case

aPatient

1: RequestAppt(name, address)
4: NewCancelChangeAppt?

5: ApptTimes?

aReceptionist

2: LookUpPatient()

3: [aPatient Exists] LookupBills()

7: CreateAppt

6: MatchAppts

:Appointment

aPatient:Patient

:UnpaidBill

FIGURE 7-10 Communication Diagram for a Scenario of the Make Old Patient Appt
Use Case (Figure 6-9)

First, the sequence and communication diagrams must be associated with a use case
on the use-case diagram and a use-case description. For example, the sequence diagram in
Figure 7-9 and the communication diagram in Figure 7-10 are related to scenarios of the
Make Old Patient Appt use case that appears in the use-case description in Figure 7-5 and
the use-case diagram in Figure 7-11.

Second, actors on sequence diagrams, communication diagrams, and/or CRUDE matri-
ces must be associated with actors on the use-case diagram or referenced in the use-case
description, and vice versa. For example, the aPatient actor in the sequence diagram in Fig-
ure 7-9, the communication diagram in Figure 7-10, and the Patient row and column in the
CRUDE matrix in Figure 7-12 appears in the use-case diagram in Figure 7-11 and the use-case

c07MovingOnToDesign.qxd 11/8/11 3:40 PM Page 284

Verifying and Validating the Analysis Models 285

Appointment System

Patient

New Patient

Old Patient

Update Patient
Information

Make Old Patient
 Appt

Make New Patient
 Appt

Make Payment
Arrangements

Create New Patient

Manage
Appointments

<<ex
ten

d>
>

<<
in

cl
ud

e>
>

*

*

*

*

<<include>>

<<
ex

te
nd

>>

Produce Schedules

Management

Doctor

Record
Availability

Manage
Schedule

<<include>>

<<include>>

*
*

*
*

FIGURE 7-11 Modified Use-Case Diagram for the Appointment System (Figure 4-15)

FIGURE 7-12 CRUDE Matrix for the Make Old Patient Apt Use Case (Figure 6-22)

Receptionist RU CRUD R RU CRUD

PatientList R

Patient

UnpaidBills

Appointments R

Appointment

Receptionist PatientList Patient UnpaidBills Appointments Appointment

c07MovingOnToDesign.qxd 11/8/11 3:40 PM Page 285

286 Chapter 7 Moving on to Design

description in Figure 7-5. However, the aReceptionist does not appear in the use-case dia-
gram but is referenced in the events associated with the Make Old Patient Appt use-case
description. In this case, the aReceptionist actor is obviously an internal actor, which cannot
be portrayed on UML’s use-case diagram.

Third, messages on sequence and communication diagrams, transitions on behavioral
state machines, and entries in a CRUDE matrix must be related to activities and actions on
an activity diagram and events listed in a use-case description, and vice versa. For example,
the CreateAppt() message on the sequence and communication diagrams (see Figures 7-9
and 7-10) is related to the CreateAppointment activity (see Figure 7-7) and the S-1: New
Appointment subflow on the use-case description (see Figure 7-5). The C entry into the
Receptionist Appointment cell of the CRUDE matrix is also associated with these messages,
activity, and subflow.

Fourth, all complex objects represented by an object node in an activity diagram must
have a behavioral state machine that represents the object’s lifecycle, and vice versa. As
stated in Chapter 6, complex objects tend to be very dynamic and pass through a variety of
states during their lifetimes. However, in this case because we no longer have any object
nodes in the activity diagram (see Figure 7-7), there is no necessity for a behavioral state
machine to be created based on the activity diagram.

Balancing Structural and Behavioral Models
To discover the relationships between the structural and behavioral models, we use the
concept map in Figure 7-13. In this case, there are five areas in which we must ensure the
consistency between the models.4

First, objects that appear in a CRUDE matrix must be associated with classes that are
represented by CRC cards and appear on the class diagram, and vice versa. For example,
the Patient class in the CRUDE matrix in Figure 7-12 is associated with the CRC card in
Figure 7-3 and the Patient class in the class diagram in Figure 7-4.

Second, because behavioral state machines represent the life cycle of complex objects,
they must be associated with instances (objects) of classes on a class diagram and with a
CRC card that represents the class of the instance. For example, the behavioral state
machine that describes an instance of a Patient class in Figure 7-14 implies that a Patient
class exists on a related class diagram (see Figure 7-4) and that a CRC card exists for the
related class (see Figure 7-3).

Third, communication and sequence diagrams contain objects that must be an
instantiation of a class that is represented by a CRC card and is located on a class dia-
gram. For example, Figure 7-9 and Figure 7-10 have an anAppt object that is an instan-
tiation of the Appointment class. Therefore, the Appointment class must exist in the
class diagram (see Figure 7-4) and a CRC card should exist that describes it. However,
there is an object on the communication and sequence diagrams associated with a class
that did not exist on the class diagram: UnpaidBill. At this point, the analyst must decide
to either modify the class diagram by adding these classes or rethink the communication
and sequence diagrams. In this case, it is better to add the class to the class diagram (see
Figure 7-15).

Fourth, messages contained on the sequence and communication diagrams, transi-
tions on behavioral state machines, and cell entries on a CRUDE matrix must be associ-
ated with responsibilities and associations on CRC cards and operations in classes and
associations connected to the classes on class diagrams. For example, the CreateAppt()

4 Role-playing (see Chapter 5) and CRUDE analysis (see Chapter 6) also can be very useful in this undertaking.

c07MovingOnToDesign.qxd 11/8/11 3:40 PM Page 286

A
ss

oc
ia

te
dW

ith

St
ru

ct
ur

al
 M

od
el

s

C
RC

 C
ar

ds

In
cl

ud
in

g

C
on

ta
in

s

C
on

ta
in

s

In
st

an
ce

O
f

Re
pr

es
en

ts
C

on
ta

in
s

A
ss

oc
ia

tio
ns

/
Re

la
tio

ns
hi

ps

A
tt

ri
bu

te
s

H
av

e

Ty
pe

O
pe

ra
tio

ns

Re
sp

on
si

bi
lit

es

C
on

ta
in

s

In
cl

ud
in

g

A
ss

oc
ia

te
dW

ith

A
ss

oc
ia

te
dW

ith

A
ss

oc
ia

te
dW

ith

G
en

er
al

iz
at

io
n

A
ct

or
s

H
as

Ki
nd

s

H
as

Ki
nd

s

H
as

Ki
nd

s

H
as

Ki
nd

s
H

as
Ki

nd
s

A
ss

oc
ia

tio
n

A
gg

re
ga

tio
n

C
on

ta
in

s

A
ss

oc
ia

tio
ns

C
om

m
un

ic
at

io
n

D
ia

gr
am

Se
qu

en
ce

 D
ia

gr
am

In
te

ra
ct

io
n

D
ia

gr
am

Be
ha

vi
or

al
 M

od
el

s

C
RU

D
E

M
at

ri
x

C
on

ta
in

s
D

es
cr

ib
e

O
bj

ec
ts

O
bj

ec
ts

M
es

sa
ge

s

C
on

ta
in

s

C
on

ta
in

s

D
el

et
e

Tr
an

si
tio

ns

Re
ad

C
re

at
e

C
el

l E
nt

ri
es

St
at

es

C
la

ss
 D

ia
gr

am
O

bj
ec

t D
ia

gr
am

C
ol

la
bo

ra
to

rs

A
ss

oc
ia

tio
n

C
la

ss
C

om
po

si
tio

n
U

pd
at

e

Be
ha

vi
or

al
 S

ta
te

M

ac
hi

ne

C
la

ss
es

287

FI
G

U
R

E
7

-1
3

 R

el
at

io
ns

hi
ps

 b
et

w
ee

n
St

ru
ct

ur
al

 a
nd

 B
eh

av
io

ra
l M

od
el

s

c07MovingOnToDesign.qxd 11/8/11 3:40 PM Page 287

288 Chapter 7 Moving on to Design

message on the sequence and communication diagrams (see Figures 7-9 and 7-10) relate
to the makeAppointment operation of the Patient class and the schedules association
between the Patient and Appointment classes on the class diagram (see Figure 7-15).

Fifth, the states in a behavioral state machine must be associated with different values
of an attribute or set of attributes that describe an object. For example, the behavioral state
machine for the hospital patient object implies that there should be an attribute, possibly
current status, which needs to be included in the definition of the class.

Summary
Figure 7-16 portrays a concept map that is a complete picture of the interrelationships
among the diagrams covered in this section. It is obvious from the complexity of this
figure that balancing all the functional, structural, and behavioral models is a very time-
consuming, tedious, and difficult task. However, without paying this level of attention to
the evolving models that represent the system, the models will not provide a sound
foundation on which to design and build the system.

We have been working with the system for the library’s
book collection over the previous three chapters. In
Chapter 4, we verified and validated the functional model
(use-case diagram, activity diagrams, and use-case descrip-
tions). In Chapter 5, we verified and validated the
functional model (CRC cards and class diagram). In
Chapter 6, we verified and validated the behavioral model
(sequence diagrams, communication diagrams, behavioral

state machines). Based on the current versions of the analy-
sis models, you should verify and validate the analysis
models by balancing them.

! Balance functional models with structural models.
! Balance functional models with behavioral models.
! Balance structural models with behavioral models.

7-1 Library Book Collection Management SystemYOUR

TURN

FIGURE 7-14 Behavioral State Machine for Hospital Patient (Figure 6-15)

Patient

Enters Hospital Checks In [Diagnosis = Healthy] [> 2 weeks]
Entering Admitted Released

Under Observation

[Diagnosis = Unhealthy]

[Diagnosis = Healthy]

c07MovingOnToDesign.qxd 11/8/11 3:40 PM Page 288

A
cc

ou
nt

Em
pl

oy
ee0.

.*

0.
.*

0.

.*

0.
.*

0.
.*

0.
.*

0.
.*

0.
.*

0.
.*

1.
.*

1.
.*

1.
.*

1.
.*

1.
.*

1.
.1

1.
.1

1.
.1

1.
.1

0.
.1

1.
.1

1.
.1

1.
.1

1.
.1

1.
.1

1.

.1

1.
.1

D
eb

it

C
re

di
t

En
tr

y
A

pp
oi

nt
m

en
t

-ti
m

e
-d

at
e

-r
ea

so
n

+c
an

ce
l w

ith
ou

t n
ot

ic
e(

)

Pa
tie

nt

-a
m

ou
nt

-in

su
ra

nc
e

ca
rr

ie
r

+m
ak

e
ap

po
in

tm
en

t()

+c
al

cu
la

te
 la

st
 v

is
it(

)
+c

ha
ng

e
st

at
us

()
+p

ro
vi

de
s

m
ed

ic
al

 h
is

to
ry

()

Pa
rt

ic
ip

an
t

-la
st

na
m

e
-fi

rs
tn

am
e

-a
dd

re
ss

-p

ho
ne

-b

irt
hd

at
e

-/a
ge

It
em

Tr
an

sa
ct

io
n

Li
ne

 It
em

ha
s

ha
s

co
nt

ai
ns

A
ss

ig
ne

dT
o

+
pr

im
ar

y
in

su
ra

nc
e

ca
rr

ie
r

D
oc

to
r

Re
ce

pt
io

ni
st

U
np

ai
d

Bi
ll

N
ur

se

M
ed

ic
al

 H
is

to
ry

-h
ea

rt
di

se
as

e
-h

ig
h

bl
oo

d
pr

es
su

re

-d
ia

be
tie

s
-a

le
rg

ie
s

pr
ov

id
es

su
ffe

rs

ow
esschedules

lo
ca

te
dA

t

G
oo

d
Se

rv
ic

e

Pr
es

cr
ip

tio
n

Br
ac

e
Ph

ys
ic

al
C

he
ck

up

Sy
m

pt
om

Ill
ne

ss

Pl
ac

e

Tr
ea

tm
en

t

m
ed

ic
at

io
n

in
st

ru
ct

io
ns

sy

m
pt

om
 s

ev
er

ity

-n
am

e
-d

es
cr

ip
tio

n

FI
G

U
R

E
7

-1
5

 C

or
re

ct
ed

 A
pp

oi
nt

m
en

t S
ys

te
m

 C
la

ss
 D

ia
gr

am

289

c07MovingOnToDesign.qxd 11/8/11 3:40 PM Page 289

In
cl

ud
in

g C
on

ta
in

s
C

on
ta

in
s

C
on

ta
in

s
Re

pr
es

en
ts

C
on

ta
in

s

H
as

Ki
nd

s

H
as

Ki
nd

s

H
as

Ki
nd

s

H
av

e
H

as
Ki

nd
s

In
cl

ud
in

g

A
ss

oc
ia

te
dW

ith

A
ss

oc
ia

te
dW

ith

A
ss

oc
ia

te
dW

ith

A
ss

oc
ia

te
dW

ith
A

ss
oc

ia
te

dW
ith

A
ss

oc
ia

te
dW

ith

A
ss

oc
ia

te
dW

ith

A
ss

oc
ia

te
dW

ith

A
ss

oc
ia

te
dW

ith

A
ss

oc
ia

te
dW

ith

A
ss

oc
ia

te
dW

ith

A
ss

oc
ia

te
dW

ith

A
ss

oc
ia

te
dW

ith
A

ss
oc

ia
te

dW
ith

A
ss

oc
ia

te
dW

ith

In
cl

ud
es

H
as

Ki
nd

s

In
cl

ud
in

g

C
on

ta
in

s
C

on
ta

in
s

C
on

ta
in

sC
on

ta
in

s

C
on

ta
in

s
C

on
ta

in
s

C
on

ta
in

s

H
as

Ki
nd

s

St
ru

ct
ur

al
 M

od
el

s

C
RC

 C
ar

ds
O

bj
ec

t D
ia

gr
am

C
la

ss
 D

ia
gr

am

C
ol

la
bo

ra
to

rs A
tt

ri
bu

te
s

O
pe

ra
tio

ns

Ty
pe

C
la

ss
es

A
ss

oc
ia

tio
ns

/
Re

la
tio

ns
hi

ps

A
gg

re
ga

tio
n

G
en

er
al

iz
at

io
n

C
om

po
si

tio
n

A
ss

oc
ia

tio
n

C
la

ss

Be
ha

vi
or

al
 M

od
el

s

O
bj

ec
t-

O
ri

en
te

d
A

na
ly

si
s

M
od

el
s

In
te

ra
ct

io
n

D
ia

gr
am

Be
ha

vi
or

ia
l S

ta
te

M

ac
hi

ne
C

RU
D

E
M

at
ri

x

C
om

m
un

ic
at

io
n

D
ia

gr
am

M
es

sa
ge

s

Se
qu

en
ce

 D
ia

gr
am

C
el

l E
nt

ri
es

A
ct

iv
ity

 D
ia

gr
am

U
se

-C
as

e
D

ia
gr

am

U
se

 C
as

e
D

es
cr

ip
tio

ns

O
bj

ec
t F

lo
w

s
C

on
tr

ol
 F

lo
w

s

O
bj

ec
t N

od
es

A
ct

iv
iti

es
/A

ct
io

ns

Fl
ow

s

St
ak

eh
ol

de
rs

Re
la

tio
ns

hi
ps

Ev
en

ts

D
el

et
e

Re
ad

U
pd

at
e

C
re

at
e

Sc
en

ar
io

s

Fu
nc

tio
na

l M
od

el
s

A
ct

or
s

O
bj

ec
ts

A
ss

oc
ia

te
dW

ith

Tr
an

si
tio

ns

St
at

es

A
ss

oc
ia

tio
n

H
av

e

U
se

 C
as

es
Re

sp
on

si
bi

lit
ie

s

In
st

an
ce

O
f

A
ss

oc
ia

te
d

W
ith

290

FI
G

U
R

E
7

-1
6

 I

nt
er

re
la

tio
ns

hi
ps

 a
m

on
g

O
bj

ec
t-

O
ri

en
te

d
A

na
ly

si
s

M
od

el
s

c07MovingOnToDesign.qxd 11/8/11 3:40 PM Page 290

EVOLVING THE ANALYSIS MODELS INTO DESIGN MODELS
Now that we have successfully verified and validated our analysis models, we need to begin
evolving them into appropriate design models. The purpose of the analysis models was
to represent the underlying business problem domain as a set of collaborating objects.
In other words, the analysis activities defined the functional requirements. To achieve this,
the analysis activities ignored nonfunctional requirements such as performance and the
system environment issues (e.g., distributed or centralized processing, user-interface issues,
and database issues). In contrast, the primary purpose of the design models is to increase
the likelihood of successfully delivering a system that implements the functional require-
ments in a manner that is affordable and easily maintainable. Therefore, in systems design,
we address both the functional and nonfunctional requirements.

From an object-oriented perspective, system design models simply refine the system
analysis models by adding system environment (or solution domain) details to them and
refining the problem domain information already contained in the analysis models.
When evolving the analysis model into the design model, you should first carefully
review the use cases and the current set of classes (their operations and attributes and the
relationships between them). Are all the classes necessary? Are there any missing classes?
Are the classes fully defined? Are any attributes or methods missing? Do the classes have
any unnecessary attributes and methods? Is the current representation of the evolving
system optimal? Obviously, if we have already verified and validated the analysis models,
quite a bit of this has already taken place. Yet, object-oriented systems development is
both incremental and iterative. Therefore, we must review the analysis models again.
However, this time we begin looking at the models of the problem domain through a
design lens. In this step we make modifications to the problem domain models that will
enhance the efficiency and effectiveness of the evolving system.

In the following sections, we introduce factoring, partitions and collaborations, and
layers as a way to evolve problem domain-oriented analysis models into optimal solution
domain-oriented design models. From an enhanced Unified Process perspective (see
Figure 1-18), we are moving from the analysis workflow to the design workflow, and we are
moving further into the Elaboration phase and partially into the Construction phase.

Factoring
Factoring is the process of separating out a module into a stand-alone module. The new
module can be a new class or a new method. For example, when reviewing a set of
classes, it may be discovered that they have a similar set of attributes and methods. Thus
it might make sense to factor out the similarities into a separate class. Depending on
whether the new class should be in a superclass relationship to the existing classes or
not, the new class can be related to the existing classes through a generalization (a-kind-
of) or possibly through an aggregation (has-parts) relationship. Using the appointment
system example, if the Employee class had not been identified, we could possibly iden-
tify it at this stage by factoring out the similar methods and attributes from the Nurse,
Receptionist, and Doctor classes. In this case, we would relate the new class (Employee)
to the existing classes using the generalization (a-kind-of) relationship. Obviously, by
extension we also could have created the Participant class if it had not been previously
identified.

Abstraction and refinement are two processes closely related to factoring. Abstraction deals
with the creation of a higher-level idea from a set of ideas. Identifying the Employee class is an
example of abstracting from a set of lower classes to a higher one. In some cases, the abstrac-
tion process identifies abstract classes, whereas in other situations, it identifies additional

Evolving the Analysis Models into Design Models 291

c07MovingOnToDesign.qxd 11/8/11 3:40 PM Page 291

concrete classes.5 The refinement process is the opposite of the abstraction process. In the
appointment system example, we could identify additional subclasses of the Employee class,
such as Secretary and Bookkeeper. Of course we would add the new classes only if there were
sufficient differences among them. Otherwise, the more general class, Employee, would suffice.

Partitions and Collaborations
Based on all the factoring, refining, and abstracting that can take place to the evolving
system, the sheer size of the system representation can overload the user and the developer.
At this point in the evolution of the system, it might make sense to split the representation
into a set of partitions. A partition is the object-oriented equivalent of a subsystem,6 where
a subsystem is a decomposition of a larger system into its component systems (e.g., an
accounting information system could be functionally decomposed into an accounts-
payable system, an accounts-receivable system, a payroll system, etc.). From an object-
oriented perspective, partitions are based on the pattern of activity (messages sent) among
the objects in an object-oriented system. We describe an easy approach to model partitions
and collaborations later in this chapter: packages and package diagrams.

A good place to look for potential partitions is the collaborations modeled in UML’s com-
munication diagrams (see Chapter 6). If you recall, one useful way to identify collaborations
is to create a communication diagram for each use case. However, because an individual class
can support multiple use cases, an individual class can participate in multiple use-case-based
collaborations. In cases where classes are supporting multiple use cases, the collaborations
should be merged. The class diagram should be reviewed to see how the different classes are
related to one another. For example, if attributes of a class have complex object types, such as
Person, Address, or Department, and these object types were not modeled as associations in
the class diagram, we need to recognize these implied associations. Creating a diagram that
combines the class diagram with the communication diagrams can be very useful to show to
what degree the classes are coupled.7 The greater the coupling between classes, the more likely
the classes should be grouped together in a collaboration or partition. By looking at a CRUDE
matrix, we can use CRUDE analysis (see Chapter 6) to identify potential classes on which to
merge collaborations.

One of the easiest techniques to identify the classes that could be grouped to form a
collaboration is through the use of cluster analysis or multiple dimensional scaling. These
statistical techniques enable the team to objectively group classes together based on their
affinity for each other. The affinity can be based on semantic relationships, different types
of messages being sent between them (e.g., create, read, update, delete, or execute), or
some weighted combination of both. There are many different similarity measures and
many different algorithms on which the clusters can be based, so one must be careful
when using these techniques. Always make sure that the collaborations identified using
these techniques make sense from the problem domain perspective. Just because a math-
ematical algorithm suggests that the classes belong together does not make it so. However,
this is a good approach to create a first-cut set of collaborations.

Depending on the complexity of the merged collaboration, it may be useful in decompos-
ing the collaboration into multiple partitions. In this case, in addition to having collaborations

292 Chapter 7 Moving on to Design

5 See Chapter 5 for the differences between abstract and concrete classes.
6 Some authors refer to partitions as subsystems [e.g., see R. Wirfs-Brock, B. Wilkerson, and L. Weiner, Design-
ing Object-Oriented Software (Englewood Cliffs, NJ: Prentice Hall, 1990)], whereas others refer to them as layers
[e.g., see I. Graham, Migrating to Object Technology (Reading, MA: Addison-Wesley, 1994)]. However, we have
chosen to use the term partition [C. Larman, Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design (Englewood Cliffs, NJ: Prentice Hall, 1998)] to minimize confusion between subsystems in
a traditional systems development approach and layers associated with Rational’s Unified Approach.
7 We describe the concept of coupling in Chapter 8.

c07MovingOnToDesign.qxd 11/8/11 3:40 PM Page 292

between objects, it is possible to have collaborations among partitions. The general rule is the
more messages sent between objects, the more likely the objects belong in the same partition.
The fewer messages sent, the less likely the two objects belong together.

Another useful approach to identifying potential partitions is to model each collabo-
ration between objects in terms of clients, servers, and contracts. A client is an instance of
a class that sends a message to an instance of another class for a method to be executed; a
server is the instance of a class that receives the message; and a contract is the specification
that formalizes the interactions between the client and server objects (see Chapters 5
and 8). This approach allows the developer to build up potential partitions by looking at
the contracts that have been specified between objects. In this case, the more contracts
there are between objects, the more likely that the objects belong in the same partition. The
fewer contracts, the less chance there is that the two classes belong in the same partition.

Remember, the primary purpose of identifying collaborations and partitions is to
determine which classes should be grouped together in design.

Layers
Until this point in the development of our system, we have focused only on the problem
domain; we have totally ignored the system environment (data management, user inter-
face, and physical architecture). To successfully evolve the analysis model of the system into
a design model of the system, we must add the system environment information. One use-
ful way to do this, without overloading the developer, is to use layers. A layer represents an
element of the software architecture of the evolving system. We have focused only on one
layer in the evolving software architecture: the problem domain layer. There should be a
layer for each of the different elements of the system environment (e.g., data management,
user interface, physical architecture). Like partitions and collaborations, layers also can be
portrayed using packages and package diagrams (see the next section of this chapter).

The idea of separating the different elements of the architecture into separate layers
can be traced back to the MVC architecture of Smalltalk.8 When Smalltalk was first
created,9 the authors decided to separate the application logic from the logic of the user
interface. In this manner, it was possible to easily develop different user interfaces that worked
with the same application. To accomplish this, they created the Model–View–Controller

Evolving the Analysis Models into Design Models 293

You have been working with the system for the campus
housing service over the previous three chapters. In Chap-
ter 4, you were asked to create a set of use cases and to
create a use-case diagram (Your Turn 4-2). In Chapter 5,
you created a structural model (CRC cards and class
diagram) for the same situation (Your Turn 5-2). In Chap-
ter 6, you created a sequence diagram (Your Turn 6-1) and
a communication diagram (Your Turn 6-2) for one of the

use cases you had identified in Chapter 4. Finally, you
also created a behavioral state machine for the apartment
class in Chapter 6 (Your Turn 6-3).

Based on the current set of functional, structural, and
behavioral models portrayed in these diagrams, apply the
abstraction and refinement processes to identify addi-
tional abstract and concrete classes that would be useful
to include in the evolving system.

7-2 Campus HousingYOUR

TURN

8 See S. Lewis, The Art and Science of Smalltalk: An Introduction to Object-Oriented Programming Using Visual-
Wo r k s (Englewood Cliffs, NJ: Prentice Hall, 1995).
9 Smalltalk was invented in the early 1970s by a software-development research team at Xerox PARC. It introduced
many new ideas into the area of programming languages (e.g., object orientation, windows-based user interfaces,
reusable class library, and the development environment). In many ways, Smalltalk is the parent of all object-
based and object-oriented languages, such as Visual Basic, C!! , and Java.

c07MovingOnToDesign.qxd 11/8/11 3:40 PM Page 293

(MVC) architecture, where Models implemented the application logic (problem domain)
and Views and Controllers implemented the logic for the user interface. Views handled the
output and Controllers handled the input. Because graphical user interfaces were first
developed in the Smalltalk language, the MVC architecture served as the foundation for
virtually all graphical user interfaces that have been developed today (including the Mac
interfaces, the Windows family, and the various Unix-based GUI environments).

Based on Smalltalk’s innovative MVC architecture, many different software layers
have been proposed.10 Based on these proposals, we suggest the following layers on which
to base software architecture: foundation, problem domain, data management,
human–computer interaction, and physical architecture (see Figure 7-17). Each layer
limits the types of classes that can exist on it (e.g., only user interface classes may exist on
the human–computer interaction layer).

Foundation The foundation layer is, in many ways, a very uninteresting layer. It contains
classes that are necessary for any object-oriented application to exist. They include classes
that represent fundamental data types (e.g., integers, real numbers, characters, strings),
classes that represent fundamental data structures, sometimes referred to as container classes
(e.g., lists, trees, graphs, sets, stacks, queues), and classes that represent useful abstractions,
sometimes referred to as utility classes (e.g., date, time, money). Today, the classes found on
this layer are typically included with the object-oriented development environments.

Problem Domain The problem-domain layer is what we have focused our attention on
up until now. At this stage of the development of our system, we need to further detail the
classes so that we can implement them in an effective and efficient manner. Many issues
need to be addressed when designing classes, no matter on which layer they appear. For
example, there are issues related to factoring, cohesion and coupling, connascence, encap-
sulation, proper use of inheritance and polymorphism, constraints, contract specification,
and detailed method design. These issues are discussed in Chapter 8.

Data Management The data management layer addresses the issues involving the persistence
of the objects contained in the system. The types of classes that appear in this layer deal with

294 Chapter 7 Moving on to Design

10 For example, Problem Domain, Human Interaction, Task Management, and Data Management (P. Coad and
E. Yourdon, Object-Oriented Design [Englewood Cliffs, NJ: Yourdon Press, 1991)]; Domain, Application, and
Interface (I. Graham, Migrating to Object Technology [Reading, MA: Addison-Wesley, 1994)]; Domain, Service,
and Presentation [C. Larman, Applying UML and Patterns: An Introduction to Object-Oriented Analysis and
Design (Englewood Cliffs, NJ: Prentice Hall, 1998)]; Business, View, and Access [A. Bahrami, Object-Oriented
Systems Development using the Unified Modeling Language (New York: McGraw-Hill, 1999)]; Application-
Specific, Application-General, Middleware, System-Software [I. Jacobson, G. Booch, and J. Rumbaugh, The
Unified Software Development Process (Reading, MA: Addison-Wesley, 1999)]; and Foundation, Architecture,
Business, and Application [M. Page-Jones, Fundamentals of Object-Oriented Design in UML (Reading, MA:
Addison-Wesley, 2000)].

Foundation Date, Enumeration 7, 8
Problem Domain Employee, Customer 4, 5, 6, 7, 8
Data Management DataInputStream, 8, 9

FileInputStream
Human–Computer Interaction Button, Panel 8, 10
Physical Architecture ServerSocket, URLConnection 8, 11

FIGURE 7-17
Layers and
Sample Classes

Layers Examples Relevant Chapters

c07MovingOnToDesign.qxd 11/8/11 3:40 PM Page 294

how objects can be stored and retrieved. The classes contained in this layer allow the problem
domain classes to be independent of the storage used and, hence, increase the portability of the
evolving system. Some of the issues related to this layer include choice of the storage format
and optimization. In today’s world, there is a plethora of different options in which to choose
to store objects. These include sequential files, random access files, relational databases,
object/relational databases, object-oriented databases, and NoSQL data stores. Each of these
options has been optimized to provide solutions for different access and storage problems.
Today, from a practical perspective, there is no single solution that optimally serves all appli-
cations. The correct solution is most likely some combination of the different storage options.
A complete description of all the issues related to the data management layer is well beyond the
scope of this book.11 However, we do present the fundamentals in Chapter 9.

Human–Computer Interaction The human–computer interaction layer contains classes
associated with the View and Controller idea from Smalltalk. The primary purpose of this layer
is to keep the specific user-interface implementation separate from the problem domain
classes. This increases the portability of the evolving system. Typical classes found on this layer
include classes that can be used to represent buttons, windows, text fields, scroll bars, check
boxes, drop-down lists, and many other classes that represent user-interface elements.

When it comes to designing the user interface for an application, many issues must be
addressed: How important is consistency across different user interfaces? What about differing
levels of user experience? How is the user expected to be able to navigate through the system?
What about help systems and online manuals? What types of input elements should be
included (e.g., text box, radio buttons, check boxes, sliders, drop-down list boxes)? What types
of output elements should be included (e.g., text, tables, graphs)? Other questions that must
be addressed are related to the platform on which the software will be deployed. For example,
is the application going to run on a stand-alone computer, is it going to be distributed, or is
the application going mobile? If it is expected to run on mobile devices, what type of platform:
notebooks, tablets, or phones? Will it be deployed using Web technology, which runs on mul-
tiple devices, or will it be created using apps that are based on Android from Google, Black-
berry OS from RIM, iOS from Apple, or Windows Phone from Microsoft? Depending on the
answer to these questions, different types of user interfaces are possible.

With the advent of social networking platforms, such as Facebook, Twitter, blogs,
YouTube, LinkedIn, and Second Life, the implications for the user interface can be mind
boggling. Depending on the application, different social networking platforms may be
appropriate for different aspects of the application. Furthermore, each of the different
social networking platforms enables (or prevents) consideration of different types of user
interfaces. Finally, with the potential audience of your application being global, many
different cultural issues will arise in the design and development of culturally aware
user interfaces (such as multilingual requirements). Obviously, a complete description of
all the issues related to human–computer interaction is beyond the scope of this book.12

Evolving the Analysis Models into Design Models 295

11 There are many good database design books that are relevant to this layer; see, for example, M. Gillenson,
Fundamentals of Database Management Systems (Hoboken, NJ: John Wiley & Sons, 2005); F. R. McFadden, J. A.
Hoffer, Mary B. Prescott, Modern Database Management, 4th ed. (Reading, MA: Addison-Wesley, 1998); M. Blaha
and W. Premerlani, Object-Oriented Modeling and Design for Database Applications (Englewood Cliffs, NJ:
Prentice Hall, 1998); and R. J. Muller, Database Design for Smarties: Using UML for Data Modeling (San Francisco:
Morgan Kaufmann, 1999).
12 Books on user interface design that address these issues include B. Schheiderman, Designing the User Interface:
Strategies for Effective Human Computer Interaction, 3rd ed. (Reading, MA: Addison-Wesley, 1998); J. Tidwell,
Designing Interfaces: Patterns for Effective Interaction Design, 2nd ed. (Sebastopol, CA: O’Reilly Media, 2010);
S. Krug, Don’t Make Me Think: A Common Sense Approach to Web Usability (Berkeley, CA: New Riders Publish-
ing, 2006); and N. Singh and A. Pereira, The Culturally Customized Web Site: Customizing Web Sites for the Global
Marketplace (Oxford, UK: Elsevier, 2005).

c07MovingOnToDesign.qxd 11/8/11 3:40 PM Page 295

However, from the user’s perspective, the user interface is the system. We present the basic
issues in user interface design in Chapter 10.

Physical Architecture The physical architecture layer addresses how the software will
execute on specific computers and networks. This layer includes classes that deal with com-
munication between the software and the computer’s operating system and the network.
For example, classes that address how to interact with the various ports on a specific com-
puter are included in this layer.

Unlike in the foundation layer, many design issues must be addressed before choosing the
appropriate set of classes for this layer. These design issues include the choice of a computing
or network architecture (such as the various client-server architectures), the actual design of a
network, hardware and server software specification, and security issues. Other issues that
must be addressed with the design of this layer include computer hardware and software con-
figuration (choice of operating systems such as Linux, Mac OS, and Windows, processor types
and speeds, amount of memory, data storage, and input/output technology), standardization,
virtualization, grid computing, distributed computing, and Web services. This then leads us to
one of the proverbial gorillas on the corner. What do you do with the cloud? The cloud is essen-
tially a form of distributed computing. In this case, the cloud allows you to treat the platform,
infrastructure, software, and even business processes as remote services that can be managed
by another firm. In many ways, the cloud allows much of IT to be outsourced (see the discus-
sion of outsourcing later in this chapter). Also as brought up with the human–computer inter-
action layer, the whole issue of mobile computing is very relevant to this layer. In particular,
the different devices, such as phones and tablets, are relevant and the way they will communi-
cate with each other, such as through cellular networks or WiFi, is also important.

Finally, given the amount of power that IT requires today, the whole topic of Green IT
must be addressed. Topics that need to be addressed related to Green IT are the location of
the data center, data center cooling, alternative power sources, reduction of consumables, the
idea of a paperless office, Energy Star compliance, and the potential impact of virtualization,
the cloud, and mobile computing. Like the data management and human–computer interac-
tion layers, a complete description of all the issues related to the physical architecture is
beyond the scope of this book.13 However, we do present the basic issues in Chapter 11.

PACKAGES AND PACKAGE DIAGRAMS
In UML, collaborations, partitions, and layers can be represented by a higher-level construct:
a package.14 In fact, a package serves the same purpose as a folder on your computer. When
packages are used in programming languages such as Java, packages are actually implemented
as folders. A package is a general construct that can be applied to any of the elements in UML
models. In Chapter 4, we introduced the idea of packages as a way to group use cases together
to make the use-case diagrams easier to read and to keep the models at a reasonable level of
complexity. In Chapters 5 and 6, we did the same thing for class and communication diagrams,
respectively. In this section we describe a package diagram: a diagram composed only of pack-
ages. A package diagram is effectively a class diagram that only shows packages.

The symbol for a package is similar to a tabbed folder (see Figure 7-18). Depending on
where a package is used, packages can participate in different types of relationships. For

296 Chapter 7 Moving on to Design

13 Some books that cover these topics include S.D. Burd, Systems Architecture, 6th ed. (Boston: Course Technology,
2011); I. Englander, The Architecture of Computer Hardware, Systems Software, & Networking: An Information
Technology Approach (Hoboken, NJ: Wiley, 2009); and K.K. Hausman and S. Cook, IT Architecture for Dummies
(Hoboken, NJ: Wiley Publishing, 2011).
14 This discussion is based on material in Chapter 7 of M. Fowler with K. Scott, UML Distilled: A Brief Guide to
the Standard Object Modeling Language, 3rd ed. (Reading, MA: Addison-Wesley, 2004).

c07MovingOnToDesign.qxd 11/8/11 3:40 PM Page 296

example, in a class diagram, packages represent groupings of classes. Therefore, aggregation
and association relationships are possible.

In a package diagram, it is useful to depict a new relationship, the dependency relation-
ship. A dependency relationship is portrayed by a dashed arrow (see Figure 7-18). A
dependency relationship represents the fact that a modification dependency exists between
two packages. That is, it is possible that a change in one package could cause a change to be
required in another package. Figure 7-19 portrays the dependencies among the different
layers (foundation, problem domain, data management, human–computer interaction,
and physical architecture). For example, if a change occurs in the problem domain layer, it
most likely will cause changes to occur in the human–computer interaction, physical archi-
tecture, and data management layers. Notice that these layers point to the problem domain
layer and therefore are dependent on it. However, the reverse is not true.15

At the class level, there could be many causes for dependencies among classes. For
example, if the protocol for a method is changed, then this causes the interface for all
objects of this class to change. Therefore, all classes that have objects that send messages to

Packages and Package Diagrams 297

A package:

! Is a logical grouping of UML elements
! Is used to simplify UML diagrams by grouping related elements into a single

higher-level element.

A dependency relationship:

! Represents a dependency between packages: If a package is changed, the
dependent package also could have to be modified.

! Has an arrow drawn from the dependent package toward the package on which it
is dependent.

Package

FIGURE 7-18 Syntax for Package Diagram

Human Computer Interaction

Problem Domain

Physical Architecture Data Management

Foundation

FIGURE 7-19
Package Diagram of
Dependency Relation-
ships among Layers

15 A useful side effect of the dependencies among the layers is that the project manager can divide the project team
up into separate subteams: one for each design layer. This is possible because each of the design layers is depend-
ent on the problem domain layer, which has been the focus of analysis. In design, the team can gain some
productivity-based efficiency by working on the different layer designs in parallel.

c07MovingOnToDesign.qxd 11/8/11 3:40 PM Page 297

the instances of the modified class might have to be modified. Capturing dependency
relationships among the classes and packages helps the organization in maintaining object-
oriented information systems.

Collaborations, partitions, and layers are modeled as packages in UML. Collaborations
are normally factored into a set of partitions, which are typically placed on a layer. Parti-
tions can be composed of other partitions. Also, it is possible to have classes in partitions,
which are contained in another partition, which is placed on a layer. All these groupings are
represented using packages in UML. Remember that a package is simply a generic group-
ing construct used to simplify UML models through the use of composition.16

A simple package diagram, based on the appointment system example from the previ-
ous chapters, is shown in Figure 7-20. This diagram portrays only a very small portion of the
entire system. In this case, we see that the Patient UI, Patient-DAM, and Patient Table classes
depend on the Patient class. Furthermore, the Patient-DAM class depends on the Patient
Table class. The same can be seen with the classes dealing with the actual appointments. By
isolating the Problem Domain classes (such as the Patient and Appt classes) from the actual
object-persistence classes (such as the Patient Table and Appt Table classes) through the use
of the intermediate Data Management classes (Patient-DAM and Appt-DAM classes), we iso-
late the Problem Domain classes from the actual storage medium.17 This greatly simplifies the
maintenance and increases the reusability of the Problem Domain classes. Of course, in a
complete description of a real system, there would be many more dependencies.

Guidelines for Creating Package Diagrams
As with the UML diagrams described in the earlier chapters, we provide a set of guidelines
that we have adapted from Ambler to create package diagrams.18 In this case, we offer six
guidelines (see Figure 7-21).

! Use package diagrams to logically organize designs. Specifically, use packages to
group classes together when there is an inheritance, aggregation, or composition
relationship between them or when the classes form a collaboration.

! In some cases, inheritance, aggregation, or association relationships exist between
packages. In those cases, for readability purposes, try to support inheritance rela-
tionships vertically, with the package containing the superclass being placed above
the package containing the subclass. Use horizontal placement to support aggre-
gation and association relationships, with the packages being placed side by side.

! When a dependency relationship exists on a diagram, it implies that there is at least
one semantic relationship between elements of the two packages. The direction of
the dependency is typically from the subclass to the superclass, from the whole to
the part, and with contracts, from the client to the server. In other words, a subclass
is dependent on the existence of a superclass, a whole is dependent upon its parts
existing, and a client can’t send a message to a nonexistent server.

! When using packages to group use cases together, be sure to include the actors and
the associations that they have with the use cases grouped in the package. This will
allow the diagram’s user to better understand the context of the diagram.

! Give each package a simple, but descriptive name to provide the package diagram
user with enough information to understand what the package encapsulates.
Otherwise, the user will have to drill-down or open up the package to understand
the package’s purpose.

298 Chapter 7 Moving on to Design

16 For those familiar with traditional approaches, such as structured analysis and design, packages serve a similar
purpose as the leveling and balancing processes used in data flow diagramming.
17 These issues are described in more detail in Chapter 9.
18 S.W. Ambler, The Elements of UML 2.0 Style (Cambridge, UK: Cambridge University Press, 2005).

c07MovingOnToDesign.qxd 11/8/11 3:40 PM Page 298

Packages and Package Diagrams 299

HCI Layer

Appt Sys UI

Patient UI Appt UI

PD Layer

Appt Sys

Patient Appt

DM Layer

Patient-DAM Appt-DAM

Patient Table Appt Table
FIGURE 7-20
Partial Package
Diagram of the
Appointment System

• Create package diagrams to logically organize designs.
• Organize package diagrams based on semantic relationships. Use vertical posi-

tioning to support inheritance; use horizontal positioning to support aggregation
and association.

• Dependency relationships between packages should reflect the existence of
semantic relationships between elements of one package with elements of another
package.

• In the case of use case based package diagrams, be sure to include the actors to
portray use case usage.

• Give packages simple, but descriptive names.
• Make packages cohesive.

FIGURE 7-21
Guidelines for Creating
a Package Diagram

c07MovingOnToDesign.qxd 11/8/11 3:40 PM Page 299

! Be sure that packages are cohesive. For a package to be cohesive, the classes con-
tained in the package, in some sense, belong together. A simple, but not perfect,
rule to follow when grouping classes together in a package is that the more the
classes depend on each other, the more likely they belong together in a package.

Creating Package Diagrams
In this section, we describe a simple five-step process to create package diagrams. The first
step is to set the context for the package diagram. Remember, packages can be used to model
partitions and/or layers. Revisiting the appointment system again, let’s set the context as the
problem domain layer.

The second step is to cluster the classes together into partitions based on the relationships
that the classes share. The relationships include generalization, aggregation, the various
associations, and the message sending that takes place between the objects in the system.
To identify the packages in the appointment system, we should look at the different analy-
sis models [e.g., the class diagram (see Figure 6-2), the communication diagrams (see
Figure 7-5)], and the CRUDE matrix (see Figure 7-14). Classes in a generalization hierar-
chy should be kept together in a single partition.

The third step is to place the clustered classes together in a partition and model the parti-
tions as packages. Figure 7-22 portrays six packages: PD Layer, Account Pkg, Participant
Pkg, Patient Pkg, Appointment Pkg, and Treatment Pkg.

The fourth step is to identify the dependency relationships among the packages. In this
case, we review the relationships that cross the boundaries of the packages to uncover
potential dependencies. In the appointment system, we see association relationships that
connect the Account Pkg with the Appointment Pkg (via the associations between the
Entry class and the Appointment class), the Participant Pkg with the Appointment Pkg (via
the association between the Doctor class and the Appointment class), the Patient Pkg,
which is contained within the Participant Pkg, with the Appointment Pkg (via the associ-
ation between the Patient and Appointment classes), and the Patient Pkg with the Treat-
ment Pkg (via the association between the Patient and Symptom classes).

The fifth step is to lay out and draw the diagram. Using the guidelines, place the packages
and dependency relationships in the diagram. In the case of the Appointment system, there
are dependency relationships between the Account Pkg and the Appointment Pkg, the
Participant Pkg and the Appointment Pkg, the Patient Pkg and the Appointment Pkg, and
the Patient Pkg and the Treatment Pkg. To increase the understandability of the depend-
ency relationships among the different packages, a pure package diagram that shows only
the dependency relationships among the packages can be created (see Figure 7-23).

300 Chapter 7 Moving on to Design

Based on the factoring of the evolving system in Your
Turn 7-2, identify a set of partitions for the Problem

Domain layer and model them in a package diagram.

7-3 Campus HousingYOUR

TURN

1. Set Context

2. Cluster Classes

3. Create Packages

4. Identify
Dependencies

5. Lay Out and Draw
Diagram

c07MovingOnToDesign.qxd 11/8/11 3:40 PM Page 300

PD
 L

ay
er

A
cc

ou
nt

Pk

g

A
cc

ou
nt

ha
s

1.
.1

1.
.1

..*

1.
.1

1.
.1

1.
.1

1.
.1

1.
.1

0.
.1

1.
.1

1.
.1

1.
.1

1.

.1

0.
.*

0.
.*

0.
.*

0.
.*

0.

.*

0.
.*

0.
.*

1.
.*

0.
.*

0.
.*

1.
.*

1.
.*

1.
.*

ha
s

It
em

co
nt

ai
ns

En
tr

y
D

eb
it

C
re

di
t

A
pp

oi
nt

m
en

t
Pk

g

Pa
rt

ic
ip

an
t

Pk
g

-ti
m

e
-d

at
e

-r
ea

so
n

+c
an

ce
l w

ith
ou

t n
ot

ic
e(

)

lo
ca

te
dA

t Pl
ac

e
Pr

es
cr

ip
tio

n

G
oo

d
Se

rv
ic

e

Br
ac

e

Ph
ys

ic
al

C
he

ck
up

Tr
an

sa
ct

io
n

Li
ne

 It
em

A
ss

ig
ne

dT
o

Pa
tie

nt

Pk
g

Pa
rt

ic
ip

an
t

-la
st

na
m

e
-fi

rs
tn

am
e

-a
dd

re
ss

-p

ho
ne

-b

irt
hd

at
e

-/
ag

e
schedules

Em
pl

oy
ee

D
oc

to
r

Re
ce

pt
io

ni
st

N
ur

se

Pa
tie

nt
-a

m
ou

nt

-in
su

ra
nc

e
ca

rr
ie

r
+m

ak
e

ap
po

in
tm

en
t()

+c

al
cu

la
te

 la
st

 v
is

it(
)

+c
ha

ng
e

st
at

us
()

+p
ro

vi
de

s
m

ed
ic

al
 h

is
to

ry
()

su
ffe

rs

pr
ov

id
es

+
pr

im
ar

y
in

su
ra

nc
e

ca
rr

ie
r

U
np

ai
d

Bi
ll

M
ed

ic
al

 H
is

to
ry

-h
ea

rt
di

se
as

e
-h

ig
h

bl
oo

d
pr

es
su

re

-d
ia

be
te

s
-a

le
rg

ie
s

Sy
m

pt
om

-d
es

cr
ip

tio
n

Tr
ea

tm
en

t
m

ed
ic

at
io

n
in

st
ru

ct
io

ns

sy
m

pt
om

 s
ev

er
ity

-n
am

e
lll

ne
ss

ow
es

A
pp

oi
nt

m
en

t

Tr
ea

tm
en

t
Pk

g

FI
G

U
R

E
7

-2
2

 P

ac
ka

ge
 D

ia
gr

am
 o

f t
he

 P
D

 L
ay

er
 o

f t
he

 A
pp

oi
nt

m
en

t P
ro

bl
em

301

c07MovingOnToDesign.qxd 11/8/11 3:40 PM Page 301

302 Chapter 7 Moving on to Design

PD Layer

Account Pkg

Patient Pkg

Appointment
 Pkg

Treatment
 Pkg

Participant
 Pkg

FIGURE 7-23 Overview Package Diagram of the PD Layer for the Appointment System

Verifying and Validating Package Diagrams
Like all the previous models, package diagrams need to be verified and validated. In this
case, the package diagrams were derived primarily from the class diagram, the communi-
cations diagrams, and the CRUDE matrix. Only two areas need to be reviewed.

First, the identified packages must make sense from a problem domain point of view.
For example, in the context of an appointment system, the packages in Figure 7-23 (Partic-
ipant, Patient, Appt, Account, and Treatment) seem to be reasonable.

Second, all dependency relationships must be based on message-sending relationships
on the communications diagram, cell entries in the CRUDE matrix, and associations on
the class diagram. In the case of the appointment system, the identified dependency rela-
tionships are reasonable (see Figures 7-10, 7-12, 7-15, and 7-23).

DESIGN STRATEGIES
Until now, we have assumed that the system will be built and implemented by the project
team; however, there are actually three ways to approach the creation of a new system:
developing a custom application in-house, buying a packaged system and customizing it,

c07MovingOnToDesign.qxd 11/8/11 3:40 PM Page 302

and relying on an external vendor, developer, or service provider to build the system. Each
of these choices has its strengths and weaknesses, and each is more appropriate in different
scenarios. The following sections describe each design choice in turn, and then we present
criteria that you can use to select one of the three approaches for your project.

Custom Development
Many project teams assume that custom development, or building a new system from
scratch, is the best way to create a system. For one thing, teams have complete control over
the way the system looks and functions. Custom development also allows developers to be
flexible and creative in the way they solve business problems. Additionally, a custom appli-
cation would be easier to change to include components that take advantage of current
technologies that can support such strategic efforts.

Building a system in-house also builds technical skills and functional knowledge
within the company. As developers work with business users, their understanding of the
business grows and they become better able to align IS with strategies and needs. These
same developers climb the technology learning curve so that future projects applying
similar technology require much less effort.

Custom application development, however, also includes a dedicated effort that
involves long hours and hard work. Many companies have a development staff that already
is overcommitted to filling huge backlogs of systems requests, and they just do not have time
for another project. Also, a variety of skills—technical, interpersonal, functional, project
management, and modeling—all have to be in place for the project to move ahead smoothly.
IS professionals, especially highly skilled individuals, are quite difficult to hire and retain.

The risks associated with building a system from the ground up can be quite high, and
there is no guarantee that the project will succeed. Developers could be pulled away to work
on other projects, technical obstacles could cause unexpected delays, and the business users
could become impatient with a growing timeline.

Design Strategies 303

I worked with a large financial institution in the southeast
that suffered serious financial losses several years ago. A
new CEO was brought in to change the strategy of the
organization to being more “customer focused.” The new
direction was quite innovative, and it was determined that
custom systems, including a data warehouse, would have
to be built to support the new strategic efforts. The
problem was that the company did not have the in-house
skills for these kinds of custom projects.

The company now has one of the most successful
data-warehouse implementations because of its willing-
ness to use outside skills and because of its focus on
project management. To supplement skills within the
company, eight sets of external consultants, including
hardware vendors, systems integrators, and business
strategists, were hired to take part and transfer critical
skills to internal employees. An in-house project manager
coordinated the data-warehouse implementation full-
time, and her primary goals were to set clear expectations

and define responsibilities and to communicate the inter-
dependencies that existed among the team members.

This company shows that successful custom devel-
opment can be achieved, even when the company does
not start off with the right skills in-house. But this kind of
project is not easy to pull off—it takes a talented project
manager to keep the project moving along and to transi-
tion the skills to the right people over time.

—Barbara Wixom

Questions

1. What are the risks in building a custom system
without the right technical expertise?

2. Why did the company select a project manager
from within the organization?

3. Would it have been better to hire an external pro-
fessional project manager to coordinate the project?

7-A Building a Custom System—with Some HelpCONCEPTS

IN ACTION

c07MovingOnToDesign.qxd 11/8/11 3:40 PM Page 303

Packaged Software
Many business needs are not unique, and because it makes little sense to reinvent the wheel,
many organizations buy packaged software that has already been written rather than devel-
oping their own custom solution. In fact, there are thousands of commercially available
software programs that have already been written to serve a multitude of purposes. Think
about your own need for a word processor—did you ever consider writing your own word
processing software? That would be very silly considering the number of good software
packages available that are relatively inexpensive.

Similarly, most companies have needs that can be met quite well by packaged soft-
ware, such as payroll or accounts receivable. It can be much more efficient to buy pro-
grams that have already been created, tested, and proved, and a packaged system can be
bought and installed in a relatively short time when compared with a custom system. Plus,
packaged systems incorporate the expertise and experience of the vendor who created the
software.

Packaged software can range from reusable components to small, single-function
tools to huge, all-encompassing systems such as enterprise resource planning (ERP)
applications that are installed to automate an entire business. Implementing ERP sys-
tems is a process in which large organizations spend millions of dollars installing pack-
ages by companies such as SAP, PeopleSoft, Oracle, and Baan and then change their
businesses accordingly. Installing ERP software is much more difficult than installing
small application packages because benefits can be harder to realize and problems are
much more serious.

One problem is that companies buying packaged systems must accept the functional-
ity that is provided by the system, and rarely is there a perfect fit. If the packaged system is
large in scope, its implementation could mean a substantial change in the way the company
does business. Letting technology drive the business can be a dangerous way to go.

Most packaged applications allow customization, or the manipulation of system param-
eters to change the way certain features work. For example, the package might have a way to
accept information about your company or the company logo that would then appear on
input screens. Or an accounting software package could offer a choice of various ways to
handle cash flow or inventory control so that it can support the accounting practices in
different organizations. If the amount of customization is not enough and the software
package has a few features that don’t quite work the way the company needs it to work, the
project team can create workarounds.

A workaround is a custom-built add-on program that interfaces with the packaged appli-
cation to handle special needs. It can be a nice way to create needed functionality that does
not exist in the software package. But workarounds should be a last resort for several reasons.
First, workarounds are not supported by the vendor who supplied the packaged software, so
upgrades to the main system might make the workaround ineffective. Also, if problems arise,
vendors have a tendency to blame the workaround as the culprit and refuse to provide
support.

Although choosing a packaged software system is simpler than custom development,
it too can benefit from following a formal methodology, just as if a custom application were
being built.

Systems integration refers to the process of building new systems by combining
packaged software, existing legacy systems, and new software written to integrate these.
Many consulting firms specialize in systems integration, so it is not uncommon for
companies to select the packaged software option and then outsource the integration
of a variety of packages to a consulting firm. (Outsourcing is discussed in the next
section).

304 Chapter 7 Moving on to Design

c07MovingOnToDesign.qxd 11/8/11 3:40 PM Page 304

The key challenge in systems integration is finding ways to integrate the data produced
by the different packages and legacy systems. Integration often hinges on taking data
produced by one package or system and reformatting it for use in another package or system.
The project team starts by examining the data produced by and needed by the different pack-
ages or systems and identifying the transformations that must occur to move the data from
one to the other. In many cases, this involves fooling the different packages or systems into
thinking that the data were produced by an existing program module that the package or
system expects to produce the data rather than the new package or system that is being
integrated.

A third approach is through the use of an object wrapper.19 An object wrapper is essen-
tially an object that “wraps around” a legacy system, enabling an object-oriented system to
send messages to the legacy system. Effectively, object wrappers create an application pro-
gram interface (API) to the legacy system. The creation of an object wrapper protects the
corporation’s investment in the legacy system.

Outsourcing
The design choice that requires the least amount of in-house resources is outsourcing—
hiring an external vendor, developer, or service provider to create the system. Outsourc-
ing has become quite popular in recent years. Some estimate that as many as 50 percent
of companies with IT budgets of more than $5 million are currently outsourcing or
evaluating the approach.

With outsourcing, the decision making and/or management control of a business
function is transferred to an outside supplier. This transfer requires two-way coordination,
exchange of information, and trust between the supplier and the business. From an IT per-
spective, IT outsourcing can include hiring consultants to solve a specific problem, hiring
contract programmers to implement a solution, hiring a firm to manage the IT function
and assets of a company, or actually outsourcing the entire IT function to a separate firm.
To d a y , t hrough the use of application service providers (ASPs), Web services technology,
and cloud services, it is possible to use a pay-as-you-go approach for a software package.20

Essentially, IT outsourcing involves hiring a third party to perform some IT function that
traditionally would be performed in-house.

There can be great benefit to having someone else develop a company’s system. The
outside company may be more experienced in the technology or have more resources, such
as experienced programmers. Many companies embark upon outsourcing deals to reduce
costs, whereas others see it as an opportunity to add value to the business.

For whatever reason, outsourcing can be a good alternative for a new system. However,
it does not come without costs. If you decide to leave the creation of a new system in the
hands of someone else, you could compromise confidential information or lose control over
future development. In-house professionals are not benefiting from the skills that could be
learned from the project; instead the expertise is transferred to the outside organization.
Ultimately, important skills can walk right out the door at the end of the contract. Further-
more, when offshore outsourcing is being considered, we must also be cognizant of language
issues, time-zone differences, and cultural differences (for example, acceptable business
practices as understood in one country that may be unacceptable in another). All these
concerns, if not dealt with properly, can prevail over any advantage that outsourcing or off-
shore outsourcing could realize.

Design Strategies 305

19 Ian Graham, Object-Oriented Methods: Principles & Practice, 3rd ed. (Reading, MA: Addison-Wesley, 2001).
20 For an economic explanation of how this could work, see H. Baetjer, Software as Capital: An Economic Perspec-
tive on Software Engineering (Los Alamitos, CA: IEEE Computer Society Press, 1997).

c07MovingOnToDesign.qxd 11/8/11 3:40 PM Page 305

306 Chapter 7 Moving on to Design

Pharmaceuticals companies are generally heavily regu-
lated. It can take years for a new drug to make it to the
market because of time for the development phase, highly
monitored testing, and final approval by the Food and
Drug Administration (FDA). Once the drug is on the
market, other companies can try to produce generic drugs
that seem to be compatible with the name-brand drug.

Occasionally an approved drug, some years into its
life span, gets scrutiny for higher-than-expected side
effects. For example, a drug that is effective in lowering
cholesterol might also cause the side effect of an increased
chance for cataract growth that was not discovered during
the initial testing and approval cycle. Data are collected
on all aspects of clinical trials and from the marketplace,
but some relationships are just harder to find.

Questions

1. Is there a particular systems approach to being able
to collect and analyze data from a mountain of
data?

2. If you were building a strategic planning system for
tracking a drug from proposal through development
and testing and into the marketplace, how would
you approach it?

3. What requirements might be necessary to build
such a system?

7-B Collecting Data for the Long TermCONCEPTS

IN ACTION

Most risks can be addressed if a company decides to outsource, but two are particu-
larly important. First, the company must thoroughly assess the requirements for the
project—a company should never outsource what is not understood. If rigorous planning
and analysis has occurred, then the company should be well aware of its needs. Second, the
company should carefully choose a vendor, developer, or service with a proven track record
with the type of system and technology that its system needs.

Three primary types of contracts can be drawn to control the outsourcing deal. A
time-and-arrangements contract is very flexible because a company agrees to pay for what-
ever time and expenses are needed to get the job done. Of course, this agreement could
result in a large bill that exceeds initial estimates. This works best when the company and
the outsourcer are unclear about what it is going to take to finish the job.

A company will pay no more than expected with a fixed-price contract because if the
outsourcer exceeds the agreed-upon price, it will have to absorb the costs. Outsourcers are
much more careful about defining requirements clearly up front, and there is little flexibility
for change.

The type of contract gaining in popularity is the value-added contract, whereby the
outsourcer reaps some percentage of the completed system’s benefits. The company has
very little risk in this case, but it must expect to share the wealth once the system is in place.

Creating fair contracts is an art because flexibility must be carefully balanced with clearly
defined terms. Often, needs change over time. Therefore, the contract should not be so specific
and rigid that alterations cannot be made. Think about how quickly technology like the World
Wide Web changes. It is difficult to foresee how a project might evolve over a long period of
time. Short-term contracts help leave room for reassessment if needs change or if relationships
are not working out the way both parties expected. In all cases, the relationship with the out-
sourcer should be viewed as a partnership where both parties benefit and communicate openly.

Managing the outsourcing relationship is a full-time job. Thus, someone needs to be
assigned full time to manage the outsourcer, and the level of that person should be appro-
priate for the size of the job (a multimillion dollar outsourcing engagement should be han-
dled by a high-level executive). Throughout the relationship, progress should be tracked

c07MovingOnToDesign.qxd 11/8/11 3:40 PM Page 306

and measured against predetermined goals. If a company does embark upon an outsourc-
ing design strategy, it should be sure to get adequate information. Many books have been
written that provide much more detailed information on the topic.21 Figure 7-24 summa-
rizes some guidelines for outsourcing.

Design Strategies 307

21 For more information on outsourcing, we recommend M. Lacity and R. Hirschheim, Information Systems Out-
sourcing: Myths, Metaphors, and Realities (New York, NY: Wiley, 1993); L. Willcocks and G. Fitzgerald, A Business
Guide to Outsourcing Information Technology (London: Business Intelligence, 1994); E. Carmel, Offshoring Infor-
mation Technology: Sourcing and Outsourcing to a Global Workforce (Cambridge, England: Cambridge University
Press, 2005); J. K Halvey and B. M. Melby, Information Technology Outsourcing Transactions: Process, Strategies, and
Contracts, 2nd Ed. (Hoboken, NJ: Wiley, 2005); and T. L. Friedman, The World is Flat: A Brief History of the
Twenty-First Century, Updated and Expanded Edition (New York: Farrar, Straus, and Giroux, 2006).

• Keep the lines of communication open between you and your outsourcer.
• Define and stabilize requirements before signing a contact.
• View the outsourcing relationship as a partnership.
• Select the vendor, developer or service provider carefully.
• Assign a person to managing the relationship.
• Don’t outsource what you don’t understand.
• Emphasize flexible requirements, long-term relationships and short-term contracts.

FIGURE 7-24
Outsourcing
Guidelines

Value-added contracts can be quite rare—and very dra-
matic. They exist when a vendor is paid a percentage of
revenue generated by the new system, which reduces the
up-front fee, sometimes to zero. The City of Chicago and
EDS (a large consulting and systems integration firm)
agreed to reengineer the process by which the city col-
lects the fines on 3.6 million parking tickets per year and
thus signed a landmark deal of this type in 1992. At the
time, because of clogged courts and administrative prob-
lems, the city collected on only about 25 percent of all
tickets issued. It had a $60 million backlog of uncollected
tickets.

Dallas-based EDS invested an estimated $25 million
in consulting and new systems in exchange for the right
to up to 26 percent of the uncollected fines, a base

processing fee for new tickets, and software rights. As of
1995, EDS had taken in well over $50 million on the
deal, analysts say. The deal came under some fire from
various quarters as an example of an organization giving
away too much in a risk-reward-sharing deal. City
officials, however, counter that the city has pulled in
about $45 million in previously uncollected fines and has
improved its collection rate to 65 percent with little
up-front investment.
Source: Jeff Moad. “Outsourcing? Go out on the limb together.”
pp. 58–61, Vol. 41, No. 2. Datamation, February 1, 1995.

Questions
Do you think the City of Chicago got a good deal from
this arrangement? Why or why not?

7-C EDS Value-Added ContractCONCEPTS

IN ACTION

Selecting a Design Strategy
Each of the design strategies just discussed has its strengths and weaknesses, and no one
strategy is inherently better than the others. Thus, it is important to understand the
strengths and weaknesses of each strategy and when to use each. Figure 7-25 summarizes
the characteristics of each strategy.

Outsourcing

c07MovingOnToDesign.qxd 12/2/11 7:17 PM Page 307

Business Need If the business need for the system is common and technical solutions
already exist that can meet the business need of the system, it makes little sense to build a
custom application. Packaged systems are good alternatives for common business needs. A
custom alternative must to be explored when the business need is unique or has special
requirements. Usually, if the business need is not critical to the company, then outsourcing
is the best choice—someone outside of the organization can be responsible for the
application development.

In-house Experience If in-house experience exists for all the functional and technical
needs of the system, it will be easier to build a custom application than if these skills do not
exist. A packaged system may be a better alternative for companies that do not have the
technical skills to build the desired system. For example, a project team that does not have
Web commerce technology skills might want to acquire a Web commerce package that can
be installed without many changes. Outsourcing is a good way to bring in outside experi-
ence that is missing in-house so that skilled people are in charge of building a system.

Project Skills The skills that are applied during projects are either technical (e.g., Java,
SQL) or functional (e.g., electronic commerce), and different design alternatives are more
viable, depending on how important the skills are to the company’s strategy. For example,
if certain functional and technical expertise that relate to Internet sales applications and
Web commerce application development are important to an organization because it
expects the Internet to play an important role in its sales over time, then it makes sense for
the company to develop Web commerce applications in-house, using company employees,
so that the skills can be developed and improved. On the other hand, some skills, such as
network security, may be beyond the technical expertise of employees or not of interest to
the company’s strategists—it is just an operational issue that needs to be addressed. In this
case, packaged systems or outsourcing should be considered so internal employees can
focus on other business-critical applications and skills.

Project Management Custom applications require excellent project management and
a proven methodology. So many things, such as funding obstacles, staffing holdups, and
overly demanding business users, can push a project off-track. Therefore, the project team
should choose to develop a custom application only if it is certain that the underlying

308 Chapter 7 Moving on to Design

FIGURE 7-25 Selecting a Design Strategy

Business Need The business need is unique. The business need is common. The business need is not
core to the business.

In-house Experience In-house functional and In-house functional In-house functional or technical
technical experience exists. experience exists. experience does not exist.

Project Skills There is a desire to The skills are not strategic. The decision to outsource is a
build in-house skills. strategic decision.

Project Management The project has a highly The project has a project The project has a highly skilled
skilled project manager manager who can coordinate project manager at the level of
and a proven methodology. the vendor’s efforts. the organization that matches the

scope of the outsourcing deal.

Time frame The time frame is flexible. The time frame is short. The time frame is short or flexible.

Use Custom Use a Packaged Use Outsourcing
Development When… System When… When…

c07MovingOnToDesign.qxd 11/8/11 3:40 PM Page 308

coordination and control mechanisms will be in place. Packaged and outsourcing alterna-
tives also need to be managed; however, they are more shielded from internal obstacles
because the external parties have their own objectives and priorities (e.g., it may be easier
for an outside contractor to say no to a user than it is for a person within the company). The
latter alternatives typically have their own methodologies, which can benefit companies
that do not have an appropriate methodology to use.

Time Frame When time is a factor, the project team should probably start looking for a
system that is already built and tested. In this way, the company will have a good idea of
how long the package will take to put in place and what the final result will contain. The
time frame for custom applications is hard to pin down, especially when you consider how
many projects end up missing important deadlines. If a company must choose the custom
development alternative and the time frame is very short, it should consider using tech-
niques such as timeboxing to manage this problem. The time to produce a system using
outsourcing really depends on the system and the outsourcer’s resources. If a service
provider has services in place that can be used to support the company’s needs, then a busi-
ness need could be implemented quickly. Otherwise, an outsourcing solution could take as
long as a custom development initiative.

Developing the Actual Design 309

Suppose that your university is interested in creating a
new course-registration system that can support mobile-
based registration. What should the university consider

when determining whether to invest in a custom, pack-
aged, or outsourced system solution?

7-4 Choose a Design StrategyYOUR

TURN

DEVELOPING THE ACTUAL DESIGN
Once the project team has a good understanding of how well each design strategy fits with the
project’s needs, it must begin to understand exactly how to implement these strategies. For
example, what tools and technology would be used if a custom alternative were selected? What
vendors make packaged systems that address the project’s needs? What service providers
would be able to build this system if the application were outsourced? This information can be
obtained from people working in the IS department and from recommendations by business
users. Alternatively, the project team can contact other companies with similar needs and
investigate the types of systems that they have put in place. Vendors and consultants usually are
willing to provide information about various tools and solutions in the form of brochures,
product demonstrations, and information seminars. However, a company should be sure to
validate the information it receives from vendors and consultants. After all, they are trying to
make a sale. Therefore, they may stretch the capabilities of their tool by focusing on only the
positive aspects of the tool while omitting the tool’s drawbacks.

It is likely that the project team will identify several ways that a system could be con-
structed after weighing the specific design options. For example, the project team might
have found three vendors that make packaged systems that potentially could meet the pro-
ject’s needs. Or the team may be debating over whether to develop a system using Java as a

c07MovingOnToDesign.qxd 12/2/11 7:26 PM Page 309

development tool and the database management system from Oracle or to outsource the
development effort to a consulting firm such as Accenture or American Management Sys-
tems. Each alternative has pros and cons associated with it that need to be considered, and
only one solution can be selected in the end.

Alternative Matrix
An alternative matrix can be used to organize the pros and cons of the design alternatives
so that the best solution will be chosen in the end. This matrix is created using the same
steps as the feasibility analysis, which was presented in Chapter 2. The only difference is
that the alternative matrix combines several feasibility analyses into one matrix so that the
alternatives can easily be compared. An alternative matrix is a grid that contains the tech-
nical, budget, and organizational feasibilities for each system candidate, pros and cons asso-
ciated with adopting each solution, and other information that is helpful when making
comparisons. Sometimes weights are provided for different parts of the matrix to show
when some criteria are more important to the final decision.

To create the alternative matrix, draw a grid with the alternatives across the top and
different criteria (e.g., feasibilities, pros, cons, and other miscellaneous criteria) along the
side. Next, fill in the grid with detailed descriptions about each alternative. This becomes a
useful document for discussion because it clearly presents the alternatives being reviewed
and comparable characteristics for each one.

Suppose that a company is thinking about implementing a packaged financial system
such as Oracle E-Business Financials or Microsoft’s Dynamics GP, but there is not enough
expertise in-house to be able to create a thorough alternative matrix. This situation is quite
common—often the alternatives for a project are unfamiliar to the project team, so outside
expertise is needed to provide information about the alternatives’ criteria.

One helpful tool is the request for proposals (RFP). An RFP is a document that solicits
proposals to provide the alternative solutions from a vendor, developer, or service provider.
Basically, an RFP explains the system that a company is trying to build and the criteria that
it will use to select a system. Vendors then respond by describing what it would mean for
them to be a part of the solution. They communicate the time, the cost, and exactly how
their product or services will address the needs of the project.

There is no formal way to write an RFP, but it should include basic information such
as the description of the desired system, any special technical needs or circumstances, eval-
uation criteria, instructions for how to respond, and the desired schedule. An RFP can be
a very large document (i.e., hundreds of pages) because companies try to include as much
detail as possible about their needs so that the respondent can be just as detailed in the
solution that would be provided. Thus, RFPs typically are used for large projects rather
than small ones because they take a lot of time to create; even more time and effort are
needed for vendors, developers, and service providers to develop high-quality responses—
only a project with a fairly large price tag would be worth the time and cost to develop a
response for an RFP.

A less-effort-intensive tool is a request for information (RFI) that includes the same
format as the RFP. The RFI is shorter and contains less-detailed information about a com-
pany’s needs, and it requires general information from respondents that communicates the
basic services that they can provide.

The final step, of course, is to decide which solution to design and implement.
The decision should be made by a combination of business users and technical pro-
fessionals after the issues involved with the different alternatives are well understood.
Once the decision is finalized, design can continue as needed, based on the selected
alternative.

310 Chapter 7 Moving on to Design

c07MovingOnToDesign.qxd 11/8/11 3:40 PM Page 310

APPLYING THE CONCEPTS AT CD SELECTIONS
In the previous installments of the CD Selections case, we saw how Alec, Margaret, and
the team had identified the functional and nonfunctional requirements and had com-
pleted the functional, structural, and behavioral models of their evolving Web-based
solution. However, before they can move into design, they realize that they needed to
logically partition the model of the problem-domain. To do this, they have decided to
create a package diagram that will represent an overview of the analysis models for their
evolving system. As in the previous installments, we see how the team goes about creat-
ing, verifying, and validating the analysis models of the Web-based system they hope to
implement.

SUMMARY
Design contains many steps that guide the project team through planning out exactly how
a system needs to be constructed. The requirements that were identified and the models
that were created during analysis serve as the primary inputs for the design activities. In
object-oriented design, the primary activity is to evolve the analysis models into design
models by optimizing the problem-domain information already contained in the analysis
models and adding system environment details to them.

Verifying and Validating the Analysis Models
Before actually adding system environment details to the analysis models, the various
representations need to be verified and validated. One very useful approach to test the
fidelity of the representations is to perform a walkthrough in which developers walk
through the representations by presenting the different models to members of the analysis
team, members of the design team, and representatives of the client. The walkthrough must
validate each model to be sure that the different representations within the model all agree
with one another. That is, the different models (functional, structural, and behavioral)
must also be consistent.

Evolving the Analysis Models into Design Models
When evolving the analysis models into design models, the analysis models—activity
diagrams, use-case descriptions, use-case diagrams, CRC cards, class and object diagrams,
sequence diagrams, communication diagrams, and behavioral state machines—should

Summary 311

Suppose you have been assigned the task of selecting a
CASE tool for your class to use for a semester project.
Using the Web or other reference resources, select three
CASE tools (e.g., ArgoUML, IBM’s Rational Rose, or Visual

Paradigm). Create an alternative matrix that can be used
to compare the three software products so that a selection
decision can be made.

7-5 Alternative MatrixYOUR

TURN

c07MovingOnToDesign.qxd 11/28/11 10:51 AM Page 311

first be carefully reviewed. During this review, factoring, refinement, and abstraction
processes can be used to polish the current models. During this polishing, the analysis
models can become overly complex. If this occurs, then the models should be partitioned
based on the interactivity (message sending) and relationships (generalization, aggrega-
tion, and association) shared among the classes. The more a class has in common with
another class (i.e., the more relationships shared), the more likely they belong in the same
partition.

The second thing to do to evolve the analysis model is to add the system environ-
ment (physical architecture, user interface, and data access and management) informa-
tion to the problem domain information already contained in the model. To accomplish
this and to control the complexity of the models, layers are used. A layer represents an
element of the software architecture of the system. We recommend five different layers:
foundation, physical architecture, human–computer interaction, data access and man-
agement, and problem domain. Each layer supports only certain types of classes (e.g.,
database manipulation classes would be allowed only on the data access and manage-
ment layer).

Packages and Package Diagrams
A package is a general UML construct used to represent collaborations, partitions, and
layers. Its primary purpose is to support the logical grouping of other UML constructs
(e.g., use cases and classes by the developer and user to simplify and increase the under-
standability of a UML diagram). There are instances in which a diagram that contains
only packages is useful. A package diagram contains packages and dependency relation-
ships. A dependency relationship represents the possibility of a modification dependency
existing between two packages (i.e., changes in one package could cause changes in the
dependent package).

Identifying packages and creating a package diagram is accomplished using a five-step
process. The five steps can be summed up as setting the context, clustering similar classes,
placing the clustered classes into a package, identifying dependency relationships among
the packages, and placing the dependency relationship on the package diagram.

Design Strategies
During design, the project team also needs to consider three approaches to creating the
new system, including developing a custom application in-house, buying a packaged
system and customizing it, and relying on an external vendor, developer, or system provider
to build and/or support the system.

Custom development allows developers to be flexible and creative in the way they
solve business problems and it builds technical and functional knowledge within the
organization. However, many companies have a development staff that is already over-
committed to filling huge backlogs of systems requests and they just don’t have time to
devote to a project where a system is built from scratch. It can be much more efficient to
buy programs that have been created, tested, and proved. A packaged system can be
bought and installed in a relatively short time as compared with a custom solution.
Workarounds can be used to meet the needs that are not addressed by the packaged
application.

The third design strategy is to outsource the project and pay an external vendor, devel-
oper, or service provider to create the system. It can be a good alternative to approaching
the new system; however, it does not come without costs. If a company decides to leave the

312 Chapter 7 Moving on to Design

c07MovingOnToDesign.qxd 11/28/11 10:51 AM Page 312

Questions 313

KEY TERMS

A-kind-of, 291
Abstract classes, 291
Abstraction, 291
Aggregation, 291
Alternative matrix, 310
Balancing the models, 275
Class, 291
Client, 293
Collaboration, 292
Concrete classes, 291
Contract, 293
Controller, 294
Custom development, 303
Customization, 304
Data management layer, 294
Dependency relationship, 297
Enterprise resource

systems (ERP), 304

Factoring, 291
Fixed-price contract, 306
Foundation layer, 294
Generalization, 291
Has-parts, 291
Human–computer

interaction layer, 295
Layer, 293
Message, 293
Method, 293
Model, 294
Model-View-Controller

(MVC), 293
Module, 291
Object wrapper, 305
Outsourcing, 305
Package, 296
Package diagram, 296

Packaged software, 304
Partition, 292
Physical architecture

layer, 296
Problem domain layer, 294
Refinement, 291
Request for information (RFI), 310
Request for proposals (RFP), 310
Server, 293
Smalltalk, 293
Systems integration, 304
Time-and-arrangements

contract, 306
Validation, 275
Value-added contract, 306
Verification, 275
View, 294
Workaround, 304

QUESTIONS

1. What is the primary difference between an analysis
model and a design model?

2. What is meant by balancing the models?

3. What are the interrelationships among the functional,
structural, and the behavioral models that need to be
tested?

creation of a new system in the hands of someone else, the organization could compromise
confidential information or lose control over future development.

Each of these design strategies has its strengths and weaknesses, and no one strategy is
inherently better than the others. Thus, it is important to consider such issues as the
uniqueness of business need for the system, the amount of in-house experience that is
available to build the system, and the importance of the project skills to the company. Also,
the existence of good project management and the amount of time available to develop the
application play a role in the selection process.

Developing the Actual Design
Ultimately, the decision must be made regarding the specific type of system that needs to
be designed. An alternative matrix can help make this decision by presenting feasibility
information for several candidate solutions in a way they can be compared easily. The
request for proposal and the request for information are two ways to gather accurate infor-
mation regarding the alternatives.

c07MovingOnToDesign.qxd 11/28/11 10:51 AM Page 313

314 Chapter 7 Moving on to Design

4. What does factor ing mean? How is it related to
abstraction and refinement?

5. What is a partition? How does a partition relate to a
collaboration?

6. What is a layer? Name the different layers.
7. What is the purpose of the different layers?
8. Describe the different types of classes that can appear

on each of the layers.
9. What issues or questions arise on each of the different

layers?
10. What is a package? How are packages related to parti-

tions and layers?
11. What is a dependency relationship? How do you iden-

tify them?
12. What are the five steps for identifying packages and

creating package diagrams?
13. What needs to be verified and validated in package

diagrams?

14. When drawing package diagrams, what guidelines
should you follow?

15. What situations are most appropriate for a custom
development design strategy?

16. What are some problems with using a packaged soft-
ware approach to building a new system? How can
these problems be addressed?

17. Why do companies invest in ERP systems?
18. What are the pros and cons of using a workaround?
19. When is outsourcing considered a good design strat-

egy? When is it not appropriate?
20. What are the differences between the time-and-

arrangements, fixed-price, and value-added contracts
for outsourcing?

21. How are the alternative matrix and feasibility analysis
related?

22. What is an RFP? How is this different from an RFI?

EXERCISES

A. For the A Real Estate Inc. problem in Chapters 4 (exer-
cises I, J, and K), 5 (exercises P and Q), and 6 (exercise D):

1. Perform a verification and validation walkthrough
of the functional, structural, and behavioral models
to ensure that all between-model issues have been
resolved.

2. Using the communication diagrams and the
CRUDE matrix, create a package diagram of the
problem domain layer.

3. Perform a verification and validation walkthrough
of the package diagram.

4. Based on the analysis models that have been cre-
ated and your current understanding of the firm’s
position, what design strategy would you recom-
mend? Why?

B. For the A Video Store problem in Chapters 4 (exercises
L, M, and N), 5 (exercises R and S), and 6 (exercise E):

1. Perform a verification and validation walkthrough
of the functional, structural, and behavioral models
to ensure that all between-model issues have been
resolved.

2. Using the communication diagrams and the
CRUDE matrix, create a package diagram of the
problem domain layer.

3. Perform a verification and validation walkthrough
of the package diagram.

4. Based on the analysis models that have been
created and your current understanding of the
firm’s position, what design strategy would you
recommend? Why?

C. For the health club membership problem in Chap-
ters 4 (exercises O, P, and Q), 5 (exercises T and U),
and 6 (exercise F):

1. Perform a verification and validation walkthrough
of the functional, structural, and behavioral models
to ensure that all between-model issues have been
resolved.

2. Using the communication diagrams and the
CRUDE matrix, create a package diagram of the
problem domain layer.

3. Perform a verification and validation walkthrough
of the package diagram.

4. Based on the analysis models that have been cre-
ated and your current understanding of the firm’s
position, what design strategy would you recom-
mend? Why?

D. For the Picnics R Us problem in Chapters 4 (exercises
R, S, and T), 5 (exercises V and W), and 6 (exercise G):

1. Perform a verification and validation walkthrough
of the functional, structural, and behavioral models
to ensure that all between-model issues have been
resolved.

c07MovingOnToDesign.qxd 11/8/11 3:40 PM Page 314

Minicases 315

2. Using the communication diagrams and the
CRUDE matrix, create a package diagram of the
problem domain layer.

3. Perform a verification and validation walkthrough
of the package diagram.

4. Based on the analysis models that have been created
and your current understanding of the firm’s position,
what design strategy would you recommend? Why?

E. For the Of-the-Month-Club problem in Chapters 4
(exercises U, V, and W), 5 (exercises X and Y), and 6
(exercise H):

1. Perform a verification and validation walkthrough
of the functional, structural, and behavioral models
to ensure that all between-model issues have been
resolved.

2. Using the communication diagrams and the
CRUDE matrix, create a package diagram of the
problem domain layer.

3. Perform a verification and validation walkthrough
of the package diagram.

4. Based on the analysis models that have been cre-
ated and your current understanding of the firm’s
position, what design strategy would you recom-
mend? Why?

F. Suppose you are leading a project that will implement
a new course-enrollment system for your university.
You are thinking about either using a packaged
course-enrollment application or outsourcing the job
to an external consultant. Create an outline for an RFP
to which interested vendors and consultants could
respond.

G. Suppose you and your friends are starting a small
business painting houses in the summertime. You
need to buy a software package that handles the finan-
cial transactions of the business. Create an alternative
matrix that compares three packaged systems (e.g.,
Quicken, MS Money, Quickbooks). Which alternative
appears to be the best choice?

1. Susan, president of MOTO, Inc., a human resources
management firm, is reflecting on the client manage-
ment software system her organization purchased
four years ago. At that time, the firm had just gone
through a major growth spurt, and the mixture of
automated and manual procedures that had been
used to manage client accounts became unwieldy.
Susan and Nancy, her IS department head, researched
and selected the package that is currently used. Susan
had heard about the software at a professional con-
ference she attended, and, at least initially, it worked
fairly well for the firm. Some of their procedures had
to change to fit the package, but they expected that
and were prepared for it.

Since that time, MOTO, Inc., has continued to grow,
not only through an expansion of the client base but
also through the acquisition of several smaller
employment-related businesses. MOTO, Inc., is a
much different business than it was four years ago.
Along with expanding to offer more diversified human
resources management services, the firm’s support
staff has also expanded. Susan and Nancy are particu-
larly proud of the IS department they have built up
over the years. Using strong ties with a local university,

an attractive compensation package, and a good working
environment, the IS department is well staffed with
competent, innovative people, plus a steady stream of
college interns that keeps the department fresh and
lively. One of the IS teams pioneered the use of the
Internet to offer MOTO’s services to a whole new
market segment, an experiment that has proved very
successful.

It seems clear that a major change is needed in the
client-management software, and Susan has already
begun to plan financially to undertake such a project.
This software is a central part of MOTO’s operations,
and Susan wants to be sure that a high-quality system
is obtained this time. She knows that the vendor of
their current system has made some revisions and
additions to its product line. A number of other soft-
ware vendors also offer products that may be suitable.
Some of these vendors did not exist when the purchase
was made four years ago. Susan is also considering
Nancy’s suggestion that the IS department develop a
custom software application.
a. Outline the issues that Susan should consider that

would support the development of a custom soft-
ware application in-house.

MINICASES

c07MovingOnToDesign.qxd 11/8/11 3:40 PM Page 315

b. Outline the issues that Susan should consider
that would support the purchase of a software
package.

c. Within the context of a systems-development proj-
ect, when should the decision of make-versus-buy
be made? How should Susan proceed? Explain your
answer.

2. Refer to minicase 1 (West Star Marinas) in Chapter 5.
After all the analysis models (both the as-is and to-be
models) for West Star Marinas were completed, the
director of operations finally understood why it was
important to understand the as-is system before
delving into the development of the to-be system.
However, you now tell him that the to-be models
are only the problem-domain portion of the design.
He is now very confused. After explaining to him
the advantages of using a layered approach to devel-
oping the system, he says, “I don’t care about
reusability or maintenance. I only want the system to
be implemented as soon as possible. You IS types are
always trying to pull a fast one on the users. Just get
the system completed.”

What is your response to the Director of Opera-
tions? Do you jump into implementation as he seems
to want? What do you do next?

3. Refer to the analysis models that you created for profes-
sional and scientific staff management (PSSM) for mini-
case 2 in Chapter 4 and for minicase 1 in Chapter 6.
a. Perform a verification and validation walkthrough

of the functional, structural, and behavioral models

to ensure that all between-model issues have been
resolved.

b. Using the communication diagrams and the
CRUDE matrix, create a package diagram of the
problem domain layer.

c. Perform a verification and validation walkthrough
of the package diagram.

d. Based on the analysis models that have been cre-
ated and your current understanding of the firm’s
position, what design strategy would you recom-
mend? Why?

4. Refer to the analysis models that you created for
Holiday Travel Vehicles for minicase 2 in Chapter 5
and for minicase 2 in Chapter 6.
a. Perform a verification and validation walkthrough

of the functional, structural, and behavioral models
to ensure that all between-model issues have been
resolved.

b. Using the communication diagrams and the
CRUDE matrix, create a package diagram of the
problem domain layer.

c. Perform a verification and validation walkthrough
of the package diagram.

d. Based on the analysis models that have been
created and your current understanding of the
firm’s position, what design strategy would you
recommend? Why?

316 Chapter 7 Moving on to Design

c07MovingOnToDesign.qxd 11/8/11 3:40 PM Page 316

317

The most important step of the design phase is designing the individual classes and
methods. Object-oriented systems can be quite complex, so analysts need to create instruc-
tions and guidelines for programmers that clearly describe what the system must do. This
chapter presents a set of criteria, activities, and techniques used to design classes and methods.
Together they are used to ensure the object-oriented design communicates how the system
needs to be coded.

OBJECTIVES

! Become familiar with coupling, cohesion, and connascence
! Be able to specify, restructure, and optimize object designs
! Be able to identify the reuse of predefined classes, libraries, frameworks, and components
! Be able to specify constraints and contracts
! Be able to create a method specification

CHAPTER OUTLINE

C H A P T E R 8

CLASS AND METHOD DESIGN

Introduction
Review of the Basic Characteristics of

Object Orientation
Classes, Objects, Methods, and

Messages
Encapsulation and Information Hiding
Polymorphism and Dynamic Binding
Inheritance

Design Criteria
Coupling
Cohesion
Connascence

Object Design Activities
Adding Specifications
Identifying Opportunities for Reuse

Restructuring the Design
Optimizing the Design
Mapping Problem-Domain Classes

to Implementation Languages
Constraints and Contracts

Elements of a Contract
Types of Constraints

Method Specification
General Information
Events
Message Passing
Algorithm Specification
Example

Applying the Concepts at CD Selections
Summary

INTRODUCTION
WARNING: This material may be hazardous to your mental stability. Not really, but now
that we have your attention, you must realize that this material is fairly technical in nature
and that it is extremely important in today’s “flat” world. Today, much of the actual imple-
mentation will be done in a different geographic location than where the analysis and

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 317

318 Chapter 8 Class and Method Design

1 A package is a group of collaborating objects. Other names for a package include cluster, partition, pattern, subject,
and subsystem.

design are performed. We must ensure that the design is specified in a “correct” manner
and that there is no, or at least minimal, ambiguity in the design specification.

In today’s flat world, the common language spoken among developers is very likely to
be UML and some object-oriented language, such as Java, and not English. English has
always been and always will be ambiguous. Furthermore, to what variety of English do we
refer? As both Oscar Wilde and George Bernard Shaw independently pointed out, the
United States and England are divided by a common language. A simple, but relevant,
example is the number of zeros in one billion. In American English, there are nine, but in
British English there are twelve. Obviously, this could lead to problems when one is build-
ing financial information systems.

Practically speaking, Class and Method design is where all the work actually gets done
during design. No matter which layer you are focusing on, the classes, which will be used
to create the system objects, must be designed. Some people believe that with reusable class
libraries and off-the-shelf components, this type of low-level, or detailed, design is a waste
of time and that we should jump immediately into the “real” work: coding the system.
However, if the past shows us anything, it shows that low-level, or detailed, design is criti-
cal despite the use of libraries and components. Detailed design is still very important for
three reasons. First, with today’s modern CASE tools, quite a bit of the actual code can be
generated by the tool from the detailed design. Second, even preexisting classes and com-
ponents need to be understood, organized, and pieced together. Third, it is still common
for the project team to have to write some code and produce original classes that support
the application logic of the system.

Jumping right into coding will guarantee results that can be disastrous. For example,
even though the use of layers can simplify the individual classes, they can increase the com-
plexity of the interactions between them. If the classes are not designed carefully, the result-
ing system can be very inefficient. Or worse, the instances of the classes (i.e., the objects)
will not be capable of communicating with each other, which will result in the system’s not
working properly.

In an object-oriented system, changes can take place at different levels of abstraction.
These levels include variable, method, class/object, package,1 library, and/or application/
system levels (see Figure 8-1). The changes that take place at one level can affect other levels
(e.g., changes to a class can affect the package level, which can affect both the system level
and the library level, which in turn can cause changes back down at the class level). Finally,
changes can occur at different levels at the same time.

The good news is that the detailed design of the individual classes and methods is fairly
straightforward, and the interactions among the objects on the problem-domain layer have
been designed, in some detail, during analysis (see Chapters 4 through 6). The other layers
(data management, human–computer interaction, and physical architecture) are highly
dependent on the problem-domain layer. Therefore, if the problem-domain classes are
designed correctly, the design of the classes on the other layers will fall into place, relatively
speaking.

That being said, it has been our experience that many project teams are much too
quick at jumping into writing code for the classes without first designing them. Some of
this has been caused by the fact that object-oriented systems analysis and design has
evolved from object-oriented programming. Until recently there has been a general lack of
accepted guidelines on how to design and develop effective object-oriented systems.

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 318

Review of the Basic Characteristics of Object Orientation 319

However, with the acceptance of UML as a standard object notation, standardized
approaches based on work of many object methodologists have begun to emerge.2

In this chapter, we begin by reviewing the basic characteristics of object orientation.
Next, we present a set of useful design criteria and activities that are applicable across any
layer for class and method design. Finally, we present a set of techniques that are useful for
designing methods: contracts and method specifications.

REVIEW OF THE BASIC CHARACTERISTICS
OF OBJECT ORIENTATION

Object-oriented systems can be traced back to the Simula and the Smalltalk programming
languages. However, until the increase in processor power and the decrease in processor
cost that occurred in the 1980s, object-oriented approaches were not practical. Many of the
specific details concerning the basic characteristics of object-orientation are language

Variable Method

Class/Object

Package

System

Library

FIGURE 8-1
Levels of Abstraction
in Object-Oriented
Systems

Source: Adapted from David P. Tegarden, Steven D. Sheetz, and David E. Monarchi, “A Software Complexity
Model of Object-Oriented Systems,” Decision Support Systems 13 (March 1995): 241–262.

2 For example, OPEN [I. Graham, B. Henderson-Seller, and H. Yanoussi, The Open Process Specification (Reading,
MA: Addison-Wesley, 1997)], RUP [P. Kruchten, The Rational Unified Process: An Introduction, 2nd ed. (Reading,
MA: Addison-Wesley, 2000)], and the Enhanced Unified Process (see Chapter 1).

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 319

dependent; that is, each object-oriented programming language tends to implement some
of the object-oriented basics in different ways. Consequently, we need to know which pro-
gramming language is going to be used to implement the different aspects of the solution.
Otherwise, the system could behave in a manner different than the analyst, designer, and
client expect. Today, the C!!, Java, Objective-C, and Visual Basic programming languages
tend to be the more predominant ones used. In this section, we review the basic character-
istics of object orientation and point out where the language-specific issues emerge.

Classes, Objects, Methods, and Messages
The basic building block of the system is the object. Objects are instances of classes that we
use as templates to define objects. A class defines both the data and processes that each
object contains. Each object has attributes that describe data about the object. Objects have
state, which is defined by the value of its attributes and its relationships with other objects
at a particular point in time. And each object has methods, which specify what processes the
object can perform. From our perspective, methods are used to implement the operations
that specified the behavior of the objects (see Chapter 5). To get an object to perform a
method (e.g., to delete itself), a message is sent to the object. A message is essentially a
function or procedure call from one object to another object.

Encapsulation and Information Hiding
Encapsulation is the mechanism that combines the processes and data into a single object.
Information hiding suggests only the information required to use an object be available out-
side the object; that is, information hiding is related to the visibility of the methods and
attributes (see Chapter 5). Exactly how the object stores data or performs methods is not
relevant, as long as the object functions correctly. All that is required to use an object are
the set of methods and the messages needed to be sent to trigger them. The only commu-
nication between objects should be through an object’s methods. The fact that we can use
an object by sending a message that calls methods is the key to reusability because it shields
the internal workings of the object from changes in the outside system, and it keeps the sys-
tem from being affected when changes are made to an object.

Polymorphism and Dynamic Binding
Polymorphism means having the ability to take several forms. By supporting polymor-
phism, object-oriented systems can send the same message to a set of objects, which can be
interpreted differently by different classes of objects. Based on encapsulation and informa-
tion hiding, an object does not have to be concerned with how something is done when
using other objects. It simply sends a message to an object and that object determines how
to interpret the message. This is accomplished through the use of dynamic binding.

Dynamic binding refers to the ability of object-oriented systems to defer the data typ-
ing of objects to run time. For example, imagine that you have an array of type employee
that contains instances of hourly employees and salaried employees (see Figure 8-2). Both
these types of employees implement a compute pay method. An object can send the mes-
sage to each instance contained in the array to compute the pay for that individual instance.
Depending on whether the instance is an hourly employee or a salaried employee, a differ-
ent method will be executed. The specific method is chosen at run time. With this ability,
individual classes are easier to understand. However, the specific level of support for poly-
morphism and dynamic binding is language specific. Most object-oriented programming
languages support dynamic binding of methods, and some support dynamic binding of
attributes.

320 Chapter 8 Class and Method Design

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 320

Review of the Basic Characteristics of Object Orientation 321

But polymorphism can be a double-edged sword. Through the use of dynamic bind-
ing, there is no way to know before run time which specific object will be asked to execute
its method. In effect, there is a decision made by the system that is not coded anywhere.3

Because all these decisions are made at run time, it is possible to send a message to an object
that it does not understand (i.e., the object does not have a corresponding method). This
can cause a run-time error that, if the system is not programmed to handle it correctly, can
cause the system to abort.4

Finally, if the methods are not semantically consistent, the developer cannot assume
that all methods with the same name will perform the same generic operation. For exam-
ple, imagine that you have an array of type person that contains instances of employees and
customers (see Figure 8-3). These both implement a compute pay method. An object can
send the message to each instance contained in the array to execute the compute pay
method for that individual instance. In the case of an instance of employee, the compute
pay method computes the amount that the employee is owed by the firm, whereas the com-
pute pay method associated with an instance of a customer computes the amount owed the
firm by the customer. Depending on whether the instance is an employee or a customer, a
different meaning is associated with the method. Therefore, the semantics of each method
must be determined individually. This substantially increases the difficulty of understand-
ing individual objects. The key to controlling the difficulty of understanding object-
oriented systems when using polymorphism is to ensure that all methods with the same
name implement that same generic operation (i.e., they are semantically consistent).

Inheritance
Inheritance allows developers to define classes incrementally by reusing classes defined pre-
viously as the basis for new classes. Although we could define each class separately, it might
be simpler to define one general superclass that contains the data and methods needed by
the subclasses and then have these classes inherit the properties of the superclass. Sub-
classes inherit the attributes and methods from the superclasses above them. Inheritance
makes it simpler to define classes.

Array Employeecontains

+computePay()

HourlyEmployee

+computePay()

SalariedEmployee

+computePay()

* *

FIGURE 8-2
Example of
Polymorphism

3 From a practical perspective, there is an implied case statement. The system chooses the method based on the
type of object being asked to execute it and the parameters passed as arguments to the method. This is typically
done through message dispatch tables that are hidden from the programmer.
4 In most object-oriented programming languages, these errors are referred to as exceptions that the system
“throws” and must “catch.” In other words, the programmer must correctly program the throw and catch or the
systems will abort. Again, each programming language can handle these situations in a unique manner.

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 321

There have been many different types of inheritance mechanisms associated with
object-oriented systems.5 The most common inheritance mechanisms include different
forms of single and multiple inheritance. Single inheritance allows a subclass to have only a
single parent class. Currently, all object-oriented methodologies, databases, and program-

ming languages permit extending the definition of the superclass
through single inheritance.

Some object-oriented methodologies, databases, and program-
ming languages allow a subclass to redefine some or all the attributes
and/or methods of its superclass. With redefinition capabilities, it is
possible to introduce an inheritance conflict [i.e., an attribute (or
method) of a subclass with the same name as an attribute (or method)
of a super-class]. For example in Figure 8-4, Doctor is a subclass of
Employee. Both have methods named ComputePay(). This causes an
inheritance conflict. Furthermore, when the definition of a superclass
is modified, all its subclasses are affected. This can introduce additional
inheritance conflicts in one (or more) of the superclass’s subclasses. For
example in Figure 8-4, Employee could be modified to include an addi-
tional method, UpdateSchedule(). This would add another inheritance
conflict between Employee and Doctor. Therefore, developers must be
aware of the effects of the modification not only in the superclass but
also in each subclass that inherits the modification.

Finally, through redefinition capabilities, it is possible for a pro-
grammer to arbitrarily cancel the inheritance of methods by placing
stubs6 in the subclass that will override the definition of the inherited
method. If the cancellation of methods is necessary for the correct
definition of the subclass, then it is likely that the subclass has been
misclassified (i.e., it is inheriting from the wrong superclass).

322 Chapter 8 Class and Method Design

PersonArray

Customer

HourlyEmployee SalariedEmployee

Employee

Contains

+computePay()

+computePay()+computePay()

+computePay() +computePay()

* *

FIGURE 8-3
Example of
Polymorphism Misuse

5 See, for example, M. Lenzerini, D. Nardi, and M. Simi, Inheritance Hierarchies in Knowledge Representation and
Programming Languages (New York: Wiley, 1991).
6 In this case, a stub is simply the minimal definition of a method to prevent syntax errors from occurring.

Person

Employee

SalariedEmployee

Doctor

+computePay()

+computePay()

+computePay()

+computePay()
+updateSchedule()

FIGURE 8-4
Example of
Redefinition and
Inheritance Conflict

c08ClassAndMethodDesign.qxd 11/9/11 9:03 AM Page 322

Review of the Basic Characteristics of Object Orientation 323

As you can see, from a design perspective, inheritance conflicts and redefinition can
cause all kinds of problems with interpreting the final design and implementation.7 However,
most inheritance conflicts are due to poor classification of the subclass in the inheritance
hierarchy (the generalization a-kind-of semantics are violated), or the actual inheritance
mechanism violates the encapsulation and information hiding principle (i.e., subclasses are
capable of directly addressing the attributes or methods of a superclass). To address these
issues, Jim Rumbaugh and his colleagues suggested the following guidelines:8

! Do not redefine query operations.
! Methods that redefine inherited ones should restrict only the semantics of the

inherited ones.
! The underlying semantics of the inherited method should never be changed.
! The signature (argument list) of the inherited method should never be changed.

However, many existing object-oriented programming languages violate these guidelines.
When it comes to implementing the design, different object-oriented programming lan-
guages address inheritance conflicts differently. Therefore, it is important at this point in
the development of the system to know what the chosen programming language supports.
We must be sure that the design can be implemented as intended. Otherwise, the design
needs to be modified before it is turned over to remotely located programmers.

When considering the interaction of inheritance with polymorphism and dynamic
binding, object-oriented systems provide the developer with a very powerful, but danger-
ous, set of tools. Depending on the object-oriented programming language used, this inter-
action can allow the same object to be associated with different classes at different times.
For example, an instance of Doctor can be treated as an instance of Employee or any of its
direct and indirect superclasses, such as SalariedEmployee and Person, respectively (see
Figure 8-4). Therefore, depending on whether static or dynamic binding is supported, the
same object may execute different implementations of the same method at different times.
Or, if the method is defined only with the SalariedEmployee class and it is currently treated
as an instance of the Employee class, the instance could cause a run-time error to occur.9 It
is important to know what object-oriented programming language is going to be used so
that these kinds of issues can be solved with the design, instead of the implementation, of
the class.

With multiple inheritance, a subclass may inherit from more than one superclass. In this
situation, the types of inheritance conflicts are multiplied. In addition to the possibility of
having an inheritance conflict between the subclass and one (or more) of its superclasses,
it is now possible to have conflicts between two (or more) superclasses. In this latter case,
three different types of additional inheritance conflicts can occur:

! Two inherited attributes (or methods) have the same name (spelling) and semantics.
! Two inherited attributes (or methods) have different names but identical semantics

(i.e., they are synonyms).
! Two inherited attributes (or methods) have the same name but different semantics

(i.e., they are heteronyms, homographs, or homonyms). This also violates the proper
use of polymorphism.

7 For more information, see Ronald J. Brachman, “I Lied about the Trees Or, Defaults and Definitions in
Knowledge Representation,” AI Magazine 5, no. 3 (Fall 1985): 80–93.
8 J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-Oriented Modeling and Design (Engle-
wood Cliffs, NJ: Prentice Hall, 1991).
9 This happens with novices quite regularly when using C!!.

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 323

For example, in Figure 8-5, Robot-Employee is a subclass of both Employee and
Robot. In this case, Employee and Robot conflict with the attribute name. Which one
should Robot-Employee inherit? Because they are the same, semantically speaking, does
it really matter? It is also possible that Employee and Robot could have a semantic conflict
on the classification and type attributes if they have the same semantics. Practically speak-
ing, the only way to prevent this situation is for the developer to catch it during the design
of the subclass. Finally, what if the runningTime attributes have different semantics? In
the case of Employee objects, the runningTime attribute stores the employee’s time running
a mile, whereas the runningTime attribute for Robot objects stores the average time
between checkups. Should Robot-Employee inherit both of them? It really depends on
whether the robot employees can run the mile or not. With the potential for these addi-
tional types of conflicts, there is a risk of decreasing the understandability in an object-
oriented system instead of increasing it through the use of multiple inheritance. Our
advice is to use great care when using multiple inheritance.

324 Chapter 8 Class and Method Design

Employee Robot

Robot-Employee

-name
-classification
-runningTime

-name
-type
-runningTime

FIGURE 8-5
Additional Inheritance
Conflicts with Multiple
Inheritance

Meilir Page-Jones, through his consulting company,
identified a set of abuses of inheritance. In some cases,
these abuses led to lengthy and bloody disputes and grue-
some implementations; in one case, it led to the destruc-
tion of the development team. In all cases, the error was
in not enforcing a generalization (a-kind-of) semantics. In
one case, the inheritance hierarchy was inverted: Board-
Member was a superclass of Manager, which was a super-
class of Employee. However, in this case, an Employee is
not a-kind-of Manager, which is not a-kind-of Board-
Member. In fact, the opposite was true. However, if you
think of an Organization Chart, a BoardMember is supe-
rior to a Manager, which is superior to an Employee. In

another example, the client’s firm attempted to use inher-
itance to model a membership idea (e.g., Student is a
member of a club). However, the club should have had
an attribute that contained the student members. In the
other examples, inheritance was used to implement an
association relationship and an aggregation relationship.
Source: Meilir Page-Jones, Fundamentals of Object-Oriented Design in
UML (Reading, MA: Addison-Wesley, 2000).

Question

As an analyst, how can you attempt to avoid these types
of inheritance abuses?

8-A Inheritance AbusesCONCEPTS

IN ACTION

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 324

Design Criteria 325

DESIGN CRITERIA
When considering the design of an object-oriented system, a set of criteria exists that
can be used to determine whether the design is a good one or a bad one. According to
Coad and Yourdon,10 “A good design is one that balances trade-offs to minimize the
total cost of the system over its entire lifetime.” These criteria include coupling, cohe-
sion, and connascence.

Coupling
Coupling refers to how interdependent or interrelated the modules (classes, objects, and
methods) are in a system. The higher the interdependency, the more likely changes in part
of a design can cause changes to be required in other parts of the design. For object-
oriented systems, Coad and Yourdon11 identified two types of coupling to consider: inter-
action and inheritance.

Interaction coupling deals with the coupling among methods and objects through mes-
sage passing. Lieberherr and Holland put forth the law of Demeter as a guideline to mini-
mize this type of coupling.12 Essentially, the law minimizes the number of objects that can
receive messages from a given object. The law states that an object should send messages
only to one of the following:

! Itself (For example, in Figure 8-6a, Object1 can send Message1 to itself. In other
words, a method associated with Object1 can use other methods associated with
Object1.13)

! An object that is contained in an attribute of the object or one of its superclasses
(For example in Figure 8-6b, PO1 should be able to send messages using both its
Customer and Date attributes.)

! An object that is passed as a parameter to the method (For example in Figure 8-6c,
the aPatient instance sends the message RequestAppt(name, address) to the aRecep-
tionist instance, which is allowed to send messages to the instances contained in
the name and address parameters.)

! An object that is created by the method (For example in Figure 8-6c, the method
RequestAppt associated with the aReceptionist instance creates an instance of the
Appointment class. The RequestAppt method is allowed to send messages to that
instance.)

! An object that is stored in a global variable14

In each case, interaction coupling is increased. For example, the coupling increases between
the objects if the calling method passes attributes to the called method or if the calling
method depends on the value being returned by the called method.

10 Peter Coad and Edward Yourdon, Object-Oriented Design (Englewood Cliffs, NJ: Yourdon Press, 1991), p. 128.
11 Ibid.
12 Karl J. Lieberherr and Ian M. Holland, “Assuring Good Style for Object-Oriented Programs,” IEEE Software, 6,
no. 5 (September, 1989): 38–48; and Karl J. Lieberherr, Adaptive Object-Oriented Software: The Demeter Method
with Propagation Patterns (Boston, MA: PWS Publishing, 1996).
13 Obviously, this is stating what is expected.
14 From a design perspective, global variables should be avoided. Most pure object-oriented programming
languages do not explicitly support global variables, and we do not address them any further.

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 325

There are six types of interaction coupling, each falling on different parts of a good-
to-bad continuum. They range from no direct coupling to content coupling. Figure 8-7
presents the different types of interaction coupling. In general, interaction coupling should
be minimized. The one possible exception is that non–problem-domain classes must be
coupled to their corresponding problem-domain classes. For example, a report object (on

326 Chapter 8 Class and Method Design

Purchase Order

-PO Number[1..1] : unsigned long
-Sub Total[0..1] : Currency
-Tax[0..1] : Currency
-Shipping[0..1] : Currency
-Total[0..1] : Currency
-Customer[1..1] : Customer
-State[1..1] : State

PO1 : Purchase Order

Date : Date
PO Number : unsigned long
Sub Total : Currency
Tax : Currency
Shipping : Currency
Total : Currency
Customer : Customer
State : State

Message1

Invoice

Object1 AcctsPayForms

-Date : Date

(a) (b)

(c)

sd Make Old Patient Appt Use Case

RequestAppt(name, address)

NewCancelChangeAppt?()

ApptTimes?()

aPatient

LookUpPatient()

aReceptionist

[aPatientExists] LookupBills()

MatchAppts()

CreateAppt()

aPatient:Patient :UnpaidBill :Appointment

FIGURE 8-6 Examples of Interaction Coupling

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 326

Design Criteria 327

the human–computer interaction layer) that displays the contents of
an employee object (on the problem-domain layer) will be dependent
on the employee object. In this case, for optimization purposes, the
report class may be even content or pathologically coupled to the
employee class. However, problem-domain classes should never be
coupled to non–problem-domain classes.

Inheritance coupling, as its name implies, deals with how tightly cou-
pled the classes are in an inheritance hierarchy. Most authors tend to say
simply that this type of coupling is desirable. However, depending on the
issues raised previously with inheritance—inheritance conflicts, redefini-
tion capabilities, and dynamic binding—a high level of inheritance cou-
pling might not be a good thing. For example, in Figure 8-8, should

Method2() defined in Subclass be allowed to call Method1() defined in Superclass? Or, should
Method2() defined in Subclass refer to Attribute1 defined in Superclass? Or, even more con-
fusing, assuming that Superclass is an abstract class, can a Method1() call Method2() or use
Attribute2 defined in Subclass? Obviously, the first two examples have some intuitive sense.
Using the properties of a superclass is the primary purpose of inheriting from it in the first
place. On the other hand, the third example is somewhat counterintuitive. However, owing to
the way that different object-oriented programming languages support dynamic binding,
polymorphism, and inheritance, all these examples could be possible.

As Snyder has pointed out, most problems with inheritance involve the ability within the
object-oriented programming languages to violate the encapsulation and information-
hiding principles.15 From a design perspective, the developer needs to optimize the trade-offs

Good No Direct Coupling The methods do not relate to one another; that is, they do
not call one another.

Data The calling method passes a variable to the called method. If
the variable is composite (i.e., an object), the entire object is
used by the called method to perform its function.

Stamp The calling method passes a composite variable (i.e., an
object) to the called method, but the called method only
uses a portion of the object to perform its function.

Control The calling method passes a control variable whose value
will control the execution of the called method.

Common or Global The methods refer to a “global data area” that is outside the
individual objects.

Bad Content or Pathological A method of one object refers to the inside (hidden parts) of
another object. This violates the principles of encapsulation
and information hiding. However, C++ allows this to take
place through the use of “friends.”

Source: These types were adapted from Meilir Page-Jones, The Practical Guide to Structured Systems Design, 2nd
ed. (Englewood Cliffs, NJ: Yardon Press, 1988); and Glenford Myers, Composite/Structured Design (New York: Van
Nostrand Reinhold, 1978).

Level Type Description

FIGURE 8-7
Types of Interaction
Coupling

Subclass

Superclass

+Method2()

-Attribute2

+Method1()
-Attribute1

FIGURE 8-8
Example of Inheritance
Coupling

15 Alan Snyder, “Encapsulation and Inheritance in Object-Oriented Programming Languages,” in N. Meyrowitz,
ed., OOPSLA ’86 Conference Proceedings, ACM SigPlan Notices, 21, no. 11 (November 1986); and Alan Snyder,
“Inheritance and the Development of Encapsulated Software Components,” in B. Shriver and P. Wegner, eds.,
Research Directions in Object-Oriented Programming (Cambridge, MA: MIT Press, 1987).

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 327

of violating the encapsulation and information-hiding principles and increasing the desirable
coupling between subclasses and its superclasses. The best way to solve this conundrum is to
ensure that inheritance is used only to support generalization/specialization (a-kind-of)
semantics and the principle of substitutability (see Chapter 5). All other uses should be
avoided.

Cohesion
Cohesion refers to how single-minded a module (class, object, or method) is within a sys-
tem. A class or object should represent only one thing, and a method should solve only a
single task. Three general types of cohesion have been identified by Coad and Yourdon for
object-oriented systems: method, class, and generalization/specialization.16

Method cohesion addresses the cohesion within an individual method (i.e., how single-
minded a method is). Methods should do one and only one thing. A method that actually
performs multiple functions is more difficult to understand—and, therefore, to implement
and maintain—than one that performs only a single function. Seven types of method cohe-
sion have been identified (see Figure 8-9). They range from functional cohesion (good)
down to coincidental cohesion (bad). In general, method cohesion should be maximized.

328 Chapter 8 Class and Method Design

FIGURE 8-9
Types of Method
Cohesion

Good Functional A method performs a single problem-related task (e.g.,
calculate current GPA).

Sequential The method combines two functions in which the output
from the first one is used as the input to the second one
(e.g., format and validate current GPA).

Communicational The method combines two functions that use the same
attributes to execute (e.g., calculate current and
cumulative GPA).

Procedural The method supports multiple weakly related functions. For
example, the method could calculate student GPA, print
student record, calculate cumulative GPA, and print
cumulative GPA.

Temporal or Classical The method supports multiple related functions in time
(e.g., initialize all attributes).

Logical The method supports multiple related functions, but the
choice of the specific function is chosen based on a control
variable that is passed into the method. For example, the
called method could open a checking account, open a sav-
ings account, or calculate a loan, depending on the message
that is send by its calling method.

Bad Coincidental The purpose of the method cannot be defined or it performs
multiple functions that are unrelated to one another. For
example, the method could update customer records, calcu-
late loan payments, print exception reports, and analyze
competitor pricing structure.

Source: These types were adapted from Page-Jones, The Practical Guide to Structured Systems, and Myers,
Composite/Structured Design.

Level Type Description

16 Coad and Yourdon, Object-Oriented Design.

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 328

Design Criteria 329

Class cohesion is the level of cohesion among the attributes and methods of a class (i.e.,
how single-minded a class is). A class should represent only one thing, such as an employee,
a department, or an order. All attributes and methods contained in a class should be
required for the class to represent the thing. For example, an employee class should have
attributes that deal with a social security number, last name, first name, middle initial,
addresses, and benefits, but it should not have attributes such as door, engine, or hood.
Furthermore, there should be no attributes or methods that are never used. In other words,
a class should have only the attributes and methods necessary to fully define instances for
the problem at hand. In this case, we have ideal class cohesion. Glenford Meyers suggested
that a cohesive class17 should have these attributes:

! It should contain multiple methods that are visible outside the class (i.e., a single-
method class rarely makes sense).

! Each visible method performs only a single function (i.e., it has functional cohesion;
see Figure 8-9)

! All methods reference only attributes or other methods defined within the class or
one of its superclasses (i.e., if a method is going to send a message to another object,
the remote object must be the value of one of the local object’s attributes).18

! It should not have any control couplings between its visible methods (see Figure 8-7).

Page-Jones19 has identified three less-than-desirable types of class cohesion: mixed-
instance, mixed-domain, and mixed-role (see Figure 8-10). An individual class can have a
mixture of any of the three types.

17 We have adapted his informational-strength module criteria from structured design to object-oriented design.
[see Glenford J. Myers, Composite/Structured Design (New York, NY: Van Nostrand Reinhold, 1978)].
18 This restricts messages passing to only the first, second, and fourth conditions supported by the law of Demeter.
For example, in Figure 8-6c, aReceptionist must have attributes associated with it that contains objects for
Patients, Unpaid Bills, and Appointments. Furthermore, once an instance of Appointment is created, aReceptionist
must have an attribute with the instance as its value to send any additional messages.
19 See Meilir Page-Jones, Fundamentals of Object-Oriented Design in UML (Reading, MA: Addison-Wesley, 2000).

Good Ideal The class has none of the mixed cohesions.

Mixed-Role The class has one or more attributes that relate objects of
the class to other objects on the same layer (e.g., the
problem domain layer), but the attribute(s) have nothing to
do with the underlying semantics of the class.

Mixed-Domain The class has one or more attributes that relate objects of the
class to other objects on a different layer. As such, they have
nothing to do with the underlying semantics of the thing that
the class represents. In these cases, the offending attribute(s)
belongs in another class located on one of the other layers.
For example, a port attribute located in a problem domain
class should be in a system architecture class that is related
to the problem domain class.

Worse Mixed-Instance The class represents two different types of objects. The class
should be decomposed into two separate classes. Typically,
different instances only use a portion of the full definition of
the class.

Source: Page-Jones, Fundamentals of Object-Oriented Design in UML.

FIGURE 8-10
Types of Class
Cohesion

Level Type Description

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 329

Generalization/specialization cohesion addresses the sensibility of the inheritance hier-
archy. How are the classes in the inheritance hierarchy related? Are the classes related
through a generalization/specialization (a-kind-of) semantics? Or, are they related via
some association, aggregation, or membership type of relationship that was created for
simple reuse purposes? Recall all the issues raised previously on the use of inheritance. For
example, in Figure 8-11, the subclasses ClassRooms and Staff inherit from the superclass
Department. Obviously, instances of the ClassRooms and Staff classes are not a-kind-of
Department. However, in the early days of object-oriented programming, this use of inher-
itance was quite common. When a programmer saw that there were some common prop-
erties that a set of classes shared, the programmer would create an artificial abstraction that
defined the commonalities. This was potentially useful in a reuse sense, but it turned out
to cause many maintenance nightmares. In this case, instances of the ClassRooms and Staff
classes are associated with or a-part-of an instance of Department. Today we know that
highly cohesive inheritance hierarchies should support only the semantics of generalization
and specialization (a-kind-of) and the principle of substitutability.

Connascence
Connascence20 generalizes the ideas of cohesion and coupling, and it combines them with
the arguments for encapsulation. To accomplish this, three levels of encapsulation have
been identified. Level-0 encapsulation refers to the amount of encapsulation realized in an
individual line of code, level-1 encapsulation is the level of encapsulation attained by com-
bining lines of code into a method, and level-2 encapsulation is achieved by creating classes
that contain both methods and attributes. Method cohesion and interaction coupling
address primarily level-1 encapsulation. Class cohesion, generalization/specialization cohe-
sion, and inheritance coupling address only level-2 encapsulation. Connascence, as a gen-
eralization of cohesion and coupling, addresses both level-1 and level-2 encapsulation.

But what exactly is connascence? Connascence literally means to be born together.
From an object-oriented design perspective, it really means that two modules (classes or
methods) are so intertwined that if you make a change in one, it is likely that a change in
the other will be required. On the surface, this is very similar to coupling and, as such,
should be minimized. However, when you combine it with the encapsulation levels, it is not
quite as simple as that. In this case, we want to minimize overall connascence by eliminat-
ing any unnecessary connascence throughout the system; minimize connascence across any

330 Chapter 8 Class and Method Design

20 See Meilir Page-Jones, “Comparing Techniques by Means of Encapsulation and Connascence,”Communications
of the ACM 35, no. 9 (September 1992): 147–151.

Department

ClassRooms StaffFIGURE 8-11
Generalization/
Specialization vs.
Inheritance Abuse

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 330

Object Design Activities 331

encapsulation boundaries, such as method boundaries and class boundaries; and maximize
connascence within any encapsulation boundary.

Based on these guidelines, a subclass should never directly access any hidden
attribute or method of a superclass [i.e., a subclass should not have special rights to the
properties of its superclass(es)]. If direct access to the nonvisible attributes and methods
of a superclass by its subclass is allowed—and is permitted in most object-oriented pro-
gramming languages—and a modification to the superclass is made, then owing to the
connascence between the subclass and its superclass, it is likely that a modification to the
subclass also is required.21 In other words, the subclass has access to something across an
encapsulation boundary (the class boundary between the subclass and the superclass).
Practically speaking, you should maximize the cohesion (connascence) within an encap-
sulation boundary and minimize the coupling (connascence) between the encapsulation
boundaries. There are many possible types of connascence. Figure 8-12 describes five of
the types.

OBJECT DESIGN ACTIVITIES
The design activities for classes and methods are really an extension of the analysis and evo-
lution activities presented previously (see Chapters 4 through 7). In this case, we expand
the descriptions of the partitions, layers, and classes. Practically speaking, the expanded
descriptions are created through the activities that take place during the detailed design of
the classes and methods. The activities used to design classes and methods include addi-
tional specification of the current model, identifying opportunities for reuse, restructuring

21 Based on these guidelines, the use of the protected visibility, as supported in Java and C!!, should be mini-
mized, if not avoided. “Friends” as defined in C!! also should be minimized or avoided. Owing to the level of
dependencies these language features create, any convenience afforded to a programmer is more than offset in
potential design, understandability, and maintenance problems. These features must be used with great caution
and must be fully documented.

Name If a method refers to an attribute, it is tied to the name of the attribute. If the
attribute’s name changes, the content of the method will have to change.

Type or Class If a class has an attribute of type A, it is tied to the type of the attribute. If the
type of the attribute changes, the attribute declaration will have to change.

Convention A class has an attribute in which a range of values has a semantic meaning (e.g.,
account numbers whose values range from 1000 to 1999 are assets). If the range
would change, then every method that used the attribute would have
to be modified.

Algorithm Two different methods of a class are dependent on the same algorithm to
execute correctly (e.g., insert an element into an array and find an element in
the same array). If the underlying algorithm would change, then the insert and
find methods would also have to change.

Position The order of the code in a method or the order of the arguments to a method is
critical for the method to execute correctly. If either is wrong, then the method
will, at least, not function correctly.

Source: Meilir Page-Jones, “Comparing Techniques by Means of Encapsulation and Connascence” and Meilir
Page-Jones, Fundamentals of Object-Oriented Design in UML.

FIGURE 8-12
Types of Connascence

Type Description

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 331

the design, optimizing the design, and, finally, mapping the problem-domain classes to an
implementation language. Of course, any changes made to a class on one layer can cause
the classes on the other layers that are coupled to it to be modified as well. The object
design activities are described in this section.

Adding Specifications
At this point in the development of the system, it is crucial to review the current set of func-
tional, structural, and behavioral models. First, we should ensure that the classes on the
problem-domain layer are both necessary and sufficient to solve the underlying problem.
To do this, we need to be sure that there are no missing attributes or methods and no extra
or unused attributes or methods in each class. Furthermore, are there any missing or extra
classes? If we have done our job well during analysis, there will be few, if any, attributes,
methods, or classes to add to the models. And it is unlikely that we have any extra attrib-
utes, methods, or classes to delete from the models. However, we still need to ensure that
we have factored, abstracted, and refined the evolving models and created the relevant par-
titions and collaborations (see Chapter 7). We have mentioned this before, but we cannot
overemphasize the importance of constantly reviewing the evolving system. Remember, it
is always better to be safe than sorry.

Second, we need to finalize the visibility (hidden or visible) of the attributes and meth-
ods in each class. Depending on the object-oriented programming language used, this
could be predetermined. [For example, in Smalltalk, attributes are hidden and methods are
visible. Other languages allow the programmer to set the visibility of each attribute or
method. For example, in C!! and Java, you can set the visibility to private (hidden), public
(visible), or protected (visible to subclasses, but not to other classes)].22 By default, most
object-oriented analysis and design approaches assume Smalltalk’s approach.

Third, we need to decide on the signature of every method in every class. The signa-
ture of a method comprises three parts: the name of the method, the parameters or argu-
ments that must be passed to the method, including their object type, and the type of value
that the method will return to the calling method. The signature of a method is related to
the method’s contract.23

Fourth, we need to define any constraints that must be preserved by the objects (e.g.,
an attribute of an object that can have values only in a certain range). There are three dif-
ferent types of constraints: preconditions, postconditions, and invariants.24 These are cap-
tured in the form of contracts (described later in this chapter) and assertions added to the
CRC cards and class diagrams. We also must decide how to handle a violation of a con-
straint. Should the system simply abort? Should the system automatically undo the change
that caused the violation? Should the system let the end user determine the approach to
correct the violation? In other words, the designer must design the errors that the system
is expected to handle. It is best not to leave these types of design decisions for the pro-
grammer to solve. Violations of a constraint are known as exceptions in languages such as
C!! and Java.

Even though we have described these activities in the context of the problem-domain
layer, they are also applicable to the other layers: data management (Chapter 9),
human–computer interaction (Chapter 10), and physical architecture (Chapter 11).

333322 CChhaapptteerr 88 Class and Method Design

22 It is also possible to control visibility through packages and friends (see Footnote 21).
23 Contracts were introduced in Chapter 5 and they are described in detail later in this chapter.
24 Constraints are described in more detail later in this chapter.

c08ClassAndMethodDesign.qxd 11/28/11 10:28 AM Page 332

Object Design Activities 333

Identifying Opportunities for Reuse
Previously, we looked at possibly employing reuse in our models in analysis through the
use of patterns (see Chapter 5). In design, in addition to using analysis patterns, there are
opportunities for using design patterns, frameworks, libraries, and components. The
opportunities vary depending on which layer is being reviewed. For example, it is doubtful
that a class library will be of much help on the problem-domain layer, but a class library
could be of great help on the foundation layer. In this section, we describe the use of design
patterns, frameworks, libraries, and components.

Like analysis patterns, design patterns are simply useful grouping of collaborating
classes that provide a solution to a commonly occurring problem. The primary difference
between analysis and design patterns is that design patterns are useful in solving “a general
design problem in a particular context,”25 whereas analysis patterns tended to aid in filling
out a problem-domain representation. For example, a useful pattern is the Whole-Part pat-
tern (see Figure 8-13a). The Whole-Part pattern explicitly supports the Aggregation and
Composition relationships within the UML. Another useful design pattern is the Iterator
pattern (see Figure 8-13b). The primary purpose of the Iterator pattern is to provide the
designer with a standard approach to support traversing different types of collections. By
using this pattern, regardless of the collection type (ConcreteAggregate), the designer knows
that the collection will need to create an iterator (ConcreteIterator) that customizes the stan-
dard operations used to traverse the collection: first(), next(), isDone(), and currentItem().
Given the number of collections typically found in business applications, this pattern is one
of the more useful ones. For example in Figure 8-14a, we replicate a portion of both the
Appointment and Library problems discussed in previous chapters and in Figure 8-14b we
show how the Iterator pattern can be applied to those sections of their evolving designs.
Finally, some of the design patterns support different physical architectures (see Chapter
11). For example, the Forwarder-Receiver pattern (see Figure 8-13c) supports a peer-to-peer
architecture. Many design patterns are available in C!! or Java source code.

A framework is composed of a set of implemented classes that can be can be used as a
basis for implementing an application. Most frameworks allow us to create subclasses to
inherit from classes in the framework. There are object-persistence frameworks that can be
purchased and used to add persistence to the problem-domain classes, which would be
helpful on the data management layer. Of course, when inheriting from classes in a frame-
work, we are creating a dependency (i.e., increasing the inheritance coupling from the sub-
class to the superclass). Therefore, if we use a framework and the vendor makes changes to
the framework, we will have to at least recompile the system when we upgrade to the new
version of the framework.

A class library is similar to a framework in that it typically has a set of implemented
classes that were designed for reuse. However, frameworks tend to be more domain spe-
cific. In fact, frameworks may be built using a class library. A typical class library could
be purchased to support numerical or statistical processing, file management (data
management layer), or user interface development (human–computer interaction
layer). In some cases, instances of classes contained in the class library can be created,
and in other cases classes in the class library can be extended by creating subclasses
based on them. As with frameworks, if we use inheritance to reuse the classes in the class
library, we will run into all the issues dealing with inheritance coupling and
connascence. If we directly instantiate classes in the class library, we will create a

25 Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software (Reading, MA: Addison-Wesley, 1995).

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 333

334 Chapter 8 Class and Method Design

(a)

(b)

(c)

calls service

combines

Client Whole

Part1

+serviceA1()
+serviceA2()

+serviceN1()
+serviceN2()

PartN+doTask() +service1()
+service2()

sendMsg

receiveMsg

receiveMsg

Receiver

Peer1

+service()

+receive()
+unmarshal()
+receiveMsg()

Receiver Forwarder

InterProcessCommunication

InterProcessCommunication

sendMsg

+marshal()
+deliver()
+sendMsg()

+receive()
+unmarshal()
+receiveMsg()

Forwarder

+marshal()
+deliver()
+sendMsg()

Peer2

+service()

+first() : Object
+next() : Object
+isDone() : boolean
+currentltem() : Object

Iterator createlterator()
{ return new Concretelterator(this); }

 Concretelterator ConcreteAggregate

<<interface>>
Aggregate

<<interface>>
lterator

+createlterator():lterator

Client

1

1

1

1

FIGURE 8-13 Sample Design Patterns

Source: F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-Oriented Software Architecture: A System of Patterns (Chichester, UK:
Wiley, 1996), E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software (Reading, MA: Addison-
Wesley, 1995).

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 334

Object Design Activities 335

Check Out Trans Transaction Line Item

Transaction Line Item

1..1 1..*

1..*

Patient

-amount
-insurance carrier
+make appointment()
+calculate last visit()
+change status()
+provides medical history()

0..*

0..*1..1
1..1

1..1

Appointment
-time
-date
-reason
+cancel without notice()

has

+ primary
 insurance
 carrier

schedules

(a)

(b)

Check Out Trans Transaction Line Item

Transaction Line Item

1..*1..1

1..*1..1

Appointment
-time
-date
-reason
+cancel without notice()

has

<<interface>>
Aggregate

<<interface>>
Aggregate

<<interface>>
Iterator

+createlterator() : Iterator

+first() : Object
+next() : Object
+isDone() : boolean
+currentItem() : Object

<<interface>>
Iterator

+first() : Object
+next() : Object
+isDone() : boolean
+currentItem() : Object

Client

Client

+createlterator() : Iterator

FIGURE 8-14 Iterator Design Pattern Applied to Library and Appointment Problems

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 335

336 Chapter 8 Class and Method Design

dependency between our object and the library object based on the signatures of the
methods in the library object. This increases the interaction coupling between the class
library object and our object.

A component is a self-contained, encapsulated piece of software that can be plugged
into a system to provide a specific set of required functionalities. Today, there are many
components available for purchase. A component has a well-defined API (application
program interface). An API is essentially a set of method interfaces to the objects con-
tained in the component. The internal workings of the component are hidden behind the
API. Components can be implemented using class libraries and frameworks. However,
components also can be used to implement frameworks. Unless the API changes between
versions of the component, upgrading to a new version normally requires only linking
the component back into the application. As such, recompilation typically is not
required.

Which of these approaches should we use? It depends on what we are trying to build.
In general, frameworks are used mostly to aid in developing objects on the physical
architecture, human–computer interaction, or data management layers; components are
used primarily to simplify the development of objects on the problem-domain and
human–computer interaction layers; and class libraries are used to develop frameworks
and components and to support the foundation layer. Whichever of these reuse
approaches you use, you must remember that reuse brings many potential benefits and
possible problems. For example, the software has previously been verified and validated,
which should reduce the amount of testing required for our system. However as stated
before, if the software on which we are basing our system changes, then most likely, we
will also have to change our system. Furthermore, if the software is from a third-party
firm, we are creating a dependency from our firm (or our client’s firm) to the third-party
vendor. Consequently, we need to have some confidence that the vendor will be in busi-
ness for a while.

Restructuring the Design
Once the individual classes and methods have been specified and the class libraries, frame-
works, and components have been incorporated into the evolving design, we should use
factoring to restructure the design. Factoring (Chapter 7) is the process of separating out
aspects of a method or class into a new method or class to simplify the overall design. For
example, when reviewing a set of classes on a particular layer, we might discover that a sub-
set of them shares a similar definition. In that case, it may be useful to factor out the simi-
larities and create a new class. Based on the issues related to cohesion, coupling, and
connascence, the new class may be related to the old classes via inheritance (generalization)
or through an aggregation or association relationship.

In the previous chapters, you have been working on a
system for the campus housing service. Based on the cur-
rent set of functional, structural, and behavioral models
that you have developed, are there potential opportunities

of reuse in developing the system? Search the Web for
potential patterns, class libraries, and components that
could be useful in developing this system.

8-1 Campus HousingYOUR

TURN

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 336

Object Design Activities 337

Another process that is useful for restructuring the evolving design is normalization.
Normalization is described in Chapter 9 in relation to relational databases. However, nor-
malization can be useful at times to identify potential classes that are missing from the design.
Also related to normalization is the requirement to implement the actual association and
aggregation relationships as attributes. Virtually no object-oriented programming language
differentiates between attributes and association and aggregation relationships. Therefore, all
association and aggregation relationships must be converted to attributes in the classes. For
example in Figure 8-15a, the Customer and State classes are associated with the Order class.
Furthermore, the Product-Order association class is associated with both the Order and
Product classes. One of the first things that must be done is to convert the Product Order
Association class to a normal class. Notice the multiplicity values for the new associations
between the Order and the Product Order classes and the Product Order and Product classes
(see Figure 8-15b). Next, we need to convert all associations to attributes that represent the
relationships between the affected classes. In this case, the Customer class must have an
Orders attribute added to represent the set of orders that an instance of the Customer class
may possess; the Order class must add attributes to reference instances of the Customer, State,
and Product Order classes; the State class must have an attribute added to it to reference all
of the instances of the Order class that is associated with that particular state; the new Product
Order class must have attributes that allow an instance of the Product Order class to reference
which instance of the Order class and which instance of the Product class is relevant to it; and,
finally, the Product class must add an attribute that references the relevant instances of the
Product Order class (see Figure 8-15c). As you can see, even in this very small example, many
changes need to be made to ready the design for implementation.

Finally, all inheritance relationships should be challenged to ensure that they support
only a generalization/specialization (a-kind-of) semantics. Otherwise, all the problems
mentioned previously with inheritance coupling, class cohesion, and generalization/
specialization cohesion will come to pass.

Optimizing the Design26

Up until now, we have focused our energy on developing an understandable design. With
all the classes, patterns, collaborations, partitions, and layers designed and with all the class
libraries, frameworks, and components included in the design, understandability has been,
as it should have been, our primary focus. However, increasing the understandability of a
design typically creates an inefficient design. Conversely, focusing on efficiency issues will
deliver a design that is more difficult to understand. A good practical design manages the
inevitable trade-offs that must occur to create an acceptable system. In this section, we
describe a set of simple optimizations that can be used to create a more-efficient design.27

The first optimization to consider is to review the access paths between objects. In
some cases, a message from one object to another has a long path to traverse (i.e., it goes
through many objects). If the path is long and the message is sent frequently, a redundant
path should be considered. Adding an attribute to the calling object that will store a direct
connection to the object at the end of the path can accomplish this.

26 The material contained in this section is based on James Rumbaugh, Michael Blaha, William Premerlani, Fred-
erick Eddy, and William Lorensen, Object-Oriented Modeling and Design (Englewood Cliffs, NJ: Prentice Hall,
1991); and Bernd Brugge and Allen H. Dutoit, Object-Oriented Software Engineering: Conquering Complex and
Changing Systems (Englewood Cliffs, NJ: Prentice Hall, 2000).
27 The optimizations described here are only suggestions. In all cases, the decision to implement one or more of
these optimizations really depends on the problem domain of the system and the environment on which the
system will reside, that is, the data management layer (see Chapter 9), the human–computer interaction layer (see
Chapter 10), and the physical architecture layer (see Chapter 11).

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 337

(a)

-Order Number[1..1] : unsigned long
-Date[1..1] : Date
-Sub Total[0..1] : double
-Tax[0..1] : double
-Shipping[0..1] : double
-Total[0..1] : double

1..1

1..1

0..*

1..*0..*

0..*

Order

Customer

State

-Cust ID[1..1]
-Last Name[1..1]
-First Name[1..1]

Product

-Product Number[1..1] :
 unsigned long(idl)
-Product Desc[1..1] : String
-Price[..] : double

-State[1..1] : String
-TaxRate[1..1] : float

(b)

-Order Number[1..1] : unsigned long
-Date[1..1] : Date
-Sub Total[0..1] : double
-Tax[0..1] : double
-Shipping[0..1] : double
-Total[0..1] : double

Product Order
Customer

-Cust ID[1..1]
-Last Name[1..1]
-First Name[1..1]

Product

-Product Number[1..1] :
 unsigned long(idl)
-Product Desc[1..1] : String
-Price[..] : double

1..1

0..*1..1

0..*

1..1

0..*

State

-State[1..1] : String
-TaxRate[1..1] : float

1..1

1..*

Order

-Qty[1..1] : Integer
-Extension[1..1] : Decimal

Product Order

-Qty[1..1] : unsigned long
-Extension[1..1] : double

(c)

State

-State[1..1] : String
-TaxRate[1..1] : float
-Orders[0..*] : Order

-Order Number[1..1] : unsigned long
-Date[1..1] : Date
-Sub Total[0..1] : double
-Tax[0..1] : double
-Shipping[0..1] : double
-Total[0..1] : double
-Customer{1..1] : Customer
-State{1..] : State
-Product Orders[1..*] : Product Order

Order Product Order
-Qty[1..1] : Integer
-Extension[1..1] : Decimal
-Order[1..1] : Order
-Product[1..1] : Product

-Cust ID[1..1] :
 unsigned long
-Last Name[1..1] : String
-First Name[1..1] : String
-Orders[0..*] : Order

Customer

-Product Number[1..1] :
 unsigned long(idl)
-Product Desc[1..1] : String
-Price[1..1] : double
-Product Orders[0..*] :
 Product order

Product

FIGURE 8-15 Converting Associations to Attributes

338

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 338

Object Design Activities 339

A second optimization is to review each attribute of each class. Which methods use the
attributes and which objects use the methods should be determined. If the only methods
that use an attribute are read and update methods and only instances of a single class send
messages to read and update the attribute, then the attribute may belong with the calling
class instead of the called class. Moving the attribute to the calling class will substantially
speed up the system.

A third optimization is to review the direct and indirect fan-out of each method. Fan-
out refers to the number of messages sent by a method. The direct fan-out is the number
of messages sent by the method itself, whereas the indirect fan-out also includes the num-
ber of messages sent by the methods called by the other methods in a message tree. If the
fan-out of a method is high relative to the other methods in the system, the method should
be optimized. One way to do this is to consider adding an index to the attributes used to
send the messages to the objects in the message tree.

A fourth optimization is to look at the execution order of the statements in often-used
methods. In some cases, it is possible to rearrange some of the statements to be more effi-
cient. For example, if it is known, based on the objects in the system, that a search routine
can be narrowed by searching on one attribute before another one, then the search algo-
rithm should be optimized by forcing it to always search in a predefined order.

A fifth optimization is to avoid recomputation by creating a derived attribute (or active
value) (e.g., a total that stores the value of the computation). This is also known as caching
computational results. It can be accomplished by adding a trigger to the attributes contained
in the computation (i.e., attributes on which the derived attribute is dependent). This
would require a recomputation to take place only when one of the attributes that go into
the computation is changed. Another approach is to simply mark the derived attribute for
recomputation and delay the recomputation until the next time the derived attribute is
accessed. This last approach delays the recomputation as long as possible. In this manner,
a computation does not occur unless it must occur. Otherwise, every time a derived
attribute needs to be accessed, a computation will be required.

A sixth optimization that should be considered deals with objects that participate in a
one-to-one association; that is, they both must exist for either to exist. In this case, it might
make sense, for efficiency purposes, to collapse the two defining classes into a single class.
However, this optimization might need to be reconsidered when storing the “fatter” object
in a database. Depending on the type of object persistence used (see Chapter 9), it can actu-
ally be more efficient to keep the two classes separate. Alternatively, it could make more
sense for the two classes to be combined on the problem-domain layer but kept separate on
the data management layer.

Assume that you are the project leader for the campus
housing system that you have been developing over the
previous chapters and that you just modified in Your Turn
8-1. However, as you review the current set of models,
you realize that even though the models provide a rather
complete description of the problem-domain layer, the
evolving models have begun to become unmanageable.

As project leader, you also need to guarantee that the
design will be efficient. Create a set of discussion points
that you will use to explain to your development team the
importance of optimizing the design before jumping into
coding. Be sure to include an example of each
optimization technique that can be used in the current set
of models for the campus housing system.

8-2 Campus HousingYOUR

TURN

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 339

Mapping Problem-Domain Classes to Implementation Languages28

Up until this point in the development of the system, it has been assumed that the classes
and methods in the models would be implemented directly in an object-oriented
programming language. However, now it is important to map the current design to the
capabilities of the programming language used. For example, if we have used multiple
inheritance in our design but we are implementing in a language that supports only sin-
gle inheritance, then the multiple inheritance must be factored out of the design. If the
implementation is to be done in an object-based language, one that does not support
inheritance,29 or a non–object-based language, such as C, we must map the problem-
domain objects to programming constructs that can be implemented using the chosen
implementation environment. In this section, we describe a set of rules that can be used
to do the necessary mapping.

Implementing Problem Domain Classes in a Single-Inheritance Language The only
issue associated with implementing problem-domain objects is the factoring out of any mul-
tiple inheritance—that is, the use of more than one superclass—used in the evolving design.
For example, if you were to implement the solution in Java, Smalltalk, or Visual Basic.net, you
must factor out any multiple inheritance. The easiest way to do this is to use the following rule:

RULE 1a: Convert the additional inheritance relationships to association relation-
ships. The multiplicity of the new association from the subclass to the
superclass should be 1..1. If the additional superclasses are concrete, that
is, they can be instantiated themselves, then the multiplicity from the
superclass to the subclass is 0..1. Otherwise, it is 1..1. Furthermore, an
exclusive-or (XOR) constraint must be added between the associations.
Finally, you must add appropriate methods to ensure that all information
is still available to the original class.

or

RULE 1b: Flatten the inheritance hierarchy by copying the attributes and methods of
the additional superclass(es) down to all of the subclasses and remove the
additional superclass from the design.30

Figure 8-16 demonstrates the application of these rules. Figure 8-16a portrays a simple
example of multiple inheritance where Flying Car inherits from both Airplane and Car, and
Amphibious Car inherits from both Car and Boat. Assuming that Car is concrete, we apply
Rule 1a to part a, and we end up with the diagram in part b, where we have added the asso-
ciation between Flying Car and Car and the association between Amphibious Car and Boat.
The multiplicities have been added correctly, and the XOR constraint has been applied. If we
apply Rule 1b to part a, we end up with the diagram in part c, where all the attributes of Car
have been copied down into Flying Car and Amphibious Car. In this latter case, you might
have to deal with the effects of inheritance conflicts (see earlier in the chapter).

The advantage of Rule 1a is that all problem-domain classes identified during analysis
are preserved. This allows maximum flexibility of maintenance of the design of the problem

340 Chapter 8 Class and Method Design

28 The mapping rules presented in this section are based on material in Coad and Yourdon, Object-Oriented Design.
29 In this case, we are talking about implementation inheritance, not the interface inheritance. Interface
inheritance supported by Visual Basic and Java supports only inheriting the requirements to implement certain
methods, not any implementation. Java and Visual Basic.net also support single inheritance as described in this
text, whereas Visual Basic 6 supports only interface inheritance.
30 It is also a good idea to document this modification in the design so that in the future, modifications to the
design can be maintained easily.

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 340

Object Design Activities 341

Flying Car

-mfg
-yr

Airplane

-EngineType
-Fuel Type

Car

-NumberOfDoors
-RegNo

-attribute1
-attribute2

Amphibious Car

-mfg
-yr

Boat

-Weight
-Length

(a)

(b)

(c)

{XOR}

0..* 0..*

1..11..1

Flying Car

-mfg
-yr

Flying Car

-mfg
-yr

Airplane

Airplane

-EngineType
-Fuel Type

Car

-NumberOfDoors
-RegNo

-NumberOfDoors
-RegNo

-NumberOfDoors
-RegNo

Amphibious Car

-mfg
-yr

Boat

-Weight
-Length

Boat

-Weight
-Length

Amphibious Car

-mfg
-yr

-EngineType
-Fuel Type

FIGURE 8-16 Factoring Out Multiple-Inheritance Effect for a Single-Inheritance Language

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 341

342 Chapter 8 Class and Method Design

domain layer. However, Rule 1a increases the amount of message passing required in the
system, and it has added processing requirements involving the XOR constraint, thus
reducing the overall efficiency of the design. Accordingly, our recommendation is to limit
Rule 1a to be applied only when dealing with “extra” superclasses that are concrete because
they have an independent existence in the problem domain. Use Rule 1b when they are
abstract because they do not have an independent existence from the subclass.

Implementing Problem Domain Objects in an Object-Based Language If we are
going to implement our solution in an object-based language (i.e., a language that supports
the creation of objects but does not support implementation inheritance), we must factor
out all uses of inheritance from the problem-domain class design. For example, if we were
to implement our design in Visual Basic 6 or earlier, we would have to remove all uses of
inheritance in the design. Applying the preceding rule to all superclasses enables us to
restructure our design without any inheritance.

Figure 8-17 demonstrates the application of the preceding rules. Figure 8-17a shows
the same simple example of multiple inheritance portrayed in Figure 8-16, where Flying
Car inherits from both Airplane and Car, and Amphibious Car inherits from both Car and
Boat. Assuming that Airplane, Car, and Boat are concrete, we apply Rule 1a to part a and
we end up with the diagram in part b, where we have added the associations, the multi-
plicities, and the XOR constraint. If we apply Rule 1b to part a, we end up with the diagram
in part c, where all the attributes of the superclasses have been copied down into Flying Car
and Amphibious Car. In this latter case, you might have to deal with the effects of inheri-
tance conflicts (see earlier in the chapter).

Implementing Problem-Domain Objects in a Traditional Language From a practical
perspective, we are much better off implementing an object-oriented design in an object-
oriented programming language, such as C!!, Java, Objective-C, or Visual Basic.net.
However, implementing an object-oriented design in an object-based language, such as
Visual Basic 6, is preferable to attempting to implement it in a traditional programming
language, such as C or COBOL. Practically speaking, the gulf between an object-oriented
design and a traditional programming language is simply too great for mere mortals to be
able to cross. The best advice that we can give about implementing an object-oriented
design in a traditional programming language is to run away as fast and as far as possible
from the project. However, if we are brave (foolish?) enough to attempt this, we must real-
ize that in addition to factoring out inheritance from the design, we have to factor out all
uses of polymorphism, dynamic binding, encapsulation, and information hiding. This is
quite a bit of additional work to be accomplished. The way we factor these object-oriented
features out of the detailed design of the system tends to be language dependent. This is
beyond the scope of this text.

In the previous chapters, we have been using a doctor’s
office appointment system as an example. Assume that you
now know that the system must be implemented in Visual

Basic 6, which does not support implementation inheri-
tance. Redraw the class diagram, factoring out the use of
inheritance in the design by applying the above rules.

8-3 Doctor’s Office Appointment SystemYOUR

TURN

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 342

Constraints and Contracts 343

-attribute1
-attribute2

Amphibious Car

-Weight
-Length

(a)

(b)

(c)

{XOR}

0..*

0..1

0..*

1..1 0..1

0..1

0..1

1..1

Flying Car

-mfg
-yr

Airplane

-EngineType
-Fuel Type

Car

-NumberOfDoors
-RegNo

Amphibious Car

-mfg
-yr

Boat

-Weight
-Length

Airplane

-EngineType
-Fuel Type

Car

-NumberOfDoors
-RegNo

Boat

Flying Car

-mfg
-yr

Flying Car

-EngineType
-FuelType

-mfg
-yr
-NumberOfDoors
-RegNo

Amphibious Car

-Weight
-Length

-mfg
-yr
-NumberOfDoors
-RegNo

-mfg
-yr

FIGURE 8-17 Factoring Out Multiple Inheritance Effect for an Object-Based Language

CONSTRAINTS AND CONTRACTS
Contracts were introduced in Chapter 5 in association with collaborations. A contract for-
malizes the interactions between the client and server objects, where a client (consumer)
object is an instance of a class that sends a message to a server (supplier) object that executes
one of its methods in response to the request. Contracts are modeled on the legal notion of
a contract, where both parties, client and server objects, have obligations and rights.

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 343

334444 CChhaapptteerr 88 Class and Method Design

31 The idea of using contracts in design evolved from the “Design by Contract” technique developed by Bertrand
Meyer. See Bertrand Meyer, Object-Oriented Software Construction (Englewood Cliffs, NJ: Prentice Hall, 1988).
32 We describe Structured English with Method Specification later in this chapter.
33 For a complete description of the object constraint language see Jos Warmer and Anneke Kleppe, The Object
Constraint Language: Precise Modeling with UML (Reading, MA: Addison-Wesley, 1999).

CCoommppaarriissoonn ! a ! 5
" a " 100

"! a "! 100
a # 100

#! a #! 100
"# a "# 100

LLooggiiccaall and a and b
or a or b
xor a xor b
not not a

MMaatthh $ a $ b
% a % b
* a * b
/ a / b

SSttrriinngg concat a ! b.concat(c)

RReellaattiioonnsshhiipp TTrraavveerrssaall . relationshipAttributeName.b
:: superclassName::propertyName

CCoolllleeccttiioonn size a.size
count(object) a.count(b)

includes(object) a.includes(b)
isEmpty a.isEmpty
sum() a.sum(b,c,d)

select(expression) a.select(b # d)
FFIIGGUURREE 88--1188
Sample OCL Constructs

Practically speaking, a contract is a set of constraints and guarantees. If the constraints are
met, then the server object guarantees certain behavior.31 Constraints can be written in a
natural language (e.g., English), a semiformal language (e.g., Structured English32), or a
formal language (e.g., UML’s Object Constraint Language). Given the need for precise,
unambiguous specification of constraints, we recommend using UML’s Object Constraint
Language.

The Object Constraint Language (OCL)33 is a complete language designed to specify
constraints. In this section we provide a short overview of some of the more useful con-
structs contained in the language (see Figure 8-18). Essentially, all OCL expressions are
simply a declarative statement that evaluates to either being true or false. If the expression
evaluates to true, then the constraint has been satisfied. For example, if a customer had to
have a less than a one hundred dollar balance owed to be allowed to place another credit
order, the OCL expression would be:

balance owed "! 100.00

OOppeerraattoorr TTyyppee OOppeerraattoorr EExxaammppllee

c08ClassAndMethodDesign.qxd 11/28/11 10:30 AM Page 344

Constraints and Contracts 345

OCL also has the ability to traverse relationships between objects, e.g., if the amount on a
purchase order is required to be the sum of the values of the individual purchase order
lines, this can be modeled as:

amount " OrderLine.sum(getPrice())

OCL also provides the ability to model more-complex constraints with a set of logical oper-
ators: and, or, xor, and not. For example, if customers were to be given a discount only if they
were a senior citizen or a “prime” customer, OCL could be used to model the constraint as:

age # 65 or customerType " “prime”

OCL provides many other constructs that can be used to build unique constraints. These
include math-oriented operators, string operators, and relationship traversal operators. For
example, if the printed name on a customer order should be the concatenation of the cus-
tomer’s first name and last name, then OCL could represent this constraint as:

printedName " firstName.concat(lastName)

We already have seen an example of the ‘.’ operator being used to traverse a relationship
from Order to OrderLine above. The ‘::’ operator allows the modeling of traversing inher-
itance relationships.

OCL also provides a set of operations that are used to support constraints over a collec-
tion of objects. For example, we demonstrated the use of the sum() operator above where we
wanted to guarantee that the amount was equal to the summation of all of the prices of the
items in the collection. The size operation returns the number of items in the collection. The
count operation returns the number of occurrences in the collection of the specific object
passed as its argument. The includes operation tests whether the object passed to it is already
included in the collection. The isEmpty operation determines whether the collection is empty
or not. The select operation provides support to model the identification of a subset of the col-
lection based on the expression that is passed as its argument. Obviously, OCL provides a rich
set of operators and operations in which to model constraints.

Types of Constraints
Three different types of constraints are typically captured in object-oriented design: pre-
conditions, postconditions, and invariants.

Contracts are used primarily to establish the preconditions and postconditions for a
method to be able to execute properly. A precondition is a constraint that must be met for
a method to execute. For example, the parameters passed to a method must be valid for the
method to execute. Otherwise, an exception should be raised. A postcondition is a con-
straint that must be met after the method executes, or the effect of the method execution
must be undone. For example, the method cannot make any of the attributes of the object
take on an invalid value. In this case, an exception should be raised, and the effect of the
method’s execution should be undone.

Whereas preconditions and postconditions model the constraints on an individual
method, invariants model constraints that must always be true for all instances of a class.
Examples of invariants include domains or types of attributes, multiplicity of attributes,
and the valid values of attributes. This includes the attributes that model association and
aggregation relationships. For example, if an association relationship is required, an invari-
ant should be created that will enforce it to have a valid value for the instance to exist.
Invariants are normally attached to the class. We can attach invariants to the CRC cards or
class diagram by adding a set of assertions to them.

In Figure 8-19, the back of the CRC card constrains the attributes of an Order to spe-
cific types. For example, Order Number must be an unsigned long, and Customer must be

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 345

346 Chapter 8 Class and Method Design

Front:

Class Name: Order ID: 2

Calculate tax

Calculate subtotal

Calculate shipping

Calculate total

Responsibilities

Associated Use Cases: 3Description: An Individual that needs to receive or has
received medical attention

Type: Concrete, Domain

Collaborators

(a)

Back:

Attributes:

Relationships:
Generalization (a-kind-of):

Aggregation (has-parts):

Other Associations: Customer {1..1} State {1..1}Product {1..*}

(b)

Order Number (1..1) (unsigned long)

Date (1..1) (Date)

Sub Total (0..1) (double) {Sub Total = ProductOrder. sum(GetExtension())}

Tax (0..1) (double) (Tax = State.GetTaxRate() * Sub Total)

Shipping (0..1) (double)

Total (0..1) (double)

Customer (1..1) (Customer)

Cust ID (1..1) (unsigned long) {Cust ID = Customer. GetCustID()}

State (1..1) (State)

StateName (1..1) (String) {State Name = State. GetState()}

FIGURE 8-19
Invariants on a CRC Card

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 346

an instance of the Customer class. Furthermore, additional invariants were added to four
of the attributes. For example, Cust ID must not only be an unsigned long, but it also must
have one and only one value [i.e., a multiplicity of (1..1)], and it must have the same value
as the result of the GetCustID() message sent to the instance of Customer stored in the
Customer attribute. Also shown is the constraint for an instance to exist, an instance of the
Customer class, an instance of the State class, and at least one instance of the Product class
must be associated with the Order object (see the Relationships section of the CRC card
where the multiplicities are 1..1, 1..1, and 1..*, respectively). Figure 8-20 portrays the same
set of invariants on a class diagram. However, if all invariants are placed on a class diagram,
the diagram becomes very difficult to understand. Consequently, we recommend either
extending the CRC card to document the invariants instead of attaching them all to the
class diagram or creating a separate text document that contains them (see Figure 8-21).

Constraints and Contracts 347

In Your Turn 5-2, you created a set of CRC cards and a
class diagram. Add invariants to the class diagram and to

the set of CRC cards.

8-4 Campus HousingYOUR

TURN

Order

-Order Number[1..1] : unsigned long
-Date[1..1] : Date
-SubTotal[0..1] : double
-Tax[0..1] : double
-Shipping[0..1] : double
-Total[0..1] : double
-Customer[1..1] : Customer
-Cust ID[1..1] : unsigned long
-State[1..1] : State
-StateName[1..1] : String

Product

-Product Number
-Product Desc
-Price

Customer

-Cust ID
-Last Name
-First Name 1..1

1..1

0..*

1..*0..*

0..*

State

-State
-TaxRate

<<invariant>>
{Cust ID = Customer.GetCustID()}

<<invariant>>
{State Name = State.GetState()}

<<invariant>>
{Tax =State.GetTaxRate()*SubTotal}

<<invariant>>
{Sub Total = Product Order.sum(GetExtension())}

Product Order

Order
Product
Qty
Extension

FIGURE 8-20 Invariants on a Class Diagram

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 347

334488 CChhaapptteerr 88 Class and Method Design

UUsing the CRC card in Figure 8-19 and the class diagram
in Figure 8-20 as guides, add invariants for the Customer
class, the State class, the Product class, and the Product-
Order Association to their respective CRC cards and the
class diagram.

QQuueessttiioonnss

11.. How easy is it to interpret the class diagram once all
of the invariants were added?

22.. Look at the class diagram in Figure 7-15 and the
package diagram in Figure 7-22. What would they
look like if the invariants were all attached to the
diagrams? What would you recommend doing to
avoid this situation?

88--55 IInnvvaarriiaannttssYYOOUURR

TURN

OOrrddeerr ccllaassss iinnvvaarriiaannttss::

Cust ID ! Customer.GetCustID()
State Name ! Sate.GetState()
Sub Total ! ProductOrder.sum(GetExtension())
Tax ! State.GetTaxRate() * Sub Total1

FFIIGGUURREE 88--2211
Invariants in a Text File

Elements of a Contract
Contracts document the message passing that takes place between objects. Technically
speaking, a contract should be created for each message sent and received by each object,
one for each interaction. However, there would be quite a bit of duplication if this were
done. In practice, a contract is created for each method that can receive messages from
other objects (i.e., one for each visible method).

A contract should contain the information necessary for a programmer to understand
what a method is to do (i.e., they are declarative in nature). This information includes the
method name, class name, ID number, client objects, associated use cases, description,
arguments received, type of data returned, and the pre- and postconditions.34 Contracts do
not have a detailed algorithmic description of how the method is to work (i.e., they are not
procedural in nature). Detailed algorithmic descriptions typically are documented in a
method specification (as described later in this chapter). In other words, a contract is com-
posed of the information required for the developer of a client object to know what mes-
sages can be sent to the server objects and what the client can expect in return. Figure 8-22
shows a sample format for a contract.

Because each contract is associated with a specific method and a specific class, the con-
tract must document them. The ID number of the contract is used to provide a unique

34 Currently, there is no standard format for a contract. The contract in Figure 8-22 is based on material contained
in Ian Graham, Migrating to Object Technology (Reading, MA: Addison-Wesley, 1995); Craig Larman, Applying
UML and Patterns: An Introduction to Object-Oriented Analysis and Design (Englewood Cliffs, NJ: Prentice Hall,
1998); Meyer, Object-Oriented Software Construction; and R. Wirfs-Brock, B. Wilkerson, and L. Wiener, Designing
Object-Oriented Software (Englewood Cliffs, NJ: Prentice Hall, 1990).

c08ClassAndMethodDesign.qxd 12/2/11 7:19 PM Page 348

identifier for every contract. The Clients (Consumers) element of a contract is a list of
classes and methods that send a message to this specific method. This list is determined by
reviewing the sequence diagrams associated with the server class. The Associated Use Cases
element is a list of use cases in which this method is used to realize the implementation of
the use case. The use cases listed here can be found by reviewing the server class’s CRC card
and the associated sequence diagrams.

The Description of Responsibilities provides an informal description of what the
method is to perform, not how it is to do it. The arguments received are the data types of
the parameters passed to the method, and the value returned is the data type of the value
that the method returns to its clients. Together with the method name, they form the sig-
nature of the method.

The precondition and postcondition elements are where the pre- and postconditions
for the method are recorded. Recall that pre- and postconditions can be written in a nat-
ural language, a semiformal language, or a formal language. However, the more precisely
they are written, the less likely it is that the programmer will misunderstand them. As with
invariants, we recommend that you use UML’s Object Constraint Language.35

Example In this example, we return to the order example shown in Figures 8-15, 8-19,
8-20, and 8-21. In this case, we limit the discussion to the design of the addOrder method
for the Customer class. The first decision we must make is how to specify the design of the
relationship from Customer to Order. By reviewing Figures 8-15, 8-19, and 8-20, we see
that the relationships has a multiplicity of 0..* which means that an instance of customer

Constraints and Contracts 349

Method Name: Class Name:

Clients (Consumers):

ID:

Associated Use Cases:

Type of Value Returned:

Description of Responsibilities:

Arguments Received:

Pre-Conditions:

Post-Conditions:

FIGURE 8-22
Sample Contract Form

35 See Warmer and Kleppe, The Object Constraint Language: Precise Modeling with UML.

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 349

350 Chapter 8 Class and Method Design

may exist without having any orders or an instance of customer could have many orders.
As shown in Figure 8-15c, the relationship has been converted to an attribute that can con-
tain many instances of the Order class.

However, an important question that would not typically come up during analysis is
whether the order objects should be kept in sorted order or not. Another question that is
necessary to have answered for design purposes is how many orders could be expected by
a customer. The answers to these two questions will determine how we should organize the
orders from the customer object’s perspective. If the number of orders is going to be
relatively small and the orders don’t have to be kept in sorted order, then using a built-in
programming language construct such as a vector is sufficient. However, if the number of
orders is going to be large or the orders must be kept in sorted order, then some form of a
sorted data structure, such as a linked list, is necessary. For example purposes, we assume
that a customer’s orders will need to be kept in sorted order and that there will be a large
number of them. Therefore, instead of using a vector to contain the orders, we use a sorted
singly linked list.

To keep the design of the Customer class as close to the problem domain representation
as possible, the design of the Customer class is based on the Iterator pattern in Figure 8-13.
For simplicity purposes, we assume that an order is created before it is associated with the
specific customer. Otherwise, given the additional constraints of the instance of State class
and the instance of the Product Order class existing before an instance of Order can be cre-
ated would also have to be taken into consideration. This assumption allows us to ignore the
fact that an instance of State can have many orders, an instance of Order can have many
instances of Product Order associated with it, and an instance of Product can have many
instances of Product Order associated with it, which would require us to design many addi-
tional containers (vectors or other data structures).

Based on all of the above, a new class diagram fragment was created that represents a
linked list-based relationship between instances of the Customer class and instances of the
Order class (see Figure 8-23). By carefully comparing Figures 8-15 and 8-23, we see that
the Iterator pattern idea has been included between the Customer and Order classes. The
domain of the Orders relationship-based attribute of the Customer class has been
replaced with OrderList to show that the list of orders will be contained in a list data struc-
ture. Figure 8-24 portrays an object diagram based representation of how the relationship
between a customer instance and an set of order instances is stored in a sorted singly
linked list data structure. In this case, we see that a Customer object has an OrderList
object associated with it, each OrderList object could have N OrderNode objects, and each
OrderNode object will have an Order object. We see that each Order object is associated
with a single Customer object. By comparing Figures 8-15 and 8-24, we see that the inten-
tion of the multiplicity constraints of the Orders attribute of Customer, where a customer
can have many orders, and the multiplicity constraints of the Customer attribute of
Orders is being modeled correctly. Finally, notice that one of the operations contained in
the OrderList class is a private method. We will return to this specific point in the next sec-
tion that addresses method specification.

Using Figures 8-22, 8-23, and 8-24, contracts for the addOrder method of the Customer
class and the insertOrder method for the OrderList class can be specified (see Figure 8-25).
In the case of the addOrder method of the Customer class, we see that only instances of the
Order class use the method (see Clients section), that the method only implements part of
the logic that supports the addCustomerOrder use case (see Associated Use Cases section),
and that the contract includes a short description of the methods responsibilities. We also
see that the method receives a single argument of type Order and that it does not return
anything (void). Finally, we see that both a precondition and a postcondition were

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 350

-O
rd

er
 N

um
be

r[
1.

.1
] :

 u
ns

ig
ne

d
lo

ng

-D
at

e[
1.

.1
] :

 D
at

e
-S

ub
To

ta
l[0

..1
] :

 d
ou

bl
e

-T
ax

[0
..1

] :
 d

ou
bl

e
-S

hi
pp

in
g[

0.
.1

] :
 d

ou
bl

e
-T

ot
al

[0
..1

] :
 d

ou
bl

e
-C

us
to

m
er

[1
..1

] :
 C

us
to

m
er

-S

ta
te

[1
..1

] :
 S

ta
te

-P
ro

du
ct

 O
rd

er
s[

1.
.*

] :
 P

ro
du

ct
 O

rd
er

O
rd

er

-c
re

at
eO

rd
er

Li
st

()
: O

rd
er

Li
st

+a

dd
O

rd
er

(in
 a

nO
rd

er
 :

O
rd

er
) :

 v
oi

d

-C
us

t I
D

[1
..1

] :
 u

ns
ig

ne
d

lo
ng

-L

as
t N

am
e[

1.
.1

] :
 S

tri
ng

-F

irs
t N

am
e[

1.
.1

] :
 S

tri
ng

-O

rd
er

s[
1.

.1
] :

 O
rd

er
Li

st

C
us

to
m

er

+a
dv

an
ce

()
: v

oi
d

+b
eg

O
fL

is
t?

()
: b

oo
le

an

+e
nd

O
fL

is
t?

()
: b

oo
le

an

+e
m

pt
yL

is
t?

()
: b

oo
le

an

+r
es

et
Li

st
()

: v
oi

d
+g

et
C

ur
re

nt
O

rd
er

N
od

e(
) :

 O
rd

er
N

od
e

-m
id

dl
eL

is
tIn

se
rt(

in
 n

ew
O

rd
er

N
od

e
: O

rd
er

N
od

e)
 :

vo
id

+i

ns
er

tO
rd

er
(in

 a
nO

rd
er

 :
O

rd
er

) :
 v

oi
d

-F
irs

tN
od

e[
0.

.1
] :

 O
rd

er
N

od
e

-C
ur

re
nt

N
od

e[
0.

.1
] :

 O
rd

er
N

od
e

-L
as

tN
od

e[
0.

.1
] :

 O
rd

er
N

od
e

O
rd

er
Li

st

+O
rd

er
N

od
e(

in
 a

nO
rd

er
 :

O
rd

er
)

+g
et

O
rd

er
()

: O
rd

er

+g
et

N
ex

tO
rd

er
N

od
e(

) :
 O

rd
er

N
od

e
+s

et
N

ex
tO

rd
er

N
od

e(
in

 a
nO

rd
er

N
od

e
: O

rd
er

N
od

e)
 :

vo
id

-N
ex

tN
od

e[
0.

.1
] :

 O
rd

er
N

od
e

-O
rd

er
[1

..1
] :

 O
rd

er

O
rd

er
N

od
e

FI
G

U
R

E
8

-2
3

 C

la
ss

 D
ia

gr
am

 F
ra

gm
en

t o
f t

he
 C

us
to

m
er

 to
 O

rd
er

 R
el

at
io

ns
hi

p
M

od
el

ed
 a

s
a

So
rte

d
Si

ng
ly

 L
in

ke
d

Li
st

351

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 351

352 Chapter 8 Class and Method Design

specified. The precondition simply states that the new Order object cannot be included in
the current list of Orders; that is, the order cannot have previously been associated with this
customer. The postcondition, on the other hand, specifies that the new list of orders must
be equal to the old list of orders (@pre) plus the new order object (including).

The contract for the insertOrder method for the OrderList class is somewhat simpler
than the addOrder method’s contract. From a practical perspective, the insertOrder
method implements part of the addOrder method’s logic. Specifically speaking, it imple-
ments that actual insertion of the new order object into the specific data structure chosen
to manage the list of Order objects associated with the specific Customer object. Conse-
quently, because we already have specified the precondition and postcondition for the
addOrder method, we do not have to further specify the same constraints for the
insertOrder method. However, this does implicitly increase the dependence of the Cus-
tomer objects on the implementation chosen for the list of customer orders. This is a good
example of moving from the problem domain to the solution domain. While we were
focusing on the problem domain during analysis, the actual implementation of the list of
orders was never considered. However, because we now are designing the implementation
of the relationship between the Customer objects and the Order objects, we have had to
move away from the language of the end user and toward the language of the programmer.
During design, the focus moves toward optimizing the code to run faster on the computer
and not worrying about the end user’s ability to understand the inner workings of the sys-
tem; from an end user’s perspective, the system should become more of a black box with
which they interact. As we move farther into the detailed design of the implementation of
the problem domain classes, some solution domain classes, such as the approach to imple-
ment relationships, will creep into the specification of the problem domain layer. In this

OrderList OrderNode1

OrderNode2

OrderNode3

Order1

Order2

Order3

OrderNodeN OrderN

Customer

FIGURE 8-24 Object Diagram of the Customer to Order Relationship Modeled as a Sorted Singly
Linked List

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 352

Constraints and Contracts 353

Method Name: Class Name: ID:

Associated Use Cases:

Clients (consumers):

Type of Value Returned:

Description of Responsibilities:

Arguments Received:

Pre-Conditions:

Post-Conditions:

addOrder Customer 36

Order

addCustomerOrder

anOrder:Order

void

not orders.includes(anOrder)

Orders = Orders@pre.including(anOrder)

Implement the necessary behavior to add a new order to an existing customer keeping
the orders in sorted order by the order’s order number.

Method Name: Class Name: ID:

Associated Use Cases:

Type of Value Returned:

Description of Responsibilities:

Arguments Received:

Pre-Conditions:

Post-Conditions:

insertOrder OrderList 123

Customer

addCustomerOrder

anOrder:Order

void

None.

None.

Implement inserting an Order object into an OrderNode object and manage the
insertion of the OrderNode object into the current location in the sorted singly
linked list of orders.

Clients (consumers):

FIGURE 8-25
Sample Contract for the
addOrder Method of the
Customer class and the
insertOrder method of
the OrderList class

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 353

354 Chapter 8 Class and Method Design

particular example, the OrderList and OrderNode classes also could be used to implement
the relationships from State objects to Order objects, from Order Objects to Product Order
objects, and from Product objects to Product Order objects (see Figure 8-15). Given our
simple example, one can clearly see that specifying the design of the problem domain layer
could include many additional solution domain classes to be specified on the problem
domain layer.

Using the CRC card in Figure 8-19, the class diagram in
Figure 8-20, and the contract forms in Figure 8-25 as

guides, create contracts for the calculate subtotal, calculate
tax, calculate shipping, and calculate total methods.

8-6 ContractYOUR

TURN

METHOD SPECIFICATION
Once the analyst has communicated the big picture of how the system needs to be put
together, he or she needs to describe the individual classes and methods in enough detail
so that programmers can take over and begin writing code. Methods on the CRC cards,
class diagram, and contracts are described using method specifications. Method specifica-
tions are written documents that include explicit instructions on how to write the code to
implement the method. Typically, project team members write a specification for each
method and then pass them all along to programmers, who write the code during imple-
mentation of the project. Specifications need to be very clear and easy to understand, or
programmers will be slowed down trying to decipher vague or incomplete instructions.

There is no formal syntax for a method specification, so every organization uses its
own format, often using a form like the one in Figure 8-26. Typical method specification
forms contain four components that convey the information that programmers will need
for writing the appropriate code: general information, events, message passing, and algo-
rithm specification.

General Information
The top of the form in Figure 8-26 contains general information, such as the name of the
method, name of the class in which this implementation of the method will reside, ID
number, Contract ID (which identifies the contract associated with this method imple-
mentation), programmer assigned, the date due, and the target programming language.
This information is used to help manage the programming effort.

Events
The second section of the form is used to list the events that trigger the method. An event
is a thing that happens or takes place. Clicking the mouse generates a mouse event, press-
ing a key generates a keystroke event—in fact, almost everything the user does generates an
event.

In the past, programmers used procedural programming languages (e.g., COBOL, C)
that contained instructions that were implemented in a predefined order, as determined by
the computer system, and users were not allowed to deviate from the order. Many

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 354

programs today are event driven (e.g., programs written in languages such as Visual Basic,
Objective C, C!!, or Java), and event-driven programs include methods that are executed
in response to an event initiated by the user, system, or another method. After initializa-
tion, the system waits for an event to occur. When it does, a method is fired that carries out
the appropriate task, and then the system waits once again.

Method Name:

Contract ID:

Class Name:

! Visual Basic ! Smalltalk ! C++ ! Java

ID:

Programmer: Date Due:

Programming Language:

Triggers/Events:

Algorithm Specification:

Misc. Notes:

Data Type: Notes:
Arguments Received:

Data Type: Notes:
Arguments Returned:

ClassName.MethodName: Data Type: Notes:
Messages Sent & Arguments Passed:

FIGURE 8-26
Method Specification
Form

Method Specification 355

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 355

356 Chapter 8 Class and Method Design

We have found that many programmers still use method specifications when pro-
gramming in event-driven languages, and they include the event section on the form to
capture when the method will be invoked. Other programmers have switched to other
design tools that capture event-driven programming instructions, such as the behavioral
state machine described in Chapter 6.

Message Passing
The next sections of the method specification describe the message passing to and from the
method, which are identified on the sequence and collaboration diagrams. Programmers
need to understand what arguments are being passed into, passed from, and returned by
the method because the arguments ultimately translate into attributes and data structures
within the actual method.

Algorithm Specifications
Algorithm specifications can be written in Structured English or some type of formal lan-
guage.36 Structured English is simply a formal way of writing instructions that describe the
steps of a process. Because it is the first step toward the implementation of the method, it
looks much like a simple programming language. Structured English uses short sentences
that clearly describe exactly what work is performed on what data. There are many versions
of Structured English because there are no formal standards; each organization has its own
type of Structured English. Figure 8-27 shows some examples of commonly used Struc-
tured English statements.

36 For our purposes, Structured English will suffice. However, there has been some work with the Catalysis,
Fusion, and Syntropy methodologies to include formal languages, such as VDM and Z, into specifying object-
oriented systems.

Profits = Revenues – Expenses
Action Statement Generate Inventory-Report

IF Customer Not in the Customer Object Store
THEN Add Customer record to Customer Object Store

If Statement ELSE Add Current-Sale to Customer’s Total-Sales
Update Customer record in Customer Object Store

FOR all Customers in Customer Object Store DO
For Statement Generate a new line in the Customer-Report

Add Customer’s Total-Sales to Report-Total

CASE
IF Income < 10,000: Marginal-tax-rate = 10 percent
IF Income < 20,000: Marginal-tax-rate = 20 percent

Case Statement IF Income < 30,000: Marginal-tax-rate = 31 percent
IF Income < 40,000: Marginal-tax-rate = 35 percent
ELSE Marginal-Tax-Rate = 38 percent

ENDCASE

Common Statements Example

FIGURE 8-27
Structured English

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 356

Method Specification 357

Action statements are simple statements that perform some action. An If statement
controls actions that are performed under different conditions, and a For statement (or
a While statement) performs some actions until some condition is reached. A Case state-
ment is an advanced form of an If statement that has several mutually exclusive
branches.

If the algorithm of a method is complex, a tool that can be useful for algorithm spec-
ification is UML’s activity diagram (see Figure 8-28 and Chapter 4). Recall that activity
diagrams can be used to specify any type of process. Obviously, an algorithm specification
represents a process. However, owing to the nature of object orientation, processes tend to
be highly distributed over many little methods over many objects. Needing to use an
activity diagram to specify the algorithm of a method can, in fact, hint at a problem in the
design. For example, the method should be further decomposed or there could be missing
classes.

The last section of the method specification provides space for other information
that needs to be communicated to the programmer, such as calculations, special busi-
ness rules, calls to subroutines or libraries, and other relevant issues. This also can
point out changes or improvements that will be made to any of the other design doc-
umentation based on problems that the analyst detected during the specification
process.37

Example
This example continues the addition of a new order for a customer described in the
previous section (see Figure 8-29). Even though in most cases, because there are
libraries of data structure classes available that you could simply reuse and therefore
would not need to specify the algorithm to insert into a sorted singly linked list, we use it
as an example of how method specification can be accomplished. The general informa-
tion section of the specification documents the method’s name, its class, its unique ID
number, the ID number of its associated contract, the programmer assigned, the date
that its implementation is due, and the programming language to be used. Second,
the trigger/event that caused this method to be executed is identified. Third, the data
type of the argument passed to this method is documented (Order). Fourth, owing to the
overall complexity of inserting a new node into the list, we have factored out one spe-
cific aspect of the algorithm into a separate private method (middleListInsert()) and we
have specified that this method will be sending messages to instances of the OrderNode
class and the Order class. Fifth, we specify the type of return value that insertOrder will
produce. In this case, the insertOrder method will not return anything (void). Finally, we
specify the actual algorithm. In this example, for the sake of completeness, we provide both
a Structured English–based (see Figure 8-30) and an activity diagram–based algorithm
specification (see Figure 8-31). Previously, we stated that we had factored out the logic of
inserting into the middle of the list into a separate private method: middleListInsert().
Figure 8-32 shows the logic of this method. Imagine collapsing this logic back into the logic
of the insertOrder method, i.e., replace the middleListInsert(newOrderNode) activity in
Figure 8-31 with the contents of Figure 8-32. Obviously, the insertOrder method would
be more complex.

37 Remember that the development process is very incremental and iterative. Therefore, changes could be cas-
caded back to any point in the development process (e.g., to use-case descriptions, use-case diagrams, CRC cards,
class diagrams, object diagrams, sequence diagrams, communication diagrams, behavioral state machines, and
package diagrams).

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 357

Activity

Action

A decision node:

! Is used to represent a test condition to ensure that the control flow or object flow
 only goes down one path.

! Is labeled with the decision criteria to continue down the specific path.

An object flow:

! Shows the flow of an object from one activity (or action) to another activity
 (or action).

A control flow:

! Shows the sequence of execution.

A final-activity node:

! Is used to stop all control flows and object flows in an activity (or action).

A merge node:

! Is used to bring back together different decision paths that were created using a
 decision node.

An initial node:

! Portrays the beginning of a set of actions or activities.

A final-flow node:

! Is used to stop a specific control flow or object flow.

Class Name

[Decision
Criteria]

[Decision
Criteria]

An action:
! Is a simple, non-decomposable piece of behavior.
! Is labeled by its name.

An activity:
! Is used to represent a set of actions.
! Is labeled by its name.

An object node:
! Is used to represent an object that is connected to a set of object flows.
! Is labeled by its class name.

A Swimlane:
 Is used break up an activity diagram into rows and columns to assign the
 individual activities (or actions) to the individuals or objects that are responsible
 for executing the activity (or action).
 Is labeled with the name of the individual or object responsible.

A Fork node:
 Is used to split behavior into a set of parallel or concurrent flows of activities
 (or actions).

A Join node:
 Is used to bring back together a set of parallel or concurrent flows of activities
 (or actions).

Swimlane

FFIIGGUURREE 88--2288 Syntax for an Activity Diagram (Figure 4-6)

335588

c08ClassAndMethodDesign.qxd 11/29/11 9:09 AM Page 358

Method Specification 335599

Create new OrderNode with the new Order
IF emplyList?()

FirstNode ! LastNode ! CurrentNode ! newOrderNode
ELSE IF newOrderNode.getOrder().getOrderNumber() " FirstNode.getOrder().getOrderNumber()

newOrderNode.setNextNode(FirstNode)
FirstNode ! newOrderNode

ELSE IF newOrderNode.getOrder().getOrderNumber() # LastNode.getOrder().getOrderNumber()
LastNode.setNextNode(newOrderNode)
LastNode ! newOrderNode

ELSE
middleListInsert(newOrderNode)

FFIIGGUURREE 88--3300
Structured English-based
Algorithm Specification
for the insertOrder
Method

Method Name:

Contract ID:

Class Name:

! Visual Basic ! Smalltalk ! C++ ! Java

ID:

Programmer: Date Due:

Programming Language:

Triggers/Events:

Algorithm Specification:

Misc. Notes:

Data Type: Notes:
Arguments Received:

Data Type: Notes:
Arguments Returned:

ClassName.MethodName: Data Type: Notes:
Messages Sent & Arguments Passed:

insertOrder

Order

void

None.

OrderNode.new() Order

OrderNode.getOrder()

Order.getOrderNumber()

OrderNode.setNextNode() OrderNode

OrderNodeself.middleListInsert()

See Figures 8-30 and 8-31.

The new customer’s new order.

Customer places an order

123 J. Doe 1/1/12

OrderList 100

FFIIGGUURREE 88--2299 Method Specification for the insertOrder method

c08ClassAndMethodDesign.qxd 12/2/11 7:20 PM Page 359

C
re

at
e

ne
w

 O
rd

er
N

od
e

[e
m

pt
yL

is
t?

()]

Fi
rs

tN
od

e
=

La
st

N
od

e
=

C
ur

re
nt

N
od

e
=

ne
w

O
rd

er
N

od
e

[n
ew

O
rd

er
N

od
e.

ge
tO

rd
er

().
ge

tO
rd

er
N

um
be

r()

<
Fi

rs
tN

od
e.

ge
tO

rd
er

().
ge

tO
rd

er
N

um
be

r()
]

[n
ew

O
rd

er
N

od
e.

ge
tO

rd
er

().
ge

tO
rd

er
N

um
be

r()

>
La

st
N

od
e.

ge
tO

rd
er

().
ge

tO
rd

er
N

um
be

r()
]

ne
w

O
rd

er
N

od
e.

se
tN

ex
tN

od
e(

Fi
rs

tN
od

e)

Fi
rs

tN
od

e
=

ne
w

O
rd

er
N

od
e

La
st

N
od

e
=

ne
w

O
rd

er
N

od
e

m
id

dl
eL

is
tI

ns
er

t(
ne

w
O

rd
er

N
od

e)
La

st
N

od
e.

se
tN

ex
tN

od
e(

ne
w

O
rd

er
N

od
e)

FI
G

U
R

E
8

-3
1

 A

ct
iv

ity
 D

ia
gr

am
-b

as
ed

 A
lg

or
ith

m
 S

pe
ci

fic
at

io
n

fo
r

th
e

in
se

rtO
rd

er
 M

et
ho

d

360

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 360

Applying the Concepts at CD Selections 361

[CurrentNode = NULL]

[CurrentNode.getNextNode().getOrder().getOrderNumber()
>newOrderNode.getOrder().getOrderNumber()]

[CurrentNode != NULL]

newOrderNode.setNextNode(CurrentNode.getNextNode())

CurrentNode.setNextNode(newOrderNode)

CurrentNode = NULL

advance()

resetList()

Using the CRC card in Figure 8-19, the class diagram in
Figure 8-20, and the contracts created in Your Turn 8-6 as
guides, create method specifications for the calculate

subtotal, calculate tax, calculate shipping, and calculate
total methods.

8-7 Method SpecificationYOUR

TURN

FIGURE 8-32 Activity Diagram–based Algorithm Specification for the middleListInsert Method

APPLYING THE CONCEPTS AT CD SELECTIONS
Up until now, Alec, Margaret, and the development team members have been focusing
on being sure that they captured the underlying behavior and structure of the evolving
system. During this installment, Alec instructs the team members to make sure that the

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 361

336622 CChhaapptteerr 88 Class and Method Design

connascence is minimized at all levels of the design, to identify any opportunities
for reuse, to consider restructuring and optimizing the evolving specification. Fur-
thermore, he instructed them to identify any and all constraints that need to be
modeled. He also suggested that they define the invariants in a separate text file and
to define the preconditions and postconditions for all public methods using con-
tracts. Finally, he instructed the team to specify every method using the method
specification form.

SUMMARY
Review of the Basic Characteristics of Object-Oriented Systems
A class is a template on which objects can be instantiated. An object is a person, place, or
thing about which we want to capture information. Each object has attributes and
methods. The methods are executed by objects sending messages that trigger them.
Encapsulation and information hiding allows an object to conceal its inner processes and
data from the other objects. Polymorphism and dynamic binding allow a message to be
interpreted differently by different kinds of objects. However, if polymorphism is not
used in a semantically consistent manner, it can make an object design incomprehensi-
ble. Classes can be arranged in a hierarchical fashion in which subclasses inherit attrib-
utes and methods from superclasses to reduce the redundancy in development. However,
through redefinition capabilities or multiple inheritance, inheritance conflicts can be
introduced into the design.

Design Criteria
Coupling, cohesion, and connascence have been put forth as a set of criteria by which a
design of an object-oriented system can be evaluated. Two types of coupling, interaction and
inheritance, and three types of cohesion, method, class, and generalization/specialization,
were described. Interaction coupling deals with the communication that takes place among
the objects, and inheritance coupling deals with the innate dependencies in the use of
inheritance in object-oriented systems. Method cohesion addresses how single-minded a
method is. The fewer things a method does, the more cohesive it is. Class cohesion does the
same for classes. A class should be a representation of one and only one thing.
Generalization/specialization cohesion deals with the quality of an inheritance hierarchy.
Good inheritance hierarchies support only generalization and specialization (a-kind-of)
semantics. Connascence generalizes coupling and cohesion and then combines them with
the different levels of encapsulation. The general rule is to maximize the cohesion (con-
nascence) within an encapsulation boundary and minimize the coupling (connascence)
between the encapsulation boundaries.

Object Design Activities
There are five basic object design activities. First, additional specification is possible by
carefully reviewing the models, deciding on the proper visibility of the attributes and
methods, setting the signature for each method, and identifying any constraints associ-
ated with the classes or the classes’ methods. Second, look for opportunities for reuse by
reviewing the model and looking at possible patterns, class libraries, frameworks, and
components that could be used to enhance the system. Third, restructure the model
through the use of factoring and normalization. Be sure to take the programming

c08ClassAndMethodDesign.qxd 11/28/11 10:32 AM Page 362

KKEEYY TTEERRMMSS

language into consideration. It may be necessary to map the current design into the
restricted capabilities of the language (e.g., the language supports only single inheri-
tance). Also, be certain that the inheritance in your model supports only generalization/
specialization (a-kind-of) semantics. Fourth, optimize the design. However, be careful
in the process of optimizing the design. Optimizations typically decrease the under-
standability of the model. Fifth, map the problem domain classes to an implementation
language.

Constraints and Contracts
Three types of constraints are associated with object-oriented design: invariants, precondi-
tions, and postconditions. Invariants capture constraints that must always be true for all
instances of a class (e.g., domains and values of attributes or multiplicity of relationships).
Typically, invariants are attached to class diagrams and CRC cards. However, for clarity
purposes, we suggest placing them on the CRC cards and/or in a separate text file.

Contracts formalize the interaction between objects (i.e., the message passing).
Thus they include the pre- and postconditions that must be enforced for a method to
execute properly. Contracts provide an approach to modeling the rights and obligations
when client and server objects interact. From a practical perspective, all interactions
that can take place between all possible client and server objects are not modeled on
separate contracts. Instead, a single contract is drawn up for using each visible method
of a server object.

Method Specification
A method specification is a written document that provides clear and explicit instructions
on how a method is to behave. Without clear and unambiguous method specifications,
critical design decisions have to be made by programmers instead of by designers. Even
though there is no standard format for a method specification, typically four types of infor-
mation are captured. First, there is general information such as the name of the method,
name of the class, contract ID, programmer assigned, the date due, and the target pro-
gramming language. Second, owing to the rise in popularity of GUI-based and event-dri-
ven systems, events also are captured. Third, the information that deals with the signature
of the method, data received, data passed on to other methods, and data returned by the
method is recorded. Finally, an unambiguous specification of the algorithm is given. The
algorithm typically is modeled using Structured English, an activity diagram, or a formal
language.

Key Terms 336633

Active value, 339
Activity diagram, 357
API (application program

interface), 336
Attribute. 320
Behavior, 320
Class, 320
Class cohesion, 329

Class library, 333
Client, 343
Cohesion, 328
Component, 336
Connascence, 330
Constraint, 363
Consumer, 343
Contract, 332

Coupling, 325
Derived attribute, 339
Design pattern, 333
Dynamic binding, 320
Encapsulation, 320
Event, 354
Event driven, 355
Exceptions, 332

c08ClassAndMethodDesign.qxd 11/28/11 10:33 AM Page 363

364 Chapter 8 Class and Method Design

Factoring, 336
Fan-out, 339
Framework, 333
Generalization/specialization

cohesion, 330
Heteronyms, 323
Homographs, 323
Homonyms. 323
Ideal class cohesion, 329
Information hiding, 320
Inheritance, 321
Inheritance conflict, 322
Inheritance coupling, 322
Instance, 320

Interaction coupling, 325
Invariant, 345
Law of Demeter, 325
Message, 320
Method, 320
Method cohesion, 328
Method specification, 354
Multiple inheritance, 323
Normalization, 337
Object, 320
Object-based language, 342
Object constraint language (OCL), 344
Operations, 320
Patterns, 333

Polymorphism, 320
Postcondition, 345
Precondition, 345
Redefinition, 322
Server, 343
Signature, 332
Single inheritance, 322
State, 320
Structured English, 344
Supplier, 343
Synonyms, 323
Trigger, 339
Visibility, 320

QUESTIONS

1. What are the basic characteristics of object-oriented
systems?

2. What is dynamic binding?
3. Define polymorphism. Give one example of a good

use of polymorphism and one example of a bad use of
polymorphism.

4. What is an inheritance conflict? How does an inheri-
tance conflict affect the design?

5. Why is cancellation of methods a bad thing?
6. Give the guidelines to avoid problems with inheritance

conflicts.
7. How important is it to know which object-oriented

programming language is going to be used to imple-
ment the system?

8. What additional types of inheritance conflicts are
there when using multiple inheritance?

9. What is the law of Demeter?
10. What are the six types of interaction coupling? Give

one example of good interaction coupling and one
example of bad interaction coupling.

11. What are the seven types of method cohesion? Give
one example of good method cohesion and one
example of bad method cohesion.

12. What are the four types of class cohesion? Give one
example of each type.

13. What are the five types of connascence described in
your text? Give one example of each type.

14. When designing a specific class, what types of addi-
tional specification for a class could be necessary?

15. What are exceptions?
16. What are constraints? What are the three different

types of constraints?

17. What are patterns, frameworks, class libraries, and
components? How are they used to enhance the
evolving design of the system?

18. How are factoring and normalization used in design-
ing an object system?

19. What are the different ways to optimize an object
system?

20. What is the typical downside of system optimization?
21. What is the purpose of a contract? How are contracts

used?
22. What is the Object Constraint Language? What is its

purpose?
23. What is the Structured English? What is its purpose?
24. What is an invariant? How are invariants modeled in a

design of a class? Give an example of an invariant for
a hourly employee class using the Object Constraint
Language.

25. Create a contract for a compute pay method associ-
ated with an hourly employee class. Specify the pre-
conditions and postconditions using the Object
Constraint Language.

26. How do you specify a method’s algorithm? Give an
example of an algorithm specification for a compute
pay method associated with an hourly employee class
using Structured English.

27. How do you specify a method’s algorithm? Give an
example of an algorithm specification for a compute
pay method associated with an hourly employee class
using an activity diagram.

28. How are methods specified? Give an example of a
method specification for a compute pay method asso-
ciated with an hourly employee class.

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 364

Exercise 365

A. For the A Real Estate Inc. problem in Chapters 4 (exer-
cises I, J, and K), 5 (exercises P and Q), 6 (exercise D),
and 7 (exercise A):

1. Choose one of the classes and create a set of invari-
ants for attributes and relationships and add them
to the CRC card for the class.

2. Choose one of the methods in the class that you
chose and create a contract and a method specifica-
tion for it. Use OCL to specify any pre- or postcondi-
tion and use both Structured English and an activity
diagram to specify the algorithm.

B. For the A Video Store problem in Chapters 4 (exercises
L, M, N K), 5 (exercises R and S), 6 (exercise E), and 7
(exercise B):

1. Choose one of the classes and create a set of invari-
ants for attributes and relationships and add them
to the CRC card for the class.

2. Choose one of the methods in the class that you
chose and create a contract and a method specifi-
cation for it. Use OCL to specify any pre- or post-
condition and use both Structured English and an
activity diagram to specify the algorithm.

C. For the gym membership problem in Chapters 4
(exercises O, P, and Q), 5 (exercises T and U), 6
(exercise F), and 7 (exercise C):

1. Choose one of the classes and create a set of invari-
ants for attributes and relationships and add them
to the CRC card for the class.

2. Choose one of the methods in the class that you
chose and create a contract and a method speci-
fication for it. Use OCL to specify any pre- or
postcondition and use both Structured English
and an activity diagram to specify the algorithm.

D. For the Picnics R Us problem in Chapters 4 (exercises
R, S, and T), 5 (exercises V and W), 6 (exercise G), and
7 (exercise D):

1. Choose one of the classes and create a set of invari-
ants for attributes and relationships and add them
to the CRC card for the class.

2. Choose one of the methods in the class that you
chose and create a contract and a method specifica-
tion for it. Use OCL to specify any pre- or postcon-
dition and use both Structured English and an
activity diagram to specify the algorithm.

E. For the Of-the-Month-Club problem in Chapters 4
(exercises U, V, and W), 5 (exercises X and Y), 6
(exercise H), and 7 (exercise E):

1. Choose one of the classes and create a set of invari-
ants for attributes and relationships and add them
to the CRC card for the class.

2. Choose one of the methods in the class that you
chose and create a contract and a method specifica-
tion for it. Use OCL to specify any pre- or postcon-
dition and use both Structured English and an
activity diagram to specify the algorithm.

F. Describe the difference in meaning between the fol-
lowing two class diagrams. Which is a better model?
Why?

G. From a cohesion, coupling, and connascence perspec-
tive, is the following class diagram a good model? Why
or why not?

H. From a cohesion, coupling, and connascence perspec-
tive, are the following class diagrams good models?
Why or why not?

I. Create a set of inheritance conflicts for the two inher-
itance structures in the class diagrams of exercise H.

Car

Car-Person

Person Robot

Robot-Employee

Employee

Customer

Credit Customer Cash Customer Check Customer

Person

Name-Address

Employee

PersonPerson

Employee

Name-Address

1..10..*

EXERCISE

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 365

366 Chapter 8 Class and Method Design

1. Your boss has been in the software development field
for thirty years. He has always prided himself on his
ability to adapt his skills from one approach to devel-
oping software to the next approach. For example, he
had no problem learning structured analysis and
design in the early 1980s and information engineering
in the early 1990s. He even understands the advantage
of rapid application development. But the other day,
when you and he were talking about the advantages
of object-oriented approaches, he became totally
confused. He thought that characteristics such as
polymorphism and inheritance were an advantage for
object-oriented systems. However, when you explained
the problems with inheritance conflicts, redefinition
capabilities, and the need for semantic consistency
across different implementations of methods, he was
ready to simply give up. To make matters worse, you
then went on to explain the importance of contracts
in controlling the development of the system. At this
point in the conservation, he basically threw in the
towel. As he walked off, you heard him say something
like “I guess it’s true, it’s too hard to teach an old dog
new tricks.”

Being a loyal employee and friend, you decided to
write a short tutorial to give your boss on object-
oriented systems development. As a first step, create a
detailed outline for the tutorial. As a subtle example,
use good design criteria, such as coupling and cohe-
sion, in the design of your tutorial outline.

2. You have been working with the professional and scien-
tific management (PSSM) problem for quite a while.
You should go back and refresh your memory about the
problem before attempting to solve this situation. Refer
back to your solutions to Minicase 3 in Chapter 7.
a. For each class in the structural model, using OCL,

create a set of invariants for attributes and relation-
ships and add them to the CRC cards for the classes.

b. Choose one of the classes in the structural model.
Create a contract for each method in that class. Be
sure to use OCL to specify the preconditions and
the postconditions. Be as complete as possible.

c. Create a method specification for each method in
the class you chose for question b. Use both Struc-
tured English and activity diagrams for the algo-
rithm specification.

3. You have been working with the Holiday Travel Vehi-
cle problem for quite a while. You should go back and
refresh your memory about the problem before

attempting to solve this situation. Refer back to your
solutions Minicase 4 in Chapter 7.

In the new system for Holiday Travel Vehicles, the
system users follow a two-stage process to record com-
plete information on all of the vehicles sold. When an
RV or trailer first arrives at the company from the
manufacturer, a clerk from the inventory department
creates a new vehicle record for it in the computer sys-
tem. The data entered at this time include basic
descriptive information on the vehicle such as manu-
facturer, name, model, year, base cost, and freight
charges. When the vehicle is sold, the new vehicle
record is updated to reflect the final sales terms and
the dealer-installed options added to the vehicle. This
information is entered into the system at the time of
sale when the salesperson completes the sales invoice.

When it is time for the clerk to finalize the new vehi-
cle record, the clerk selects a menu option from the
system, which is called Finalize New Vehicle Record.
The tasks involved in this process are described below.

When the user selects Finalize New Vehicle Record
from the system menu, the user is immediately
prompted for the serial number of the new vehicle.
This serial number is used to retrieve the new vehicle
record for the vehicle from system storage. If a record
cannot be found, the serial number is probably
invalid. The vehicle serial number is then used to
retrieve the option records that describe the dealer-
installed options that were added to the vehicle at the
customer’s request. There may be zero or more
options. The cost of the option specified on the option
record(s) is totaled. Then, the dealer cost is calculated
using the vehicle’s base cost, freight charge, and total
option cost. The completed new vehicle record is
passed back to the calling module.
a. Update the structural model (CRC cards and class

diagram) with this additional information.
b. For each class in the structural model, using OCL,

create a set of invariants for attributes and relation-
ships and add them to the CRC cards for the classes.

c. Choose one of the classes in the structural model.
Create a contract for each method in that class. Be
sure to use OCL to specify the preconditions and
the postconditions. Be as complete as possible.

d. Create a method specification for each method in
the class you chose for question b. Use both Struc-
tured English and activity diagrams for the algo-
rithm specification.

MINICASES

c08ClassAndMethodDesign.qxd 11/8/11 9:07 AM Page 366

336677

A project team designs the data management layer of a system using a four-step process:
selecting the format of the storage, mapping the problem domain classes to the selected for-
mat, optimizing the storage to perform efficiently, and then designing the necessary data
access and manipulation classes. This chapter describes the different ways objects can be
stored and several important characteristics that should be considered when choosing among
object persistence formats. It describes a problem domain class to object persistence format
mapping process for the most important object persistence formats. Because the most pop-
ular storage format today is the relational database, the chapter focuses on the optimization
of relational databases from both storage and access perspectives. We describe the effect that
nonfunctional requirements have on the data-management layer. Last, the chapter describes
how to design data access and manipulation classes.

OOBBJJEECCTTIIVVEESS

! Become familiar with several object persistence formats
! Be able to map problem domain objects to different object persistence formats
! Be able to apply the steps of normalization to a relational database
! Be able to optimize a relational database for object storage and access
! Become familiar with indexes for relational databases
! Be able to estimate the size of a relational database
! Understand the affect of nonfunctional requirements on the data management layer
! Be able to design the data access and manipulation classes

CCHHAAPPTTEERR OOUUTTLLIINNEE

CC HH AA PP TT EE RR 99

DATA MANAGEMENT LAYER DESIGN

Introduction
Object Persistence Formats

Sequential and Random Access Files
Relational Databases
Object-Relational Databases
Object-Oriented Databases
NoSQL Data Stores
Selecting an Object Persistence Format

Mapping Problem Domain Objects
to Object persistence Formats

Mapping Problem Domain Objects
to an OODBMS Format

Mapping Problem Domain Objects
to an ORDBMS Format

Mapping Problem Domain Objects
to a RDBMS Format

Optimizing RDBMS-Based
Object Storage

Optimizing Storage Efficiency
Optimizing Data Access Speed
Estimating Data Storage Size

Designing Data Access and
Manipulation Classes

Nonfunctional Requirements and
Data Management Layer Design

Applying the Concepts at CD
Selections

Summary

c09DataManagementLayerDesign.qxd 11/8/11 3:20 PM Page 367

336688 CChhaapptteerr 99 Data Management Layer Design

INTRODUCTION
As explained in Chapter 7, the work done by any application can be divided into a set of
layers. This chapter focuses on the data management layer, which includes both data access
and manipulation logic, along with the actual design of the storage. The data storage com-
ponent of the data management layer manages how data are stored and handled by the
programs that run the system. This chapter describes how a project team designs the stor-
age for objects (object persistence) using a four-step approach: selecting the format of the
storage, mapping the problem domain objects to the object persistence format, optimizing
the object persistence format, and designing the data access and manipulation classes nec-
essary to handle the communication between the system and the database.

Applications are of little use without the data that they support. How useful is a mul-
timedia application that can’t support images or sound? Why would someone log into a
system to find information if it took him or her less time to locate the information manu-
ally? Design includes four steps to object persistence design that decrease the chances of
ending up with inefficient systems, long system response times, and users who cannot get
to the information that they need in the way that they need it—all of which can affect the
success of the project.

The first part of this chapter describes a variety of storage formats and explains how
to select the appropriate one for your application. From a practical perspective, there are
five basic types of formats that can be used to store objects for application systems: files
(sequential and random), object-oriented databases, object-relational databases, relational
databases, or NoSQL datastores.1 Each type has certain characteristics that make it more
appropriate for some types of systems over others.

Once the object persistence format is selected to support the system, the problem
domain objects need to drive the design of the actual object storage. Then the object stor-
age needs to be designed to optimize its processing efficiency, which is the focus of the next
part of the chapter. One of the leading complaints by end users is that the final system is
too slow, so to avoid such complaints project team members must allow time during design
to carefully make sure that the file or database performs as fast as possible. At the same
time, the team must keep hardware costs down by minimizing the storage space that the
application will require. The goals of maximizing access to the objects and minimizing the
amount of space taken to store objects can conflict, and designing object persistence effi-
ciency usually requires trade-offs.

Finally, it is necessary to design a set of data access and manipulation classes to ensure
the independence of the problem domain classes from the storage format. The data access
and manipulation classes handle all communication with the database. In this manner, the
problem domain is decoupled from the object storage, allowing the object storage to be
changed without affecting the problem domain classes.

OBJECT PERSISTENCE FORMATS
There are five main types of object persistence formats: files (sequential and random access),
object-oriented databases, object-relational databases, relational databases, and NoSQL data-
stores. Files are electronic lists of data that have been optimized to perform a particular
transaction. For example, Figure 9-1 shows a customer order file with information about

1 There are other types of files, such as relative, indexed sequential, and multi-indexed sequential, and databases,
such as hierarchical, network, and multidimensional. However, these formats typically are not used for object
persistence.

c09DataManagementLayerDesign.qxd 11/29/11 9:24 AM Page 368

Object Persistence Formats 336699

234 11/23/00 2242 DeBerry Ann $ 90.00 $5.85 $ 95.85 Y MC
235 11/23/00 9500 Chin April $ 12.00 $0.60 $ 12.60 Y VISA
236 11/23/00 1556 Fracken Chris $ 50.00 $2.50 $ 52.50 N VISA
237 11/23/00 2242 DeBerry Ann $ 75.00 $4.88 $ 79.88 Y AMEX
238 11/23/00 2242 DeBerry Ann $ 60.00 $3.90 $ 63.90 Y MC
239 11/23/00 1035 Black John $ 90.00 $4.50 $ 94.50 Y AMEX
240 11/23/00 9501 Kaplan Bruce $ 50.00 $2.50 $ 52.50 N VISA
241 11/23/00 1123 Williams Mary $120.00 $9.60 $129.60 N MC
242 11/24/00 9500 Chin April $ 60.00 $3.00 $ 63.00 Y VISA
243 11/24/00 4254 Bailey Ryan $ 90.00 $4.50 $ 94.50 Y VISA
244 11/24/00 9500 Chin April $ 24.00 $1.20 $ 25.20 Y VISA
245 11/24/00 2242 DeBerry Ann $ 12.00 $0.78 $ 12.78 Y AMEX
246 11/24/00 4254 Bailey Ryan $ 20.00 $1.00 $ 21.00 Y MC
247 11/24/00 2241 Jones Chris $ 50.00 $2.50 $ 52.50 N VISA
248 11/24/00 4254 Bailey Ryan $ 12.00 $0.60 $ 12.60 Y AMEX
249 11/24/00 5927 Lee Diane $ 50.00 $2.50 $ 52.50 N AMEX
250 11/24/00 2242 DeBerry Ann $ 12.00 $0.78 $ 12.78 Y MC
251 11/24/00 9500 Chin April $ 15.00 $0.75 $ 15.75 Y MC
252 11/24/00 2242 DeBerry Ann $132.00 $8.58 $140.58 Y MC
253 11/24/00 2242 DeBerry Ann $ 72.00 $4.68 $ 76.68 Y AMEX

OOrrddeerr CCuusstt LLaasstt FFiirrsstt PPrriioorr PPaayymmeenntt
NNuummbbeerr DDaattee IIDD NNaammee NNaammee AAmmoouunntt TTaaxx TToottaall CCuussttoommeerr TTyyppee

FFIIGGUURREE 99--11 Customer Order File

customers’ orders, in the form in which it is used, so that the information can be accessed
and processed quickly by the system.

A database is a collection of groupings of information, each of which is related to each
other in some way (e.g., through common fields). Logical groupings of information could
include such categories as customer data, information about an order, product informa-
tion, and so on. A database management system (DBMS) is software that creates and manip-
ulates these databases (see Figure 9-2 for a relational database example). Such end user
DBMSs as Microsoft Access support small-scale databases that are used to enhance per-
sonal productivity, whereas enterprise DBMSs, such as DB2, Versant, and Oracle, can man-
age huge volumes of data and support applications that run an entire company. An
end-user DBMS is significantly less expensive and easier for novice users to use than its
enterprise counterpart, but it does not have the features or capabilities that are necessary
to support mission-critical or large-scale systems.

In the next sections we describe sequential and random-access files, relational data-
bases, object-relational databases, and object-oriented databases that can be used to handle
a system’s object persistence requirements. We also describe a new exciting technology that
shows much promise for object persistence: NoSQL datastores. Finally, we describe a set of
characteristics on which the different formats can be compared.

Sequential and Random Access Files
From a practical perspective, most object-oriented programming languages support
sequential and random access files as part of the language.2 In this section, we describe

2 For example, see the FileInputStream, FileOutputStream, and RandomAccessFile classes in the java.io package.

c09DataManagementLayerDesign.qxd 11/8/11 3:20 PM Page 369

 C
us

t
La

st

Fi
rs

t
Pr

io
r

ID

N

am
e

N
am

e
C

us
to

m
er

 2
24

2
D

eB
er

ry

A
nn

Y

 9
50

0
C

hi
n

A
pr

il
Y

 1
55

6
Fr

ac
ke

n
C

hr
is

N

 1
03

5
Bl

ac
k

Jo
hn

Y

 9
50

1
Ka

pl
an

Br

uc
e

N
 1

12
3

W
ill

ia
m

s
M

ar
y

N
 4

25
4

Ba
ile

y
Ry

an

Y
 2

24
1

Jo
ne

s
C

hr
is

N

 5
92

7
Le

e
D

ia
ne

N

C
us

to
m

er

 Pa
ym

en
t

Pa
ym

en
t

Ty

pe

D
es

c

M

C

M
as

te
rc

ar
d

V

IS
A

V

is
a

 A
M

EX

A
m

er
ic

an
 E

xp
re

ss

Pa
ym

en
t T

yp
e

 O
rd

er

C
us

t

Pa
ym

en
t

 N
um

be
r

D
at

e
ID

A

m
ou

nt

Ta
x

To
ta

l
Ty

pe

23

4
11

/2
3/

00

22
42

$

90
.0

0
$5

.8
5

$
95

.8
5

M
C

23

5
11

/2
3/

00

95
00

$

12
.0

0
$0

.6
0

$
12

.6
0

V
IS

A

23
6

11
/2

3/
00

15

56

$
50

.0
0

$2
.5

0
$

52
.5

0
V

IS
A

23

7
11

/2
3/

00

22
42

$

75
.0

0
$4

.8
8

$
79

.8
8

A
M

EX

23
8

11
/2

3/
00

22

42

$
60

.0
0

$3
.9

0
$

63
.9

0
M

C

23
9

11
/2

3/
00

10

35

$
90

.0
0

$4
.5

0
$

94
.5

0
A

M
EX

24

0
11

/2
3/

00

95
01

$

50
.0

0
$2

.5
0

$
52

.5
0

V
IS

A

24
1

11
/2

3/
00

11

23

$ 1
20

.0
0

$9
.6

0
$ 1

29
.6

0
M

C

24
2

11
/2

4/
00

95

00

$
60

.0
0

$3
.0

0
$

63
.0

0
V

IS
A

24

3
11

/2
4/

00

42
54

$

90
.0

0
$4

.5
0

$
94

.5
0

V
IS

A

24
4

11
/2

4/
00

95

00

$
24

.0
0

$1
.2

0
$

25
.2

0
V

IS
A

24

5
11

/2
4/

00

22
42

$

12
.0

0
$0

.7
8

$
12

.7
8

A
M

EX

24
6

11
/2

4/
00

42

54

$
20

.0
0

$1
.0

0
$

21
.0

0
M

C

24
7

11
/2

4/
00

22

41

$
50

.0
0

$2
.5

0
$

52
.5

0
V

IS
A

24

8
11

/2
4/

00

42
54

$

12
.0

0
$0

.6
0

$
12

.6
0

A
M

EX

24
9

11
/2

4/
00

59

27

$
50

.0
0

$2
.5

0
$

52
.5

0
A

M
EX

25

0
11

/2
4/

00

22
42

$

12
.0

0
$0

.7
8

$
12

.7
8

M
C

25

1
11

/2
4/

00

95
00

$

15
.0

0
$0

.7
5

$
15

.7
5

M
C

25

2
11

/2
4/

00

22
42

$ 1

32
.0

0
$8

.5
8

$ 1
40

.5
8

M
C

25

3
11

/2
4/

00

22
42

$

72
.0

0
$4

.6
8

$
76

.6
8

A
M

EX

O
rd

er

Ta
bl

es
 re

la
te

d
th

ro
ug

h
C

us
t I

D

Ta
bl

es
 re

la
te

d
th

ro
ug

h
Pa

ym
en

t T
yp

e

FFII
GG

UU
RR

EE
99

--22
C

us
to

m
er

 O
rd

er
 D

at
ab

as
e

337700

c09DataManagementLayerDesign.qxd 11/8/11 3:20 PM Page 370

Object Persistence Formats 337711

what sequential access and random access files are.3 We also describe how sequential access
and random access files are used to support an application. For example, they can be used
to support master files, look-up files, transaction files, audit files, and history files.

Sequential access files allow only sequential file operations to be performed (e.g., read,
write, and search). Sequential access files are very efficient for sequential operations, such
as report writing. However, for random operations, such as finding or updating a specific
object, they are very inefficient. On the average, 50 percent of the contents of a sequential
access file will have to be searched through before finding the specific object of interest in
the file. They come in two flavors: ordered and unordered.

An unordered sequential access file is basically an electronic list of information stored
on disk. Unordered files are organized serially (i.e., the order of the file is the order in which
the objects are written to the file). Typically, new objects simply are added to the file’s end.

Ordered sequential access files are placed into a specific sorted order (e.g., in ascending
order by customer number). However, there is overhead associated with keeping files in a
particular sorted order. The file designer can keep the file in sorted order by always creat-
ing a new file each time a delete or addition occurs, or he or she can keep track of the sorted
order via the use of a pointer, which is information about the location of the related record.
A pointer is placed at the end of each record, and it “points” to the next record in a series
or set. The underlying data/file structure in this case is the linked list4 data structure
demonstrated in the previous chapter.

Random access files allow only random or direct file operations to be performed. This
type of file is optimized for random operations, such as finding and updating a specific
object. Random access files typically give a faster response time to find and update opera-
tions than any other type of file. However, because they do not support sequential pro-
cessing, applications such as report writing are very inefficient. The various methods to
implement random access files are beyond the scope of this book.5

There are times when it is necessary to be able to process files in both a sequential and ran-
dom manner. One simple way to do this is to use a sequential file that contains a list of the keys
(the field in which the file is to be kept in sorted order) and a random access file for the actual
objects. This minimizes the cost of additions and deletions to a sequential file while allowing
the random file to be processed sequentially by simply passing the key to the random file to
retrieve each object in sequential order. It also allows fast random processing to occur by using
only the random access file, thus optimizing the overall cost of file processing. However, if a
file of objects needs to be processed in both a random and sequential manner, the developer
should consider using a database (relational, object-relational, or object-oriented) instead.

There are many different application types of files—for example, master files, lookup
files, transaction files, audit files, and history files. Master files store core information that
is important to the business and, more specifically, to the application, such as order infor-
mation or customer mailing information. They usually are kept for long periods of time,
and new records are appended to the end of the file as new orders or new customers are
captured by the system. If changes need to be made to existing records, programs must be
written to update the old information.

3 For a more complete coverage of issues related to the design of files, see Owen Hanson, Design of Computer Data
Files (Rockville, MD: Computer Science Press, 1982).
4 For more information on various data structures see Ellis Horowitz and Sartaj Sahni, Fundamentals of Data
Structures (Rockville, MD: Computer Science Press, 1982); and Michael T. Goodrich and Roberto Tamassia, Data
Structures and Algorithms in Java (New York: Wiley, 1998).
5 For a more-detailed look at the underlying data and file structures of the different types of files, see Mary E. S.
Loomis, Data Management and File Structures, 2nd ed. (Englewood Cliffs, NJ: Prentice Hall, 1989); and Michael
J. Folk and Bill Zoeellick, File Structures: A Conceptual Toolkit (Reading, MA: Addison-Wesley, 1987).

c09DataManagementLayerDesign.qxd 11/8/11 3:20 PM Page 371

Lookup files contain static values, such as a list of valid ZIP codes or the names of the
U.S. states. Typically, the list is used for validation. For example, if a customer’s mailing
address is entered into a master file, the state name is validated against a lookup file that
contains U.S. states to make sure that the operator entered the value correctly.

A transaction file holds information that can be used to update a master file. The trans-
action file can be destroyed after changes are added, or the file may be saved in case the
transactions need to be accessed again in the future. Customer address changes, for one,
would be stored in a transaction file until a program is run that updates the customer
address master file with the new information.

For control purposes, a company might need to store information about how data
change over time. For example, as human resources clerks change employee salaries in a
human resources system, the system should record the person who made the changes to the
salary amount, the date, and the actual change that was made. An audit file records before
and after images of data as they are altered so that an audit can be performed if the integrity
of the data is questioned.

Sometimes files become so large that they are unwieldy, and much of the information
in the file is no longer used. The history file (or archive file) stores past transactions (e.g.,
old customers, past orders) that are no longer needed by system users. Typically the file is
stored off-line, yet it can be accessed on an as-needed basis. Other files, such as master files,
can then be streamlined to include only active or very recent information.

337722 CChhaapptteerr 99 Data Management Layer Design

SSuppose you are building a Web-based system for
the admissions office at your university that will be used
to accept electronic applications from students. All
the data for the system will be stored in a variety of
files.

QQuueessttiioonn

Give an example using this system for each of the
following file types: master, lookup, transaction, audit,
and history. What kind of information would each file
contain, and how would the file be used?

99--11 SSttuuddeenntt AAddmmiissssiioonnss SSyysstteemmYYOOUURR

TURN

Relational Databases
A relational database is the most popular kind of database for application development
today. A relational database is based on collections of tables with each table having a pri-
mary key—a field or fields whose values are unique for every row of the table. The tables
are related to one another by placing the primary key from one table into the related table
as a foreign key (see Figure 9-3). Most relational database management systems (RDBMS)
support referential integrity, or the idea of ensuring that values linking the tables together
through the primary and foreign keys are valid and correctly synchronized. For example, if
an order-entry clerk using the tables in Figure 9-3 attempted to add order 254 for customer
number 1111, he or she would have made a mistake because no customer exists in the Cus-
tomer table with that number. If the RDBMS supported referential integrity, it would check
the customer numbers in the Customer table; discover that the number 1111 is invalid; and
return an error to the entry clerk. The clerk would then go back to the original order form
and recheck the customer information. Can you imagine the problems that would occur if
the RDBMS let the entry clerk add the order with the wrong information? There would be
no way to track down the name of the customer for order 254.

c09DataManagementLayerDesign.qxd 11/8/11 3:20 PM Page 372

337733

 C
us

t
La

st

Fi
rs

t
Pr

io
r

ID

N

am
e

N
am

e
C

us
to

m
er

 2
24

2
D

eB
er

ry

A
nn

Y

 9
50

0
C

hi
n

A
pr

il
Y

 1
55

6
Fr

ac
ke

n
C

hr
is

N

 1
03

5
Bl

ac
k

Jo
hn

Y

 9
50

1
Ka

pl
an

Br

uc
e

N
 1

12
3

W
ill

ia
m

s
M

ar
y

N
 4

25
4

Ba
ile

y
Ry

an

Y
 2

24
1

Jo
ne

s
C

hr
is

N

 5
92

7
Le

e
D

ia
ne

N

C
us

to
m

er

 Pa
ym

en
t

Pa
ym

en
t

Ty

pe

D
es

c

M

C

M
as

te
rc

ar
d

V

IS
A

V

is
a

 A
M

EX

A
m

er
ic

an
 E

xp
re

ss

Pa
ym

en
t T

yp
e

Re
fe

re
nt

ia
l I

nt
eg

ri
ty

:

!

A
ll

pa
ym

en
t t

yp
e

va
lu

es
 in

O

rd
er

 m
us

t e
xi

st
 fi

rs
t i

n
th

e
Pa

ym
en

t T
yp

e
ta

bl
e

!

A
ll

C
us

t I
D

 v
al

ue
s

in
 o

rd
er

m

us
t e

xi
st

 fi
rs

t i
n

th
e

C
us

to
m

er
 ta

bl
e

 O
rd

er

C
us

t

Pa
ym

en
t

 N
um

be
r

D
at

e
ID

A

m
ou

nt

Ta
x

To
ta

l
Ty

pe

23

4
11

/2
3/

00

22
42

$

90
.0

0
$5

.8
5

$
95

.8
5

M
C

23

5
11

/2
3/

00

95
00

$

12
.0

0
$0

.6
0

$
12

.6
0

V
IS

A

23
6

11
/2

3/
00

15

56

$
50

.0
0

$2
.5

0
$

52
.5

0
V

IS
A

23

7
11

/2
3/

00

22
42

$

75
.0

0
$4

.8
8

$
79

.8
8

A
M

EX

23
8

11
/2

3/
00

22

42

$
60

.0
0

$3
.9

0
$

63
.9

0
M

C

23
9

11
/2

3/
00

10

35

$
90

.0
0

$4
.5

0
$

94
.5

0
A

M
EX

24

0
11

/2
3/

00

95
01

$

50
.0

0
$2

.5
0

$
52

.5
0

V
IS

A

24
1

11
/2

3/
00

11

23

$ 1
20

.0
0

$9
.6

0
$ 1

29
.6

0
M

C

24
2

11
/2

4/
00

95

00

$
60

.0
0

$3
.0

0
$

63
.0

0
V

IS
A

24

3
11

/2
4/

00

42
54

$

90
.0

0
$4

.5
0

$
94

.5
0

V
IS

A

24
4

11
/2

4/
00

95

00

$
24

.0
0

$1
.2

0
$

25
.2

0
V

IS
A

24

5
11

/2
4/

00

22
42

$

12
.0

0
$0

.7
8

$
12

.7
8

A
M

EX

24
6

11
/2

4/
00

42

54

$
20

.0
0

$1
.0

0
$

21
.0

0
M

C

24
7

11
/2

4/
00

22

41

$
50

.0
0

$2
.5

0
$

52
.5

0
V

IS
A

24

8
11

/2
4/

00

42
54

$

12
.0

0
$0

.6
0

$
12

.6
0

A
M

EX

24
9

11
/2

4/
00

59

27

$
50

.0
0

$2
.5

0
$

52
.5

0
A

M
EX

25

0
11

/2
4/

00

22
42

$

12
.0

0
$0

.7
8

$
12

.7
8

M
C

25

1
11

/2
4/

00

95
00

$

15
.0

0
$0

.7
5

$
15

.7
5

M
C

25

2
11

/2
4/

00

22
42

$ 1

32
.0

0
$8

.5
8

$ 1
40

.5
8

M
C

25

3
11

/2
4/

00

22
42

$

72
.0

0
$4

.6
8

$
76

.6
8

A
M

EX

O
rd

er

C
us

t I
D

 is
 a

 fo
re

ig
n

ke
y

in
 O

rd
er

Pa
ym

en
t t

yp
e

is
 a

 fo
re

ig
n

ke
y

in
 O

rd
er

O
rd

er
 N

um
be

r I
D

 is

th
e

pr
im

ar
y

ke
y

of

th
e

O
rd

er
 ta

bl
e

C
us

t I
D

 is
 th

e
pr

im
ar

y
ke

y
of

 C
us

to
m

er
 ta

bl
e.

Pa
ym

en
t t

yp
e

is
 th

e
pr

im
ar

y
ke

y
of

 th
e

Pa
ym

en
t T

yp
e

ta
bl

e

FFII
GG

UU
RR

EE
99

--33
Re

la
tio

na
l D

at
ab

as
e

c09DataManagementLayerDesign.qxd 11/8/11 3:20 PM Page 373

337744 CChhaapptteerr 99 Data Management Layer Design

Tables have a set number of columns and a variable number of rows that contain
occurrences of data. Structured query language (SQL) is the standard language for access-
ing the data in the tables, and it operates on complete tables, as opposed to the individual
rows in the tables. Thus, a query written in SQL is applied to all the rows in a table all at
once, which is different from a lot of programming languages, which manipulate data row
by row. When queries must include information from more than one table, the tables first
are joined based on their primary key and foreign key relationships and treated as if they
were one large table. Examples of RDBMS software are Microsoft Access, Oracle, DB2, and
MySQL.

To use a RDBMS to store objects, objects must be converted so that they can be stored
in a table. From a design perspective, this entails mapping a UML class diagram to a rela-
tional database schema. We describe the mapping necessary later in this chapter.

Object-Relational Databases
Object-relational database management systems (ORDBMSs) are relational database man-
agement systems with extensions to handle the storage of objects in the relational table
structure. This is typically done through the use of user-defined types. For example, an
attribute in a table could have a data type of map, which would support storing a map. This
is an example of a complex data type. In pure RDBMSs, attributes are limited to simple or
atomic data types, such as integers, floats, or chars.

ORDBMSs, because they are simply extensions to their RDBMS counterparts, also
have very good support for the typical data management operations that business has
come to expect from RDBMSs, including an easy-to-use query language (SQL), autho-
rization, concurrency-control, and recovery facilities. However, because SQL was designed
to handle only simple data types, it too has been extended to handle complex object data.
Currently, vendors deal with this issue in different manners. For example, DB2, Informix,
and Oracle all have extensions that provide some level of support for objects.

Many of the ORDBMSs on the market still do not support many of the object-
oriented features that can appear in an object-oriented design (e.g., inheritance). One
of the problems in supporting inheritance is that inheritance support is language
dependent. For example, the way Smalltalk supports inheritance is different from
C!!’s approach, which is different from Java’s approach. Thus vendors currently must
support many different versions of inheritance, one for each object-oriented language,
or decide on a specific version and force developers to map their object-oriented design
(and implementation) to their approach. Like RDBMSs, a mapping from a UML class
diagram to an object-relational database schema is required. We describe the mapping
necessary later in this chapter.

Object-Oriented Databases
The next type of database management system that we describe is the object-oriented data-
base management systems (OODBMS). There have been two primary approaches to sup-
porting object persistence within the OODBMS community: adding persistence extensions
to an object-oriented programming language and creating an entirely separate database
management system. In the case of OODBMS, the Object Data Management Group
(ODMG) has completed the standardization process for defining (Object Definition Lan-
guage, ODL), manipulating (Object Manipulating Language, OML), and querying (Object
Query Language, OQL) objects in an OODBMS.6

6 See www.odbms.org for more information.

c09DataManagementLayerDesign.qxd 11/8/11 3:20 PM Page 374

Object Persistence Formats 337755

With an OODBMS, collections of objects are associated with an extent. An extent is
simply the set of instances associated with a particular class (i.e., it is the equivalent of a
table in a RDBMS). Technically speaking, each instance of a class has a unique identifier
assigned to it by the OODBMS: the Object ID. However, from a practical point of view, it
is still a good idea to have a semantically meaningful primary key (even though from an
OODBMS perspective this is unnecessary). Referential integrity is still very important. In
an OODBMS, from the user’s perspective, it looks as if the object is contained within the
other object. However, the OODBMS actually keeps track of these relationships through
the use of the Object ID, and therefore foreign keys are not necessary.7

OODBMSs provide support for some form of inheritance. However, as already dis-
cussed, inheritance tends to be language dependent. Currently, most OODBMSs are tied
closely to either a particular object-oriented programming language (OOPL) or a set of
OOPLs. Most OODBMSs originally supported either Smalltalk or C!! . "#day, many of
the commercially available OODBMSs provide support for C!! , Java, and Smalltalk.

OODBMSs also support the idea of repeating groups (fields) or multivalued attributes.
These are supported through the use of attribute sets and relationships sets. RDBMSs do not
explicitly allow multivalued attributes or repeating groups. This is considered to be a vio-
lation of the first normal form (discussed later in this chapter) for relational databases.
Some ORDBMSs do support repeating groups and multivalued attributes.

Up until recently, OODBMSs have mainly been used to support multimedia applica-
tions or systems that involve complex data (e.g., graphics, video, sound). Application areas,
such as computer-aided design and manufacturing (CAD/CAM), financial services, geo-
graphic information systems, health care, telecommunications, and transportation, have
been the most receptive to OODBMSs. They are also becoming popular technologies for
supporting electronic commerce, online catalogs, and large Web multimedia applications.
Examples of pure OODBMSs include Gemstone, Objectivity, db4o, and Versant.

Although pure OODBMS exist, most organizations currently invest in ORDBMS tech-
nology. The market for OODBMS is expected to grow, but its ORDBMS and RDBMS
counterparts dwarf it. One reason for this situation is that there are many more experi-
enced developers and tools in the RDBMS arena. Furthermore, relational users find that
using an OODBMS comes with a fairly steep learning curve.

NoSQL Data Stores
NoSQL data stores are the newest type of object persistence available. Depending on
whom you talk to, NoSQL either stands for No SQL or Not Only SQL. Regardless, the data
stores that are described as NoSQL typically do not support SQL. Currently, there is no
standard for NoSQL data stores. Most NoSQL data stores were created to address prob-
lems associated with storing large amounts of distributed data in RDBMSs. They tend to
support very fast queries. However, when it comes to updating, they normally do not sup-
port a locking mechanism, and consequently, all copies of a piece of data are not required
to be consistent at all times. Instead they tend to support an eventually consistent based
model. So it is technically possible to have different values for different copies of the same
object stored in different locations in a distributed system. Depending on the application,
this could cause problems for decision makers. Therefore, their applicability is limited and
they are not applicable to traditional business transaction processing systems. Some of the

7 Depending on the storage and updating requirements, it usually is a good idea to use a foreign key in addition
to the Object ID. The Object ID has no semantic meaning. Therefore, in the case of needing to rebuild relation-
ships between objects, Object IDs are difficult to validate. Foreign keys, by contrast, should have some meaning
outside of the DBMS.

c09DataManagementLayerDesign.qxd 11/8/11 3:20 PM Page 375

better known NoSQL data stores include Google’s Big Table, Amazon’s Dynamo, Apache’s
HBase, Apache’s CouchDB, and Apache/Facebook’s Cassandra. There are many different
types of NoSQL data stores including key-value stores, document stores, column-oriented
stores, and object databases. Besides object databases, which are either ORDBMSs or
OODBMSs, we describe each below.

Key-value data stores essentially provide a distributed index (primary key) to where a
BLOB (binary large object) is stored. A BLOB treats a set of attributes as one large object.
A good example of this type of NoSQL data store is Amazon’s Dynamo. Dynamo provides
support for many of the core services for Amazon. Obviously, being one of the largest
e-commerce sites in the world, Amazon had to have a solution for object persistence that
was scalable, distributable, and reliable. Typical RDBMS-based solutions would not work
for some of these applications. Typical applications that use key-value data stores are Web-
based shopping carts, product catalogs, and bestseller lists. These types of applications do
not require updating the underlying data. For example, you do not update the title of a
book in your shopping cart when you are making a purchase at Amazon. Given the scale
and distributed nature of this type of system, there are bound to be many failures across
the system. Being fault tolerant and temporarily sacrificing some consistency across all
copies of an object is a reasonable trade-off.

Document data stores, as the name suggests, are built around the idea of documents.
The idea of document databases has been around for a long time. One of the early systems
that used this approach was Lotus Notes. These types of stores are considered to be schema
free. By that we mean there is no detailed design of the database. A good example of an
application that would benefit from this type of approach is a business card database. In a
relational database, multiple tables would need to be designed. In a document data store,
the design is done more in a “just in time” manner. As new business cards are input into
the system, attributes not previously included are simply added to the evolving design. Pre-
viously entered business cards would simply not have those attributes associated with
them. One major difference between key-value data stores and document data stores is that
the “document” has structure and can be easily searched based on the non-key attributes
contained in the document, whereas the key-value data store simply treats the “value” as
one big monolithic object. Apache’s CouchDB is a good example of this type of data store.

Columnar data stores organize the data into columns instead of rows. However, there
seems to be some confusion as to what this actually implies. In the first approach to
columnar data stores, the rows represent the attributes and the columns represent the
objects. This is in comparison to a relational database, where columns represent the
attributes and the objects are represented by rows. These types of data stores are very
effective in business intelligence, data mining, and data warehousing applications where
the data are fairly static and many computations are performed over a single or a small
subset of the available attributes. In comparison to a relational database where you would
have to select a set of attributes from all rows; with this type of data store, you would sim-
ply have to select a set of rows. This should be a lot faster than with a relational database.
A few good examples of this type of columnar data store include Oracle’s Retail Predictive
Application Server, HP’s Vertica, and SAP’s Sybase IQ. The second approach to columnar
data stores, which includes Apache’s HBase, Apache/Facebook’s Cassandra, and Google’s
BigTable, is designed to handle very large data sets (petabytes of data) that can be accessed
as if the data are stored in columns. However, in this case, the data are actually stored in a
three-dimensional map composed of object ID, attribute name, timestamp, and value
instead of using columns and rows. This approach is highly scalable and distributable.
These types of data stores support social applications such as Twitter and Facebook and
support search applications such as Google Maps, Earth, and Analytics.

337766 CChhaapptteerr 99 Data Management Layer Design

c09DataManagementLayerDesign.qxd 11/8/11 3:20 PM Page 376

Object Persistence Formats 337777

Given the popularity of social computing, business intelligence, data mining, data
warehousing, e-commerce, and their need for highly scalable, distributable, and reliable
data storage, NoSQL data stores is an area that should be considered as part of an object
persistence solution. However, at this time, NoSQL data stores lack the maturity to be con-
sidered for most business applications. Given the overall diversity and complexity of
NoSQL data stores and their limited applicability to traditional business applications, we
do not consider them any further in this text.

Selecting an Object Persistence Format
Each of the file and database storage formats that have been presented has its strengths and
weaknesses, and no one format is inherently better than the others. In fact, sometimes a
project team chooses multiple formats (e.g., a relational database for one, a file for another,
and an object-oriented database for a third). Thus, it is important to understand the
strengths and weaknesses of each format and when to use each one. Figure 9-4 presents a
summary of the characteristics of each and the characteristics that can help identify when
each type of format is more appropriate.

Major Strengths and Weaknesses The major strengths of files include that some sup-
port for sequential and random access files is normally part of an OOPL, files can be
designed to be very efficient, and they are a good alternative for temporary or short-term
storage. However, all file manipulation must be done through the OOPL. Files do not have

FFIIGGUURREE 99--44 Comparison of Object Persistence Formats

SSeeqquueennttiiaall aanndd OObbjjeecctt RReellaattiioonnaall OObbjjeecctt--OOrriieenntteedd
RRaannddoomm AAcccceessss FFiilleess RReellaattiioonnaall DDBBMMSS DDBBMMSS DDBBMMSS

MMaajjoorr
SSttrreennggtthhss

MMaajjoorr
WWeeaakknneesssseess

DDaattaa TTyyppeess
SSuuppppoorrtteedd

TTyyppeess ooff
AApppplliiccaattiioonn
SSyysstteemmss
SSuuppppoorrtteedd

EExxiissttiinngg
SSttoorraaggee
FFoorrmmaattss

FFuuttuurree
NNeeeeddss

Usually part of an object-
oriented programming
language
Files can be designed for
fast performance
Good for short-term data
storage

Redundant data
Data must be updated using
programs, i.e., no manipula-
tion or query language
No access control

Simple and Complex

Transaction processing

Organization
dependent

Poor future
prospects

Leader in the database
market
Can handle diverse data
needs

Cannot handle complex
data
No support for object
orientation
Impedance mismatch
between tables and objects

Simple

Transaction processing and
decision making

Organization
dependent

Good future
prospects

Able to handle complex
data
Direct support for object
orientation

Technology is still maturing
Skills are hard to find

Simple and Complex

Transaction processing and
decision making

Organization
dependent

Good future
prospects

Based on established,
proven technology, e.g.,
SQL
Able to handle complex
data

Limited support for object
orientation
Impedance mismatch
between tables and objects

Simple and Complex

Transaction processing and
decision making

Organization
dependent

Good future
prospects

c09DataManagementLayerDesign.qxd 11/8/11 3:20 PM Page 377

any form of access control beyond that of the underlying operating system. Finally, in most
cases, if files are used for permanent storage, redundant data most likely will result. This
can cause many update anomalies.

RDBMSs bring with them proven commercial technology. They are the leaders in the
DBMS market. Furthermore, they can handle very diverse data needs. However, they can-
not handle complex data types, such as images. Therefore, all objects must be converted to
a form that can be stored in tables composed of atomic or simple data. They provide no
support for object orientation. This lack of support causes an impedance mismatch between
the objects contained in the OOPL and the data stored in the tables. An impedance mis-
match refers to the amount of work done by both the developer and DBMS and the poten-
tial information loss that can occur when converting objects to a form that can be stored
in tables.

Because ORDBMSs are typically object-oriented extensions to RDBMSs, they inherit
the strengths of RDBMSs. They are based on established technologies, such as SQL, and
unlike their predecessors, they can handle complex data types. However, they provide only
limited support for object orientation. The level of support varies among the vendors;
therefore, ORDBMSs also suffer from the impedance mismatch problem.

OODBMSs support complex data types and have the advantage of directly supporting
object orientation. Therefore, they do not suffer from the impedance mismatch that the
previous DBMSs do. Even though the ODMG has released version 3.0 of its set of stan-
dards, the OODBMS community is still maturing. Therefore, this technology might still be
too risky for some firms. The other major problems with OODBMS are the lack of skilled
labor and the perceived steep learning curve of the RDBMS community.

Data Types Supported The first issue is the type of data that will need to be stored in the
system. Most applications need to store simple data types, such as text, dates, and numbers,
and all files and DBMSs are equipped to handle this kind of data. The best choice for
simple data storage, however, is usually the RDBMS because the technology has matured
over time and has continuously improved to handle simple data very effectively.

Increasingly, applications are incorporating complex data, such as video, images, or
audio. ORDBMSs or OODBMSs are best able to handle data of this type. Complex data
stored as objects can be manipulated much faster than with other storage formats.

Type of Application System There are many different kinds of application systems that
can be developed. Transaction-processing systems are designed to accept and process many
simultaneous requests (e.g., order entry, distribution, payroll). In transaction-processing
systems, the data are continuously updated by a large number of users, and the queries that
are asked of the systems typically are predefined or targeted at a small subset of records
(e.g., List the orders that were backordered today or What products did customer #1234
order on May 12, 2001?).

Another set of application systems is the set designed to support decision making, such
as decision support systems (DSS), management information systems (MIS), executive infor-
mation systems (EIS), and expert systems (ES). These decision-making support systems are
built to support users who need to examine large amounts of read-only historical data. The
questions that they ask are often ad hoc, and they include hundreds or thousands of
records at a time (e.g., List all customers in the West region who purchased a product cost-
ing more than $500 at least three times, or What products had increased sales in the sum-
mer months that have not been classified as summer merchandise?).

Transaction-processing systems and DSSs thus have very different data storage needs.
Transaction-processing systems need data storage formats that are tuned for a lot of data

337788 CChhaapptteerr 99 Data Management Layer Design

c09DataManagementLayerDesign.qxd 11/8/11 3:20 PM Page 378

Object Persistence Formats 337799

updates and fast retrieval of predefined, specific questions. Files, relational databases,
object-relational databases, and object-oriented databases can all support these kinds of
requirements. By contrast, systems to support decision making are usually only reading
data (not updating it), often in ad hoc ways. The best choices for these systems usually are
RDBMSs because these formats can be configured specially for needs that may be unclear
and less apt to change the data.

Existing Storage Formats The storage format should be selected primarily on the basis
of the kind of data and application system being developed. However, project teams should
consider the existing storage formats in the organization when making design decisions.
In this way, they can better understand the technical skills that already exist and how steep
the learning curve will be when the storage format is adopted. For example, a company
that is familiar with RDBMS will have little problem adopting a relational database for the
project, whereas an OODBMS might require substantial developer training. In the latter
situation, the project team might have to plan for more time to integrate the object-oriented
database with the company’s relational systems or possibly consider moving toward an
ORDBMS solution.

Future Needs Not only should a project team consider the storage technology within the
company, but it should also be aware of current trends and technologies that are being used
by other organizations. A large number of installations of a specific type of storage format
suggest that skills and products are available to support the format. Therefore, the selection
of that format is safe. For example, it would probably be easier and less expensive to find
RDBMS expertise when implementing a system than to find help with an OODBMS.

Other Miscellaneous Criteria Other criteria that should be considered include cost,
licensing issues, concurrency control, ease of use, security and access controls, version
management, storage management, lock management, query management, language bind-
ings, and APIs. We also should consider performance issues, such as cache management,
insertion, deletion, retrieval, and updating of complex objects. Finally, the level of support
for object orientation (such as objects, single inheritance, multiple inheritance, polymor-
phism, encapsulation and information hiding, methods, multivalued attributes, repeating
groups) is critical.

AA major public university graduates approximately
10,000 students per year, and the development office has
decided to build a Web-based system that solicits and
tracks donations from the university’s large alumni body.
Ultimately, the development officers hope to use the
information in the system to better understand the alumni
giving patterns so that they can improve giving rates.

QQuueessttiioonn

11.. What kind of system is this? Does it have character-
istics of more than one?

22.. What different kinds of data will this system use?
33.. On the basis of your answers, what kind of data

storage format(s) do you recommend for this system?

99--22 DDoonnaattiioonn TTrraacckkiinngg SSyysstteemmYYOOUURR

TURN

c09DataManagementLayerDesign.qxd 11/8/11 3:20 PM Page 379

MAPPING PROBLEM DOMAIN OBJECTS TO OBJECT
PERSISTENCE FORMATS8

As described in the previous section, there are many different formats from which to
choose to support object persistence. Each of the different formats can have some conver-
sion requirements. Regardless of the object persistence format chosen, we suggest support-
ing primary keys and foreign keys by adding them to the problem domain classes at this
point. However, this does imply some additional processing required. The developer has to
set the value for the foreign key when adding the relationship to an object. In some cases,
this overhead may be too costly. In those cases, this suggestion should be ignored. In the
remainder of this section, we describe how to map the problem domain classes to the
different object persistence formats. From a practical perspective, file formats are used
mostly for temporary storage. Thus we do not consider them further.

We also recommend that the data management functionality specifics, such as retrieval
and updating of data from the object storage, be included only in classes contained in the
data management layer. This will ensure that the data management classes are dependent
on the problem domain classes and not the other way around. Furthermore, this allows the
design of problem domain classes to be independent of any specific object persistence envi-
ronment, thus increasing their portability and their potential for reuse. Like our previous
recommendation, this one also implies additional processing. However, the increased
portability and potential for reuse realized should more than compensate for the additional
processing required.

Mapping Problem Domain Objects to an OODBMS Format
If we support object persistence with an OODBMS, the mappings between the problem
domain objects and the OODBMS tend to be fairly straightforward. As a starting point, we
suggest that each concrete problem domain class should have a corresponding object per-
sistence class in the OODBMS. There will also be a data access and manipulation (DAM)
class that contains the functionality required to manage the interaction between the object
persistence class and the problem domain layer. For example, using the appointment sys-
tem example from the previous chapters, the Patient class is associated with an OODBMS
class (see Figure 9-5). The Patient class essentially will be unchanged from analysis. The
Patient-OODBMS class will be a new class that is dependent on the Patient class, whereas
the Patient-DAM class will be a new class that depends on both the Patient class and the
Patient-OODBMS class. The Patient-DAM class must be able to read from and write to the
OODBMS. Otherwise, it will not be able to store and retrieve instances of the Patient class.
Even though this does add overhead to the installation of the system, it allows the problem
domain class to be independent of the OODBMS being used. If at a later time another
OODBMS or object persistence format is adopted, only the DAM classes will have to be
modified. This approach increases both the portability and the potential for reuse of the
problem domain classes.

Even though we are implementing the DAM layer using an OODBMS, a mapping
from the problem domain layer to the OODBMS classes in the data access and manage-
ment layer may be required, depending on the level of support of inheritance in the
OODBMS and the level of inheritance used in the problem domain classes. If multiple
inheritance is used in the problem domain but not supported by the OODBMS, then the
multiple inheritance must be factored out of the OODBMS classes. For each case of mul-
tiple inheritance (i.e., more than one superclass), the following rules can be used to

338800 CChhaapptteerr 99 Data Management Layer Design

c09DataManagementLayerDesign.qxd 11/8/11 3:20 PM Page 380

Mapping Problem Domain Objects to Object Persistence Formats 338811

8 The rules presented in this section are based on material in Ali Bahrami, Object-Oriented Systems Development
using the Unified Modeling Language (New York: McGraw-Hill, 1999); Michael Blaha and William Premerlani,
Object-Oriented Modeling and Design for Database Applications (Upper Saddle River, NJ: Prentice Hall, 1998);
Akmal B. Chaudri and Roberto Zicari, Succeeding with Object Databases: A Practical Look at Today’s Implementa-
tions with Java and XML (New York: Wiley, 2001); Peter Coad and Edward Yourdon, Object-Oriented Design
(Upper Saddle River, NJ: Yourdon Press, 1991); and Paul R. Read, Jr., Developing Applications with Java and UML
(Boston: Addison-Wesley, 2002).
9 It is also a good idea to document this modification in the design so that in the future, modifications to the
design can be easily maintained.

factor out the multiple inheritance effects in the design of the OODBMS classes.8

Rule 1a: Add a column(s) to the OODBMS class(es) that represents the subclass(es)
that will contain an Object ID of the instance stored in the OODBMS class
that represents the “additional” superclass(es). This is similar in concept to a
foreign key in an RDBMS. The multiplicity of this new association from the
subclass to the “superclass” should be 1..1. Add a column(s) to the OODBMS
class(es) that represents the superclass(es) that will contain an Object ID of
the instance stored in the OODBMS class that represents the subclass(es).
If the superclasses are concrete, that is, they can be instantiated themselves,
then the multiplicity from the superclass to the subclass is 0..1, otherwise,
it is 1..1. An exclusive-or (XOR) constraint must be added between the
associations. Do this for each “additional” superclass.

or

Rule 1b: Flatten the inheritance hierarchy of the OODBMS classes by copying the attrib-
utes and methods of the additional OODBMS superclass(es) down to all of the
OODBMS subclasses and remove the additional superclass from the design.9

PD Layer

DM Layer

AppointmentPatient

Appointment-OODBMSPatient-OODBMS

Appointment-DAMPatient-DAM

FFIIGGUURREE 99--55
Appointment System
Problem-Domain and
DM Layers

c09DataManagementLayerDesign.qxd 11/8/11 3:20 PM Page 381

These multiple inheritance rules are very similar to those described in Chapter 8.
Figure 9-6 demonstrates the application of these rules. The right side of the figure portrays
the same problem domain classes that were in Chapter 8: Airplane, Car, Boat, FlyingCar,
and AmphibiousCar. FlyingCar inherits from both Airplane and Car, and AmphibiousCar
inherits from both Car and Boat. Figure 9-6a portrays the mapping of multiple inheritance
relationships into a single inheritance-based OODBMS using Rule 1a. Assuming that Car
is concrete, we apply Rule 1a to the Problem Domain classes, and we end up with the
OODBMS classes on the left side of Part a, where we have:

! Added a column (attribute) to FlyingCar-OODBMS that represents an association
with Car-OODBMS;

! Added a column (attribute) to AmphibiousCar-OODBMS that represents an
association with Car-OODBMS;

! Added a pair of columns (attributes) to Car-OODBMS that represents an associa-
tion with FlyingCar-OODBMS and AmphibiousCar-OODBMS and for complete-
ness sake;

! Added associations between AmphibiousCar-OODBMS and Car-OODBMS and
FlyingCar-OODBMS and Car-OODBMS that have the correct multiplicities and
the XOR constraint explicitly shown.

We also display the dependency relationships from the OODBMS classes to the problem
domain classes. Furthermore, we illustrate the fact that the association between Flying-
Car-OODBMS and Car-OODBMS and the association between AmphibiousCar-OODBMS
and Car-OODBMS are based on the original factored-out inheritance relationships in the
problem domain classes by showing dependency relationships from the associations to the
inheritance relationships.

On the other hand, if we apply Rule 1b to map the Problem Domain classes to a single-
inheritance-based OODBMS, we end up with the mapping in Figure 9-6b, where all the
attributes of Car have been copied into the FlyingCar-OODBMS and AmphibiousCar-
OODBMS classes. In this latter case, you may have to deal with the effects of inheritance
conflicts (see Chapter 8).

The advantage of Rule 1a is that all problem domain classes identified during analysis
are preserved in the database. This allows maximum flexibility of maintenance of the design
of the data management layer. However, Rule 1a increases the amount of message passing
required in the system, and it has added processing requirements involving the XOR con-
straint, thus reducing the overall efficiency of the design. Our recommendation is to limit
Rule 1a to be applied only when dealing with “extra” superclasses that are concrete because
they have an independent existence in the problem domain. Use Rule 1b when they are
abstract because they do not have an independent existence from the subclass.

338822 CChhaapptteerr 99 Data Management Layer Design

IIn the previous chapters, we have been using a doctor’s
office appointment system as an example. Assume that
you now know that the OODBMS that will be used to

support the system will support only single inheritance.
Using a class diagram, draw the design for the database.

99--33 DDooccttoorr’’ss OOffffiiccee AAppppooiinnttmmeenntt SSyysstteemmYYOOUURR

TURN

c09DataManagementLayerDesign.qxd 11/8/11 3:20 PM Page 382

Bo
at

-O
O

D
BM

S

-w
ei

gh
t

-le
ng

th

O
O

D
BM

S
C

la
ss

es

Pr
ob

le
m

 D
om

ai
n

C
la

ss
es

A
m

ph
ib

io
us

C
ar

-O
O

D
BM

S

-m
fg

-y

r
-C

ar
-O

O
D

BM
S

Bo
at

-O
O

D
BM

S

-w
ei

gh
t

-le
ng

th

Fl
yi

ng
C

ar
-O

O
D

BM
S

-m
fg

-y

r
-C

ar
-O

O
D

BM
S

C
ar

-O
O

D
BM

S

-n
um

be
ro

fD
oo

rs

-r
eg

N
o

-F
ly

in
gC

ar
-O

O
D

BM
S

-A
m

ph
ib

io
us

C
ar

-O
O

D
BM

S

A
m

ph
ib

io
us

C
ar

-O
O

D
BM

S
-n

um
be

rO
fD

oo
rs

-r

eg
N

o
-m

fg

-y
r

A
ir

pl
an

e-
O

O
D

BM
S

-e
ng

in
eT

yp
e

-fu
el

Ty
pe

Fl
yi

ng
C

ar
-O

O
D

BM
S

-n
um

be
rO

fD
oo

rs

-r
eg

N
o

-m
fg

-y

r

0.
.*

1.
.1

1.
.1

0.
.*

(a
)

(b
)

A
ir

pl
an

e-
O

O
D

BM
S

-E
ng

in
eT

yp
e

-F
ue

lT
yp

e

A
ir

pl
an

e

-E
ng

in
eT

yp
e

-F
ue

lT
yp

e

{X
O

R}

Fl
yi

ng
C

ar

-m
fg

-y

r

A
ir

pl
an

e

-e
ng

in
eT

yp
e

-fu
el

Ty
pe

Fl
yi

ng
 C

ar

-m
fg

-y

r

A
m

ph
ib

io
us

C
ar

-m
fg

-y

r

Bo
at

-w
ei

gh
t

-le
ng

th
C

ar

-n
um

be
rO

fD
oo

rs

-r
eg

N
o

A
m

ph
ib

io
us

C
ar

-m
fg

-y

r

C
ar

-n
um

be
rO

fD
oo

rs

-r
eg

N
o

Bo
at

-w
ei

gh
t

-le
ng

th

FFII
GG

UU
RR

EE
99

--66
M

ap
pi

ng
 P

ro
bl

em
 D

om
ai

n
O

bj
ec

ts
 to

 a
 S

in
gl

e
In

he
ri

ta
nc

e–
Ba

se
d

O
O

D
BM

S

338833

c09DataManagementLayerDesign.qxd 11/8/11 3:20 PM Page 383

338844 CChhaapptteerr 99 Data Management Layer Design

In either case, additional processing will be required. In the first case, cascading of
deletes will work, not only from the individual object to all its elements but also from the
superclass instances to all the subclass instances. Most OODBMSs do not support this type
of deletion. However, to enforce the referential integrity of the system, it must be done. In
the second case, there will be a lot of copying and pasting of the structure of the superclass
to the subclasses. In the case that a modification of the structure of the superclass is
required, the modification must be cascaded to all of the subclasses. Again, most
OODBMSs do not support this type of modification cascading; therefore, the developer
must address it. However, multiple inheritance is rare in most business problems. In most
situations the preceding rules will never be necessary.

When instantiating problem domain objects from OODBMS objects, additional pro-
cessing will also be required. The additional processing will be in the retrieval of the
OODBMS objects and taking their elements to create a problem domain object. Also, when
storing the problem domain object, the conversion to a set of OODBMS objects is required.
Basically speaking, any time that an interaction takes place between the OODBMS and the
system, if multiple inheritance is involved and the OODBMS supports only single inheri-
tance, a conversion between the two formats will be required. This conversion is the
purpose of the data access and manipulation classes described later in this chapter.

Mapping Problem Domain Objects to an ORDBMS Format
If we support object persistence with an ORDBMS, then the mapping from the problem
domain objects to the data management objects is much more involved. Depending on the
level of support for object orientation, different mapping rules are necessary. For our pur-
poses, we assume that the ORDBMS supports Object IDs, multivalued attributes, and
stored procedures. However, we assume that the ORDBMS does not provide any support
for inheritance. Based on these assumptions, Figure 9-7 lists a set of rules that can be used
to design the mapping from the Problem Domain objects to the tables of the ORDBMS-
based data management layer.

First, all concrete Problem Domain classes must be mapped to the tables in the
ORDBMS. For example in Figure 9-8, the Patient class has been mapped to Patient-
ORDBMS table. Notice that the Participant class has also been mapped to an ORDBMS
table. Even though the Participant class is abstract, this mapping was done because in the
complete class diagram (see Figure 7-15), the Participant class had multiple direct sub-
classes (Employee and Patient).

Second, single-valued attributes should be mapped to columns in the ORDBMS
tables. Again, referring to Figure 9-8, we see that the amount attribute of the Patient class
has been included in the Patient Table class.

Third, depending on the level of support of stored procedures, the methods and
derived attributes should be mapped either to stored procedures or program modules.

Fourth, single-valued (one-to-one) aggregation and association relationships should
be mapped to a column that can store an Object ID. This should be done for both sides of
the relationship.

Fifth, multivalued attributes should be mapped to columns that can contain a set of
values. For example in Figure 9-8, the insurance carrier attribute in the Patient class may
contain multiple values because a patient may have more than one insurance carrier.
Thus in the Patient table, a multiplicity has been added to the insurance carrier attribute
to portray this fact.

The sixth mapping rule addresses repeating groups of attributes in a problem domain
object. In this case, the repeating group of attributes should be used to create a new table
in the ORDBMS. It can imply a missing class in the problem domain layer. Normally, when

c09DataManagementLayerDesign.qxd 11/8/11 3:20 PM Page 384

Mapping Problem Domain Objects to Object Persistence Formats 338855

a set of attributes repeats together as a group, it implies a new class. Finally, we must create
a one-to-many association from the original table to the new one.

The seventh rule supports mapping multivalued (many-to-many) aggregation and
association relationships to columns that can store a set of Object IDs. Basically, this is a
combination of the fourth and fifth rules. Like the fourth rule, this should be done for both
sides of the relationships. For example in Figure 9-8, the Symptom table has a multivalued
attribute (Patients) that can contain multiple Object IDs to Patient Table objects, and
Patient table has a multivalued attribute (Symptoms) that can contain multiple Object IDs
to Symptom Table objects.

The eighth rule combines the intentions of Rules 4 and 7. In this case, the rule maps
one-to-many and many-to-one relationships. On the single-valued side (1..1 or 0..1) of the
relationship, a column that can store a set of Object IDs from the table on the multivalued
side (1..* or 0..*) of the relationship should be added. On the multivalued side, a column
should be added to the table that can store an Object ID from an instance stored in the
table on the single-valued side of the relationship. For example, in Figure 9-8, the Patient
table has a multivalued attribute (Appts) that can contain multiple Object IDs to Appoint-
ment Table objects, whereas the Appointment table has a single-valued attribute (Patient)
that can contain an Object ID to a Patient Table object.

The ninth, and final, rule deals with the lack of support for generalization and inheri-
tance. In this case, there are two different approaches. These approaches are virtually iden-
tical to the rules described with the preceding OODBMS object persistence formats. For
example in Figure 9-8, the Patient table contains an attribute (Participant) that can contain
an Object ID for a Participant Table object, and the Participant table contains an attribute

RRuullee 11:: Map all concrete Problem Domain classes to the ORDBMS tables. Also, if an abstract problem domain class has multiple
direct subclasses, map the abstract class to an ORDBMS table.
RRuullee 22:: Map single-valued attributes to columns of the ORDBMS tables.
RRuullee 33:: Map methods and derived attributes to stored procedures or to program modules.
RRuullee 44:: Map single-valued aggregation and association relationships to a column that can store an Object ID. Do this for both sides
of the relationship.
RRuullee 55:: Map multivalued attributes to a column that can contain a set of values.
RRuullee 66:: Map repeating groups of attributes to a new table and create a one-to-many association from the original table to the new
one.
RRuullee 77:: Map multivalued aggregation and association relationships to a column that can store a set of Object IDs. Do this for both
sides of the relationship.
RRuullee 88:: For aggregation and association relationships of mixed type (one-to-many or many-to-one), on the single-valued side (1..1
or 0..1) of the relationship, add a column that can store a set of Object IDs. The values contained in this new column will be the
Object IDs from the instances of the class on the multivalued side. On the multivalued side (1..* or 0..*), add a column that can
store a single Object ID that will contain the value of the instance of the class on the single-valued side.
For generalization/inheritance relationships:
RRuullee 99aa:: Add a column(s) to the table(s) that represents the subclass(es) that will contain an Object ID of the instance stored in the
table that represents the superclass. This is similar in concept to a foreign key in an RDBMS. The multiplicity of this new associa-
tion from the subclass to the “superclass” should be 1..1. Add a column(s) to the table(s) that represents the superclass(es) that will
contain an Object ID of the instance stored in the table that represents the subclass(es). If the superclasses are concrete, that is,
they can be instantiated themselves, then the multiplicity from the superclass to the subclass is 0..1, otherwise, it is 1..1. An
exclusive-or (XOR) constraint must be added between the associations. Do this for each superclass.
oorr
RRuullee 99bb:: Flatten the inheritance hierarchy by copying the superclass attributes down to all of the subclasses and remove the super-
class from the design.*

*It is also a good idea to document this modification in the design so that in the future, modifications to the design can be maintained easily.

FFIIGGUURREE 99--77 Schema for Mapping Problem Domain Objects to ORDBMS

c09DataManagementLayerDesign.qxd 11/8/11 3:20 PM Page 385

(SubClassObjects) that contain an Object ID for an object, in this case, stored in the Patient
table. In the other case, the inheritance hierarchy is flattened.

Of course, additional processing is required any time an interaction takes place
between the database and the system. Every time an object must be created or retrieved
from the database, updated, or deleted, the ORDBMS object(s) must be converted to the
problem domain object, or vice versa. Again, this is the purpose of the data access and
manipulation classes. The only other choice is to modify the problem domain objects.
However, such a modification can cause problems between the problem domain layer and

338866 CChhaapptteerr 99 Data Management Layer Design

ORDBMS Tables Problem Domain Classes

Participant Table

-lastname[1..1]
-firstname[1..1]
-address[1..1]
-phone[1..1]
-birthdate[1..1]
-SubClassObjects[1..1]

Patient Table

-amount[1..1]
-Participant[1..1]
-Appts[0..*]
-Symptoms[1..*]
-Insurance carrier[0..*]
-Primary Insurance Carrier[0..*]

Symptom Table

-name[1..1]
-Patients[0..*]

Appointment Table

-Patient[1..1]
-time[1..1]
-date[1..1]
-reason[1..1]

1..1

1..1

0..*

0..*
0..* 0..*

0..*

1

1

1..* 1..*

0..*

1

1

suffers

schedules

Appointment

-time
-date
-reason

+cancel without notice()

+ primary
insurance
carrier

Patient

-amount
-insurance carrier
+make appointment()
+calculate last visit()
+change status()
+provides medical history()

Participant

-lastname
-firstname
-address
-phone
-birthdate
-/ age

Symptom

-name

FFIIGGUURREE 99--88 Example of Mapping Problem Domain Objects to ORDBMS Schema

c09DataManagementLayerDesign.qxd 11/8/11 3:20 PM Page 386

Mapping Problem Domain Objects to Object Persistence Formats 338877

the physical architecture and human–computer interface layers. Generally speaking, the
cost of conversion between the ORDBMS and the problem domain layer will be more than
offset by the savings in development time associated with the interaction between the prob-
lem domain and physical architecture and human–computer interaction layers and the
ease of maintenance of a semantically clean problem domain layer. In the long run, owing
to the conversions necessary, the development and production cost of using an OODBMS
may be less than the development and production cost implementing the object persistence
in an ORDBMS.

IIn Your Turn 9-3, you created a design for the database
assuming that the database would be implemented using
an OODBMS that supported only single inheritance. In
this case, assume that you now know that an ORDBMS

will be used and that it does not support any inheritance.
However, it does support Object IDs, multivalued attrib-
utes, and stored procedures. Using a class diagram, draw
the design for the database.

99--44 DDooccttoorr’’ss OOffffiiccee AAppppooiinnttmmeenntt SSyysstteemmYYOOUURR

TURN

RRuullee 11:: Map all concrete-problem domain classes to the RDBMS tables. Also, if an abstract Problem Domain class has multiple
direct subclasses, map the abstract class to a RDBMS table.
RRuullee 22:: Map single-valued attributes to columns of the tables.
RRuullee 33:: Map methods to stored procedures or to program modules.
RRuullee 44:: Map single-valued aggregation and association relationships to a column that can store the key of the related table, i.e.,
add a foreign key to the table. Do this for both sides of the relationship.
RRuullee 55:: Map multivalued attributes and repeating groups to new tables and create a one-to-many association from the original
table to the new ones.
RRuullee 66:: Map multivalued aggregation and association relationships to a new associative table that relates the two original tables
together. Copy the primary key from both original tables to the new associative table, i.e., add foreign keys to the table.
RRuullee 77:: For aggregation and association relationships of mixed type, copy the primary key from the single-valued side (1..1 or 0..1)
of the relationship to a new column in the table on the multivalued side (1..* or 0..*) of the relationship that can store the key of
the related table, i.e., add a foreign key to the table on the multivalued side of the relationship.
For generalization/inheritance relationships:
RRuullee 88aa:: Ensure that the primary key of the subclass instance is the same as the primary key of the superclass. The multiplicity of
this new association from the subclass to the “superclass” should be 1..1. If the superclasses are concrete, that is, they can be
instantiated themselves, then the multiplicity from the superclass to the subclass is 0..1, otherwise, it is 1..1. Furthermore, an
exclusive-or (XOR) constraint must be added between the associations. Do this for each superclass.
OR
RRuullee 88bb:: Flatten the inheritance hierarchy by copying the superclass attributes down to all of the subclasses and remove the
superclass from the design.*
* It is also a good idea to document this modification in the design so that in the future, modifications to the design can be maintained easily.

FFIIGGUURREE 99--99 Schema for Mapping Problem Domain Objects to RDBMS

Mapping Problem Domain Objects to a RDBMS Format
If we support object persistence with an RDBMS, then the mapping from the problem
domain objects to the RDBMS tables is similar to the mapping to an ORDBMS. However,
the assumptions made for an ORDBMS are no longer valid. Figure 9-9 lists a set of rules
that can be used to design the mapping from the problem domain objects to the RDBMS-
based data management layer tables.

c09DataManagementLayerDesign.qxd 11/8/11 3:20 PM Page 387

The first four rules are basically the same set of rules used to map problem domain
objects to ORDBMS-based data management objects. First, all concrete problem domain
classes must be mapped to tables in the RDBMS. Second, single-valued attributes should
be mapped to columns in the RDBMS table. Third, methods should be mapped to either
stored procedures or program modules, depending on the complexity of the method.
Fourth, single-valued (one-to-one) aggregation and association relationships are mapped
to columns that can store the foreign keys of the related tables. This should be done for
both sides of the relationship. For example in Figure 9-10, we needed to include tables in
the RDBMS for the Participant, Patient, Symptom, and Appointment classes.

The fifth rule addresses multivalued attributes and repeating groups of attributes in a
problem domain object. In these cases, the attributes should be used to create new tables in the
RDBMS. As in the ORDBMS mappings, repeating groups of attributes can imply missing
classes in the Problem Domain layer. In that case, a new problem domain class may be
required. Finally, we should create a one-to-many or zero-to-many association from the orig-
inal table to the new one. For example, in Figure 9-10, we needed to create a new table for
insurance carrier because it was possible for a patient to have more than one insurance carrier.

The sixth rule supports mapping multivalued (many-to-many) aggregation and asso-
ciation relationships to a new table that relates the two original tables. In this case, the new
table should contain foreign keys back to the original tables. For example, in Figure 9-10,
we needed to create a new table that represents the suffer association between the Patient
and Symptom problem domain classes.

The seventh rule addresses one-to-many and many-to-one relationships. With these
types of relationships, the multivalued side (0..* or 1..*) should be mapped to a column in
its table that can store a foreign key back to the single-valued side (0..1 or 1..1). It is possi-
ble that we have already taken care of this situation because we earlier recommended inclu-
sion of both primary and foreign key attributes in the problem domain classes. In the case
of Figure 9-10, we had already added the primary key from the Patient class to the Appoint-
ment class as a foreign key (see participantNumber). However, in the case of the reflexive
relationship, primary insurance carrier, associated with the Patient class, we need to add a
new attribute (primaryInsuranceCarrier) to be able to store the relationship.

The eighth, and final, rule deals with the lack of support for generalization and inher-
itance. As in the case of an ORDBMS, there are two different approaches. These approaches
are virtually identical to the rules described with OODBMS and ORDBMS object persis-
tence formats given earlier. The first approach is to add a column to each table that repre-
sents a subclass for each of the concrete superclasses of the subclass. Essentially, this ensures
that the primary key of the subclass is the same as the primary key for the superclass. If we
had previously added the primary and foreign keys to the problem domain objects, as we
recommended, then we do not have to do anything else. The primary keys of the tables will
be used to rejoin the instances stored in the tables that represent each of the pieces of the
problem domain object. Conversely, the inheritance hierarchy can be flattened and the
rules (Rules 1 through 7) can be reapplied.

As in the case of the ORDBMS approach, additional processing will be required any
time that an interaction takes place between the database and the system. Every time an
object must be created, retrieved from the database, updated, or deleted, the mapping
between the problem domain and the RDBMS must be used to convert between the two
different formats. In this case, a great deal of additional processing will be required. How-
ever, from a practical point of view, it is more likely that you will use a RDBMS for storage
of objects than the other approaches because RDBMSs are by far the most popular format
in the marketplace. We will focus on how to optimize the RDBMS format for object
persistence in the next section of this chapter.

338888 CChhaapptteerr 99 Data Management Layer Design

c09DataManagementLayerDesign.qxd 11/8/11 3:20 PM Page 388

Mapping Problem Domain Objects to Object Persistence Formats 338899

RDBMS Tables Problem Domain Classes

Participant Table

-lastname[1..1]
-firstname[1..1]
-address[1..1]
-phone[1..1]
-birthdate[1..1]
-participantNumber[1..1]

Patient Table

-amount[1..1]
-participantNumber[1..1]
-primaryInsuranceCarrier[0..1]

Symptom Table

-name[1..1]

Suffer Table

-participantNumber[1..1]
-name[1..1]

Insurance Carrier Table

-name[1..1]
-participantNumber[1..1]

Appointment Table

-time[1..1]
-date[1..1]
-reason[1..1]
-participantNumber[1..1]

1..1

1..1

1..1

1..1

1..1

1..1

0..*

0..* 0..*

0..*

1..*

0..*

1

1

1..*

0..*

+ primary
insurance
carrier

suffers

schedules

Appointment

-time
-date
-reason

+cancel without notice()Patient

-amount
-insurance carrier
+make appointment()
+calculate last visit()
+change status()
+provides medical history()

Participant

-lastname
-firstname
-address
-phone
-birthdate
-/ age

Symptom

-name

FFIIGGUURREE 99--1100 Example of Mapping Problem Domain Objects to RDBMS Schema

c09DataManagementLayerDesign.qxd 11/8/11 3:20 PM Page 389

OPTIMIZING RDBMS-BASED OBJECT STORAGE
Once the object persistence format is selected, the second step is to optimize the object per-
sistence for processing efficiency. The methods of optimization vary based on the format
that you select; however, the basic concepts remain the same. Once you understand how to
optimize a particular type of object persistence, you will have some idea as to how to
approach the optimization of other formats. This section focuses on the optimization of
the most popular storage format: relational databases.

There are two primary dimensions in which to optimize a relational database: for stor-
age efficiency and for speed of access. Unfortunately, these two goals often conflict because
the best design for access speed may take up a great deal of storage space as compared to
other, less-speedy designs. The first section describes how to optimize the object persistence
for storage efficiency using a process called normalization. The next section presents design
techniques, such as denormalization and indexing, which can speed up the performance of
the system. Ultimately, the project team will go through a series of trade-offs until the ideal
balance of the two optimization dimensions is reached. Finally, the project team must esti-
mate the size of the data storage needed to ensure there is enough capacity on the server(s).

Optimizing Storage Efficiency
The most efficient tables in a relational database in terms of storage space have no redun-
dant data and very few null values. The presence of null values suggests that space is being
wasted (and more data to store means higher data storage hardware costs). For example,
the table in Figure 9-11 repeats customer information, such as name and state, each time a
customer places an order, and it contains many null values in the product-related columns.
These nulls occur whenever a customer places an order for fewer than three items (the
maximum number on an order).

In addition to wasting space, redundancy and null values also allow more room for
error and increase the likelihood that problems will arise with the integrity of the data.
What if customer 1035 moved from Maryland to Georgia? In the case of Figure 9-11, a pro-
gram must be written to ensure that all instances of that customer are updated to show
Georgia as the new state of residence. If some of the instances are overlooked, then the table
will contain an update anomaly, whereby some of the records contain the correctly updated
value for state and other records contain the old information.

Nulls threaten data integrity because they are difficult to interpret. A blank value in the
Order table’s product fields could mean the customer did not want more than one or two
products on his or her order, the operator forgot to enter in all three products on the order,
or the customer canceled part of the order and the products were deleted by the operator.
It is impossible to be sure of the actual meaning of the nulls.

339900 CChhaapptteerr 99 Data Management Layer Design

IIn Your Turn 9-3, you created a design for the database
assuming that the database would be implemented using
an OODBMS that supported only single inheritance. And,
in Your Turn 9-4, you created a design for the database
assuming that the database would be implemented using

an ORDBMS that did not support any inheritance but did
support Object IDs, multivalued attributes, and stored
procedures. In this case, you should assume that the system
will be supported by an RDBMS. Using a class diagram,
draw the design for the database.

99--55 DDooccttoorr’’ss OOffffiiccee AAppppooiinnttmmeenntt SSyysstteemmYYOOUURR

TURN

c09DataManagementLayerDesign.qxd 11/28/11 10:37 AM Page 390

339911

Re
du

nd
an

t D
at

a
N

ul
l C

el
ls

Sa
m

pl
e

Re
co

rd
s:

O
rd

er

-O
rd

er
 N

um
be

r :
 u

ns
ig

ne
d

lo
ng

-D

at
e

: D
at

e
-C

us
t I

D
 :

un
si

gn
ed

 lo
ng

-L

as
t N

am
e

: S
tri

ng

-F
irs

t N
am

e
: S

tri
ng

-S

ta
te

 :
St

rin
g

-T
ax

 R
at

e
: f

lo
at

-P
ro

du
ct

 1
 N

um
be

r :
 u

ns
ig

ne
d

lo
ng

-P

ro
du

ct
 1

 D
es

c.
 :

St
rin

g
-P

ro
du

ct
 1

 P
ric

e
: d

ou
bl

e
-P

ro
du

ct
 1

 Q
ty

. :
 u

ns
ig

ne
d

lo
ng

-P
ro

du
ct

 2
 N

um
be

r :
 u

ns
ig

ne
d

lo
ng

-P

ro
du

ct
 2

 D
es

c.
 :

St
rin

g
-P

ro
du

ct
 2

 P
ric

e
: d

ou
bl

e
-P

ro
du

ct
 2

 Q
ty

. :
 u

ns
ig

ne
d

lo
ng

-P
ro

du
ct

 3
 N

um
be

r :
 u

ns
ig

ne
d

lo
ng

-P

ro
du

ct
 3

 D
es

c.
 :

St
rin

g
-P

ro
du

ct
 3

 P
ric

e
: d

ou
bl

e
-P

ro
du

ct
 3

 Q
ty

. :
 u

ns
ig

ne
d

lo
ng

 O
rd

er

C
us

t
La

st

Fi
rs

t

Ta

x
Pr

od
. 1

Pr

od
. 1

Pr

od
. 1

Pr

od
. 1

Pr

od
. 2

Pr

od
. 2

Pr

od
. 2

Pr

od
. 2

Pr

od
. 3

 P
ro

d.
 3

Pr
od

. 3

Pr
od

. 3

N
um

be
r

D
at

e
ID

N

am
e

N
am

e
St

at
e

Ra
te

N

um
be

r
D

es
c.

Pr

ic
e

Q
ty

.
N

um
be

r
D

es
c.

Pr

ic
e

Q
ty

.
N

um
be

r

 D
es

c.

Pr

ic
e

 Q

ty
.

 2

39

11
/2

3/
00

10

35

Bl
ac

k
Jo

hn

M
D

0.

05

55
5

C
he

es
e

Tr

ay

$4
5.

00

2

 2
60

11

/2
4/

00

10
35

Bl

ac
k

Jo
hn

M

D

0.
05

44

4
W

in
e

G
ift

 P
ac

k
$6

0.
00

1

 2

73

11
/2

7/
00

10

35

Bl
ac

k
Jo

hn

M
D

0.

05

22
2

Bo
ttl

e
O

pe
ne

r
$1

2.
00

1

 2

41

11
/2

3/
00

11

23

W
ill

ia
m

s
M

ar
y

CA

0.
08

44

4
W

in
e

G
ift

 P
ac

k
$6

0.
00

2

 2

62

11
/2

4/
00

11

23

W
ill

ia
m

s
M

ar
y

CA

0.
08

22

2
Bo

ttl
e

O
pe

ne
r

$1
2.

00

2

 2
87

11

/2
7/

00

11
23

W

ill
ia

m
s

M
ar

y
CA

0.

08

22
2

Bo
ttl

e
O

pe
ne

r
$1

2.
00

2

 2

90

11
/3

0/
00

11

23

W
ill

ia
m

s
M

ar
y

CA

0.
08

55

5
C

he
es

e

Tr
ay

$4

5.
00

3

 2

34

11
/2

3/
00

22

42

D
eB

er
ry

A

nn

D
C

0.

06
5

55
5

C
he

es
e

Tr

ay

$4
5.

00

2

 2
37

11

/2
3/

00

22
42

D

eB
er

ry

A
nn

D

C

0.
06

5
11

1
W

in
e

G
ui

de

$1
5.

00

1
44

4
W

in
e

G
ift

 P
ac

k
$6

0.
00

1

 2

38

11
/2

3/
00

22

42

D
eB

er
ry

A

nn

D
C

0.

06
5

44
4

W
in

e
G

ift
 P

ac
k

$6
0.

00

1

 2
45

11

/2
4/

00

22
42

D

eB
er

ry

A
nn

D

C

0.
06

5
22

2
Bo

ttl
e

O
pe

ne
r

$1
2.

00

1

 2
50

11

/2
4/

00

22
42

D

eB
er

ry

A
nn

D

C

0.
06

5
22

2
Bo

ttl
e

O
pe

ne
r

$1
2.

00

1

 2
52

11

/2
4/

00

22
42

D

eB
er

ry

A
nn

D

C

0.
06

5
22

2
Bo

ttl
e

O
pe

ne
r

$1
2.

00

1
44

4
W

in
e

G
ift

 P
ac

k
$6

0.
00

2

 2

53

11
/2

4/
00

22

42

D
eB

er
ry

A

nn

D
C

0.

06
5

22
2

Bo
ttl

e
O

pe
ne

r
$1

2.
00

1

44
4

W
in

e
G

ift
 P

ac
k

$6
0.

00

1

 2
97

11

/3
0/

00

22
42

D

eB
er

ry

A
nn

D

C

0.
06

5
33

3
Ja

m
s

&
 Je

lli
es

$2

0.
00

2

 2

43

11
/2

4/
00

42

54

Ba
ile

y
Ry

an

M
D

0.

05

55
5

C
he

es
e

Tr

ay

$4
5.

00

2

 2
46

11

/2
4/

00

42
54

Ba

ile
y

Ry
an

M

D

0.
05

33

3
Ja

m
s

&
 Je

lli
es

$2

0.
00

3

 2

48

11
/2

4/
00

42

54

Ba
ile

y
Ry

an

M
D

0.

05

22
2

Bo
ttl

e
O

pe
ne

r
$1

2.
00

1

33
3

Ja
m

s
&

 Je
lli

es

$2
0.

00

2
11

1

 W

in
e

G
ui

de

 $
15

.0
0

 1

 2

35

11
/2

3/
00

95

00

C
hi

n
A

pr
il

KS

0.
05

22

2
Bo

ttl
e

O
pe

ne
r

$1
2.

00

1

 2
42

11

/2
3/

00

95
00

C

hi
n

A
pr

il
KS

0.

05

33
3

Ja
m

s
&

 Je
lli

es

$2
0.

00

3

 2
44

11

/2
4/

00

95
00

C

hi
n

A
pr

il
KS

0.

05

22
2

Bo
ttl

e
O

pe
ne

r
$1

2.
00

2

 2

51

11
/2

4/
00

95

00

C
hi

n
A

pr
il

KS

0.
05

11

1
W

in
e

G
ui

de

$1
5.

00

2

FFII
GG

UU
RR

EE
99

--11
11

O
pt

im
iz

in
g

St
or

ag
e

c09DataManagementLayerDesign.qxd 11/8/11 3:20 PM Page 391

339922 CChhaapptteerr 99 Data Management Layer Design

For both these reasons—wasted storage space and data integrity threats—project teams
should remove redundancy and nulls from the table. During design, the class diagram is used
to examine the design of the RDBMS tables (e.g., see Figure 9-10) and optimize it for storage
efficiency. If you follow the modeling instructions and guidelines that were presented in
Chapter 5, you will have little trouble creating a design that is highly optimized in this way
because a well-formed logical data model does not contain redundancy or many null values.

Sometimes, however, a project team needs to start with a model that was poorly con-
structed or with one that was created for files or a nonrelational type of format. In these
cases, the project team should follow a series of steps that serve to check the model for stor-
age efficiency. These steps make up a process called normalization.10 Normalization is a
process whereby a series of rules are applied to the RDBMS tables to determine how well
they are formed (see Figure 9-12). These rules help analysts identify tables that are not
represented correctly. Here, we describe three normalization rules that are applied regularly
in practice. Figure 9-11 shows a model in 0 Normal Form, which is an unnormalized model
before the normalization rules have been applied.

A model is in first normal form (1NF) if it does not lead to multivalued fields, fields
that allow a set of values to be stored, or repeating fields, which are fields that repeat within
a table to capture multiple values. The rule for 1NF says that all tables must contain the
same number of columns (i.e., fields) and that all the columns must contain a single value.
Notice that the model in Figure 9-11 violates 1NF because it causes product number,

10 Normalization also can be performed on the problem domain layer. However, the normalization process should
be used on the problem domain layer only to uncover missing classes. Otherwise, optimizations that have nothing
to do with the semantics of the problem domain can creep into the problem domain layer.

Do any tables have repeating fields? Do some
records have a different number of columns
from other records?

Yes: Remove the repeating fields. Add a new
table that contains the fields that repeat.

No: The data model is in 1NF

0 Normal Form

Is the primary key made up of more than one
field? If so, do any fields depend on only a part
of the primary key?

Yes: Remove the partial dependency. Add a
new table that contains the fields that are
partially dependent.

No: The data model is in 2NF

Do any fields depend on another nonprimary
key field?

Yes: Remove the transitive dependency.
Add a new table that contains the fields
that are transitively dependent.

No: The data model is in 3NF

Third Normal Form

Second Normal Form

First Normal Form

FFIIGGUURREE 99--1122
The Steps of
Normalization

c09DataManagementLayerDesign.qxd 11/8/11 3:20 PM Page 392

Optimizing RDBMS-Based Object Storage 339933

description, price, and quantity to repeat three times for each order in the table. The result-
ing table has many records that contain nulls in the product-related columns, and orders
are limited to three products because there is no room to store information for more.

A much more efficient design (and one that conforms to 1NF) leads to a separate table
to hold the repeating information; to do this, we create a separate table on the model to
capture product order information. A zero-to-many relationship would then exist between
the two tables. As shown in Figure 9-13, the new design eliminates nulls from the Order
table and supports an unlimited number of products that can be associated with an order.

Second normal form (2NF) requires first that the data model is in 1NF and second that
the data model leads to tables containing fields that depend on a whole primary key. This
means that the primary key value for each record can determine the value for all the other
fields in the record. Sometimes fields depend on only part of the primary key (i.e., partial
dependency), and these fields belong in another table.

For example, in the new Product Order table that was created in Figure 9-13, the
primary key is a combination of the order number and product number, but the product
description and price attributes are dependent only upon product number. In other words,
by knowing product number, we can identify the product description and price. However,
knowledge of the order number and product number is required to identify the quantity.
To rectify this violation of 2NF, a table is created to store product information, and the
description and price attributes are moved into the new table. Now, product description is
stored only once for each instance of a product number as opposed to many times (every
time a product is placed on an order).

A second violation of 2NF occurs in the Order table: customer first name and last
name depend only upon the customer ID, not the whole key (Cust ID and Order number).
As a result, every time the customer ID appears in the Order table, the names also appear.
A much more economical way of storing the data is to create a Customer table with the
Customer ID as the primary key and the other customer-related fields (i.e., last name and
first name) listed only once within the appropriate record. Figure 9-14 illustrates how the
model would look when placed in 2NF.

Third normal form (3NF) occurs when a model is in both 1NF and 2NF and, in the
resulting tables, none of the fields depend on nonprimary key fields (i.e., transitive depen-
dency). Figure 9-14 contains a violation of 3NF: the tax rate on the order depends upon the
state to which the order is being sent. The solution involves creating another table that con-
tains state abbreviations serving as the primary key and the tax rate as a regular field.
Figure 9-15 presents the end results of applying the steps of normalization to the original
model from Figure 9-11.

SSuppose that you have been asked to build a system that
tracks student involvement in activities around campus.
You have been given a file with information that needs to
be imported into the system, and the file contains the
following fields:

student social security number activity 1 start date
student last name activity 2 code

student first name activity 2 description
student advisor name activity 2 start date
student advisor phone activity 3 code
activity 1 code activity 3 description
activity 1 description activity 3 start date

Normalize the file. Show how the logical data model
would change at each step.

99--66 NNoorrmmaalliizziinngg aa SSttuuddeenntt AAccttiivviittyy FFiilleeYYOOUURR

TURN

c09DataManagementLayerDesign.qxd 11/8/11 3:20 PM Page 393

339944 CChhaapptteerr 99 Data Management Layer Design

Order

-Order Number : unsigned long
-Date : Date
-Cust ID : unsigned long
-Last Name : String
-First Name : String
-State : String
-Tax Rate : float

Product Order

-Order Number : unsigned long
-Product Number : String
-Product Desc : String
-Product Price : double
-Product Qty : unsigned long

Revised Model:

0..* 1..*

Note: Order Number will serve as part
of the primary key of Product Order

Note: Product Number will serve as part
of the primary key of Product Order

Note: Order Number also will serve as a
foreign key in Product Order

Note: Order Number will serve as part
of the primary key of Order

Note: Cust ID also will serve as part of
the primary key of Order

(a)

Sample Records:

Order Table

Order 248 has 3 products

Order 237 has 2 products

 Order Cust Last First Tax
 Number Date ID Name Name State Rate

 239 11/23/00 1035 Black John MD 0.05
 260 11/24/00 1035 Black John MD 0.05
 273 11/27/00 1035 Black John MD 0.05
 241 11/23/00 1123 Williams Mary CA 0.08
 262 11/24/00 1123 Williams Mary CA 0.08
 287 11/27/00 1123 Williams Mary CA 0.08
 290 11/30/00 1123 Williams Mary CA 0.08
 234 11/23/00 2242 DeBerry Ann DC 0.065
 237 11/23/00 2242 DeBerry Ann DC 0.065
 238 11/23/00 2242 DeBerry Ann DC 0.065
 245 11/24/00 2242 DeBerry Ann DC 0.065
 250 11/24/00 2242 DeBerry Ann DC 0.065
 252 11/24/00 2242 DeBerry Ann DC 0.065
 253 11/24/00 2242 DeBerry Ann DC 0.065
 297 11/30/00 2242 DeBerry Ann DC 0.065
 243 11/24/00 4254 Bailey Ryan MD 0.05
 246 11/24/00 4254 Bailey Ryan MD 0.05
 248 11/24/00 4254 Bailey Ryan MD 0.05
 235 11/23/00 9500 Chin April KS 0.05
 242 11/23/00 9500 Chin April KS 0.05
 244 11/24/00 9500 Chin April KS 0.05
 251 11/24/00 9500 Chin April KS 0.05

Product Order Table

 Order Product Product Product Product
 Number Number Desc Price Qty

 239 555 Cheese Tray $45.00 2
 260 444 Wine Gift Pack $60.00 1
 273 222 Bottle Opener $12.00 1
 241 444 Wine Gift Pack $60.00 2
 262 222 Bottle Opener $12.00 2
 287 222 Bottle Opener $12.00 2
 290 555 Cheese Tray $45.00 3
 234 555 Cheese Tray $45.00 2
 237 111 Wine Guide $15.00 1
 237 444 Wine Gift Pack $60.00 1
 238 444 Wine Gift Pack $60.00 1
 245 222 Bottle Opener $12.00 1
 250 222 Bottle Opener $12.00 1
 252 222 Bottle Opener $12.00 1
 252 444 Wine Gift Pack $60.00 2
 253 222 Bottle Opener $12.00 1
 253 444 Wine Gift Pack $60.00 1
 297 333 Jams & Jellies $20.00 2
 243 555 Cheese Tray $45.00 2
 246 333 Jams & Jellies $20.00 3
 248 222 Bottle Opener $12.00 1
 248 333 Jams & Jellies $20.00 2
 248 111 Wine Guide $15.00 1
 235 222 Bottle Opener $12.00 1
 242 333 Jams & Jellies $20.00 3
 244 222 Bottle Opener $12.00 2
 251 111 Wine Guide $15.00 2

(b)

FFIIGGUURREE 99--1133 1NF: Remove Repeating Fields

c09DataManagementLayerDesign.qxd 11/8/11 3:20 PM Page 394

Optimizing RDBMS-Based Object Storage 339955

Customer

-Cust ID : unsigned long
-Last Name : String
-First Name : String

Order

-Order Number : unsigned long
-Date : Date
-Cust ID : unsigned long
-State : String
-Tax Rate : float

Product Order

-Order Number : unsigned long
-Product Number : unsigned long
-Qty : unsigned long

Product

-Product Number : unsigned long
-Product Desc : String
-Price : double1..1 0..*

1..*0..*

Sample Records:

Customer Table

 Cust Last First
 ID Name Name

 1035 Black John
 1123 Williams Mary
 2242 DeBerry Ann
 4254 Bailey Ryan
 9500 Chin April

Product Table

 Product Product Product
Number Desc Price

 111 Wine Guide $15.00
 222 Bottle Opener $12.00
 333 Jams & Jellies $20.00
 444 Wine Gift Pack $60.00
 555 Cheese Tray $45.00

Product Order Table

 Order Product Product
Number Number Qty

 239 555 2
 260 444 1
 273 222 1
 241 444 2
 262 222 2
 287 222 2
 290 555 3
 234 555 2
 237 111 1
 237 444 1
 238 444 1
 245 222 1
 250 222 1
 252 222 1
 252 444 2
 253 222 1
 253 444 1
 297 333 2
 243 555 2
 246 333 3
 248 222 1
 248 333 2
 248 111 1
 235 222 1
 242 333 3
 244 222 2
 251 111 2

Order Table

 Order Cust
Number Date ID State

 239 11/23/00 1035 MD
 260 11/24/00 1035 MD
 273 11/27/00 1035 MD
 241 11/23/00 1123 CA
 262 11/24/00 1123 CA
 287 11/27/00 1123 CA
 290 11/30/00 1123 CA
 234 11/23/00 2242 DC
 237 11/23/00 2242 DC
 238 11/23/00 2242 DC
 245 11/24/00 2242 DC
 250 11/24/00 2242 DC
 252 11/24/00 2242 DC
 253 11/24/00 2242 DC
 297 11/30/00 2242 DC
 243 11/24/00 4254 MD
 246 11/24/00 4254 MD
 248 11/24/00 4254 MD
 235 11/23/00 9500 KS
 242 11/23/00 9500 KS
 244 11/24/00 9500 KS
 251 11/24/00 9500 KS

Note: Order Number will
serve as part of the
primary key of Product
Order.

Note: Order Number also
will serve as a foreign key
in Product Order.

Note: Product Number
will serve as part of the
primary key in Product
Order.

Note: Product Number
also will serve as a foreign
key in Product Order.

Note: Product Number will
serve as part of the primary
key of Product Order.

Note: Order Number will serve
as the primary key of Order.
Note: Cust ID will serve as a
foreign key in Order.

Note: Cust ID will serve
as the primary key of
Customer.

Product Desc and Price
was moved to the Product
table to eliminate
redundancy

Last Name and First
Name was moved
to the Customer
table to eliminate
redundancy

Tax
Rate

0.05
0.05
0.05

0.05
0.05
0.05
0.05
0.05
0.05
0.05

0.08
0.08
0.08
0.08

0.065
0.065
0.065
0.065
0.065
0.065
0.065
0.065

FFIIGGUURREE 99--1144 2NF Partial Dependencies Removed

c09DataManagementLayerDesign.qxd 11/8/11 3:20 PM Page 395

Optimizing Data Access Speed
After you have optimized the design of the object storage for efficiency, the end result is
that data are spread out across a number of tables. When data from multiple tables need to
be accessed or queried, the tables must be first joined. For example, before a user can print
out a list of the customer names associated with orders, first the Customer and Order tables
need to be joined, based on the customer number field (see Figure 9-15). Only then can
both the order and customer information be included in the query’s output. Joins can take
a lot of time, especially if the tables are large or if many tables are involved.

Consider a system that stores information about 10,000 different products, 25,000 cus-
tomers, and 100,000 orders, each averaging three products per order. If an analyst wanted
to investigate whether there were regional differences in music preferences, he or she would
need to combine all the tables to be able to look at products that have been ordered while
knowing the state of the customers placing the orders. A query of this information would
result in a huge table with 300,000 rows (i.e., the number of products that have been
ordered) and 11 columns (the total number of columns from all of the tables combined).

The project team can use several techniques to try to speed up access to the data,
including denormalization, clustering, and indexing.

Denormalization After the object storage is optimized, the project team may decide to
denormalize, or add redundancy back into the design. Denormalization reduces the num-
ber of joins that need to be performed in a query, thus speeding up access. Figure 9-16
shows a denormalized model for customer orders. The customer last name was added back
into the Order table because the project team learned during analysis that queries about
orders usually require the customer last name field. Instead of joining the Order table

339966 CChhaapptteerr 99 Data Management Layer Design

Customer

-Cust ID : unsigned long
-Last Name : String
-First Name : String

State

-State : String
-Tax Rate : float

Order

-Order Number : unsigned long
-Date : Date
-Cust ID : unsigned long
-State : String

Product Order

-Order Number : unsigned long
-Product Number : unsigned long
-Qty : unsigned long

Product

-Product Number : unsigned long (idl)
-Product Desc : String
-Price : double1..1

0..*

1..1

0..*

1..*0..*

FFIIGGUURREE 99--1155 3NF Normalized Field

c09DataManagementLayerDesign.qxd 11/8/11 3:20 PM Page 396

Optimizing RDBMS-Based Object Storage 339977

repeatedly to the Customer table, the system now needs to access only the Order table
because it contains all of the relevant information.

Denormalization should be applied sparingly for the reasons described in the previous
section, but it is ideal in situations in which information is queried frequently but updated
rarely. There are three cases in which you may rely upon denormalization to reduce joins and
improve performance. First, denormalization can be applied in the case of look-up tables,
which are tables that contain descriptions of values (e.g., a table of product descriptions or a
table of payment types). Because descriptions of codes rarely change, it may be more efficient
to include the description along with its respective code in the main table to eliminate the
need to join the look-up table each time a query is performed (see Figure 9-17a).

Second, one-to-one relationships are good candidates for denormalization. Although
logically two tables should be separated, from a practical standpoint the information from
both tables may regularly be accessed together. Think about an order and its shipping infor-
mation. Logically, it might make sense to separate the attributes related to shipping into a
separate table, but as a result the queries regarding shipping will probably always need a join
to the Order table. If the project team finds that certain shipping information, such as state
and shipping method, are needed when orders are accessed, they may decide to combine the
tables or include some shipping attributes in the Order table (see Figure 9-17b).

Third, at times it is more efficient to include a parent entity’s attributes in its child
entity on the physical data model. For example, consider the Customer and Order tables in
Figure 9-16, which share a one-to-many relationship, with Customer as the parent and
Order as the child. If queries regarding orders continuously require customer information,
the most popular customer fields can be placed in Order to reduce the required joins to the
Customer table, as was done with Customer Last Name.

Customer

-Cust ID (PK) : unsigned long
-Last Name : String
-First Name : String

Order

-Order Number (PK) : unsigned long
-Date : Date
-State (FK) : String
-Cust ID (FK) : unsigned long
-Customer Last Name : String

1..1 1..*

Last name is now in both classes

FFIIGGUURREE 99--1166
Denormalized Physical
Data Model

CConsider the logical data model that you created for Your
Turn 9-3. Examine the model and describe possible
opportunities for denormalization. How would you

change the physical data model for this file, and what are
the benefits of your changes?

99--77 DDeennoorrmmaalliizziinngg aa SSttuuddeenntt AAccttiivviittyy FFiilleeYYOOUURR

TURN

Clustering Speed of access also is influenced by the way that the data are retrieved. Think
about shopping in a grocery store. If you have a list of items to buy but you are unfamiliar
with the store’s layout, you need to walk down every aisle to make sure that you don’t miss

c09DataManagementLayerDesign.qxd 11/8/11 3:20 PM Page 397

anything from your list. Likewise, if records are arranged on a hard disk in no particular
order (or in an order that is irrelevant to your data needs), then any query of the records
results in a table scan in which the DBMS has to access every row in the table before retriev-
ing the result set. Table scans are the most inefficient of data retrieval methods.

One way to improve access speed is to reduce the number of times that the storage
medium needs to be accessed during a transaction. One method is to cluster records
together physically so that similar records are stored close together. With intrafile clustering,
like records in the table are stored together in some way, such as in order by primary key
or, in the case of a grocery store, by item type. Thus, whenever a query looks for records, it
can go directly to the right spot on the hard disk (or other storage medium) because it
knows in what order the records are stored, just as we can walk directly to the bread aisle
to pick up a loaf of bread. Interfile clustering combines records from more than one table
that typically are retrieved together. For example, if customer information is usually
accessed with the related order information, then the records from the two tables may be
physically stored in a way that preserves the customer-order relationship. Returning to the
grocery store scenario, an interfile cluster would be similar to storing peanut butter, jelly,
and bread next to each other in the same aisle because they are usually purchased together,
not because they are similar types of items. Of course, each table can have only one clus-
tering strategy because the records can be arranged physically in only one way.

339988 CChhaapptteerr 99 Data Management Layer Design

Shipment

-Shipment ID (PK) : unsigned long
-Shipment Street Address : String
-Shipment City : String
-Shipment State : String
-Shipment Zip Code : String
-Shipment Method : String

Order

-Order: Number (PK) : unsigned long
-Date : Date
-State (FK) : String
-Cust ID (FK) : unsigned long
-Customer Last Name : String
-Payment Type (FK) : unsigned long
-Payment Description : String
-Shipment ID (FK) : unsigned long
-Shipment State : String
-Shipment Method : String

Order

-Order : Number (PK) : unsigned long
-Date : Date
-State (FK) : String
-Cust ID (FK) : unsigned long
-Customer Last Name : String
-Payment Type (FK) : unsigned long
-Payment Description : String

1..1 1..1

1..1 0..*

Notice that the payment description field
appears in both Payment Type and Order.

(a)

Notice that the shipment state and shipment method
are included in both Shipment and Order.

(b)

Payment Type

-Payment Type (PK) : String
-Payment Description : String

FFIIGGUURREE 99--1177
Denormalization
Situations (FK, foreign
key; PK, primary key)

c09DataManagementLayerDesign.qxd 11/8/11 3:20 PM Page 398

Optimizing RDBMS-Based Object Storage 339999

Indexing A familiar time saver is an index located in the back of a textbook, which points
directly to the page or pages that contain a topic of interest. Think of how long it would
take to find all the times that relational database appears in this textbook without the index
to rely on! An index in data storage is like an index in the back of a textbook; it is a
minitable that contains values from one or more columns in a table and the location of the
values within the table. Instead of paging through the entire textbook, we can move directly
to the right pages and get the information we need. Indexes are one of the most important
ways to improve database performance. Whenever there are performance problems, the
first place to look is an index.

A query can use an index to find the locations of only those records that are included
in the query answer, and a table can have an unlimited number of indexes. Figure 9-18
shows an index that orders records by payment type. A query that searches for all the cus-
tomers who used American Express can use this index to find the locations of the records
that contain American Express as the payment type without having to scan the entire
Order table.

Project teams can make indexes perform even faster by placing them into the main
memory of the data storage hardware. Retrieving information from memory is much
faster than from another storage medium, such as a hard disk—think about how much
faster it is to retrieve a memorized phone number versus one that must be looked up in a
phone book. Similarly, when a database has an index in memory, it can locate records very,
very quickly.

Order

 Order Cust Payment
 Number Date ID Amount Tax Total Type

 234 11/23/00 2242 $ 90.00 $5.85 $ 95.85 MC
 235 11/23/00 9500 $ 12.00 $0.60 $ 12.60 VISA
 236 11/23/00 1556 $ 50.00 $2.50 $ 52.50 VISA
 237 11/23/00 2242 $ 75.00 $4.88 $ 79.88 AMEX
 238 11/23/00 2242 $ 60.00 $3.90 $ 63.90 MC
 239 11/23/00 1035 $ 90.00 $4.50 $ 94.50 AMEX
 240 11/23/00 9501 $ 50.00 $2.50 $ 52.50 VISA
 241 11/23/00 1123 $ 120.00 $9.60 $ 129.60 MC
 242 11/24/00 9500 $ 60.00 $3.00 $ 63.00 VISA
 243 11/24/00 4254 $ 90.00 $4.50 $ 94.50 VISA
 244 11/24/00 9500 $ 24.00 $1.20 $ 25.20 VISA
 245 11/24/00 2242 $ 12.00 $0.78 $ 12.78 AMEX
 246 11/24/00 4254 $ 20.00 $1.00 $ 21.00 MC
 247 11/24/00 2241 $ 50.00 $2.50 $ 52.50 VISA
 248 11/24/00 4254 $ 12.00 $0.60 $ 12.60 AMEX
 249 11/24/00 5927 $ 50.00 $2.50 $ 52.50 AMEX
 250 11/24/00 2242 $ 12.00 $0.78 $ 12.78 MC
 251 11/24/00 9500 $ 15.00 $0.75 $ 15.75 MC
 252 11/24/00 2242 $ 132.00 $8.58 $ 140.58 MC
 253 11/24/00 2242 $ 72.00 $4.68 $ 76.68 AMEX

Payment Type Index

 Payment
 Type Pointer

 AMEX *
 AMEX *
 AMEX *
 AMEX *
 AMEX *
 AMEX *
 MC *
 MC *
 MC *
 MC *
 MC *
 MC *
 MC *
 VISA *
 VISA *
 VISA *
 VISA *
 VISA *
 VISA *
 VISA *
 VISA *

FFIIGGUURREE 99--1188 Payment Type Index

c09DataManagementLayerDesign.qxd 11/8/11 3:20 PM Page 399

Of course, indexes require overhead in that they take up space on the storage
medium. Also, they need to be updated as records in tables are inserted, deleted, or
changed. Thus, although queries lead to faster access to the data, they slow down the
update process. In general, we should create indexes sparingly for transaction systems or
systems that require a lot of updates, but we should apply indexes generously when
designing systems for decision support (see Figure 9-19).

440000 CChhaapptteerr 99 Data Management Layer Design

AA Virginia-based mail-order company sends out approxi-
mately 25 million catalogs each year using a Customer
table with 10 million names. Although the primary key of
the Customer table is customer identification number, the
table also contains an index of Customer Last Name.
Most people who call to place orders remember their last
name, not their customer identification number, so this
index is used frequently.

An employee of the company explained that indexes
are critical to reasonable response times. A fairly compli-
cated query was written to locate customers by the state

in which they lived, and it took more than three weeks to
return an answer. A customer state index was created, and
that same query provided a response in twenty minutes:
that’s 1,512 times faster!

QQuueessttiioonn

As an analyst, how can you make sure that the proper
indexes have been put in place so that users are not
waiting for weeks to receive the answers to their
questions?

99--AA MMaaiill--OOrrddeerr IInnddeexxCCOONNCCEEPPTTSS

IN ACTION

Use indexes sparingly for transaction systems.
Use many indexes to increase response times in decision support systems.
For each table, create a unique index that is based on the primary key.
For each table, create an index that is based on the foreign key to improve the performance of joins.
Create an index for fields that are used frequently for grouping, sorting, or criteria.

FFIIGGUURREE 99--1199
Guidelines for
Creating Indexes

Estimating Data Storage Size
Even if we have denormalized our physical data model, clustered records, and created
indexes appropriately, the system will perform poorly if the database server cannot
handle its volume of data. Therefore, one last way to plan for good performance is to apply
volumetrics, which means estimating the amount of data that the hardware will need to
support. You can incorporate your estimates into the database server hardware specification
to make sure that the database hardware is sufficient for the project’s needs. The size of the
database is based on the amount of raw data in the tables and the overhead requirements
of the DBMS. To estimate size you will need to have a good understanding of the initial
size of your database as well as its expected growth rate over time.

Raw data refers to all the data that are stored within the tables of the database, and it
is calculated based on a bottom-up approach. First, write down the estimated average
width for each column (field) in the table and sum the values for a total record size (see
Figure 9-20). For example, if a variable-width Last Name column is assigned a width of 20
characters, you can enter 13 as the average character width of the column. In Figure 9-20,
the estimated record size is 49.

Next, calculate the overhead for the table as a percentage of each record. Overhead
includes the room needed by the DBMS to support such functions as administrative

c09DataManagementLayerDesign.qxd 11/8/11 3:20 PM Page 400

Designing Data Access and Manipulation Classes 440011

actions and indexes, and it should be assigned
based on past experience, recommendations
from technology vendors, or parameters that are
built into software that was written to calculate
volumetrics. For example, your DBMS vendor
might recommend that you allocate 30 percent
of the records’ raw data size for overhead storage
space, creating a total record size of 63.7 in the
Figure 9-20 example.

Finally, record the number of initial records
that will be loaded into the table, as well as the
expected growth per month. This information
should have been collected during analysis.
According to Figure 9-20, the initial space
required by the first table is 3,185,000, and
future sizes can be project based on the growth
figure. These steps are repeated for each table to
get a total size for the entire database.

Many CASE tools provide you with database-size information based on how you set up
the object persistence, and they calculate volumetrics estimates automatically. Ultimately, the
size of the database needs to be shared with the design team so that the proper technology
can be put in place to support the system’s data and potential performance problems can be
addressed long before they affect the success of the system.

Order Number 8
Date 7
Cust ID 4
Last Name 13
First Name 9
State 2
Amount 4
Tax Rate 2
Record Size 49
Overhead 30%
Total Record Size 63.7

Initial Table Size 50,000
Initial Table Volume 3,185,000

Growth Rate/Month 1,000
Table Volume @ 3 years 5,478,200

FFIIGGUURREE 99--2200
Calculating
Volumetrics

MMany companies are undergoing server virtualization.
This is the concept of putting multiple virtual servers onto
one physical device. The payoffs can be significant: fewer
servers, less electricity, less generated heat, less air condi-
tioning, less infrastructure and administration costs;
increased flexibility; less physical presence (i.e., smaller
server rooms), faster maintenance of servers, and more.
There are (of course) costs—such as licensing the virtual-
ization software, labor costs in establishing the virtual
servers onto a physical device, and labor costs in updat-
ing tables and access. But, determining the Return on
Investment can be a challenge. Some companies have

lost money on server virtualization, but most would say
they have gained a positive return on investment with vir-
tualization but have not really quantified the results.

QQuueessttiioonnss

11.. How might a company really determine the return
on investment for server virtualization?

22.. Would server virtualization impact the amount of
data storage required? Why or why not?

33.. Is this a project that a systems analyst might be
involved in? Why or why not?

99--BB RReettuurrnn oonn IInnvveessttmmeenntt ffrroomm VViirrttuuaalliizzaattiioonn——AA HHaarrdd FFaaccttoorr ttoo DDeetteerrmmiinneeCCOONNCCEEPPTTSS

IN ACTION

DESIGNING DATA ACCESS AND MANIPULATION CLASSES
The final step in developing the data management layer is to design the data access and
manipulation classes that act as a translator between the object persistence and the problem
domain objects. Thus they should always be capable of at least reading and writing both
the object persistence and problem domain objects. As described earlier and in Chapter 8,

FFiieelldd AAvveerraaggee SSiizzee

c09DataManagementLayerDesign.qxd 12/2/11 7:20 PM Page 401

the object persistence classes are derived from the concrete problem domain classes,
whereas the data access and manipulation classes depend on both the object persistence
and problem domain classes.

Depending on the application, a simple rule to follow is that there should be one
data access and manipulation class for each concrete problem domain class. In some
cases, it might make sense to create data access and manipulation classes associated
with the human–computer interaction classes (see Chapter 10). However, this creates
a dependency from the data management layer to the human–computer interaction
layer. Adding this additional complexity to the design of the system normally is not
recommended.

Returning to the ORDBMS solution for the Appointment system example (see
Figure 9-8), we see that we have four problem domain classes and four ORDBMS tables.
Following the previous rule, the DAM classes are rather simple. They have to support
only a one-to-one translation between the concrete problem domain classes and the
ORDBMS tables (see Figure 9-21). Because the Participant problem domain class is an
abstract class, only three data access and manipulation classes are required: Patient-
DAM, Symptom-DAM, and Appointment-DAM. However, the process to create an
instance of the Patient problem domain class can be fairly complicated. The Patient-
DAM class might have to be able to retrieve information from all four ORDBMS tables.
To accomplish this, the Patient-DAM class retrieves the information from the Patient
table. Using the Object-IDs stored in the attribute values associated with the Participant,
Appts, and Symptoms attributes, the remaining information required to create an
instance of Patient is easily retrieved by the Patient-DAM class.

In the case of using an RDBMS to provide persistence, the data access and manip-
ulation classes tend to become more complex. For example, in the Appointment system,
there are still four problem domain classes, but, owing to the limitations of RDBMSs,
we have to support six RDBMS tables (see Figure 9-10). The data access and manipula-
tion class for the Appointment problem domain class and the Appointment RDBMS
table is no different from those supported for the ORDBMS solution (see Figures 9-21
and 9-22). However, owing to the multivalued attributes and relationships associated
with the Patient and Symptom problem domain classes, the mappings to the RDBMS
tables were more complicated. Consequently, the number of dependencies from the
data access and manipulation classes (Patient-DAM and Symptom-DAM) to the
RDBMS tables (Patient table, Insurance Carrier table, Suffer table, and the Symptom
table) has increased. Furthermore, because the Patient problem domain class is associ-
ated with the other three problem domain classes, the actual retrieval of all information
necessary to create an instance of the Patient class could involve joining information
from all six RDBMS tables. To accomplish this, the Patient-DAM class must first retrieve
information from the Patient table, Insurance Carrier table, Suffer table, and the
Appointment table. Because the primary key of the Patient table and the Participant
table are identical, the Patient-DAM class can either directly retrieve the information
from the Participant table, or the information can be joined using the participantNumber
attributes of the two tables, which act as both primary and foreign keys. Finally, using
the information contained in the Suffer table, the information in the Symptom table
can also be retrieved. Obviously, the farther we get from the object-oriented problem
domain class representation, the more work must be performed. However, as in the
case of the ORDBMS example, notice that absolutely no modifications were made to
the problem domain classes. Therefore, the data access and manipulation classes again
have prevented data management functionality from creeping into the problem domain
classes.

440022 CChhaapptteerr 99 Data Management Layer Design

c09DataManagementLayerDesign.qxd 12/2/11 8:31 PM Page 402

440033

O
RD

BM
S

Ta
bl

es
Pr

ob
le

m
 D

om
ai

n
C

la
ss

es
D

at
a

A
cc

es
s

an
d

M
an

ag
em

en
t C

la
ss

es

Pa
rt

ic
ip

an
t T

ab
le

-la
st

na
m

e[
1.

.1
]

-fi
rs

tn
am

e[
1.

.1
]

-a
dd

re
ss

[1
..1

]
-p

ho
ne

[1
..1

]
-b

irt
hd

at
e[

1.
.1

]
-S

ub
C

la
ss

O
bj

ec
ts

[1
..1

]

Pa
tie

nt
-D

A
M

+R
ea

dP
at

ie
nt

Ta
bl

e(
)

+W
rit

eP
at

ie
nt

Ta
bl

e(
)

+R
ea

dP
at

ie
nt

()
+W

rit
eP

at
ie

nt
()

Sy
m

pt
om

-D
A

M

+R
ea

dS
ym

pt
om

Ta
bl

e(
)

+W
rit

eS
ym

pt
om

Ta
bl

e(
)

+R
ea

dS
ym

pt
om

()
+W

rit
eS

ym
pt

om
()

A
pp

oi
nt

m
en

t-
D

A
M

+R
ea

dA
pp

tT
ab

le
()

+W
rit

eA
pp

tT
ab

le
()

+R
ea

dA
pp

t()

+W
rit

eA
pp

t()

Pa
tie

nt
 T

ab
le

-a
m

ou
nt

[1
..1

]
-P

ar
tic

ip
an

t[1
..1

]
-A

pp
ts

[0
..*

]
-S

ym
pt

om
s[

1.
.*

]
-in

su
ra

nc
e

ca
rr

ie
r[

0.
.*

]
-P

rim
ar

y
In

su
ra

nc
e

C
ar

rie
r[

0.
.*

]

Sy
m

pt
om

 T
ab

le

-n
am

e[
1.

.1
]

-P
at

ie
nt

s[
0.

.*
]

A
pp

oi
nt

m
en

t T
ab

le

-P
at

ie
nt

[1
..1

]
-ti

m
e[

1.
.1

]
-d

at
e[

1.
.1

]
-r

ea
so

n[
1.

.1
]

1.
.1

1.
.1

0.
.*

0.

.*

0.
.*

0.

.*

0.
.*

1

1

1.
.*

1.
.*

0.
.*

1

1

su
ffe

rs

sc
he

du
le

s

A
pp

oi
nt

m
en

t

-ti
m

e
-d

at
e

-r
ea

so
n

+c
an

ce
l w

ith
ou

t n
ot

ic
e(

)

Pa
tie

nt

-a
m

ou
nt

-in

su
ra

nc
e

ca
rr

ie
r

+m
ak

e
ap

po
in

tm
en

t()

+c
al

cu
la

te
 la

st
 v

is
it(

)
+c

ha
ng

e
st

at
us

()
+p

ro
vi

de
s

m
ed

ic
al

 h
is

to
ry

()

Pa
rt

ic
ip

an
t

-la
st

na
m

e
-fi

rs
tn

am
e

-a
dd

re
ss

-p

ho
ne

-b

irt
hd

at
e

-/
ag

e

Sy
m

pt
om

-n
am

e

+
pr

im
ar

y
in

su
ra

nc
e

ca
rr

ie
r

FFII
GG

UU
RR

EE
99

--22
11

M
an

ag
in

g
Pr

ob
le

m
 D

om
ai

n
O

bj
ec

ts
 to

 O
RD

BM
S

us
in

g
D

A
M

 C
la

ss
es

c09DataManagementLayerDesign.qxd 11/8/11 3:20 PM Page 403

440044 CChhaapptteerr 99 Data Management Layer Design

RDBMS Tables Problem Domain ClassesData Acces and
Management Classes

Participant Table

-lastname[1..1]
-firstname[1..1]
-address[1..1]
-phone[1..1]
-birthdate[1..1]
-participantNumber[1..1]

Patient-DAM

+ReadPatientTable()
+WritePatientTable()
+ReadInsuranceCarrierTable()
+WriteInsuranceCarrierTable()
+ReadSufferTable()
+WriteSufferTable()
+ReadApptTable()
+WriteApptTable()
+ReadPatient()
+WritePatient()

Symptom-DAM

+ReadSymptomTable()
+WriteSymptomTable()
+ReadSufferTable()
+WriteSufferTable()
+ReadSymptom()
+WriteSymptom()

Appointment-DAM

+ReadApptTable()
+WriteApptTable()
+ReadAppt()
+WriteAppt()

Patient Table

-amount[1..1]
-participantNumber[1..1]
-primaryInsuranceCarrier[0..1]

Appointment Table

-time[1..1]
-date[1..1]
-reason[1..1]
-personNumber[1..1]

1..1

1..1

1..1

0..* 0..*

0..*

1

1

1..1

1..*

Symptom Table

-name[1..1]

Suffer Table

-participantNumber[1..1]
-name[1..1]

Insurance Carrier Table

-name[1..1]
-participantNumber[1..1]

1..*

+ primary
insurance
carrier

0..*

0..*

1..1

1..1

1..1

0..*

Symptom

-name

Appointment

-time
-date
-reason

+cancel without notice()Patient

-amount
-insurance carrier
+make appointment()
+calculate last visit()
+change status()
+provides medical history()

Participant

-lastname
-firstname
-address
-phone
-birthdate
-/ age

suffers

schedules

FFIIGGUURREE 99--2222 Mapping Problem Domain Objects to RDBMS using DAM Classes

One specific approach that has been suggested to support the implementation of data
access and manipulation classes is to use an object-relational mapping library such as
Hibernate.11 Hibernate developed within the JBoss community, allows the mapping of
objects written in Java that are to be stored in an RDBMS. Instead of using an object-
oriented programming language to implement the data access and manipulation classes,
with Hibernate, they are implemented in XML files that contain the mapping. As in the
above approach, modeling the mapping in an XML file prevents the details on data access
and manipulation from sneaking into the problem domain representation.

11 For more information on Hibernate, see www.hibernate.org/.

c09DataManagementLayerDesign.qxd 11/8/11 3:20 PM Page 404

Nonfunctional Requirements and Data Management Layer Design 440055

NONFUNCTIONAL REQUIREMENTS AND DATA
MANAGEMENT LAYER DESIGN12

Recall that nonfunctional requirements refer to behavioral properties that the system must
have. These properties include issues related to performance, security, ease of use, opera-
tional environment, and reliability. In this text, we have grouped nonfunctional require-
ments into four categories: operational, performance, security, and cultural and political
requirements. We describe each of these in relation to the data management layer.

The operational requirements for the data management layer include issues that deal
with the technology being used to support object persistence. However, the choice of the
hardware and operating system limits the choice of the technology and format of the object
persistence available. This is especially true when you consider mobile computing. Given
the limited memory and storage available on these devices, the choices to support object
persistence are limited. One possible choice to support object persistence that works both
on Google’s Android and Apple’s iOS-based platforms is SQLite. SQLite is a lightweight
version of SQL that supports RDBMS. However, there are many different approaches to
support object persistence that are more platform dependent; for example, Android sup-
ports storing objects with shared preferences (a key-value pair-based NoSQL approach),
internal storage, on an SD card, in a local cache, or on a remote system. This, in turn,
determines which set of the mapping rules described earlier will have to be used. Another
operational requirement could be the ability to import and export data using XML. Again,
this could limit the object stores under consideration.

The primary performance requirements that affect the data management layer are speed
and capacity. As described before, depending on the anticipated—and, afterwards, actual—
usage patterns of the objects being stored, different indexing and caching approaches may be
necessary. When considering distributing objects over a network, speed considerations can
cause objects to be replicated on different nodes in the network. Thus multiple copies of the
same object may be stored in different locations on the network. This raises the issue of
update anomalies described before in conjunction with normalization. Depending on the
application being built, NoSQL data stores that support an eventually consistent update
model may be appropriate. Also, depending on the estimated size and growth of the system,
different DBMSs may need to be considered. An additional requirement that can affect the
design of the data management layer deals with the availability of the objects being stored. It
might make sense to limit the availability to different objects based on the time of day. For
example, one class of users may be allowed to access a set of objects only from 8 to 12 in
the morning and a second set of users may be able to access them only from 1 to 5 in the after-
noon. Through the DBMS, these types of restrictions could be set.

The security requirements deal primarily with access controls, encryption, and backup.
Through a modern DBMS, different types of access can be set (e.g., Read, Update, or Delete)
granting access only to users (or class of users) who have been authorized. Furthermore,
access control can be set to guarantee that only users with “administrator” privileges are
allowed to modify the object storage schema or access controls. Encryption requirements
on this layer deal with whether the object should be stored in an encrypted format or not.
Even though encrypted objects are more secure than unencrypted objects, the process of
encrypting and decrypting the objects will slow down the system. Depending on the physical
architecture being used, the cost of encryption may be negligible. For example, if we plan on
encrypting the objects before transmitting them over a network, there may be no additional
cost of storing them in the encrypted format. Backup requirements deal with ensuring that

12 Because the vast majority of nonfunctional requirements affect the physical architecture layer, we provide
additional details in Chapter 11.

c09DataManagementLayerDesign.qxd 11/8/11 3:20 PM Page 405

the objects are routinely copied and stored in case the object store becomes corrupted or
unusable. Having a backup copy made on a periodic basis and storing the updates that have
occurred since the last backup copy was made ensures that the updates are not lost and the
object store can be reconstituted by running the copies of the updates against the backup
copy to create a new current copy.

The only political and cultural requirements that can affect the data management
layer deal with how the detailed format of the data is to be stored. For example, in what
format should a date be stored? Or how many characters should be allocated for a last
name field that is part of an Employee object? There could be a corporate IT bias toward
different hardware and software platforms. If so, this could limit the type of object store
available.

APPLYING THE CONCEPTS AT CD SELECTIONS
In the previous installments of the CD Selections case, we saw how Alec, Margaret, and
the development team had worked through developing models and designs of the prob-
lem domain classes. Now that the design of the problem domain layer is somewhat sta-
ble, the team has moved into developing the models and designs of the solution domain
(data management, human–computer interaction, and physical architecture) classes. In
this installment, we follow the team members that have been assigned to the develop-
ment of the data management layer classes for the Web-based system being developed
for CD Selections.

SUMMARY
Object Persistence Formats
There are five basic types of object persistence formats: files (sequential and random
access), object-oriented databases, object-relational databases, relational databases, and
NoSQL data stores. Files are electronic lists of data that have been optimized to perform
a particular transaction. There are two different access methods (sequential and ran-
dom), and there are five different application types: master, look-up, transaction, audit,
and history. Master files typically are kept for long periods of time because they store
important business information, such as order information or customer mailing infor-
mation. Look-up files contain static values that are used to validate fields in the master
files, and transaction files temporarily hold information that will be used for a master file
update. An audit file records before and after images of data as they are altered so that an
audit can be performed if the integrity of the data is questioned. Finally, the history file
stores past transactions (e.g., old customers, past orders) that are no longer needed by
the system.

A database is a collection of information groupings related to one another in some
way, and a DBMS (database management system) is software that creates and manipu-
lates databases. There are three types of databases that are likely to be encountered dur-
ing a project: relational, object-relational, and object-oriented. The relational database is
the most popular kind of database for application development today. It is based on col-
lections of tables that are related to each other through common fields, known as foreign
keys. Object-relational databases are relational databases that have extensions that
provide limited support for object orientation. The extensions typically include some

440066 CChhaapptteerr 99 Data Management Layer Design

c09DataManagementLayerDesign.qxd 11/28/11 10:38 AM Page 406

Summary 440077

support for the storage of objects in the relational table structure. Object-oriented data-
bases come in two flavors: full-blown DBMS products and extensions to an object-oriented
programming language. Both approaches typically fully support object orientation. Finally,
NoSQL data stores represent a new class of approaches to support object persistence.
These include key-value stores, document stores, column-oriented stores, and object
databases.

The application’s data should drive the storage format decision. Relational databases
support simple data types very effectively, whereas object databases are best for complex
data. The type of system also should be considered when choosing among data storage
formats (e.g., relational databases have matured to support transactional systems).
Although less critical to the format selection decision, the project team needs to consider
what technology exists within the organization and the kind of technology likely to be
used in the future.

Mapping Problem Domain Objects to Object Persistence Formats
There are many different approaches to support object persistence. Each of the different
formats for object persistence has some conversion requirements. The complexity of the
conversion requirements increases the farther the format is from an object-oriented for-
mat. An OODBMS has the fewest conversion requirements, whereas an RDBMS tends to
have the most. No matter what format is chosen, all data management functionality
should be kept out of the problem domain classes to minimize the maintenance require-
ments of the system and to maximize the portability and reusability of the problem
domain classes.

Optimizing RDBMS-Based Object Storage
There are two primary dimensions by which to optimize a relational database: storage
efficiency and speed of access. The most efficient relational database tables in terms of
data storage are those that have no redundant data and very few null values. Normaliza-
tion is the process whereby a series of rules are applied to the data management layer to
determine how well it is formed. A model is in first normal form (1NF) if it does not lead
to repeating fields, which are fields that repeat within a table to capture multiple values.
Second normal form (2NF) requires that all tables be in 1NF and lead to fields whose val-
ues are dependent on the whole primary key. Third normal form (3NF) occurs when a
model is in both 1NF and 2NF and none of the resulting fields in the tables depend on
nonprimary key fields (i.e., transitive dependency). With each violation, additional tables
should be created to remove the repeating fields or improper dependencies from the
existing tables.

Once we have optimized the design of the object persistence for storage efficiency, the
data may be spread out across a number of tables. To improve speed, the project team may
decide to denormalize—add redundancy back into—the design. Denormalization reduces
the number of joins that need to be performed in a query, thus speeding up data access.
Denormalization is best in situations where data are accessed frequently and updated
rarely. Three modeling situations are good candidates for denormalization: lookup tables,
entities that share one-to-one relationships, and entities that share one-to-many relation-
ships. In all three cases, attributes from one entity are moved or repeated in another entity
to reduce the joins that must occur while accessing the database.

Clustering occurs when similar records are stored close together on the storage medium
to speed up retrieval. In intrafile clustering, similar records in the table are stored together
in some way, such as in sequence. Interfile clustering combines records from more than one

c09DataManagementLayerDesign.qxd 11/28/11 10:39 AM Page 407

table that typically are retrieved together. Indexes also can be created to improve the access
speed of a system. An index is a minitable that contains values from one or more columns
in a table and tells where the values can be found. Instead of performing a table scan, which
is the most inefficient way to retrieve data from a table, an index points directly to the
records that match the requirements of a query.

Finally, the speed of the system can be improved if the right hardware is purchased to
support it. Analysts can use volumetrics to estimate the current and future size of the data-
base and then share these numbers with the people who are responsible for buying and
configuring the database hardware.

Designing Data Access and Manipulation Classes
Once the object persistence has been designed, a translation layer between the problem
domain classes and the object persistence should be created. The translation layer is imple-
mented through data access and manipulation classes. In this manner, any changes to the
object persistence format chosen will require changes only to the data access and manipu-
lation classes. The problem domain classes will be completely isolated from the changes.
One popular approach to supporting data access and manipulation classes is through the
use of a mapping library such as Hibernate.

Nonfunctional Requirements and Data Management Layer Design
Nonfunctional requirements can affect the design of the data management layer. Opera-
tional requirements can limit the viability of different object persistence formats. Perfor-
mance requirements can cause various indexing and caching approaches to be considered.
Furthermore, performance requirements can create situations where denormalization
must be considered. Performance considerations are especially important in the area of
mobile computing. The security requirements can cause the design to include varying
types of access to be controlled and the possibility of using different encryption algorithms
to make the data more difficult to use by unauthorized users. Finally, political and cultural
concerns can influence the design of certain attributes and objects.

440088 CChhaapptteerr 99 Data Management Layer Design

KKEEYY TTEERRMMSS

Access control, 405
Attribute sets, 375
Audit file, 372
Cluster, 398
Column-oriented data stores, 376
Data access and manipulation

classes, 401
Data management layer, 368
Database, 369
Database management

system (DBMS), 369
Decision support systems (DSS), 378
Denormalization, 396
Document data stores, 376
End user DBMS, 369

Enterprise DBMS, 369
Executive information systems

(EIS), 378
Expert system (ES), 378
Extent, 375
File, 368
First normal form (1NF), 392
Foreign key, 372
Hardware and operating system, 405
History file, 372
Impedance mismatch, 378
Index, 399
Interfile clustering, 398
Intrafile clustering, 398
Join, 374

Key-value data stores, 376
Linked list, 371
Lookup file, 372
Management information

system (MIS), 378
Master file, 371
Multivalued attributes (fields), 375
Normalization, 390
NoSQL data stores, 375
Object ID, 375
Object-oriented database management

system (OODBMS), 374
Object-oriented programming

language (OOPL), 375
Object persistence, 368

c09DataManagementLayerDesign.qxd 11/28/11 10:40 AM Page 408

Questions 440099

Object-relational database
management system
(ORDBMS), 374

Operational requirements, 405
Ordered sequential access file, 371
Overhead, 400
Partial dependency, 393
Performance requirements, 405
Pointer, 371
Political and cultural

requirements, 406

Primary key, 372
Problem domain classes, 402
Random access files, 371
Raw data, 400
Referential integrity, 372
Relational database management

system (RDBMS), 372
Repeating groups (fields), 375
Second normal form (2NF), 393
Security requirements, 405
Sequential access files, 371

Structured query language
(SQL), 374

Table scan, 398
Third normal form (3NF), 393
Transaction file, 372
Transaction-processing system, 378
Transitive dependency, 393
Unordered sequential access file, 371
Update anomaly, 390
Volumetrics, 400

QQUUEESSTTIIOONNSS

1. Describe the four steps in object persistence design.
2. How are a file and a database different from each other?
3. What is the difference between an end-user database

and an enterprise database? Provide an example of
each one.

4. What are the differences between sequential and ran-
dom access files?

5. Name five types of files and describe the primary pur-
pose of each type.

6. What is the most popular kind of database today?
Provide three examples of products that are based on
this database technology.

7. What is referential integrity and how is it imple-
mented in an RDBMS?

8. List some of the differences between an ORDBMS and
an RDBMS.

9. What are the advantages of using an ORDBMS over
an RDBMS?

10. List some of the differences between an ORDBMS and
an OODBMS.

11. What are the advantages of using an ORDBMS over
an OODBMS?

12. What are the advantages of using an OODBMS over
an RDBMS?

13. What are the advantages of using an OODBMS over
an ORDBMS?

14. What are the factors in determining the type of object
persistence format that should be adopted for a
system? Why are these factors so important?

15. Why should you consider the storage formats that
already exist in an organization when deciding upon a
storage format for a new system?

16. When implementing the object persistence in an
ORDBMS, what types of issues must you address?

17. When implementing the object persistence in an
RDBMS, what types of issues must you address?

18. Name three ways null values can be interpreted in a
relational database. Why is this problematic?

19. What are the two dimensions in which to optimize a
relational database?

20. What is the purpose of normalization?
21. How does a model meet the requirements of third

normal form?
22. Describe three situations that can be good candidates

for denormalization.
23. Describe several techniques that can improve perfor-

mance of a database.
24. What is the difference between interfile and intrafile

clustering? Why are they used?
25. What is an index and how can it improve the perfor-

mance of a system?
26. Describe what should be considered when estimating

the size of a database.
27. Why is it important to understand the initial and

projected size of a database during design?
28. What are some of the nonfunctional requirements that

can influence the design of the data management layer?
29. What are the key issues in deciding between using

perfectly normalized databases and denormalized
databases?

30. What is the primary purpose of the data access and
manipulation classes?

31. Why should the data access and manipulation classes
be dependent on the problem domain classes instead
of the other way around?

32. Why should the object persistence classes be depen-
dent on the problem domain classes instead of the
other way around?

c09DataManagementLayerDesign.qxd 11/29/11 9:28 AM Page 409

441100 CChhaapptteerr 99 Data Management Layer Design

EEXXEERRCCIISSEESS

A. Using the Web or other resources, identify a product
that can be classified as an end-user database and a
product that can be classified as an enterprise data-
base. How are the products described and marketed?
What kinds of applications and users do they support?
In what kinds of situations would an organization
choose to implement an end-user database over an
enterprise database?

B. Visit a commercial website (e.g., Amazon.com). If files
were being used to store the data supporting the appli-
cation, what types of files would be needed? What
access type would be required? What data would they
contain?

C. Using the Web, review one of the following prod-
ucts. What are the main features and functions of
the software? In what companies has the DBMS been
implemented, and for what purposes? According to
the information that you found, what are three
strengths and weaknesses of the product?
1. Relational DBMS
2. Object-relational DBMS
3. Object-oriented DBMS

D. You have been given a file that contains the following
fields relating to CD information. Using the steps of
normalization, create a model that represents this file
in third normal form. The fields include:

Musical group name CD title 2
Musicians in group CD title 3
Date group was formed CD 1 length
Group’s agent CD 2 length
CD title 1 CD 3 length

Assumptions:
• Musicians in group contains a list of the members of

the people in the musical group.
• Musical groups can have more than one CD, so both

group name and CD title are needed to uniquely
identify a particular CD.

E. Jim Smith’s dealership sells Fords, Hondas, and
Toyotas. The dealership keeps information about each
car manufacturer with whom they deal so that they
can get in touch with them easily. The dealership also
keeps information about the models of cars that they
carry from each manufacturer. They keep information
like list price, the price the dealership paid to obtain
the model, and the model name and series (e.g.,
Honda Civic LX). They also keep information about
all sales that they have made (instance.g., they record a

buyer’s name, the car bought, and the amount paid for
the car). To contact the buyers in the future, contact
information is also kept (e.g., address, phone num-
ber). Create a class diagram for this situation. Apply
the rules of normalization to the class diagram to
check the diagram for processing efficiency.

F. Describe how you would denormalize the model that
you created in exercise E. Draw the new class diagram
based on your suggested changes. How would perfor-
mance be affected by your suggestions?

G. Examine the model that you created in exercise F.
Develop a clustering and indexing strategy for this
model. Describe how your strategy will improve the
performance of the database.

H. Calculate the size of the database that you created in
exercise F. Provide size estimates for the initial size of
the database as well as for the database in one year’s
time. Assume that the dealership sells ten models of
cars from each manufacturer to approximately 20,000
customers a year. The system will be set up initially
with one year’s worth of data.

L. For the A Real Estate Inc. problem in Chapter 4
(exercises I, J, and K), Chapter 5 (exercises P and Q),
Chapter 6 (exercise D), Chapter 7 (exercise A), and
Chapter 8 (exercise A):
1. Apply the rules of normalization to the class diagram

to check the diagram for processing efficiency.
2. Develop a clustering and indexing strategy for this

model. Describe how your strategy will improve
the performance of the database.

M. For the A Video Store problem in Chapter 4 (exercises
L, M, and N), Chapter 5 (exercises R and S), Chapter 6
(exercise E), Chapter 7 (exercise B), and Chapter 8
(exercise B):
1. Apply the rules of normalization to the class dia-

gram to check the diagram for processing efficiency.
2. Develop a clustering and indexing strategy for this

model. Describe how your strategy will improve
the performance of the database.

N. For the gym membership problem in Chapter 4 (exer-
cises O, P, and Q), Chapter 5 (exercises T and U),
Chapter 6 (exercise F), Chapter 7 (exercise C), and
Chapter 8 (exercise C):
1. Apply the rules of normalization to the class dia-

gram to check the diagram for processing efficiency.
2. Develop a clustering and indexing strategy for this

model. Describe how your strategy will improve
the performance of the database.

c09DataManagementLayerDesign.qxd 11/8/11 3:20 PM Page 410

Minicases 441111

O. For the Picnics R Us problem in Chapter 4 (exercises
R, S, and T), Chapter 5 (exercises V and W), Chapter 6
(exercise G), Chapter 7 (exercise D), and Chapter 8
(exercise D):
1. Apply the rules of normalization to the class dia-

gram to check the diagram for processing efficiency.
2. Develop a clustering and indexing strategy for this

model. Describe how your strategy will improve
the performance of the database.

N. For the Of-the-Month-Club problem in Chapter 4
(exercises U, V, and W), Chapter 5 (exercises X and Y),
Chapter 6 (exercise H), Chapter 7 (exercise E), and
Chapter 8 (exercise E):
1. Apply the rules of normalization to the class dia-

gram to check the diagram for processing efficiency.
2. Develop a clustering and indexing strategy for this

model. Describe how your strategy will improve
the performance of the database.

MMIINNIICCAASSEESS

1. The system development team at the Wilcon Com-
pany is working on developing a new customer order
entry system. In the process of designing the new sys-
tem, the team has identified the following class and its
attributes:

Inventory Order
Order Number (PK)
Order Date
Customer Name
Street Address
City
State
Zip
Customer Type
Initials
District Number
Region Number
1 to 22 occurrences of:

Item Name
Quantity Ordered
Item Unit
Quantity Shipped
Item Out
Quantity Received

a. State the rule that is applied to place a class in first
normal form. Based on the above class, create a class
diagram that will be in 1NF.

b. State the rule that is applied to place a class into
second normal form. Revise the class diagram for
the Wilcon Company using the class and attributes
described (if necessary) to place it in 2NF.

c. State the rule that is applied to place a class into
third normal form. Revise the class diagram to
place it in 3NF.

d. When planning for the physical design of this data-
base, can you identify any likely situations where

the project team might choose to denormalize the
class diagram? After going through the work of
normalizing, why would this be considered?

2. In the new system under development for Holiday
Travel Vehicles, seven tables will be implemented in
the new relational database. These tables are: New
Vehicle, Trade-in Vehicle, Sales Invoice, Customer,
Salesperson, Installed Option, and Option. The
expected average record size for these tables and the
initial record count per table are given here.

Average Initial Table
Table Name Record Size Size (records)

New Vehicle 65 characters 10,000
Trade-in Vehicle 48 characters 7,500
Sales Invoice 76 characters 16,000
Customer 61 characters 13,000
Salesperson 34 characters 100
Installed Option 16 characters 25,000
Option 28 characters 500

Perform a volumetrics analysis for the Holiday
Travel Vehicle system. Assume that the DBMS that will
be used to implement the system requires 35 percent
overhead to be factored into the estimates. Also,
assume a growth rate for the company of 10 percent
per year. The systems development team wants to
ensure that adequate hardware is obtained for the next
three years.

3. Refer to the Professional and Scientific Staff Manage-
ment (PSSM) minicase in Chapters 4, 6, 7, and 8.
a. Apply the rules of normalization to the class

diagram to check the diagram for processing
efficiency.

b. Develop a clustering and indexing strategy for this
model. Describe how your strategy will improve
the performance of the database.

c09DataManagementLayerDesign.qxd 11/8/11 3:20 PM Page 411

A user interface is the part of the system with which the users interact. From the user’s
point of view, the user interface is the system. It includes the screen displays that provide
navigation through the system, the screens and forms that capture data, and the reports
that the system produces (whether on paper, on the screen, or via some other medium).
This chapter introduces the basic principles and processes of interface design and discusses
how to design the interface structure and standards, navigation design, input design, and
output design. The chapter introduces the issues related to designing user interfaces for the
mobile computing environment and social media. It also introduces the issues that need to
be considered when designing user interfaces for a global audience. Finally, the chapter
describes the affect of the nonfunctional requirements on designing the human–computer
interaction layer.

OBJECTIVES

! Understand several fundamental user interface design principles.
! Understand the process of user interface design.
! Understand how to design the user interface structure.
! Understand how to design the user interface standards.
! Understand commonly used principles and techniques for navigation design.
! Understand commonly used principles and techniques for input design.
! Understand commonly used principles and techniques for output design.
! Be able to design a user interface.
! Understand the affect of nonfunctional requirements on the human-computer

interaction layer.

CHAPTER OUTLINE

C H A P T E R 1 0

HUMAN–COMPUTER INTERACTION

LAYER DESIGN

Introduction Principles for User Interface
Design

Layout
Content Awareness
Aesthetics
User Experience
Consistency
Minimizing User Effort

User Interface Design Process
Use Scenario Development
Interface Structure Design
Interface Standards Design
Interface Design Prototyping
Interface Evaluation
Commonsense Approach to User

Interface Design

412

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:05 PM Page 412

Introduction 413

INTRODUCTION
Interface design is the process of defining how a system will interact with external entities
(e.g., customers, suppliers, other systems). In this chapter we focus on the design of user
interfaces, but it is also important to remember that there are sometimes system interfaces,
which exchange information with other systems. System interfaces are typically designed as
part of a systems integration effort. They are defined in general terms as part of the physical
architecture and data management layers.

The human–computer interface layer defines the way the users will interact with the
system and the nature of the inputs and outputs that the system accepts and produces.
The user interface includes three fundamental parts. The first is the navigation mecha-
nism, the way the user gives instructions to the system and tells it what to do (e.g., but-
tons, menus). The second is the input mechanism, the way the system captures
information (e.g., forms for adding new customers). The third is the output mechanism,
the way the system provides information to the user or to other systems (e.g., reports,
Web pages). Each of these is conceptually different, but they are closely intertwined. All
computer displays contain navigation mechanisms, and most contain input and output
mechanisms. Therefore, navigation design, input design, and output design are tightly
coupled.

This chapter introduces several fundamental user interface design principles.It pro-
vides an overview of the design process for the human–computer interaction layer and
an overview of the navigation, input, and output components that are used in interface
design. We focus on the design of Web-based interfaces and graphical user interfaces
(GUI) that use windows, menus, icons, and a mouse (e.g., Windows, Macintosh).1

Although text-based interfaces are still commonly used on mainframes and Unix sys-
tems, GUI interfaces are probably the most common type of interfaces that we use, with
the possible exception of printed reports.2 The chapter describes the issues related to

Navigation Design
Basic Principles
Types of Navigation Controls
Messages
Navigation Design Documentation

Input Design
Basic Principles
Types of Inputs
Input Validation

Output Design
Basic Principles
Types of Outputs
Media

Mobile Computing and User Interface
Design

Social Media and User Interface Design
International and Cultural Issues and User

Interface Design
Multilingual Requirements
Color
Cultural Differences

Nonfunctional Requirements and
Human–Computer Interaction Layer
Design

Applying the Concepts at CD Selections
Summary

1 Many people attribute the origin of GUI interfaces to Apple or Microsoft. Some people know that Microsoft
copied from Apple, which, in turn, “borrowed” the whole idea from a system developed at the Xerox Palo Alto
Research Center (PARC) in the 1970s. Very few know that the Xerox system was based on a system developed by
Doug Englebart of Stanford that was first demonstrated at the Western Computer Conference in 1968. Around
the same time, Doug also invented the mouse, desktop video conferencing, groupware, and a host of other things
we now take for granted. Doug is a legend in the computer science community and has won too many awards to
count but is relatively unknown by the general public.
2 A good book on GUI design is Susan Fowler, GUI Design Handbook (New York: McGraw-Hill, 1998).

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:05 PM Page 413

designing user interfaces for mobile devices and social media. Finally, the chapter intro-
duces the issues that must be considered when developing user interfaces for a global
audience.

PRINCIPLES FOR USER INTERFACE DESIGN
In many ways, user interface design is an art. The goal is to make the interface pleasing to
the eye and simple to use while minimizing the effort the users need to accomplish their
work. The system is never an end in itself; it is merely a means to accomplish the business
of the organization.

We have found that the greatest problem facing experienced designers is using space
effectively. Simply put, often there is much more information that needs to be presented on
a screen or report or form than will fit comfortably. Analysts must balance the need for
simplicity and pleasant appearance against the need to present the information across mul-
tiple pages or screens, which decreases simplicity. In this section, we discuss some funda-
mental interface design principles, which are common for navigation design, input design,
and output design3 (see Figure 10-1).

Layout
The first element of design is the basic layout of the screen, form, or report. Most soft-
ware designed for personal computers follows the standard Windows or Macintosh
approach for screen design. The screen is divided into three boxes. The top box is the
navigation area, through which the user issues commands to navigate through the sys-
tem. The bottom box is the status area, which displays information about what the user

3 A good book on the design of interfaces is Susan Weinschenk, Pamela Jamar, and Sarah Yeo, GUI Design
Essentials (New York: Wiley, 1997).

Layout The interface should be a series of areas on the screen that are used
consistently for different purposes—for example, a top area for commands
and navigation, a middle area for information to be input or output, and a
bottom area for status information.

Content Awareness Users should always be aware of where they are in the system and what
information is being displayed.

Aesthetics Interfaces should be functional and inviting to users through careful use of
white space, colors, and fonts. There is often a trade-off between including
enough white space to make the interface look pleasing without losing so
much space that important information does not fit on the screen.

User Experience Although ease of use and ease of learning often lead to similar design
decisions, there is sometimes a trade-off between the two. Novice users or
infrequent users of software prefer ease of learning, whereas frequent users
prefer ease of use.

Consistency Consistency in interface design enables users to predict what will happen
before they perform a function. It is one of the most important elements in
ease of learning, ease of use, and aesthetics.

Minimal User Effort The interface should be simple to use. Most designers plan on having no
more than three mouse clicks from the starting menu until users perform work.

Principle Description

FIGURE 10-1
Principles of User
Interface Design

414 Chapter 10 Human–Computer Interaction Layer Design

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:05 PM Page 414

Principles for User Interface Design 415

System
Navigation

Site
Navigation

Page
Navigation

Status bar

FIGURE 10-2 Layout with Multiple Navigation Areas

is doing. The middle—and largest—box is used to display reports and present forms for
data entry.

In many cases (particularly on the Web), multiple layout areas are used. Figure 10-2
shows a screen with five navigation areas, each of which is organized to provide different
functions and navigation within different parts of the system. The top area provides the
standard Web browser navigation and command controls that change the contents of the
entire system. The navigation area on the left edge maneuvers between sections and
changes all content to its right. The other two section navigation areas at the top and mid-
dle of the page provide other ways to navigate between sections. The content in the middle
of the page displays the results (i.e., software review articles) and provides additional
navigation within the page about these reviews.

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:05 PM Page 415

This use of multiple layout areas for navigation also applies to inputs and outputs.
Data areas on reports and forms are often subdivided into subareas, each of which is used
for a different type of information. These areas are almost always rectangular, although
sometimes space constraints require odd shapes. Nonetheless, the margins on the edges of
the screen should be consistent. Each of the areas within the report or form is designed to
hold different information. For example, on an order form (or order report), one part may
be used for customer information (e.g., name, address), one part for information about the
order in general (e.g., date, payment information), and one part for the order details (e.g.,
how many units of which items at what price each). Each area is self-contained so that
information in one area does not run into another.

The areas and information within areas should have a natural intuitive flow to
minimize the users’ movement from one area to the next. People in westernized nations
(e.g., United States, Canada, Mexico) tend to read left-to-right, top-to-bottom, so related
information should be placed so it is used in this order (e.g., address lines, followed by city,
state or province, and then ZIP code or postal code). Sometimes the sequence is in chrono-
logical order, or from the general to the specific, or from most frequently to least frequently
used. In any event, before the areas are placed on a form or report, the analyst should have
a clear understanding of what arrangement makes the most sense for how the form or
report will be used. The flow between sections should also be consistent, whether horizon-
tal (see top of Figure 10-3) or vertical (see bottom of Figure 10-3). Ideally, the areas will
remain consistent in size, shape, and placement for the forms used to enter information
(whether paper or on screen) and the reports used to present it.

Content Awareness
Content awareness refers to the ability of an interface to make the user aware of the infor-
mation it contains with the least amount of effort on the user’s part. All parts of the inter-
face, whether navigation, input, or output, should provide as much content awareness as
possible, but it is particularly important for forms or reports that are used quickly or
irregularly (e.g., a website).

Content awareness applies to the interface in general. All interfaces should have titles
(on the screen frame, for example). Menus should show where the user is and, if possible,
where the user came from to get there. For example, in Figure 10-2, the top line in the cen-
ter site navigation bar shows that the user is in the Small Business Computing Channel sec-
tion of the winplanet.com site.

Content awareness also applies to the areas within forms and reports. All areas should
be clear and well defined (with titles if space permits) so that it is difficult for the user to
become confused about the information in any area. Then users can quickly locate the part
of the form or report that is likely to contain the information they need. Sometimes the
areas are marked by lines, colors, or headings (e.g., the site navigation links on the left side
in Figure 10-2); in other cases, the areas are only implied (e.g., the page links in the center
of Figure 10-2).

Content awareness also applies to the fields within each area. Fields are the indi-
vidual elements of data that are input or output. The field labels that identify the fields
on the interface should be short and specific—objectives that often conflict. There
should be no uncertainty about the format of information within fields, whether for
entry or display. For example, a date of 10/5/07 is different depending on whether you
are in the United States (October 5, 2007) or in Canada (May 10, 2007). Any fields for
which there is the possibility of uncertainty or multiple interpretations should provide
explicit explanations.

416 Chapter 10 Human–Computer Interaction Layer Design

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:05 PM Page 416

Principles for User Interface Design 417

FIGURE 10-3 Flow Between Interface Sections

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:05 PM Page 417

Content awareness also applies to the information that a form or report contains. In
general, all forms and reports should contain a preparation date (i.e., the date printed or
the date completed) so that the age of information is obvious. Likewise, all printed forms
and software should provide version numbers so that users, analysts, and programmers can
identify outdated materials.

Figure 10-4 shows a form from the University of Georgia. This form illustrates the
logical grouping of fields into areas with an explicit box (top left), as well as an implied area
with no box (lower left). The address fields within the address area follow a clear, natural
order. Field labels are short where possible (see the top left) but long where more informa-
tion is needed to prevent misinterpretation (see the bottom left).

Aesthetics
Aesthetics refers to designing interfaces that are pleasing to the eye. Interfaces do not have
to be works of art, but they do need to be functional and inviting to use. In most cases, less
is more, meaning that a simple, minimalist design is the best.

Space is usually at a premium on forms and reports, and often there is the temp-
tation to squeeze as much information as possible onto a page or a screen. Unfortunately,
this can make a form or report so unpleasant that users do not want to use it. In general,
all forms and reports need a minimum amount of white space that is intentionally left
blank.

What was your first reaction when you looked at Figure 10-4? This is the most
unpleasant form at the University of Georgia, according to staff members. Its density is too
high; it has too much information packed into a too-small space with too little white space.
Although it may be efficient to save paper by using one page, not two, it is not effective for
many users.

In general, novice or infrequent users of an interface, whether on a screen or on
paper, prefer interfaces with low density, often one with a density of less than 50 percent
(i.e., less than 50 percent of the interface occupied by information). More-experienced
users prefer higher densities, sometimes approaching 90 percent occupied, because they
know where information is located and high densities reduce the amount of physical
movement through the interface. We suspect the form in Figure 10-4 was designed for the
experienced staff in the personnel office who use it daily, rather than for the clerical staff
in academic departments with less personnel experience who use the form only a few
times a year.

The design of text is equally important. As a general rule, all text should be in the same
font and about the same size. Fonts should be no smaller than 8 points, but 10 points is
often preferred, particularly if the interface will be used by older people. Changes in font
and size are used to indicate changes in the type of information that is presented (e.g.,
headings, status indicators). In general, italics and underlining should be avoided because
they make text harder to read.

Serif fonts (i.e., those having letters with serifs, or tails, such as Times Roman, or the
font you are reading right now) are the most readable for printed reports, particularly for
small letters. Sans serif fonts (i.e., those without serifs, such as Helvetica or Arial, like those
used for the chapter titles in this book) are the most readable for computer screens and are
often used for headings in printed reports. Never use all capital letters, except possibly for
titles.

Color and patterns should be used carefully and sparingly and only when they serve
a purpose. (About 10 percent of men are color blind, so the improper use of color can
impair their ability to read color text.) A quick trip around the Web will demonstrate the
problems caused by indiscriminate use of colors and patterns. Remember, the goal is

418 Chapter 10 Human–Computer Interaction Layer Design

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:05 PM Page 418

FI
G

U
R

E
1

0
-4

Ex
am

pl
e

of
 a

 F
or

m

419

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:05 PM Page 419

pleasant readability, not art; color and patterns should be used to strengthen the message,
not overwhelm it. Color is best used to separate and categorize items, such as showing the
difference between headings and regular text, or to highlight important information.
Therefore, colors with high contrast should be used (e.g., black and white). In general,
black text on a white background is the most readable, and blue on red is the least read-
able. (Most experts agree that background patterns on Web pages should be avoided).
Color has been shown to affect emotion, with red provoking intense emotion (e.g., anger)
and blue provoking lowered emotions (e.g., drowsiness).

User Experience
User experience can essentially be broken down into two levels: those with experience and
those without. Interfaces should be designed for both types of users. Novice users usually
are most concerned with ease of learning—how quickly they can learn new systems. Expert
users are usually most concerned with ease of use—how quickly they can use the system
once they have learned how to use it. Often these two are complementary and lead to
similar design decisions, but sometimes there are trade-offs. Novices, for example, often
prefer menus that show all available system functions, because these promote ease of learn-
ing. Experts, on the other hand, sometimes prefer fewer menus organized around the most
commonly used functions.

Systems that will end up being used by many people on a daily basis are more likely to
have a majority of expert users (e.g., order-entry systems). Although interfaces should try
to balance ease of use and ease of learning, these types of systems should put more empha-
sis on ease of use rather than ease of learning. Users should be able to access the commonly
used functions quickly, with few keystrokes or a small number of menu selections.

In many other systems (e.g., decision-support systems), most people remain occa-
sional users for the lifetime of the system. In this case, greater emphasis may be placed on
ease of learning rather than ease of use.

Ease of use and ease of learning often go hand-in-hand—but sometimes they don’t.
Research shows that expert and novice users have different requirements and behavior pat-
terns in some cases. For example, novices virtually never look at the bottom area of a screen
that presents status information, whereas experts refer to the status bar when they need
information. Most systems should be designed to support frequent users, except for sys-
tems designed to be used infrequently or when many new users or occasional users are
expected (e.g., the Web). Likewise, systems that contain functionality that is used only
occasionally must contain a highly intuitive interface or an interface that contains clear,
explicit guidance regarding its use.

The balance of quick access to commonly used and well-known functions and guid-
ance through new and less-well-known functions is challenging to the interface designer,
and this balance often requires elegant solutions. Microsoft Office, for example, addresses
this issue through the use of the “show-me” functions, which demonstrate the menus and
buttons for specific functions. These features remain in the background until they are
needed by novice users (or even experienced users when they use an unfamiliar part of the
system).

Consistency
Consistency in design is probably the single most important factor in making a system sim-
ple to use because it enables users to predict what will happen. When interfaces are consis-
tent, users can interact with one part of the system and then know how to interact with the

420 Chapter 10 Human–Computer Interaction Layer Design

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:05 PM Page 420

User Interface Design Process 421

rest, aside from elements unique to those parts. Consistency usually refers to the interface
within one computer system, so that all parts of the same system work in the same way.
Ideally, the system should also be consistent with other computer systems in the organiza-
tion and with commercial software that is used (e.g., Windows). For example, many users
are familiar with the Web, so the use of Web-like interfaces can reduce the amount of learn-
ing required by the user. In this way, the user can reuse Web knowledge, thus significantly
reducing the learning curve for a new system. Many software development tools support
consistent system interfaces by providing standard interface objects (e.g., list boxes, pull-
down menus, and radio buttons).

Consistency occurs at many different levels. Consistency in the navigation controls
conveys how actions in the system should be performed. For example, using the same icon
or command to change an item clearly communicates how changes are made throughout
the system. Consistency in terminology is also important. This refers to using the same
words for elements on forms and reports (e.g., not customer in one place and client in
another). We also believe that consistency in report and form design is important,
although a study suggests that being too consistent can cause problems.4 When reports
and forms are very similar except for very minor changes in titles, users sometimes mis-
takenly use the wrong form and either enter incorrect data or misinterpret its informa-
tion. The implication for design is to make the reports and forms similar but give them
some distinctive elements (e.g., color, size of titles) that enable users to immediately detect
differences.

Minimizing User Effort
Interfaces should be designed to minimize the amount of effort needed to accomplish
tasks. This means using the fewest possible mouse clicks or keystrokes to move from one
part of the system to another. Most interface designers follow the three-clicks rule: Users
should be able to go from the start or main menu of a system to the information or action
they want in no more than three mouse clicks or three keystrokes. However, with regard to
this point, you need to be aware of Krug’s principles (discussed later).

USER INTERFACE DESIGN PROCESS
User interface design is a five-step process that is iterative; analysts often move back and forth
between steps rather than proceeding sequentially from step 1 to step 5 (see Figure 10-5). First,
the analysts examine the use cases (see Chapter 4) and sequence diagrams (see Chapter 6)
developed in analysis and interview users to develop use scenarios that describe commonly
employed patterns of actions the users will perform so the interface enables users to quickly
and smoothly perform these scenarios. Second, the analysts develop the windows navigation
diagram (WND) that defines the basic structure of the interface. These diagrams show all the
interfaces (e.g., screens, forms, and reports) in the system and how they are connected. Third,
the analysts design interface standards, which are the basic design elements on which inter-
faces in the system are based. Fourth, the analysts create an interface design prototype for each
of the individual interfaces in the system, such as navigation controls (including the conver-
sion of the essential use cases to real use cases), input screens, output screens, forms (includ-
ing preprinted paper forms), and reports. Finally, the individual interfaces are subjected to
interface evaluation to determine if they are satisfactory and how they can be improved.

4 John Satzinger and Lorne Olfman, “User Interface Consistency Across End-User Application: The Effects of
Mental Models,” Journal of Management Information Systems (Spring 1998): 167–193.

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:05 PM Page 421

Interface evaluations almost always identify improvements, so the interface design
process is repeated in a cyclical process until no new improvements are identified. In
practice, most analysts interact closely with the users during the interface design process
so that users have many chances to see the interface as it evolves, rather than waiting for
one overall interface evaluation at the end of the interface design process. It is better for
all concerned (both analysts and users) if changes are identified sooner rather than
later. For example, if the interface structure or standards need improvements, it is better
to identify changes before most of the screens that use the standards have been
designed.5

Use Scenario Development
A use scenario is an outline of the steps that the users perform to accomplish some part of their
work. A use scenario is one path through an essential use case. For example, Figure 10-6 shows
the use-case diagram for the Appointment System. This figure shows that the Create New
Patient use case is distinct from the Make Payment Arrangements use case. We model these
two use cases separately because they represent separate processes that are used by the Make
New Patient Appt use case.

The use-case diagram was designed to model all possible uses of the system—its
complete functionality or all possible paths through the use case at a fairly high level of
abstraction. In one use scenario, a patient makes a request with the receptionist regarding
an appointment with the doctor. The receptionist looks up the patient and checks to see
if the patient has any bills to be paid. The receptionist then asks the patient whether he or
she wants to set up a new appointment, cancel an existing appointment, or change an

422 Chapter 10 Human–Computer Interaction Layer Design

Interface
standards

design

Interface
design

prototyping

Interface
evaluation

Interface
structure

design

Use, scenario
development

FIGURE 10-5
User Interface
Design Process

5 A good source for more information on user interface evaluation is Deborah Hix and H. Rex Hartson,
Developing User Interfaces, Ensuring Usability Through Product & Process (New York: Wiley, 1993).

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:05 PM Page 422

User Interface Design Process 423

existing appointment. If the patient wants to make a new appointment, the receptionist
asks the patient for some suggested appointment times, which the receptionist matches
against potential times available. The receptionist finally creates a new appointment (see
Figures 6-1 and 6-9).

Appointment System

Patient

New Patient

Old Patient

Update Patient
Information

Make Old Patient
 Appt

Make New Patient
 Appt

Make Payment
Arrangements

Create New Patient

Manage
Appointments

<<ex
ten

d>
>

<<
in

cl
ud

e>
>

*

*

*

*

<<include>>

<<
ex

te
nd

>>

Produce Schedules

Management

Doctor

Record
Availability

Manage
Schedule

<<include>>

<<include>>

*
*

*
*

FIGURE 10-6 Appointment System Use Case Diagram (see Figures 4-15 and 7-11)

Visit the Web home page for your university and navigate
through several of its Web pages. Evaluate the extent to

which they meet the six design principles.

10-1 Web Page CritiqueYOUR

TURN

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:05 PM Page 423

In another use scenario, a patient simply wants to cancel an appointment. In this case,
the receptionist looks up the patient and checks to see if the patient has any bills to be paid.
The receptionist then asks the patient for the time of the appointment to be canceled.
Finally, the receptionist deletes the appointment.

Use scenarios are presented in a simple narrative description that is tied to the essen-
tial use cases developed during analysis (see Chapter 4). Figure 10-7 shows the two use
scenarios just described. The key point with using use cases for interface design is not to
document all possible use scenarios within a use case. The goal is to document two or three
of the most common use scenarios so the interface can be designed to enable the most
common uses to be performed simply and easily.

424 Chapter 10 Human–Computer Interaction Layer Design

Use scenario: Existing Patient Cancels
Appointment

1. Patient requests appointment (1) and gives
 the receptionist their name and address (2).
2. The receptionist looks up the patient (3)
 and determines whether the patient has
 changed any information (3 & 4).
3. The receptionist then asks the patient
 whether he or she is going to set up a new
 appointment, change an appointment, or
 delete an appointment (5).
4. The receptionist asks the patient for the
 appointment time to be canceled (S-2, 1).
5. The receptionist finds and deletes the
 appointment (S-2, 2).
6. The receptionist informs the patient that
 their appointment time was canceled (6).

Use scenario: Existing Patient Makes
New Appointment

1. Patient requests appointment (1) and gives
 the receptionist their name and address (2).

The numbers in parentheses refer to specific events in the essential use case.

2. The receptionist looks up the patient (3)
 and determines whether the patient has
 changed any information (3 & 4).
3. The receptionist then asks the patient
 whether he or she is going to set up a new
 appointment, change an appointment, or
 delete an appointment (5).
4. The receptionist asks the patient for a list
 of potential appointment times (S-1, 1).
5. The receptionist matches the potential
 appointment times with the available
 times and schedules the appointment
 (S-1, 2).
6. The receptionist informs the patient of
 their appointment time (6).

FIGURE 10-7 Use Scenarios

Visit the Web home page for your university and navi-
gate through several of its Web pages. Develop two use

scenarios for it.

10-2 Use Scenario Development for the WebYOUR

TURN

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:05 PM Page 424

User Interface Design Process 425

Interface Structure Design
The interface structure defines the basic components of the interface and how they work
together to provide functionality to users. A windows navigation diagram (WND)6 is used
to show how all the screens, forms, and reports used by the system are related and how the
user moves from one to another. Most systems have several WNDs, one for each major part
of the system.

A WND is very similar to a behavioral state machine (see Chapter 6), in that they both
model state changes. A behavioral state machine typically models the state changes of an
object, whereas a WND models the state changes of the user interface. In a WND, each state
where the user interface might be located is represented as a box. A box typically corre-
sponds to a user interface component, such as a window, form, button, or report. For
example, in Figure 10-8, there are five separate states: Client Menu, Find Client Form, Add
Client Form, Client List, and Client Information Report.

Transitions are modeled as either a single-headed or double-headed arrow. A single-
headed arrow indicates that a return to the calling state is not required, whereas a double-
headed arrow represents a required return. For example in Figure 10-8, the transition from
the Client Menu state to the Find Client Form state does not require a return. The arrows
are labeled with the action that causes the user interface to move from one state to another.
For example, in Figure 10-8, to move from the Client Menu state to the Find Client Form
state, the user must click the Find Client Button on the Client Menu.

Suppose you have been charged with the task of
redesigning the interface for the ATM at your local bank.

Develop two use scenarios for it.

10-3 Use Scenario Development for an ATMYOUR

TURN

6 A WND is actually an adaptation of the behavioral state machine and object diagrams [see Meilir Page-Jones,
Fundamentals of Object-Oriented Design in UML (New York: Dorset House, 2000)].

Click Find Client
Button

Click Find
Client Button

Cl
ic

k
Fi

nd

Cl
ie

nt
 B

ut
to

n

Click List
Clients
Button

<<report>>
Client Information Report

<<Hyperlink report>>
Client List

Click Add Client Button

<<form>>
Add Client

Form

<<button>>
Add Client

<<form>>
Find Client

Form

<<button>>
Find Client

<<Window>>
Client Menu

<<button>>
Add Client

<<button>>
Find Client
<<button>>
List Clients

Click
Hyperlink

FIGURE 10-8 Sample WND

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:05 PM Page 425

Interface Standards Design
Interface standards are the basic design elements that are common across the individual
screens, forms, and reports within the system. Depending on the application, there may be
several sets of interface standards for different parts of the system (e.g., one for Web
screens, one for paper reports, one for input forms). For example, the part of the system
used by data entry operators might mirror other data entry applications in the company,
whereas a Web interface for displaying information from the same system might adhere to
some standardized Web format. Likewise, each individual interface might not contain all of
the elements in the standards (e.g., a report screen might not have an edit capability), and
they might contain additional characteristics beyond the standard ones, but the standards
serve as the touchstone that ensures the interfaces are consistent across the system. The
following sections discuss some of the main areas in which interface standards should be
considered: metaphors, objects, actions, icons, and templates.

Interface Metaphor First of all, the analysts must develop the fundamental interface
metaphor(s) that defines how the interface will work. An interface metaphor is a concept
from the real world that is used as a model for the computer system. The metaphor helps the
user understand the system and enables the user to predict what features the interface might
provide, even without actually using the system. Sometimes systems have one metaphor,
whereas in other cases there are several metaphors in different parts of the system.

Often, the metaphor is explicit. Quicken, for example, uses a checkbook metaphor for
its interface, even to the point of having the users type information into an on-screen form
that looks like a real check. In other cases, the metaphor is implicit or unstated, but it is
there, nonetheless. Many Windows systems use the paper form or table as a metaphor.

In some cases, the metaphor is so obvious that it requires no thought. For example,
most online stores use a shopping cart metaphor to temporarily store the items that the
customer is considering purchasing. In other cases, a metaphor is hard to identify. In

426 Chapter 10 Human–Computer Interaction Layer Design

Suppose you have been charged with the task of redesign-
ing the interface for the ATM at your local bank. Design an

interface structure design using a WND that shows how a
user would navigate among the screens.

10-4 Interface Structure DesignYOUR

TURN

The last item to be described in a WND is the stereotype. A stereotype is modeled as a
text item enclosed within guillemets or angle brackets (<< >>). The stereotype represents
the type of user interface component of a box on the diagram. For example, the Client
Menu is a window, whereas Find Client Form is a form.

The basic structure of an interface follows the basic structure of the business process
itself, as defined in the use cases and behavioral model. The analyst starts with the essential
use cases and develops the fundamental flow of control of the system as it moves from
object to object. The analyst then examines the use scenarios to see how well the WND sup-
ports them. Quite often, the use scenarios identify paths through the WND that are more
complicated then they should be. The analyst then reworks the WND to simplify the ability
of the interface to support the use scenarios, sometimes by making major changes to the
menu structure, sometimes by adding shortcuts.

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:05 PM Page 426

User Interface Design Process 427

general, it is better not to force a metaphor that really doesn’t fit a system, because an
ill-fitting metaphor will confuse users by promoting incorrect assumptions.

Interface Objects The template specifies the names that the interface will use for the
major interface objects, the fundamental building blocks of the system, such as the classes.
In many cases, the object names are straightforward, such as calling the shopping cart the
“shopping cart.” In other cases, it is not so simple. For example, Amazon.com sells much
more than books. In some cases the user might not know whether he or she is looking for
a book, CD, DVD, or Kindle download. In those cases, the user can use a catchall search
item: All Departments. In the case that the user knows the type of item that he or she wants
to buy, the user can limit the search by specifying more-specific types of search items, such
as Apps for Android, Books, Kindle Store, or Music. Obviously, the object names should be
easily understood and help promote the interface metaphor.

In general, in cases of disagreements between the users and the analysts over names,
whether for objects or actions (discussed later), the users should win. A more understand-
able name always beats a more precise or more accurate one.

Interface Actions The template also specifies the navigation and command language
style (e.g., menus) and grammar (e.g., object-action order; see the navigation design sec-
tion later in this chapter). It gives names to the most commonly used interface actions in
the navigation design (e.g., buy versus purchase or modify versus change).

Interface Icons The interface objects and actions and their status (e.g., deleted or over-
drawn) may be represented by interface icons. Icons are pictures that appear on command but-
tons as well as in reports and forms to highlight important information. Icon design is very
challenging because it means developing a simple picture less than half the size of a postage
stamp that needs to convey an often-complex meaning. The simplest and best approach is to
simply adopt icons developed by others (e.g., a blank page to indicate create a new file, a
diskette to indicate save). This has the advantage of quick icon development, and the icons
might already be well understood by users because they have seen them in other software.

Commands are actions that are especially difficult to represent with icons because they are
in motion, not static. Many icons have become well known from widespread use, but icons are
not as well understood as first believed. Use of icons can sometimes cause more confusion than
insight. [For example, did you know that a picture of a sweeping broom (paintbrush?) in
Microsoft Word means format painter?] Icon meanings become clearer with use, but some-
times a picture is not worth even one word; when in doubt, use a word, not a picture.

Interface Templates An interface template defines the general appearance of all screens in
the information system and the paper-based forms and reports that are used. The template
design, for example, specifies the basic layout of the screens [e.g., where the navigation
area(s), status area, and form/report area(s) will be placed] and the color scheme(s) that will
be applied. It defines whether windows will replace one another on the screen or will cascade
over the top of each other. The template defines a standard placement and order for common
interface actions (e.g., File Edit View rather than File View Edit). In short, the template draws
together the other major interface design elements: metaphors, objects, actions, and icons.

Interface Design Prototyping
An interface design prototype is a mock-up or a simulation of a computer screen, form, or
report. A prototype is prepared for each interface in the system to show the users and the
programmers how the system will perform. In the “old days,” an interface design prototype

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:05 PM Page 427

was usually specified on a paper form that showed what would be displayed on each part
of the screen. Paper forms are still used today, but more and more interface design proto-
types are being built using computer tools instead of paper. The four most common
approaches to interface design prototyping are storyboards, windows layout diagrams,
HTML prototypes, and language prototypes.

Storyboard At its simplest, an interface design prototype is a paper-based storyboard.
The storyboard shows hand-drawn pictures of what the screens will look like and how they
flow from one screen to another, in the same way a storyboard for a cartoon shows how the
action will flow from one scene to the next (see Figure 10-9). Storyboards are the simplest
technique because all they require is paper (often a flip chart) and a pen—and someone
with some artistic ability.

428 Chapter 10 Human–Computer Interaction Layer Design

Suppose you have been charged with the task of redesign-
ing the interface for the ATM at your local bank. Develop an

interface standard that includes metaphors, objects, actions,
icons, and a template.

10-5 Interface Standards DevelopmentYOUR

TURN

FIGURE 10-9 Sample Storyboard

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:05 PM Page 428

User Interface Design Process 429

Windows Layout Diagram A slight step up from a storyboard is a windows layout dia-
gram. From our perspective, a windows layout diagram is a storyboard that more closely
resembles the actual user interface that the user will gradually receive. Typically, it is cre-
ated using a tool such as Microsoft’s Visio. Using this type of tool, the designer can quickly
drag and drop the user interface components onto the canvas to lay out the design of the
user interface. For example, in Figure 10-10, an equivalent diagram for the Add a Client
window for the storyboard is portrayed. By combining the windows layout diagrams with
the windows navigation diagram, the designer can work effectively with a set of users to
design the look and feel of the evolving system without having to actually implement any-
thing. In some cases, it makes sense to combine the ideas of the windows navigation dia-
gram with the windows layout diagram to create a better storyboard (see Figure 10-11).

HTML Prototype One of the most common types of interface design prototypes used
today is the HTML prototype (see Figure 10-12). As the name suggests, an HTML prototype
is built using Web pages created in HTML (hypertext markup language). The designer uses
HTML to create a series of Web pages, which show the fundamental parts of the system. The
users can interact with the pages by clicking on buttons and entering pretend data into forms
(but because there is no system behind the pages, the data are never processed). The pages are
linked together so that as the user clicks on buttons, the requested part of the system appears.
HTML prototypes are superior to storyboards in that they enable users to interact with the
system and gain a better sense of how to navigate among the different screens. However,
HTML has limitations—the screens shown in HTML will never appear exactly like the real
screens in the system (unless, of course, the real system will be a Web system in HTML).

Language Prototype A language prototype is an interface design prototype built using the
actual language or tool that will be used to build the system. Language prototypes are
designed in the same way as HTML prototypes (they enable the user to move from screen to
screen but perform no real processing). For example, in Visual Basic, it is possible to create
and view screens without actually attaching program code to the screens (see Figure 10-13).
Language prototypes take longer to develop than storyboards or HTML prototypes but have
the distinct advantage of showing exactly what the screens will look like. The user does not
have to guess about the shape or position of the elements on the screen.

FIGURE 10-10
Sample Windows
Layout Diagram

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:05 PM Page 429

430 Chapter 10 Human–Computer Interaction Layer Design

FIGURE 10-12
Sample HTML
Prototype

FIGURE 10-11 Sample Combined Windows Navigation and Layout Diagrams

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:05 PM Page 430

FIGURE 10-13 Sample Visual Basic Language Prototype

User Interface Design Process 431

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:05 PM Page 431

Selecting the Appropriate Techniques Projects often use a combination of different
interface design prototyping techniques for different parts of the system. Storyboarding is
the fastest and least expensive but provides the least amount of detail. Windows layout
diagrams provide more of a feel that the user will experience, while remaining fairly inex-
pensive to develop. HTML prototyping is useful for testing the basic design and naviga-
tion (see the next section) of the user interface. Language prototyping is the slowest, most
expensive, and most detailed approach. Therefore, storyboarding is used for parts of the
system in which the interface is well understood and when more-expensive prototypes are
thought to be unnecessary. However, in most cases it is probably worth the additional cost
of developing windows layout diagrams in addition to storyboards. HTML prototypes
and language prototypes are used for parts of the system that are critical, yet not well
understood.

Interface Evaluation7

The objective of interface evaluation is to understand how to improve the interface design
before the system is complete. Most interface designers intentionally or unintentionally
design an interface that meets their personal preferences, which might or might not match
the preferences of the users. The key message, therefore, is to have as many people as pos-
sible evaluate the interface, and the more users the better. Most experts recommend involv-
ing at least ten potential users in the evaluation process.

Many organizations save interface evaluation for the very last step in the systems devel-
opment before the system is installed. Ideally, however, interface evaluation should be per-
formed while the system is being designed—before it is built—so that any major design
problems can be identified and corrected before the time and cost of programming has
been spent on a weak design. It is not uncommon for the system to undergo one or two

432 Chapter 10 Human–Computer Interaction Layer Design

7 Verifying and validation approaches, in general, were described in Chapters 4 through 7. Also, further
approaches to testing the evolving system are described in Chapter 12. In this section, we describe approaches that
have been customized to the human–computer interaction layer.

I was involved in the development of several DSSs while
working as a consultant. On one project, a future user was
frustrated because he could not imagine what a DSS
looked like and how one would be used. He was a key
user, but the project team had a difficult time involving
him in the project because of his frustration. The team
used SQL Windows (one of the most popular development
tools at the time) to create a language prototype that
demonstrated the future system’s appearance, proposed
menu system, and screens (with fields, but no processing).

The team was amazed at the user’s response to the
prototype. He appreciated being given a context with
which to visualize the DSS, and he soon began to recom-
mend improvements to the design and flow of the system

and to identify some important information that was over-
looked during analysis. Ultimately, the user became one
of the strongest supporters of the system, and the project
team felt sure that the prototype would lead to a much
better product in the end.

—Barbara Wixom

Questions

1. Why do you think the team chose to use a
language prototype rather than a storyboard or
HTML prototype?

2. What trade-offs were involved in the decision?

10-A Interface Design Prototypes for a DSS ApplicationCONCEPTS

IN ACTION

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:05 PM Page 432

Walkthrough Evaluation An interface design walkthrough evaluation is a meeting con-
ducted with the users who ultimately have to operate the system. The project team presents
the prototype to the users and walks them through the various parts of the interface. The
project team shows the storyboard and windows layout diagrams or actually demonstrates
the HTML or language prototype and explains how the interface will be used. The users
identify improvements to each of the interfaces that are presented.

Interactive Evaluation With an interactive evaluation, the users themselves actually
work with the HTML or language prototype in a one-person session with member(s) of
the project team (an interactive evaluation cannot be used with a storyboard or windows
layout diagrams). As the user works with the prototype (often by going through the use sce-
narios, using the real use cases described later in this chapter, or just navigating at will
through the system), he or she tells the project team member(s) what he or she likes and
doesn’t like and what additional information or functionality is needed. As the user inter-
acts with the prototype, team member(s) record the cases when he or she appears to be
unsure of what to do, makes mistakes, or misinterprets the meaning of an interface com-
ponent. If the pattern of uncertainty, mistakes, or misinterpretations reoccurs across
several of the users participating in the evaluation, it is a clear indication that those parts
of the interface need improvement.

Formal Usability Testing Formal usability testing is commonly done with commercial
software products and products developed by large organizations that will be widely used
through the organization. As the name suggests, it is a very formal—almost scientific—
process that can be used only with language prototypes (and systems that have been

User Interface Design Process 433

Suppose you have been charged with the task of redesign-
ing the interface for the ATM at your local bank. What type

of prototyping and interface evaluation approach would
you recommend? Why?

10-6 Prototyping and EvaluationYOUR

TURN

major changes after the users see the first interface design prototype because they identify
problems that are overlooked by the project team.

As with interface design prototyping, interface evaluation can take many different
forms, each with different costs and different amounts of detail. Four common approaches
are heuristic evaluation, walkthrough evaluation, interactive evaluation, and formal
usability testing. As with interface design prototyping, the different parts of a system can
be evaluated using different techniques.

Heuristic Evaluation A heuristic evaluation examines the interface by comparing it to a
set of heuristics or principles for interface design. The project team develops a checklist of
interface design principles—from the list at the start of this chapter, for example, as well as
the list of principles in the navigation, input, and output design sections later in this chap-
ter. At least three members of the project team then individually work through the inter-
face design prototype, examining every interface to ensure it satisfies each design principle
on a formal checklist. After each has gone through the prototype separately, they meet as a
team to discuss their evaluations and identify specific improvements that are required.

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:05 PM Page 433

completely built awaiting installation or shipping).8 As with interactive evaluation, usabil-
ity testing is done in one-person sessions in which a user works directly with the software.
However, it is typically done in a special lab equipped with video cameras and special soft-
ware that records every keystroke and mouse operation so they can be replayed to under-
stand exactly what the user did.

The user is given a specific set of tasks to accomplish (usually the use scenarios), and
after some initial instructions, the project team’s members are not permitted to interact
with the user to provide assistance. The user must work with the software without help,
which can be hard on the users if they become confused with the system. It is critical that
users understand that the goal is to test the interface, not their abilities, and if they are
unable to complete the task, the interface—not the user—has failed the test.

Formal usability testing is very expensive, because each one-user session can take one
to two days to analyze depending on the volume of detail collected in the computer logs
and videos. Sessions typically last one to two hours. Most usability testing involves five to
ten users, because if there are fewer than five users, the results depend too much on the
specific individual users who participated, and more than ten users are often too expensive
to justify (unless a large commercial software developer is involved).

Common Sense Approach to User Interface Design
When you consider all of the above material, to design an effective user interface design can
be a daunting and very time-consuming task. An interesting book by Steve Krug,9 however,
provides us with a set of guiding principles for Web usability. In this section we adapt his
principles to general user interface design.

First, the user should never have to think about how to navigate the user interface. As
Krug puts it, “Don’t make me think.” Cognitively speaking, any time the user has to stop and
figure out how to use the user interface, the creator of the user interface has failed. That might
seem a little harsh, but it is true. From the user’s perspective, the user interface is the system.
If the developers have done their homework, the user interface should be intuitive to use. For
example, even though it would be better to redesign the form shown in Figure 10-4, if the
user’s job is to input data into the system from the form, then the user interface should
mimic that form. From a practical perspective, we should study how the user really uses
the system. Based on Krug’s observations of users, he found that users do not read Web
pages; instead they tend to scan them. As a general user interface design guideline, we sug-
gest that you make it easy for users to identify the different parts of the user interface so
that they simply scan the screen to see the section of the interface that is applicable to the
problem that they are solving. Given the user’s tendency to simply scan the user interface,
Krug suggests that we should consider studying billboards for inspiration. Billboards are
designed to be “read” at 70 mph as you drive down the highway. Obviously, the most rel-
evant information must catch your attention for the billboard advertisement to work. He
suggests that we should use the set of conventions that we have grown up with. For exam-
ple, when looking at a newspaper you know that it is organized into different sections. In
the case of the Wall Street Journal, you know that the front page acts as an index into the
rest of the paper. Consequently, we should look for conventions that we can employ to aid
the user.

434 Chapter 10 Human–Computer Interaction Layer Design

8 A good source for usability testing is Jakob Nielsen and Robert Mack (eds.), Usability Inspection Methods (New
York: Wiley, 1994). See also www.useit.com/papers.
9 Steve Krug, Don’t Make Me Think: A Common Sense Approach to Web Usability, 2nd Ed. (Berkeley, CA: New
Riders, 2006).

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:05 PM Page 434

Second, he suggests that the number of clicks that a user must perform to complete the
task is somewhat irrelevant. Instead, building on his first guiding principle, the important
thing is to design the user interface such that the choices (clicks) to be made are unam-
biguous. Making a lot of obvious choices is a lot quicker and easier than a few vague and
ambiguous ones. Consequently, don’t worry about the number of screens that the user
must work through. However, like any other rule, this can be taken to an extreme. Too
many clicks is still too many clicks. The overall goal is to minimize the user’s effort. Simply
focus on making it easier for the user to complete the task.

Third, minimize the number of words on the screen. Given that users scan the screen
to find for what they are searching, make it easier by not cluttering the screen with lots of
noise. He suggests that in the case of web interfaces, that 50%–75% of the words can be
eliminated without losing any information contained on the screen. Obviously, this may be
somewhat extreme, but it does suggest that following the KISS10 principle is critical when
designing effective user interfaces.

NAVIGATION DESIGN
The navigation component of the interface enables the user to enter commands to navigate
through the system and perform actions to enter and review information it contains. The
navigation component also presents messages to the user about the success or failure of his

User Interface Design Process 435

10 Keep it simple, stupid!

It used to take workers at Hydro Agri’s Canadian Fertil-
izer stores about 20 seconds to process an order. After
installing SAP, it now takes 90 seconds. Entering an
order requires users to navigate through six screens to
find the data fields that were on one screen in the old
system. The problem became so critical during the
spring planting rush that the project team installing the
SAP system was pressed into service to take telephone
orders.

Many other customers have complained about similar
problems in SAP and the other leading ERP systems.
Ontario-based Algoma Steel uses PeopleSoft and now has
to use a dozen screens to enter employee data that were
contained in two screens in their old custom-built person-
nel system. A-dec, a dental equipment maker based in
Oregon, discovered the hard way that its Baan inventory
system was still counting products that had been shipped
in its on-hand inventories; the system required users to
confirm the order shipments before the inventories were
recorded as shipped, but it didn’t automatically take them
to the confirmation screen. So why have companies imple-
mented ERP systems? The driving force behind most imple-

mentations was not to simplify the users’ jobs but instead
to improve the quality of the data, simplify system mainte-
nance, and/or beat the Y2K problem. Ease of use wasn’t a
consideration, and what makes ERP systems so hard to use
is that in the attempt to make them one-size-fits-all, devel-
opers had to include many little-used data items and
processes. Instead of having a small custom system col-
lecting only the data needed by the company itself (which
could be condensed to fit one or two screens), companies
now find themselves using a system designed to collect all
the data items that any company could possibly use—data
items that now require six to twelve screens.
Source: “ERP user interfaces drive workers nuts,” ComputerWorld
(November 2, 1998).

Question

Suppose you were a systems analyst at one of the
leading ERP vendors (e.g., SAP, PeopleSoft, Baan).
How could you apply the interface design princi-
ples and techniques in this chapter to improve
the ease of use of your system?

10-B ERP User Interfaces DriveCONCEPTS

IN ACTION

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:05 PM Page 435

or her actions. The goal of the navigation system is to make the system as simple as possi-
ble to use. A good navigation component is one the user never really notices. It simply
functions the way the user expects, and thus the user gives it little thought. In other words,
keep Krug’s three guiding principles in mind as you work through the next three sections
of the text.

Basic Principles
One of the hardest things about using a computer system is learning how to manipulate
the navigation controls to make the system do what you want. Analysts usually need to
assume that users have not read the manual, have not attended training, and do not
have external help readily at hand. All controls should be clear and understandable and
placed in an intuitive location on the screen. Ideally, the controls should anticipate what
the user will do and simplify his or her efforts. For example, many setup programs are
designed so that for a typical installation, the user can simply keep pressing the Next
button.

Prevent Mistakes The first principle of designing navigation controls is to prevent the
user from making mistakes. A mistake costs time and causes frustration. Worse still, a series
of mistakes can cause the user to discard the system. Mistakes can be reduced by labeling
commands and actions appropriately and by limiting choices. Too many choices can con-
fuse the user, particularly when they are similar and hard to describe in the short space
available on the screen. When there are many similar choices on a menu, consider creating
a second menu level or a series of options for basic commands.

Never display a command that cannot be used. For example, many Windows appli-
cations gray out commands that cannot be used; they are displayed on pull-down menus
in a very light-colored font, but they cannot be selected. This shows that they are avail-
able but cannot be used in the current context. It also keeps all menu items in the same
place.

When the user is about to perform a critical function that is difficult or impossible to
undo (e.g., deleting a file), it is important to confirm the action with the user (and make
sure the selection was not made by mistake). Having the user respond to a confirmation
message, which explains what the user has requested and asks the user to confirm that this
action is correct, usually does this.

Simplify Recovery from Mistakes No matter what the system designer does, users will
make mistakes. The system should make it as easy as possible to correct these errors. Ideally,
the system has an Undo button that makes mistakes easy to override; however, writing the
software for such buttons can be very complicated.

Use Consistent Grammar Order One of the most fundamental decisions is the gram-
mar order. Most commands require the user to specify an object (e.g., file, record, word),
and the action to be performed on that object (e.g., copy, delete). The interface can require
the user to first choose the object and then the action (an object–action order) or first
choose the action and then the object (an action–object order). Most Windows applications
use an object–action grammar order (e.g., think about copying a block of text in your word
processor).

The grammar order should be consistent throughout the system, both at the data ele-
ment level and at the overall menu level. Experts debate about the advantages of one
approach over the other, but because most users are familiar with the object–action order,
most systems today are designed using that approach.

436 Chapter 10 Human–Computer Interaction Layer Design

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:06 PM Page 436

Types of Navigation Controls
There are two traditional hardware devices that can be used to control the user interface: the
keyboard and a pointing device such as a mouse, trackball, or touch screen. Voice-recognition
systems have made an appearance, but they are not yet common. There are three basic soft-
ware approaches for defining user commands: languages, menus, and direct manipulation.

Languages With a command language, the user enters commands using a special lan-
guage developed for the computer system (e.g., UNIX and SQL both use command
languages). Command languages sometimes provide greater flexibility than other
approaches because the user can combine language elements in ways not predetermined by
developers. However, they put a greater burden on users because users must learn syntax
and type commands rather than select from a well-defined, limited number of choices. Sys-
tems today use command languages sparingly, except in cases where there is an extremely
large number of command combinations that make it impractical to try to build all
combinations into a menu (e.g., SQL queries for databases).

Natural language interfaces are designed to understand the user’s own language
(e.g., English, French, Spanish). These interfaces attempt to interpret what the user means,
and often they present back to the user a list of interpretations from which to choose. An
example of the use of natural language is Microsoft’s Help System, which enables users to
ask free-form questions for help.

Menus The most common type of navigation system today is the menu. A menu presents
a user with a list of choices, each of which can be selected. Menus are easier to learn than
languages because a limited number of available commands are presented to the user in an
organized fashion. Clicking on an item with a pointing device or pressing a key that
matches the menu choice (e.g., a function key) takes very little effort. Therefore, menus are
usually preferred to languages.

Menus need to be designed with care because the submenus behind a main menu are
hidden from users until they click on the menu item. It is better to make menus broad and
shallow (i.e., each menu containing many items with only one or two layers of menus) rather
than narrow and deep (i.e., each menu containing only a few items, but each leading to three
or more layers of menus). A broad and shallow menu presents the user with the most infor-
mation initially so that he or she can see many options and requires only a few mouse clicks
or keystrokes to perform an action. A narrow and deep menu makes users hunt for items hid-
den behind menu items and requires many more clicks or keystrokes to perform an action.

Research suggests that in an ideal world, any one menu should contain no more than
eight items, and it should take no more than two mouse clicks or keystrokes from any
menu to perform an action (or three from the main menu that starts a system).11

However, analysts sometimes must break this guideline in the design of complex systems.
In this case, menu items are often grouped together and separated by a horizontal line (see

User Interface Design Process 437

Design a navigation system for a system into which users
must enter information about customers, products, and

orders. For all three, users will want to change, delete,
find one specific record, and list all records.

10-7 Design a Navigation SystemYOUR

TURN

11 Kent L. Norman, The Psychology of Menu Selection (Norwood NJ.: Ablex Publishing Corp., 1991).

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:06 PM Page 437

438 Chapter 10 Human–Computer Interaction Layer Design

Figure 10-14). Often menu items have hot keys that enable experienced users to quickly
invoke a command with keystrokes in lieu of a menu choice (e.g., Ctrl-F in Word invokes
the Find command or Alt-F opens the file menu).

Menus should put together like items so that the user can intuitively guess what
each menu contains. Most designers recommend grouping menu items by interface
objects (e.g., customers, purchase orders, inventory) rather than by interface actions
(e.g., new, update, format), so that all actions pertaining to one object are in one menu,
all actions for another object are in a different menu, and so. However, this is highly
dependent on the specific interface. As Figure 10-14 shows, Microsoft Visual Studio
groups menu items by interface objects (e.g., File, Tools, Window) and by interface

FIGURE 10-14 Common Types of Menus

Menu
Bar

Popup
Menu Tabbed

Menu

Icon
Tool
Bar

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:06 PM Page 438

User Interface Design Process 439

FIGURE 10-14 (Continued)

Drop-
down
Menu

Menu
Group
Separator

Cascading
Menu

Greyed-
out
Menu
Options

actions (e.g., Edit, Build, Format) on the same menu. Some of the more common types
of menus include menu bars, drop-down menus, pop-up menus, tab menus, toolbars, and
image maps (see Figure 10-15).

Direct Manipulation With direct manipulation, the user enters commands by working
directly with interface objects. For example, users can change the size of objects in
Microsoft PowerPoint by clicking on them and moving their sides, or they can move files
in Windows Explorer by dragging the filenames from one folder to another. Direct manip-
ulation can be simple, but it suffers from two problems. First, users familiar with language-
or menu-based interfaces don’t always expect it. Second, not all commands are intuitive.
[How do you copy (not move) files in Windows Explorer? On the Macintosh, why does
moving a folder to the trash delete the file if it is on the hard disk, but eject the DVD if the
file is on a DVD?]

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:06 PM Page 439

Messages
Messages are the way the system responds to a user and informs him or her of the status
of the interaction. There are many different types of messages, such as error messages,
confirmation messages, acknowledgment messages, delay messages, and help messages (see
Figure 10-16). In general, messages should be clear, concise, and complete, which are
sometimes conflicting objectives. All messages should be grammatically correct and free
of jargon and abbreviations (unless they are the users’ jargon and abbreviations). Avoid
negatives because they can be confusing (e.g., replace Are you sure you do not want to
continue? with Do you want to quit?). Likewise, avoid humor, because it wears off
quickly after the same message appears dozens of times.

Messages should require the user to acknowledge them (by clicking, for example),
rather than being displayed for a few seconds and then disappearing. The exceptions are
messages that inform the user of delays in processing, which should disappear once the
delay has passed. In general, messages are text, but sometimes, standard icons are used. For
example, Windows displays an hourglass when the system is busy. All messages should be
carefully crafted, but error and help messages require particular care. Messages (and

440 Chapter 10 Human–Computer Interaction Layer Design

Type of Menu When to Use Notes

Menu bar
List of commands at the top
of the screen; always on-
screen

Main menu for system Use the same organization as the operating system and
other packages (e.g., File, Edit, View).

Menu items are always one word, never two.
Menu items lead to other menus rather than perform action.
Never allow users to select actions they can’t perform

(instead, use grayed-out items).

Drop-down menu
Menu that drops down imme-
diately below another menu;
disappears after one use

Second-level menu, often from
menu bar

Menu items are often multiple words.
Avoid abbreviations.
Menu items perform action or lead to another cascading

drop-down menu, pop-up menu, or tab menu.

Pop-up menu
Menu that pops up and
floats over the screen; disap-
pears after one use

As a shortcut to commands for
experienced users

Pop-up menus often (not always) are invoked by a right
click in Windows-based systems.

These menus are often overlooked by novice users, so usually
they should duplicate functionality provided in other menus.

Tab menu
Multipage menu with one tab
for each page that pops up
and floats over the screen;
remains on-screen until closed

When user needs to change
several settings or perform
several related commands

Menu items should be short to fit on the tab label.
Avoid more than one row of tabs, because clicking on a tab

to open it can change the order of the tabs and in virtually
no other case does selecting from a menu rearrange the
menu itself.

Tool bar
Menu of buttons (often with
icons) that remains on
screen until closed

As a shortcut to commands for
experienced users

All buttons on the same tool bar should be the same size.
If the labels vary dramatically in size, then use two differ-

ent sizes (small and large).
Buttons with icons should have a tool tip, an area that dis-

plays a text phrase explaining the button when the user
pauses the mouse over it.

Image map
Graphic image in which
certain areas are linked to
actions or other menus

Only when the graphic image
adds meaning to the menu

The image should convey meaning to show which parts
perform action when clicked.

Tool tips can be helpful.

FIGURE 10-15 Types of Menus

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:06 PM Page 440

especially error messages) should always explain the problem in polite, succinct terms
(e.g., what the user did incorrectly) and explain corrective action as clearly and as explic-
itly as possible so the user knows exactly what needs to be done. In the case of complicated
errors, the error message should display what the user entered, suggest probable causes for
the error, and propose possible user responses. When in doubt, provide either more infor-
mation than the user needs or the ability to get additional information. Error messages
should provide a message number. Message numbers are not intended for users, but their
presence makes it simpler for help desks and customer support lines to identify problems
and help users because many messages use similar wording.

Navigation Design Documentation
The design of the navigation for a system is done through the use of WNDs and real use cases.
Real use cases are derived from the essential use cases (see Chapter 4), use scenarios, and WNDs.
Recall that an essential use case is one that describes only the minimum essential issues neces-
sary to understand the required functionality. A real use case describes a specific set of steps that
a user performs to use a specific part of a system. Real use cases are implementation dependent
(i.e., they are detailed descriptions of how to use the system once it is implemented).

To evolve an essential use case into a real use case, two changes must be made. First,
the use-case type must be changed from essential to real. Second, all events must be

User Interface Design Process 441

Type of Messages When to Use Notes

Error message
Informs the user that he or
she has attempted to do
something to which the
system cannot respond

When the user does some-
thing that is not permitted or
not possible

Always explain the reason and suggest corrective action.
Traditionally, error messages have been accompanied by a

beep, but many applications now omit it or permit users
to remove it.

Confirmation message
Asks users to confirm that
they really want to perform
the action they have selected

When user selects a poten-
tially dangerous choice, such
as deleting a file

Always explain the cause and suggest possible action.
Often include several choices other than OK and cancel.

Acknowledgment message
Informs the user that the sys-
tem has accomplished what
it was asked to do

Seldom or never. Users
quickly become annoyed
with all the unnecessary
mouse clicks

Acknowledgment messages are typically included because
novice users often like to be reassured that an action has
taken place.

The best approach is to provide acknowledgment informa-
tion without a separate message on which the user must
click. For example, if the user is viewing items in a list
and adds one, then the updated list on the screen show-
ing the added item is sufficient acknowledgment.

Delay message
Informs the user that the
computer system is working
properly

When an activity takes more
than seven seconds

Should permit the user to cancel the operation in case he
or she does not want to wait for its completion.

Should provide some indication of how long the delay
will last.

Help message
Provides additional informa-
tion about the system and its
components

In all systems Help information is organized by table of contents and/or
keyword search.

Context-sensitive help provides information that depends
on what the user was doing when help was requested.

Help messages and online documentation are discussed in
Chapter 12.

FIGURE 10-16 Types of Messages

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:06 PM Page 441

specified in terms of the actual user interface. Therefore, the normal flow of events, sub-
flows, and alternative/exceptional flows must be modified. The normal flow of events, sub-
flows, and alternative/exceptional flows for the real use case associated with the storyboard
user interface prototype given in Figure 10-9 is shown in Figure 10-17. For example, step 2

444422 CChhaapptteerr 1100 Human–Computer Interaction Layer Design

Use-Case Name: Maintain Client List ID: 12 Importance Level: High

Primary Actor: Sales Rep Use-Case Type: Detail, Real

Stakeholders and Interests: Sales Rep - wants to add, find or list clients

Brief Description: This use case describes how sales representatives can search and maintain the
client list.

Trigger: Patient calls and asks for a new appointment or asks to cancel or change an existing
appointment.

Type: External

Relationships:
Association: Sales Rep
Include:
Extend:
Generalization:

Normal Flow of Events:

1. The Sales Rep starts up the system.
2. The System provides the Sales Rep with the Main Menu for the System.
3. The System asks Sales Rep if he or she would like to Add a client. Find an existing Client, or to

List all existing clients.
If the Sales Rep wants to add a client, they click on the Add Client Link and execute S-1:

New Client.
If the Sales Rep wants to f ind a client, they click on the Find Client Link and execute S-2:

Find Client.
If the Sales Rep wants to list all clients, they click on the List Client Link and execute S-3:

List Clients.
4. The System returns the Sales Rep to the Main Menu of the System.

Subflows:
S-1: New Client

1. The System asks the Sales Rep for relevant information.
2. The Sales Rep types in the relevant information into the Form
3. The Sales Rep submits the information to the System.

S-2: Find Client
1. The System asks the Sales Rep for the search information.
2. The Sales Rep types in the search information into the Form
3. The Sales Rep submits the information to the System.
4. If the System finds a single Client that meets the search information.

the System produces a Client Information report and returns the Sales Rep to the Main
Menu of the System

Else If the System finds a list of Clients that meet the search information. the System executes
S-3: List Clients.

S-3: List Clients
1. If this Subflow is executed from Step 3

The System creates a List of All clients
Else

The System creates a List of clients that matched the S-2: Find Client search criteria.
2. The Sales Rep selects a client.
3. The System produces a Client Information report.

Alternate/Exceptional Flows:
S-2 4a. The System produces an Error Message.

FFIIGGUURREE 1100--1177
Real Use-Case
Example

c10HumanComputerInteractionLayerDesign.qxd 12/2/11 8:35 PM Page 442

of the normal flow of events states that “The System provides the Sales Rep with the Main
Menu for the System,” which allows the Sales Rep to interact with the Maintain Client List
aspect of the system.

INPUT DESIGN
Inputs facilitate the entry of data into the computer system, whether highly structured
data, such as order information (e.g., item numbers, quantities, costs) or unstructured
information (e.g., comments). Input design means designing the screens used to enter the
information as well as any forms on which users write or type information (e.g., timecards,
expense claims).

Basic Principles
The goal of the input mechanism is to simply and easily capture accurate information for
the system. The fundamental principles for input design reflect the nature of the inputs
(whether batch or online) and ways to simplify their collection.

Online versus Batch Processing There are two general formats for entering inputs into a
computer system: online processing and batch processing. With online processing (sometimes

Input Design 443

Police officers in San Jose, California, experienced a
number of problems with a new mobile dispatch system
that included a Windows-based touch-screen computer
in every patrol car. Routine tasks were difficult to perform,
and the essential call for assistance was considered need-
lessly complicated.

The new system, costing $4.7 million, was an off-the-
shelf system purchased from Intergraph Corp. It replaced
a 14-year-old text-based system that was custom devel-
oped. Initially, the system was unstable, periodically
crashing a day or two after installation and down for the
next several days.

At the request of the San Jose police union, a user-
interface design consulting firm was brought in to evalu-
ate the new system. A number of errors were discovered
in the system, including inaccurate map information,
screens cluttered with unnecessary information, difficult-
to-read on-screen type, and difficult-to-perform basic
tasks, such as license plate checks. In addition, the police
officers themselves were not consulted about the design
of the interface. Many users felt that the Windows desk-
top GUI with its complex hierarchical menu structure was
not suitable for in-vehicle use. While driving, officers

found that the repeated taps on the screen required to
complete tasks were very distracting, and one officer
crashed his vehicle into a parked car because of the dis-
traction of working with the system.

Further complicating the transition to the new system
was the bare-bones training program. Just three hours of
training were given on a desktop system, using track pads
on the keyboards, not the 12-inch touch screen that
would be found in the patrol cars.

After the rocky start, the software vendor worked
closely with the city of San Jose to fix bugs and smooth out
workflows. It seems clear, however, that the rollout could
have been much easier if the officers and dispatchers had
been involved in planning the system in the first place.
Source: Katie Hafner, “Wanted by the Police: A Good Interface,” New
York Times, November 11, 2004.

Question

If you were involved in the acquisition of a new
system for the police force in your community, what
steps could you take to ensure the success of the
project?

10-C Public Safety Depends on a Good User InterfaceCONCEPTS

IN ACTION

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:06 PM Page 443

called transaction processing), each input item (e.g., a customer order, a purchase order) is
entered into the system individually, usually at the same time as the event or transaction
prompting the input. For example, when you check a book out from the library, buy an item
at the store, or make an airline reservation, the computer system that supports that process
uses online processing to immediately record the transaction in the appropriate database(s).
Online processing is most commonly used when it is important to have real-time information
about the business process. For example, when you reserve an airline seat, the seat is no longer
available for someone else to use.

With batch processing, all the inputs collected over some time period are gathered
together and entered into the system at one time in a batch. Some business processes
naturally generate information in batches. For example, most hourly payrolls are done
using batch processing because time cards are gathered together in batches and
processed at once. Batch processing is also used for transaction processing systems that
do not require real-time information. For example, most stores send sales information
to district offices so that new replacement inventory can be ordered. This information
can be sent in real time as it is captured in the store so that the district offices are aware
within a second or two that a product is sold. If stores do not need this up-to-the-
second real-time data, they will collect sales data throughout the day and transmit it
every evening in a batch to the district office. This batching simplifies the data commu-
nications process and often saves in communications costs, but it does mean that inven-
tories are not accurate in real time but rather are accurate only at the end of the day
after the batch has been processed.

Capture Data at the Source Perhaps the most important principle of input design is to
capture the data in an electronic format at its original source or as close to the original
source as possible. In the early days of computing, computer systems replaced traditional
manual systems that operated on paper forms. As these business processes were automated,
many of the original paper forms remained, either because no one thought to replace them
or because it was too expensive to do so. Instead, the business process continued to contain
manual forms that were taken to the computer center in batches to be typed into the com-
puter system by a data entry operator.

Many business processes still operate this way today. For example, most organizations
have expense claim forms that are completed by hand and submitted to an accounting
department, which approves them and enters them into the system in batches. There are
three problems with this approach. First, it is expensive because it duplicates work (the
form is filled out twice, once by hand, once by keyboard.)12 Second, it increases processing
time because the paper forms must be physically moved through the process. Third, it
increases the cost and probability of error, because it separates the entry from the process-
ing of information; someone might misread the handwriting on the input form, data may
be entered incorrectly, or the original input could contain an error that invalidates the
information.

Most transaction-processing systems today are designed to capture data at its source.
Source data automation refers to using special hardware devices to automatically capture
data without requiring anyone to type it. Stores commonly use bar-code readers that auto-
matically scan products and enter data directly into the computer system. No intermediate
formats such as paper forms are used. Similar technologies include optical character

444 Chapter 10 Human–Computer Interaction Layer Design

12 Or in the case of the University of Georgia, three times: first by hand on an expense form, a second time when
it is typed onto a new form for the “official” submission because the accounting department refuses handwritten
forms, and, finally, when it is typed into the accounting computer system.

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:06 PM Page 444

recognition, which can read printed numbers and text (e.g., on checks), magnetic stripe
readers, which can read information encoded on magnetic strip (e.g., credit cards), and
smart cards, which contain microprocessors, memory chips, and batteries (much like credit
card–sized calculators). As well as reducing the time and cost of data entry, these systems
reduce errors because they are far less likely to capture data incorrectly. Today, portable
computers and scanners allow data to be captured at the source even in mobile settings
(e.g., air courier deliveries, use of rental cars).

These automatic systems are not capable of collecting a lot of information, so the next-
best option is to capture data immediately from the source using a trained entry operator.
Many airline and hotel reservations, loan applications, and catalog orders are recorded
directly into a computer system while the customer provides the operator with answers to
questions. Some systems eliminate the operator altogether and allow users to enter their
own data. For example, many universities no longer accept paper-based applications for
admissions; all applications are typed by students into electronic forms.

The forms for capturing information (on a screen, on paper, etc.) should support the
data source. That is, the order of the information on the form should match the natural
flow of information from the data source, and data-entry forms should match paper forms
used to initially capture the data.

Minimize Keystrokes Another important principle is to minimize keystrokes. Key-
strokes cost time and money, whether they are performed by a customer, user, or trained
data-entry operator. The system should never ask for information that can be obtained in
another way (e.g., by retrieving it from a database or by performing a calculation). Like-
wise, a system should not require a user to type information that can be selected from a list;
selecting reduces errors and speeds entry.

In many cases, some fields have values that often recur. These frequent values should
be used as the default value for the field so that the user can simply accept the value and not
have to retype it time and time again. Examples of default values are the current date, the
area code held by the majority of a company’s customers, and a billing address, which is
based on the customer’s residence. Most systems permit changes to default values to handle
data-entry exceptions as they occur.

Input Design 445

Suppose you are designing the new interface for a career
services system at your university that accepts student
résumés and presents them in a standard format to
recruiters. Describe how you could incorporate the basic

principles of input design into your interface design.
Remember to include the use of online versus batch data
input, the capture of information, and plans to minimize
keystrokes.

10-8 Career ServicesYOUR

TURN

Types of Inputs
Each data item that has to be input is linked to a field on the form into which its value is
typed. Each field also has a field label, which is the text beside, above, or below the field that
tells the user what type of information belongs in the field. Often the field label is similar

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:06 PM Page 445

to the name of the data element, but they do not have to have identical words. In some
cases, a field displays a template over the entry box to show the user exactly how data
should be typed. There are many different types of inputs, in the same way that there are
many different types of fields (see Figure 10-18).

Text As the name suggests, a text box is used to enter text. Text boxes can be defined to
have a fixed length or can be scrollable and can accept a virtually unlimited amount of text.
In either case, boxes can contain single or multiple lines of textual information. We never
use a text box if we can use a selection box.

Text boxes should have field labels placed to the left of the entry area, their size clearly
delimited by a box (or a set of underlines in a non-GUI interface). If there are multiple text
boxes, their field labels and the left edges of their entry boxes should be aligned. Text boxes
should permit standard GUI functions, such as cut, copy, and paste.

Numbers A number box is used to enter numbers. Some software can automatically for-
mat numbers as they are entered, so that 3452478 becomes $34,524.78. Dates are a special
form of numbers that sometimes have their own type of number box. Never use a number
box if you can use a selection box.

446 Chapter 10 Human–Computer Interaction Layer Design

FIGURE 10-18 Use Input Options

Radio
Buttons

Check
Boxes

Drop-down
List BoxOn-screen

List Box

Scroll Bar

Text Box

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:06 PM Page 446

Input Design 447

Type of Box When to Use Notes

Check box
Presents a complete list of
choices, each with a square
box in front

When several items can be
selected from a list of items

Check boxes are not mutually exclusive.
Do not use negatives for box labels.
Check box labels should be placed in some logical order,

such as that defined by the business process, or failing
that, alphabetically or most commonly used first.

Use no more than ten check boxes for any particular set
of options. If you need more boxes, group them into
subcategories.

Radio button
Presents a complete list of
mutually exclusive choices,
each with a circle in front

When only one item can be
selected from a set of mutu-
ally exclusive items

Use no more than six radio buttons in any one list; if you
need more, use a drop-down list box.

If there are only two options, one check box is usually preferred
to two radio buttons, unless the options are not clear.

Avoid placing radio buttons close to check boxes to
prevent confusion between different selection lists.

On-screen list box
Presents a list of choices in a
box

Seldom or never—only if there
is insufficient room for check
boxes or radio buttons

This type of box can permit only one item to be selected
(in which case it is an ugly version of radio buttons).

This type of box can also permit many items to be selected
(in which case it is an ugly version of check boxes), but
users often fail to realize they can choose multiple items.

This type of box permits the list of items to be scrolled,
thus reducing the amount of screen space needed.

Drop-down list box
Displays selected item in
one-line box that opens to
reveal list of choices

When there is insufficient
room to display all choices

This type of box acts like radio buttons but is more compact.
This type of box hides choices from users until it is opened,

which can decrease ease of use; conversely, because it
shelters novice users from seldom-used choices, it can
improve ease of use.

This type of box simplifies design if the number of choices
is unclear, because it takes only one line when closed.

Combo box
A special type of drop-down
list box that permits uses to
type as well as scroll the list

Shortcut for experienced users This type of box acts like drop-down list but is faster for
experienced users when the list of items is long.

Slider
Graphic scale with a sliding
pointer to select a number

Entering an approximate
numeric value from a large
continuous scale

The slider makes it difficult for the user to select a precise
number.

Some sliders also include a number box to enable the user
to enter a specific number.

FIGURE 10-19 Types of Selection Boxes

Consider a Web form that a student would use to input
student information and résumé information into a career
services application at your university. First, sketch out
how this form would look and identify the fields that the

form would include. What types of validity checks would
you use to make sure that the correct information is
entered into the system?

10-9 Career ServicesYOUR

TURN

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:06 PM Page 447

Selection Box A selection box enables the user to select a value from a predefined list. The
items in the list should be arranged in some meaningful order, such as alphabetical for long
lists or in order of most frequently used. The default selection value should be chosen with
care. A selection box can be initialized as unselected. However, it is better to start with the
most commonly used item already selected.

Input Validation
All data entered into the system need to be validated to ensure their accuracy. Input
validation (also called edit checks) can take many forms. Ideally, computer systems should
not accept data that fail any important validation check to prevent invalid information
from entering the system. However, this can be very difficult, and invalid data often slip
past data-entry operators and the users providing the information. It is up to the system to
identify invalid data and either make changes or notify someone who can resolve the infor-
mation problem.

There are six different types of validation checks: completeness check, format check,
range check, check digit check, consistency check, and database check (see Figure 10-20). Every
system should use at least one validation check on all entered data and, ideally, performs all
appropriate checks where possible.

OUTPUT DESIGN
Outputs are the reports that the system produces, whether on the screen, on paper, or in
other media, such as the Web. Outputs are perhaps the most visible part of any system
because a primary reason for using an information system is to access the information that
it produces.

Basic Principles
The goal of the output mechanism is to present information to users so they can accu-
rately understand it with the least effort. The fundamental principles for output design
reflect how the outputs are used and ways to make it simpler for users to understand
them.

Understand Report Usage The first principle in designing reports is to understand
how they are used. Reports can be used for many different purposes. In some cases—
but not very often—reports are read cover to cover because all information is needed.
In most cases, reports are used to identify specific items or used as references to find
information, so the order in which items are sorted on the report or grouped within cat-
egories is critical. This is particularly important for the design of electronic or Web-
based reports. Web reports that are intended to be read from start to finish should be
presented in one long scrollable page, whereas reports that are used primarily to find
specific information should be broken into multiple pages, each with a separate link.
Page numbers and the date on which the report was prepared are also important for ref-
erence reports.

The frequency of the report can also play an important role in its design and
distribution. Real-time reports provide data that are accurate to the second or minute at
which they were produced (e.g., stock market quotes). Batch reports are those that report
historical information that may be months, days, or hours old, and they often provide

448 Chapter 10 Human–Computer Interaction Layer Design

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:06 PM Page 448

additional information beyond the reported information (e.g., totals, summaries, histori-
cal averages).

There are no inherent advantages to real-time reports over batch reports. The only
advantages lie in the time value of the information. If the information in a report is
time critical (e.g., stock prices, air-traffic control information), then real-time reports
have value. This is particularly important because real-time reports are often expensive
to produce; unless they offer some clear business value, they might not be worth the
extra cost.

Output Design 449

Type of Validation When to Use Notes

Completeness check
Ensures all required data
have been entered

When several fields must be
entered before the form can
be processed

If required information is missing, the form is returned to
the user unprocessed.

Format check
Ensures data are of the right
type (e.g., numeric) and in
the right format (e.g., month,
day, year)

When fields are numeric or
contain coded data

Ideally, numeric fields should not permit users to type text
data, but if this is not possible, the entered data must be
checked to ensure it is numeric.

Some fields use special codes or formats (e.g., license plates
with three letters and three numbers) that must be checked.

Range check
Ensures numeric data are
within correct minimum and
maximum values

With all numeric data, if
possible

A range check permits only numbers between correct values.
Such a system can also be used to screen data for “reason-

ableness”—e.g., rejecting birthdates prior to 1880
because people do not live to be a great deal over 100
years old (most likely, 1980 was intended).

Check digit check
Check digits are added to
numeric codes

When numeric codes are used Check digits are numbers added to a code as a way of
enabling the system to quickly validate correctness. For
example, U.S. Social Security numbers and Canadian Social
Insurance numbers assign only eight of the nine digits in the
number. The ninth number—the check digit—is calculated
using a mathematical formula from the first eight numbers.

When the identification number is typed into a computer sys-
tem, the system uses the formula and compares the result
with the check digit. If the numbers don’t match, then an
error has occurred.

Consistency checks
Ensure combinations of data
are valid

When data are related Data fields are often related. For example, someone’s birth year
should precede the year in which he or she was married.

Although it is impossible for the system to know which
data are incorrect, it can report the error to the user for
correction.

Database checks
Compare data against a
database (or file) to ensure
they are correct

When data are available to be
checked

Data are compared against information in a database (or
file) to ensure they are correct. For example, before an
identification number is accepted, the database is
queried to ensure that the number is valid.

Because database checks are more expensive than the
other types of checks (they require the system to do more
work), most systems perform the other checks first and
perform database checks only after the data have passed
the previous checks.

FIGURE 10-20 Types of Input Validation

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:06 PM Page 449

Manage Information Load Most managers get too much information, not too little (i.e.,
the information load that the manager must deal with is too great). The goal of a well-
designed report is to provide all the information needed to support the task for which it was
designed. This does not mean that the report needs to provide all the information available
on the subject—just what the users decide they need in order to perform their jobs. In some
cases, this can result in the production of several different reports on the same topics for the
same users because they are used in different ways. This is not a bad design.

For users in westernized countries, the most important information should always be
presented first in the top-left corner of the screen or paper report. Information should be
provided in a format that is usable without modification. The user should not need to re-
sort the report’s information, highlight critical information to find it more easily amid a
mass of data, or perform additional mathematical calculations.

Minimize Bias No analyst sets out to design a biased report. The problem with bias is
that it can be very subtle; analysts can introduce it unintentionally. Bias can be introduced
by the way lists of data are sorted because entries that appear first in a list can receive more
attention than those later in the list. Data are often sorted in alphabetical order, making
those entries starting with the letter A more prominent. Data can be sorted in chronolog-
ical order (or reverse chronological order), placing more emphasis on older (or most
recent) entries. Data may be sorted by numeric value, placing more emphasis on higher
or lower values. For example, consider a monthly sales report by state. Should the report
be listed in alphabetical order by state name, in descending order by the amount sold, or
in some other order (e.g., geographic region)? There are no easy answers to this, except to
say that the order of presentation should match the way the information is used.

Graphical displays and reports can present particularly challenging design issues.13

The scale on the axes in graphs is particularly subject to bias. For most types of graphs, the
scale should always begin at zero; otherwise, comparisons among values can be misleading.
For example, have sales increased by very much since year 1 (see Figure 10-21a and 10-
21b)? The numbers in both charts are the same, but the visual images the two present are
quite different. A glance at Figure 10-21a would suggest only minor changes, whereas a
glance at Figure 10-21b might suggest that there have been some significant increases. In
fact, sales have increased by a total of 15 percent over five years, or 3 percent per year. Fig-
ure 10-21a presents the most accurate picture; Figure 10-21b is biased because the scale
starts very close to the lowest value in the graph and misleads the eye into inferring that
there have been major changes. Figure 10-21b is the default graph produced by Microsoft
Excel. You should also beware of the so-called 3D effects in Microsoft Excel. For example,
the pie charts in Figures 11-21c and 11-21d represent the same data; in fact the data itself
are constant. However, owing to the “3D” pie chart, the slices nearer the front look bigger.

450 Chapter 10 Human–Computer Interaction Layer Design

13 Two of the best books on the design of charts and graphical displays are by Edward R. Tufte, The Visual Display
of Quantitative Information, Envisioning Information (Cheshire, CT: Graphics Press, 2001) and Visual Explana-
tions: Images and Quantities, Evidence and Narrative (Cheshire, CT: Graphics Press, 1997). Another good book is
by William Cleveland, Visualizing Data (Summit, NJ: Hobart Press, 1993).

Read through recent copies of a newspaper or popular
press magazine, such as Time, Newsweek, or BusinessWeek,

and find four graphs. Are any of these biased? if so, why?

10-10 Finding BiasYOUR

TURN

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:06 PM Page 450

Output Design 451

Sales

120

100

80

60

40

20

0

(a) Unbiased graph with scale starting at 0

1 2 43 5 6 7 8 9 10

Sales

110

106

108

104

102

100

98

96

94

(b) Biased graph with scale starting at 94

1 2 43 5 6 7 8 9 10

(d) Biased graph in 3D(c) Unbiased graph in 2D

FIGURE 10-21 Bias in Graphs

Types of Outputs
There are many different types of reports, such as detail reports, summary reports, excep-
tion reports, turnaround documents, and graphs (see Figure 10-22). Classifying reports is
challenging because many reports have characteristics of several different types. For
example, some detail reports also produce summary totals, making them summary
reports.

Media
Many different types of media are used to produce reports. The two dominant media in use
today are paper and electronic. Paper is the more traditional medium. For almost as long
as there have been human organizations, there have been reports on paper or similar media
(e.g., papyrus, stone). Paper is permanent, easy to use, and accessible in most situations. It
also is highly portable, at least for short reports.

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:06 PM Page 451

452 Chapter 10 Human–Computer Interaction Layer Design

Type of Report When to Use Notes

Detail report
Lists detailed information
about all the items requested

When user needs full informa-
tion about the items

This report is usually produced only in response to a query
about items matching some criteria.

This report is usually read cover to cover to aid under-
standing of one or more items in depth.

Summary report
Lists summary information
about all items

When user needs brief infor-
mation on many items

This report is usually produced only in response to a query
about items matching some criteria, but it can be a com-
plete database.

This report is usually read for the purpose of comparing
several items to each other.

The order in which items are sorted is important.

Turnaround document
Outputs that “turn around”
and become inputs

When a user (often a cus-
tomer) needs to return an
output to be processed

Turnaround documents are a special type of report that are
both outputs and inputs. For example, most bills sent to
consumers (e.g., credit-card bills) provide information
about the total amount owed and also contain a form
that consumers fill in and return with payment.

Graphs
Charts used in addition to
and instead of tables of
numbers

When users need to compare
data among several items

Well-done graphs help users compare two or more items
or understand how one has changed over time.

Graphs are poor at helping users recognize precise
numeric values and should be replaced by or combined
with tables when precision is important.

Bar charts tend to be better than tables of numbers or other
types of charts when it comes to comparing values
between items (but avoid three-dimensional charts that
make comparisons difficult).

Line charts make it easier to compare values over time,
whereas scatter charts make it easier to find clusters or
unusual data.

Pie charts show proportions or the relative shares of a whole.

FIGURE 10-22 Types of Reports

Paper also has several rather significant drawbacks. It is inflexible. Once the report is
printed, it cannot be sorted or reformatted to present a different view of the information.
Likewise, if the information on the report changes, the entire report must be reprinted.
Paper reports are expensive, are hard to duplicate, and require considerable supplies (paper,
ink) and storage space. Paper reports also are hard to move long distances quickly (e.g.,
from a head office in Toronto to a regional office in Bermuda).

Many organizations are, therefore, moving to electronic production of reports,
whereby reports are “printed” but stored in electronic format on file servers or Web
servers so that users can easily access them. Often the reports are available in more
predesigned formats than their paper-based counterparts because the cost of producing
and storing different formats is minimal. Electronic reports also can be produced on
demand as needed, and they enable the user to more easily search for certain words.
Furthermore, electronic reports can provide a means of supporting ad hoc reports,
where users customize the contents of the report at the time the report is generated.
Some users still print the electronic report on their own printers, but the reduced cost
of electronic delivery over distance and the ease of enabling more users to access the
reports than when they were only in paper form usually offsets the cost of local
printing.

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:06 PM Page 452

MOBILE COMPUTING AND USER INTERFACE DESIGN14

From a user interface design perspective, going mobile is both exciting and challenging.
Obviously, with today’s smartphones, such as the DroidTM or iPhoneTM, there are many
possibilities. However, just because these phones have the ability to surf the Web doesn’t

Mobile Computing and User Interface Design 453

I helped a university department develop a small DSS to
analyze and rank students who applied to a specialized
program. Some of the information was numeric and could
easily be processed directly by the system (e.g., grade-
point average, standardized test scores). Other informa-
tion required the faculty to make subjective judgments
among the students (e.g., extracurricular activities, work
experience). The users entered their evaluations of the
subjective information via several data analysis screens in
which the students were listed in alphabetical order.

To make the system easier to use, it was designed so
that the reports listing the results of the analysis were also
presented in alphabetical order by student name rather than
in order from the highest-ranked student to the lowest-
ranked student. In a series of tests prior to installation, the
users selected the wrong students to admit in 20 percent of

the cases. They assumed, wrongly, that the students listed
first were the highest-ranked students and simply selected
the first students on the list for admission. Neither the title
on the report nor the fact that all the students’ names were
in alphabetical order made users realize that they had read
the report incorrectly.

—Alan Dennis

Question

This system was biased because users assumed that the
list of students implied ranking. Suppose that you are an
analyst charged with minimizing bias in this application.
Where else may you find bias in the application? How
would you eliminate it?

10-D Selecting the Wrong StudentsCONCEPTS

IN ACTION

One of the Fortune 500 firms with which I have worked had
an eighteen-story office building for its world headquarters.
It devoted two full floors of this building to nothing more
than storing “current” paper reports (a separate warehouse
was maintained outside the city for archived reports such as
tax documents). Imagine the annual cost of office space in
the headquarters building tied up in these paper reports.
Now imagine how a staff member would gain access to the
reports, and you can quickly understand the driving force
behind electronic reports, even if most users end up print-
ing them. Within one year of switching to electronic reports

(for as many reports as practical), the paper report storage
area was reduced to one small storage room.

—Alan Dennis

Questions

1. What types of reports are most suited to electronic
format?

2. What types of reports are less suited to electronic
reports?

10-E Cutting Paper to Save MoneyCONCEPTS

IN ACTION

14 Obviously, in a short section we cannot cover all of the issues related to developing mobile applications. For
anyone who is seriously considering developing mobile applications we recommend that you begin by looking at
books that deal with the specific devices on which you will be deploying your application. For example, Donn
Felker, AndroidTM Application Development For DummiesTM (Hoboken, NJ: Wiley, 2011), Neal Goldstein and Tony
Bove, iPhoneTM Application Development All-In-One For DummiesTM (Hoboken, NJ: Wiley, 2010), Neal Goldstein
and Tony Bove, iPadTM Application Development For DummiesTM (Hoboken, NJ: Wiley, 2010), Chris Stevens,
Designing for the iPadTM: Building Applications that Sell (Chichester, UK: Wiley, 2011).

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:06 PM Page 453

mean that a simple Web interface is the answer. These devices have limited screen space
and capabilities, such as touch screens and haptic feedback, which regular computers do
not. Consequently, you really need to focus on designing the interface for the device and
not simply porting the Web interface over to it. Furthermore, you need to realize that a
tablet, such as the iPadTM, is not a big smartphone; it is in its own category with its own
challenges and capabilities (see Figure 10-23). Consequently, you really need to design the
interface for mobile devices from the ground up. In this section, we discuss some chal-
lenges and provide some guidelines to develop effective mobile interfaces. However,
before we begin, you should realize that all of the material described previously is still
applicable. It’s just that when you are dealing with these devices, additional issues must be
considered.

Tidwell15 identifies six challenges that a mobile user interface designer must face. The
screen of a phone is tiny. There simply is not a lot of “real estate” available to use (see
Figure 10-24). Not only are the screens tiny, but they come in different sizes. What works
on one screen might not work on another screen. Some screens have haptic abilities: they
respond to touch and orientation, and in some case, they vibrate. Obviously, these abilities
are not available on all mobile devices. However, they do provide interesting possibilities
for user interface design. Virtual and actual physical keypads are tiny. Consequently, too
much typing can be challenging for the user to input the right information. People use
their mobile devices, especially their phones, in all kinds of environments. They use them
in dark places (like a poorly lit classroom). They use them in bright sunlight. They use
them in quiet places (like the library or movie theater) and they use them in noisy places
(such as at a football game). These devices are simply used everywhere today. Because these
devices are used everywhere, the users can be easily distracted from the device. For exam-
ple, have you ever texted someone when you aren’t supposed to be using your phone, like
during class? Or what about out on a date? In other words, users are typically multitasking
while using their phone. They do not want to spend a lot of energy on trying to navigate
your mobile site or app. Consequently, Krug’s three design principles described earlier are
very important, especially his first one: Don’t make me think!

445544 CChhaapptteerr 1100 Human–Computer Interaction Layer Design

15 Jenifer Tidwell, Designing Interfaces: Patterns for Effective Design, 2nd ed. (Sebastopol, CA: O’Reilly, 2010).

FFIIGGUURREE 1100--2233 iPad
Tablet Screens (Three
Apple iPad 3G Tablet
Computers)
(Source: Oleksiy
Maksymenko/ACP
International/Glow Images)

c10HumanComputerInteractionLayerDesign.qxd 11/29/11 10:01 AM Page 454

Based on these challenges, Tidwell provides a set of
suggestions that you should follow in designing a user
interface for these devices. First, given the mobile con-
text, you really need to focus on what the user needs
and not what the user might want. In other words, you
really should go back to business process and func-
tional modeling (Chapter 4). In this case, only focus on
the tasks that users need to perform when they are in
the mobile context. This is a good example of a non-
functional requirement (mobile computing) affecting
the possible functional requirements.

Second, if you are porting an application or
website to a mobile device, remove all “fluff ” from the
site: Strip the site down to its bare essentials. If the
user needs access to the full site, be sure to provide a
link to it in an obvious location. Alternatively, you
could provide a complete mobile version of the appli-

cation or website to the user. Obviously, the design of the user interface will be differ-
ent, but the functionality should be the same.

Third, whenever possible, take advantage of the unique capabilities built into these
devices. Some of the devices have GPS built in. Depending on your application, knowing
where the user is could change the results. In other cases, devices such as the iPadTM, have
an accelerometer that allows the app to “know” the orientation of the device. Many of these
devices have speech recognition capabilities, cameras that can be used for scanning, touch
screens that allow sophisticated gestures to be used, and haptic feedback, such as bumps
and vibrations. All of these capabilities could prove useful in developing different mobile
applications.

Fourth, when considering a phone, you tend to have a limited width from which to
work. Consequently, you should try to linearize the content of the application (see Fig-
ure 10-25). By that we mean, take advantage of vertical scrolling and try to minimize, if not
eliminate, horizontal scrolling. It is simply more natural for users to scroll up and down

instead of left to right on these devices.
Fifth, optimize your mobile application for the user.

This includes minimizing the number of times the
device must interact with a server to download or upload
information with a server. Not everyone has access to 3G,
alone true 4G, networks. In many cases, uploading and
downloading are still very slow. Optimization also
includes the user’s interaction with the device. Instead of
using a lot of typing, scrolling, and taps on a touch
screen, consider using the speech recognition capability.
It’s a lot easier to speak slowly to a smartphone than it is
to have to type a lot into a virtual or physical keyboard.

Finally, Tidwell provides a set of reusable patterns
that have been customized for mobile devices. These
include things such as a vertical stack, filmstrip, and
bottom navigation.16

Mobile Computing and User Interface Design 455

FIGURE 10-24
iPhoneTM Smartphone
Example

FIGURE 10-25
Linearization Example

16 Tidwell also suggests that the Design for Mobile (patterns.design4mobile.com) pattern library provides many
good patterns to use when developing mobile applications.

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:06 PM Page 455

SOCIAL MEDIA AND USER INTERFACE DESIGN17

Given the impact that FacebookTM and TwitterTM have had in today’s world, developing
applications for social media has obviously come to the forefront. In many ways, mobile
computing and social media have grown up together. Like mobile computing, each
social media platform has its own capabilities and challenges. Social media platforms
range from sites that allow you to simply upload material to them, such as FlickrTM and
YouTubeTM, to sites that support a virtual existence in the metaverse, such as Second
LifeTM. During your career, you might need to develop applications for a specific social
media platform, such as FacebookTM or TwitterTM, or possibly develop your own social
media site.

When developing your own social media presence, you must understand who is your
target audience. Is the audience employees of your firm, or is the audience outside of the
firm? In this section, we only focus on an external audience. Once you know who the audi-
ence is, you need to know what they are saying about the firm. In many ways, social media
is nothing more than another channel for marketing the firm’s products and capabilities.
Before you can deploy a social media presence, you really need to understand what the
users’ needs (desires) are. In other words, back to requirements determination. In this case,
the problem is that the users are “out there” somewhere, so typical approaches to gathering
requirements, such as interviews and observation, don’t work. Instead, you need to hunt
through the Web to root out your requirements. Some of the more useful places to look are
blogs or other social media outlets that address issues that would be of interest to your
firm. When all else fails, you can always use a search engine such as GoogleTM. Regardless,
you obviously have to understand the functional requirements before you can design your
social media presence.

Once you understand your functional requirements, you need to determine what
type of social media presence is necessary to address the requirements effectively. Each
social media platform has its own niche. Consequently, you might need to deploy many
different applications across different platforms to effectively meet the firm’s social
media presence requirements. Also, you must look at your social media site as a means
for your firm to build and maintain a positive image or brand. Therefore, the social
media site must contain material that your potential customers want to consume. You
must remember that the underlying purpose of marketing is to “manufacture” wants and
then “convert” the wants into needs. Given that your social media site is effectively
another marketing channel, your site must be able to draw in new customers and to get
current customers to regularly return. In this section, we provide some general guidelines
for developing your own social media site so that both new customers visit and current
customers return.18

First, you really need to post to your site regularly. If the content of the site
becomes stagnant, no one will want to visit. The content of the site should contain a
mixture of media: videos, podcasts, sound clips, and so on.The site’s material should
include a mixture of firm-driven material, material from customers, and links to

445566 CChhaapptteerr 1100 Human–Computer Interaction Layer Design

17 Much of the material in this section has been adapted from Jenifer Tidwell, Designing Interfaces: Patterns for
Effective Design, 2nd ed. (Sebastopol, CA: O’Reilly, 2010).
18 Two good books devoted to developing applications for social media in general include Erin Malone, Designing
Social Interfaces (Sebastopol, CA: O’Reilly, 2009) and Gavin Bell, Building Social Web Applications: Establishing
Community at the Heart of Your Site (Sebastopol, CA: O’Reilly, 2009). A couple of books devoted to two specific
social media platforms are Jesse Stay, FacebookTM Application Development for DummiesTM (Hoboken, NJ: Wiley,
2011) and Dusty Reagan, TwitterTM Application Development for DummiesTM (Hoboken, NJ: Wiley, 2010).

c10HumanComputerInteractionLayerDesign.qxd 11/29/11 9:01 AM Page 456

relevant content that is located on other sites. Also, be sure to include ways for visitors
to join in a “conversation” with the firm, such as FacebookTM comments or TwitterTM

Tweets (see Figure 10-26).
Second, make sure you understand the difference between push and pull

approaches. If the user must come to you to find out something, then you are using a
pull-based approach. On the other hand, if you put the information out to the user,
then you are using a push-based approach. When it comes to social media, you really
need to use a combination of the approaches. For example, in FacebookTM if someone
posts on your wall or sends you a request, FacebookTM will send you an e-mail message
to try an entice you back to the FacebookTM site. The act of posting to your site was a
pull-based action, and the e-mail message sent to you is a push-based action. In a nut-
shell, you want to focus on more of a push-based approach. You want your content to
get to your customers in as an effective manner as possible. You don’t want them to have
to come looking for you. Encourage them to opt in for update notifications to come to
them in a form that they prefer. Some might prefer e-mail notifications, and others
might prefer you post to their FacebookTM or TwitterTM accounts. Also, be sure to
include links to your social media sites on your home page. But be sure not to over-
whelm the customer. Not every customer wants to know every tidbit regarding the firm.
Only give the customer what the customer wants. Remember, Krug’s first principle:
Don’t make me think! A corollary to this principle for social media would be: Don’t
make me work! Make it easy for the customer to find only what they want (or maybe
what we want them to want).

Third, be sure that your home page and your social media sites are all synced together
so that when one is updated, the other sites “know” about the update. This makes your job
of maintaining the different sites much easier and it allows your customers to have a con-
sistent experience across all sites. However, don’t overdo this. It is obvious that different
sites have different media and, potentially, different audiences. You aren’t going to use
FacebookTM in the same way you would use TwitterTM, YouTubeTM, or a blog. Be sure to

Social Media and User Interface Design 445577

FFIIGGUURREE 1100--2266 Twitter (Home Page of Twitter Social Network)
(Source: Hermes Images/Glow Images)

c10HumanComputerInteractionLayerDesign.qxd 11/29/11 10:01 AM Page 457

include crosslinks among the different sites. This enables your customer to easily navigate
through your different sites. For example in Figure 10-27, we see that Wiley has supported
the ability to join email lists and the ability to link to Apple’s iTunesTM store to download
apps produced by Wiley on their home page. However, they do not provide links to either
their FacebookTM or TwitterTM sites.

Fourth, enable the customers to share the great content that you have created. You
can include buttons that allow them to email the content to their closest “friends” or
other followers in their own social network. You also should provide a means to gather
feedback from your customers regarding your content. One way is to include the ability
for customers to make and share comments regarding your content. Another way is to
provide a voting or “like” mechanism to encourage the customer to become engaged with
your site.

Fifth, be sure to design your sites so that not only your customers can easily find the
material for which they are searching, but also search engines can find the material. Search
engines are at least as likely to bring new customers to your sites as other customers. Design
the site so that once the customer lands on your site, he or she stays there for a while. One
way that you can accomplish this is by providing the customer with links to “related” mate-
rial. If you decided to include a voting or “like” mechanism, be sure to enable the customer
to see the “best” or, at least, the most popular material first. Another possibility it to create
a leaderboard that displays the most shared material. You need to leverage the information
gained by implementing the fourth guideline.

Sixth, one of the more difficult things to accomplish is to have your sites become a
place that your customers feel that they belong. You want your customers to feel that they
are members of something; you want to try to build a feeling of community. The more they
feel that they belong, the more likely they will recommend your site to their friends. One
way to accomplish this is to encourage employees, at least the “right” employees, to author

458 Chapter 10 Human–Computer Interaction Layer Design

FIGURE 10-27
John Wiley & Sons
Website

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:06 PM Page 458

their own “independent” sites that discuss topics of interest to your customers. This will
give a more personal feel to the firm and possibly entice customers to stick around on the
site longer.

Finally, in most cases, your customers visit your sites using a variety of hardware plat-
forms. The platforms range from the desktop to the notebook to the tablet to the smart-
phone. Consequently, all of the material related to general user interface design and to
mobile computing is applicable. Because you have a global audience, you need to be sure
to take into account international and cultural issues in your design. We turn to this topic
in the next section.

INTERNATIONAL AND CULTURAL ISSUES AND USER
INTERFACE DESIGN19

With the World Wide Web, virtually any firm can have a global presence. With this capa-
bility, a firm must be cognizant of a set of international and cultural issues. These issues
include multilingual requirements, color, and cultural differences.

Multilingual Requirements
The first and most obvious difference between applications used in one region and those
designed for global use is language. Global applications often have multilingual require-
ments, which means that they have to support users who speak different languages and
write using non-English letters (e.g., those with accents, Cyrillic, Japanese). One of the
most challenging aspects in designing global systems is getting a good translation of the
original language messages into a new language. Words often have similar meanings but
can convey subtly different meanings when they are translated, so it is important to use
translators skilled in translating technical words. A few rules that you should follow are to:

! Keep the writing short and simple. It is much easier to avoid mistranslations.20

! Avoid humor, jargon, slang, clichés, puns, analogies, and metaphors. These tend to
be too culturally specific. Consequently, the underlying point being made will
most likely be lost in translation.

! Use good grammar. Be sure to punctuate everything correctly. Even though you
might be tempted to ignore grammar and punctuation rules to try to make a
point, it makes translating more difficult, especially for automated translation sys-
tems. Don’t depend on automated spelling and grammar checkers to enforce this.
At this time, they simply aren’t good enough.

Another challenge is often screen space. In general, English-language messages usually take
20 percent to 30 percent fewer letters than their French or Spanish counterparts. Designing
global systems requires allocating more screen space to messages than might be used in the
English-language version.

International and Cultural Issues and User Interface Design 459

19 A set of books that provide a good introduction to building information systems for a multicultural audience
includes Elisa M. del Galdo and Jakob Nielsen, International User Interfaces (New York, NY: Wiley, 1996), Nitish
Singh and Arun Pereira, The Culturally Customized Web Site: Customizing Web Sites for the Global Marketplace
(Oxford, UK: Elsevier Butterworth Heinemann, 2005), and John Yunker, Beyond Borders: Web Globalization
Strategies (Berkley, CA: New Riders, 2003).
20 However, even this does not guarantee good translations if you use an automatic translation facility. For
example, type the text “I would like my steak cooked rare” into babel fish (http://babelfish.yahoo.com/) and trans-
late it to Russian and back to English. You will get back “I wanted would be my rare welded [steykom] done”—
not exactly the most useful translation.

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:06 PM Page 459

Some systems are designed to handle multiple languages on the fly so that users in dif-
ferent countries can use different languages concurrently; that is, the same system supports
several different languages simultaneously (a concurrent multilingual system). Other sys-
tems contain separate parts that are written in each language and must be reinstalled before
a specific language can be used; that is, each language is provided by a different version of
the system so that any one installation will use only one language (i.e., a discrete multilin-
gual system). Either approach can be effective, but this functionality must be designed into
the system well in advance of implementation.

Finally, one other consideration that must be considered is reading direction. In most
Western societies, readers read from left-to-right and top-to-bottom. This is not true for
many cultures. For example, in Arabic countries, readers typically read right-to-left and
top-to-bottom.

460 Chapter 10 Human–Computer Interaction Layer Design

I’ve had the opportunity to develop two multilingual
systems. The first was a special-purpose decision support
system to help schedule orders in paper mills called
BCW-Trim. The system was installed by several dozen
paper mills in Canada and the United States, and it was
designed to work in either English or French. All messages
were stored in separate files (one set English, one set
French), with the program written to use variables initial-
ized either to the English or French text. The appropriate
language files were included when the system was com-
piled to produce either the French or English version.

The second program was a groupware system called
GroupSystems, for which I designed several modules. The
system has been translated into dozens of different lan-
guages, including French, Spanish, Portuguese, German,
Finnish, and Croatian. This system enables the user to
switch between languages at will by storing messages in

simple text files. This design is far more flexible because
each individual installation can revise the messages at
will. Without this approach, it is unlikely that there would
have been sufficient demand to warrant the development
of versions to support less commonly used languages
(e.g., Croatian).

—Alan Dennis

Questions

1. How would you decide how much to support users
who speak languages other than English?

2. Would you create multilingual capabilities for any
application that would be available to non-English-
speaking people? Think about websites that exist
today.

10-F Developing Multilingual SystemsCONCEPTS

IN ACTION

Color
To begin with, color is not black and white. The meaning associated with a color is totally
culturally dependent. In fact, black and white isn’t necessarily black and white; they could
be white and black. In most Western cultures, black is associated with death, mourning,
and grief or with respect and formality. For example, in the United States, we typically wear
black to a funeral, or you would expect to see religious leaders in black (think about the
robes typically worn by a Catholic priest). In many Eastern cultures, on the other hand,
white is associated with death or the color of robes worn by religious leaders. In an exam-
ple reported by Singh and Pereira, when senior citizens in the United States and India were
asked to “visualize the following statement: A lady dressed in white, in a place of worship,”
the results that came back were as near to the opposite as one could get. In India, the lady
would be a widow, but in the United States she would be expected to be a bride.

Other colors that have meanings that are culturally driven include green, blue, red,
yellow, and purple. In the United States, red implies excitement, spice passion, sex, and even
anger; in Mexico it indicates religion; in the United Kingdom it indicates authority, power,

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:06 PM Page 460

and government; in Scandinavian countries it indicates strength; and in China, it means
communism, joy, and good luck. Blue is associated with holiness in Israel, cleanliness in
Scandinavia, love and truth in India, loyalty in Germany, and trust, justice, and “official”
business in the United States. In Ireland, green signifies nationalism and Catholicism, and
in the United States it denotes health, environmentalism, safety, greed, and envy. Green is a
very confusing color for Americans. In the Arab Middle East green is a sign of holiness, in
France green represents criminality, and in Malaysia it signifies danger and disease. Yellow
also has many culturally dependent meanings. In the United States it is associated with cau-
tion and cowardice; in Scandinavia, warmth; in Germany, envy; and in India, commerce.
Purple signifies death, nobility, or the Church in Latin America, the United States, and Italy,
respectively. Obviously, when building a website for a global audience, colors must be
chosen carefully; otherwise, unintentional messages will be sent.

Cultural Differences
The New York Times columnist Tom Friedman talks about the need for a firm to use its own
local capabilities as a basis for competitive advantage in a global market. He refers to this
process as glocalization. In some ways, when developing a website for an international audi-
ence, you need to consider the opposite of glocalization. You need to think about what
message needs to be sent to a local culture from your global organization to achieve the busi-
ness goals of the firm. Consequently, you need to be able to understand the different local cul-
tures. Cultural issues have been studied at both organizational and national levels. Different
researchers have emphasized different dimensions on which to focus our attention. In this
section, we limit our discussion to cultural issues that affect designing effective user inter-
faces. In particular, we only address the research of Edward Hall and Geert Hofstede.21

Hall identified three dimensions that are directly relevant to user interface design:
speed of messages, context, and time. The speed of messages dimension deals with how fast
a member of a culture is expected to understand a message and how “deep” the content of
a typical message will be in a culture. The deeper the message content, the longer it will take
for a member of a culture to understand the message. For example, two different
approaches to describe a historical event would be a news headline (fast and shallow) and
a documentary (slow and deep). According to Hall, different cultures have different expec-
tations of the content of and response to a message. This particular dimension has impli-
cations for the content of the message contained in the user interface. Krug’s third design
principle turns out to be culturally driven. For a Western audience, minimizing the num-
ber of words contained in a user interface makes sense. Westerners prefer to get to the point
as fast as possible. However, this is not true for Eastern cultures.22 Consequently, for a firm
like Amazon.com, providing detailed reviews and short excerpts from a book provides sup-
port for a slow and deep culture, while providing bullet point types of comments supports
the fast and shallow culture. By providing both, Amazon.com addresses both needs.

The second dimension, context, deals with the level of implicit information that is used
in the culture versus the information needing to be made explicit. In high-context cultures,
most information is known intrinsically and does not have to be made explicit. Therefore,
the actual content of the message is fairly limited. However, in low-context cultures, every-
thing must be spelled out explicitly to avoid any ambiguity, and therefore the message
needs to be very detailed. You will find this dimension causing problems when attempting

International and Cultural Issues and User Interface Design 461

21 See Geert Hofstede, Culture’s Consequences: Comparing Values, Behaviors, Institutions and Organizations Across
Nations, 2nd ed. (Thousand Oaks, CA: Sage, 2001), Geert Hofstede, Gert Jan Hofstede, and Michael Minkov,
Cultures and Organizations: Software of the Mind, 3rd ed. (New York: McGraw-Hill, 2010), Edward T. Hall, Beyond
Culture (New York: Anchor Books, 1981).
22 See Richarde E. Nisbett, The Geography of Thought: How Asians and Westerners Think Differently … And Why
(New York: Free Press, 2003).

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:06 PM Page 461

to close a business deal. In most Western societies, the lawyers want everything spelled out.
In contrast, in most Eastern societies, it may, in fact, be considered insulting to have to spell
everything out. From a website design perspective Singh and Pereira point out that in a
high-context culture, focusing the design on aesthetics, politeness, and humility produces
an effective website, but in a low-context culture, things such as the terms and conditions
of a purchase, the “rank” of the product and firm, and the use of superlatives in describing
the product and firm are critical attributes of a successful website.

Hall’s third dimension, time, addresses how a culture deals with many different things
going on simultaneously. In a polychronic time culture, members of the culture tend to do
many things at the same time but are easily distracted and view time commitments as very
flexible. With monochronic time cultures, members of the culture solve many things by
focusing on one thing at a time, are single-minded, and consider time commitments as
something that is set in stone. When designing for a polychronic culture, the liberal use of
“pop-up” messages might be fun and engaging, while in a monochronic culture, pop-up
messages simply annoy the user. In the past, Northern Hemisphere cultures have been
monochronic and Southern Hemisphere cultures have been polychronic. However, with
the use of e-mail interruptions and text messaging, this could change over time.

Hofstede has identified cultural dimensions that are relevant to the user interface.
These include power distance, uncertainty avoidance, individualism versus collectivism,
and masculinity versus femininity. The first dimension, power distance, addresses how the
distribution of social power is dealt with in the culture. In cultures with a high power dis-
tance, members of the culture believe in the authority of the social hierarchy. In cultures
with low power distance, members of the culture believe that power should be more
equally distributed. Consequently, in cultures with a high power distance, emphasis on the
“greatness” of the leaders of the firm, the use of “proper titles” for members of the firm, and
the posting of testimonials on behalf of the firm by “prominent” members of society is
important. International awards won by the firm, its members, or its products should also
be posted prominently on the website.

The second dimension, uncertainty avoidance, addresses to what degree a culture is
comfortable with uncertainty. In a culture with a high uncertainty avoidance, members
avoid taking risks, value tradition, and are much more comfortable in a rule-driven soci-
ety. In cultures that score high on uncertainty avoidance, more customer service needs to
be provided, more important “local” contacts need to be available, the firm’s and product’s
history and tradition need to be provided on the website, and, in the case of software, the
use of free trials and downloads is critical. In other words, you need to build trust and
reduce perceived risk between the customer and the firm. This can be supported through
product seals of approval or the use of WebTrustTM and SysTrustTM certifications for the
Web site.23 Merely translating a website from a low uncertainty avoidance culture to a high
uncertainty avoidance culture is not sufficient. You also need to point out relationships
between the local culture and the firm’s products.

The third dimension, individualism versus collectivism, is based on the level of empha-
sis the culture places on the individual or the collective, or group. In North America and
Europe, individualism is rewarded. However, in East Asia, it is believed that by focusing on
optimizing the group, the individual will be most successful. In other words, it is the group
that is the most important. In a collective society, presenting information on how the firm
“gives back” to the community, supports “member” clubs, “loyalty” programs, and “chat”
facilities, and provides links to “local” sites of interest are very important characteristics for
a website. In contrast, in an individualistic society, providing support for personalization

462 Chapter 10 Human–Computer Interaction Layer Design

23 See www.webtrust.org

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:06 PM Page 462

of the user’s experience with the web site, emphasizing the uniqueness of the products that
the user is viewing, and emphasizing the privacy policy of the site are critical.

Hofstede’s fourth dimension, masculinity versus femininity, does not mean how men
and women are treated by the culture. But, instead this dimension addresses how well mas-
culine and feminine characteristics are valued by the culture. For example, in a masculine
culture characteristics such as being assertive, ambitious, aggressive, and competitive are
valued, whereas in a feminine culture, characteristics such as being encouraging, compas-
sionate, thoughtful, gentle, and cooperative are valued. In masculine cultures, a focus on
the effectiveness of the firm’s products is essential. Also, clearly separating male- and
female-oriented topics and placing them on different sections of a web site can be critical.
According to Singh and Pereira, feminine cultures value a focus on aesthetics and using
more of a soft-sell approach, where the focus on more affective, intangible aspects of the
firm, its members, and its products is more appropriate.

Obviously, operationalizing Hall’s and Hofstede’s dimensions for effective user inter-
face design is not easy. However, in a global market, ignoring cultural issues in user inter-
face design, whether it is for an internal system used only by employees of the firm or an
external system that is used by customers, will most certainly cause a system to fail. This is
especially true when you consider mobile and social media sites.

NONFUNCTIONAL REQUIREMENTS AND HUMAN–COMPUTER
INTERACTION LAYER DESIGN

The human–computer interaction layer is heavily influenced by nonfunctional require-
ments. In this chapter, we dealt with issues such as layout of the user interface, awareness
of content, aesthetics, user experience, and consistency. We also have provided information
on how to design the navigation, inputs, and outputs of the user interface. Finally, we have
considered mobile computing, social media, and international and cultural issues in user-
interface design. None of these have anything to do with the functional requirements of the
system. However, if they are ignored, the system can be unusable. As with the data man-
agement layer, there are four primary types of nonfunctional requirements that can be
important in designing the human–computer interaction layer: operational, performance,
security, and cultural and political requirements.

Operational requirements, such as choice of hardware and software platforms, influ-
ence the design of the human–computer interaction layer. For example, something as sim-
ple as the number of buttons on a mouse (one, two, three, or more) changes the interaction
that the user will experience. Other operational nonfunctional requirements that can influ-
ence the design of the human–computer interaction layer include system integration and
portability. In these cases, a Web-based solution may be required, which can affect the
design; not all features of a user interface can be implemented efficiently and effectively on
the Web. This can require additional user-interface design. Obviously, the entire area of
mobile computing can affect the success or failure of the system.

Performance requirements, over time, have become less of an issue for this layer. How-
ever, speed requirements are still paramount; especially with mobile computing. Most
users do not care for hitting return or clicking the mouse and having to take a coffee break
while they are waiting for the system to respond, so efficiency issues must be still addressed.
Depending on the user-interface toolkit used, different user-interface components may be
required. Furthermore, the interaction of the human–computer interaction layer with the
other layers must be considered. For example, if the system response is slow, incorporating
more-efficient data structures with the problem domain layer, including indexes in the

Nonfunctional Requirements and Human–Computer Interaction Layer Design 463

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:06 PM Page 463

tables with the data management layer, and/or replicating objects across the physical archi-
tecture layer could be required.

Security requirements affecting the human–computer interaction layer deal primarily
with the access controls implemented to protect the objects from unauthorized access.
Most of these controls are enforced through the DBMS on the data management layer and
the operating system on the physical architecture layer. However, the human–computer
interaction layer design must include appropriate log-on controls and the possibility of
encryption.

In addition to the international and cultural issues describe previously, unstated
norms affect the cultural and political requirements that can affect the design of the
human–computer interaction layer. Unstated norm requirements include having the date
displayed in the appropriate format (MM/DD/YYYY versus DD/MM/YYYY). For a system
to be truly useful in a global environment, the user interface must be customizable to
address local cultural requirements.

APPLYING THE CONCEPTS AT CD SELECTIONS
Previously, Alec had the development team focusing on the developing the analysis
models of the problem domain. In the previous chapter’s installment, Alec had split part
of the team and had assigned them to work on the data management layer and to
develop its design. In this installment, we follow the development team members that
have been assigned to the human–computer interaction layer. Based on what Margaret
has learned about mobile computing, social media, and globalization, she really wants
to be able to deploy across multiple platforms in such a way that CD Selections will be
able to reach a global market. However, Alec isn’t quite sure that trying to deploy over
multiple incompatible platforms is a good idea.

SUMMARY
Principles for User Interface Design
The first element of the user interface design is the layout of the screen, form or report,
which is usually depicted using rectangular shapes with a top area for navigation, a central
area for inputs and outputs, and a status line at the bottom. The design should help the user
be aware of content and context, both between different parts of the system as they navi-
gate through it and within any one form or report. All interfaces should be aesthetically
pleasing (not works of art) and need to include significant white space, use colors carefully,
and be consistent with fonts. Most interfaces should be designed to support both novice or
first-time users and experienced users. Consistency in design (both within the system and
across other systems used by the users) is important for the navigation controls, terminol-
ogy, and the layout of forms and reports. All interfaces should attempt to minimize user
effort—for example, by requiring no more than three clicks from the main menu to
perform an action.

User Interface Design Process
First, analysts develop use scenarios that describe commonly used patterns of actions that
the users will perform. Second, they design the interface structure via a WND based on the

446644 CChhaapptteerr 1100 Human–Computer Interaction Layer Design

c10HumanComputerInteractionLayerDesign.qxd 11/28/11 10:49 AM Page 464

essential use cases. The WND is then tested with the use scenarios to ensure that it enables
users to quickly and smoothly perform these scenarios. Third, analysts define the interface
standards in terms of interface metaphor(s), objects, actions, and icons. These elements are
drawn together by the design of a basic interface template for each major section of the
system. Fourth, the designs of the individual interfaces are prototyped, either through a
simple storyboard, an HTML prototype, or a prototype using the development language of
the system itself (e.g., Visual Basic). Finally, interface evaluation is conducted using heuris-
tic evaluation, walkthrough evaluation, interactive evaluation, or formal usability testing.
This evaluation almost always identifies improvements, so the interfaces are redesigned and
evaluated further.

Navigation Design
The fundamental goal of the navigation design is to make the system as simple to use as
possible, by preventing the user from making mistakes, simplifying the recovery from
mistakes, and using a consistent grammar order (usually object-action order). Com-
mand languages, natural languages, and direct manipulation are used in navigation, but
the most common approach is menus. Error messages, confirmation messages, acknowl-
edgment messages, delay messages, and help messages are common types of messages.
Once the navigation design is agreed upon, it is documented in the form of WNDs and
real use cases.

Input Design
The goal of the input mechanism is to simply and easily capture accurate information for
the system, typically by using online or batch processing, capturing data at the source, and
minimizing keystrokes. Input design includes both the design of input screens and all
preprinted forms that are used to collect data before they are entered into the information
system. There are many types of inputs, such as text fields, number fields, check boxes,
radio buttons, on-screen list boxes, drop-down list boxes, and sliders. Most inputs are val-
idated by using some combination of completeness checks, format checks, range checks,
check digits, consistency checks, and database checks.

Output Design
The goal of the output mechanism is to present information to users so they can accurately
understand it with the least effort, usually by understanding how reports will be used and
designing them to minimize information overload and bias. Output design means design-
ing both screens and reports in other media, such as paper and the Web. There are many
types of reports, such as detail reports, summary reports, exception reports, turnaround
documents, and graphs.

Mobile Computing and User Interface Design
Mobile computing provides many exciting capabilities for user interface design. How-
ever, mobile computing also brings a set of challenges that need to be addressed includ-
ing tiny screen sizes, touch screens, haptic feedback capabilities, and tiny virtual and
physical keypads. Additionally, they are used everywhere and user distraction can be a
problem. From a mobile design perspective, you should only support what the user
needs, you should take advantage of each devices’ unique capabilities, and you should
minimize network traffic.

Summary 446655

c10HumanComputerInteractionLayerDesign.qxd 11/28/11 10:52 AM Page 465

Social Media and User Interface Design
In today’s world, firms must take advantage of social media to be competitive. Potential
social media outlets include FacebookTM, FlickrTM, GoogleTM, LinkedInTM, Second LifeTM,
TwitterTM, and YouTubeTM. Only your imagination will be your limitation. However, each
of these outlets come with their own capabilities and challenges. To develop a successful
social media experience, you must understand who your target audience is. You also must
keep everything on the sites fresh and up-to-date and synced with each other, and you must
know when it is appropriate to “push” versus “pull” material to and from your community.
Notice the word we just used; community. In many ways, social media is about building a
trusting community where users can share with one another.

International and Cultural Issues and User Interface Design
Today, by definition, we live in a multicultural, global world where our firm’s customers are
“out there” somewhere. Given globalization, many different issues that were never impor-
tant in the past are now critical. Supporting multilingual systems is now the norm. When
supporting multilingual systems a set of issues arise including language translation prob-
lems, data field size, and reading direction. The proper use of color can be a minefield.
Something as simple as using the “wrong” color can change the meaning of the message
being portrayed in the user interface. Finally, cultural differences are real. Hall identified
three relevant dimensions of culture that can affect the effectiveness of a user interface:
speed of messages, context, and time. Hofstede identified four dimensions that can affect
the usability of a user interface: power distance, uncertainty avoidance, individualism ver-
sus collectivism, and masculinity versus femininity.

Nonfunctional Requirements and the Human–Computer
Interaction Layer
Nonfunctional requirements can affect the usefulness of the human–computer interaction
layer. Because the user or client sees the system as the human–computer interaction layer,
not paying sufficient attention to the nonfunctional requirements in the design of this layer
can cause the entire system development effort to fail. These requirements include opera-
tional, performance, security, and cultural and political issues, and they are intertwined
with the design of the data management and physical architecture layers.

446666 CChhaapptteerr 1100 Human–Computer Interaction Layer Design

KKEEYY TTEERRMMSS

Acknowledgment message, 440
Action-object order, 436
Aesthetics, 418
Bar-code reader, 444
Batch processing, 444
Batch report, 448
Bias, 450
Button, 425
Check box, 447
Check digit check, 448
Collectivism, 462
Color, 460
Combo box, 447

Command language, 437
Completeness check, 448
Confirmation message, 440
Consistency, 420
Consistency check, 448
Content awareness, 416
Context, 461
Cultural differences, 461
Database check, 448
Data-entry operator, 444
Default value, 445
Delay message, 440
Density, 418

Detail report, 451
Direct manipulation, 439
Drop-down list box, 447
Drop-down menu, 439
Ease of learning, 420
Ease of use, 420
Edit check, 448
Error message, 440
Essential use case, 421
Exception report, 451
Femininity, 463
Field, 416
Field label, 416

c10HumanComputerInteractionLayerDesign.qxd 11/28/11 10:50 AM Page 466

Questions 446677

Form, 414
Format check, 448
GPS, 455
Grammar order, 436
Graph, 451
Graphical user interface (GUI), 413
Haptic feedback, 454
Help message, 440
Heuristic evaluation, 433
High context, 461
Hot key, 438
HTML prototype, 429
Image map, 439
Individualism, 462
Information load, 450
Input mechanism, 413
Interactive evaluation, 433
Interface action, 427
Interface design prototype, 421
Interface evaluation, 421
Interface icon, 427
Interface metaphor, 426
Interface object, 427
Interface standards, 421
Interface template, 427
Language prototype, 429
Layout, 414
Low context, 461
Magnetic stripe readers, 445
Masculinity, 463
Menu, 437

Menu bar, 439
Mobile device, 454
Monochronic time, 462
Multilingual requirements, 459
Natural language, 437
Navigation controls, 421
Navigation mechanism, 413
Number box, 446
Object-action order, 436
Online processing, 443
On-screen list box, 447
Optical character recognition, 444–445
Output mechanism, 413
Polychronic time, 462
Pop-up menu, 439
Power distance, 462
Pull, 457
Push, 457
Radio button, 447
Range check, 448
Real-time information, 444
Real-time report, 448
Real use case, 421
Report, 414
Screen, 414
Selection box, 448
Sequence diagrams, 421
Slider, 447
Smart card, 445
Smartphone, 454
Social media, 456

Source data automation, 444
Speed of messages, 461
State, 425
Stereotype, 426
Storyboard, 428
Summary report, 451
System interface, 413
Tab menu, 439
Tablet, 454
Text box, 446
Three-clicks rule, 421
Time, 462
Toolbar, 439
Touch screens, 454
Transaction processing, 444
Transition, 425
Turnaround document, 451
Uncertainty avoidance, 462
Usability testing, 433
Use case, 421
Use scenario, 421
User experience, 420
User interface, 413
Validation, 448
Walkthrough evaluation, 433
White space, 418
Window, 425
Windows layout diagram, 429
Window navigation diagram (WND),

421

QQUUEESSTTIIOONNSS

1. Explain three important user interface design
principles.

2. What are three fundamental parts of most user inter-
faces?

3. Why is content awareness important?
4. What is white space, and why is it important?
5. Under what circumstances should densities be low?

High?
6. How can a system be designed to be used by both

experienced and first-time users?
7. Why is consistency in design important? Why can too

much consistency cause problems?
8. How can different parts of the interface be consistent?
9. Describe the basic process of user interface design.

10. What are use cases, and why are they important?
11. What is a WND, and why is it used?
12. Why are interface standards important?
13. Explain the purpose and contents of interface meta-

phors, interface objects, interface actions, interface
icons, and interface templates.

14. Why do we prototype the user interface design?
15. Compare and contrast the three types of interface

design prototypes.
16. Why is it important to perform an interface evaluation

before the system is built?
17. Compare and contrast the four types of interface

evaluation.
18. Under what conditions is heuristic evaluation justified?

c10HumanComputerInteractionLayerDesign.qxd 11/28/11 10:52 AM Page 467

468 Chapter 10 Human–Computer Interaction Layer Design

19. What type of interface evaluation did you perform in
the Your Turn 10-1?

20. What are Krug’s three design principles?
21. Describe three basic principles of navigation design.
22. How can you prevent mistakes?
23. Explain the differences between object-action order

and action-object order.
24. Describe four types of navigation controls
25. Why are menus the most commonly used navigation

control?
26. Compare and contrast four types of menus.
27. Under what circumstances would you use a drop-

down menu versus a tab menu?
28. Under what circumstances would you use an image

map versus a simple list menu?
29. Describe five types of messages.
30. What are the key factors in designing an error message?
31. What is context-sensitive help? Does your word

processor have context-sensitive help?
32. How do an essential use case and a real use case differ?
33. What is the relationship between essential use cases

and use scenarios?
34. What is the relationship between real use cases and use

scenarios?
35. Explain three principles in the design of inputs.
36. Compare and contrast batch processing and online pro-

cessing. Describe one application that would use batch
processing and one that would use online processing.

37. Why is capturing data at the source important?
38. Describe four devices that can be used for source data

automation.
39. Describe five types of inputs.
40. Compare and contrast check boxes and radio buttons.

When would you use one versus the other?
41. Compare and contrast on-screen list boxes and drop-

down list boxes. When would you use one versus the
other?

42. Why is input validation important?

43. Describe five types of input validation methods.
44. Explain three principles in the design of outputs.
45. Describe five types of outputs.
46. When would you use electronic reports rather than

paper reports, and vice versa?
47. What do you think are three common mistakes that

novice analysts make in navigation design?
48. What do you think are three common mistakes that

novice analysts make in input design?
49. What do you think are three common mistakes that

novice analysts make in output design?
50. How would you improve the form in Figure 10-4?
51. What are the six challenges you face when developing

mobile applications?
52. What are the six suggestions to address the mobile

computing challenges?
53. With regard to social media, what is the difference

between “push” and “pull” approaches to interacting
with customers?

54. Why is it important to keep your social media sites
synced?

55. How can you keep your customers engaged with your
social media sites?

56. What are some of the multilingual issues that you may
face when developing for a global audience?

57. How important is the proper use of color when devel-
oping websites for a global audience? Give some exam-
ples of potential pitfalls that you could run into.

58. Name the three cultural dimensions that are relevant
to user interface design identified by Hall. Why are
they relevant?

59. Name the four cultural dimensions that are relevant to
user interface design identified by Hofstede. Why are
they relevant?

60. What are some of the nonfunctional requirements
that can influence the design of the human–computer
interaction layer?

EXERCISES

A. Develop two use scenarios for a Web site that sells
some retail products (e.g., books, music, clothes).

B. Create a storyboard for a Web site that sells some retail
products (e.g., books, music, clothes).

C. Draw a WND for a Web site that sells some retail
products (e.g., books, music, clothes).

D. Create a Windows layout diagram for the home page
of a Web site that sells some retail products (e.g.,
books, music, clothes).

E. Describe the primary components of the interface
standards for a Web site that sells some retail products
(metaphors, objects, actions, icons and template).

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:06 PM Page 468

Minicases 469

F. Ask Jeeves (http://www.ask.com) is an Internet search
engine that uses natural language. Experiment with it
and compare it to search engines that use key words.

G. Draw a WND for Your Turn 10-7 using the opposite
grammar order from your original design (if you didn’t
do it, draw two WNDs, one in each grammar order).
Which is better? Why?

H. In Your Turn 10-7, you probably used menus. Design the
navigation system again using a command language.

I. For the A Real Estate Inc. problem in Chapter 4 (exer-
cises I, J, and K), Chapter 5 (exercises P and Q), Chap-
ter 6 (exercise D), Chapter 7 (exercise A), Chapter 8
(exercise A), and Chapter 9 (exercise L):
1. Develop two use scenarios.
2. Draw a WND.
3. Design a storyboard.

J. Based on your solution to exercise I:
1. Create Windows layout diagrams for the interface

design.
2. Develop an HTML prototype.
3. Develop a real use case.

K. For the A Video Store problem in Chapter 4 (exercises
L, M, and N), Chapter 5 (exercises R and S), Chapter
6 (exercise E), Chapter 7 (exercise B), Chapter 8 (exer-
cise B), and Chapter 9 (exercise M):
1. Develop two use scenarios.
2. Draw a WND.
3. Design a storyboard.

L. Based on your solution to exercise K:
1. Create Windows layout diagrams for the interface

design.
2. Develop an HTML prototype.
3. Develop a real use case.

M. For the gym membership problem in Chapter 4
(exercises O, P, and Q), Chapter 5 (exercises T and U),
Chapter 6 (exercise F), Chapter 7 (exercise C), Chapter 8
(exercise C), and Chapter 9 (exercise N):

1. Develop two use scenarios.
2. Draw a WND.
3. Design a storyboard.

N. Based on your solution to exercise M:
1. Create Windows layout diagrams for the interface

design.
2. Develop an HTML prototype.
3. Develop a real use case.

O. For the Picnics R Us problem in Chapter 4 (exercises
R, S, and T), Chapter 5 (exercises V and W), Chapter
6 (exercise G), Chapter 7 (exercise D), Chapter 8
(exercise D), and Chapter 9 (exercise O):
1. Develop two use scenarios.
2. Draw a WND.
3. Design a storyboard.

P. Based on your solution to exercise O:
1. Create Windows layout diagrams for the interface
design.
2. Develop an HTML prototype.
3. Develop a real use case.

Q. For the Of-the-Month-Club problem in Chapter 4
(exercises U, V, and W), Chapter 5 (exercises X and Y),
Chapter 6 (exercise H), Chapter 7 (exercise E),
Chapter 8 (exercise E), and Chapter 9 (exercise N):
1. Develop two use scenarios.
2. Draw a WND.
3. Design a storyboard.

R. Based on your solution to exercise Q:
1. Create Windows layout diagrams for the interface

design.
2. Develop an HTML prototype.
3. Develop a real use case.

S. Create a user interface design for a mobile solution for
the:
1. A Real Estate Inc. problem.
2. A Video Store problem.
3. Gym membership problem.
4. Picnics R Us problem.
5. Of-the-Month-Club problem.

T. How would your answers change to exercises I
through S if you were developing for a global market-
place?

1. Tots to Teens is a catalog retailer specializing in chil-
dren’s clothing. A project has been under way to
develop a new order entry system for the company’s
catalog clerks. The old system had a character-based
user interface that corresponded to the system’s

COBOL underpinnings. The new system will feature a
graphical user interface more in keeping with up-to-
date PC products in use today. The company hopes
that this new user interface will help reduce the
turnover they have experienced with their order entry

MINICASES

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:06 PM Page 469

470 Chapter 10 Human–Computer Interaction Layer Design

clerks. Many newly hired order entry staff found the
old system very difficult to learn and were over-
whelmed by the numerous mysterious codes that had
to be used to communicate with the system.

A user interface walkthrough evaluation was sched-
uled for today to give the user a first look at the new
system’s interface. The project team was careful to
invite several key users from the order entry depart-
ment. In particular, Norma was included because of
her years of experience with the order entry system.
Norma was known to be an informal leader in the
department; her opinion influenced many of her asso-
ciates. Norma had let it be known that she was less
than thrilled with the ideas she had heard for the new
system. Owing to her experience and good memory,
Norma worked very effectively with the character-
based system and was able to breeze through even the
most convoluted transactions with ease. Norma had
trouble suppressing a sneer when she heard talk of
such things as “icons” and “buttons” in the new user
interface.

Cindy was also invited to the walkthrough because
of her influence in the order entry department. Cindy
has been with the department for just one year, but she
quickly became known because of her successful orga-
nization of a sick child daycare service for the children
of the department workers. Sick children are the
number-one cause of absenteeism in the department,
and many of the workers could not afford to miss
workdays. Never one to keep quiet when a situation
needed improvement, Cindy has been a vocal sup-
porter of the new system.
a. Drawing upon the design principles presented in

the text, describe the features of the user interface
that will be most important to experienced users
like Norma.

b. Drawing upon the design principles presented in
the text, describe the features of the user interface
that will be most important to novice users like
Cindy.

2. The members of a systems development project team
have gone out for lunch together, and as often hap-
pens, the conversation turns to work. The team has
been working on the development of the user interface
design, and so far, work has been progressing
smoothly. The team should be completing work on the
interface prototypes early next week. A combination of
storyboards and language prototypes has been used in

this project. The storyboards depict the overall struc-
ture and flow of the system, but the team developed
language prototypes of the actual screens because they
felt that seeing the actual screens would be valuable for
the users.

Chris (the youngest member of the project team):
I read an article last night about a really cool way to
evaluate a user interface design. It’s called usability
testing, and it’s done by all the major software vendors.
I think we should use it to evaluate our interface
design.

Heather (systems analyst): I’ve heard of that, too,
but isn’t it really expensive?

Mark (project manager): I’m afraid it is expensive
and I’m not sure we can justify the expense for this
project.

Chris: But we really need to know that the interface
works. I thought this usability testing technique would
help us prove we have a good design.

Amy (systems analyst): It would, Chris, but there
are other ways too. I assumed we’d do a thorough
walkthrough with our users and present the interface
to them at a meeting. We can project each interface
screen so that the users can see it and give us their
reaction. This is probably the most efficient way to get
the users’ response to our work.

Heather: That’s true, but I’d sure like to see the users
sit down and work with the system. I’ve always learned
a lot by watching what they do, seeing where they get
confused, and hearing their comments and feedback.

Ryan (systems analyst): It seems to me that we’ve
put so much work into this interface design that all we
really need to do is review it ourselves. Let’s just make
a list of the design principles we’re most concerned
about and check it ourselves to make sure we’ve fol-
lowed them consistently. If we have, we should be fine.
We want to get moving on the implementation, you
know.

Mark: These are all good ideas. It seems like we’ve
all got a different view of how to evaluate the interface
design. Let’s try to sort out the technique that’s best for
our project.

Develop a set of guidelines that can help a project
team like this one select the most appropriate interface
evaluation technique for their project.

3. The menu structure for Holiday Travel Vehicle’s
existing character-based system is shown here. Develop
and prototype a new interface design for the system’s

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:06 PM Page 470

functions using a graphical user interface. Also, develop
a set of real use cases for your new interface. Assume
the new system will need to include the same functions
as those shown in the menus provided. Include any
messages that will be produced as a user interacts with
your interface (error, confirmation, status, etc.). Also,
prepare a written summary that describes how your
interface implements the principles of good interface
design as presented in the textbook.

4. One aspect of the new system under development at
Holiday Travel Vehicles will be the direct entry of the
sales invoice into the computer system by the salesper-
son as the purchase transaction is being completed. In
the current system, the salesperson fills out a paper
form (shown on the next page).

Design and prototype an input screen that will per-
mit the salesperson to enter all the necessary informa-
tion for the sales invoice. The following information
may be helpful in your design process. Assume that
Holiday Travel Vehicles sells recreational vehicles and
trailers from four different manufacturers. Each man-
ufacturer has a fixed number of names and models of
RVs and trailers.
For the purposes of your prototype, use this format:

Mfg-A Name-1 Model-X
Mfg-A Name-1 Model-Y
Mfg-A Name-1 Model-Z
Mfg-B Name-1 Model-X
Mfg-B Name-1 Model-Y
Mfg-B Name-2 Model-X
Mfg-B Name-2 Model-Y
Mfg-B Name-2 Model-Z
Mfg-C Name-1 Model-X
Mfg-C Name-1 Model-Y
Mfg-C Name-1 Model-Z
Mfg-C Name-2 Model-X
Mfg-C Name-3 Model-X
Mfg-D Name-1 Model-X
Mfg-D Name-2 Model-X
Mfg-D Name-2 Model-Y

Also, assume there are ten different dealer options
that could be installed on a vehicle at the customer’s
request. The company currently has ten salespeople on
staff.

Holiday Travel Vehicles

Sales Staff Maintenance Menu

1 Add Salesperson Record
2 Change Salesperson Record
3 Delete Salesperson Record

Type number of menu selection here:____

Holiday Travel Vehicles

Reports Menu

1 Commission Report
2 RV Sales by Make Report
3 Trailer Sales by Make Report
4 Dealer Options Report

Type number of menu selection here:____

Holiday Travel Vehicles

Vehicle Inventory Menu

1 Create Vehicle Inventory Record
2 Change Vehicle Inventory Record
3 Delete Vehicle Inventory Record

Type number of menu selection here:____

Holiday Travel Vehicles

Sales Invoice Menu

1 Create Sales Invoice
2 Change Sales Invoice
3 Cancel Sales Invoice

Type number of menu selection here:____

Holiday Travel Vehicles

Main Menu

1 Sales Invoice
2 Vehicle Inventory
3 Reports
4 Sales Staff

Type number of menu selection here:____

Minicases 471

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:06 PM Page 471

5. Refer to the Professional and Scientific Staff Manage-
ment (PSSM) Minicase in Chapters 4, 6, 7, 8, and 9.
a. Develop two use scenarios, draw a WND, and

design a storyboard.
b. Based on your answers to part a, create windows

layout diagrams for the user interface, develop an
HTML prototype of the user interface, and develop
a set of real use cases for the user interface.

c. How would your user interface design have to be
modified if you were to deploy it on a tablet? What
about a smartphone?

d. What, if any, social media sites should PSSM con-
sider?

e. How would your answers change if you were devel-
oping the system for a global audience?

472 Chapter 10 Human–Computer Interaction Layer Design

Holiday Travel Vehicles
Sales Invoice Invoice #: ____________

Invoice Date: ________

Customer Name: ______________________________________
Address: ______________________________________

City: ______________________________________
State: ______________________________________

Zip: ______________________________________
Phone: ______________________________________

New RV/TRAILER
(circle one) Name: ______________________________________

Model: ______________________________________
Serial #:________________________ Year: _________

Manufacturer: ______________________________________

Trade-in RV/TRAILER
(circle one) Name: ______________________________________

Model: ______________________________________
Year: ______________________________________

Manufacturer: ______________________________________

Options: Code Description Price

Vehicle Base Cost: ________________
Trade-in Allowance: ________________ (Salesperson Name)

Total Options: ________________
Tax: ________________

License Fee: ________________
Final Cost: ________________ (Customer Signature)

c10HumanComputerInteractionLayerDesign.qxd 11/8/11 2:06 PM Page 472

473

An important component of the design of an information system is the design of the
physical architecture layer, which describes the system’s hardware, software, and network
environment. The physical architecture layer design flows primarily from the nonfunc-
tional requirements, such as operational, performance, security, cultural, and political
requirements. The deliverable from the physical architecture layer design includes the
architecture and the hardware and software specification.

OBJECTIVES

! Understand the different physical architecture components
! Understand server-based, client-based, and client–server physical architectures
! Be familiar with cloud computing and Green IT
! Be able to create a network model using a deployment diagram
! Be familiar with how to create a hardware and software specification
! Understand how operational, performance, security, cultural, and political require-

ments affect the design of the physical architecture layer

CHAPTER OUTLINE

C H A P T E R 1 1

PHYSICAL ARCHITECTURE LAYER DESIGN

Introduction
Elements of the Physical Architecture Layer

Architectural Components
Server-Based Architectures
Client-Based Architectures
Client–Server Architectures
Client–Server Tiers
Selecting a Physical Architecture

Cloud Computing
Green IT
Infrastructure Design

Deployment Diagram

Network Model
Hardware and System Software

Specification
Nonfunctional Requirements and Physical

Architecture Layer Design
Operational Requirements
Performance Requirements
Security Requirements
Cultural and Political Requirements
Synopsis

Applying the Concepts at CD Selections
Summary

INTRODUCTION
In today’s environment, most information systems are spread across two or more comput-
ers. A Web-based system, for example, runs in the browser on a desktop computer but
interacts with the Web server (and possibly other computers) over the Internet. A system
that operates completely inside a company’s network may have a Visual Basic program
installed on one computer but interact with a database server elsewhere on the network.

c11PhysicalArchitectureLayerDesign.qxd 11/9/11 1:28 PM Page 473

474 Chapter 11 Physical Architecture Layer Design

Therefore, an important step of design is the creation of the physical architecture layer
design, the plan for how the system will be distributed across the computers, and what
hardware and software will be used for each computer (e.g., Windows, Linux).

Most systems are built to use the existing hardware and software in the organization,
so often the current architecture and hardware and software infrastructure restricts the
choice. Other factors, such as corporate standards, existing site-licensing agreements, and
product–vendor relationships also can mandate what architecture, hardware, and software
the project team must design. However, many organizations now have a variety of infra-
structures available or are openly looking for pilot projects to test new architectures, hard-
ware, and software, which enable a project team to select an architecture on the basis of
other important factors.

Designing a physical architecture layer can be quite difficult; therefore, many organi-
zations hire expert consultants or assign very experienced analysts to the task.1 In this
chapter, we examine the key factors in physical architecture layer design, but it is impor-
tant to remember that it takes lots of experience to do it well. The nonfunctional require-
ments developed during analysis (see Chapter 3) play a key role in physical architecture
layer design. These requirements are reexamined and refined into more-detailed require-
ments that influence the system’s architecture. In this chapter, we explain how the design-
ers think about application architectures, and we describe the three primary architectures:
server-based, client-based, and client–server. Next we consider the impact of cloud com-
puting and Green IT on the physical architecture layer. We consider how the requirements
and architecture can be used to develop the hardware and software specifications that
define exactly what hardware and systems software (e.g., database systems) are needed to
support the information system being developed. We look at using UML’s deployment
diagram as a way to model the physical architecture layer. Finally, we examine how the
very general nonfunctional requirements from analysis are refined into more-specific
requirements and the implications that they have for physical architecture layer design.

ELEMENTS OF THE PHYSICAL ARCHITECTURE LAYER
The objective of designing the physical architecture layer is to determine what parts of the
application software will be assigned to what hardware. In this section we first discuss the
major architectural elements to understand how the software can be divided into different
parts. Then we briefly discuss the major types of hardware onto which the software can be
placed. Although there are numerous ways the software components can be placed on the
hardware components, there are three principal application architectures in use today:
server-based architectures, client-based architectures and client–server architectures. The most
common architecture is the client–server architecture, so we focus on that.

Architectural Components
The major architectural components of any system are the software and the hardware. The
major software components of the system being developed have to be identified and then
allocated to the various hardware components on which the system will operate. Each of
these components can be combined in a variety of different ways.

All software systems can be divided into four basic functions. The first is data storage
(associated with the object persistence located on the data management layer—see Chapter 9).

1 For more information on the physical architecture layer, see Stephen D. Burd, Systems Architecture, 6th ed.
(Boston: Course Technology, 2011); Irv Englander, The Architecture of Computer Hardware and Systems Software:
An Information Technology Approach, 4th ed. (Hoboken, NJ: Wiley, 2009); and Kalani Kirk Hausman and Susan
L. Cook, IT Architecture for DummiesTM (Hoboken, NJ: Wiley, 2011).

c11PhysicalArchitectureLayerDesign.qxd 11/9/11 1:28 PM Page 474

Elements of the Physical Architecture Layer 475

Most application programs require data to be stored and retrieved, whether the information is
a small file such as a memo produced by a word processor or a large database that stores an
organization’s accounting records. These are the data documented in the structural model
(CRC cards and class diagrams). The second function is data access logic (associated with the
data access and manipulation classes located on the data management layer—see Chapter 9),
the processing required to access data, which often means database queries in SQL (structured
query language). The third function is the application logic (located on the problem domain
layer—see Chapters 4 through 8), which can be simple or complex, depending on the appli-
cation. This is the logic documented in the functional (activity diagrams and use cases) and
behavioral models (sequence, communication, and behavioral state machines). The fourth
function is the presentation logic (located on the human–computer interaction layer—see
Chapter 10), the presentation of information to the user, and the acceptance of the user’s com-
mands (the user interface). These four functions (data storage, data access logic, application
logic, and presentation logic) are the basic building blocks of any application.

The three primary hardware components of a system are client computers, servers, and
the network that connects them. Client computers are the input/output devices employed
by the user and are usually desktop or laptop computers, but they can also be handheld
devices, cell phones, special-purpose terminals, and so on. Servers are typically larger com-
puters that are used to store software and hardware that can be accessed by anyone who has
permission. Servers can come in several types: mainframes (very large, powerful computers
usually costing millions of dollars), minicomputers (large computers costing hundreds of
thousands of dollars) and microcomputers (small desktop computers like the ones we all use
to those costing $50,000 or more). The network that connects the computers can vary in
speed from a slow cell phone or modem connection that must be dialed, to medium-speed
always-on frame relay networks, to fast always-on broadband connections such as cable
modem, DSL, or T1 circuits, to high-speed always-on ethernet, T3, or ATM circuits.2

Server-Based Architectures
The very first computing architectures were server-based architectures, with the server
(usually a central mainframe computer) performing all four functions. The clients (usually
terminals) enabled users to send and receive messages to and from the server computer.
The clients merely captured keystrokes and sent them to the server for processing and
accepted instructions from the server on what to display (see Figure 11-1).

2 For more information on networks, see Alan Dennis, Networking in the Internet Age (New York: Wiley, 2002).

Server Host
(mainframe computer)

Client /(terminal)

Presentation logic
Application logic
Data access logic
Data storage

FIGURE 11-1
Server-Based
Architecture

c11PhysicalArchitectureLayerDesign.qxd 11/9/11 1:28 PM Page 475

This very simple architecture often works very well. Application software is developed
and stored on one computer, and all data are on the same computer. There is one point
of control, because all messages flow through the one central server. The fundamental
problem with server-based networks is that the server must process all messages. As the
demands for more and more applications grow, many server computers become over-
loaded and unable to quickly process all the users’ demands. Response time becomes
slower, and network managers are required to spend increasingly more money to upgrade
the server computer. Unfortunately, upgrades come in large increments and are expensive;
it is difficult to upgrade “a little.”

Client-Based Architectures
With client-based architectures, the clients are personal computers on a local area network
(LAN), and the server computer is a server on the same network. The application software
on the client computers is responsible for the presentation logic, the application logic, and
the data access logic; the server simply stores the data (see Figure 11-2).

This simple architecture also often works well. However, as the demands for more and
more network applications grow, the network circuits can become overloaded. The funda-
mental problem in client-based networks is that all data on the server must travel to the
client for processing. For example, suppose the user wishes to display a list of all employ-
ees with company life insurance. All the data in the database must travel from the server
where the database is stored over the network to the client, which then examines each
record to see if it matches the data requested by the user. This can overload both the net-
work and the power of the client computers.

Client–Server Architectures
Most organizations today are moving to client–server architectures, which attempt to
balance the processing between the client and the server by having both do some of the
application functions. In these architectures, the client is responsible for the presentation
logic, whereas the server is responsible for the data access logic and data storage. The
application logic may reside on either the client or the server or be split between both
(see Figure 11-3). The client shown in Figure 11-3 can be referred to as a thick, or fat,
client if it contains the bulk of application logic. A current practice is to create
client–server architectures using thin clients because there is less overhead and mainte-
nance in supporting thin-client applications. For example, many Web-based systems are
designed with the Web browser performing presentation, with only minimal application
logic using programming languages like Java and the Web server having the application
logic, data access logic, and data storage.

476 Chapter 11 Physical Architecture Layer Design

Client
(microcomputer)

Presentation logic
Application logic
Data access logic

Server
(microcomputer)

Data storage
FIGURE 11-2
Client-Based
Architectures

c11PhysicalArchitectureLayerDesign.qxd 11/9/11 1:28 PM Page 476

Elements of the Physical Architecture Layer 477

Client–server architectures have four important benefits. First, they are scalable. That
means it is easy to increase or decrease the storage and processing capabilities of the servers.
If one server becomes overloaded, you simply add another server so that many servers are
used to perform the application logic, data access logic, or data storage. The cost to upgrade
is much more gradual, and you can upgrade in smaller steps rather than spending hun-
dreds of thousands to upgrade a mainframe server.

Client–server architectures can support many different types of clients and servers. It
is possible to connect computers that use different operating systems so that users can
choose which type of computer they prefer (e.g., combining both Windows computers and
Apple Macintoshes on the same network). We are not locked into one vendor, as is often
the case with server-based networks. Middleware is a type of system software designed to
translate between different vendors’ software. Middleware is installed on both the client
computer and the server computer. The client software communicates with the middle-
ware, which can reformat the message into a standard language that can be understood by
the middleware assisting the server software.

For thin-client server architectures that use Internet standards, it is simple to clearly
separate the presentation logic, the application logic, and the data access logic and design
so each is somewhat independent. For example, the presentation logic can be designed in
HTML or XML to specify how the page will appear on the screen (e.g., the colors, fonts,
order of items, specific words used, command buttons, the type of selection lists; see Chap-
ter 10). Simple program statements are used to link parts of the interface to specific appli-
cation logic modules that perform various functions. These HTML or XML files defining
the interface can be changed without affecting the application logic. Likewise, it is possible
to change the application logic without changing the presentation logic or the data, which
are stored in databases and accessed using SQL commands.

Finally, because no single server computer supports all the applications, the network is
generally more reliable. There is no central point of failure that will halt the entire network
if it fails, as there is in server-based computing. If any one server fails in a client–server
environment, the network can continue to function using all the other servers (but, of
course, any applications that require the failed server will not work).

Client–server architectures also have some critical limitations, the most important of
which is its complexity. All applications in client–server computing have two parts, the soft-
ware on the client and the software on the server. Writing this software is more complicated
than writing the traditional all-in-one software used in server-based architectures. Updat-
ing the network with a new version of the software is more complicated, too. In server-
based architectures, there is one place where application software is stored; to update the
software, we simply replace it there. With client–server architectures, we must update all
clients and all servers.

Client
(microcomputer)

Server
(micro, mini, or mainframe)

Presentation logic
Application logic

Data access logic
Data storage

FIGURE 11-3
Client–Server
Architecture

c11PhysicalArchitectureLayerDesign.qxd 11/9/11 1:28 PM Page 477

Much of the debate about server-based versus client–server architectures has centered on
cost. One of the great claims of server-based networks in the 1980s was that they provided
economies of scale. Manufacturers of big mainframes claimed it was cheaper to provide
computer services on one big mainframe than on a set of smaller computers. The personal
computer revolution changed this. Since the 1980s, the cost of personal computers has con-
tinued to drop, whereas their performance has increased significantly. Today, personal com-
puter hardware is more than 1,000 times cheaper than mainframe hardware for the same
amount of computing power.

With cost differences like these, it is easy to see why there has been a sudden rush
to microcomputer-based client–server computing. The problem with these cost com-
parisons is that they ignore the total cost of ownership, which includes factors other than
obvious hardware and software costs. For example, many cost comparisons overlook the
increased complexity associated with developing application software for client–server
networks. Most experts believe that it costs four to five times more to develop and
maintain application software for client–server computing than it does for server-based
computing.

Client–Server Tiers
There are many ways the application logic can be partitioned between the client and the
server. The example in Figure 11-3 is one of the most common. In this case, the server is
responsible for the data, and the client is responsible for the application and presentation.
This is called a two-tiered architecture because it uses only two sets of computers, clients,
and servers.

A three-tiered architecture uses three sets of computers (see Figure 11-4). In this case,
the software on the client computer is responsible for presentation logic, an application
server (or servers) is responsible for the application logic, and a separate database server (or
servers) is responsible for the data access logic and data storage.

An n-tiered architecture uses more than three sets of computers. In this case, the client
is responsible for presentation, database servers are responsible for the data access logic and
data storage, and the application logic is spread across two or more different sets of servers.
This type of architecture is common in today’s e-commerce systems (see Figure 11-5). The
first is the Web browser on the client computer employed by a user to access the system and
enter commands (presentation logic). The second component is a Web server that
responds to the user’s requests, either by providing (HTML) pages and graphics (applica-
tion logic) or by sending the request to the third component on another application server
that performs various functions (application logic). The fourth component is a database

478 Chapter 11 Physical Architecture Layer Design

Client
(microcomputer)

Presentation logic

Application server
(microcomputer)

Database server
(micro, mini, or mainframe)

Application logic Data access logic
Data storage

FIGURE 11-4
Three-Tiered
Client–Server
Architecture

c11PhysicalArchitectureLayerDesign.qxd 11/28/11 10:56 AM Page 478

Elements of the Physical Architecture Layer 479

server that stores all the data (data access logic and data storage). Each of these four com-
ponents is separate, making it easy to spread the different components on different servers
and to partition the application logic on two different servers.

The primary advantage of an n-tiered client–server architecture compared with a
two-tiered architecture (or a three-tiered with a two-tiered) is that it separates the pro-
cessing that occurs to better balance the load on the different servers; it is more scalable.
In Figure 11-5, we have three separate servers, a configuration that provides more power
than if we had used a two-tiered architecture with only one server. If we discover that the
application server is too heavily loaded, we can simply replace it with a more powerful
server or just put in several more application servers. Conversely, if we discover the data-
base server is underused, we could store data from another application on it.

There are two primary disadvantages to an n-tiered architecture compared with a
two-tiered architecture (or a three-tiered with a two-tiered). First, the configuration puts
a greater load on the network. If you compare Figures 11-3, 11-4, and 11-5, you will see
that the n-tiered model requires more communication among the servers; it generates
more network traffic, so you need a higher-capacity network. It is also much more diffi-
cult to program and test software in n-tiered architectures than in two-tiered architectures
because more devices have to communicate to complete a user’s transaction.

Selecting a Physical Architecture
Most systems are built to use the existing infrastructure in the organization, so often the
current infrastructure restricts the choice of architecture. For example, if the new system
will be built for a mainframe-centric organization, a server-based architecture may be the
best option. Other factors such as corporate standards, existing licensing agreements, and
product/vendor relationships can also mandate what architecture the project team needs to

Client
(microcomputer)

Presentation logic

Web server
(micro, mini, or mainframe)

Web-related
Application logic

Data access logic
Data storage

Application server
(micro, mini, or mainframe)

Database server
(micro, mini, or mainframe)

Non-Web-related
Application logic

FIGURE 11-5
Four-Tiered
Client–Server
Architecture

c11PhysicalArchitectureLayerDesign.qxd 11/9/11 1:28 PM Page 479

design. However, many organizations now have a variety of infrastructures available or are
openly looking for pilot projects to test new architectures and infrastructures, enabling a
project team to select an architecture based on other important factors.

Each of the computing architectures just discussed has its strengths and weaknesses,
and no architecture is inherently better than the others. Thus, it is important to under-
stand the strengths and weaknesses of each computing architecture and when to use each.
Figure 11-6 presents a summary of the important characteristics of each.

Cost of Infrastructure One of the strongest driving forces to client–server architectures
is cost of infrastructure (the hardware, software, and networks that will support the appli-
cation system). Simply put, personal computers are more than 1,000 times cheaper than
mainframes for the same amount of computing power. The personal computers on our
desks today have more processing power, memory, and hard disk space than the typical
mainframe of the past, and the cost of the personal computers is a fraction of the cost of
the mainframe.

480 Chapter 11 Physical Architecture Layer Design

Every spring, Monster.com, one of the largest job sites in
the United States with an average of more than 3 million
visitors per month, experiences a large increase in traffic.
Aaron Braham, vice president of operations, attributes the
spike to college students who increase their job-search
activities as they approach graduation.

Monster.com uses a three-tier client–server architec-
ture that has 150 Web servers and 30 databaase servers in
its main site in Indianapolis. It plans to move that to 400
in 2001 by gradually growing the main site and adding a
new site with servers in Maynard, Massachusetts, just in
time for the spring rush. The main Web site has a set of
load-balancing devices that forward Web requests to the
different servers, depending on how busy they are.

Braham says the major challenge is that 90 percent
of the traffic is not simple requests for Web pages but,
rather, search requests (e.g., network jobs available in
New Mexico), which require more processing and access

to the database servers. Monster.com has more than
350,000 job postings and more than 3 million résumé on
file, spread across its database servers. Several copies of
each posting and résumé are kept on several database
servers to improve access speed and provide redundancy
in case a server crashes, so just keeping the database
servers in sync so that they contain correct data is a
challenge.

Questions

1. What are the two or three primary nonfunctional
requirements that have influenced Monster.com’s
application architecture?

2. What alternatives do you think Monster.com
considered?

Source: “Resume Influx Tests Mettle of Job Sites’ Scalability,” Internet
Week (May 29, 2000).

11-A A Monster Client–Server ArchitectureCONCEPTS

IN ACTION

Cost of infrastructure Very high Medium Low
Cost of development Medium Low High
Ease of development Low High Low to medium
Interface capabilities Low High High
Control and security High Low Medium
Scalability Low Medium High

Characteristic Server-based Client-based Client–Server

FIGURE 11-6
Characteristics
of Computing
Architectures

c11PhysicalArchitectureLayerDesign.qxd 11/9/11 1:28 PM Page 480

Elements of the Physical Architecture Layer 481

Cost of Development The cost of developing systems is an important factor when con-
sidering the financial benefits of client–server architectures. Developing application soft-
ware for client–server computing is extremely complex, and most experts believe that it
costs four to five times more to develop and maintain application software for client–server
computing than it does for server-based computing. Developing application software for
client-based architectures is usually cheaper still, because there are many GUI development
tools for simple stand-alone computers that communicate with database servers (e.g.,
Visual Basic, Access).

The cost differential might change as more companies gain experience with
client–server applications, new client–server products are developed and refined, and
client–server standards mature. However, given the inherent complexity of client–server
software and the need to coordinate the interactions of software on different computers,
there is likely to remain a cost difference.

Ease of Development In most organizations today, there is a huge backlog of mainframe
applications, systems that have been approved but that lack the staff to implement them.
This backlog signals the difficulty in developing server-based systems. The tools for main-
frame-based systems often are not user friendly and require highly specialized skills (e.g.,
COBOL/CICS)—skills that new graduates often don’t have and aren’t interested in acquir-
ing. In contrast, client-based and client–server architectures can rely on graphical user
interface (GUI) development tools that can be intuitive and easy to use. The development
of applications for these architectures can be fast and painless. Unfortunately, the applica-
tions for client–server systems can be very complex because they must be built for several
layers of hardware (e.g., database servers, Web servers, client workstations) that need to
communicate effectively with one another. Project teams often underestimate the effort
involved in creating secure, efficient client–server applications.

Interface Capabilities Typically, server-based applications contain plain, character-
based interfaces. For example, think about airline reservation systems such as SABRE,
which can be quite difficult to use unless the operator is well trained on the commands
and hundreds of codes that are used to navigate through the system. Today, most users of
systems expect a GUI or a Web-based interface that they can operate using a mouse and
graphical objects (e.g., pushbuttons, drop-down lists, icons, and so on). GUI and Web
development tools typically are created to support client-based or client–server applica-
tions; rarely can server-based environments support these types of applications.

Think about the course registration system in your uni-
versity. What physical architecture does it use? If you
had to create a new system today, would you use the

architecture or change to a different one? describe the
criteria that you would consider when making your
decision.

11-1 Course Registration SystemYOUR

TURN

Therefore, the cost of client–server architectures is low compared to server-based
architectures that rely on mainframes. Client–server architectures also tend to be cheaper
than client-based architectures because they place less of a load on networks and thus
require less network capacity.

c11PhysicalArchitectureLayerDesign.qxd 11/9/11 1:28 PM Page 481

Control and Security The server-based architecture was originally developed to control
and secure data, and it is much easier to administer because all the data are stored in a
single location. In contrast, client–server computing requires a high degree of coordination
among many components, and the chance for security holes or control problems is much
more likely. Also, the hardware and software used in client–server architecture is still
maturing in terms of security. When an organization has a system that absolutely must be
secure (e.g., an application used by the Department of Defense), then the project team may
be more comfortable with the server-based alternative on highly secure and control-
oriented mainframe computers.

Scalability Scalability refers to the ability to increase or decrease the capacity of the com-
puting infrastructure in response to changing capacity needs. The most scalable architec-
ture is client–server computing because servers can be added to (or removed from) the
architecture when processing needs change. Also, the types of hardware that are used in
client–server situations (e.g., minicomputers) typically can be upgraded at a pace that most
closely matches the growth of the application. In contrast, server-based architectures rely
primarily on mainframe hardware that needs to be scaled up in large, expensive incre-
ments, and client-based architectures have ceilings above which the application cannot
grow because increases in use and data can result in increased network traffic to the extent
that performance is unacceptable.

CLOUD COMPUTING3

Cloud computing is the idea of treating IT as a utility or commodity. Essentially, cloud com-
puting is the latest approach to support distributed computing in a client-server type of
architecture (see previous section) where the server is “in the cloud” and the client is on the
desktop. The cloud can be the firm’s corporate data center, an external data center, or some
combination of the two; however, more and more it generally is seen as an external, rather
than an internal, service. Consequently, the idea of multitenancy, where the cloud vendor
has multiple customers using the same resource at the same time, becomes a real issue for
both the cloud vendor and the cloud customer. Cloud computing may become the great-
est enabler for IT outsourcing (see Chapter 7).

There are three different classifications of clouds: private, public, and hybrid. Private
clouds are available only to employees of the firm, public clouds are available to the general
public, and hybrid clouds combine the private and public cloud ideas to form a single cloud.
In some senses, all e-commerce sites could run in a hybrid cloud environment where the
customer sales transaction portion of the system would need to be public while all other
aspects would be private.

Fundamentally, cloud computing is an umbrella technology that encompasses the
ideas of virtualization, service-oriented architectures, and grid computing. The idea of vir-
tualization is not new. Virtualization is the idea of treating any computing resource, regard-
less of where it is located, as if it is “in” the client machine. This idea evolved from virtual
memory. Virtual memory was developed originally in the 1960s. Virtual memory allowed
the user/programmer to act as if the amount of main memory in the computer was unlim-
ited. This was done by swapping pages of main memory out to disk when the content of
the pages was not being used and swapping a page from disk back to main memory when
it was needed. Before virtual memory was created, the programmer had to write code to

482 Chapter 11 Physical Architecture Layer Design

3 Judith Hurwitz, Marcia Kaufman, Fern Halper, and Robin Bloor, Cloud Computing for DummiesTM (Hoboken,
NJ: Wiley 2010).

c11PhysicalArchitectureLayerDesign.qxd 11/9/11 1:28 PM Page 482

Cloud Computing 483

perform the paging function for each application. Virtualization is simply the scaling up of
this idea to all computing resources, not simply main memory. This includes treating a
mainframe computer as if it is a set of virtual servers, each of which can be running differ-
ent operating and/or application systems.

Web services basically support connections between different services to form service-
oriented architectures.4 Basically, a service is a piece of software that supports some aspect
of a business process. A service can be an implementation of part of a business process, it
can be an implementation of an entire business process (for example, salesforce.com), or it
can be object persistence support for the data management layer (see Chapter 9). These ser-
vices can be either internal or external to the firm. Services can be combined to support
business processes. We suggest modeling business process with use cases, use case diagrams,
and activity diagrams. A service-oriented architecture allows business processes to be sup-
ported by “plugging and playing” services together in a static and/or dynamic manner.5

Some of the pluggable and playable services can be purchased outright or they can be billed
to the firm based on their use, a sort of pay-as-you-go model.

Grid computing6 tends to be the underlying hardware technology that supports the
cloud. A grid is a very large set of networked computers that tend to be geographically dis-
persed. For example, the grid that supports SalesForce.com’s CRM application contains
about 1,000 computers. The computers do not have to be of the same type. For example,
they can be a mixture of Linux servers and mainframes. With grid computing, firms have
the ability to add and remove computers to support a business process based on the cur-
rent level of activity taking place in that particular business process. This provides an enor-
mous amount of flexibility in configuring the underlying physical architecture that
supports business processes.

Combining virtualization, service-oriented architectures, and grid computing is
what all the hoopla is about with regard to cloud computing. Cloud computing is highly
elastic and scalable, it supports a demand-driven approach to provisioning and deprovi-
sioning of resources, and it supports a billing model that only charges for the resources
being used. From a business perspective, cloud computing supports the idea of IT being
a commodity.

The cloud can contain the firm’s IT infrastructure, IT platform, and software. Infrastruc-
ture as a Service (IaaS) refers to the cloud providing the computing hardware to the firm as a
remote service. The hardware typically includes the computing hardware that supports
application servers, networking, and data storage. Amazon’s EC2 (aws.amazon.com/ec2/)
service is a good example of this. With Platform as a Service (PaaS), the cloud vendor not
only provides hardware support to a customer but also provides the customer with either
package-based solutions, different services that can be combined to create a solution, or
the development tools necessary to create custom solutions in the PaaS vendor’s cloud.
SalesForce.com is a good example of the vendor providing a package-based solution,
Amazon’s SimpleDB and Simple Query Service is a good example of different services
being supported, and Google’s App Engine is a good example of a cloud vendor provid-
ing good development tools. Like most things in IT, Software as a Service (SaaS) is not a
new idea. SaaS has been around for more than 30 years. In the 1970s, there were many
“service bureaus” that supported timesharing of hardware and software to many different
customers; that is, they supported multitenancy. For example, ADP has supported payroll

4 Douglas K. Barry, Web Services and Service-Oriented Architectures (San Francisco: Morgan Kaufman, 2003).
5 P. Ghandforoush, T.K. Sen, and D. Tegarden, R. Ramaswamy, “Designing Systems Using Business Components:
A Case Study in Call Center Automation.” International Journal of Electronic Customer Relationship Management,
4(2) (2010), pp. 161–179.
6 Pawel Plaszczak and Richard Welner, Jr., Grid Computing (San Francisco: Morgan Kaufman, 2006).

c11PhysicalArchitectureLayerDesign.qxd 11/9/11 1:28 PM Page 483

functions for many firms for a very long time. Today, SalesForce.com’s CRM system is a
good example of a SaaS cloud-based solution.

However, cloud computing must overcome certain obstacles before it becomes the
primary approach to provision the physical architecture layer.7 The first obstacle is the
mixed level of cloud performance. One issue is whether the vendor has the resources to
provide the firm with enough “power” during a peak load. The issue here is that a typical
cloud vendor is supporting many different firms. If the vendor does not have enough
computing resources to handle all of the firms’ peak loads at the same time, then there will
have to be some degradation of some or all of the firms’ support. This is primarily a result
of the unpredictability of the overall performance requirements with disk I/O and net-
work traffic. Given the multitenancy typical of a cloud vendor’s hardware, bottlenecks
with disks will occur. However, given the dependency on networks, data transfer rates are
critical. In an enlightening example, Armbrust and colleagues show that when dealing
with large volumes of data, it is faster to transfer data using overnight shipping. In their
example, they showed that if you were to transfer 10 terabytes of data with an average
transfer rate of 20 Mbits/sec that it would take more than 45 days to complete the trans-
fer. If you shipped the data overnight instead, you would effectively be using a transfer rate
of 1500 Mbits/sec.

A second obstacle deals with the level of dependency that a customer’s firm has on a
cloud vendor. Firms are dependent on cloud vendors based on the type of service that they
are using (IaaS, PaaS, and SaaS), the actual level of service availability, and the potential of
data lock-in. Currently, most cloud vendors API to storage are proprietary. Consequently,
the customer’s data becomes “locked in” to the specific cloud vendors storage. This is also
true for much of the actual service APIs. Consequently, customers find themselves hoping
that the cloud vendor will be the equivalent of a benevolent dictator that will act in the
interest of the customer; otherwise, actual level of service being provided could suffer.
Given the potential for data and/or service lock-in, a customer must pay close attention to
the viability of the cloud vendor. If the vendor goes out of business, the customer could be
following suit very quickly. If the cloud vendor also has outsourced to other cloud vendors,
such as to a disk farm company, then they could find themselves in the same situation. This
could lead to a cascading effect of business failures. Consequently, when a firm is consid-
ering outsourcing their IT area into the cloud, the firm had better understand the total risk
involved.

A third major obstacle to cloud adoption is the perceived level of security available
in the cloud. Not only does a firm have to worry about security from the outside, but
when you consider multitenancy, the firm must seriously consider potential attacks from
within their cloud from other cloud users. From a service availability perspective, a
denial-of-service attack against another tenant within the cloud can cause performance
degradation of the firm’s systems. Finally, a firm must consider protecting itself from the
cloud vendor. The cloud vendor is responsible only for physical security and firewalls. All
application-level security tends to be the responsibility of the cloud customer. Obviously,
security in the cloud is a very complex endeavor. Given the confidentiality and auditabil-
ity requirements of Sarbanes-Oxley (SOX) and the Health and Human Services Health
Insurance Portability and Accountability Act (HIPAA), security in the cloud becomes a
major concern for a firm to move any of its confidential data, including e-mail, to the
cloud. In many ways, when using a cloud a firm is simply taking a leap of faith that the
cloud is secure.

484 Chapter 11 Physical Architecture Layer Design

7 Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz, Andy Konwinski, Gunho Lee,
David Patterson, Areil Rabkin, Ion Stoica, and Matei Zahara, “A View of Cloud Computing,” Communications of
the ACM, 53(4) (2010), pp. 50–58.

c11PhysicalArchitectureLayerDesign.qxd 11/9/11 1:28 PM Page 484

Green IT 485

GREEN IT8

Given all of the computing power being deployed to solve today’s business problems, Green
IT has become important. Green IT is a broad term that encompasses virtually anything
that helps reduce the environmental impact of IT. Some of the topics included are e-waste,
greening data centers, and the dream of the paperless office. In this section, we describe
how Green IT can affect the physical architecture layer.

First, when it comes to disposing old electronic devices, care must be taken. Old
computers contain very toxic material including lead, PCBs, mercury, and cadmium.
One of the major Green IT issues is how to dispose of this e-waste. One of the most dis-
turbing trends in dealing with e-waste is the shipping of the e-waste from the developed
world to the developing world where environmental standards are virtually nonexistent.
Owing to “backyard recycling” techniques used in these locations, the toxic material con-
tained in the e-waste shows up in the soil, water, and air. Alternatives to simply dumping
old computers into the trash include extending the replacement cycles of the machines
by converting the machines from Windows-based machines to Linux-based machines.
Linux takes less “horsepower” to run than Windows. Therefore, for certain applications,
a Linux-based desktop is more than sufficient to implement parts of the physical archi-
tecture layer.

Second, large data centers use as much electricity in a day as a small city. Consequently,
given this level of power consumption, creating green data centers in the future will be cru-
cial. There are a whole set of ways to create a green data center. One way is to pay very close
attention to where the data center is to be located. Placing the data center in the shade of a
mountain or tall building will reduce the cost of energy required. For example, HP placed
one of its new data centers in northeast England so that it could be cooled by the cold
winds that blow onto shore from the North Sea.9 Looking into alternative energy possibil-
ities is another way to deal with energy consumption. For example, Google has been in the
business of buying wind farms to generate the power for its data centers and HP has shown
how a cow manure–based methane power plant could be created to generate the power to
run a data center in dairy country.10

A third way to consider making your IT infrastructure greener is to consider the cloud
(see previous section). With the cloud’s virtualization capabilities, the number of high-
powered servers and desktops can be reduced. However, you will need to perform some
tradeoffs between the obstacles of moving to the cloud and the move toward a greener IT.
A fourth way to address the power demands for a modern IT infrastructure is by only pur-
chasing Energy Star compliant electronics. A fifth way is to encourage employees to have
their machines go to “sleep” to save energy when the machines have been idle for some
period of time.

The paperless office idea has been around for a very long time. However, up until now,
the idea has been more fantasy than reality. Today, with the advent of multiuse tablets, such
as Apple’s iPadTM, the paperless office is becoming a reality. When considering the cloud
and the apps available on the iPadTM, it is possible not only to create a paperless office but
also to have the paperless office effectively be a portable office.

8 Caril Baroudi, Jeffrey Hill, Arnold Reinhold, and Jhana Senxian, Green IT for DummiesTM (Hoboken, NJ: Wiley,
2009).
9 www.smartplanet.com/blog/smart-takes/hp-opens-first-wind-cooled-green-data-center-most-efficient-to-date/
4191.
10 See http://www.google.com/corporate/datacenter/renewable-energy.html and greentechnolog.com/2010/05/
post_102.html.

c11PhysicalArchitectureLayerDesign.qxd 11/9/11 1:28 PM Page 485

INFRASTRUCTURE DESIGN
In most cases, a system is built for an organization that has a hardware, software, and com-
munications infrastructure already in place. Thus, project teams are usually more con-
cerned with how an existing infrastructure needs to be changed or improved to support the
requirements that were identified during analysis, as opposed to how to design and build
an infrastructure from scratch. Coordination of infrastructure components is very com-
plex, and it requires highly skilled technical professionals. As a project team, it is best to
allow the infrastructure analysts to make changes to the computing infrastructure. In this
section we summarize key elements of infrastructure design to create a basic understand-
ing of what it includes. We describe UML’s deployment diagram and the network model.

Deployment Diagram
Deployment diagrams are used to represent the relationships between the hardware compo-
nents used in the physical infrastructure of an information system. For example, when
designing a distributed information system that will use a wide area network, a deployment
diagram can be used to show the communication relationships among the different nodes in
the network. They also can be used to represent the software components and how they are
deployed over the physical architecture or infrastructure of an information system. In this
case, a deployment diagram represents the environment for the execution of the software.

The elements of a deployment diagram include nodes, artifacts, and communication
paths (see Figure 11-7). Other elements can also be included in this diagram. In our case,
we include only the three primary elements and the element that portrays an artifact being
deployed onto a node.

A node represents any piece of hardware that needs to be included in the model of the
physical architecture layer design. For example, nodes typically include client computers,
servers, separate networks, or individual network devices. Typically, a node is labeled with
its name and, possibly, with a stereotype. The stereotype is modeled as a text item sur-
rounded by “<< >>” symbols. The stereotype represents the type of node being repre-
sented on the diagram. For example, typical stereotypes include device, mobile device,
database server, Web server, and application server. There are times that the notation of a
node should be extended to better communicate the design of the physical architecture
layer. Figure 11-8 includes a set of typical network node symbols that can be used instead
of the standard notation.

486 Chapter 11 Physical Architecture Layer Design

By 2012, Microsoft plans on reducing its carbon emis-
sions by 30% in comparison to its 2007 levels. By deploy-
ing a power management strategy to 165,000 desktop
and laptop computers, they have been able to realize a
27% drop in power usage by their managed desktop and
laptop computers and a 12.33 kilowatt hours per com-
puter savings, which provides them with a $12 to $14
savings per year per computer.

Microsoft has been designing the Zi Zhu campus in
Shanghai, China, with sustainability in mind from the
beginning. Some of the environmentally friendly features

include a passive optical lighting system, demand-driven
ventilation, innovate heating and cooling systems, power
management systems, virtualization in a cloud-based
infrastructure, and unified communication technology. In
other efforts to become greener, Microsoft is reducing
travel through the use of Office Communicator, Live
Meeting, and RoundTable software, creating policies to
move toward a paperless office, and taking a proactive
approach to managing their e-waste.
Source: www.microsoft.com/environment/our-commitment/
greener-it.aspx.

11-B Greener IT @ MicrosoftCONCEPTS

IN ACTION

c11PhysicalArchitectureLayerDesign.qxd 11/9/11 1:28 PM Page 486

Infrastructure Design 487

An artifact represents a piece of the information system that is to be deployed onto the
physical architecture (see Figure 11-7). Typically, an artifact represents a software component, a
subsystem, a database table, an entire database, or a layer (data management, human–computer
interaction, or problem domain). Artifacts, like nodes, can be labeled with both a name and a
stereotype. Stereotypes for artifacts include source file, database table, and executable file.

A node:

! Is a computational resource, e.g., a client computer, server, separate network, or
individual network device.

! Is labeled by its name.
! May contain a stereotype to specifically label the type of node being represented,

e.g., device, client workstation, application server, mobile device, etc.

An artifact:

! Is a specification of a piece of software or database, e.g., a database or a table or
view of a database, a software component or layer.

! Is labeled by its name.
! May contain a stereotype to specifically label the type of artifact, e.g., source file,

database table, executable file, etc.

A communication path:

! Represents an association between two nodes.
! Allows nodes to exchange messages.
! May contain a stereotype to specifically label the type of communication path

being represented, (e.g., Lan, Internet, serial, parallel).

A node with a deployed artifact:

! Portrays an artifact being placed on a physical node.

<<stereotype>>
Node Name

<<stereotype>>

<<stereotype>>
Artifact Name

<<stereotype>>
Node Name

<<stereotype>>
Artifact Name

FIGURE 11-7 Development Diagram Syntax

Workstation Server Mainframe

Subnetwork Data-
base

Firewall

FIGURE 11-8 Extended Node Syntax for Development Diagram

c11PhysicalArchitectureLayerDesign.qxd 11/9/11 1:28 PM Page 487

A communication path represents a communication link between the nodes of the
physical architecture (see Figure 11-7). Communication paths are stereotyped based on the
type of communication link they represent (e.g., LAN, Internet, serial, parallel, or USB) or
the protocol that is being supported by the link (e.g., TCP/IP).

Figure 11-9 portrays three different versions of a deployment diagram. Version a
uses only the basic standard notation. Version b introduces the idea of deploying an
artifact onto a node (see Figure 11-7). In this case, the artifacts represent the different
layers of the appointment system described in earlier chapters. Version c uses the
extended notation to represent the same architecture. As you can see, all three versions
have their strengths and weaknesses. When comparing version a and version b, the user
can glean more information from version b with little additional effort. However, when
comparing version a to version c, the extended node notation enables the user to
quickly understand the hardware requirements of the architecture. When comparing
version b to version c, version b supports the software distribution explicitly but forces
the user to rely on the stereotypes to understand the required hardware, whereas
version c omits the software distribution information entirely. We recommend that you
use the combination of symbols to best portray the physical architecture to the user
community.

488 Chapter 11 Physical Architecture Layer Design

<<LAN>>

<<Client Workstation>>
Receptionist PC

<<Server>>
Office Server

<<Client Workstation>>
Receptionist PC

<<HCI Layer>>
Appt System

<<Server>>
Office Server

<<PD Layer>>
Appt System

<<DM Layer>>
Appt System

Receptionist PC Office Server

Appt
Data
Base

<<LAN>>

<<LAN>>

(a)

(b)

(c)

FIGURE 11-9 Three Versions of Appointment System Deployment Diagram

c11PhysicalArchitectureLayerDesign.qxd 11/9/11 1:28 PM Page 488

Infrastructure Design 489

Network Model
The network model is a diagram that shows the major components of the information
system (e.g., servers, communication lines, networks) and their geographic locations through-
out the organization. There is no one way to depict a network model, and in our experience
analysts create their own standards and symbols, using presentation applications (e.g., Power-
Point) or diagramming tools (e.g., Visio). In this text, we use UML’s deployment diagram.

The purpose of the network model is twofold: to convey the complexity of the system
and to show how the system’s software components will fit together. The diagram also helps
the project team develop the hardware and software specification that is described later in
this chapter.

The components of the network model are the various clients (e.g., personal comput-
ers, kiosks), servers (e.g., database, network, communications, printer), network equip-
ment (e.g., wires, dial-up connections, satellite links), and external systems or networks
(e.g., Internet service providers) that support the application. Locations are the geographic
sites related to these components. For example, if a company created an application for
users at four of its plants in Canada and eight plants in the United States and it used one
external system to provide Internet service, the network model to depict this would con-
tain twelve locations (4 ! 8 " 12).

Creating the network model is a top-down exercise whereby we first graphically depict
all the locations where the application will reside. Placing symbols that represent the loca-
tions for the components on a diagram and then connecting them with lines that are
labeled with the approximate amount of data or types of network circuits between the
separated components accomplish this.

Companies seldom build networks to connect distant locations by buying land and
laying cable (or sending up their own satellites). Instead, they usually lease services pro-
vided by large telecommunications firms such as AT&T, Sprint, and Verizon. Figure 11-10
shows a typical network. The clouds in the diagram represent the networks at different
locations (e.g., Toronto, Atlanta). The lines represent network connections between specific
points (e.g., Toronto to Brampton). In other cases, a company might lease connections
from many points to many others, and rather than trying to show all the connections, a
separate cloud may be drawn to represent this many-to-many type of connection (e.g., the
cloud in the center of Figure 11-10 represents a network of many-to-many connections
provided by a telecom firm like Verizon).

This high-level diagram has several purposes. First, it shows the locations of the com-
ponents needed to support the application; therefore, the project team can get a good
understanding of the geographic scope of the new system and how complex and costly the
communications infrastructure will be to support. (For example, an application that sup-
ports one site will probably have less communications costs as compared to a more-
complex application that will be shared all over the world.) The diagram also indicates the
external components of the system (e.g., customer systems, supplier systems), which may
impact security or global needs (discussed later in this chapter).

The second step of the network model is to create low-level network diagrams for each
of the locations shown on the top-level diagram. First, hardware is drawn on the model in
a way that depicts how the hardware for the new system will be placed throughout the loca-
tion. It usually helps to use symbols that resemble the hardware that will be used. The
amount of detail to include on the network model depends on the needs of the project.
Some low-level network models contain text descriptions below each of the hardware
components that describe in detail the proposed hardware configurations and processing
needs; others include only the number of users that are associated with the different parts
of the diagram.

c11PhysicalArchitectureLayerDesign.qxd 11/9/11 1:28 PM Page 489

Next, lines are drawn connecting the components that will be physically attached to
each other. In terms of software, some network models list the required software for each
network model component right on the diagram, whereas other times, the software is
described in a memo attached to the network model and stored in the project binder.
Figure 11-11 shows a deployment diagram that portrays two levels of detail of a low-level
network model. Notice, we use both the standard and extended node notation in this
figure. In this case, we have included a package (see Chapter 7) to represent a set of con-
nections to the router in the MFA building. By including a package, we show only the
detail necessary. The extended notation in many cases aids the user in understanding the

490 Chapter 11 Physical Architecture Layer Design

<<private network>>
<<private

network>>

<<pr
iva

te

ne
tw

or
k>

>

<<private network>>

<<private network>>

<<
pr

iv
at

e
ne

tw
or

k>
>

<<private network>><<private netw
ork>>

<<
pr

iv
at

e
ne

tw
or

k>
>

<<
pr

iv
at

e
ne

tw
or

k>
><<private network>>

<<private network>>

<<private network>>

Verizon Network

Ottawa,
ONT

Tyson’s Corner,
VA

Research
Triangle Park,

NC

Ossining,
NY

Sunrise,
FL

Atlanta,
GA

Nashville,
TN

Richardson,
TX

Santa Clara,
CA

Toronto,
ONT

Brampton,
ONT

Mariline,
ONT

FIGURE 11-10 Deployment Diagram Representation of a Top-Level Network Model

c11PhysicalArchitectureLayerDesign.qxd 11/9/11 1:28 PM Page 490

Infrastructure Design 491

<<location>>
Main Financial Aid Building

<<private>>

<<private>>

DOE
Washington, DC

Offices

DOE Regional Offices

(a)

(b)

Main Financial Aid Building

<<ATM>>

<<ATM>>

ServerServer

Ethernet
LAN

Ethernet
LAN

<<
AT

M
>><<ATM>>

<<ATM>>

<<ATM>>

ServerServer

Ethernet
LAN

Ethernet
LAN

<<switch>>

Ethernet
LAN

<<
ATM

>>

<<ATM
>>

<<ATM>>

<<switch>>

Ethernet
LAN

<<ATM
>>

<<
AT

M
>>

<<router>>
MFA Building

<<ATM
>>

<<private>>

<<private>>
DOE

Washington, DC
Offices

DOE Regional Offices

FIGURE 11-11 Deployment Diagram Representation of a Low-Level Network Model

c11PhysicalArchitectureLayerDesign.qxd 11/9/11 1:28 PM Page 491

HARDWARE AND SYSTEM SOFTWARE SPECIFICATIONS
The time to begin acquiring the hardware and software that will be needed for a future sys-
tem is during the design of the system. In many cases, the new system will simply run on the
existing equipment in the organization. Other times, however, new hardware and software
must be purchased. The hardware and software specification is a document that describes
what hardware and software are needed to support an application. The actual acquisition of
hardware and software should be left to the purchasing department or the area in the orga-
nization that handles capital procurement. However, the project team writes the hardware
and software specification to communicate the project needs to the appropriate people.
There are several steps involved in creating the document. Figure 11-12 shows a sample
hardware and software specification.

First, we need to define the software that will run on each component. This usually
starts with the operating system (e.g., Windows, Linux) and includes any special-purpose
software on the client and servers (e.g., Oracle database). This document should consider
any additional costs, such as technical training, maintenance, extended warranties, and
licensing agreements (e.g., a site license for a software package). The listed needs are influ-
enced by decisions that are made in the other design activities.

Second, we must create a list of the hardware that is needed to support the future
system. With the advent of mobile computing (see Chapter 10), cloud computing (see
earlier in this chapter), and Green IT (see earlier in this chapter), this step is much more
involved than it used to be. However, the low-level network model provides a good starting
point for recording the project’s hardware needs because each component on the diagram

492 Chapter 11 Physical Architecture Layer Design

Suppose that you have just moved into a fraternity or
sorority house with twenty other people. The house has a
laser printer and a low-cost scanner that its inhabitants
are free to use. You have decided to network the house so
that everyone can share the printer and scanner and have

access via DSL to the university network. Create a high-
level network model that describes the locations that will
be involved in your work. Next, create a low-level dia-
gram for the house itself.

11-2 Create a Network ModelYOUR

TURN

topology of the physical architecture layer much better than the standard notation. We
recommend using the symbols that get the message across best.

Our experiences have shown that most project teams create a memo for the project
files that provides additional detail about the network model. This information is helpful
to the people who are responsible for creating the hardware and software specifications
(described later in this chapter) and who will work more extensively with the infrastruc-
ture development. This memo can include special issues that affect communications,
requirements for hardware and software that might not be obvious from the network
model, or specific hardware or software vendors or products that should be acquired.

The primary purpose of the network model diagram is to present the proposed infra-
structure for the new system. The project team can use the diagrams to understand the
scope of the system, the complexity of its structure, any important communication issues
that might affect development and implementation, and the actual components that need
to be acquired or integrated into the environment.

c11PhysicalArchitectureLayerDesign.qxd 11/9/11 1:28 PM Page 492

Hardware and System Software Specifications 493

corresponds to an item on this list. In general, the list can include things like database
servers, network servers, peripheral devices (e.g., printers, scanners), backup devices, stor-
age components, and any other hardware component that is needed to support an appli-
cation. At this time, you also should note the quantity of each item that will be needed.

Third, we must describe, in as much detail as possible, the minimum requirements for
each piece of hardware. Typically, the project team must convey requirements like the amount
of processing capacity, the amount of storage space, and any special features that should be
included. Many organizations have standard lists of approved hardware and software that
must be used, so in many cases, this step simply involves selecting items from the lists. Other
times, however, the team is operating in new territory and is not constrained by the need to
select from an approved list. This step becomes easier with experience; however, there are
some hints that can help you describe hardware needs (see Figure 11-13). For example, con-
sider the hardware standards within the organization or those recommended by vendors. Talk
with experienced system developers or other companies with similar systems. Finally, think
about the factors that affect hardware performance, such as the response-time expectations
of the users, data volumes, software memory requirements, the number of users accessing the
system, the number of external connections, and growth projections.

Operating System • Windows • Linux • Linus • Linux
• Internet Explorer

Special Software • Acrobat Reader • Apache • Java • Oracle
• Adobe Flash
• QuickTime

Hardware • 8 GB Memory • 16 GB Memory • 24 GB Memory • 32 GB Memory
• 500 GB disk drive • 1TB disk drive • 2–600 GB disk drives • 4–600 GB Hotplug

disk drives
• Intel Core i5 • Intel Xenon X3470 • Intel Xenon X5620 • Intel Xenon X5650
• 18.5-inch • 18.5-inch • 18.5-inch 18.5-inch

HD monitor HD monitor HD monitor HD monitor
Network • 100 Mbps Ethernet • 100 Mbps Ethernet • 100 Mbps Ethernet • 100 Mbps Ethernet

High-speed Wireless

FIGURE 11-12 Sample Hardware and Software Specification

Functions and Features What specific functions and features are needed (e.g., size of monitor,
software features)?

Performance How fast does the hardware and software operate (e.g., processor, number of
database writes per second)?

Legacy Databases and Systems How well does the hardware and software interact with legacy
systems (e.g., can it write to this database)?

Hardware and OS Strategy What are the future migration plans (e.g., the goal is to have all of one
vendor’s equipment)?

Cost of Ownership What are the costs beyond purchase (e.g., incremental license costs, annual
maintenance, training costs, salary costs)?

Political Preferences People are creatures of habit and are resistant to change, so changes should
be minimized.

Vendor Performance Some vendors have reputations or future prospects that are different from
those of a specific hardware or software system they currently sell.

FIGURE 11-13
Factors in Hardware
and Software
Selection

Standard Standard Standard Standard
Specification Client Web Server Application Server Database Server

c11PhysicalArchitectureLayerDesign.qxd 11/9/11 1:28 PM Page 493

The last step to consider is to evaluate vendor proposals (see Chapter 7). The easiest
way to do this is to create an alternative matrix (see Chapters 2 and 7). In this case, the eval-
uation criteria in the alternative matrix should include all architectural requirements, both
optional and mandatory, and each criterion should be weighted. Some general criteria
include CPU speed, bus speed, disk size, disk access time, cache size, cache speed, RAM size,
RAM speed, data transfer rate, video RAM size and speed, and printer and display resolu-
tion. Of course, in today’s connected world, the networking hardware and software would
also need to be specified including routers, print servers, hubs, and switches. Mobile devices
such as smartphones and tablets may be part of the physical architecture solution. Depend-
ing on the problem domain requirements, additional hardware and system software could
be required, such as speech recognition and generation software and hardware, digitizing
tablets, and possibly head-mounted displays, shutter glasses, force feedback pointing
devices, and 3D printers. Each of these types of specialized devices have their own special-
ized evaluation criteria. In a nutshell, when creating a hardware and system software spec-
ification, most systems analysts find that they need help from IT and CS personnel.

Depending on the overall cost and size of the project, one thing that should be seri-
ously considered is the use of a benchmark. A benchmark is essentially a sample of pro-
grams that would be expected to run on the new physical architecture. Even though
benchmarks can be expensive to create, they tend to provide a more realistic picture of how
the proposed physical architecture layer will perform.

When evaluating hardware, there is a set of errors that you should avoid.11

! Not only should you provide sample programs for the benchmarks, but you also
need to provide actual data. Otherwise, the benchmark results could be misleading.

! You need to carefully review the mix of system software and hardware. For
example, in many cases, Linux performs better on the same hardware when
compared against Windows, but some applications might not be available under
Linux. Consequently, there may be some tradeoffs that should be considered.

! When considering adding additional hardware, be sure to evaluate the additional
hardware based on marginal utility, not actual utility.

! Do not specify the physical architecture before you understand the problem
domain requirements. This might seem obvious, but when you consider the time
it takes for a mainframe computer, a large number of servers, or a large number
of client machines to be specified, ordered, and delivered, it can be tempting to
specify the hardware and system software prematurely. This could lead to either
under- or over-specification.

! Recognize the reality of Parkinson’s Law. From an IT perspective, Parkinson’s Law
implies that regardless of the users’ real needs, their imagined needs will always
fill up whatever capacity the system has. Consequently, it is imperative that the
physical architecture layer design be based on the current and expected future
architecture of the problem domain layer.

! Do not limit choices to a single vendor. This is especially true when you consider
commodity hardware, such as displays, desktops, and department-size servers.

! Given the rate of technological change that is taking place in IT, consider leading-
edge ideas. For example, even though tablet computers have been around for a

494 Chapter 11 Physical Architecture Layer Design

11 Alton R. Kindred, Data Systems and Management: An Introduction to Systems Analysis and Design, 2nd ed.
(Englewood Cliffs, NJ: Prentice-Hall, 1980).

c11PhysicalArchitectureLayerDesign.qxd 11/9/11 1:28 PM Page 494

Nonfunctional Requirements and Physical Architecture Layer Design 495

NONFUNCTIONAL REQUIREMENTS AND
PHYSICAL ARCHITECTURE LAYER DESIGN

The design of the physical architecture layer specifies the overall architecture and the place-
ment of software and hardware that will be used. Each of the architectures discussed before
has its strengths and weaknesses. Most organizations are trying to move to client–server
architectures for cost reasons, so in the event that there is no compelling reason to choose
one architecture over another, cost usually suggests client–server.

Creating a physical architecture layer design begins with the nonfunctional require-
ments. The first step is to refine the nonfunctional requirements into more-detailed
requirements that are then used to help select the architecture to be used (sever-based,
client-based, or client–server) and what software components will be placed on each
device. In a client–server architecture, one also has to decide whether to use a two-tier,
three-tier, or n-tier architecture. Then the nonfunctional requirements and the architecture
design are used to develop the hardware and software specification.

Four primary types of nonfunctional requirements can be important in designing the
architecture: operational requirements, performance requirements, security requirements,
and cultural/political requirements. We describe each in turn and then explain how they
can affect the physical architecture layer design.

Operational Requirements
Operational requirements specify the operating environment(s) in which the system must
perform and how those might change over time. This usually refers to operating systems,
system software, and information systems with which the system must interact, but on
occasion it also includes the physical environment if the environment is important to the
application (e.g., it’s located on a noisy factory floor, so no audible alerts can be heard).
Figure 11-14 summarizes four key operational requirement areas and provides some
examples of each.

Develop a hardware and software specification for the university course registration system described in Your Turn 11-1.

11-3 University Course Registration SystemYOUR

TURN

You have decided to purchase a computer, printer, and
low-cost scanner to support your academic work. Create

a hardware and software specification for these compo-
nents that describes your hardware and software needs.

11-4 Create a Hardware and Software SpecificationYOUR

TURN

while, the iPadTM was not on most people’s radar. Today, it is considered to be a
game changer when considering client-based hardware. Consequently, you really
must stay up to date when it comes to the design of the physical architecture layer.

c11PhysicalArchitectureLayerDesign.qxd 11/9/11 1:28 PM Page 495

Technical Environment Requirements Technical environment requirements specify
the type of hardware and software system on which the system will work. These require-
ments usually focus on the operating system software (e.g., Windows, Linux, Mac OS),
database system software (e.g., Oracle), and other system software (e.g., Firefox). In
today’s distributed world, issues related to mobile computing (see Chapter 10), cloud
computing (see the earlier section in this chapter), and Green IT (see the earlier section
in this chapter) are very relevant. Consequently, it also includes all of the different types
of hardware from mainframe computers all the way to smartphones. Depending on the

496 Chapter 11 Physical Architecture Layer Design

Technical Environment Special hardware, software, and network • The system will work over the Web
Requirements requirements imposed by business requirements environment with Internet Explorer.

• All office locations will have an always-on net-
work connection to enable real-time database
updates.

• A version of the system will be provided for cus-
tomers connecting over the Internet via a tablet or
smartphone.

System Integration The extent to which the system will • The system must be able to import and export
Requirements operate with other systems Excel spreadsheets.

• The system will read and write to the main inven-
tory database in the inventory system.

Portability Requirements The extent to which the system will need • The system must be able to work with different
to operate in other environments operating systems (e.g., Linux, Mac OS, and

Windows).
• The system might need to operate with handheld

devices such as a Android and Apple iOS devices.

Maintainability Expected business changes to which the • The system will be able to support more than
Requirements system should be able to adapt one manufacturing plant with six months’

advance notice.
• New versions of the system will be released every

six months.

Type of Requirement Definition Examples

FIGURE 11-14 Operational Requirements

Lithonia Lighting, located just outside of Atlanta, is the
world’s largest manufacturer of light fixtures, with more
than $1 billion in annual sales. One afternoon, the power
transformer at its corporate headquarters exploded, leav-
ing the entire office complex, including the corporate
data center, without power. The data center’s backup
power system immediately took over and kept critical
parts of the data center operational. However, it was
insufficient to power all systems, so the system supporting
sales for all of Lithonia Lighting’s North American agents,
dealers, and distributors had to be turned off.

The transformer was quickly replaced and power was
restored. However, the three-hour shutdown of the sales
system cost $1 million in potential sales lost. Unfortu-
nately, it is not uncommon for the cost of a disruption to
be hundreds or thousands of times the cost of the failed
components.

Question

What would you recommend to avoid similar losses in
the future?

11-E Power Outage Costs a Million DollarsCONCEPTS

IN ACTION

c11PhysicalArchitectureLayerDesign.qxd 11/9/11 1:28 PM Page 496

Nonfunctional Requirements and Physical Architecture Layer Design 497

applications being deployed over the physical architecture, specialized hardware could
be required, such as 3D displays, 3D printing, 3D sound systems, and tablets with
accelerometers. With today’s technology, the possible combinations of hardware that can
be brought to bear to solve a problem are nearly endless. Consequently, this is one area
where additional expertise might be required.

Seattle officials might finally be ready to start crunching
numbers and nailing down specifics of a long-mulled, but
slow moving, proposal to build a citywide broadband
network. But they might yet need to build a case before
the city council to justify such a network. The idea has
been studied by the city council, a task force, and the
mayor’s information technology office since 2004. Hav-
ing estimated last year that it would cost $500 million to
build and connect all of Seattle to a fiber broadband net-
work, the city is now looking to invite private companies
to do that work—perhaps with taxpayer help.

The mayor is asking the city council to free up
$180,000 he says his information technology office will

use to invite companies to bid on the sweeping and still-
undefined job.

Questions

1. How much money (if any) will taxpayers contribute
in subsidies or access to public facilities?

2. Should the city start with a small-scale pilot project,
as it did with Wi-Fi, before deciding about a
citywide wireless network?

3. Is such a network even a feasible, cost-effective idea?

11-F Citywide BroadbandCONCEPTS

IN ACTION

Systems integration across platforms and companies
grows more complex with time. In a case study from
Florida in 2008, an electrical company’s real-time
system detected a minor problem in the power grid and
shut down the entire system—plunging more than
2 million people into the dark. The system experts place
the blame on a substation software system that detected
the minor fluctuation but had the ability to immediately
shut down the entire system. Although there may be
times where such a rapid response is vital (such as the
nuclear disasters in Chernobyl, Ukraine, and on Three

Mile Island), this was a case where such response was
not warranted.

Questions

1. Because software controls substation operations,
how might a systems analyst approach this as a
systems project?

2. Are there special considerations that a systems
analyst needs to think about when dealing with
real-time systems?

11-G Complex Electrical SystemsCONCEPTS

IN ACTION

System Integration Requirements System integration requirements are those that require
the system to operate with other information systems, either inside or outside the company.
These typically specify interfaces through which data will be exchanged with other systems.

Portability Requirements Information systems never remain constant. Business needs
change and operating technologies change, so the information systems that support them
and run on them must change, too. Portability requirements define how the technical
operating environments might change over time and how the system must respond (e.g.,
the system currently runs on Windows Vista, whereas in the future the system might have

c11PhysicalArchitectureLayerDesign.qxd 11/9/11 1:28 PM Page 497

to be deployed on Linux). Portability requirements also refer to potential changes in busi-
ness requirements that drive technical environment changes. For example, in the future
users might want to access a website from their cell phones.

Maintainability Requirements Maintainability requirements specify the business
requirement changes that can be anticipated. Not all changes are predictable, but some are.
For example, suppose a small company has only one manufacturing plant but is anticipat-
ing the construction of a second plant in the next five years. All information systems must
be written to make it easy to track each plant separately, whether for personnel, budgeting,
or inventory systems. The maintainability requirements attempt to anticipate future
requirements so that the systems designed today will be easy to maintain if and when those
future requirements appear. Maintainability requirements can also define the update cycle
for the system, such as the frequency with which new versions will be released.

Performance Requirements
Performance requirements focus on performance issues, such as response time, capacity, and
reliability. Figure 11-15 summarizes three key performance requirement areas and provides
some examples.

Speed Requirements Speed requirements are exactly what they say: How fast should the
system operate? First is the response time of the system: how long it takes the system to
respond to a user request. Although everyone would prefer low response times, with the sys-
tem responding immediately to each user request, this is not practical. We could design such
a system, but it would be expensive. Most users understand that certain parts of a system will
respond quickly, whereas others are slower. Actions that are performed locally on the user’s
computer must be almost immediate (e.g., typing, dragging and dropping), whereas others
that require communicating across a network can have higher response times (e.g., a Web
request). In general, response times less than seven seconds are considered acceptable when
they require communication over a network.

498 Chapter 11 Physical Architecture Layer Design

Type of Requirement Definition Examples

Speed Requirements

Capacity Requirements

Availability and Reliability
Requirements

The time within which the system must
perform its functions

The total and peak number of users
and the volume of data expected

The extent to which the system will
be available to the users and the
permissible failure rate due to errors

• Response time must be less than 7 seconds for any
transaction over the network.

• The inventory database must be updated in real time.
• Orders will be transmitted to the factory floor every

30 minutes.

• There will be a maximum of 100–200 simultaneous
users at peak use times.

• A typical transaction will require the transmission of
10K of data.

• The system will store data on approximately 5,000
customers for a total of about 2 MB of data.

• Scheduled maintenance shall not exceed one 6-hour
period each month.

• The system shall have 99% uptime performance.

FIGURE 11-15 Performance Requirements

c11PhysicalArchitectureLayerDesign.qxd 11/9/11 1:28 PM Page 498

Nonfunctional Requirements and Physical Architecture Layer Design 499

The second aspect of speed requirements is how long it takes transactions in one part
of the system to be reflected in other parts. For example, how soon after an order is placed
will the items it contained be shown as no longer available for sale to someone else? If the
inventory is not updated immediately, then someone else could place an order for the same
item, only to find out later it is out of stock. Or how soon after an order is placed is it sent
to the warehouse to be picked from inventory and shipped? In this case, some time delay
might have little impact.

Capacity Requirements Capacity requirements attempt to predict how many users the
system will have to support, both in total and simultaneously. Capacity requirements are
important in understanding the size of the databases, the processing power needed, and so
on. The most important requirement is usually the peak number of simultaneous users
because this has a direct impact on the processing power of the computer(s) needed to sup-
port the system.

It is often easier to predict the number of users for internal systems designed to sup-
port an organization’s own employees than it is to predict the number of users for cus-
tomer-facing systems, especially those on the Web. How does Weather.com estimate the
peak number of users who will simultaneously seek weather information? This is as much
an art as a science, so often the team provides a range of estimates, with wider ranges used
to signal a less-accurate estimate.

At the end of 1997, Oxford Health Plans posted a $120
million loss to its books. The company’s unexpected
growth was its undoing because the system, which was
originally planned to support the company’s 217,000
members, had to meet the needs of a membership that
exceeded 1.5 million.

System users found that processing a new member
sign-up took 15 minutes instead of the proposed 6 seconds.
Also, the computer problems left Oxford unable to send
out bills to many of its customer accounts and rendered it
unable to track payments to hundreds of doctors and
hospitals. In less than a year, uncollected payments from
customers tripled to more than $400 million, and the

payments owed to caregivers amounted to more than
$650 million. Mistakes in infrastructure planning can cost
far more than the cost of hardware, software, and network
equipment alone.
Source: Ron Winslow and George Anders, “Management: How New
Technology was Oxford’s Nemesis,” Wall Street Journal (December 11,
1997, page A.1).

Question

If you had been in charge of the Oxford project, what
things would you have considered when planning the
system capacity?

11-H The Importance of Capacity PlanningCONCEPTS

IN ACTION

Availability and Reliability Requirements Availability and reliability requirements focus
on the extent to which users can assume that the system will be available for them to use.
Although some systems are intended to be used only during the forty-hour workweek,
some systems are designed to be used by people around the world. For such systems, pro-
ject team members need to consider how the application can be operated, supported, and
maintained 24/7 (i.e., 24 hours a day, 7 days a week). This 24/7 requirement means that
users might need help or have questions at any time, and a support desk that is available
eight hours a day will not be sufficient support. It is also important to consider what relia-
bility is needed in the system. A system that requires high reliability (e.g., a medical device

c11PhysicalArchitectureLayerDesign.qxd 11/9/11 1:28 PM Page 499

or telephone switch) needs far greater planning and testing than one that does not have
such high-reliability needs (e.g., personnel system, Web catalog).

It is more difficult to predict the peaks and valleys in use of the system when the system
has a global audience. Typically, applications are backed up on weekends or late evenings
when users are no longer accessing the system. Such maintenance activities need to be
rethought with global initiatives. The development of Web interfaces, in particular, has
escalated the need for 24/7 support; by default the Web can be accessed by anyone at any
time. For example, the developers of a Web application for U.S. outdoor gear and clothing
retailer Orvis were surprised when the first order after going live came from Japan.

Security Requirements12

Security is the ability to protect the information system from disruption and data loss,
whether caused by an intentional act (e.g., a hacker, a terrorist attack) or a random event
(e.g., disk failure, tornado). Security is primarily the responsibility of the operations
group—the staff responsible for installing and operating security controls, such as fire-
walls, intrusion-detection systems, and routine backup and recovery operations. Nonethe-
less, developers of new systems must ensure that the system’s security requirements produce
reasonable precautions to prevent problems; system developers are responsible for ensur-
ing security within the information systems themselves.

Security is an ever-increasing problem in today’s Internet-enabled world. Historically,
the greatest security threat has come from inside the organization itself. Ever since the early
1980s when the FBI first began keeping computer crime statistics and security firms began
conducting surveys of computer crime, organizational employees have perpetrated the vast
majority of computer crimes. For years, 80 percent of unauthorized break-ins, thefts, and
sabotage have been committed by insiders, leaving only 20 percent to hackers external to
the organizations.

In 2001, that changed. Depending on what survey you read, the percentage of incidents
attributed to external hackers in 2001 increased to 50 to 70 percent of all incidents, mean-
ing that the greatest risk facing organizations is now from the outside. Although some of
this shift may be due to better internal security and better communications with employ-
ees to prevent security problems, much of it is simply due to an increase in activity by exter-
nal hackers. With cloud computing, security has become even more important.

Developing security requirements usually starts with some assessment of the value of
the system and its data. This helps pinpoint extremely important systems so that the oper-
ations staff is aware of the risks. Security within systems usually focuses on specifying who
can access what data, identifying the need for encryption and authentication, and ensuring
the application prevents the spread of viruses (see Figure 11-16).

System Value The most important computer asset in any organization is not the equip-
ment; it is the organization’s data. For example, suppose someone destroyed a mainframe
computer worth $10 million. The mainframe could be replaced, simply by buying a new
one. It would be expensive, but the problem would be solved in a few weeks. Now suppose
someone destroyed all the student records at your university so that no one knew what
courses anyone had taken or their grades. The cost would far exceed the cost of replacing a
$10 million computer. The lawsuits alone would easily exceed $10 million, and the cost of

500 Chapter 11 Physical Architecture Layer Design

12 For more information, see Brett C. Tjaden, Fundamentals of Secure Computer Systems (Wilsonville, OR:
Franklin, Beedle, and Associates, 2004); for security controls associated with the Sarbanes–Oxley act, see Dennis
C. Brewer, Security Controls for Sarbanes–Oxley Section 404 IT Compliance: Authorization, Authentication, and
Access (Indianapolis: Wiley, 2006).

c11PhysicalArchitectureLayerDesign.qxd 11/9/11 1:28 PM Page 500

Nonfunctional Requirements and Physical Architecture Layer Design 501

staff to find paper records and reenter the data from them would be enormous and
certainly would take more than a few weeks.

In some cases, the information system itself has value that far exceeds the cost of the
equipment as well. For example, for an Internet bank that has no brick and mortar branches,
the Web site is a mission-critical system. If the website crashes, the bank cannot conduct busi-
ness with its customers. A mission-critical application is an information system that is liter-
ally critical to the survival of the organization. It is an application that cannot be permitted
to fail, and if it does fail, the network staff drops everything else to fix it. Mission-critical
applications are usually clearly identified so their importance is not overlooked.

Even temporary disruptions in service can have significant costs. The cost of disrup-
tions to a company’s primary Web site or the LANs and backbones that support telephone
sales operations are often measured in the millions of dollars. Amazon.com, for example,
has revenues of more than $10 million per hour, so if their website were unavailable for an
hour or even part of an hour, they would lose millions of dollars in revenue. Companies
that do less e-business or do telephone sales have lower costs, but recent surveys suggest
losses of $100,000 to $200,000 per hour are not uncommon for major customer-facing
information systems.

Access Control Requirements Some of the data stored in the system need to be kept confi-
dential; some data need special controls on who is allowed to change or delete it. Personnel
records, for example, should be able to be read only by the personnel department and the
employee’s supervisor; changes should be permitted to be made only by the personnel depart-
ment. Access control requirements state who can access what data and what type of access is
permitted: whether the individual can create, read, update and/or delete the data. The require-
ments reduce the chance that an authorized user of the system can perform unauthorized
actions. One approach to address these requirements is through the use of access control lists,
which can be implemented via the operating system or database management system.

Encryption and Authentication Requirements One of the best ways to prevent unau-
thorized access to data is encryption, which is a means of disguising information by the use

System Value Estimates Estimated business value of the system and • The system is not mission critical but a system outage
its data is estimated to cost $50,000 per hour in lost revenue.

• A complete loss of all system data is estimated to cost
$20 million.

Access Control Limitations on who can access what data • Only department managers will be able to change
Requirements inventory items within their own department.

• Telephone operators will be able to read and create
items in the customer file but cannot change or
delete items.

Encryption and Defines what data will be encrypted • Data will be encrypted from the user’s computer to the
Authentication Where and whether authentication will website to provide secure ordering.
Requirements be needed for user access • Users logging in from outside the office will be

required to authenticate.

Virus Control Requirements to control the spread • All uploaded files will be checked for viruses before
Requirements of viruses being saved in the system.

Type of Requirement Definition Examples

FIGURE 11-16 Security Requirements

c11PhysicalArchitectureLayerDesign.qxd 11/9/11 1:28 PM Page 501

of mathematical algorithms (or formulas). Encryption can be used to protect data stored
in databases or data that are in transit over a network from a database to a computer. There
are two fundamentally different types of encryption: symmetric and asymmetric. A sym-
metric encryption algorithm [such as Data Encryption Standard (DES) or Advanced
Encryption Standard (AES)] is one in which the key used to encrypt a message is the same
as the one used to decrypt it, which means that it is essential to protect the key and that a
separate key must be used for each person or organization with whom the system shares
information (or else everyone can read all the data).

An asymmetric encryption algorithm (such as public key encryption) is one in which the
key used to encrypt data (called the public key) is different from the one used to decrypt it
(called the private key). Even if everyone knows the public key, once the data are encrypted,
they cannot be decrypted without the private key. Public key encryption greatly reduces the
key-management problem. Each user has its public key that is used to encrypt messages
sent to it. These public keys are widely publicized (e.g., listed in a telephone book style
directory)—that’s why they’re called public keys. The private key, in contrast, is kept secret
(which is why it’s called private).

Public key encryption also permits authentication (or digital signatures). When one
user sends a message to another, it is difficult to legally prove who actually sent the message.
Legal proof is important in many communications, such as bank transfers and buy/sell
orders in currency and stock trading, which normally require legal signatures. Public key
encryption algorithms are invertible, meaning that text encrypted with either key can be
decrypted by the other. Normally, we encrypt with the public key and decrypt with the pri-
vate key. However, it is possible to do the reverse: encrypt with the private key and decrypt
with the public key. Because the private key is secret, only the real user can use it to encrypt
a message. Thus, a digital signature or authentication sequence is used as a legal signature
on many financial transactions. This signature is usually the name of the signing party plus
other unique information from the message (e.g., date, time, or dollar amount). This signa-
ture and the other information are encrypted by the sender using the private key. The
receiver uses the sender’s public key to decrypt the signature block and compares the result
to the name and other key contents in the rest of the message to ensure a match.

The only problem with this approach lies in ensuring that the person or organization
that sent the document with the correct private key is the actual person or organization.
Anyone can post a public key on the Internet, so there is no way of knowing for sure who
actually used it. For example, it would be possible for someone other than Organization
A in this example to claim to be Organization A when, in fact, he or she is an imposter.

This is where the Internet’s public key infrastructure (PKI) becomes important.13 The
PKI is a set of hardware, software, organizations, and polices designed to make public key
encryption work on the Internet. PKI begins with a certificate authority (CA), which is a
trusted organization that can vouch for the authenticity of the person or organization
using authentication (e.g., VeriSign). A person wanting to use a CA registers with the CA
and must provide some proof of identify. There are several levels of certification, ranging
from a simple confirmation from a valid e-mail address to a complete police-style back-
ground check with an in-person interview. The CA issues a digital certificate that is the
requestor’s public key, encrypted using the CA’s private key as proof of identify. This cer-
tificate is then attached to the user’s e-mail or Web transactions in addition to the authen-
tication information. The receiver then verifies the certificate by decrypting it with the CA’s
public key and must also contact the CA to ensure that the user’s certificate has not been
revoked by the CA.

502 Chapter 11 Physical Architecture Layer Design

13 For more on the PKI, see www.ietf.org/html.charters/pkix-charter.html.

c11PhysicalArchitectureLayerDesign.qxd 11/28/11 10:57 AM Page 502

Nonfunctional Requirements and Physical Architecture Layer Design 503

Virus Control Requirements Virus control requirements address the single most com-
mon security problem: viruses. Studies have shown that almost 90 percent of organizations
suffer a virus infection each year. Viruses cause unwanted events—some harmless (such as
nuisance messages), some serious (such as the destruction of data). Any time a system per-
mits data to be imported or uploaded from a user’s computer, there is the potential for a
virus infection. Many systems require that all information systems that permit the import
or upload of user files to check those files for viruses before they are stored in the system.

Cultural and Political Requirements
Cultural and political requirements are those specific to the countries in which the system
will be used. In today’s global business environment, organizations are expanding their
systems to reach users around the world. Although this can make great business sense, its
impact on application development should not be underestimated. Yet another important
part of the design of the system’s physical architecture is understanding the global cultural
and political requirements for the system (see Chapter 10 and Figure 11-17).

Customization Requirements For global applications, the project team needs to give
some thought to customization requirements: How much of the application will be con-
trolled by a central group, and how much of the application will be managed locally? For
example, some companies allow subsidiaries in some countries to customize the applica-
tion by omitting or adding certain features. This decision has trade-offs between flexibility

Quinnipiac University is a four-year university in
Hamden, Connecticut, with about 7,400 students.
Because the university has residence halls, the IT staff has
to support academic functions and also has to be an Inter-
net service provider (ISP) for students. The IT staff can
shape much of the academic usage of the Internet, but stu-
dents living in residence halls can cause havoc. Students
(and faculty) inadvertently open the campus to all kind of
attacks, such as viruses, malware, worms, spybots, and
other intrusions through accessing various websites. A par-
ticularly trying time is after the semester break in late Jan-
uary, when students return to campus and plug in laptops
that have been corrupted with other viruses from home
networks. These viruses try to infect the entire campus.
Quinnipiac University installed an intrusion prevention
system (IPS) by Tipping Point Technology in August 2006.
On a daily basis, this IPS detects and drops thousands of
destructive messages and packets. But the real proof was

in 2007 when students returned to campus from semester
break. In the previous year, the viruses and spyware virtu-
ally took the campus network down for three days. But in
January 2007, there were no outages, and the network
remained strong and functioning at full speed. Brian Kelly,
information security officer at Quinnipiac University said,
“Without the IPS solution, this campus would have strug-
gled under this barrage of malicious packets and may have
shut down. With the IPS system, we were able to function
at full speed without any problems.”

Questions

1. What might be some of the tangible and intangible
costs of having the Internet down for three days on
a busy college campus?

2. What benefits would an IPS mean to a campus and
to end users (e.g., faculty, staff and students)?

11-I Securing the EnvironmentCONCEPTS

IN ACTION

The encryption and authentication requirements state what encryption and authenti-
cation requirements are needed for what data. For example, will sensitive data such as cus-
tomer credit-card numbers be stored in the database in encrypted form, or will encryption
be used to take orders over the Internet from the company’s website? Will users be required
to use a digital certificate in addition to a standard password?

c11PhysicalArchitectureLayerDesign.qxd 11/9/11 1:28 PM Page 503

and control because customization often makes it more difficult for the project team to
create and maintain the application. It also means that training can differ among different
parts of the organization, and customization can create problems when staff moves from
one location to another.

Owing to the use of different languages, in some cases, specialized hardware that has
been customized to the local culture is required. For example, the use of Kanji keyboards
makes a lot of sense for Japanese users. Basically, having specialized keyboards makes sense
for any language that does not use the typical Roman alphabet, e.g., Arabic, Hebrew, Greek,
or Russian. There are also emulators available for many different languages. Depending
on the users being served, assistive devices could be required, such as Braille devices, eye-
tracking devices, head pointers, head/mouth stick keyboards, or adaptive ability switches.
Depending on the cultural and political requirements, many different hardware platforms
might need to be considered.

Legal Requirements Legal requirements are requirements imposed by laws and govern-
ment regulations. System developers sometimes forget to think about legal regulations;
unfortunately, forgetting comes at some risk because ignorance of the law is no defense. For
example, in 1997 a French court convicted the Georgia Institute of Technology of violating
French language law. Georgia Tech operated a small campus in France that offered summer
programs for American students. The information on the campus Web server was primar-
ily in English because classes are conducted in English, which violated the law requiring
French to be the predominant language on all Internet servers in France. By formally con-
sidering legal regulations, you are less likely to overlook them.

Synopsis
In many cases, the technical environment requirements as driven by the business require-
ments can simply define the physical architecture layer. In this case, the choice is simple:
Business requirements dominate other considerations. For example, the business require-
ments might specify that the system needs to work over the Web using the customer’s Web
browser. In this case, the architecture probably should be a thin client–server. Such busi-
ness requirements are most likely in systems designed to support external customers. Inter-
nal systems can also impose business requirements, but usually they are not as restrictive.

504 Chapter 11 Physical Architecture Layer Design

Customization Specification of what aspects of the system • Country managers will be able to define new
Requirements can be changed by local users fields in the product database to capture country-

specific information.
• Country managers will be able to change the

format of the telephone number field in the
customer database.

Legal Requirements The laws and regulations that impose • Personal information about customers cannot be
requirements on the system transferred out of European Union countries into

the United States.
• It is against U.S. federal law to divulge information

on who rented what videotape, so access to a
customer’s rental history is permitted only to
regional managers.

Type of Requirement Definition Examples

FIGURE 11-17 Cultural and Political Requirements

c11PhysicalArchitectureLayerDesign.qxd 11/9/11 1:28 PM Page 504

Nonfunctional Requirements and Physical Architecture Layer Design 505

In the event that the technical environment requirements do not stipulate a specific
architecture, then the other nonfunctional requirements become important. Even in cases
when the business requirements drive the architecture, it is still important to work through
and refine the remaining nonfunctional requirements because they are important in later
stages of design and implementation. Figure 11-18 summarizes the relationship between
requirements and recommended architectures.

Operational Requirements System integration requirements can lead to one architec-
ture being chosen over another, depending on the architecture and design of the system(s)
with which the system needs to integrate. For example, if the system must integrate with a
desktop system (e.g., Excel), this might suggest a thin or thick client–server architecture,
whereas if it must integrate with a server-based system, a server-based architecture may be
indicated. Systems that have extensive portability requirements tend to be best suited for a
thin client–server architecture because it is simpler to write for Web-based standards (e.g.,
HTML, XML) that extend the reach of the system to other platforms, rather than trying to
write and rewrite extensive presentation logic for different platforms in the server-based,
client-based, or thick client–server architectures. Systems with extensive maintainability

Requirements

Operational Requirements

System Integration Requirements

Portability Requirements

Maintainability Requirements

Speed Requirements

Capacity Requirements

Availability/Reliability Requirements

High System Value

Access Control Requirements

Encryption/Authentication Requirements

Virus Control Requirements

Customization Requirements

Legal Requirements

Performance Requirements

Security Requirements

Cultural/Political Requirements

Server-
Based

Client-
Based

Thin
Client–
Server

Thick
Client–
Server

FIGURE 11-18
Nonfunctional
Requirements and
Their Implications for
Architecture Change

c11PhysicalArchitectureLayerDesign.qxd 11/9/11 1:28 PM Page 505

requirements might not be well suited to client-based or thick client–server architectures
because of the need to reinstall software on the desktops.

Performance Requirements Generally speaking, information systems that have high
performance requirements are best suited to client–server architectures. Client–server
architectures are more scalable, which mean they respond better to changing capacity
needs and thus enable the organization to better tune the hardware to the speed require-
ments of the system. Client–server architectures that have multiple servers in each tier
should be more reliable and have greater availability, because if any one server crashes,
requests are simply passed to other servers, and users might not even notice (although
response time could be worse). In practice, however, reliability and availability depend
greatly on the hardware and operating system, and Windows-based computers tend to have
lower reliability and availability than Linux or mainframe computers.

Security Requirements Generally speaking, because all software is in one location and
because mainframe operating systems are more secure than microcomputer operating
systems, server-based architectures tend to be more secure. For this reason, high-value
systems are more likely to be found on mainframe computers, even if the mainframe is
used as a server in client–server architectures. In today’s Internet-dominated world,
authentication and encryption tools for Internet-based client–server architectures are
more advanced than those for mainframe server–based architectures. Viruses are poten-
tial problems in all architectures because they easily spread on desktop computers. If a
server-based system can reduce the functions needed on desktop systems, then they may
be more secure.

Cultural and Political Requirements As cultural and political requirements become
more important, the ability to separate the presentation logic from the application logic
and the data becomes important. Such separation makes it easier to develop the presen-
tation logic in different languages while keeping the application logic and data the same.
It also makes it easier to customize the presentation logic for different users and to
change it to better meet cultural norms. To the extent that the presentation logic provides
access to the application and data, it also makes it easier to implement different versions
that enable or disable different features required by laws and regulations in different
countries. This separation is the easiest in thin client–server architectures, so systems
with many cultural and political requirements often use thin client–server architectures.
As with system integration requirements, the impact of legal requirements depends on
the specific nature of the requirements, but in general, client-based systems tend to be
less flexible.

506 Chapter 11 Physical Architecture Layer Design

Many multinational organizations provide global Web-
based e-learning courses for their employees. First, develop
a set of nonfunctional requirements for such a system. Con-
sider the operational requirements, performance require-

ments, security requirements, and cultural and political
requirements. Then create an architecture design to satisfy
these requirements.

11-5 Global e-Learning SystemYOUR

TURN

c11PhysicalArchitectureLayerDesign.qxd 11/9/11 1:28 PM Page 506

Summary 507

APPLYING THE CONCEPTS AT CD SELECTIONS
As with the previous two chapters, this installment of the CD Selections case we see
that Alec has spun off part of his team to focus on designing the physical architec-
ture layer. However, given the dependence among the human–computer interaction,
data management, and physical architecture layers, this group finds that they must
be in relatively constant contact with the other groups. Otherwise, deploying the
problem domain, human–computer interaction, and data management layers over
the architecture could prove to be difficult. Consequently, Alec has decided to
be focus his coordination efforts among the different layer groups by heading up
the physical architecture layer’s group. He saw this as a way to better understand the
implications of deploying the system over multiple, and possibly incompatible,
platforms.

SUMMARY
An important component of design is the design of the physical architecture layer, which
includes the hardware, software, and communications infrastructure for the new system,
and the way the information system will be distributed over the architecture. The physical
architecture layer design is described in a deliverable that contains the network model and
the hardware and software specification.

Elements of the Physical Architecture Layer
All software systems can be divided into four basic functions: data storage, data access
logic, application logic, and presentation logic. There are three fundamental comput-
ing architectures that place these functions on different computers. In server-based

Think about the course registration system in your uni-
versity. First, develop a set of nonfunctional requirements
if the system were to be developed today. Consider the
operational requirements, performance requirements,

security requirements, and cultural and political require-
ments. Then create an architecture design to satisfy these
requirements.

11-6 University Course Registration SystemYOUR

TURN

Develop a hardware and software specification for the global e-learning system described in Your Turn 11-5.

11-7 Global e-Learning SystemYOUR

TURN

c11PhysicalArchitectureLayerDesign.qxd 11/28/11 10:57 AM Page 507

architectures, the server performs all the functions. In client-based architectures, the
client computers are responsible for presentation logic, application logic, and data
access logic, with data stored on a file server. In client–server architectures, the client is
responsible for the presentation logic and the server is responsible for the data access
logic and data storage. In thin client–server architectures, the server performs the appli-
cation logic, whereas in thick client–server architectures, the application logic is shared
between the servers and clients. In a two-tiered client–server architecture, there are two
groups of computers: one client and a set of servers. In a three-tiered client–server
architecture, there are three groups of computers: a client, a set of application servers,
and a set of database servers.

Each of the computing architectures has its strengths and weaknesses, and no archi-
tecture is inherently better than the others. The choice that the project team makes should
be based on several criteria, including cost of development, ease of development, need for
GUI applications, network capacity, central control and security, and scalability. The pro-
ject team should also take into consideration the existing architecture and special software
requirements of the project.

Cloud Computing
Cloud computing is the newest approach to support distributed processing. In many
ways, it also could become the greatest enabler of IT outsourcing. Cloud computing is
based on three established technologies: virtualization, service-oriented architectures,
and grid computing. There are three different classifications of clouds: private, public,
and hybrid. Currently, the cloud is being touted as a host for the firm’s IT infrastructure,
IT platform, and software. However, there are still a number of obstacles for cloud ven-
dors to overcome before the cloud can become a mainstream solution. These obstacles
include issues related to the actual level of performance in the cloud, the level of depen-
dence that a customer firm will have on a cloud vendor, and the real levels of security
available in the cloud.

Green IT
Owing to the overall impact that IT has had on the environment, there has been a renewed
interest in so-called Green IT. The motivation behind the Green IT movement is to mini-
mize the harm to the environment that IT causes. There are three general questions that
Green IT tries to address. First, how should e-waste be discarded? Second, given the power
consumption of IT, how can we reduce the power consumption and the carbon footprint
of IT? Third, how can IT enable the paperless office? IT firms, such as Google, HP, and
Microsoft, are providing leadership in this area.

Infrastructure Design
Deployment diagrams are used to portray the design of the physical architecture layer. The
diagrams are composed of nodes, artifacts, and communication links. Also, the diagram
can be extended with graphical icons that represent different types of nodes.

The network model is a diagram that shows the technical components of the infor-
mation system (e.g., servers, personal computers, networks) and their geographic loca-
tions throughout the organization. The components of the network model are the
various clients (e.g., personal computers, kiosks), servers (e.g., database, network, com-
munications, printer), network equipment (e.g., wire, dial-up connections, satellite
links), and external systems or networks (e.g., Internet service provider) that support the

508 Chapter 11 Physical Architecture Layer Design

c11PhysicalArchitectureLayerDesign.qxd 11/28/11 10:58 AM Page 508

Key Terms 509

application. Creating a network model is a top-down process whereby a high-level dia-
gram is first created to show the geographic sites, or locations, that house the various
components of the future system. Next, a low-level diagram is created to describe each
location in detail, and it shows the system’s hardware components and how they are
attached to one another.

Hardware and Software Specification
The hardware and software specification is a document that describes what hardware and
software are needed to support the application. To create a specification document, the
hardware that is needed to support the future system is listed and then described in as
much detail as possible. Next, the software to run on each hardware component is written
down, along with any additional associated costs, such as technical training, maintenance,
extended warrantees, and licensing agreements. Although the project team may suggest
specific products or vendors, ultimately the hardware and software specification is turned
over to the people who are in charge of procurement.

Nonfunctional Requirements and Physical Architecture Layer Design
Creating an architecture design begins with the nonfunctional requirements. Operational
requirements specify the operating environment(s) in which the system must perform and
how those might change over time (i.e., technical environment, system integration, porta-
bility, and maintainability). Performance requirements focus on performance issues such
as system speed, capacity, and availability and reliability. Security requirements attempt to
protect the information system from disruption and data loss (e.g., system value, access
control, encryption and authentication, and virus control). Cultural and political require-
ments are those that are specific to the specific countries in which the system will be used
(e.g., customization and legal).

KEY TERMS

24/7, 499
Access control list, 501
Access control requirements, 501
Alternative matrix, 494
Application logic, 475
Architectural component, 474
Artifact, 487
Asymmetric encryption

algorithm, 502
Authentication, 502
Availability and reliability

requirements, 499
Benchmark, 494
Business process, 483
Capacity requirements, 499
Certificate authority (CA), 502
Client-based architecture, 474

Client computer, 475
Client–server architecture, 474
Cloud computing, 482
Communication path, 488
Cultural and political

requirements, 503
Customization requirements, 503
Data access logic, 475
Data storage, 474
Deployment diagrams, 486
E-waste, 485
Encryption, 501
Fat client, 476
Graphical user interface (GUI), 481
Green data centers, 485
Green IT, 485
Grid computing, 483

Hardware and software
specification, 492

Hybrid cloud, 482
Infrastructure as a service (IaaS), 483
Invertible, 000
Legal requirements, 504
Locations, 489
Mainframe, 475
Maintainability requirements, 498
Microcomputer, 475
Middleware, 477
Minicomputer, 475
Mission critical system, 501
Multitenancy, 482
Network, 475
Network model, 489
Node, 486

c11PhysicalArchitectureLayerDesign.qxd 11/28/11 10:58 AM Page 509

510 Chapter 11 Physical Architecture Layer Design

N-tiered architecture, 478
Operational requirements, 495
Outsourcing, 482
Parkinson’s law, 494
Performance requirements, 498
Paperless office, 485
Platform as a service (PaaS), 483
Portability requirements, 497
Presentation logic, 475
Private cloud, 482
Private key, 502
Public cloud, 482
Public key, 502
Public key encryption, 502

Response time, 498
Scalable, 477
Security requirements, 500
Server, 475
Server-based architecture, 474
Service, 483
Service-oriented architecture, 483
Software as a service (SaaS), 483
Speed requirements, 498
SQL (structured query language), 475
Symmetric encryption

algorithm, 502
System integration requirements, 497

Technical environment
requirements, 496

Thick client, 476
Thin client, 476
Three-tiered architecture, 478
Timesharing, 483
Total cost of ownership, 478
Two-tiered architecture, 478
Virtual memory, 482
Virtualization, 482
Virus, 503
Virus control requirements, 503
Web services, 483

QUESTIONS

1. What are the four basic functions of any information
system?

2. What are the three primary hardware components of
any physical architecture?

3. Name two examples of a server.
4. Compare and contrast server-based architectures,

client-based architectures, and client–server-based
architectures.

5. What is the biggest problem with server-based com-
puting?

6. What is the biggest problem with client-based com-
puting?

7. Describe the major benefits and limitations of thin
client–server architectures.

8. Describe the major benefits and limitations of thick
client–server architectures.

9. Describe the differences among two-tiered, three-
tiered, and n-tiered architectures.

10. Define scalable. Why is this term important to system
developers?

11. What six criteria are helpful to use when comparing
the appropriateness of computing alternatives?

12. Why should the project team consider the existing
physical architecture in the organization when design-
ing the physical architecture layer of the new system?

13. Name the three different types of clouds. How do they
differ from one another?

14. What is meant by a service-oriented architecture?
15. Define virtualization. How does it relate to the cloud?
16. What are the differences among IaaS, PaaS, and SaaS?
17. What are the obstacles for provisioning the physical

architecture layer with cloud technologies?

18. What, if any, are the issues related to security in the
cloud?

19. What are SOX and HIPAA and how could they affect
a firm’s decision to adopt cloud technology?

20. How do tablets, such as the iPadTM, enable the paper-
less office?

21. What additional hardware- and software-associated
costs might need to be included on the hardware and
software specification?

22. Who is ultimately in charge of acquiring hardware
and software for a project?

23. What is a benchmark and why is it important?
24. Why is Parkinson’s Law relevant to the design of the

physical architecture layer?
25. What do you think are three common mistakes that

novice analysts make in architecture design and hard-
ware and software specification?

26. Describe the major nonfunctional requirements and
how they influence physical architecture layer
design.

27. Why is it useful to define the nonfunctional require-
ments in more detail even if the technical environ-
ment requirements dictate a specific architecture?

28. What does the network model communicate to the
project team?

29. What are the differences between the top-level net-
work model and the low-level network model?

30. Are some nonfunctional requirements more impor-
tant than others in influencing the architecture design
and hardware and software specification?

31. What do you think are the most important security
issues for a system?

c11PhysicalArchitectureLayerDesign.qxd 11/28/11 10:59 AM Page 510

Exercises 511

EXERCISES

A. Using the Web (or past issues of computer industry
magazines such as Computerworld), locate a system
that runs in a server-based environment. Based on
your reading, why do you think the company chose
that computing environment?

B. Using the Web (or past issues of computer industry
magazines such as Computerworld), locate a system
that runs in a client–server environment. Based on
your reading, why do you think the company chose
that computing environment?

C. Using the Web, locate examples of a mainframe com-
ponent, a minicomputer component, and a micro-
computer component. Compare the components in
terms of price, speed, available memory, and disk
storage. Did you find large differences in prices when
the performances of the components are considered?

D. You have been selected to find the best client–server
architecture for a Web-based order entry system that is
being developed for L.L. Bean. Write a short memo that
describes to the project manager your reason for select-
ing an n-tiered architecture over a two-tiered architec-
ture. In the memo, give some idea as to what different
components of the architecture you would include.

E. Think about the system that your university currently
uses for career services, and suppose that you are in
charge of replacing the system with a new one.
Describe how you would decide on the computing
architecture for the new system using the criteria pre-
sented in this chapter. What information will you need
to find out before you can make an educated compar-
ison of the alternatives?

F. Using the Web, find information on the effects that
e-waste and backyard recycling has on developing
countries. Based on you find, what Green IT policies
would you suggest a firm put in place to minimize the
negative effects of e-waste.

G. Using the Web, find examples of company’s pursuing a
Green IT strategy. Describe what they are doing.

H. Energy Star is a joint program between the US Depart-
ment of Energy and the Environmental Protection
Agency. What are the requirements for various IT
devices to be certified as being Energy Star compliant?

I. Using the Web, find examples of firms using the cloud
as a basis for the physical architecture layer. Describe
exactly what they are doing.

J. Locate a consumer products company on the Web and
read its company description (so that you get a good
understanding of the geographic locations of the

company). Pretend that the company is about to cre-
ate a new application to support retail sales over the
Web. Create a high-level network model that depicts
the locations that would include components that
support this application.

K. Create a low-level network diagram for the building
that houses the computer labs at your university.
Choose an application (e.g., course registration, stu-
dent admissions) and include only the components
that are relevant to that application.

L. An energy company with headquarters in Dallas,
Texas, is thinking about developing a system to track
the efficiency of its oil refineries in North America.
Each week, the ten refineries—as far as Valdez, Alaska,
and as close as San Antonio, Texas—will upload
performance data via satellite to the corporate main-
frame in Dallas. Production managers at each site will
use a personal computer to connect to an Internet ser-
vice provider and access reports via the Web. Create a
high-level network model that depicts the locations
that have components supporting this system.

M. Suppose that your mother is a real estate agent, and
she has decided to automate her daily tasks using a
laptop computer. Consider her potential hardware and
software needs, and create a hardware and software
specification that describes them. The specification
should be developed to help your mother buy her
hardware and software on her own.

N. Suppose that the admissions office in your university
has a Web-based application so that students can apply
for admission online. Recently, there has been a push to
admit more international students into the university.
What do you recommend that the application include
to ensure that it supports this global requirement?

O. Based on the A Real Estate Inc. problem in Chapter 4
(exercises I, J, and K), Chapter 5 (exercises P and Q),
Chapter 6 (exercise D), Chapter 7 (exercise A), Chapter 8
(exercise A), Chapter 9 (exercise L), and Chapter 10
(exercises I and J) suggest a physical architecture design
and portray it with a deployment diagram.

P. Based on the A Video Store problem in Chapter 4
(exercises L, M, and N), Chapter 5 (exercises R and S),
Chapter 6 (exercise E), Chapter 7 (exercise B), Chapter
8 (exercise B), Chapter 9 (exercise M), and Chapter 10
(exercises K and L) suggest a physical architecture
design and portray it with a deployment diagram.

Q. Based on the gym membership problem in Chapter 4
(exercises O, P, and Q), Chapter 5 (exercises T and U),

c11PhysicalArchitectureLayerDesign.qxd 11/9/11 1:28 PM Page 511

512 Chapter 11 Physical Architecture Layer Design

MINICASES

1. The system development project team at Birdie
Masters golf schools has been working on defining the
physical architecture design for the system. The major
focus of the project is a networked school location
operations system, allowing each school location to
easily record and retrieve all school location transac-
tion data. Another system element is the use of the
Internet to enable current and prospective students to
view class offerings at any of the Birdie Masters’ loca-
tions, schedule lessons and enroll in classes at any
Birdie Masters location, and maintain a student
progress profile—a confidential analysis of the stu-
dent’s golf skill development.

The project team has been considering the global-
ization issues that should be factored into the archi-
tecture design. The school’s plan for expansion into
the golf-crazed Japanese market is moving ahead. The
first Japanese school location is tentatively planning to
open about six months after the target completion
data for the system project. Therefore, it is important
that issues related to the international location be
addressed now during design.

Assume that you have been given the responsibility
of preparing a summary memo on the globalization
issues that should be factored into the design. Prepare
this memo discussing the globalization issues that are
relevant to Birdie Masters’ new system.

2. Jerry is a relatively new member of a project team that
is developing a retail store management system for a
chain of sporting goods stores. Company headquarters

is in Las Vegas, and the chain has twenty-seven loca-
tions throughout Nevada, Utah, and Arizona. Several
cities have multiple stores.

The new system will be a networked client–server
architecture. Stores will be linked to one of three
regional servers, and the regional servers will be
linked to corporate headquarters in Las Vegas. The
regional servers also link to one another. Each retail
store will be outfitted with similar configurations of
two PC-based point-of-sale terminals networked to
a local file server. Jerry has been given the task of
developing a network model that will document the
geographic structure of this system. He has not faced
a system of this scope before and is a little unsure
how to begin.
a. Prepare a set of instructions for Jerry to follow in

developing this network model.
b. Using a deployment diagram, draw a network

model for this organization.
c. Prepare a set of instructions for Jerry to follow in

developing a hardware and software specification.
3. Refer to the Professional and Scientific Staff Manage-

ment (PSSM) minicase in Chapters 4, 6, 7, 8, 9, and
10. Based on the solutions developed for those prob-
lems, suggest a physical architecture design and por-
tray it with a deployment diagram.

4. Refer to the Holiday Travel Vehicles minicase in Chap-
ters 5, 6, 7, 8, 9, and 10. Based on the solutions devel-
oped for those problems, suggest a physical architecture
design and portray it with a deployment diagram.

Chapter 6 (exercise F), Chapter 7 (exercise C), Chapter
8 (exercise C), Chapter 9 (exercise N), and Chapter 10
(exercises M and N) suggest a physical architecture
design and portray it with a deployment diagram.

R. Based on the Picnics R Us exercises in Chapter 4 (exer-
cises R, S, and T), Chapter 5 (exercises V and W),
Chapter 6 (exercise G), Chapter 7 (exercise D), Chapter
8 (exercise D), and Chapter 9 (exercise O), and Chap-
ter 10 (exercises O and P), suggest a physical architec-
ture design and portray it with a deployment diagram.

S. Based on the Of-the-Month-Club problem in Chapter
4 (exercises U, V, and W), Chapter 5 (exercises X and
Y), Chapter 6 (exercise H), Chapter 7 (exercise E),
Chapter 8 (exercise E), Chapter 9 (exercise N), and
Chapter 10 (exercises Q and R), suggest a physical
architecture design and portray it with a deployment
diagram.

c11PhysicalArchitectureLayerDesign.qxd 11/9/11 1:28 PM Page 512

Project
Assessm

ent
Support

Plan
Change

M
anagem

ent Plan
Conversion

Plan
D

ocum
entation

Test
Plan

Program
s

During construction, the actual system is built.
Building a successful information system requires a
set of activities: programming, testing, and docu-
menting the system. In today's global economy,
cultural issues also play an important role in manag-
ing these activities. Installing an information system
requires switching from the current system to the
new system. This conversion process can be quite
involved; for example, cultural differences among the
users, the development team, and the two groups can
be quite challenging. Furthermore, not only does
conversion involve shutting the old system down and
turning the new one on, it also can involve a signifi-
cant training effort. Finally, operating the system may
uncover additional requirements that may have to be
addressed by the development team.

CHAPTER 12
Construction

PART THREE

Construction,
Installation, and

Operations

CHAPTER 13
Installation and

Operations

c12Construction.qxd 11/29/11 9:46 AM Page 513

c12Construction.qxd 11/9/11 1:50 PM Page 514

This page is intentionally left blank

This chapter discusses the activities needed to successfully build an information system:
programming, testing and documenting the system. Programming is time consuming and
costly, but except in unusual circumstances, it is the simplest for the systems analyst
because it is well understood. For this reason, the systems analyst focuses on testing
(proving that the system works as designed) and developing documentation.

OBJECTIVES

! Be familiar with the system construction process
! Understand different types of tests and when to use them
! Understand how to develop documentation

CHAPTER OUTLINE

515

C H A P T E R 1 2

CONSTRUCTION

Introduction
Managing Programming

Assigning Programmers
Coordinating Activities
Managing the Schedule
Cultural Issues

Designing Tests
Testing and Object Orientation
Test Planning
Unit Tests
Integration Tests

System Tests
Acceptance Tests

Developing Documentation
Types of Documentation
Designing Documentation Structure
Writing Documentation Topics
Identifying Navigation Terms

Applying the Concepts at CD Selections
Summary

INTRODUCTION
When people first learn about developing information systems, they usually think imme-
diately about writing programs. Programming can be the largest single component of any
systems development project in terms of time and cost. However, it also can be the best
understood component and therefore—except in rare circumstances—offers the fewest
problems of all aspects of system development. When projects fail, it is usually not because
the programmers were unable to write the programs, but because the analysis, design,
installation, and/or project management were done poorly. In this chapter, we focus on the
construction and testing of the software and the documentation.

c12Construction.qxd 11/9/11 1:50 PM Page 515

Construction is the development of all parts of the system, including the software
itself, documentation, and new operating procedures. Looking back at Figure 1-18, we
see that the Construction phase of the Enhanced Unified Process deals predominantly
with the Implementation, Testing, and Configuration and Change Management work-
flows. Implementation obviously deals with programming. Programming is often seen as
the focal point of systems development. After all, systems development is writing pro-
grams. It is the reason we do all the analysis and design. And it’s fun. Many beginning
programmers see testing and documentation as bothersome afterthoughts. Testing and
documentation aren’t fun, so they often receive less attention than the creative activity of
writing programs.

However, programming and testing are very similar to writing and editing. No pro-
fessional writer (or student writing an important term paper) would stop after writing
the first draft. Rereading, editing, and revising the initial draft into a good paper are the
hallmarks of good writing. Likewise, thorough testing is the hallmark of professional
software developers. Most professional organizations devote more time and money to
testing (and the subsequent revision and retesting) than to writing the programs in the
first place.

The reasons are simple economics: Downtime and failures caused by software bugs1

are extremely expensive. Many large organizations estimate the costs of downtime of crit-
ical applications at $50,000 to $200,000 per hour.2 One serious bug that causes an hour of
downtime can cost more than one year’s salary of a programmer—and how often are bugs
found and fixed in one hour? Testing is, therefore, a form of insurance. Organizations are
willing to spend a lot of time and money to prevent the possibility of major failures after
the system is installed.

Therefore, a program is usually not considered finished until the test for that pro-
gram is passed. For this reason, programming and testing are tightly coupled, and
because programming is the primary job of the programmer (not the analyst), testing
(not programming) often becomes the focus of the construction stage for the systems
analysis team.

The Configuration and Change Management workflow keeps track of the state of
the evolving system. The evolving information system comprises a set of artifacts that
includes, for example, diagrams, source code, and executables. During the development
process, these artifacts are modified. The amount of work, and hence dollars, that goes
into the development of the artifacts is substantial. Therefore the artifacts themselves
should be handled as any expensive asset would be handled: Access controls must be put
into place to safeguard the artifacts from being stolen or destroyed. Because the artifacts
are modified on a regular, if not continuous, basis, good version control mechanisms
should be established. The traceability of the artifacts back through the various artifacts
developed, such as data management layer designs, class diagrams, package diagrams,
and use-case diagrams, to the specific requirements is also very important. Without this
traceability, we will not know which aspects of a system to modify when—not if—the
requirements change.

516 Chapter 12 Construction

1 When I (Alan Dennis) was an undergraduate, I had the opportunity to hear Admiral Grace Hopper tell how the
term bug was introduced. She was working on one of the early Navy computers when suddenly it failed. The
computer would not restart properly so she began to search for failed vacuum tubes. She found a moth inside one
tube and recorded in the log book that a bug had caused the computer to crash. From then on, every computer
crash was jokingly blamed on a bug (as opposed to programmer error), and eventually the term bug entered the
general language of computing.
2 See Billie Shea, “Quality Patrol: Eye on the Enterprise,” Application Development Trends (November 5, 1998):
31–38.

c12Construction.qxd 11/9/11 1:50 PM Page 516

In this chapter, we discuss three aspects of construction: managing programming,
testing, and writing the documentation. Because programming is primarily the job of
programmers, not systems analysts, and because this is not a programming book, we
devote less time to programming than to testing and documentation. Furthermore, we do
not delve into the details of configuration and change management in this chapter
(see Chapter 13).3

MANAGING PROGRAMMING
In general, systems analysts do not write programs; programmers write programs. There-
fore, the primary task of the systems analysts during programming is . . . waiting. However,
the project manager is usually very busy managing the programming effort by assigning
the programmers, coordinating the activities, and managing the programming schedule.4

Assigning Programmers
The first step in programming is assigning modules to the programmers. As discussed in
Chapter 8, each module (class, object, or method) should be as separate and distinct as pos-
sible from the other modules (i.e., cohesion should be maximized and coupling should be
minimized). The project manager first groups together classes that are related so that each
programmer is working on related classes. These groups of classes are then assigned to
programmers. A good place to start is to look at the package diagrams.

Managing Programming 517

3 A good reference for information on configuration and change management is Jessica Keyes, Software Configu-
ration Management (Boca Raton, FL: Auerbach, 2004).
4 One of the best books on managing programming (even though it was first written more than 30 years ago) is that
by Frederick P. Brooks, Jr. The Mythical Man-Month, 20th Anniversary Edition (Reading, MA: Addison-Wesley, 1995).

My first programming job in 1977 was to convert a set of
application systems from one version of COBOL to
another version of COBOL for the government of Prince
Edward Island. The testing approach was to first run a set
of test data through the old system and then run it through
the new system to ensure that the results from the two
matched. If they matched, then the last three months of
production data were run through both to ensure they,
too, matched.

Things went well until I began to convert the gas tax
system that kept records on everyone authorized to pur-
chase gasoline without paying tax. The test data ran fine,
but the results using the production data were peculiar.
The old and new systems matched, but rather than list-
ing several thousand records, the report listed only fifty.
I checked the production data file and found it listed
only fifty records, not the thousands that were supposed
to be there.

The system worked by copying the existing gas tax
records file into a new file and making changes in the
new file. The old file was then copied to tape backup.
There was a bug in the program such that if there were no
changes to the file, a new file was created, but no records
were copied into it.

I checked the tape backups and found one with the
full set of data that were scheduled to be overwritten three
days after I discovered the problem. The government was
only three days away from losing all gas tax records.

— Alan Dennis

Question

What would have been the cost of this bug if it hadn’t
been caught?

12-A The Cost of a BugCONCEPTS

IN ACTION

c12Construction.qxd 11/9/11 1:50 PM Page 517

Coordinating Activities
Coordination can be done through both high-tech and low-tech means. The simplest
approach is to have a weekly project meeting to discuss any changes to the system that have
arisen during the past week—or just any issues that have come up. Regular meetings, even
if they are brief, encourage the widespread communication and discussion of issues before
they become problems.

Another important way to improve coordination is to create and follow standards
that can range from formal rules for naming files, to forms that must be completed when
goals are reached, to programming guidelines (see Chapter 2). When a team forms stan-
dards and then follows them, the project can be completed faster because task coordina-
tion is less complex.

The analysts also must put mechanisms in place to keep the programming effort well
organized. Many project teams set up three areas in which programmers can work: a
development area, a testing area, and a production area. These areas can be different
directories on a server hard disk, different servers, or different physical locations, but the

One of the rules of systems development is that the more programmers who are
involved in a project, the longer the system will take to build. This is because as the size of
the programming team increases, the need for coordination increases exponentially, and
the more coordination required, the less time programmers can spend actually writing
systems. The best size is the smallest possible programming team. When projects are so
complex that they require a large team, the best strategy is to try to break the project into
a series of smaller parts that can function as independently as possible.

518 Chapter 12 Construction

Quantitative analysis provides the data for making deci-
sions. Some major league baseball teams have used Saber-
metrics (and similar data analysis measures) to quantify
the value of a player to his salary. For example, is a .250
hitter with a strong base-stealing background getting paid
$5 million per year worth more in terms of salary dollars
as compared to a .330 hitter with slower speed who is get-
ting paid $15 million per year? Is Alex Rodriguez of the
Yankees worth more than Joe Maurer of the Minnesota
Twins? Is Ryan Dempster of the Chicago Cubs more valu-
able than Tim Hudson of the Atlanta Braves? Statistics are
gathered and analyzed on all aspects of the game: hitting,
fielding, injuries, leadership, coachability, age (and
expected lifetime contributions), and much more.

Now take that concept to the business marketplace.
Can quantitative measures be placed on IT workers? Is a
systems analyst who manages six major projects in a year
worth more than an analyst who manages twelve much
smaller projects? Is a project leader who is known for

effectively managing teams worth more than one who fre-
quently has disagreements with his or her team? Is a
developer who can write 1,000 lines of Java code in a
week worth more or less than a developer who writes 500
lines of Visual Basic code? When we discussed tangible
and intangible benefits, the authors suggested putting a
dollar amount on to intangible benefits if possible.

Questions

1. How could you put quantitative measures on the
qualitative efforts of a systems analyst?

2. What might be some of the costs in implementing a
statistical analysis of employees?

3. What data might be needed to do such a statistical
analysis on employees?

4. Could this system replace the conventional human
resources department roles for recruiting and evalu-
ating corporate talent?

12-B Identifying the Best TalentCONCEPTS

IN ACTION

c12Construction.qxd 11/9/11 1:50 PM Page 518

Managing Programming 519

point is that files, data, and programs are separated based on their status of completion.
At first, programmers access and build files within the development area and then copy
them to the testing area when the programmers are finished. If a program does not pass
a test, it is sent back to development. Once all programs are tested and ready to support
the new system, they are copied into the production area—the location where the final
system will reside.

Keeping files and programs in different places based on completion status helps man-
age change control, the action of coordinating a system as it changes through construction.
Another change control technique is keeping track of which programmer changes which
classes and packages by using a program log. The log is merely a form on which program-
mers sign out classes and packages to write and sign in when they are completed. Both the
programming areas and program log help the analysts understand exactly who has worked
on what and the system’s current status. Without these techniques, files can be put into pro-
duction without the proper testing (e.g., two programmers can start working on the same
class or package at the same time).

If a CASE tool is used during the construction step, it can be very helpful for change
control because many CASE tools are set up to track the status of programs and help man-
age programmers as they work. In most cases, maintaining coordination is not conceptu-
ally complex. It just requires a lot of discipline and attention to tracking small details.

Managing the Schedule
The time estimates that were produced during project identification and refined during
analysis and design almost always need to be refined as the project progresses during con-
struction because it is virtually impossible to develop an exact assessment of the project’s
schedule. As we discussed in Chapter 2, a well-done set of time estimates usually has a 10
percent margin of error by the time we reach the construction step. It is critical that the
time estimates be revised as construction proceeds. If a program module takes longer to
develop than expected, then the prudent response is to move the expected completion date
later by the same amount.

As a great analyst, you’ve planned, analyzed, and
designed a good solution. Now you need to implement.
As part of implementation do you think that training is
just a wasted expense?

Stress is common in a help-desk call center. Users of
computing services call to get access to locked accounts
or get help when technology isn’t working as planned,
and they often are very upset. Employees of the help-desk
call center can get stressed out, and this can result in
more sick days, less productivity, and higher turnover.
Max Productivity Incorporated is a training company that
works with people in high-stress jobs. Their training pro-
gram helps train employees how to relax, how to shake

off tough users, and how to create win–win scenarios.
They claim to be able to reduce employee turnover by 50
percent, increase productivity by 20 percent, and reduce
stress, anger, and depression by 75 percent.

Questions

1. How would you challenge Max Productivity to
verify its claims for reducing turnover, increasing
productivity, and decreasing stress and anger?

2. How would you conduct a cost–benefit analysis on
hiring Max Productivity Incorporated to do ongoing
training for your help-desk call-center employees?

12-C Finishing the ProcessCONCEPTS

IN ACTION

c12Construction.qxd 11/9/11 1:50 PM Page 519

520 Chapter 12 Construction

In previous chapters, we discussed classic mistakes and
how to avoid them. Here, we summarize four classic mis-
takes in implementation:5
! Research-oriented development: Using state-of-the-art

technology requires research-oriented development
that explores the new technology because “bleeding
edge” tools and techniques are not well understood,
are not well documented, and do not function exactly
as promised.
Solution: If you use state-of-the-art technology, you
need to significantly increase the project’s time and
cost estimates even if (some experts would say espe-
cially if) such technologies claim to reduce time and
effort.

! Using low-cost personnel: You get what you pay for.
The lowest-cost consultant or staff member is signifi-
cantly less productive than the best staff. Several stud-
ies have shown that the best programmers produce
software six to eight times faster than the least produc-
tive (yet cost only 50 to 100% more).

Solution: If cost is a critical issue, assign the best, most
expensive personnel; never assign entry-level person-
nel in an attempt to save costs.

! Lack of code control: On large projects, programmers
need to coordinate changes to the program source
code (so that two programmers don’t try to change the
same program at the same time and overwrite each
other’s changes). Although manual procedures appear
to work (e.g., sending e-mail notes to others when you
work on a program to tell them not to), mistakes are
inevitable.
Solution: Use a source code library that requires
programmers to “check out” programs and prohibits
others from working on them at the same time.

! Inadequate testing: The number one reason for project
failure during implementation is ad hoc testing—where
programmers and analysts test the system without formal
test plans.
Solution: Always allocate sufficient time in the project
plan for formal testing.

12-1 Avoiding Classic Implementation MistakesPRACTICAL

TIP

5 Adapted from Steve McConnell, Rapid Development, (Redmond, WA: Microsoft Press, 1996).

One of the most common causes for schedule problems is scope creep. Scope creep
occurs when new requirements are added to the project after the system design was final-
ized. Scope creep can be very expensive because changes made late in system development
can require much of the completed system design (and even programs already written) to
be redone. Any proposed change during construction must require the approval of the pro-
ject manager and should only be done after a quick cost–benefit analysis has been done.

Another common cause is the unnoticed day-by-day slippages in the schedule. One pack-
age is a day late here; another one is a day late there. Pretty soon these minor delays add up and
the project is noticeably behind schedule. Once again, the key to managing the programming
effort is to watch these minor slippages carefully and update the schedule accordingly.

Typically, a project manager creates a risk assessment that tracks potential risks along
with an evaluation of their likelihood and potential impact. As the construction step moves
to a close, the list of risks changes as some items are removed and others surface. The best
project managers, however, work hard to keep risks from having an impact on the sched-
ule and costs associated with the project.

Cultural Issues
One of the major issues facing information systems development organizations is the off-
shoring of the implementation aspects of information systems development. Conflicts
caused by different national and organizational cultures are now becoming a real area of
concern. With the potential of cloud computing (see Chapter 11) potentially enabling even
more outsourcing, the potential of cultural conflict is even greater.

c12Construction.qxd 11/9/11 1:50 PM Page 520

A simple example that can demonstrate cultural differences with regard to student
learning is the idea of plagiarism. What exactly does plagiarism really imply? Different
cultures have very different views. In some cultures, one of the highest forms of respect is
simply to quote an expert. However, in these same cultures, there is no need to reference
the expert. The act of quoting the expert itself is the act of respect. In some cases, actually
referencing the expert through the use of quotation marks and a footnote may be viewed
as an insult to the expert and the reader because it is obvious to the reader that the writer
did not expect the reader to recognize the expert’s quote. This expectation was either
caused by the reader’s own ignorance or the expert’s lack of reputation. Either way, the
writer would be insulting someone through the use of quotation marks and footnotes.
These cultures tend to be collectivist in nature (see Chapters 10 and 13). Consequently,
since the collective owns all ideas, there is no concept of theft of ideas. However, in the
United States, the opposite is true. If a writer does not use quotation marks and footnotes
to appropriately give credit to the source of the quote (or paraphrase), then the writer is
guilty of theft.6 Obviously, in today’s global world, plagiarism is not a simple issue.

Another simple example of cultural differences, with regard to student learning, is the
idea of students working together to complete homework assignments. Even though we all
know that research has shown that students learn better in groups, in the United States, we
view students who turn in the same assignment as cheaters.7 In other cultures, individual
performance is not as important as the performance of the group. Again, these cultures are

Managing Programming 521

Systems projects are notorious for being late and over bud-
get. When should management stop a project that is late or
costing more than the intended budget? Consider this case.

Valley Enterprises opted to implement Voice over Inter-
net Protocol (VoIP) service in its Phoenix, Arizona, service
area. The company has fifteen locations in the Phoenix
area—all with LANs and all with secure WiFi connections.
Their current phone system was designed and implemented
in the 1950s, when they operated in three locations. As they
expanded to additional locations, they generally imple-
mented standard telecommunications solutions with little
thought for compatibility. Over the years, they added phone
services as they added new buildings and facilities. The
CEO, Doug Wilson, heard of VoIP at a trade show and con-
tacted TMR Telecommunications Consultants for a bid. TMR
spent a week with the CIO of Valley Enterprises gathering
data and submitted a bid for $50,000 in late 2007. The
project was to be started by March 2008 and completed by
January 2009. The bid was accepted.

TMR started the project in March 2008. In late July
2008, TMR was bought out by Advanced Communications

of Scottsdale, Arizona. This merger delayed the project ini-
tially by over a month. In early September 2008, some of
the same personnel from TMR, as well as a new project
manager from Advanced Communications, went back to
the project.

By March 2009, the project had already cost
$150,000 and only eight of the locations had VoIP imple-
mented. Advanced Communications insisted that the
LANs were out of date and were unable to carry the
expanded load without major upgrades to the bandwidth,
the routers, and other telecommunications equipment.

Questions

1. Is it time to end this project? Why or why not?
2. What negotiations should have occurred between

TMR and Valley Enterprises prior to December
2008?

3. What should a project manager or project coordi-
nator from Valley Enterprises do when the project
first starts to slip?

12-D Managing a Late Project: When to Say When?CONCEPTS

IN ACTION

6 A wonderful little book on plagiarism is Richard A. Posner, The Little Book of Plagiarism (New York: Pantheon
Books, 2007).
7 In this case, the recent work of Roger Schank is very enlightening. For example, see Roger C. Schank, Making
Minds Less Well Educated than Our Own (Mahwah, NJ: Lawrence Erlbaum Associates, 2004).

c12Construction.qxd 11/9/11 1:50 PM Page 521

collectivist in nature. Consequently, helping a fellow student to understand the assignment
and to perform better in the class would be the expectation. Furthermore, this attitude
extends to test taking. If a fellow student is struggling on a test and if you were from a col-
lectivist culture, it would be your duty to allow your fellow student to copy your answer.
Obviously, this is another example of a substantive cultural difference. From a business
perspective, these different views of plagiarism and cheating could have serious implica-
tions for the protection of intellectual property.

Cultural differences also extend to the way we literally see things. A classic image that
demonstrates the way our visual perception is affected by our culture and environment is
demonstrated in the sketch shown in Figure 12-1. Depending on where you are from, you will
focus on and see different things. For example, where does the scene portrayed in the sketch
take place? What is the item above the woman’s head? Most Westerners say that the scene takes
place in a room and the item above the woman’s head is a window through which you can see
a plant of some sort. However, if you are from East Africa, the scene is believed to take place
outside under a tree and the item above the woman’s head is actually a box that she is balanc-
ing on her head. In East Africa, there are very few homes with corners: Most homes are round.
Therefore, the location of the scene must be outside under a tree. Consequently, the item above
the women’s head cannot be a window. Instead, it must be a box.

In a set of studies comparing East Asians and Americans, Richard Nisbett, of the Uni-
versity of Michigan, and his colleagues has demonstrated that there are cultural differences
that not only affect the way individuals see things, but also what they focus on.9 For exam-
ple, in Figure 12-2a, we see an aquarium-like setting. In a recall test, a set of Japanese and
American students watched an animation of the aquarium. After watching the aquarium
animation, they were asked to recall what they had seen. Both groups were able to recall
about the same number of “focal” fish, those that were moving faster and/or were larger.
However, the Japanese students were able to recall a lot of the “background” material, such
as the bubbles rising in the middle of the tank, the small frog and snail near the bottom of

522 Chapter 12 Construction

FIGURE 12-1
Cultural Optical
Illusion8

8 www.optical-illusionist.com/illusions/cultural-optical-illusion.
9 Richard E. Nisbett, The Geography of Thought: How Asians and Westerners Think Differently … and Why (New
York, NY: Free Press, 2003).

c12Construction.qxd 11/9/11 1:50 PM Page 522

the tank, the plants, and the rocks, whereas the Americans generally could not. In a sepa-
rate test, where the students were asked whether they had seen the fish before, both the
Japanese and American students easily recognized the fish when it was displayed with its
original background (see Figure 12-2b). However, the Japanese had a much more difficult
time in recognizing the fish when it was portrayed in a different context with a novel back-
ground (see Figure 12-2c). According to Nisbett and his colleagues, this result, along with
others, provided evidence that Asians tended to bind the focal objects to the environment
within which they were first seen, where as Americans simply focuses on the individual
objects themselves.

As we stated previously, with offshore outsourcing, information systems development
teams can be geographically dispersed and multicultural in their membership. Given the
above issues and when we consider the cultural differences Hall and Hofstede identified
(see Chapter 10), cultural issues add a new wrinkle in the management of developing a suc-
cessful information system.10 Hall’s context dimension partially explains Nisbett’s results.
From an information systems development perspective, context could influence the ability
of a team member to see (or not see) potential creative solutions that are out of the box or
affect a team member’s ability (or inability) to understand the entire problem under con-
sideration. Furthermore, given this dimension, the level of detail in direction could be
varied between cultures. Hofstede’s individualism and collectivism dimension partially
explains the results regarding plagiarism and cheating described above. Given the impor-
tance that intellectual property plays in IT, this potentially could be a real problem when

Managing Programming 523

(a)

(b) (c)

FIGURE 12-2
Asian and American
Differences

10 See Geert Hofstede, Culture’s Consequences: Comparing Values, Behaviors, Institutions and Organizations Across
Nations, 2nd ed. (Thousand Oaks, CA: Sage, 2001); Geert Hofstede, Gert Jan Hofstede, and Michael Minkov,
Cultures and Organizations: Software of the Mind, 3rd ed. (New York, NY: McGraw-Hill, 2010); Edward T. Hall,
Beyond Culture (New York: Anchor Books, 1981).

c12Construction.qxd 11/9/11 1:50 PM Page 523

offshoring development to a collectivist culture. Furthermore, Hall’s speed of messages and
context dimensions could also affect the way this could be addressed. Depending on the
culture, too much detail could be insulting, but attempting to put this issue in to a contex-
tual frame that is culturally sensitive is difficult.

When managing programmers in a multicultural setting, Hall’s time dimension must
also be considered. In monochronic time cultures, deadlines are critical. This is probably
why timeboxing has been relatively successful as a method to control projects (see Chap-
ter 2). However, in a polychronic time culture, a deadline is nothing more than a sugges-
tion. Obviously, when managing programmers, understanding how the culture considers
time is very important to have both a successful product delivery and a successful devel-
opment process.

Hofstede’s other previously mentioned dimensions are power distance, uncertainty
avoidance, and masculinity versus femininity. Managing programmers in a culture with a
high power distance value is different than with a culture with a low power distance. For
example, in the United States, programmers see themselves as equals to their managers. In
fact, in some firms, the president of the firm can be found “coding” solutions along side of
a brand new hire. This somewhat explains the growing popularity of agile methods
(see Chapter 1). In comparison, in a high power distance culture, the president of the firm
would never stoop to performing the same tasks as a new hire. It would be insulting to the
president and embarrassing to the new hire.

With regard to uncertainty avoidance, the choice of systems development approach
could be affected. In a culture that prefers everything to be neat and ordered, a systems
development methodology that is very rule-driven would be beneficial. Also, development
team member professional certification and team and firm ISO or CMMI certifications
would lend credibility to the team, whereas in a culture that willingly takes on risk, certifi-
cations might not increase the perceived standing of the development team.

When managing programmers in a masculine culture, it is critical to provide recogni-
tion to the top-performing members of the development team and also to recognize the
top-performing teams. On the other hand, when considering a feminine culture, it is more
important to ensure that the workplace is a supportive, noncompetitive, and nurturing
environment.

Hofstede has identified a fifth dimension, long- versus short-term orientation, which
deals with how the culture views the past and the future. In a long-term focused culture,
team development and a deep relationship with a client is very important, while in a cul-
ture that emphasizes the short term, delivering a high-quality product on time is all that
really matters.

For years, project managers in the United States have had to bring together individu-
als from very different backgrounds. There was always a common spoken and written lan-
guage, English, and the melting pot idea that guaranteed some level of commonality
among the team members.11 However, in today’s “flat world,” there is no longer any com-
mon culture or common spoken and written language. From an information systems
development perspective, the common language today tends to be UML, Java, SQL, C!! ,
Objective-C, and Visual Basic, not English. However, at this time, there is no common cul-
ture. Consequently, understanding cultural issues will be extremely important for the near
future to successfully manage international and multicultural development teams.

524 Chapter 12 Construction

11 People who grew up in different areas of the United States (e.g., New York City, Nashville, Minneapolis, Denver,
and Los Angeles) are, in a very real sense, culturally different. For an interesting take on this see Joel Garreau, The
Nine Nations of North America (New York NY: Avon Books, 1981). However, the prevalence of the Internet and
cable TV has created much more of a shared culture in the United States than in many other parts of the world.
Obviously, the Internet and cable TV also could affect the world in the long run.

c12Construction.qxd 11/9/11 1:50 PM Page 524

DESIGNING TESTS
In object-oriented systems, the temptation is to minimize testing. After all, through the use of
patterns, frameworks, class libraries, and components, much of the system has been tested
previously. Therefore, we should not have to test as much. Right? Wrong! Testing is more crit-
ical to object-oriented systems than systems developed in the past. Based on encapsulation
(and information hiding), polymorphism (and dynamic binding), inheritance, reuse, and the
actual object-oriented products, thorough testing is much more difficult and critical. Given
the complexity of the development processes used and the global nature of information sys-
tems development, testing becomes even more crucial. Thus, object-oriented testing must be
done systematically and the results must be documented so that the project team knows what
has and has not been tested. Testing object-oriented systems is therefore very complex. Con-
sequently, a complete coverage of the topic is beyond the scope of this book. However, given
the importance of testing in developing quality software, in this section we provide a basic
overview of object-oriented systems testing.12

The purpose of testing is not to demonstrate that the system is free of errors. It is not pos-
sible to prove that a system is error free, which is especially true with object-oriented systems.
This is similar to theory testing. You cannot prove a theory. If a test fails to find problems with

Designing Tests 525

Shamrock Foods is a major food distributor centered in
Tralee, Ireland. Originally a dairy cooperative, they
branched into various food components [dried milk,
cheese solids, and flavorings (or flavourings, as they
would spell it)]. They have had substantial growth, most
coming by way of acquisition of existing companies or
facilities. For example, Iowa Soybean in the United States
in now a subsidiary of Shamrock Foods, as is a large dairy
cooperative in Wisconsin.

They have processing facilities in more than twelve
countries and distribution sales in more than thirty coun-
tries. With the rapid growth by acquisition, they have gen-
erally adopted a hands-off policy, keeping the systems
separated and not integrated into unified ERP system.
Thus, each acquired company is still largely autonomous,
although it reports to Shamrock Foods and is managed by
Shamrock Foods.

This separation concept has been a problem for the
CFO of Shamrock Foods, Conor Lynch. The board of direc-
tors would like some aggregated data for direction and
analysis of acquired businesses. Conor has the reports from

the various subsidiaries but has to have his staff convert
them to a consistent basic currency (generally either to
euros or U.S. dollars).

Questions

1. When should a multinational or multisite business
consolidate data systems?

2. There are costs associated with consolidating data
systems—the various acquired companies had their
own functioning accounting systems—with a variety
of hardware and software systems. What justification
should Conor use to push for a consolidated, unified
ERP system?

3. Conor at times has to deal with incomplete and
incompatible data. Inventory systems might be first
in, first out (FIFO) for some of the subsidiaries and
last in, first out (LIFO) or another accounting
method for other subsidiaries. How might a multi-
national CFO deal with incomplete and incompati-
ble data?

12-E Managing Global ProjectsCONCEPTS

IN ACTION

12 For a good introduction to testing object-oriented software, see John D. McGregor and David A. Sykes,
A Practical Guide to Testing Object-Oriented Software (Boston: Addison-Wesley, 2001). For a thorough coverage of
testing object-oriented software, see Robert V. Binder, Testing Object-Oriented Systems: Models, Patterns, and Tools
(Reading, MA: Addison-Wesley, 1999), this book provides more than 1,000 pages of information with regard to
how to test the different artifacts and processes included in object-oriented systems development.

c12Construction.qxd 11/9/11 1:50 PM Page 525

a theory, your confidence in the theory is increased. However, if a test succeeds in finding a
problem, then the theory has been falsified. Software testing is similar in that it can only show
the existence of errors. The purpose of testing is to uncover as many errors as feasible.13

There are four general stages of tests: unit tests, integration tests, system tests, and
acceptance tests. Although each application system is different, most errors are found dur-
ing integration and system testing (see Figure 12-3).

In each of the following sections, we describe the four stages. However, before doing
this, we describe the effect that the object-oriented characteristics have on testing and the
necessary planning and management activities that must take place to have a successful
testing program.

Testing and Object Orientation
Most testing techniques have been developed to support non-object-oriented develop-
ment. Therefore, most of the testing approaches have had to be adapted to object-oriented
systems. The characteristics of object-oriented systems that affect testing the most are
encapsulation (and information hiding), polymorphism (and dynamic binding), inheri-
tance, and the use of patterns, class libraries, frameworks, and components. Also, the sheer
volume of products that come out of a typical object-oriented development process has
increased the importance of testing in object-oriented systems development.

Encapsulation and Information Hiding Encapsulation and information hiding allow
processes and data to be combined to create holistic entities (i.e., objects). They support hiding
everything behind a visible interface. Although this allows the system to be modified and main-
tained in an effective and efficient manner, it makes testing the system problematic. What do
you need to test to build confidence in the system’s ability to meet the user’s need? You need to
test the business process that is represented in the use cases. However, the business process is dis-
tributed over a set of collaborating classes and contained in the methods of those classes. The

526 Chapter 12 Construction

13 It is not cost-effective to try to get every error out of the software. Except in simple examples, it is, in fact,
impossible. There are simply too many combinations to check.

Acceptance
test (beta)

Acceptance
test (alpha)

System
test

Integration
test

Unit
test

N
um

be
r

of
 e

rr
or

s
de

te
ct

ed

Testing stage

FIGURE 12-3
Error-Discovery Rates
for Different Stages
of Tests

c12Construction.qxd 11/9/11 1:50 PM Page 526

only way to know the effect that a business process has on a system is to look at the state changes
that take place in the system. But in object-oriented systems, the instances of the classes hide the
data behind a class boundary. How is it possible then to see the impact of a business process?

A second issue raised by encapsulation and information hiding is the definition of a
“unit” for unit testing. What is the unit to be tested? Is it the package, class, or method? In
traditional approaches, the answer would be the process that is contained in a function.
However, the process in object-oriented systems is distributed over a set of classes. There-
fore, testing individual methods makes no sense. The answer is the class. This dramatically
changes the way unit testing is done.

A third issue raised is the impact on integration testing. In this case, objects can be
aggregated to form aggregate objects; for instance, a car has many parts, or they can be
grouped together to form collaborations. Furthermore, they can be used in class libraries,
frameworks, and components. Based on all of these different ways classes can be grouped
together, how does one effectively do integration testing?

Polymorphism and Dynamic Binding Polymorphism and dynamic binding dramatically
affect both unit and integration testing. Because an individual business process is imple-
mented through a set of methods distributed over a set of objects, as shown before, the unit
test makes no sense at the method level. However, with polymorphism and dynamic binding,
the same method (a small part of the overall business process) can be implemented in many
different objects. Therefore, testing individual implementations of methods makes no sense.
Again, the unit that makes sense to test is the class. Except for trivial cases, dynamic binding
makes it impossible to know which implementation is going to be executed until the system
does it. Therefore, integration testing becomes very challenging.

Inheritance When taking into consideration the issues raised about inheritance (see
Chapter 8), it should not be a surprise that inheritance affects the testing of object-oriented
systems. Through the use of inheritance, bugs can be propagated instantaneously from a
superclass to all its direct and indirect subclasses. However, the tests that are applicable to
a superclass are also applicable to all its subclasses. As usual, inheritance is a double-edged
sword. Finally, even though we have stated this many times before, inheritance should sup-
port only a generalization and specialization type of semantics. Remember, when using
inheritance, the principle of substitutability is critical (see Chapter 5). All these issues affect
unit and integration testing.

Reuse On the surface, reuse should decrease the amount of testing required. However,
each time a class is used in a different context, the class must be tested again. Therefore, any
time a class library, framework, or component is used, unit testing and integration testing
are important. In the case of a component, the unit to test is the component itself. Remem-
ber that a component has a well-defined API (application program interface) that hides the
details of its implementation.

Object-Oriented Development Process and Products In virtually all textbooks,
including this one, testing is covered near the end of system development. This seems to
imply that testing is something that takes place only after the programming has ended.
However, every product14 that comes out of the object-oriented development process must

Designing Tests 527

14 For example, activity diagrams, use-case descriptions, use-case diagrams, CRC cards, class diagrams, object dia-
grams, sequence diagrams, communication diagrams, behavioral state machines, package diagrams, contracts,
method specifications, use scenarios, window navigation diagrams, storyboards, windows layout diagrams, real
use cases, and source code.

c12Construction.qxd 11/9/11 1:50 PM Page 527

be tested. For example, it is a lot easier to ensure that the requirements are captured and
modeled correctly through testing the use cases, and it is a lot cheaper to catch this type of
error back in analysis than it is in implementation. Obviously, this is also true for testing
collaborations. By the time we have implemented a collaboration as a set of layers and
partitions, we could have expended a great deal of time—and time is money—on imple-
menting the wrong thing. So testing collaborations by role-playing the CRC cards in analysis
actually saves the team lots of time and money.

Testing is something that must take place throughout system development, not simply
at the end. However, the type of testing that can take place on nonexecutable representa-
tions, such as use cases and CRC cards, is different from those on code written in an object-
oriented programming language. The primary approach to testing nonexecutable
representations is some form of an inspection or walkthrough of the representation.15

Role-playing the CRC cards based on use cases is an example of one type of walkthrough.

Test Planning
Testing starts with the development of a test plan, which defines a series of tests that will be
conducted. Because testing takes place throughout the development of an object-oriented
system, a test plan should be developed at the very beginning of system development and
continuously updated as the system evolves. For example, the representation of a class
evolves from a simplistic CRC card to a set of classes that are implemented in a program-
ming language. In Figure 12-4 we see a CRC card representation of an Order class that con-
tains invariants. Each of these invariants must be tested and enforced for the Order class to
be considered to be of sufficient quality. One simple invariant test would be to attempt to
assign a value to the Cust ID attribute that was not associated with the Customer object
that is contained in the Customer attribute. Another invariant test would be to try and
assign more than one date to the Date attribute. Finally, a trickier invariant test would be
to try to assign an integer value to the Shipping attribute. This one is more difficult because
most programming languages allow an integer to be “cast” to a double. If the value con-
tained in the Shipping attribute really is supposed to be a double, then casting the integer
value to a double would be an error. These tests should be done using a walkthrough
approach when the class is specified, as we did in Chapters 4, 5, 6, and 7, and a more rig-
orous approach once the class has been fully implemented. This is an example of unit test-
ing a class, which is described in the next section. To ensure the quality of a class, it should
be tested each time its representation is changed.

The test plan should address all products that are created during the development of the
system. For example, tests should be created that can be used to test completeness of a CRC
card. Each individual test has a specific objective and describes a set of very specific test cases
to examine. In the case of invariant-based tests, a description of the invariant is given, and the
original values of the attribute, the event that will cause the attribute value to change, the
actual results observed, the expected results, and whether it passed or failed are shown. Test
specifications are created for each type of constraint that must be met by the class. Also, sim-
ilar types of specifications are done for integration, system, and acceptance tests.

Not all classes are likely to be finished at the same time, so the programmer usually
writes stubs for the unfinished classes to enable the classes around them to be tested. A stub
is a placeholder for a class that usually displays a simple test message on the screen or

528 Chapter 12 Construction

15 See Michael Fagan, “Design and Code Inspections to Reduce Errors in Program Development,” IBM Systems
Journal, 15, no. 3 (1976); and Daniel P. Freedman and Gerald M. Weinberg, Handbook of Walkthrough, Inspections,
and Technical Reviews: Evaluating Programs, Projects, and Products, 3rd ed. (New York: Dorset House Publishing,
1990). Also, Chapters 4, 5, 6, and 7 describe the walkthrough process in detail in relation to the verification and
validation of the analysis models.

c12Construction.qxd 11/9/11 1:50 PM Page 528

Designing Tests 529

Front:

Class Name: Order ID: 2

Calculate tax

Calculate subtotal

Calculate shipping

Calculate total

Responsibilities

Associated Use Cases: 3Description: An Individual that needs to receive or has received
medical attention

Type: Concrete, Domain

Collaborators

(a)

FIGURE 12-4
Order CRC Card (see
Figure 8-19)

Back:

Attributes:

Relationships:
Generalization (a-kind-of):

Aggregation (has-parts):

Other Associations: Customer {1..1} State {1..1} Product {1..*}

(b)

Order Number (1..1) (unsigned long)

Date (1..1) (Date)

Sub Total (0..1) (double) {Sub Total = ProductOrder.sum(GetExtension())}

Tax (0..1) (double) (Tax = State.GetTaxRate() * Sub Total)

Shipping (0..1) (double)

Total (0..1) (double)

Customer (1..1) (Customer)

Cust ID (1..1) (unsigned long) {Cust ID = Customer. GetCustID()}

State (1..1) (State)

StateName (1..1) (String) {State Name = State. GetState()}

c12Construction.qxd 11/9/11 1:50 PM Page 529

returns some hardcoded value16 when it is selected. For example, consider an application
system that provides creating, changing, deleting, finding, and printing functions for some
object such as CDs, patients, or employees. Depending on the final design, these different
functions could end up in different objects on different layers. Therefore, to test the func-
tionality associated with the classes on the problem-domain layer, a stub would be written
for each of the classes on the other layers that interact with the problem-domain classes.
These stubs would be the minimal interface necessary to be able to test the problem-
domain classes. For example, they would have methods that could receive the messages
being sent by the problem-domain layer objects and methods that could send messages to
the problem-domain layer objects. Typically, the methods would display a message on the
screen notifying the tester that the method was successfully reached (e.g., Delete item from
Database method reached). In this way, the problem-domain classes could pass class test-
ing before the classes on the other layers were completed.

Unit Tests
Unit tests focus on a single unit—the class. There are two approaches to unit testing:
black-box testing and white-box testing (see Figure 12-5). Black-box testing is the most
commonly used because each class represents an encapsulated object. Black-box testing
is driven by the CRC cards, behavior state machines, and contracts associated with a
class, not by the programmers’ interpretation. In this case, the test plan is developed
directly from the specification of the class: each item in the specification becomes a test,
and several test cases are developed for it. White-box testing is based on the method spec-
ifications associated with each class. However, white-box testing has had limited impact
in object-oriented development. This is due to the rather small size of the individual
methods in a class. Most approaches to testing classes use black-box testing to ensure
their correctness.

Class tests should be based on the invariants on the CRC cards, the behavioral state
machines associated with each class, and the pre- and post-conditions contained on each
method’s contract. Assuming all the constraints have been captured on the CRC cards and
contracts, individual test cases can be developed fairly easily. For example, suppose the
CRC card for an order class gave an invariant that the order quantity must be between 10
and 100 cases. The tester would develop a series of test cases to ensure that the quantity is
validated before the system accepts it. It is impossible to test every possible combination of
input and situation; there are simply too many possible combinations. In this example,
the test requires a minimum of three test cases: one with a valid value (e.g., 15), one
with a low invalid value (e.g., 7), and one with a high invalid value (e.g., 110). Most tests
would also include a test case with a nonnumeric value to ensure the data types were
checked (e.g., ABCD). A really good test would include a test case with nonsensical but
potentially valid data (e.g. 21.4).

Using a behavioral state machine is a useful way to identify tests for a class. Any class
that has a behavioral state machine associated with it has a potentially complex life cycle.
It is possible to create a series of tests to guarantee that each state can be reached. For
example, Figure 12-6 portrays the behavioral state machine for the Order class just dis-
cussed. In this case, there are many transitions between the different states of an instance
of the Order class. Tests should be created to guarantee that the only transitions allowed
from an instance of the Order class are the ones specifically defined. In this case, it should

530 Chapter 12 Construction

16 Hardcoded means written into the program. For example, suppose you were writing a unit to calculate the net
present value of a loan. The stub might be written to always display (or return to the calling module) a value of
100 regardless of the input values.

c12Construction.qxd 11/9/11 1:50 PM Page 530

Unit Testing Black-Box Testing CRC Cards For normal unit testing • Tester focuses on whether the class
Treats class as a Class Diagrams meets the requirements stated in the

black box Contracts specifications.
White-Box Testing Method Specifications When complexity is • By looking inside the class to review the

Looks inside the high code itself the tester may discover errors
class to test its or assumptions not immediately obvious
major elements to someone treating the class as a black

box.
Integration User Interface Testing Interface Design For normal integration • Testing is done by moving through each

Testing The tester tests each testing and every menu item in the interface
interface function either in a top-down or bottom-up manner.

Use-Case Testing Use Cases When the user • Testing is done by moving through each
The tester tests each interface is important use case to ensure they work correctly.

use case • Usually combined with user interface
testing because it does not test all
interfaces.

Interaction Testing Class Diagrams When the system • The entire system begins as a set of
Tests each process in Sequence Diagrams performs data stubs. Each class is added in turn and

step-by-step Communication processing the results of the class compared to the
fashion Diagrams correct result from the test data; when a

class passes, the next class is added
and the test rerun. This is done for each
package. Once each package has passed
all tests, then the process repeats
integrating the packages.

System Interface Testing Use-Case Diagram When the system • Because data transfers between systems
Tests the exchange of exchanges data are often automated and not monitored

data with other directly by the users it is critical to
systems design tests to ensure they are being

done correctly.
System Requirements Testing System Design, Unit For normal system • Ensures that changes made as a result

Testing Tests to whether Tests, and Integration testing of integration testing did not create new
original business Tests errors.
requirements • Testers often pretend to be uninformed
are met users and perform improper actions to

ensure the system is immune to invalid
actions (e.g., adding blank records).

Usability Testing Interface Design and When user interface • Often done by analyst with experience
Tests how convenient Use Cases is important in how users think and in good interface

the system is to use design.
• Sometimes uses formal usability testing

procedures discussed in Chapter 10.
Security Testing Infrastructure Design When the system is • Security testing is a complex task, usually

Tests disaster recovery important done by an infrastructure analyst assigned
and unauthorized to the project.
access • In extreme cases, a professional firm

may be hired.
Performance Testing System Proposal When the system is • High volumes of transactions are

Examines the ability to important generated and given to the system.
perform under high Infrastructure Design • Often done by using special purpose
loads testing software.

Documentation Testing Help System, For normal system • Analysts spot check or check every item
Tests the accuracy of Procedures, Tutorials testing on every page in all documentation to

the documentation ensure the documentation items and
examples work properly.

Acceptance Alpha Testing System Tests For normal • Often repeats previous tests but are con-
Testing Conducted by users to acceptance testing ducted by users themselves to ensure

ensure they accept they accept the system.
the system

Beta Testing System Requirements When the system is • Users closely monitor system for errors or
Uses real data, not important useful improvements.

test data

Stage Types of Tests Test Plan Source When to Use Notes

FIGURE 12-5 Types of Tests

Designing Tests 531

c12Construction.qxd 11/9/11 1:50 PM Page 531

O
rd

er

In
 p

ro
ce

ss
O

rd
er

ed

D
en

ie
d

O
rd

er
 is

cr

ea
te

d
C

us
to

m
er

su

bm
its

 o
rd

er

C
us

to
m

er

ed
its

 o
rd

er

in
fo

rm
at

io
n

A
ut

ho
riz

at
io

n
=

D
en

ie
d

Pr
oc

es
si

ng

O
rd

er
 s

en
t

fo
r c

re
di

t
au

th
or

iz
at

io
n

C
us

to
m

er

w
ith

dr
aw

s
or

de
r r

eq
ue

st

Pl
ac

ed

O
rd

er
 s

en
t t

o
cu

st
om

er

C
us

to
m

er

ac
ce

pt
s

sh
ip

m
en

t
Sh

ip
pe

d
Re

ce
iv

ed

A
ut

ho
riz

at
io

n
=

A
pp

ro
ve

d

O
rd

er
 is

cl

os
ed

FI
G

U
R

E
1

2
-6

 O

rd
er

 B
eh

av
io

ra
l S

ta
te

 M
ac

hi
ne

 (s
ee

 F
ig

ur
e

6-
17

)

532

c12Construction.qxd 11/9/11 1:50 PM Page 532

be impossible for an Order object to go from the In process state to the Placed state
without traversing the Ordered and Processing states via the Customer submits order,
Order sent for credit authorization, and Authorization = Approved transitions. This state-
based testing can be done throughout the development of the class via walkthroughs and
role-playing early in the evolution of the class and more rigorous testing once it has been
implemented in a programming language.

Tests also can be developed for each contract associated with the class. In the case of
a contract, a set of tests for each pre- and post-condition is required. For example, the
contract of the addOrder method of the Customer class shown in Figure 12-7 has both
a pre- and post-condition that essentially requires the new order to have not existed with
the instance of the Customer class before the method executes and that it is associated
with the Customer object after the method executes. Tests must be created to enforce
these constraints. If the class is a subclass of another class, then all the tests associated
with the superclass must be executed again. The interactions among the constraints,
invariants, and the pre- and post-conditions in the subclass and the superclass(es) must
be also addressed.

Finally, owing to good object-oriented design, to fully test a class, special testing meth-
ods might have to be added to the class being tested. For example, how can invariants be
tested? The only way to really test them is to have methods that are visible to the outside of
the class that can be used to manipulate the values of the class’s attributes. However, adding
these types of methods to a class does two things. First, they add to the testing requirements
because they themselves have to be tested. Second, if they are not removed from the
deployed version of the system, the system will be less efficient, and the advantage of infor-
mation hiding effectively is lost. As is readily apparent, testing classes is complex. Therefore,
great care must be taken when designing tests for classes.

Designing Tests 533

Method Name: Class Name: ID:

Associated Use Cases:

Clients (Consumers):

Type of Value Returned:

Description of Responsibilities:

Arguments Received:

Pre-Conditions:

Post-Conditions:

addOrder Customer 36

addCustomerOrder

anOrder:Order

void

not Orders.includes(anOrder)

Orders = Orders@pre.including(anOrder)

Implement the necessary behavior to add a new order to an existing customer keeping
the orders in sorted order by the order’s order number.

FIGURE 12-7
addOrder Contract
(see Figure 8-25)

c12Construction.qxd 11/9/11 1:50 PM Page 533

Integration Tests
Integration tests assess whether a set of classes that must work together do so without error.
They ensure that the interfaces and linkages between different parts of the system work
properly. At this point, the classes have passed their individual unit tests, so the focus now
is on the flow of control among the classes and on the data exchanged among them. Inte-
gration testing follows the same general procedures as unit testing: the tester develops a test
plan that has a series of tests, which, in turn, have a test. Integration testing is often done
by a set of programmers and/or systems analysts.

From an object-oriented systems perspective, integration testing can be difficult. A sin-
gle class can be in many different aggregations, because of the way objects can be combined
to form new objects, class libraries, frameworks, components, and packages. Where is the
best place to start the integration? Typically, the answer is to begin with the set of classes, a
collaboration, that are used to support the highest-priority use case (see Chapter 4). Also,
dynamic binding makes it crucial to design the integration tests carefully to ensure the
combinations of methods are tested.

There are four approaches to integration testing: user interface testing,17 use-case test-
ing, interaction testing, and system interface testing (see Figure 12-5). Most projects use all
four approaches. However, like unit testing, integration testing must be carefully planned.
In the case of use-case testing, only the aspects of the class and class invariants related to
the specific use case are included in these use-case context-dependent class tests. In fact,
typically use-case testing is performed one scenario at a time. In many ways, use-case test-
ing can be viewed as a more rigorous role-playing exercise (see Chapter 5). Like unit test-
ing, integration testing should be performed throughout the evolution of the system. In the
early stages of the system’s development, you should be working with the CRC cards and
role-playing them. Later on, you will have the contracts and method specifications com-
pleted. Gradually, you will have implemented the problem domain classes, the user inter-
face classes, and the data management layer classes in a programming language. As in unit
testing, each time a new representation (diagram, text, program) is created, a new integra-
tion test needs to be performed. Therefore, as the system evolves to more completely
support the use case, we can more rigorously test whether the use case is fully supported
or not.

One of the major problems with integration testing and object-oriented systems is the
difficulty caused by the interaction of inheritance and dynamic binding. This specific prob-
lem has become known as the yo-yo problem. The yo-yo problem occurs when the analyst
or designer must bounce up and down through the inheritance graph to understand the
control flow through the methods being executed. In most cases, this is caused by a rather
deep inheritance graph; that is, the subclass has many superclasses above it in the inheri-
tance graph. The yo-yo problem becomes even more of a nightmare in testing object-
oriented systems when inheritance conflicts exist and when multiple inheritance is used
(See Chapter 8). About the only realistic approach to testing through the yo-yo problem is
through an interactive debugger that is typically part of a systems development environ-
ment, such as Eclipse, Netbeans, or Visual Studio.

System Tests
System tests are usually conducted by the systems analysts to ensure that all classes work
together without error. System testing is similar to integration testing but is much
broader in scope. Whereas integration testing focuses on whether the classes work

534 Chapter 12 Construction

17 We describe some of the different types of user interface testing in Chapter 10.

c12Construction.qxd 11/9/11 1:50 PM Page 534

together without error, system tests examine how well the system meets business require-
ments and its usability, security, and performance under heavy load (see Figure 12-5). It
also tests the system’s documentation.

Acceptance Tests
Acceptance testing is done primarily by the users with support from the project team. The
goal is to confirm that the system is complete, meets the business needs that prompted the
system to be developed, and is acceptable to the users. Acceptance testing is done in two
stages: alpha testing, in which users test the system using made-up data, and beta testing, in
which users begin to use the system with real data but are carefully monitored for errors
(see Figure 12-5).

Developing Documentation 535

Suppose you are a project manager for a bank develop-
ing software for ATMs. Develop a unit test plan for the

user interface component of the ATM.

12-1 Test Planning for an ATMYOUR

TURN

18 For those who have used Java, javadoc is how the JDK documentation from Sun is created.
19 For more information on developing documentation, see Thomas T. Barker, Writing Software Documentation
(Boston: Allyn and Bacon, 1998).

DEVELOPING DOCUMENTATION
Like testing, developing documentation of the system must be done throughout system
development. There are two fundamentally different types of documentation: system doc-
umentation and user documentation. System documentation is intended to help program-
mers and systems analysts understand the application software and enable them to build it
or maintain it after the system is installed. System documentation is largely a by-product
of the systems analysis and design process and is created as the project unfolds. Each step
and phase produces documents that are essential in understanding how the system is or is
to be built, and these documents are stored in the project binder(s). In many object-
oriented development environments, it is possible to somewhat automate the creation of
detailed documentation for classes and methods. For example, in Java, if the programmers
use javadoc-style comments, it is possible to create HTML pages that document a class and
its methods automatically by using the javadoc utility.18 Because most programmers look
on documentation with much distaste, anything that can make documentation easier to
create is useful.

User documentation (such as user’s manuals, training manuals, and online help sys-
tems) is designed to help the user operate the system. Although most project teams expect
users to have received training and to have read the user’s manuals before operating the
system, unfortunately, this is not always the case. It is more common today—especially in
the case of commercial software packages for microcomputers—for users to begin using
the software without training or reading the user’s manuals. In this section, we focus on
user documentation.19

c12Construction.qxd 11/9/11 1:50 PM Page 535

User documentation is often left until the end of the project, which is a dangerous
strategy. Developing good documentation takes longer than many people expect because it
requires much more than simply writing a few pages. Producing documentation requires
designing the documents (whether on paper or online), writing the text, editing the docu-
ments, and testing them. For good-quality documentation, this process usually takes about
three hours per page (single-spaced) for paper-based documentation or two hours per
screen for online documentation. Thus a “simple” documentation, such as a ten-page user’s
manual and a set of twenty help screens, takes seventy hours. Of course, lower-quality doc-
umentation can be produced faster.

The time required to develop and test user documentation should be built into the
project plan. Most organizations plan for documentation development to start once the
interface design and program specifications are complete. The initial draft of documenta-
tion is usually scheduled for completion immediately after the unit tests are complete. This
reduces (but doesn’t eliminate) the chance that the documentation will need to be changed
owing to software changes and still leaves enough time for the documentation to be tested
and revised before the acceptance tests are started.

Although paper-based manuals are still important, online documentation is becoming
more important. Paper-based documentation is simpler to use because it is more familiar
to users, especially novices who have less computer experience; online documentation
requires the users to learn one more set of commands. Paper-based documentation is also
easier to flip through and gain a general understanding of its organization and topics and
can be used far away from the computer itself.

There are four key strengths of online documentation that all but guarantee it will be
the dominant form for the 21st century. Searching for information is often simpler (pro-
vided the help search index is well designed) because the user can type in a variety of
keywords to view information almost instantaneously, rather than having to search through
the index or table of contents in a paper document. The same information can be presented
several times in many different formats, so that the user can find and read the information
in the most informative way (such redundancy is possible in paper documentation, but the
cost and intimidating size of the resulting manual make it impractical). Online documen-
tation provides many new ways for the user to interact with the documentation that is not
possible in static paper documentation. For example, it is possible to use links, or “tool tips”
(i.e., pop-up text; see Chapter 10) to explain unfamiliar terms, and one can write “show-
me” routines that demonstrate on the screen exactly what buttons to click and text to type.
Finally, online documentation is significantly less expensive to distribute than paper
documentation.

Types of Documentation
There are three fundamentally different types of user documentation: reference documents,
procedures manuals, and tutorials. Reference documents (also called the help system) are
designed to be used when the user needs to learn how to perform a specific function (e.g.,
updating a field, adding a new record). Often people read reference information when they
have tried and failed to perform the function; writing reference documents requires special
care because the user is often impatient or frustrated when he or she begins to read them.

Procedures manuals describe how to perform business tasks (e.g., printing a monthly
report, taking a customer order). Each item in the procedures manual typically guides the
user through a task that requires several functions or steps in the system. Therefore, each
entry is typically much longer than an entry in a reference document.

Tutorials—obviously—teach people how to use major components of a system
(e.g., an introduction to the basic operations of the system). Each entry in the tutorial

536 Chapter 12 Construction

c12Construction.qxd 11/9/11 1:50 PM Page 536

is typically longer still than the entries in procedures manuals, and the entries are
usually designed to be read in sequence (whereas entries in reference documents and
procedures manuals are designed to be read individually).

Regardless of the type of user documentation, the overall process for developing it is
similar to the process of developing interfaces (see Chapter 10). The developer first designs
the general structure for the documentation and then develops the individual components
within it.

Designing Documentation Structure
In this section, we focus on the development of online documentation, because we
believe it will become the most common form of user documentation. The general struc-
ture used in most online documentation, whether reference documents, procedures
manuals, or tutorials, is to develop a set of documentation navigation controls that lead
the user to documentation topics. The documentation topics are the material that user
wants to read, whereas the navigation controls are the way the user locates and accesses
a specific topic.

Designing the structure of the documentation begins by identifying the different types
of topics and navigation controls that need to be included. Figure 12-8 shows a commonly
used structure for online reference documents (i.e., the help system). The documentation
topics generally come from three sources. The first and most obvious source of topics is the
set of commands and menus in the user interface. This set of topics is very useful if the user
wants to understand how a particular command or menu is used.

However, the users often don’t know what commands to look for or where they are in
the system’s menu structure. Instead, users have tasks they want to perform, and rather
than thinking in terms of commands, they think in terms of their tasks. Therefore, the sec-
ond and often more useful set of topics focuses on how to perform certain tasks, usually
those in the use scenarios, WND, and the real use cases from the user interface design (see
Chapter 10). These topics walk the user through the set of steps (often involving several
keystrokes or mouse clicks) needed to perform some task.

The third topic is definitions of important terms. These terms are usually the use cases
and classes in the system, but sometimes they also include commands.

There are five general types of navigation controls for topics, but not all systems
use all five types (see Figure 12-8). The first is the table of contents that organizes the
information in a logical form, as though the users were to read the reference docu-
mentation from start to finish. The index provides access into the topics based on
important keywords, in the same way that the index at the back of a book helps us find
topics. Text search provides the ability to search through the topics either for any text
the user types or for words that match a developer-specified set of words that is much
larger than the set of words in the index. Unlike the index, text search typically pro-
vides no organization to the words (other than alphabetical). Some systems provide
the ability to use an intelligent agent to help in the search. The fifth and final naviga-
tion controls to topics are the hyperlinks between topics that enable the user to click
and move among topics.

Procedures manuals and tutorials are similar but often simpler in structure. Top-
ics for procedures manuals usually come from the use scenarios, WNDs, and the real
use cases developed during interface design and from other basic tasks the users must
perform. Topics for tutorials are usually organized around major sections of the sys-
tem and the level of experience of the user. Most tutorials start with the basic, most
commonly used commands and then move into more complex and less commonly
used commands.

Developing Documentation 537

c12Construction.qxd 11/9/11 1:50 PM Page 537

Writing Documentation Topics
The general format for topics is fairly similar across application systems and operating
systems (see Figure 12-9). Topics typically start with very clear titles, followed by some
introductory text that defines the topic and then by detailed, step-by-step instructions on
how to perform what is being described. Many topics include screen images to help the user

538 Chapter 12 Construction

Topics

Tasks

Commands

Definitions

Links

Navigation Controls

Contents
Introduction
Basic Features
 Finding Albums

Index
Finding
 Finding Albums
 Finding Artists
 Finding Songs

Text Search
albums
announcements
articles
artists

Agent Search
Enter a question

Full
Search

Music
Category

Credit
Card

Move…

Copy…

Delete…

How to…

How to…

How to…

FIGURE 12-8
Organizing Online
Reference Documents

c12Construction.qxd 11/9/11 1:50 PM Page 538

find items on the screen; some also have tutorials and videos available online that demon-
strate the functions of interest to the user. Most also include navigation controls to enable
the movement among topics, usually at the top of the window, plus links to other topics.
Some also include links to related topics that include options or other commands and tasks
the user might want to perform in concert with the topic being read.

Writing the topic content can be challenging. It requires a good understanding of the
user (or more accurately the range of users) and a knowledge of what skills the users cur-
rently have and can be expected to import from other systems and tools they are using or
have used (including the system that the new system is replacing). Topics should always be
written from the viewpoint of the user and describe what the user wants to accomplish, not
what the system can do. Figure 12-10 provides some general guidelines to improve the
quality of documentation text.20

Identifying Navigation Terms
As we write the documentation topics, we also begin to identify the terms that will be used
to help users find topics. The table of contents is usually the most straightforward, because
it is developed from the logical structure of the documentation topics, whether reference
topics, procedure topics, or tutorial topics. The items for the index and search engine require
more care because they are developed from the major parts of the system and the users’

Developing Documentation 539

Topic Description
 and Instructions

Links to
 Other Pages

Title

Navigation
 Area

Go Online for
 Additional Help

FIGURE 12-9 A Help Topic in Microsoft Word 2011

20 One of the best books to explain the art of writing is William Strunk and E. B. White, Elements of Style, 4th ed.
(Needham Heights, MA: Allyn & Bacon, 2000).

c12Construction.qxd 11/9/11 1:50 PM Page 539

Guideline Before the Guideline After the Guideline

Use the active voice: The active voice cre-
ates more active and readable text by
putting the subject at the start of the
sentence, the verb in the middle, and the
object at the end.

Finding albums is done using the album
title, the artist’s name, or a song title.

You can find an album by using the album
title, the artist’s name, or a song title.

Use e-prime style: E-prime style creates
more active writing by omitting all forms
of the verb to be.

The text you want to copy must be
selected before you click on the copy
button.

Select the text you want to copy before
you click on the copy button.

Use consistent terms: Always use the same
term to refer to the same items, rather
than switching among synonyms (e.g.,
change, modify, update).

Select the text you want to copy. Pressing
the copy button will copy the marked
text to the new location.

Select the text you want to copy. Pressing
the copy button will copy the selected
text to the new location.

Use simple language: Always use the sim-
plest language possible to accurately
convey the meaning. This does not mean
you should “dumb down” the text but
that you should avoid artificially inflating
its complexity. Avoid separating subjects
and verbs and try to use the fewest words
possible. (When you encounter a com-
plex piece of text, try eliminating words;
you may be surprised at how few words
are really needed to convey meaning.)

The Georgia Statewide Academic and
Medical System (GSAMS) is a coopera-
tive and collaborative distance learning
network in the state of Georgia. The
organization in Atlanta that administers
and manages the technical and overall
operations of the currently more than
300 interactive audio and video telecon-
ferencing classrooms throughout Georgia
system is the Department of Administrative
Service (DOAS). (56 words)

The Department of Administrative Service
(DOAS) in Atlanta manages the Georgia
Statewide Academic and Medical System
(GSAMS), a distance learning network
with more than 300 teleconferencing
classrooms throughout Georgia. (29
words)

Use friendly language: Too often, docu-
mentation is cold and sterile because it
is written in a very formal manner.
Remember, you are writing for a person,
not a computer.

Blank disks have been provided to you by
Operations. It is suggested that you
ensure your data are not lost by making
backup copies of all essential data.

You should make a backup copy of all
data that are important to you. If you
need more diskettes, contact Operations.

Use parallel grammatical structures: Paral-
lel grammatical structures indicate the
similarity among items in list and help
the reader understand content.

Opening files
Saving a document
How to delete files

Opening a file
Saving a file
Deleting a file

Use steps correctly: Novices often inter-
sperse action and the results of action
when describing a step-by-step process.
Steps are always actions.

1. Press the customer button.
2. The customer dialogue box will appear.
3. Type the customer ID and press the

submit button and the customer record
will appear.

1. Press the customer button.
2. Type the customer ID in the customer

dialogue box when it appears.
3. Press the submit button to view the cus-

tomer record for this customer.

Use short paragraphs: Readers of documen-
tation usually quickly scan text to find the
information they need, so the text in the
middle of long paragraphs is often over-
looked. Use separate paragraphs to help
readers find information more quickly.

Source: Adapted from T. T. Barker, Writing Software Documentation (Boston: Allyn & Bacon, 1998).

FIGURE 12-10 Guidelines for Crafting Documentation Topics

Suppose you are a project manager for a bank developing software for ATMs. Develop an online help system.

12-2 Documentation for an ATMYOUR

TURN

540 Chapter 12 Construction

c12Construction.qxd 11/9/11 1:50 PM Page 540

business functions. Every time we write a topic, we must also list the terms that will be used
to find the topic. Terms for the index and search engine can come from four distinct
sources.

The first source for index terms is the set of the commands in the user interface,
such as open file, modify customer, and print open orders. All commands contain two
parts (action and object). It is important to develop the index for both parts because
users could search for information using either part. A user looking for more
information about saving files, for example, might search by using the term save or the
term files.

The second source is the set of major concepts in the system, which are often use cases
and classes. In the case of the Appointment system, for example, this might include
appointment, symptoms, or patient.

A third source is the set of business tasks the user performs, such as ordering replace-
ment units or making an appointment. Often these are contained in the command set, but
sometimes they require several commands and use terms that do not always appear in the
system. Good sources for these terms are the use scenarios and real use cases developed
during interface design (see Chapter 10).

A fourth, often controversial, source is the set of synonyms for the three sets of pre-
ceding items. Users sometimes don’t think in terms of the nicely defined terms used by the
system. They might try to find information on how to stop or quit rather than exit, or
erase rather than delete. Including synonyms in the index increases the complexity and
size of the documentation system but can greatly improve the usefulness of the system to
the users.

APPLYING THE CONCEPTS AT CD SELECTIONS
Because the material in this chapter actually takes place throughout the systems devel-
opment process, this installment of the CD Selections case simply revisits some of the
earlier installments and shows where this material has either already been described or
where the development team should have performed these tasks.

SUMMARY
Managing Programming
Programming is done by programmers, so systems analysts have few responsibilities
during this stage. The project manager, however, is usually very busy. The first task is to
assign the programmers to complete the project, ideally the fewest possible because
coordination problems increase as the size of the programming team increases. Coordi-
nation can be improved by having regular meetings, ensuring that standards are fol-
lowed, implementing change control, and using CASE tools effectively. One of the key
functions of the project manager is to manage the schedule and adjust it for delays. Two
common causes of delays are scope creep and minor slippages that go unnoticed. Given
today’s global development of information systems, different cultural issues need to be
taken into consideration.

Designing Tests
Tests must be carefully planned because the cost of fixing one major bug after the system
is installed can easily exceed the annual salary of a programmer. A test plan contains sev-
eral tests that examine different aspects of the system. A test, in turn, specifies several test

Summary 541

c12Construction.qxd 11/28/11 11:09 AM Page 541

cases that will be examined by the testers. A unit test examines a class within the system;
test cases come from the class specifications or the class code itself. An integration test
examines how well several classes work together; test cases come from the interface
design, use cases, and the use-case, sequence, and collaboration diagrams. A system test
examines the system as a whole and is broader than the unit and integration tests; test
cases come from the system design, the infrastructure design, the unit, and integration
tests. Acceptance testing is done by the users to determine whether the system is accept-
able to them; it draws on the system test plans (alpha testing) and the real work the users
perform (beta testing).

Developing Documentation
Documentation, both user documentation and system documentation, is moving away
from paper-based documents to online documentation. There are three types of user
documentation: Reference documents are designed to be used when the user needs to
learn how to perform a specific function (e.g., an online help system), procedures
manuals describe how to perform business tasks, and tutorials teach people how to use
the system. Documentation navigation controls (e.g., a table of contents, index, find,
intelligent agents, or links between pages) enable users to find documentation topics
(e.g., how to perform a function, how to use an interface command, an explanation of
a term).

KEY TERMS

Acceptance test, 535
Alpha test, 535
Beta test, 535
Black-box testing, 530
Change control, 519
Collectivism, 523
Construction, 516
Context, 523
Documentation navigation

control, 537
Documentation topic, 537
Femininity, 524
Hardcoded, 530
Individualism, 523
Integration test, 534
Interaction testing, 534

Long-term orientation, 524
Masculinity, 524
Monochronic time, 524
Polychronic time, 524
Power distance, 524
Procedures manual, 536
Program log, 519
Reference document, 536
Requirements testing, 531
Security testing, 531
Short-term orientation, 524
Speed of messages, 524
Stub, 428
System documentation, 535
System interface testing, 534
System test, 534

Test case, 528
Test plan, 528
Test specification, 528
Time, 524
Timeboxing, 524
Traceability, 516
Tutorial, 536
Uncertainty avoidance, 524
Unit test, 530
Usability testing, 531
Use-case testing, 534
User documentation, 535
User interface testing, 534
White-box testing, 530
Yo-yo problem, 534

QUESTIONS

1. Why is testing important?
2. How can different national or organizational cultures

affect the management of an information systems
development project?

3. What is the primary role of systems analysts during
the programming stage?

4. In The Mythical Man-Month, Frederick Brooks argues
that adding more programmers to a late project makes
it later. Why?

5. When offshoring development, how could differences
in Hall’s context dimension of culture affect the
contribution of a team member to the successful

542 Chapter 12 Construction

c12Construction.qxd 11/28/11 11:09 AM Page 542

Exercises 543

development of an information system? What about
Hall’s time or speed of messages dimensions?

6. What are Hofstede’s five dimensions of cultural differ-
ences? How could differences in them influence the
effectiveness of an information systems development
team?

7. What are the common language or languages used
today in information systems development?

8. What is the purpose of testing?
9. Describe how object orientation affects testing.

10. Compare and contrast the terms test, test plan, and
test case.

11. What is a stub and why is it used in testing?
12. What is the primary goal of unit testing?
13. How are the test cases developed for unit tests?
14. Compare and contrast black-box testing and white-

box testing.
15. What are the different types of class tests?
14. What is the primary goal of integration testing?
17. How are the test cases developed for integration tests?
18. Describe the yo-yo problem. Why does it make inte-

gration testing difficult?

19. What is the primary goal of system testing?
20. How are the test cases developed for system tests?
21. What is the primary goal of acceptance testing?
22. How are the test cases developed for acceptance tests?
23. Compare and contrast alpha testing and beta testing.
24. Compare and contrast user documentation and system

documentation.
25. Why is online documentation becoming more

important?
26. What are the primary disadvantages of online

documentation?
27. Compare and contrast reference documents, proce-

dures manuals, and tutorials.
28. What are five types of documentation navigation

controls?
29. What are the commonly used sources of documentation

topics? Which is the most important? Why?
30. What are the commonly used sources of documenta-

tion navigation controls? Which is the most impor-
tant? Why?

EXERCISES

A. Different views of plagiarism and collaborative learn-
ing were described as examples of differences among
different cultures today. Using the Web, identify other
differences that could affect the success of an informa-
tion systems development team.

B. Besides Hall and Hofstede, both David Victor and Fons
Trompenaars have identified a set of cultural dimen-
sions that could be useful in information systems devel-
opment. Using the Web, identify their dimensions.

C. If the registration system at your university does not
have a good online help system, develop one for one
screen of the user interface.

D. Examine and prepare a report on the online help system
for the calculator program in Windows (or a similar one
on the Mac or Unix). (You will probably be surprised at
the amount of help for such a simple program.)

E. Compare and contrast the online help at two different
Web sites that enable you to perform some function
(e.g., make travel reservations, order books).

F. Create an invariant test specification for the class you
chose for the A Real Estate Inc. problem in exercise A
in Chapter 8.

G. Create a use-case test plan, including the specific class
plans and invariant tests, for a use case from the A Real
Estate Inc. exercises in the previous chapters.

H. Create an invariant test specification for the class you
chose for the A Video Store problem in exercise B in
Chapter 8.

I. Create a use-case test plan, including the specific class
plans and invariant tests, for a use case from the A
Video Store exercises in the previous chapters.

J. Create an invariant test specification for the class you
chose for the gym problem in exercise C in Chapter 8.

K. Create a use-case test plan, including the specific class
plans and invariant tests for a use case from the health
club exercises in previous chapters.

L. Create an invariant test specification for the class you
chose for Picnics R Us in exercise D in Chapter 8.

M. Create a use-case test plan, including the specific class
plans and invariant tests, for a use case from the
Picnics R Us exercises in the previous chapters.

N. Create an invariant test specification for the class you
chose for the Of-the-Month Club (OTMC) in exercise
E in Chapter 8.

O. Create a use-case test plan, including the specific
class plans and invariant tests, for a use case from the
Of-the-Month Club (OTMC) exercises in the previous
chapters.

c12Construction.qxd 11/9/11 1:50 PM Page 543

544 Chapter 12 Construction

1. Pete is a project manager on a new systems develop-
ment project. This project is Pete’s first experience as a
project manager, and he has led his team successfully
to the programming phase of the project. The project
has not always gone smoothly, and Pete has made a few
mistakes, but he is generally pleased with the progress
of his team and the quality of the system being devel-
oped. Now that programming has begun, Pete has
been hoping for a little break in the hectic pace of his
workday.

Prior to beginning programming, Pete recognized
that the time estimates made earlier in the project were
too optimistic. However, he was firmly committed to
meeting the project deadline because of his desire for
his first project as project manager to be a success. In
anticipation of this time pressure problem, Pete
arranged with the Human Resources department to
bring in two new college graduates and two college
interns to beef up the programming staff. Pete would
have liked to find some staff with more experience, but
the budget was too tight, and he was committed to
keeping the project budget under control.

Pete made his programming assignments, and work
on the programs began about two weeks ago. Now,
Pete has started to hear some rumbles from the pro-
gramming team leaders that might signal trouble. It
seems that the programmers have reported several
instances where they wrote programs, only to be
unable to find them when they went to test them. Also,

several programmers have opened programs that they
had written, only to find that someone had changed
portions of their programs without their knowledge.
a. Is the programming phase of a project a time for the

project manager to relax? Why or why not?
b. What problems can you identify in this situation?
c. What advice do you have for the project manager?

How likely does it seem that Pete will achieve his
desired goals of being on time and within budget if
nothing is done?

2. The systems analysts are developing the test plan for
the user interface for the Holiday Travel Vehicles
system. As the salespeople are entering a sales invoice
into the system, they will be able to enter an option
code into a text box or to select an option code from a
drop-down list. A combo box was used to implement
this, because it was felt that the salespeople would
quickly become familiar with the most common
option codes and would prefer entering them directly
to speed up the entry process.

It is now time to develop the test for validating the
option code field during data entry. If the customer
did not request any dealer-installed options for the
vehicle, the salesperson should enter “none”; the field
should not be blank. The valid option codes are four-
character alphabetic codes and should be matched
against a list of valid codes.

Prepare a test plan for the test of the option code
field during data entry.

MINICASES

c12Construction.qxd 11/9/11 1:50 PM Page 544

This chapter examines the activities needed to install an information system and suc-
cessfully convert an organization to using it. It also discusses post-implementation activities,
such as system support, system maintenance, and project assessment. Installing the system
and making it available for use from a technical perspective is relatively straightforward.
However, the training and organizational issues surrounding the installation are more
complex and challenging because they focus on people, not computers.

OBJECTIVES

! Be familiar with the system installation process
! Understand different types of conversion strategies and when to use them
! Understand several techniques for managing change
! Be familiar with post-installation processes

CHAPTER OUTLINE

C H A P T E R 1 3

INSTALLATION AND OPERATIONS

545

Introduction
Cultural Issues and Information

Technology Adoption
Conversion

Conversion Style
Conversion Location
Conversion Modules
Selecting the Appropriate Conversion

Strategy
Change Management

Understanding Resistance to Change

Revising Management Policies
Assessing Costs and Benefits
Motivating Adoption
Enabling Adoption: Training

Post-Implementation Activities
System Support
System Maintenance
Project Assessment

Applying the Concepts at CD Selections
Summary

INTRODUCTION
It must be remembered that there is nothing more difficult to plan, more doubtful of success,
nor more dangerous to manage than the creation of a new system. For the initiator has the ani-
mosity of all who would profit by the preservation of the old institution and merely lukewarm
defenders in those who would gain by the new.

—Niccolò Machiavelli, The Prince, 1513

c13InstallationAndOperations 11/10/11 8:28 AM Page 545

Although written almost 500 years ago, Machiavelli’s comments are still true today. Man-
aging the change to a new system—whether it is computerized or not—is one of the most
difficult tasks in any organization. Because of the challenges involved, most organizations
begin developing their conversion and change management plans while the programmers
are still developing the software. Leaving conversion and change management planning to
the last minute is a recipe for failure.

In many ways, using a computer system or set of work processes is much like driving
on a dirt road. Over time, with repeated use, the road begins to develop ruts in the most
commonly used parts of the road. Although these ruts show where to drive, they make
change difficult. As people use a computer system or set of work processes, those systems
or work processes begin to become habits or norms; people learn them and become com-
fortable with them. These systems or work processes then begin to limit people’s activities
and make it difficult for them to change because they begin to see their jobs in terms of
these processes rather than of the final business goal of serving customers.

One of the earliest models for managing organizational change was developed by
Kurt Lewin.1 Lewin argued that change is a three-step process: unfreeze, move, refreeze
(Figure 13-1). First, the project team must unfreeze the existing habits and norms (the as-is
system) so that change is possible. Most of system development to this point has laid the
groundwork for unfreezing. Users are aware of the new system being developed, some have
participated in an analysis of the current system (and so are aware of its problems), and some
have helped design the new system (and so have some sense of the potential benefits of the new
system). These activities have helped to unfreeze the current habits and norms.

The second step is to help the organization move to the new system via a migration
plan. The migration plan has two major elements. One is technical, which includes how the
new system will be installed and how data in the as-is system will be moved into the to-be
system; this is discussed in the conversion section of this chapter. The second component
is organizational, which includes helping users understand the change and motivating
them to adopt it; this is discussed in the change management section of this chapter.

The third step is to refreeze the new system as the habitual way of performing the work
processes—ensuring that the new system successfully becomes the standard way of per-
forming the business function it supports. This refreezing process is a key goal of the post-
implementation activities discussed in the final section of this chapter. By providing
ongoing support for the new system and immediately beginning to identify improvements

546 Chapter 13 Installation and Operations

1 Kurt Lewin, “Frontiers in Group Dynamics,” Human Relations, 1, no. 5 (1947): 5–41; and Kurt Lewin, “Group
Decision and Social Change,” in E. E. Maccoby, T. M. Newcomb, and E. L. Hartley (eds.), Readings in Social
Psychology (New York: Holt, Rinehart & Winston, 1958), pp. 197–211.

As-is
system

To-Be
system

Unfreeze
Analysis and

design

Refreeze
Support and
maintenance

Transition

Move
Migration plan:
! Technical conversion
! Change managementFIGURE 13-1

Implementing Change

c13InstallationAndOperations 11/10/11 8:28 AM Page 546

for the next version of the system, the organization helps solidify the new system as the new
habitual way of doing business. Post-implementation activities include system support,
which means providing help desk and telephone support for users with problems; system
maintenance, which means fixing bugs and improving the system after it has been installed;
and project assessment, evaluating the project to identify what went well and what could
be improved for the next system development project.

Change management is the most challenging of the three components because it
focuses on people, not technology, and because it is the one aspect of the project that is the
least controllable by the project team. Change management means winning the hearts and
minds of potential users and convincing them that the new system actually provides value.

Maintenance is the most costly aspect of the installation process, because the cost of
maintaining systems usually greatly exceeds the initial development costs. It is not unusual
for organizations to spend 60 to 80 percent of their total IS development budget on main-
tenance. Although this might sound surprising initially, think about the software you use.
How many software packages do you use that are the very first version? Most commercial
software packages become truly useful and enter widespread use only in their second or
third version. Maintenance and continual improvement of software is ongoing, whether it
is a commercially available package or software developed in house. Would you buy soft-
ware if you knew that no new versions were going to be produced? Of course, commercial
software is somewhat different from custom in-house software used by only one company,
but the fundamental issues remain.

Project assessment is probably the least commonly performed part of system develop-
ment but is perhaps the one that has the most long-term value to the IS department.
Project assessment enables project team members to step back and consider what they did
right and what they could have done better. It is an important component in the individ-
ual growth and development of each member of the team, because it encourages team
members to learn from their successes and failures. It also enables new ideas or new
approaches to system development to be recognized, examined, and shared with other pro-
ject teams to improve their performance.

In this chapter, we describe deploying the new system through the process of transi-
tioning from the old to the new system (i.e., conversion). Next, we describe issues related
to managing the changes necessary to adapt to the new business processes. Finally, we
describe issues related to placing the system into production (i.e., post-implementation
activities). However, before we address these issues, we describe how the cultural issues
affect the deployment of a new system.

CULTURAL ISSUES AND INFORMATION TECHNOLOGY
ADOPTION2

Cultural issues are one of the things that are typically identified as at least partially to blame
when there is a failure in an organization. Cultural issues have been studied at both orga-
nizational and national levels. In previous chapters we discussed the effect that cultural
issues can have on designing the human–computer interaction and physical architecture
layers (see Chapters 10 and 11) and the management of programmers (Chapter 12). The
cultural dimensions identified by Hall and Hofstede included speed of messages, context,
time, power distance, uncertainty avoidance, individualism versus collectivism, masculinity

Cultural Issues and Information Technology Adoption 547

2 A good summary of cultural issues and information systems is Dorothy E. Leidner and Timothy Kayworth, “A
Review of Culture in Information Systems Research: Toward a Theory of Information Technology Culture
Conflict,” MIS Quarterly 30, no. 2 (2006): 357–399.

c13InstallationAndOperations 11/10/11 8:28 AM Page 547

versus femininity, and long- versus short-term orientation.3 In this chapter, we describe
how these dimensions can affect the successful deployment of an information system that
supports a global information supply chain.

Hall’s first dimension, speed of messages, has implications for the development of doc-
umentation (see Chapter 12) and training approaches (see later in this chapter). In a cul-
ture that values “deep” content, so that members of the culture can take their time to
thoroughly understand the new system, simply providing an online help system is not
going to be sufficient to ensure the successful adoption of the new information system.
However, in a culture that prefers “fast” messages, an online help system could be sufficient.

Hall’s second dimension, context, also affects the adoption and deployment of a new
system. In high-context cultures, it is expected that the new information system will be
placed into the entire context of the enterprise wide system. Members of this type of society
expect to be able to understand exactly where the system fits into the firm’s overall picture.
Again, like the speed of messages dimension, this affects the training approach used and the
documentation developed.

Hall’s third dimension, time, can also effect the adoption and deployment of a new sys-
tem. In a polychronic time culture, the training could need to be spread out over a longer
period of time, when compared to a monochronic time culture. In a monochromic time
culture, interruptions would be considered rude. Consequently, training could be accom-
plished in a small set of intense sessions. However, with a polychronic time culture, because
interruptions may occur frequently, maximum flexibility in setting up the training sessions
may be necessary.

Hofstede’s first dimension, power distance, addresses how power issues are dealt with
in the culture. For example, if a superior in an organization has an incorrect belief about
an important issue, can a subordinate point out this error? In some cultures, the answer is
a resounding no. Consequently, this dimension could have major ramifications for the suc-
cessful deployment of an information system. For example, in a culture with a high power
distance, the deployment of a new information system is dependent on the impression of
the most important stakeholder (see Chapter 2). Therefore, much care must be taken to
ensure that this stakeholder is pleased with the system. Otherwise, it might never be used.

Hofstede’s second dimension, uncertainty avoidance, is based on the degree to which
the culture depends on rules for direction, how well individuals in the culture handle stress,
and the importance of employment stability. For example, in a high-uncertainty-avoidance
culture, the use of detailed procedures manuals (see Chapter 12) and good training (see
later in this chapter) can reduce the uncertainty in adopting the new system.

Hofstede’s third dimension, individualism versus collectivism, is based on the level of
emphasis the culture places on the individual or the collective. The relationship between
the individual and the group is important for the success of an information system.
Depending on the culture’s orientation, the success of an information system being transi-
tioned into production can depend on whether the focus of the information system will
benefit the individual or the group.

Hofstede’s fourth dimension, masculinity versus femininity, addresses how well mascu-
line and feminine characteristics are valued by the culture. Some of the differences that
could affect the adoption of an information system include employee motivational issues. In
a masculine culture, motivation would be based on advancement, earnings, and training,
whereas in a feminine culture, motivations would include friendly atmosphere, physical

548 Chapter 13 Installation and Operations

3 See Geert Hofstede, Culture’s Consequences: Comparing Values, Behaviors, Institutions and Organizations Across
Nations, 2nd ed. (Thousand Oaks, CA: Sage, 2001), Geert Hofstede, Gert Jan Hofstede, and Michael Minkov,
Cultures and Organizations: Software of the Mind, 3rd ed. (New York: McGraw-Hill, 2010), and Edward T. Hall,
Beyond Culture (New York: Anchor Books, 1981).

c13InstallationAndOperations 11/10/11 8:28 AM Page 548

conditions, and cooperation. Depending on how the culture views this dimension, different
motivations might need to be used to increase the likelihood of the information system
being successfully deployed.

The fifth dimension, long- versus short-term orientation, deals with how the culture
views the past and the future. In East Asia, long-term thinking is highly respected, whereas
in North America and Europe, short-term profits and the current stock price seem to be
the only things that matter. Based on this dimension, all the political concerns raised pre-
viously in this text become very important. For example, if the local culture views success
only in a short-term manner, then any new information system that is deployed to support
one department of an organization may give that department a competitive advantage over
other departments in the short run. If only short-run measures are used to judge the suc-
cess of a department, then it would be in the interest of the other departments to fight the
successful deployment of the information system. However, if a longer-run perspective is
the norm, then the other departments could be convinced to support the new information
system because they could have new supportive information systems in the future.

Obviously, when reviewing these dimensions, we can see they interact with each other.
The most important thing to remember from an IT perspective is that we must be careful
not to view the local user community through our eyes; in a global economy, we must take
into consideration the local cultural concerns for the information system to be deployed in
a successful manner.

CONVERSION4

Conversion is the technical process by which a new system replaces an old system. Users are
moved from using the as-is business processes and computer programs to the to-be busi-
ness processes and programs. The migration plan specifies what activities will be per-
formed when and by whom and includes both technical aspects (such as installing
hardware and software and converting data from the as-is system to the to-be system) and
organizational aspects (such as training and motivating the users to embrace the new sys-
tem). Conversion refers to the technical aspects of the migration plan.

There are three major steps to the conversion plan before commencement of opera-
tions: Install hardware, install software, and convert data (Figure 13-2). Although it may be

Conversion 549

4 The material in this section is related to the Enhanced Unified Process’s Transition phase and the Deployment
workflow (see Figure 1-18).

Commence
operations

Conversion Plan
(Technical Issues)

Install hardware

Install software

Convert data

Change Management Plan
(Organizational Issues)

Revise management policies

Conduct training

Assess costs and benefits

Motivate adoption

FIGURE 13-2
Elements of a
Migration Plan

c13InstallationAndOperations 11/10/11 8:28 AM Page 549

possible to do some of these steps in parallel, usually they must be done sequentially at any
one location.

The first step in the conversion plan is to buy and install any needed hardware. In
many cases, no new hardware is needed, but sometimes the project requires new hardware
such as servers, client computers, printers, and networking equipment. It is critical to work
closely with vendors who are supplying needed hardware and software to ensure that the
deliveries are coordinated with the conversion schedule so that the equipment is available
when it is needed. Nothing can stop a conversion plan in its tracks as easily as the failure of
a vendor to deliver needed equipment.

Once the hardware is installed, tested, and certified as being operational, the second
step is to install the software. This includes the to-be system under development and, some-
times, additional software that must be installed to make the system operational. At this
point, the system is usually tested again to ensure that it operates as planned.

The third step is to convert the data from the as-is system to the to-be system. Data con-
version is usually the most technically complicated step in the migration plan. Often, separate
programs must be written to convert the data from the as-is system to the new formats required
in the to-be system and store it in the to-be system files and databases. This process is often com-
plicated by the fact that the files and databases in the to-be system do not exactly match the files
and databases in the as-is system (e.g., the to-be system may use several tables in a database to
store customer data that were contained in one file in the as-is system). Formal test plans are
always required for data conversion efforts (see Chapter 12).

Conversion can be thought of along three dimensions: the style in which the conversion
is done (conversion style), what location or work groups are converted at what time (conversion
location), and what modules of the system are converted at what time (conversion modules).
Figure 13-3 shows the potential relationships among these three dimensions.

Conversion Style
The conversion style is the way users are switched between the old and new systems. There
are two fundamentally different approaches to the style of conversion: direct conversion
and parallel conversion.

Direct Conversion With direct conversion (sometimes called cold turkey, big bang, or
abrupt cutover), the new system instantly replaces the old system. The new system is turned
on and the old system is immediately turned off. This is the approach that we are likely to

550 Chapter 13 Installation and Operations

PhasedPilot

Modular

Whole system

Direct

Parallel

Simultaneous

Location

Modules

Style

FIGURE 13-3
Conversion Strategies

c13InstallationAndOperations 11/10/11 8:28 AM Page 550

use when we upgrade commercial software (e.g., Microsoft Word) from one version to
another; we simply begin using the new version and stop using the old version.

Direct conversion is the simplest and most straightforward. However, it is the most
risky because any problems with the new system that have escaped detection during test-
ing can seriously disrupt the organization.

Parallel Conversion With parallel conversion, the new system is operated side by side
with the old system; both systems are used simultaneously. For example, if a new account-
ing system is installed, the organization enters data into both the old system and the new
system and then carefully compares the output from both systems to ensure that the new
system is performing correctly. After some time period (often one to two months) of par-
allel operation and intense comparison between the two systems, the old system is turned
off and the organization continues using the new system.

This approach is more likely to catch any major bugs in the new system and prevent the
organization from suffering major problems. If problems are discovered in the new system,
the system is simply turned off and fixed and then the conversion process starts again. The
problem with this approach is the added expense of operating two systems that perform the
same function.

Conversion Location
Conversion location refers to the parts of the organization that are converted when the con-
version occurs. Often, parts of the organization are physically located in different offices (e.g.,
Toronto, Atlanta, Los Angeles). In other cases, location refers to different organizational units
located in different parts of the same office complex (e.g., order entry, shipping, purchasing).
There are at least three fundamentally different approaches to selecting the way different
organizational locations are converted: pilot conversion, phased conversion, and simultane-
ous conversion.

Pilot Conversion With a pilot conversion, one or more locations or units or work groups
within a location are selected to be converted first as part of a pilot test. The locations par-
ticipating in the pilot test are converted (using either direct or parallel conversion). If the
system passes the pilot test, then the system is installed at the remaining locations (again
using either direct or parallel conversion).

Pilot conversion has the advantage of providing an additional level of testing before
the system is widely deployed throughout the organization, so that any problems with the
system affect only the pilot locations. However, this type of conversion obviously requires
more time before the system is installed at all organizational locations. Also, it means that
different organizational units are using different versions of the system and business
processes, which can make it difficult for them to exchange data.

Phased Conversion With phased conversion, the system is installed sequentially at differ-
ent locations. A first set of locations is converted, then a second set, then a third set, and so
on, until all locations are converted. Sometimes there is a deliberate delay between the dif-
ferent sets (at least between the first and the second), so that any problems with the system
are detected before too much of the organization is affected. In other cases, the sets are
converted back to back so that as soon as those converting one location have finished, the
project team moves to the next and continues the conversion.

Phased conversion has the same advantages and disadvantages of pilot conversion. In
addition, it means that fewer people are required to perform the actual conversion (and any
associated user training) than if all locations were converted at once.

Conversion 551

c13InstallationAndOperations 11/10/11 8:28 AM Page 551

552 Chapter 13 Installation and Operations

The South Dakota Department of Worker’s Compensation
was sinking under a load of paper files. As a state agency
that oversees that employees are treated fairly when they
are injured on the job, the agency had a plethora of paper
files and filing cabinets. If a person (or company) called to
see the status of an injury claim, the clerk who received
the call would have to take a message, get the paper file,
review the status, and call the person back. Files were
stored in huge filing cabinets and were entered by year
and case number (e.g., the 415th person injured in 2008
would be in a file numbered 08-415). But most people did
not remember their file number and would give a name,
address, and date of injury. The clerk would look in a spi-
ral notebook for the last name around the date that was
given and then find the file number to retrieve the folder.
Some folders were small—possibly a minor cut or minor
injury that was taken care of quickly and the employee
was back to work. Other folders could be very large, with
medical reports from several doctors verifying the extent of
the injury (such as an arm amputation). A digital solution

was suggested; reports could be submitted online using a
secure website. Medical reports could be submitted elec-
tronically, either as a .pdf file or as a faxed digital file. This
solution would also mean that the clerk taking the phone
call could query the database by the person’s name and
access the information in a matter of seconds.

Questions

1. The digital solution was going to change the work
process of filing injury claims, interacting with peo-
ple who filed the claims (or companies) wanting to
see the status of the claim, and with the process of
claims. What might this mean from a work-flow
analysis?

2. In many ways, this was a business process reengi-
neering solution. The proposal was to throw out the
old process for a completely electronic version. What
might a systems analyst do in the data-gathering
stage?

13-A Too Much Paper (Part 1)CONCEPTS

IN ACTION

Simultaneous Conversion Simultaneous conversion, as the name suggests, means that all
locations are converted at the same time. The new system is installed and made ready at all
locations; at a preset time, all users begin using the new system. Simultaneous conversion
is often used with direct conversion, but it can also be used with parallel conversion.

Simultaneous conversion eliminates problems with having different organizational
units using different systems and processes. However, it also means that the organization
must have sufficient staff to perform the conversion and train the users at all locations
simultaneously.

Conversion Modules
Although it is natural to assume that systems are usually installed in their entirety, this is
not always the case.

Whole-System Conversion A whole-system conversion, in which the entire system is
installed at one time, is the most common. It is simple and the easiest to understand. How-
ever, if the system is large and/or extremely complex (e.g., an enterprise resource-planning
system such as SAP or PeopleSoft), the whole system can prove too difficult for users to
learn in one conversion step.

Modular Conversion When the modules5 within a system are separate and distinct, orga-
nizations sometimes choose to convert to the new system one module at a time—that is,
using modular conversion. Modular conversion requires special care in developing the

5 In this case, a module is typically a component or a package, i.e., a set of collaborating classes.

c13InstallationAndOperations 11/10/11 8:28 AM Page 552

system (and usually adds extra cost). Each module either must be written to work with
both the old and new systems or object wrappers (see Chapter 7) must be used to encap-
sulate the old system from the new. When modules are tightly integrated, this is very chal-
lenging and therefore is seldom done. However, when there is only a loose association
between modules, module conversion is easier. For example, consider a conversion from an
old version of Microsoft Office to a new version. It is relatively simple to convert from the
old version of Word to the new version without simultaneously having to change from the
old to the new version of Microsoft Excel.

Modular conversion reduces the amount of training required to begin using the new
system. Users need training only in the new module being implemented. However, modu-
lar conversion does take longer and has more steps than does the whole-system process.

Selecting the Appropriate Conversion Strategy
Each of the three dimensions in Figure 13-3 is independent, so that a conversion strategy
can be developed to fit in any one of the boxes in this figure. Different boxes can also be
mixed and matched into one conversion strategy. For example, one commonly used
approach is to begin with a pilot conversion of the whole system using parallel conversion
in a handful of test locations. Once the system has passed the pilot test at these locations,
it is then installed in the remaining locations using phased conversion with direct cutover.
There are three important factors to consider in selecting a conversion strategy: risk, cost,
and the time required (Figure 13-4).

Risk After the system has passed a rigorous battery of unit, system, integration, and
acceptance testing, it should be bug free . . . maybe. Because humans make mistakes, noth-
ing built by people is ever perfect. Even after all these tests, there might still be a few undis-
covered bugs. The conversion process provides one last step in which to catch these bugs
before the system goes live and the bugs have the chance to cause problems.

Parallel conversion is less risky than is direct conversion because it has a greater chance
of detecting bugs that have gone undiscovered in testing. Likewise, pilot conversion is less
risky than is phased conversion or simultaneous conversion because if bugs do occur, they
occur in pilot test locations whose staff are aware that they might encounter bugs. Because
potential bugs affect fewer users, there is less risk. Likewise, converting a few modules at a
time lowers the probability of a bug because there is more likely to be a bug in the whole
system than in any given module.

How important the risk is depends on the system being implemented—the combina-
tion of the probability that bugs remain undetected in the system and the potential cost
of those undetected bugs. If the system has indeed been subjected to extensive methodical
testing, including alpha and beta testing, then the probability of undetected bugs is lower
than if the testing was less rigorous. However, there still might have been mistakes made in

Conversion 553

Risk High Low Low Medium High High Medium
Cost Low High Medium Medium High Medium High
Time Short Long Medium Long Short Short Long

Conversion Style Conversion Location Conversion Modules

Direct Parallel Pilot Phased Simultaneous Whole-System Modular
Characteristic Conversion Conversion Conversion Conversion Conversion Conversion Conversion

FIGURE 13-4 Characteristics of Conversion Strategies

c13InstallationAndOperations 11/10/11 8:28 AM Page 553

the analysis process, so that although there might be no software bugs, the software might
fail to properly address the business needs.

Assessing the cost of a bug is challenging, but most analysts and senior managers can
make a reasonable guess at the relative cost of a bug. For example, the cost of a bug in an
automated stock market trading program or a heart–lung machine keeping someone alive
is likely to be much greater than a bug in a computer game or word processing program.
Therefore, risk is likely to be a very important factor in the conversion process if the sys-
tem has not been as thoroughly tested as it might have been or if the cost of bugs is high.
If the system has been thoroughly tested or the cost of bugs is not that high, then risk
becomes less important to the conversion decision.

Cost As might be expected, different conversion strategies have different costs. These
costs can include things such as salaries for people who work with the system (e.g., users,
trainers, system administrators, external consultants), travel expenses, operation expenses,
communication costs, and hardware leases. Parallel conversion is more expensive than
direct cutover because it requires that two systems (the old and the new) be operated at the
same time. Employees must then perform twice the usual work because they have to enter
the same data into both the old and the new systems. Parallel conversion also requires the
results of the two systems to be completely crosschecked to make sure there are no differ-
ences between the two, which entails additional time and cost.

Pilot conversion and phased conversion have somewhat similar costs. Simultaneous
conversion has higher costs because more staff are required to support all the locations as
they simultaneously switch from the old to the new system. Modular conversion is more
expensive than whole-system conversion because it requires more programming. The old
system must be updated to work with selected modules in the new system, and modules in
the new system must be programmed to work with selected modules in both the old and
new systems.

Time The final factor is the amount of time required to convert between the old and
the new system. Direct conversion is the fastest because it is immediate. Parallel con-
version takes longer because the full advantages of the new system do not become avail-
able until the old system is turned off. Simultaneous conversion is fastest because all
locations are converted at the same time. Phased conversion usually takes longer than
pilot conversion because once the pilot test is complete all remaining locations are usu-
ally (but not always) converted simultaneously. Phased conversion proceeds in waves,
often requiring several months before all locations are converted. Likewise, modular
conversion takes longer than whole-system conversion because the models are intro-
duced one after another.

554 Chapter 13 Installation and Operations

Suppose you are leading the conversion from one word
processor to another at your university. Develop a conver-
sion plan (i.e., technical issues only). You have also been
asked to develop a conversion plan for the university’s

new Web-based course registration system. How would
the second conversion plan be similar to and different
from the one you developed for the word processor?

13-1 Developing a Conversion PlanYOUR

TURN

c13InstallationAndOperations 11/10/11 8:28 AM Page 554

CHANGE MANAGEMENT6

In the context of a systems development project, change management is the process of
helping people to adopt and adapt to the to-be system and its accompanying work
processes without undue stress. There are three key roles in any major organizational
change. The first is the sponsor of the change—the person who wants the change. This person
is the business sponsor who first initiated the request for the new system (see Chapter 2).
Usually, the sponsor is a senior manager of the part of the organization that must adopt
and use the new system. It is critical that the sponsor be active in the change management
process because a change that is clearly being driven by the sponsor, not by the project team
or the IS organization, has greater legitimacy. The sponsor has direct management authority
over those who adopt the system.

The second role is that of the change agent—the person(s) leading the change effort.
The change agent, charged with actually planning and implementing the change, is usually
someone outside of the business unit adopting the system and therefore has no direct man-
agement authority over the potential adopters. Because the change agent is an outsider, he
or she has less credibility than do the sponsor and other members of the business unit.
After all, once the system has been installed, the change agent usually leaves and thus has
no ongoing impact.

Throughout the 1960s, 1970s, and 1980s, the U.S. Army
automated its installations (army bases, in civilian terms).
Automation was usually a local effort at each of the more
than 100 bases. Although some bases had developed soft-
ware together (or borrowed software developed at other
bases), each base often had software that performed dif-
ferent functions or performed the same function in differ-
ent ways. In 1989, the army decided to standardize the
software so that the same software would be used every-
where. This would greatly reduce software maintenance
and also reduce training when soldiers were transferred
between bases.

The software took four years to develop. The system
was quite complex, and the project manager was con-
cerned that there was a high risk that not all requirements
of all installations had been properly captured. Cost and
time were less important because the project had already
run four years and cost $100 million.

Therefore, the project manager chose a modular pilot
conversion using parallel conversion. The manager
selected seven installations, each representing a different
type of army installation (e.g., training base, arsenal, depot)
and began the conversion. All went well, but several new
features were identified that had been overlooked during
the analysis, design, and construction. These were added
and the pilot testing resumed. Finally, the system was
installed in the rest of the army installations using a phased
direct conversion of the whole system.

—Alan Dennis

Questions

1. Do you think the conversion strategy was appropriate?
2. Regardless of whether you agree, what other con-

version strategy could have been used?

13-B U.S. Army Installation SupportCONCEPTS

IN ACTION

6 The material in this section is related to the Enhanced Unified Process’s Transition and Production phases and the
Configuration and Change Management workflow (see Figure 1-18). Many books have been written on change
management. Some of our favorites are the following: Patrick Connor and Linda Lake, Managing Organizational
Change, 2nd ed. (Westport, CT: Praeger, 1994); Douglas Smith, Taking Charge of Change (Reading, MA: Addison-
Wesley, 1996); Daryl Conner, Managing at the Speed of Change (New York: Villard Books, 1992); and Mary Lynn
Manns and Linda Rising, Fearless Change: Patterns for Introducing New Ideas (Boston: Addison- Wesley, 2005).

Change Management 555

c13InstallationAndOperations 11/10/11 8:28 AM Page 555

556 Chapter 13 Installation and Operations

The third role is that of potential adopters, or targets of the change—the people who
actually must change. These are the people for whom the new system is designed and who
will ultimately choose to use or not use the system.

In the early days of computing, many project teams simply assumed that their job ended
when the old system was converted to the new system at a technical level. The philosophy was
“build it and they will come.” Unfortunately, that happens only in the movies. Resistance to
change is common in most organizations. Therefore, the change management plan is an
important part of the overall installation plan that glues together the key steps in the change
management process. Successful change requires that people want to adopt the change and are
able to adopt the change. The change management plan has four basic steps: revising man-
agement policies, assessing the cost and benefit models of potential adopters, motivating adop-
tion, and enabling people to adopt through training (see Figure 13-2). However, before we can
discuss the change management plan, we must first understand why people resist change.

Understanding Resistance to Change7

People resist change—even change for the better—for very rational reasons. What is good
for the organization is not necessarily good for the people who work there. For example,
consider an order-processing clerk who used to receive orders to be shipped on paper ship-
ping documents but now uses a computer to receive the same information. Rather than
typing shipping labels with a typewriter, the clerk now clicks on the print button on the
computer and the label is produced automatically. The clerk can now ship many more
orders each day, which is a clear benefit to the organization. The clerk, however, probably
doesn’t really care how many packages are shipped. His or her pay doesn’t change; it’s just
a question of which the clerk prefers to use, a computer or typewriter. Learning to use the
new system and work processes—even if the change is minor—requires more effort than
continuing to use the existing, well-understood system and work processes.

So why do people accept change? Simply put, every change has a set of costs and ben-
efits associated with it. If the benefits of accepting the change outweigh the costs of the
change, then people change. And sometimes the benefit of change is avoidance of the pain
that might be experienced if the change were not adopted (e.g., if you don’t change, you are
fired, so one of the benefits of adopting the change is that you still have a job).

In general, when people are presented with an opportunity for change, they perform a
cost–benefit analysis (sometime consciously, sometimes subconsciously) and decide the
extent to which they will embrace and adopt the change. They identify the costs of and ben-
efits from the system and decide whether the change is worthwhile. However, it is not that
simple, because most costs and benefits are not certain. There is some uncertainty as to
whether a certain benefit or cost will actually occur; so both the costs of and benefits from
the new system need to be weighted by the degree of certainty associated with them
(Figure 13-5). Unfortunately, most humans tend to overestimate the probability of costs
and underestimate the probability of benefits.

There are also costs and, sometimes, benefits associated with the actual transition
process itself. For example, suppose we found a nicer house or apartment than our current
one. Even if we liked it better, we might decide not to move simply because the cost of mov-
ing outweighed the benefits from the new house or apartment itself. Likewise, adopting a
new computer system might require us to learn new skills, which could be seen as a cost to
some people or as a benefit to others, if they perceived that those skills would somehow
provide other benefits beyond the use of the system itself. Once again, any costs and

7 This section benefited from conversations with Dr. Robert Briggs, research scientist at the Center for the Man-
agement of Information at the University of Arizona.

c13InstallationAndOperations 11/10/11 8:28 AM Page 556

benefits from the transition process must be weighted by the certainty with which they will
occur (see Figure 13-5).

Taken together, these two sets of costs and benefits (and their relative certainties) affect
the acceptance of change or resistance to change that project teams encounter when
installing new systems in organizations. The first step in change management is to under-
stand the factors that inhibit change—the factors that affect the perception of costs and
benefits and certainty that they will be generated by the new system. It is critical to under-
stand that the real costs and real benefits are far less important than the perceived costs and
perceived benefits. People act on what they believe to be true, not on what is true. Thus, any
understanding of how to motivate change must be developed from the viewpoint of the
people expected to change, not from the viewpoint of those leading the change.

As-Is
System

Restraining
Factors

Enabling
Factors

Costs of
Transition

X
Certainty of

Costs
Occurring

Benefits of
Transition

X
Certainty of

Benefits
Occurring

To-Be
System

Transition

Restraining
Factors

Enabling
Factors

Costs of
To-Be System

X
Certainty of

Costs
Occurring

Benefits of
To-Be System

X
Certainty of

Benefits
Occurring

FIGURE 13-5
The Costs and Benefits
of Change

One of the first commercial software packages I devel-
oped was a DSS to help schedule orders in a paper mill.
The system was designed to help the person who sched-
uled orders decide when to schedule particular orders to
reduce waste in the mill. This was a very challenging
problem—so challenging, in fact, that it usually took the
scheduler a year or two to really learn how to do the job
well.

The software was tested by a variety of paper mills
over the years and always reduced the amount of waste,
usually by about 25 percent but sometimes by 75 percent
when a scheduler new to the job was doing the schedul-
ing. Although we ended up selling the package to most
paper mills that tested it, we usually encountered signifi-
cant resistance from the person doing the scheduling

(except when the scheduler was new to the job and the
package clearly saved a significant amount). At the time,
I assumed that the resistance to the system was related to
the amount of waste reduced: the less waste reduced, the
more resistance because the payback analysis showed it
took longer to pay for the software.

—Alan Dennis

Questions

1. What is another possible explanation for the dif-
ferent levels of resistance encountered at different
mills?

2. How might this be addressed?

13-C Understanding Resistance to a DSSCONCEPTS

IN ACTION

Change Management 557

c13InstallationAndOperations 11/10/11 8:28 AM Page 557

558 Chapter 13 Installation and Operations

Revising Management Policies
The first major step in the change management plan is to change the management policies that
were designed for the as-is system to new management policies designed to support the to-be
system. Management policies provide goals, define how work processes should be performed,
and determine how organizational members are rewarded. No computer system will be suc-
cessfully adopted unless management policies support its adoption. Many new computer sys-
tems bring changes to business processes; they enable new ways of working. Unless the policies
that provide the rules and rewards for those processes are revised to reflect the new opportu-
nities that the system permits, potential adopters cannot easily use it.

Management has three basic tools for structuring work processes in organizations.8

The first are the standard operating procedures (SOPs) that become the habitual routines for
how work is performed. The SOPs are both formal and informal. Formal SOPs define
proper behavior. Informal SOPs are the norms that have developed over time for how
processes are actually performed. Management must ensure that the formal SOPs are
revised to match the to-be system. The informal SOPs will then evolve to refine and fill in
details absent in the formal SOPs.

The second aspect of management policy is defining how people assign meaning to
events. What does it mean to “be successful” or “do good work”? Policies help people
understand meaning by defining measurements and rewards. Measurements explicitly
define meaning because they provide clear and concrete evidence about what is important
to the organization. Rewards reinforce measurements because “what gets measured gets
done” (an overused but accurate saying). Measurements must be carefully designed to
motivate desired behavior. The IBM credit example (Your Turn 3-2) illustrates the prob-
lem when flawed measurements drive improper behavior (when the credit analysts became
too busy to handle credit requests, they would find nonexistent errors so they could return
them unprocessed).

A third aspect of management policy is resource allocation. Managers can have clear
and immediate impacts on behavior by allocating resources. They can redirect funds and
staff from one project to another, create an infrastructure that supports the new system,
and invest in training programs. Each of these activities has both a direct and symbolic
effect. The direct effect comes from the actual reallocation of resources. The symbolic effect
shows that management is serious about its intentions. There is less uncertainty about
management’s long-term commitment to a new system when potential adopters see
resources being committed to support it.

8 This section builds on the work of Anthony Giddons, The Constitution of Society: Outline of the Theory of Structure
(Berkeley: University of California Press, 1984). A good summary of Giddons’s theory that has been revised and
adapted for use in understanding information systems is an article by Wanda Orlikowski and Dan Robey: “Information
Technology and the Structuring of Organizations,” Information Systems Research 2, no. 2 (1991): 143–169.

Identify and explain three standard operating procedures
for the course in which you are using this book. Discuss

whether they are formal or informal.

13-2 Standard Operating ProceduresYOUR

TURN

c13InstallationAndOperations 11/10/11 8:28 AM Page 558

Assessing Costs and Benefits
The next step in developing a change management plan is to develop two clear and concise
lists of costs and benefits provided by the new system (and the transition to it) compared
with the as-is system. The first list is developed from the perspective of the organization,
which should flow easily from the business case developed during the feasibility study and
refined over the life of the project (see Chapter 2). This set of organizational costs and ben-
efits should be distributed widely so that everyone expected to adopt the new system
should clearly understand why the new system is valuable to the organization.

The second list of costs and benefits is developed from the viewpoints of the different
potential adopters expected to change, or stakeholders in the change. For example, one set
of potential adopters may be the frontline employees, another may be the first-line super-
visors, and yet another might be middle management. Each of these potential adopters, or
stakeholders, may have a different set of costs and benefits associated with the change—
costs and benefits that can differ widely from those of the organization. In some situations,
unions may be key stakeholders that can make or break successful change.

Many systems analysts naturally assume that frontline employees are the ones whose
set of costs and benefits are the most likely to diverge from those of the organization and
thus are the ones who most resist change. However, they usually bear the brunt of prob-
lems with the current system. When problems occur, they often experience them firsthand.
Middle managers and first-line supervisors are the most likely to have a divergent set of
costs and benefits and, therefore, resist change because new computer systems often change
how much power they have. For example, a new computer system may improve the orga-
nization’s control over a work process (a benefit to the organization) but reduce the decision-
making power of middle management (a clear cost to middle managers).

An analysis of the costs and benefits for each set of potential adopters, or stakeholders,
will help pinpoint those who will likely support the change and those who might resist the
change. The challenge at this point is to try to change the balance of the costs and benefits
for those expected to resist the change so that they support it (or at least do not actively
resist it). This analysis could uncover some serious problems that have the potential to
block the successful adoption of the system. It may be necessary to reexamine the manage-
ment policies and make significant changes to ensure that the balance of costs and benefits
is such that important potential adopters are motivated to adopt the system.

Figure 13-6 summarizes some of the factors that are important to successful change.
The first and most important reason is a compelling personal reason to change. All change
is made by individuals, not organizations. If there are compelling reasons for the key
groups of individual stakeholders to want the change, then the change is more likely to be
successful. Factors such as increased salary, reduced unpleasantness, and—depending on
the individuals—opportunities for promotion and personal development can be impor-
tant motivators. However, if the change makes current skills less valuable, individuals
might resist the change because they have invested a lot of time and energy in acquiring
those skills, and anything that diminishes those skills may be perceived as diminishing the
individual (because important skills bring respect and power).

There must also be a compelling reason for the organization to need the change; oth-
erwise, individuals become skeptical that the change is important and are less certain it
will, in fact, occur. Probably the hardest organization to change is an organization that has
been successful because individuals come to believe that what worked in the past will con-
tinue to work. By contrast, in an organization that is on the brink of bankruptcy, it is easier
to convince individuals that change is needed. Commitment and support from credible
business sponsors and top management are also important in increasing the certainty that
the change will occur.

Change Management 559

c13InstallationAndOperations 11/10/11 8:28 AM Page 559

560 Chapter 13 Installation and Operations

Factor Examples Effects Actions to Take

Benefits of to-be
system

Compelling per-
sonal reason(s)
for change

Increased pay, fewer
unpleasant aspects,
opportunity for pro-
motion, most existing
skills remain valuable

If the new system provides clear
personal benefits to those who
must adopt it, they are more
likely to embrace the change.

Perform a cost–benefit analysis
from the viewpoint of the
stakeholders, make changes
where needed, and actively
promote the benefits.

Certainty of
benefits

Compelling
organizational
reason(s) for
change

Risk of bankruptcy,
acquisition,
government
regulation.

If adopters do not understand
why the organization is
implementing the change,
they are less certain that the
change will occur.

Perform a cost–benefit analysis
from the viewpoint of the
organization and launch a
vigorous information cam-
paign to explain the results
to everyone.

Demonstrated top
management
support

Active involvement,
frequent mentions in
speeches

If top management is not seen
to actively support the change,
there is less certainly that the
change will occur.

Encourage top management
to participate in the infor-
mation campaign.

Committed and
involved business
sponsor

Active involvement,
frequent visits to
users and project
team, championing

If the business sponsor (the
functional manager who
initiated the project) is not
seen to actively support the
change, there is less certainty
that the change will occur.

Encourage the business
sponsor to participate in the
information campaign and
play an active role in the
change management plan.

Credible top
management and
business sponsor

Management and
sponsor who do what
they say instead of
being members of the
“management fad of
the month” club.

If the business sponsor and top
management have credibility
in the eyes of the adopters,
the certainty of the claimed
benefits is higher.

Ensure that the business
sponsor and/or top manage-
ment has credibility so that
such involvement will help;
if there is no credibility,
involvement will have little
effect.

Costs of
transition

Low personal costs
of change

Few new skills needed. The cost of the change is
not borne equally by all
stakeholders; the costs are
likely to be higher for some.

Perform a cost–benefit analysis
from the viewpoint of the
stakeholders, make changes
where needed, and actively
promote the low costs.

Certainty of costs Clear plan for
change

Clear dates and
instructions for change,
clear expectations

If there is a clear migration
plan, it will likely lower the
perceived costs of transition.

Publicize the migration plan.

Credible change
agent

Previous experience
with change, does
what he/she promises
to do

If the change agent has
credibility in the eyes of the
adopters, the certainty of the
claimed costs is higher.

If the change agent is not
credible, then change will
be difficult.

Clear mandate for
change agent
from sponsor

Open support for
change agent when
disagreements occur.

If the change agent has a clear
mandate from the business
sponsor, the certainty of the
claimed costs is higher.

The business sponsor must
actively demonstrate
support for the change
agent.

FIGURE 13-6 Major Factors in Successful Change

The likelihood of successful change is increased when the cost of the transition to indi-
viduals who must change is low. The need for significantly different new skills or disruptions
in operations and work habits can create resistance. A clear migration plan developed by a
credible change agent who has support from the business sponsor is an important factor in
increasing the certainty about the costs of the transition process.

c13InstallationAndOperations 11/10/11 8:28 AM Page 560

Motivating Adoption
The single most important factor in motivating a change is providing clear and convincing
evidence of the need for change. Simply put, everyone who is expected to adopt the change
must be convinced that the benefits from the to-be system outweigh the costs of changing.

There are two basic strategies to motivating adoption: informational and political.
Both strategies are often used simultaneously. With an informational strategy, the goal is to
convince potential adopters that the change is for the better. This strategy works when the
cost–benefit set of the target adopters has more benefits than costs. In other words, there
really are clear reasons for the potential adopters to welcome the change.

Using this approach, the project team provides clear and convincing evidence of the
costs and benefits of moving to the to-be system. The project team writes memos and
develops presentations that outline the costs and benefits of adopting the system from the
perspective of the organization and from the perspective of the target group of potential
adopters. This information is disseminated widely throughout the target group, much like
an advertising or public relations campaign. It must emphasize the benefits and increase
the certainty in the minds of potential adopters that these benefits will actually be achieved.
In our experience, it is always easier to sell painkillers than vitamins; that is, it is easier to
convince potential adopters that a new system will remove a major problem (or other
source of pain) than that it will provide new benefits (e.g., increase sales). Therefore, infor-
mational campaigns are more likely to be successful if they stress reducing or eliminating
problems rather than focusing on providing new opportunities.

The other strategy for motivating change is a political strategy. With a political strat-
egy, organizational power, not information, is used to motivate change. This approach is
often used when the cost–benefit set of the target adopters has more costs than benefits. In
other words, although the change might benefit the organization, there are no reasons for
the potential adopters to welcome the change.

The political strategy is usually beyond the control of the project team. It requires
someone in the organization who holds legitimate power over the target group to influence
the group to adopt the change. This may be done in a coercive manner (e.g., adopt the sys-
tem or you’re fired) or in a negotiated manner, in which the target group gains benefits in
other ways that are linked to the adoption of the system (e.g., linking system adoption to
increased training opportunities). Management policies can play a key role in a political
strategy by linking salary to certain behaviors desired with the new system.

In general, for any change that has true organizational benefits, about 20 to 30 percent
of potential adopters will be ready adopters. They recognize the benefits, quickly adopt the
system, and become proponents of the system. Another 20 to 30 percent are resistant
adopters. They simply refuse to accept the change and they fight it, either because the new
system has more costs than benefits for them personally or because they place such a high
cost on the transition process itself that no amount of benefits from the new system can
outweigh the change costs. The remaining 40 to 60 percent are reluctant adopters. They
tend to be apathetic and will go with the flow to either support or resist the system, depend-
ing on how the project evolves and how their coworkers react to the system. Figure 13-7
illustrates the actors who are involved in the change management process.

The goal of change management is to actively support and encourage the ready
adopters and help them win over the reluctant adopters. There is usually little that can be
done about the resistant adopters because their set of costs and benefits may be divergent
from those of the organization. Unless there are simple steps that can be taken to rebalance
their costs and benefits or the organization chooses to adopt a strongly political strategy, it
is often best to ignore this small minority of resistant adopters and focus on the larger
majority of ready and reluctant adopters.

Change Management 561

c13InstallationAndOperations 11/10/11 8:28 AM Page 561

562 Chapter 13 Installation and Operations

Enabling Adoption: Training
Potential adopters might want to adopt the change, but unless they are capable of adopt-
ing it, they won’t. Careful training enables adoption by providing the skills needed to adopt
the change. Training is probably the most self-evident part of any change management
initiative. How can an organization expect its staff members to adopt a new system if they
are not trained? However, we have found that training is one of the most commonly over-
looked parts of the process. Many organizations and project managers simply expect
potential adopters to find the system easy to learn. Because the system is presumed to be so
simple, it is taken for granted that potential adopters should be able to learn with little
effort. Unfortunately, this is usually an overly optimistic assumption.

Every new system requires new skills, either because the basic work processes have
changed (sometimes radically in the case of BPR; see Chapter 3) or because the computer sys-
tem used to support the processes is different. The more radical the changes to the business
processes, the more important it is to ensure the organization has the new skills required to
operate the new business processes and supporting information systems. In general, there
are three ways to get these new skills. One is to hire new employees who have the needed skills
that the existing staff does not. Another is to outsource the processes to an organization that
has the skills that the existing staff does not. Both these approaches are controversial and are
usually considered only in the case of BPR when the new skills needed are likely to be the most
different from the set of skills of the current staff. In most cases, organizations choose the third
alternative: training existing staff in the new business processes and the to-be system. Every
training plan must consider what to train and how to deliver the training.

What to Train What training should you provide to the system users? It’s obvious: how
to use the system. The training should cover all the capabilities of the new system so users
understand what each module does, right? Wrong. Training for business systems should
focus on helping the users to accomplish their jobs, not on how to use the system. The sys-
tem is simply a means to an end, not the end in itself. This focus on performing the job
(i.e., the business processes), not using the system, has two important implications. First,
the training must focus on the activities around the system as well as on the system itself.
The training must help the users understand how the computer fits into the bigger picture
of their jobs. The use of the system must be put in context of the manual business processes
as well as of those that are computerized, and it must also cover the new management poli-
cies that were implemented along with the new computer system.

Second, the training should focus on what the user needs to do, not what the system
can do. This is a subtle—but very important—distinction. Most systems provide far more
capabilities than the users will need to use (e.g., when was the last time you wrote a macro
in Microsoft Word?). Rather than attempting to teach the users all the features of the sys-
tem, training should instead focus on the much smaller set of activities that users perform
on a regular basis and ensure that users are truly expert in those. When the focus is on the
20 percent of functions that the users will use 80 percent of the time (instead of attempting

The sponsor wants The change agent leads Potential adopters are the people
the change to occur. the change effort. who must change.

20–30 percent are ready adopters.
20–30 percent are resistant adopters.
40–60 percent are reluctant adopters.

Sponsor Change Agent Potential Adopters

FIGURE 13-7
Actors in the Change
Management Process

c13InstallationAndOperations 11/10/11 8:28 AM Page 562

to cover all functions), users become confident about their ability to use the system. Train-
ing should mention the other little-used functions but only so that users are aware of their
existence and know how to learn about them when their use becomes necessary.

One source of guidance for designing training materials is the use cases. The use cases
outline the common activities that users perform and thus can be helpful in understanding
the business processes and system functions that are likely to be most important to the users.

Some clerks at the South Dakota Department of Worker’s
Compensation (see Concepts in Action 13-A) were afraid
that the digital solution might not work. What if they
could not find an electronic file on the computer? What if
a hard drive crashed or files were accidentally deleted?
What if they could not retrieve the electronic file?

Question

In terms of organizational feasibility and adoption, what
might an analyst do to convince these clerks to adopt
the new technology?

13-D Too Much Paper (Part 2)CONCEPTS

IN ACTION

How to Train There are many ways to deliver training. The most commonly used
approach is classroom training, in which many users are trained at the same time by the
same instructor. This has the advantage of training many users at one time with only one
instructor and creates a shared experience among the users.

It is also possible to provide one-on-one training, in which one trainer works closely
with one user at a time. This is obviously more expensive, but the trainer can design the
training program to meet the needs of individual users and can better ensure that the users
really do understand the material. This approach is typically used only when the users are
very important or when there are very few users.

Another approach that is becoming more common is to use some form of computer-
based training (CBT), in which the training program is delivered via computer, either on
CD or over the Web. CBT programs can include text slides, audio, and even video and ani-
mation. CBT is typically more costly to develop but is cheaper to deliver because no
instructor is needed to actually provide the training.

Figure 13-8 summarizes four important factors to consider in selecting a training
method: cost to develop, cost to deliver, impact, and reach. CBT is typically more expensive
to develop than one-on-one or classroom training, but it is less expensive to deliver. One-
on-one training has the most impact on the user because it can be customized to the user’s
precise needs, knowledge, and abilities, whereas CBT has the least impact. However, CBT
has the greatest reach—the ability to train the most users over the widest distance in the
shortest time—because it is much simpler to distribute than classroom and one-on-one
training, simply because no instructors are needed.

Cost to develop Low to Medium Medium High
Cost to deliver High Medium Low
Impact High Medium to High Low to Medium
Reach Low Medium High

One-on-One Classroom Computer-Based
Training Training Training

FIGURE 13-8
Selecting a
Training Method

Change Management 563

c13InstallationAndOperations 11/10/11 8:28 AM Page 563

564 Chapter 13 Installation and Operations

Figure 13-8 suggests a clear pattern for most organizations. If there are only a few users
to train, one-on-one training is the most effective. If there are many users to train, many
organizations turn to CBT. We believe that the use of CBT will increase in the future. Quite
often, large organizations use a combination of all three methods. Regardless of which
approach is used, it is important to leave the users with a set of easily accessible materials
that can be referred to long after the training has ended (usually a quick reference guide
and a set of manuals, whether on paper or in electronic form).

POST-IMPLEMENTATION ACTIVITIES9

The goal of post-implementation activities is the institutionalization of the use of the new
system—that is, to make it the normal, accepted, routine way of performing the business
processes. Post-implementation activities attempt to refreeze the organization after the suc-
cessful transition to the new system. Although the work of the project team naturally winds
down after implementation, the business sponsor and sometimes the project manager are
actively involved in refreezing. These two—and, ideally, many other stakeholders—actively
promote the new system and monitor its adoption and usage. They usually provide a steady
flow of information about the system and encourage users to contact them to discuss issues.

In this section, we examine three key post-implementation activities: system support
(providing assistance in the use of the system), system maintenance (continuing to refine
and improve the system), and project assessment (analyzing the project to understand what
activities were done well—and should be repeated—and what activities need improvement
in future projects).

9 The material in this section is related to the Enhanced Unified Process’s Production Phase and the Operations
and Support workflow (see Figure 1-18).

Suppose you are leading the conversion from one word
processor to another in your organization. Develop an

outline of topics that would be included in the training.
Develop a plan for training delivery.

13-3 Developing a Training PlanYOUR

TURN

System Support
Once the project team has installed the system and performed the change management
activities, the system is officially turned over to the operations group. This group is respon-
sible for operating the system, whereas the project team was responsible for developing the
system. Members of the operations group are usually closely involved in the installation
activities because they are the ones who must ensure that the system actually works. After
the system is installed, the project team leaves but the operations group remains.

Providing system support means helping the users to use the system. Usually, this
means providing answers to questions and helping users understand how to perform a cer-
tain function; this type of support can be thought of as on-demand training.

Online support is the most common form of on-demand training. This includes the doc-
umentation and help screens built into the system, as well as separate websites that provide
answers to frequently asked questions (FAQs), which enable users to find answers without
contacting a person. Obviously, the goal of most systems is to provide sufficiently good online

c13InstallationAndOperations 11/10/11 8:28 AM Page 564

support so that the user doesn’t need to contact a person, because providing online support
is much less expensive than is providing a person to answer questions.

Most organizations provide a help desk that provides a place for a user to talk with a
person who can answer questions (usually over the phone but sometimes in person). The
help desk supports all systems, not just one specific system, so it receives calls about a wide
variety of software and hardware. The help desk is operated by level-1 support staff, who
have very broad computer skills and are able to respond to a wide range of requests, from
network problems and hardware problems to problems with commercial software and
problems with the business application software developed in-house.

The goal of most help desks is to have the level-1 support staff resolve 80 percent of
the help requests they receive on the first call. If the issue cannot be resolved by level 1 sup-
port staff, a problem report (Figure 13-9) is completed (often using a special computer sys-
tem designed to track problem reports) and passed to a level-2 support staff member.

The level-2 support staff members are people who know the application system well and
can provide expert advice. For a new system, they are usually selected during the implementa-
tion phase and become familiar with the system as it is being tested. Sometimes the level-2 sup-
port staff members participate in training during the change management process to become
more knowledgeable about the system, the new business processes, and the users themselves.

The level-2 support staff works with users to resolve problems. Most problems are suc-
cessfully resolved by the level-2 staff. However, sometimes, particularly in the first few
months after the system is installed, the problem turns out to be a bug in the software that
must be fixed. In this case, the problem report becomes a change request that is passed to
the system maintenance group (see the next section).

• Time and date of the report
• Name, e-mail address, and telephone number of the

support person taking the report
• Name, e-mail address, and telephone number of the

person who reported the problem
• Software and/or hardware causing problem
• Location of the problem
• Description of the problem
• Action taken
• Disposition (problem fixed or forwarded to system

maintenance)

FIGURE 13-9
Elements of a
Problem Report

The South Dakota Department of Worker’s Compensation
had legal hurdles to implementing a digital solution to
handle workers’ compensation claims (see Concepts in
Action 13-A and 13-D). One hurdle was that the previous
paper method had physical signatures from employees
indicating that they had received treatment or from the
doctor indicating that medical treatment was performed.

Question

What legal aspect might arise from only having digital
signatures or only electronic or paper copies of docu-
ments instead of physical documents?

13-E Too Much Paper (Part 3)CONCEPTS

IN ACTION

Post-Implementation Activities 565

c13InstallationAndOperations 11/10/11 8:28 AM Page 565

566 Chapter 13 Installation and Operations

System Maintenance
System maintenance is the process of refining the system to make sure it continues to meet
business needs. Substantially more money and effort is devoted to system maintenance
than to the initial development of the system, simply because a system continues to change
and evolve as it is used. Most beginning systems analysts and programmers work first on
maintenance projects; usually only after they have gained some experience are they
assigned to new development projects.

Every system is “owned” by a project manager in the IS group (Figure 13-10). This indi-
vidual is responsible for coordinating the system’s maintenance effort for that system. When-
ever a potential change to the system is identified, a change request is prepared and forwarded
to the project manager. The change request is a smaller version of the system request discussed
in Chapter 2. It describes the change requested and explains why the change is important.

2. Change Request
with feasibility,
costs, and benefits

3. Priority

4. Change Request

5. Design

6. Changed
System

1. Potential
Change

Analyst

Users

Change Committee

Programmer

Project
Manager

Problem Reports

Results: Passed Open items:

Test ID: Requirement addressed:

Objective:

Test cases

Interface ID

Script

Expected results notes

Actual results notes

1.

2.

3.

4.

5.

6.

Data Field Value Entered

Problem Reports

ORD56-3.5 ZIP code/postal code blank

ORD56-3.5 ZIP code/postal code 9021

ORD56-3.5 ZIP code/postal code 90210

ORD56-3.5 ZIP code/postal code C1A58

ORD56-3.5 ZIP code/postal code CAA 2C6

ORD56-3.5

Test 3 and 6 are valid U.S. and Canadian codes that match tested city. All others should be rejected.

Test 3 and 6 accepted. Tests 1, 2, 4, and 5 were rejected with correct message.

ZIP code/postal code C1A 2C6

12 Verify ordering information

Ensure that the information entered by the customer on the place-order form is valid

Changes to Other Systems

Results: Passed Open items:

Test ID: Requirement addressed:

Objective:

Test cases

Interface ID

Script

Expected results notes

Actual results notes

1.

2.

3.

4.

5.

6.

Data Field Value Entered

Change Request

ORD56-3.5 ZIP code/postal code blank

ORD56-3.5 ZIP code/postal code 9021

ORD56-3.5 ZIP code/postal code 90210

ORD56-3.5 ZIP code/postal code C1A58

ORD56-3.5 ZIP code/postal code CAA 2C6

ORD56-3.5

Test 3 and 6 are valid U.S. and Canadian codes that match tested city. All others should be rejected.

Test 3 and 6 accepted. Tests 1, 2, 4, and 5 were rejected with z message.

ZIP code/postal code C1A 2C6

12 Verify ordering information

Ensure that the information entered by the customer on the place-order form is valid

Software or Network Changes

FIGURE 13-10 Processing a Change Request

c13InstallationAndOperations 11/10/11 8:28 AM Page 566

Changes can be small or large. Change requests that are likely to require a significant
effort are typically handled in the same manner as system requests: they follow the same
process as the project described in this book, starting with project identification in Chap-
ter 2 and following through installation in this chapter. Minor changes typically follow a
smaller version of this same process. There is an initial assessment of feasibility and of
costs and benefits, and the change request is prioritized. Then a systems analyst (or a pro-
grammer/analyst) performs the analysis, which might include interviewing users, and
prepares an initial design before programming begins. The new (or revised) program is
then extensively tested before the system is converted from the old system to the revised one.

Change requests typically come from five sources. The most common source is prob-
lem reports from the operations group that identify bugs in the system that must be fixed.
These are usually given immediate priority because a bug can cause significant problems.
Even a minor bug can cause major problems by upsetting users and reducing their accep-
tance of and confidence in the system.

The second most common source of change requests is enhancement to the system
from users. As users work with the system, they often identify minor changes in the design
that can make the system easier to use or identify additional functions that are needed.
Such enhancements are important in satisfying the users and are often key in ensuring that
the system changes as the business requirements change. Enhancements are often given
second priority after bug fixes.

A third source of change requests is other system development projects. For example,
if the doctor in the appointment problem decided that he or she would like to have a Web-
based appointment system that would allow patients to directly interact with the current
appointment system, it is likely that other systems, such as billing, would have to be mod-
ified to ensure that the two systems would work together. These changes required by the
need to integrate two systems are generally rare but are becoming more common as system
integration efforts become more common.

A fourth source of change requests is those that occur when underlying software or
networks change. For example, new versions of Windows often require an application to
change the way the system interacts with Windows or enables application systems to take
advantage of new features that improve efficiency. Although users might never see these
changes (because most changes are inside the system and do not affect its user interface or
functionality), these changes can be among the most challenging to implement because
analysts and programmers must learn about the new system characteristics, understand
how application systems use (or can use) those characteristics, and then make the needed
programming changes.

The fifth source of change requests is senior management. These change requests are
often driven by major changes in the organization’s strategy or operations. These signifi-
cant change requests are typically treated as separate projects, but the project manager
responsible for the initial system is often placed in charge of the new project.

Project Assessment
The goal of project assessment is to understand what was successful about the system and
the project activities (and, therefore, should be continued in the next system or project) and
what needs to be improved. Project assessment is not routine in most organizations, except
for military organizations, which are accustomed to preparing after-action reports.
Nonetheless, assessment can be an important component in organizational learning because
it helps organizations and people understand how to improve their work. It is particularly
important for junior staff members because it helps promote faster learning. There are two
primary parts to project assessment—project team review and system review.

Post-Implementation Activities 567

c13InstallationAndOperations 11/10/11 8:28 AM Page 567

568 Chapter 13 Installation and Operations

Project Team Review A project team review focuses on the way the project team carried
out its activities. Each project member prepares a short two- to three-page document that
reports and analyzes his or her performance. The focus is on performance improvement,
not penalties for mistakes made. By explicitly identifying mistakes and understanding their
causes, project team members will, it is hoped, be better prepared for the next time they
encounter a similar situation—and less likely to repeat the same mistakes. Likewise, by
identifying excellent performance, team members will be able to understand why their
actions worked well and how to repeat them in future projects.

How do you avoid bugs in the commercial software you
buy? Here are six tips:

1. Know your software: Find out if the few programs you
use day in and day out have known bugs and patches,
and track the Web sites that offer the latest information
on them.

2. Back up your data: This dictum should be tattooed on
every monitor. Stop reading right now and copy the
data you can’t afford to lose onto a second hard disk
or Web server. We’ll wait.

3. Don’t upgrade—yet: It’s tempting to upgrade to the
latest and greatest version of your favorite software,
but why chance it? Wait a few months, check out other
users’ experiences with the upgrade on Usenet news-
groups or the vendor’s own discussion forum, and then
go for it. But only if you must.

4. Upgrade slowly: If you decide to upgrade, allow your-
self at least a month to test the upgrade on a separate
system before you install it on all the computers in
your home or office.

5. Forget the betas: Installing beta software on your pri-
mary computer is a game of Russian roulette. If you
really have to play with beta software, get a second
computer.

6. Complain: Complain: The more you complain about
bugs and demand remedies, the more costly it is for
vendors to ship buggy products. It’s like voting—the
more people participate, the better the results.

Source: “Software Bugs Run Rampant,” PC World 17, no. 1 (January
1999): 46.

13-1 Beating Buggy SoftwarePRACTICAL

TIP

The project manager, who meets with the team members to help them understand how
to improve their performance, assesses the documents prepared by each team member. The
project manager then prepares a summary document that outlines the lessons learned from
the project. This summary identifies what actions should be taken in future projects to
improve performance but is careful not to identify team members who made mistakes. The
summary is widely circulated among all project managers to help them understand how to
manage their projects better. Often, it is also circulated among regular staff members who did
not work on the project so that they, too, can learn from other projects.

System Review The focus of the system review is to understand the extent to which the
proposed costs and benefits from the new system identified during feasibility analysis were
actually recognized from the implemented system. Project team review is usually con-
ducted immediately after the system is installed while key events are still fresh in team
members’ minds, but system review is often undertaken several months after the system is
installed because it often takes a while before the system can be properly assessed.

c13InstallationAndOperations 11/10/11 8:28 AM Page 568

System review starts with the system request and feasibility analysis prepared at the
start of the project. The detailed analyses prepared for the expected business value
(both tangible and intangible) as well as the economic feasibility analysis are reexam-
ined and a new analysis is prepared after the system has been installed. The objective is
to compare the anticipated business value against the actual realized business value
from the system. This helps the organization assess whether the system actually pro-
vided the value it was planned to provide. Whether or not the system provides the
expected value, future projects can benefit from an improved understanding of the true
costs and benefits.

A formal system review also has important behavior implications for project initia-
tion. Because everyone involved with the project knows that all statements about busi-
ness value and the financial estimates prepared during project initiation will be evaluated
at the end of the project, they have an incentive to be conservative in their assessments.
No one wants to be the project sponsor or project manager for a project that goes radi-
cally over budget or fails to deliver promised benefits.

APPLYING THE CONCEPTS AT CD SELECTIONS
In this installment of the CD Selections case, we see how the new system is transitioned
from the development team and put into production by the user community. To ensure
a smooth transition, Alec and Margaret oversaw the necessary user training, including
employees from CD Selections help desk department, and the creation of the neces-
sary, relevant documentation. Looking back over the development of the system, Alec
and Margaret evaluate the processes used and the individual development team mem-
bers to identify lessons learned throughout the process. Finally, they set up a process to
maintain the system.

SUMMARY
Cultural Issues and Information Technology Adoption
Given the global business environment, cultural issues become even more important
when deploying information systems today. The cultural dimensions that need to be
taken into consideration include Hall’s speed of messages, context, and time dimen-
sions along with Hofstede’s power distance, uncertainty avoidance, individualism
versus collectivism, masculinity versus femininity, and long- versus short-term ori-
entation dimensions. Furthermore, these dimensions tend to interact with one
another. From an information systems deployment perspective, the most important
thing to remember is to take into consideration the local culture before deploying the
new system.

Conversion
Conversion, the technical process by which the new system replaces the old system, has
three major steps: install hardware, install software, and convert data. Conversion style,
the which users are switched between the old and new systems, can be via either direct
conversion (in which users stop using the old system and immediately begin using the

Summary 556699

c13InstallationAndOperations 11/28/11 11:11 AM Page 569

557700 CChhaapptteerr 1133 Installation and Operations

new system) or parallel conversion (in which both systems are operated simultane-
ously to ensure the new system is operating correctly). Conversion location—what
parts of the organization are converted and when—can be via a pilot conversion in
one location; via a phased conversion, in which locations are converted in stages over
time; or via simultaneous conversion, in which all locations are converted at the same
time. The system can be converted module by module or as a whole at one time.
Parallel and pilot conversions are less risky because they have a greater chance of
detecting bugs before the bugs have widespread effect, but parallel conversion can be
expensive.

Change Management
Change management is the process of helping people to adopt and adapt to the new sys-
tem and its work processes. People resist change for very rational reasons, usually
because they perceive the costs to themselves of the new system (and the transition to
it) to outweigh the benefits. The first step in the change management plan is to change
the management policies, devise measurements and rewards that support the new sys-
tem, and allocate resources to support it. The second step is to develop a concise list of
costs and benefits to the organization and to all relevant stakeholders. This points out
who is likely to support and who is likely to resist the change. The third step is to moti-
vate adoption both by providing information and by using political strategies—using
power to induce potential adopters to adopt the new system. Finally, training is essen-
tial to enable successful adoption. Training should focus on the primary functions the
users will perform and look beyond the system itself to help users integrate the system
into their work processes.

Post-implementation Activities
System support is performed by the operations group, which provides online and help
desk support to the users. System support has both a level 1 support staff, who answer the
phone and handles most of the questions, and level 2 support staff, who follow up on
challenging problems and sometimes generates change requests for bug fixes. System
maintenance responds to change requests to fix bugs and improve the business value of
the system. The goal of project assessment is to understand what was successful about the
system and the project activities and what needs to be improved. Project team review
focuses on the way the project team carried out its activities and usually results in docu-
mentation of key lessons learned. System review focuses on understanding the extent to
which the proposed costs and benefits from the new system were actually recognized from
the implemented system.

KKEEYY TTEERRMMSS

Change agent, 555
Change management, 547
Change request, 565

Classroom training, 563
Collectivism, 548
Computer-based training (CBT), 563

Context, 548
Conversion, 549
Conversion location, 550

c13InstallationAndOperations 11/28/11 11:12 AM Page 570

Conversion modules, 550
Conversion strategy, 553
Conversion style, 550
Cost, 553
Direct conversion, 550
Femininity, 548
Frequently asked questions (FAQ), 564
Help desk, 565
Individualism, 548
Informational strategy, 561
Institutionalization, 564
Level 1 support, 565
Level 2 support, 565
Long-term orientation, 549
Management policies, 558
Masculinity, 548
Measurements, 548
Migration plan, 546
Modular conversion, 553
Modules, 552
Monochronic time, 548

On-demand training, 564
One-on-one training, 563
Online support, 564
Operations group, 564
Parallel conversion, 551
Perceived benefits, 557
Perceived costs, 557
Phased conversion, 551
Pilot conversion, 551
Political strategy, 561
Polychronic time, 548
Post-implementation, 546
Potential adopter, 556
Power distance, 548
Problem report, 565
Project assessment, 564
Project team review, 568
Ready adopters, 561
Real benefits, 557
Real costs, 557
Refreeze, 546

Reluctant adopters, 561
Resistant adopters, 561
Resource allocation, 558
Rewards, 558
Risk, 553
Short-term orientation, 549
Simultaneous conversion, 552
Speed of messages, 548
Sponsor, 555
Standard operating procedure

(SOP), 558
System maintenance, 564
System request, 566
System review, 568
System support, 564
Time, 548
Training, 562
Transition process, 556
Uncertainty avoidance, 548
Unfreeze, 546
Whole-system conversion, 552

QQUUEESSTTIIOONNSS

1. What are the three basic steps in managing organiza-
tional change?

2. What are the cultural issues of which developers
should be aware?

3. What are the major components of a migration plan?
4. Compare and contrast direct conversion and parallel

conversion.
5. Compare and contrast pilot conversion, phased con-

version, and simultaneous conversion.
6. Compare and contrast modular conversion and

whole-system conversion.
7. Explain the trade-offs among selecting between the

types of conversion in questions 4, 5, and 6.
8. What are the three key roles in any change manage-

ment initiative?
9. Why do people resist change? Explain the basic model

for understanding why people accept or resist change.
10. What are the three major elements of management

policies that must be considered when implementing a
new system?

11. Compare and contrast an information change man-
agement strategy with a political change management
strategy. Is one better than the other?

12. Explain the three categories of adopters you are likely
to encounter in any change management initiative.

13. How should you decide what items to include in your
training plan?

14. Compare and contrast three basic approaches to training.
15. What is the role of the operations group in system

development?
16. Compare and contrast two major ways of providing

system support.
17. How is a problem report different from a change

request?
18. What are the major sources of change requests?
19. Why is project assessment important?
20. How is project team review different from system review?
21. What do you think are three common mistakes that

novice analysts make in migrating from the as-is to the
to-be system?

22. Some experts argue that change management is more
important than any other part of system development.
Do you agree or not? Explain.

23. In our experience, change management planning often
receives less attention than conversion planning. Why
do you think this happens?

Questions 557711

c13InstallationAndOperations 11/28/11 11:12 AM Page 571

572 Chapter 13 Installation and Operations

EXERCISES

A. Suppose you are installing a new accounting package
in your small business. What conversion strategy
would you use? Develop a conversion plan (i.e., tech-
nical aspects only).

B. Suppose you are installing a new room reservation sys-
tem for your university that tracks which courses are
assigned to which rooms. Assume that all the rooms in
each building are “owned” by one college or depart-
ment and only one person in that college or depart-
ment has permission to assign them. What conversion
strategy would you use? Develop a conversion plan
(i.e., technical aspects only).

C. Suppose you are installing a new payroll system in a
very large multinational corporation. What conver-
sion strategy would you use? Develop a conversion
plan (i.e., technical aspects only).

D. Consider a major change you have experienced in your
life (e.g., taking a new job, starting a new school). Pre-
pare a cost–benefit analysis of the change in terms of
both the change and the transition to the change.

E. Suppose you are the project manager for a new library
system for your university. The system will improve
the way students, faculty, and staff can search for
books by enabling them to search over the Web, rather
than using only the current text-based system available
on the computer terminals in the library. Prepare a
cost–benefit analysis of the change in terms of both
the change and the transition to the change for the
major stakeholders.

F. Prepare a plan to motivate the adoption of the system
in exercise E.

G. Prepare a training plan that includes both what you
would train and how the training would be delivered
for the system in exercise E.

H. Suppose you are leading the installation of a new DSS
to help admissions officers manage the admissions
process at your university. Develop a change manage-
ment plan (i.e., organizational aspects only).

I. Suppose you are the project leader for the development
of a new Web-based course registration system for your
university that replaces an old system in which students
had to go to the coliseum at certain times and stand in
line to get permission slips for each course they wanted
to take. Develop a migration plan (including both tech-
nical conversion and change management).

J. Suppose you are the project leader for the development
of a new airline reservation system that will be used by

the airline’s in-house reservation agents. The system
will replace the current command-driven system
designed in the 1970s that uses terminals. The new
system uses PCs with a Web-based interface. Develop a
migration plan (including both conversion and change
management) for your telephone operators.

K. Develop a migration plan (including both conversion
and change management) for the independent travel
agencies who use the airline reservation system
described in exercise J.

L. For the A Real Estate Inc problem in Chapters 4
through 12:
1. Prepare a plan to motivate adoption of the system.
2. Prepare a training plan that includes both what you

would train and how the training would be delivered.
3. Prepare a change management plan.
4. Develop a migration plan.

M. For the A Video Store problem in Chapters 4 through 12:
1. Prepare a plan to motivate adoption of the system.
2. Prepare a training plan that includes both what you

would train and how the training would be
delivered.

3. Prepare a change management plan.
4. Develop a migration plan.

N. For the gym problem in Chapters 4 through 12:
1. Prepare a plan to motivate adoption of the system.
2. Prepare a training plan that includes both what you

would train and how the training would be delivered.
3. Prepare a change management plan.
4. Develop a migration plan.

O. For the Picnics R Us problem in Chapters 4 through 12:
1. Prepare a plan to motivate adoption of the system.
2. Prepare a training plan that includes both what you

would train and how the training would be delivered.
3. Prepare a change management plan.
4. Develop a migration plan.

P. For Of-the-Month Club problem in Chapters 4
through 12:
1. Prepare a plan to motivate adoption of the system.
2. Prepare a training plan that includes both what

you would train and how the training would be
delivered.

3. Prepare a change management plan.
4. Develop a migration plan.

c13InstallationAndOperations 11/10/11 8:28 AM Page 572

MINICASES

1. Nancy is the IS department head at MOTO Inc., a
human resources management firm. The IS staff at
MOTO Inc. completed work on a new client manage-
ment software system about a month ago. Nancy was
impressed with the performance of her staff on this
project because the firm had not previously under-
taken a project of this scale in-house. One of Nancy’s
weekly tasks is to evaluate and prioritize the change
requests that have come in for the various applications
used by the firm.

Right now, Nancy has five change requests for the
client system on her desk. One request is from a system
user who would like some formatting changes made to
a daily report produced by the system. Another request
is from a user who would like the sequence of menu
options changed on one of the system menus to more
closely reflect the frequency of use for those options. A
third request came in from the billing department.

This department performs billing through a billing
software package. A major upgrade of this software is
being planned, and the interface between the client
system and the bill system need to be changed to
accommodate the new software’s data structures. The
fourth request seems to be a system bug that occurs
whenever a client cancels a contract (a rare occur-
rence, fortunately). The last request came from Susan,
the company president. This request confirms the
rumor that MOTO Inc. is about to acquire another
new business. The new business specializes in the tem-
porary placement of skilled professional and scientific
employees and represents a new business area for
MOTO Inc. The client management software system
will need to be modified to incorporate the special
client arrangements that are associated with the
acquired firm.

How do you recommend that Nancy prioritize
these change requests for the client/management
system?

2. Sky View Aerial Photography offers a wide range of
aerial photographic, video, and infrared imaging ser-
vices. The company has grown from its early days of
snapping pictures of client houses to its current status
as a full-service aerial image specialist. Sky View now
maintains numerous contracts with various govern-
mental agencies for aerial mapping and surveying
work. Sky View has its offices at the airport, where it
keeps its fleet of specially equipped aircraft. Sky View
contracts with several freelance pilots and photogra-

phers for some of its aerial work and also employs
several full-time pilots and photographers.

The owners of Sky View Aerial Photography
recently contracted with a systems development
consulting firm to develop a new information system
for the business. As the number of contracts, aircraft,
flights, pilots, and photographers increased, the
company experienced difficulty keeping accurate
records of its business activity and the utilization of its
fleet of aircraft. The new system will require all pilots
and photographers to swipe an ID badge through a
reader at the beginning and conclusion of each photo
flight, along with recording information about the air-
craft used and the client served on that flight. These
records are to be reconciled against the actual aircraft
utilization logs maintained and recorded by the
hangar personnel.

The office staff was eagerly awaiting the installation
of the new system. Their general attitude was that the
system would reduce the number of problems and
errors that they encountered and would make their
work easier. The pilots, photographers, and hangar
staff were less enthusiastic, being unaccustomed to
having their activities monitored in this way.
a. Discuss the factors that might inhibit the acceptance

of this new system by the pilots, photographers, and
hangar staff.

b. Discuss how an informational strategy could be
used to motivate adoption of the new system at Sky
View Aerial Photography.

c. Discuss how a political strategy could be used to
motivate adoption of the new system at Sky View
Aerial Photography.

3. For the Holiday Travel Vehicles problem described in
Chapters 5 through 12:
a. Prepare a plan to motivate adoption of the system.
b. Prepare a training plan that includes both what you

would train and how the training would be delivered.
c. Prepare a change management plan.
d. Develop a migration plan.

4. For the Professional and Scientific Staff Management
problem described in Chapters 4, and 6 through 11:
a. Prepare a plan to motivate adoption of the system.
b. Prepare a training plan that includes both what you
would train and how the training would be delivered.
c. Prepare a change management plan.
d. Develop a migration plan.

Minicases 573

c13InstallationAndOperations 11/10/11 8:28 AM Page 573

AA
Abstract classes, 26, 197, 291
Abstraction, 291
Acceptance testing, 531, 535
Acceptance tests, 535
Access control, 405
Access control lists, 501
Access control requirements, 501
Acknowledgment messages, 440, 441
Actions, 165

in activity diagrams, 165, 166
in behavioral state machines, 253
interface, 427

Action–object order, 436
Action statements, 357
Active value, 339
Activities, 165

in activity diagrams, 165, 166
in behavioral state machines, 253

Activity-based costing, 121, 122
Activity diagrams, 40, 154, 163–173

actions in, 165, 166
activities in, 165, 166
for algorithm specification, 357
control flows in, 165, 166
control nodes in, 166–170
decision nodes in, 166, 168
defined, 154
final-activity nodes in, 166, 167
final-flow nodes in, 166–168
fork nodes in, 166, 169, 170
guard conditions in, 166, 168
guidelines for creating, 170–171
initial nodes in, 166
join nodes in, 166, 169, 170
merge nodes in, 166, 168–169
object flows in, 165, 166
object nodes in, 165, 166
steps in creating, 171–173
swimlanes in, 166, 170
syntax for, 358

Activity elimination, 123
Actors, 74, 155, 239

in communication
diagrams, 247–249

identifying, 160
primary, 175
in sequence diagrams, 239, 240
specialized, 156, 157

in use-case diagrams, 155–157
in use-case models, 74

Adjusted use-case points (UCP), 77
Adoption:

enabling, 562–564
motivating, 561–562

ADP, 483–484
Advanced Communications, 521
Aesthetics, 418, 420
Aggregation, 291
Aggregation association, 214
Aggregation relationships:

in class diagrams, 210, 214–216
and normalization, 337
structural modeling, 198

Agile development, 14–20
criticisms of, 14, 15
extreme programming, 15–16
qualities of, 18
Scrum, 16–18
timeboxing with, 85

A-kind-of:
in factoring, 291
in object-oriented systems, 25
in structural modeling, 198, 228

Alexander, Christopher, 202
Algorithms:

invertible, 502
specifications, 356–357

Alignment, strategic, 64
Alpha testing, 531, 535
Alternative flows, 178
Alternative matrix, 310–311, 494
Amazon.com, 104, 461, 483
Ambler, S.W., 35, 250
Analysis (analysis phase), 4–5

breadth of, 123
line between design and, 110
purpose of, 274
steps in, 118

Analysis models, 5
balancing, 275–290
evolving into design models, 289, 291–296

Analysis paralysis, 33
Analysis strategy, 5
Analysis workflows, 31–33
A-part-of, 198
API, See Application program interface
Appelo, J., 94

557744

II NN DD EE XX

BMndx.qxd 12/2/11 2:02 PM Page 574

Apple, 413n.1
Application logic, 475
Application program interface (API),

74, 305, 336, 484
Approval committee, 4, 50
Architectural components, 474–475.

See also Physical architecture layer
Architecture-centric OOSAD, 29
Architecture design, 5
Archive files, 372
Artifacts, 487, 516
As-is system, 5, 110, 118
Assemblies, 198
Assigning programmers, 517–518
Association class, 213–214
Association relationships, 156

in class diagrams, 210, 213–215
in communication diagrams, 248, 249
and normalization, 337, 338
structural modeling, 198–199
in use-case diagrams, 156–158
in use cases, 177

Asymmetric encryption algorithm, 502
AtHome Internet Appliance, 120
Attributes, 238

in class diagrams, 210, 211
of objects, 23, 320
in structural modeling, 197

Attribute sets, 375
Audit file, 372
Authentication, 501, 503
Availability and reliability requirements,

498–500
Average actors, 74
Average use case, 74
Avison, D., 117
Awards, 93

BB
Baan, 304
Balancing the models, 275–289

functional and behavioral, 278, 283–285, 287
functional and structural, 276–282
structural and behavioral, 286–289

Bar-code readers, 444
Batch processing, 444
Batch reports, 448, 449
Behavior(s):

in interaction diagrams, 238
of objects, 23, 320

Behavioral models, 237
balancing functional models and,

278, 283–285, 287
balancing structural models and, 286–289
types of, 237

Behavioral modeling, 236–267
applying concepts of, 266
behavioral state machines, 253–260

CRUDE analysis, 260–263
interaction diagrams, 238–252
verifying and validating models, 264–265

Behavioral state machines, 253–260
actions in, 253
activities in, 253
elements of, 255–257
events in, 253, 254
guidelines for creating, 257–258
for identifying tests for classes, 530, 532, 533
states in, 253, 254
steps in creating, 258–260
transitions in, 253, 254

Behavioral state machine diagrams (UML), 40
Behavioral view, 29
Behavior diagrams (UML), 39, 40
Bellin, D., 201
Benchmarks, 494
Benchmarking, 122, 181
Benefits:

assessing, 559–560
assigning values to, 58–59
of change, 557
intangible, 57, 58
tangible, 57, 58

Beta testing, 531, 535
Bias, minimizing, 450
Binder, project, 98
Binding:

dynamic, 27, 28, 320, 323–324, 527
static, 27

Binomial OPM, 64n.5
Black-box testing, 530, 531
Black-hole activities, 171
Black hole states, 258
Black-Scholes OPM, 64n.5
Body language
Booch, Grady, 30, 39
Bottom-up interviews, 128, 129
BPA (business process automation), 116, 118–120
BPI (business process improvement), 116, 121–122
BPR (business process reengineering), 116, 122–123
Braham, Aaron, 480
Brainstorming, 201
Breadth of analysis, 123
Breadth of information, 141–142
Break-even point, 61, 62
Brief description, 175
Business analyst, 21
Business-modeling workflow, 33
Business need, 51, 308
Business processes:

cross-functional nature of, 163
identifying, 160
modeling, 164
services supporting, 483

Business process automation (BPA), 116, 118–120
Business process improvement (BPI), 116, 121–122
Business process reengineering (BPR), 116, 122–123

Index 557755

BMndx.qxd 12/2/11 2:02 PM Page 575

557766 Index

Business requirements, 52, 111, 112
determining, see Requirements determination
in requirements definition, 116

Business value, 52
Button, 425

CC
C, 340, 342
C!!, 332, 333, 342, 524
C11, 320
CA (certificate authority), 502
Caching computational results, 339
Call options, 63–64
Capability Maturity Model, 112, 113
Capacity requirements, 498, 499
Capital Blue Cross, 68
Carlson Hospitality, 59
CASE (computer-aided software engineering), 96.

See also Computer-aided software engineering
(CASE) tools

CASE repository, 97
Cash-flow method, 59–60
CBT (computer-based training), 563–564
Certificate authority (CA), 502
Champion, 65
Change, resistance to, 556–57
Change agent, 20, 555
Change control, 519
Change management, 555–564

assessing costs and benefits, 559–560
challenges of, 547
enabling adoption, 562–564
goal of, 561
motivating adoption, 561–562
resistance to change, 556–57
revising management policies, 558

Change management analyst, 21, 22
Change requests, 565–567
Check box, 447
Check digit check, 448, 449
Chicago, Illinois, 307
Chief information officers (CIOs), 51
Class(es), 293

in class diagrams, 210, 211
collaborations in terms of, 293
data access and manipulation, 401–404
factored module as, 291
instances of, 320
object as instantiation of, 238
in object-oriented systems, 23, 24
in structural modeling, 197

Class and Method design, 317–363
applying concepts of, 361–362
constraints, 343–348
contracts, 348–354
criteria for, 325–331
method specifications, 354–361
object design activities, 331–343
and object-oriented systems, 319–324

Class cohesion, 329

Class diagrams, 40, 195, 208
classes in, 253
elements of, 208–216
simplifying, 217
in structural modeling, 208–217

Class library, 333
Class–Responsibility–Collaboration (CRC) cards, 195

constraints on, 345–347
defined, 205
invariants on, 348
role-playing with, 207–208
in structural modeling, 205–208, 218–226
and testing, 528, 529

Classroom training, 563
Clients, 205, 293, 343
Client-based architectures, 474, 476
Client computers, 475
Client objects (on CRC cards), 205
Client–server architectures, 474, 476–478
Client–server tiers, 478–479
Closed-ended questions, 127, 128
Cloud computing, 482–484, 520
Clustering, 398–398
Coad, Peter, 325
COBIT (Control OBjectives for Information

and related Technology), 112, 113
COBOL, 342, 517
Code generators, 10
Coding:

control of, 520
preparing for, 318
standards for, 97
in XP, 15–16

Cohesion, 328–330
class, 329
generalization/specialization, 330
method, 328

Collaborations:
in behavioral modeling, 237
and CRC cards, 205
partitions in, 292–293

Collectivism, 462, 463, 523–525, 548
Color:

cultural meanings of, 460–461
in interface design, 418, 420

Columnar data stores, 376
Combo box, 447
Command language, 437
Common object list, 201–202
Communication diagrams, 40, 243–244, 246–252

elements of, 247–249
guidelines for creating, 250
steps in creating, 250–252

Communication path, 487, 488
Compatibility, systems, 56
Completeness check, 448, 449
Complex actors (use-case models), 74
Complex systems, 19
Complex use case, 74
Component, 336

BMndx.qxd 12/2/11 2:02 PM Page 576

Component diagrams (UML), 40
Composite structure design diagrams (UML), 40
Composition (class diagrams), 210, 216
Computer-aided software engineering (CASE), 96
Computer-aided software engineering (CASE) tools:

and change control, 519
for environment and infrastructure

management, 96–97
for RAD-based methodologies, 10

Computer-based training (CBT), 563–564
Concept maps, 144, 145
Concept mapping, 144
Conceptual model, 196
Concrete classes, 26, 197, 291
Conditions, 241

in communication diagrams, 248
in sequence diagrams, 241

Configuration and change management workflow,
32, 34–35, 37–38, 516

Confirmation messages, 440, 441
Conflict management, 94–95
Connascence, 330–331
Consistency, 420

of grammar order, 436
in human–computer interaction layer design, 420–421

Consistency check, 448, 449
Constantine, L.L., 35
Constraints, 332, 343–348
Construction (construction phase), 31, 32, 36, 515–542

defined, 516
documentation development, 535–541
programming management, 517–525
system, 6
test design, 525–535

Constructor operation, 211
Consumer, 343
Content awareness, 416, 418, 419
Context, 462, 523, 548
Contracts:

collaborations in terms of, 293
constraints and guarantees in, 344–347
on CRC cards, 205
elements of, 347–354
outsourcing, 306
purpose of, 343
and signature, 332

Control:
code, 520
navigation, 437–440
and physical architecture, 482
of teams, 94

Control flows, 165, 166
Controllers (MVC architecture), 294
Control nodes, 166–170
Conversion, 549–555

conversion location, 551–552
defined, 549
modular, 552–553
selecting strategy for, 553–555
style of, 550–551

Conversion location, 550–552
Conversion modules, 550
Conversion strategy, 553
Conversion style, 550–551
Cost(s), 553

assessing, 559–560
assigning values to, 58–59
of change, 557
of client–server architectures, 478
development, 57, 481
of infrastructure, 480–481
intangible, 57
operational, 57
of outsourcing, 305
in requirements analysis, 142
total cost of ownership, 478

Cost and conversion strategy, 554
Cost–benefit analysis, 56. See also Economic feasibility

identifying costs and benefits, 57–59
project, 123

Coupling, 325–328
inheritance, 327–328
interaction, 325–327

CRC cards, See Class–Responsibility–Collaboration
cards

Critical path method (CPM), 72
Critical task, 72
Critical thinking skills, 118
CRUDE analysis, 260–263
CRUDE matrix, 260–263
Cultural and political requirements, 113, 503

for data management layer, 406
definition of, 115
and physical architecture layer,

503–504
Cultural differences, 461–463
Cultural issues:

in human–computer interaction layer
design, 459–463

in implementation, 547–549
in programming management, 520–525

Cultural optical illusion, 522
Custom application development, 303, 308
Customization, 304
Customization requirements, 503–504

DD
Data, locations of, 519
Data abstraction mechanisms, 197–198
Data access and manipulation classes, 368, 401–404
Data access logic, 475
Data access speed, 396–400
Database, 369
Database and file specifications, 5
Database check, 448, 449
Database management system (DBMS), 369
Data capture, 444–445
Data centers, green, 485
Data-centered methodologies, 7

Index 557777

BMndx.qxd 12/2/11 2:02 PM Page 577

557788 Index

Data entry operator, 444
Data management layer, 294–295, 367–408

applying concepts of, 406
designing data access and manipulation classes, 401–404
mapping problem domain objects to object persistence

formats, 380–390
and nonfunctional requirements, 405–406
object persistence formats, 368–379
optimizing RDBMS-based object storage, 390–401

Data sorts, 450
Data storage, 474–475

estimating size for, 400–401
optimizing efficiency of, 390–396

DBMS (database management system), 369
Decision nodes, 166, 168
Decision support systems (DSS), 378, 379

interface design prototypes for, 432
resistance to, 557

Decomposition, 198
Default value, 445
Delay messages, 440, 441
Deliverables, 3
DeMarco, T., 89
Demeter, law of, 325
Dennis, Alan, 131, 136, 453, 460, 517, 555, 557
Denormalization, 396–397
Density, 418
Dependency relationship, 297
Deployment diagrams, 40, 486–488
Deployment engineering workflow, 32
Deployment workflow (Unified Process), 34, 37
Depth of information, 141
Derived attributes, 211, 339
Design (design phase), 5, 273–313

applying concepts of, 311
and balancing of analysis models, 275–290
classic mistakes in, 275
developing, 309–311
evolving analysis models into design models,

289, 291–296
line between analysis and, 110
purpose of, 274
restructuring, 336–338
strategies for, 302–309

Design models, 33
evolving analysis models into, 289, 291–296
packages and package diagrams, 296–302

Design modeling, 271
Design optimization, 337, 339
Design patterns, 202–204, 333–335
Design prototypes, 13
Design strategies, 5, 302–309

custom development, 303
outsourcing, 305–307
packaged software, 304–305
selecting, 307–309

Design workflow (Unified Process), 31–34
Destructor operation, 211–212
Detail reports, 451, 452
Detail use case, 175

Development:
agile, 14
cost of, 481
ease of, 481
parallel, 9
rapid application, 10
waterfall, 8

Development costs, 57, 58
Diagrams:

behavior, 39–40
structure, 39

Diagramming. See also specific types, e.g.: Activity diagrams
in structured design, 8
Unified Modeling Language, 39–41
uses cases as drivers for, 174

Direct conversion, 550–551
Direct manipulation (menus), 439
Document analysis, 138–140
Documentation, 98, 535–541

designing structure of, 537–538
identifying navigation terms, 539–541
of navigation design, 441–443
standards for, 97, 98
system, 535
types of, 536–537
with use cases and use-case descriptions, 173–184
user, 535–536
writing documentation topics, 538–540

Documentation navigation controls, 537
Documentation testing, 531
Documentation topics, 537–540
Document data stores, 376
Doing responsibilities, 205
Dominion Virginia Power, 51, 52
Drop-down list box, 447
Drop-down menus, 439, 440
DSS, see Decision support systems
Duration analysis, 121
Dynamic binding, 27, 320

and inheritance, 323–324
in object-oriented systems, 27, 28
and testing, 527

Dynamic models, 238–246
Dynamic view, 29
Dysfunctional teams, 90

EE
Ease of learning, 420
Ease of use, 420
Economic feasibility, 55–64

alternatives to cost–benefit analysis, 62–64
break-even point, 61, 62
cash flow, 59–60
costs and benefits identification, 57–59
net present value, 60–61
return on investment, 61

Edit checks, 448
EDS, 307
EFs (environmental factors), 74–77

BMndx.qxd 12/2/11 2:02 PM Page 578

EFactor (environmental factor value), 77
Effort, 78
EIS (executive information systems), 378
E-JAD, 133
Elaboration phase (Unified Process), 31–32, 36
Electrical systems, 497
Electronic JAD, 133
Eliteness, 89
Emerging technology, 51
Enabling adoption, 562–564
Encapsulation, 24, 320

and connascence, 330
in object-oriented systems, 24–25
and testing, 526–527

Encryption, 501–502
Encryption and authentication

requirements, 501–503
End user DBMSs, 369
Engineering workflows

(Unified Process), 33–34, 38
Englebart, Doug, 413n.1
Enterprise DBMSs, 369
Enterprise resource planning (ERP), 304, 435
Environmental factors (EFs), 74–77
Environmental factor value (EFactor), 77
Environment and infrastructure

management, 96–99
Environment workflow (Unified Process), 35, 37, 96–99
ERP (enterprise resource planning), 304, 435
Errors, 184
Error messages, 440, 441
ES (expert systems), 378
Essential use cases, 175, 421
Estimates:

refining, 86–87
of system value, 500–501

Estimation:
defined, 73
of project effort, 73–78

Evaluation, interface, 421, 422, 432–434
Events, 354

in behavioral state machines, 253, 254
in method specifications, 354–356

Event-driven languages, 355–356
Evolutionary work breakdown structure, 79–84
Evolutionary WSBs, 80
E-waste, 485
Exception, 321n4
Exceptional flows, 178
Exception reports, 451
Execution occurrence, 239, 240
Executive information systems (EIS), 378
Executive summary (system proposal), 146, 147
Expert systems (ES), 378
Extend relationships (use cases), 177
Extent, 375
External triggers (use cases), 177
External view, 29
Extreme programming (XP), 15–16, 18
EZPass, 95

FF
Facebook, 456–458
Facilitator (JAD), 133, 135
Factoring, 291, 336
Familiarity:

with the functional area, 55
with the technology, 56

FaneLane, 95
Fan-out, 339
FAQs (frequently asked questions), 564–565
Fat client, 476
Faults, 184
FBI, 62, 500
FDA (Food and Drug Administration), 306
Feasibility analysis, 4, 50

economic feasibility, 56–64
organizational feasibility, 64–65
in project management, 54–66
technical feasibility, 55–56

Feasibility study, 55
Federal Express, 124
Femininity, 463, 524, 548
Fields, 416, 445
Field labels, 416, 445, 446
Files, 368

audit, 372
history, 372
locations of, 519
lookup, 372
master, 371
random access, 369, 371–372, 377
sequential access, 369, 371–372, 377
transaction, 372

Final-activity nodes, 166–167
Final-flow nodes, 166–168
Final state, 254, 255
First mover, 51
First normal form (1NF), 392
Fitzgerald, G., 117
Fixed-price contract, 306
Flow of events:

in sequence diagrams, 245–246
in use-case descriptions, 178

Fonts, 418
Food and Drug Administration (FDA), 306
Foreign key, 372
Fork nodes, 166, 169, 170
Form, layout of, 414, 425
Formal system (documentation), 139
Format check, 448, 449
Foundation layer, 294
Fourth-generation programming

languages, 10
Frame:

in communication diagrams, 249
in sequence diagrams, 240, 243

Framework, 333
Frequently asked questions

(FAQs), 564–565

Index 557799

BMndx.qxd 12/2/11 2:02 PM Page 579

558800 Index

Friedman, Tom, 461
Functional areas:

definition of, 115
familiarity with, 55

Functional decomposition (use cases), 177
Functionality, 52
Functional lead, 90, 91
Functional models:

balancing behavioral models
and, 278, 283–285, 287

balancing structural models and, 276–282
Functional modeling, 153–189

with activity diagrams, 163–173
process documentation with use cases and use-case

descriptions, 173–184
process identification with use cases and use-case

diagrams, 155–163
verification and validation in, 184–188

Functional requirements, 111, 112
Functional view, 29

GG
Gantt charts, 71, 72
Generalization, 291
Generalization associations, 210, 214–215
Generalization relationships, 177, 198
Generalization/specialization cohesion, 330
Generic sequence diagram, 238
Georgia Institute of Technology, 504
Goals:

of change management, 561
of project and business, 64

Google, 483
Google Gmail, 93
Google News, 93
GPS, 455
Gradual refinement (SDLC), 4
Grammar order, 436
Graphs, 450–452
Graphical user interfaces (GUI), 413, 481.

See also Human–computer interaction layer
Green data centers, 485
Green IT, 296, 485–486
Grid computing, 483
Ground rules (JAD sessions), 135
Group cohesiveness, 94
Guard conditions:

in activity diagrams, 166, 168
in behavioral state machines, 253
in communication diagrams, 249
in sequence diagrams, 240

GUI, see Graphical user interfaces

HH
Hall, Edward, 461–463, 523, 524, 547–548
Hallacy, Don, 54
Hammer, Mike, 125
Haptic feedback, 454
Hardcoded value, 530

Hardware:
and operating system, 405
primary components, 475
selection factors for, 493
specifications, 492–495

Has-parts:
in factoring, 291
in structural modeling, 198

Health care, 56
Health Insurance and Portability and Accountability

Act (HIPAA), 484
Help desk, 519, 565
Help messages, 440, 441
Heteronyms, 323
Heuristic evaluation, 433
High-context cultures, 462
HIPAA (Health Insurance and Portability and

Accountability Act), 484
History file, 372
Hofstede, Geert, 461–463, 523, 524, 547–549
Holland, Ian M., 325
Homographs, 323
Homonyms, 323
Hot keys, 438
HTML prototypes, 429, 430
Human–computer interaction layer,

295–296, 412–466
aesthetics, 418, 420
applying design concepts for, 464
common sense approach to

design of, 434–435
consistency, 420–421
content awareness, 416, 418, 419
design process for, 421–422
input design, 443–448
interface design prototyping, 427–432
interface evaluation, 432–434
interface standards design, 426–428
interface structure design, 425–426
international and cultural design issues, 459–463
layout, 414–417
minimizing user effort, 421
and mobile computing, 453–455
navigation design, 435–443
and nonfunctional requirements, 463–464
output design, 448–453
principles for, 414
and social media, 456–459
user experience, 420
use scenario development, 422–425

Hurricane model, 86
Hybrid clouds, 482
Hydro Agri, 435
Hygeia Travel Health, 68

II
IaaS (Infrastructure as a Service), 483
IBM Credit, 124, 558
I-CASE (Integrated CASE), 96

BMndx.qxd 12/2/11 2:02 PM Page 580

Icons, interface, 427
Ideal class cohesion, 329
IDEF0, 154n.3
Identity (on jelled teams), 89
Image maps, 439, 440
Impedance mismatch, 378
Implementation (implementation phase),

6, 545–564, 569–570
change management, 555–564
classic mistakes in, 520
conversion, 549–555
cultural issues in, 547–549

Implementation languages, mapping problem-domain classes
to, 340–343

Implementation workflow, 32, 34
Importance level (use-cases), 176–177
Inception phase (Unified Process), 30–31, 36
Incidents, 201
Include relationships (use cases), 177
Incremental development, 29
Indexing, 399–400
Individualism, 462–463, 523, 548
Informal benchmarking, 121, 122, 181
Informal system (documentation), 139
Informational strategy (for motivating adoption), 561
Information hiding, 24, 320

in object-oriented systems, 24–25
and testing, 526–527

Information load, 450
Information technology (IT):

changing nature, 49–50
Green, 296

Infrastructure:
cost of, 480–481
and Green IT, 485

Infrastructure analyst, 21–22
Infrastructure as a Service (IaaS), 483
Infrastructure design, 486–492

deployment diagrams, 486–488
network model, 489–492

Infrastructure management workflow, 37
Infrastructure management workflow

(Unified Process), 37, 96–99
Inherit, 26
Inheritance, 25

in object-oriented systems, 25–26, 321–324
and testing, 527
use cases, 177

Inheritance conflicts, 322–323
Inheritance coupling, 327–328
Inheritance relationships, 337
In-house experience, 308
Initial nodes, 166
Initial state, 254, 255
Input design, 443–448

basic principles of, 443–445
input validation, 448
types of inputs, 445–448

Input mechanism, 413
Installation, system, 6. See also Implementation

Instances, 23. See also Objects
in interaction diagrams, 238
objects as, 320
in structural modeling, 197

Instance sequence diagrams, 238
Instantiation, 217
Institutionalization, 564
Intangible benefits, 57
Intangible costs, 57
Intangible value, 52, 59
Integrated CASE (I-CASE), 96
Integration of information, 142
Integration tests, 531, 534
Interactions, 201
Interaction coupling, 325–327
Interaction diagrams, 238–252

communication diagrams, 246–252
messages in, 238
objects in, 238
operations in, 238
sequence diagrams, 238–246

Interaction overview diagrams (UML), 40
Interaction testing, 531, 534
Interactive evaluation, 433
Interfaces, 413
Interface actions, 427
Interface capabilities, 481
Interface design, 5, 413. See also User interface design
Interface design prototype, 421
Interface evaluation, 421, 422, 432–434
Interface icons, 427
Interface metaphors, 426–427
Interface objects, 427
Interface standards, 421, 426
Interface template, 427
Interfile clustering, 398
International issues, 459–463
Internet, 123
Interpersonal skills, 91, 92, 132
Interviews, 126

bottom-up, 128, 129
for requirements determination, 126–132
structured, 128
top-down, 128, 129
unstructured, 128

Interview notes, 130, 131
Interview report, 130, 131
Interview schedule, 126
Intrafile clustering, 398
Intrinsic motivation, 94
Invariants, 345, 347, 348
Invertible, 502
iPad, 454
iPhone, 455
ISO 9000, 112, 113
IT, see Information technology
Iterations, 182
Iterative, 29, 182
Iterative development, 29, 79–84
Iterative workplan, 80

Index 558811

BMndx.qxd 12/2/11 2:02 PM Page 581

558822 Index

JJ
Jacobson, Ivar, 30, 39
JAD, see Joint application development
Java, 320, 332, 333, 340, 342, 524
Jelled teams, 88–90
John Wiley & Sons, 457, 458
Joined tables, 374
Join nodes, 166, 169, 170
Joint application development (JAD), 132

problems in JAD sessions, 136
for RAD-based methodologies, 10
for requirements determination, 132–136

KK
Karner, Gustav, 74, 78
Keystrokes, minimizing, 445
Key-value data stores, 376
KISS principle, 15, 435
Knowing responsibilities, 205
Krug, Steve, 434, 435, 461

LL
Language prototypes, 429, 431
Larman, C., 181
Late projects, 521
Law of Demeter, 325
Layers, 293–296
Layout (of human–computer interaction

layer), 414–417
Learning, ease of, 420
Legal requirements, 504
Level-1 support, 565
Level-2 support, 565
Lewin, Kurt, 546
Lieberherr, Karl J., 325
Lifeline, 239, 240
Linked list, 371
Linux, 485
Lister, T., 89
Lithonia Lighting, 496
Locations (network models), 489
Logical models, 154
Long-term orientation, 524, 549
Lookup files, 372
Low-context cultures, 462
Lower CASE, 96

MM
McDermid, Lyn, 51
Machiavelli, Niccolò, 545, 546
Magnetic stripe readers, 445
Mainframes, 475
Mainframe applications, 481
Maintainability requirements, 496, 498
Maintenance, system, 547, 566–567
Maintenance oracle role (walkthroughs), 185
Management information systems (MIS), 378
Management policies, 558

Mapping:
of problem-domain classes to implementation

languages, 340–343
problem domain objects to object persistence

formats, 380–390
Marriott Corporation, 67
Masculinity, 463, 524, 548
Massachusetts Institute of Technology (MIT), 445
Master files, 371
Measurements, 558
Media, output, 451–453
Meetings:

JAD, 134
Scrum, 17

Memory, virtual, 482–483
Menus, 437–440
Menu bars, 439, 440
Merge mode, 168
Merge nodes, 166, 168–169
Messages:

collaborations in terms of, 293
in communication diagrams, 249
in interaction diagrams, 238
law of Demeter for, 325
in navigation design, 440–441
in object-oriented systems, 24
to objects, 320
in sequence diagrams, 240, 241
speed of, 461, 548

Message passing, 356
Metaphors, interface, 426–427
Methods, 197, 238. See also Class and Method design

collaborations in terms of, 293
factored module as, 291
in object-oriented systems, 24
of objects, 320
in structural modeling, 197

Method cohesion, 328
Methodology(-ies), 6–20

agile development, 14–20
data-centered, 7
defined, 6
object-oriented, 7, 28
process-centered, 6, 7
rapid application development, 10–14
selecting, 18–20
and sequencing of SDLC phases, 8
structured design, 8–10
Unified Process, 30–39
in workplan, 79

Method specifications, 354–361
algorithm specifications, 356–357
events in, 354–356
message passing in, 356

Meyers, Glenford, 329
Microcomputers, 475
Microsoft, 2, 64, 413n.1, 486
Microsoft Word 2011, 539
Middleware, 477
Migration plan, 546

BMndx.qxd 12/2/11 2:02 PM Page 582

Milestones, 70
Minicomputers, 475
Miracle activities, 171
Miracle states, 258
MIS (management information systems), 378
Mission-critical systems:

agile for, 15
and Scrum, 18
website as, 501
XP for, 16

Mistakes:
preventing, 436
recovery from, 426

MIT (Massachusetts Institute of Technology), 445
Mobile devices, interface design for, 453–455
Models:

balancing, 275–289
logical, 154
in MVC architecture, 294
physical, 154
problem domain, 154
process, 154

Modeling. See also specific types,
e.g.: Functional modeling

best practices for, 164
in structured design, 8

Model–View–Controller (MVC), 293–294
Modular conversion, 552–553
Modules, 552

factoring, 291
in OOSAD, 29–30

Monochronic time, 462, 524, 548
Monster.com, 480
Motivating adoption, 561–562
Motivation, 93–94
Multilingual requirements, 459–460
Multiple inheritance, 323
Multiplicity (of relationships), 212, 213
Multitenancy, 482
Multivalued attributes, 375
MVC (Model–View–Controller), 293–294

NN
Naming standards, 99
Natural language, 437
Navigation controls:

consistency in, 421
documentation, 527
for topics, 537

Navigation design, 435–443
basic principles for, 426
documentation, 441–443
identifying terms, 539–541
messages, 440–441
multiple layout areas, 414–416
types of controls, 437–440
windows navigation diagram, 421, 425–426

Navigation mechanism, 413
Net present value (NPV), 60–61

Networks, 475
Network diagrams, 71–73
Network model, 489–492
New systems development projects, 50
Nisbett, Richard, 522, 523
Nodes, 72, 486, 487
Nonfunctional requirements, 111–113

and data management layer, 405–406
definition of, 115
and human–computer interaction layer, 463–464
ignoring, 114
and physical architecture layer, 495–507

Normal flow of events, 178
Normalization, 337, 390, 392–396
Norm requirements, 464
NoSQL data stores, 375–377
“Now That” awards, 93
N-tiered architecture, 478–479
Null values, 390
Number box, 446

OO
Objects, 23, 196, 239, 320

in communication diagrams, 247–249
in interaction diagrams, 238
interface, 427
in object-oriented systems, 23, 24
in sequence diagrams, 240
in structural models, 197
temporary, 239

Object–action order, 436
Object-based language:

defined, 342
implementing problem

domain classes in, 342–343
Object Constraint Language (OCL), 344–345
Object Data Management Group (ODMG), 374
Object Definition Language (ODL), 374
Object design activities, 331–343

adding specifications, 332
identifying opportunities for reuse, 333–336
mapping problem-domain classes to

implementation languages, 340–343
optimizing the design, 337, 339
restructuring the design, 336–338

Object destruction, 240
Object diagrams, 40, 195, 217
Object flows, 165, 166
Object ID, 375
Object identification:

brainstorming for, 201
common object list for, 201–202
patterns for, 202–204
in structural modeling, 199–204
textual analysis for, 199–200

Objective-C, 320, 342, 524
Object Management Group (OMG), 39, 154
Object Manipulating Language (OML), 374
Object nodes, 165, 166

Index 558833

BMndx.qxd 12/2/11 2:02 PM Page 583

558844 Index

Object-oriented database management systems
(OODBMSs), 374–375, 378, 380–384

Object-oriented databases, 375–375, 377
Object-oriented development, 527–528
Object-oriented methodologies, 7–8, 28
Object-oriented programming language

(OOPL), 375
Object-Oriented Software Process, 35
Object-oriented systems, 23–28

basic characteristics of, 319–324
classes in, 23, 24
dynamic binding in, 27, 28
encapsulation in, 24–25
information hiding in, 24–25
inheritance in, 25–26
messages in, 24
methods in, 24
objects in, 23, 24
polymorphism in, 27–28

Object-oriented systems analysis and design
(OOSAD), 28–30

architecture-centric, 29
benefits of, 29–30
incremental, 29
iterative, 29
structured approaches vs., 174n.17
use-case driven, 28

Objectory AB, 74
Object persistence, 368
Object persistence formats, 368–379

mapping problem domain objects to,
380–390

NoSQL data stores, 375–377
object-oriented databases, 375–375, 377
object-relational databases, 374, 377
relational databases, 372–374, 377
selecting, 377–379
sequential and random access files,

369, 371–372, 377
Object Query Language (OQL), 374
Object-relational database management systems

(ORDBMSs), 374, 378
data access and manipulation classes,

402, 403
mapping problem domain objects to,

384–387
Object-relational databases, 374, 377
“Object-think,” 30
Object wrapper, 305
Observation, 139–141
OCL (Object Constraint Language), 344–345
ODL (Object Definition Language), 374
ODMG (Object Data Management Group), 374
Offshoring, 15
OMG (Object Management Group), 39, 154
OML (Object Manipulating Language), 374
On-demand training, 564
One-on-one training, 563
Online processing, 443, 444
Online support, 564

On-screen list box, 447
OODBMSs, see Object-oriented database

management systems
OOPL (object-oriented programming language), 375
OOSAD, see Object-oriented systems analysis

and design
Open-ended questions, 127, 128
OPEN process (Object-oriented Process, Environment, and

Notation), 35
Operations. See also Implementation

in class diagrams, 210, 211
on class diagrams, 211–212
in interaction diagrams, 238
of objects, 320
in structural modeling, 197

Operational costs, 57, 58
Operational requirements, 113, 495

for data management layer, 405
definition of, 115
for human–computer interaction layer, 463
and physical architecture layer, 495–498

Operation call messages, 241
Operations and support workflow, 36–37
Operations and support workflow

(Unified Process), 36–37
Operations group, 564
OPMs (option pricing models), 62–64
Optical character recognition, 444–445
Optimization:

of data access speed, 396–400
of designs, 337, 339
RDBMS-based object storage, 390–401
of storage efficiency, 390–396

Option pricing models (OPMs), 62–64
OQL (Object Query Language), 374
Oracle, 304
ORDBMSs, see Object-relational database

management systems
Ordered sequential access files, 371
Organizational feasibility, 55, 64–65
Organizational management, 65
Outcome analysis, 122
Outputs, 448
Output design, 448–453

basic principles of, 448–451
media, 451–453
types of outputs, 451, 452

Output mechanism, 413
Outsourcing, 305

and agile development, 15
and cloud computing, 482
design, 305–307
when to use, 308

Overhead (DBMS), 400, 401
Overview information, 175–177
Overview use case, 175
Ownership:

on jelled teams, 89
total cost of, 478

Oxford Health Plans, 499

BMndx.qxd 12/2/11 2:02 PM Page 584

PP
Packages:

class diagrams, 217
in communication diagrams, 249
in design, 296–302
use cases, 161

Package diagrams, 40
dependency relationships in, 297–298
in design, 296–302
guidelines for creating, 298–300
steps in creating, 300–302
syntax for, 297
verifying and validating, 302

Packaged software:
design, 304–305
when to use, 308

Page-Jones, Meilir, 324
Paperless office, 485
Parallel conversion, 551
Parallel development, 9–10, 18
Parallelization, 121
Parkinson’s Law, 494
Parts, 198
Partial dependency, 393
Partitions, 292–293
Patterns:

design, 333–335
for object identification, 202–204

Peoplesoft, 304
Perceived benefits, 557
Perceived costs, 557
Performance requirements, 113, 498

for data management layer, 405
definition of, 115
for human–computer interaction layer, 463–464
and physical architecture layer, 498–500

Performance testing, 531
Person-hours multiplier (PHM), 78
PERT (program evaluation and review technique), 71, 73
Pharmaceutical companies, 306
Phases, 3, 30

of systems development life cycle, 4–6
of Unified Process, 30–32

Phased conversion, 551
Phased development, 11–12, 18
PHM (person-hours multiplier), 78
Physical architecture layer, 296, 473–509

applying design concepts of, 507
architectural components, 474–475
client-based architectures, 476
client–server architectures, 476–478
client–server tiers, 478–479
cloud computing, 482–484
cultural and political requirements, 503–504
Green IT, 485–486
hardware and system software specifications, 492–495
infrastructure design, 486–492
and nonfunctional requirements, 495–507
operational requirements, 495–498

performance requirements, 498–500
security requirements, 500–503
selecting architecture, 479–482
server-based architectures, 475–476

Physical models, 154
Pilot conversion, 551
Pink, D. H., 93, 94
Planning, 134
Planning phase, 4, 99
Platform as a Service (PaaS), 483
Pointer, 371
Political requirements, See Cultural and political requirements
Political strategy (for motivating adoption), 561
Polychronic time, 462, 524, 548
Polymorphism, 27, 320–321

and inheritance, 323–324
in object-oriented systems, 27–28
and testing, 527

Pop-up menus, 439, 440
Portability requirements, 496, 498
Portfolio management, 66, 67
Poseidon for UML, 96, 98
Postcondition, 345
Post-implementation, 546, 564–569

project assessment, 567–569
system maintenance, 566–567
system support, 564–566

Post-session report (JAD), 135
Potential adopters, 556
Potential business value, 123
Power distance, 462, 524, 548
Precondition, 345
Presentation lo, 477
Presenter role (walkthroughs), 185
Present value (PV), 61
Primary actor, 175
Primary key, 372
Prince Edward Island, 517
Private, 211
Private attributes, 211
Private clouds, 482
Private key, 502
Probing questions, 127, 128
Problem analysis, 119
Problem-domain classes:

design of, 318
mapping to implementation

languages, 340–343
Problem-domain layer, 294
Problem domain models, 154
Problem domain objects:

as drivers of object storage design, 368
mapping to object persistence formats, 380–390

Problem report, 565
Procedures, 97
Procedures manuals, 527, 536
Process-centered methodology, 6–7
Process documentation, 173–184
Process identification, 155–163
Process integration, 121

Index 558855

BMndx.qxd 12/2/11 2:02 PM Page 585

558866 Index

Process models. See also Functional modeling
activities in, 163
defined, 154

Production phase (Unified Process), 36
Programs, locations of, 519
Program design, 5
Program evaluation and review technique (PERT), 71, 73
Program log, 519
Programmers, 21

assigning, 517–518
coordinating activities of, 518–519

Programming, extreme, 15
Programming languages:

event-driven, 355–356
implementation of object-oriented basics in, 320
mapping problem-domain classes to, 340–343
object-oriented, 369
procedural, 354

Programming management, 517–525
assigning programmers, 517–518
coordinating activities, 518–519
cultural issues in, 520–525
schedule management, 519–520
and testing, 516

Project, 49
Project assessment, 564, 567–569
Project binders, 98
Project charter, 94, 96
Project cost, 123
Project effort estimation:

in project management, 73–78
Project identification, 51–54

business needs in, 51
business requirements, 52
sponsor, 51–52
system requests in, 52–54

Project initiation, 52
Project management, 4, 48–102

applying concepts of, 100
cultural issues in, 520–525
and design strategy, 308–309
environment and infrastructure management

in, 96–99
feasibility analysis in, 54–66
project effort estimation in, 73–78
project identification in, 51–54
project selection in, 66–69
staffing in, 88–96
traditional tools for, 69–73
workplan for, 79–88

Project management software, 97
Project management workflow, 34, 37
Project management workflow (Unified Process), 34, 37
Project managers, 4, 21, 22, 49
Project plan, 4, 86, 87
Project selection, 66–69
Project size, 56
Project skills, 308
Project sponsor, 4, 50–52
Project team review, 568

Pronoun test, 93
Proposal, system, 5
Protected, 211
Protected attributes, 211
Protocol state machine diagrams (UML), 40
Prototypes:

design, 13
HTML, 429, 430
interface design, 421
language, 429, 431
system, 12

Prototyping, 12–13
agile development as, 15
interface design, 427–432
qualities of, 18
throwaway, 13–14, 18

Public, 211
Public attributes, 211
Public clouds, 482
Public key, 502
Public key encryption, 502
Public key infrastructure (PKI), 502
Publix, 139
Pull (social media), 457
Push (social media), 457
PV (present value), 61

QQ
Quantitative analysis, 518
Query operation, 211
Questions:

for questionnaires, 137–138
for requirements determination interviews,

127, 128
Questionnaires, 135–138
Quinnipiac University, 503

RR
RAD, see Rapid application development
Radio button, 447
Radio frequency identification (RFID), 95
Radisson Hotels & Resorts, 59
Random access files, 369, 371–372, 377
Range check, 448, 449
Rapid application development (RAD), 10–14

phased development, 11–12
prototyping, 12–13
qualities of, 18
throwaway prototyping, 13–14
timeboxing with, 85

Rational Software, 30, 39
Raw data (DBMS), 400
Ready adopters, 561
Real benefits, 557
Real costs, 557
Real-time information, 444
Real-time reports, 448, 449
Real use cases, 175, 421
Recorder role (walkthroughs), 185

BMndx.qxd 12/2/11 2:02 PM Page 586

Redefinition, 322–323
Refactoring, 16
Reference documents, 536
Referential integrity, 372
Refinement:

in factoring, 291
gradual, 4

Refreezing the new system, 546–547
Reich, Robert, 93
Relational databases, 372–374, 377
Relational database management systems

(RDBMS), 390–401
data access and manipulation

classes, 402, 404
estimating data storage size, 400–401
mapping problem domain objects to,

387–390
optimizing data access speed, 396–400
optimizing storage efficiency, 390–396
referential integrity supported by, 372

Relationships:
in class diagrams, 212–214
in structural modeling, 197–199
in use-case descriptions, 177–178

Relationship sets, 375
Reliability, system, 19
Reluctant adopters, 561
Repeating groups (fields), 375
Reports:

incorrect reading of, 453
interview, 130, 131
layout of, 414, 425
media used for, 451–453
post-session, 135
problem, 565
requirements definition, 115–116
types of, 452

Reporting structure, 90, 92
Report usage, 448, 449
Request for information (RFI), 310
Request for proposal (RFP), 310
Requirements, 111.

See also specific types of requirements
business, 112
functional, 112
multilingual, 459–460
nonfunctional, 112, 113
system, 112

Requirements analysis, 109–149
applying concepts of, 147
business process

automation, 118–120
business process

improvement, 121–122
business process

reengineering, 122–123
defining requirements, 112–115
requirements definition report

(requirements definition), 115–116
requirements determination, 110–118

requirements-gathering techniques,
See Requirements-gathering techniques

strategies for, 118–125
system proposal, 146–147

Requirements definition, 112–115
Requirements definition report (requirements definition),

115–116
Requirements determination, 110–118

approach to, 116–117
creating requirements definition, 117
purpose of, 110
real-world problems with, 117–118

Requirements gathering (SDLC), 5
Requirements-gathering techniques, 125–146

combining, 142–143
concept maps, 144, 145
document analysis, 138–140
interviews, 126–132
joint application development, 132–136
observation, 139–141
questionnaires, 136–138
selecting, 141–142
story cards and task lists, 144, 146

Requirements testing, 531
Requirements workflow, 32, 33. See also Requirements analysis
Research-oriented development, 520
Resistance to change, 556–57
Resistant adopters, 561
Resource allocation, 67, 558
Response time, 498
Responsibilities, 205
Restructuring designs, 336–338
Return message, 241
Return on investment (ROI), 61

calculating, 61
and project selection, 67
from virtualization, 401

Reuse:
identifying opportunities for, 333–336
and testing, 527

Rewards, 93, 558
RFI (request for information), 310
RFID (radio frequency identification), 95
RFP (request for proposal), 310
Risk(s), 55, 124

and conversion strategy, 553–554
with outsourcing, 305–306

Risk analysis:
in requirements analysis, 124–125
technical, 55

Risk assessment, 87–88
Risk management, 87–88
ROI, see Return on investment
Roles, 174, 201
Role-playing, 207–208
Root cause, 119
Root cause analysis, 119–120
Round-trip engineering, 96
Royce, Walker, 79–80
Rumbaugh, James, 30, 39, 323

Index 558877

BMndx.qxd 12/2/11 2:02 PM Page 587

558888 Index

SS
Salesforce.com, 483, 484
Sample, 136, 137
San Jose, California police department, 443
SAP, 304, 435
Sarbanes-Oxley Act, 112, 113, 484
Saturn, 123
Saxe, John Godfrey, 111
Scalability, 482
Scalable architectures, 477
Scenarios, 174, 238
Schedlbauer, Martin, 164
Schedules:

adjusting for missed dates, 87
and choice of methodology, 19
interview, 126–127
overly-optimistic, 49
visibility of, 20

Schedule management, 519–520
Scope creep, 84, 520
Scope management, 84
Screen, 414
Scribe role (walkthroughs), 185
Scribes, 133, 185
Scrum, 16–18
Seattle, Washington, 497
Seattle University, 99
Second normal form (2NF), 393
Security:

with cloud computing, 484
and physical architecture, 482

Security requirements, 113, 500
for data management layer, 405
definition of, 115
for human–computer interaction layer, 464
and physical architecture layer, 500–503

Security testing, 531
Selection, project, 66–69
Selection boxes, 447, 448
Self-delegation, 241
Sequence diagrams, 40, 238–246

elements of, 238–241
guidelines for creating, 241–243
steps in creating, 243–246
in user interface design, 421

Sequential access
files, 369, 371–372, 377

Servers, 205, 293, 343, 475
Server-based architectures, 474–476
Server objects, 205
Service-oriented architecture, 483
Services, 483
Shamrock Foods, 525
Shaw, George Bernard, 318
Short-term orientation, 524, 549
Signature (of methods), 332
Simone, S.S., 201
Simple actors (use-case models), 74
Simple use case, 74

Simultaneous conversion, 552
Single inheritance, 322
Single-inheritance languages, 340–342
Skills:

critical thinking, 118
and design strategy, 308
interpersonal, 91, 92, 132
technical, 91, 92

Slider, 447
Smalltalk, 293–294, 332, 340
Smartcards, 445
Smartphones, 454, 455
Snyder, Alan, 327
Social media, 456–459
Software:

functions of, 474–475
selection factors for, 493
specification, 492–495

Software as a Service (SaaS), 483
SOPs (standard operating procedures), 558
Sorts, data, 450
Source data automation, 444
South Dakota Department of Worker’s Compensation, 552, 565
Special issues, 52–53
Specialized actors, 155–157
Specifications:

adding, 332
hardware and system software, 492–495
system, 5
test, 528

Specification requirements, 97
Specifications, database and file, 5
Speed of messages, 461, 548
Speed requirements, 498–499
Sponsors, 4, 555
Sprint Corporation, 54
SQL (structured query language), 374, 475, 524
Staffing:

conflict management, 94–95
jelled teams, 88–90
motivation, 93–94
in project management, 88–96
staffing plan, 90–92

Staffing plan, 90–92
Stakeholders, 64, 177
Stakeholder analysis, 64
Standards, 97–99

interface, 421, 426–428
naming, 99

Standard operating procedures (SOPs), 558
State(s), 211, 320

in behavioral state machines, 253, 254
of objects, 23, 320
in windows navigation diagrams, 425

State symbol, 255
Static binding, 27
Static model, 208
Statis structure diagrams:

class diagrams, 208–217
object diagrams in, 217–218

BMndx.qxd 12/2/11 2:02 PM Page 588

Stereotype, 426, 486
Storyboards, 428, 429
Story cards, 144, 146
Strategic alignment, 64
Structural model, 196
Structural models:

balancing behavioral models and, 286–289
balancing functional models and, 276–282

Structural modeling, 195–232
applying concepts of, 230
attributes in, 197
class diagrams in, 208–217
classes in, 197
CRC cards in, 205–208
creating, 218–227
object diagrams in, 217–218
object identification

approaches in, 199–204
operations in, 197
purposes of, 196
relationships in, 197–199
verifying and validating, 227–230

Structure:
of documentation, 537–538
interface, 425–426

Structured design, 8–10
object-oriented approaches vs., 174n.17
parallel development, 9–10
qualities of, 18
waterfall development, 8–9

Structured English, 344, 356
Structure diagrams (UML), 39, 40
Structured interviews, 128
Structured query language (SQL), 374, 475, 524
Stubs, 528
Subclasses:

and connascence, 331
in object-oriented systems, 25
states vs., 255, 257
in structural modeling, 198

Subcontracting, and agile development, 15
Subject boundary, 159

identifying, 160
in use-case diagrams, 156, 159–160

Substitutability, 198
Summary reports, 451, 452
Superclasses, 25, 198

in object-oriented systems, 25
in structural modeling, 198

Supplier, 343
Supporting workflows

(Unified Process), 34–35, 38
Support plan, 6
SVDPI, 179, 181, 219
Swimlanes, 166, 170, 171
Symmetric encryption algorithm, 502
Synonyms, 323
Systems:

compatibility of, 56
overall objectives for, 79

Systems analysts, 21–22
primary objective of, 2
roles of and skills for, 20–22
in SDLC, 2

Systems development life cycle (SDLC), 2–6
analysis phase in, 4–5
design phase in, 5
implementation phase in, 6
planning phase in, 4

System documentation, 535
Systems integration, 304–305
System integration

requirements, 496, 497
System interfaces, 413
System interface testing, 531, 534
System maintenance, 564, 566–567
System proposal, 5, 110, 146–147
System proposal (SDLC), 5
System prototypes, 12
System requests, 4, 50, 52–54

change requests as, 566
elements of, 52–53
template for, 53

System requirements, 111, 112
System review, 568–569
System software, 492–495
System specification (SDLC), 5
System support, 564–566
System tests, 531, 534–535
System users, 65
System value, 500–501
SysTrust, 462

TT
Table scan, 398
Tablet computers, 454
Tab menus, 439, 440
Tangible benefits, 57
Tangible things, 201
Tangible value, identifying, 52
Tasks:

on critical path, 72–73
defined, 69
project, 69–70

Task dependencies, 70
Task lists, 144, 146
TCFs (technical complexity factors), 74–77
Teams:

complexity of, 91
dysfunctional, 90
handling conflict on, 94–95
jelled, 88–90
motivating, 93–94
project team review, 568
staffing plan for, 90–92
standards for, 97–98

Technical complexity factors (TCFs), 74–77
Technical environment requirements, 496–497
Technical factor value (TFactor), 77

Index 558899

BMndx.qxd 12/2/11 2:02 PM Page 589

559900 Index

Technical feasibility, 55–56
Technical lead, 91
Technical risk analysis, 55
Technical skills, 91, 92
Technical writer, 21
Technology:

emerging, 51
familiarity with, 19, 56

Technology analysis, 122–123
Temporal triggers (use cases), 177
Temporary objects, 239
Terminology, consistency in, 421
Tests, 184

stages of, 526
walkthrough as, 184

Test cases, 528
Test design, 525–535

acceptance tests, 535
integration tests, 534
and object orientation, 526–528
system tests, 534–535
test plan, 528–530
unit tests, 530–533

Testing:
inadequate, 520
need for, 516
purpose of, 525
usability, 433–434
with XP, 16

Testing workflow, 34
Test plan, 528–530
Test specifications, 528
Test workflow, 37
Text:

design of, 418
entering, 446

Text box, 446
Textual analysis, 199–200
TFactor (Technical factor value), 77
Thick clients, 476
Thin clients, 476, 477
Third normal form (3NF), 393
Three-clicks rule, 421
Three-tiered architecture, 478
Throwaway prototyping, 13–14, 18
Tidwell, Jenifer, 454, 455
Time, 553

and adoption of system, 548
and conversion strategy, 554
culturally different approaches to, 462, 524

Time-and-arrangements contract, 306
Timeboxing, 84–85, 524
Time frame, design strategy and, 309
Timesharing, 483
Timing diagrams (UML), 40
Tipping Point Technology, 503
TMR Telecommunications Consultants, 521
To-be system, 110, 118
Toolbars, 439
Tool bars, 440

Top-down interviews, 128, 129
Topics:

documentation, 427, 538–540
navigation controls for, 537

Total cost of ownership, 478
Touch screens, 454
Traceability (of artifacts), 516
Trade-offs:

in portfolio management, 67
in project implementation, 69
in project management, 73

Training, 562–564
Training plan, 6
Transaction file, 372
Transaction processing, 444
Transaction-processing systems, 378–379
Transitions:

in behavioral state machines, 253, 254
in windows navigation diagrams, 425

Transition phase, 32. See also Implementation
Transition phase (Unified Process), 31, 32, 36
Transition process, 556
Transitive dependency, 393
Travelers Insurance Company, 85
Triggers:

adding to attributes, 339
behavioral state machines, 259
use cases, 177

Trust, building, 462
Turnaround documents, 451, 452
Turnover (jelled teams), 89
Tutorials, 527, 536–537
Twitter, 456–458
Two-tiered architecture, 478
Type of information (for requirements analysis), 141

UU
UML, see Unified Modeling Language
Umphress, David, 99
Unadjusted Actor Weighting Table, 75–76
Unadjusted Actor Weight Total (UAW), 74
Unadjusted use-case points (UUCP), 74–76
Unadjusted use-case weight total (UUCW), 74–76
Uncertainty avoidance, 462, 524, 548
Unfreezing habits and norms, 546
Unified Modeling Language (UML), 39–41, 524

objective of, 39
OMG acceptance of, 154

Unified Process, 30–39
enhanced, 35–39, 79, 80
phases of, 30–32
workflows in, 32–39

U.S. Army, 131, 555
Unit tests, 530–533
University of Georgia, 418, 419
University of Northern Wisconsin, 143
Unordered sequential access file, 371
Unstructured interviews, 128
Update anomaly, 390

BMndx.qxd 12/2/11 2:02 PM Page 590

Update operation, 211
Upper CASE, 96
Usability testing, 433–434, 531
Use, ease of, 420
Use cases, 28, 74, 154, 237

and behavioral models, 237
classification of, 74
defined, 74, 154
detail, 175
essential, 175
estimation based on, 74–78
identifying, 160–161
overview, 175
primary purpose of, 180
process documentation with, 173–184
process identification with, 155–163
real, 175
role-playing with, 207–208
in structural modeling, 218–226
types of, 175
in use-case diagrams, 156, 158–159
in user interface design, 421

Use-case descriptions:
creating, 174–175
defined, 155
flow of events in, 178
guidelines for creating, 179–180
overview information in, 175–177
process documentation with, 173–184
relationships in, 177–178
steps in creating, 180–184

Use-case diagrams, 40, 154–160
actors in, 155–157
association relationships in, 156–158
creating, 161–163
defined, 154–155
process identification with, 155–163
subject boundary in, 156, 159–160
use case in, 156, 158–159

Use-case driven OOSAD, 28
Use-case ID number, 175
Use-case models, 74
Use-case names, 175
Use-case points, 74
Use-case testing, 531, 534
Use-case type, 175
Users:

involvement in requirements analysis, 142
roles of, 174
system, 65

User documentation, 535–536
User effort, minimizing, 421
User experience, 420
User interface design.

See also Human–computer interaction layer
evaluation of, 432–434
international and cultural

issues in, 459–463
principles for, 414
prototyping, 427–432

standards for, 97
structure, 425–426

User interfaces, 413
User interface testing, 524, 531
User requirements, clarity of, 18
Use scenarios:

in human–computer interaction layer design, 422–425
in user interface design, 421

UUCW (unadjusted use-case weight total), 74–76

VV
Validation:

of analysis models, 275–289
of behavioral models, 264–265
of functional models, 184–188
input, 448
of package diagrams, 302
of structural models, 227–230

Valley Enterprises, 521
Value(s):

assigning to costs and benefits, 58–59
default, 445
intangible, 52, 59
system, 500–501
tangible, 52

Value-added contract, 306, 307
Verification:

of analysis models, 275–289
of behavioral models, 264–265
of functional models, 184–188
of package diagrams, 302
of structural models, 227–230

Versions, system, 11–12
Views:

in class diagrams, 217
in MVC architecture, 294

Virtual Case File project, 62
Virtualization:

and cloud computing, 482
return on investment from, 401

Virtual memory, 482–483
Viruses, 503
Virus control requirements, 503
Visibility, 211

of attributes, 211, 320
of methods, 320

Visual Basic, 320, 429, 431, 524
Visual Basic 6, 342
Visual Basic.net, 340, 342
Visualization, 181
Visual programming languages, 10
Volumetrics, 400, 401

WW
Walkthroughs, 110, 311

of behavioral models, 264–265
defined, 184
for interface design, 433
verifying/validating models through, 184–188, 227

Index 559911

BMndx.qxd 12/2/11 2:02 PM Page 591

559922 Index

Walkthrough evaluation, 433
Waterfall development, 8–9, 18
WBS, see Work breakdown structure
Web services, 483
Websites, company, 456–459, 462
WEbTrust, 462
White-box testing, 530, 531
White space, 418
Wholes, 198
Whole-system conversion, 552
Wilde, Oscar, 318
Wilson, Carl, 67
Wilson, Doug, 521
Windows, 425
Windows layout diagram, 429
Windows navigation diagram (WND), 421, 425–426
Wixom, Barbara, 59, 69, 99, 114, 139, 303, 432
Workarounds, 304
Work breakdown structure (WBS), 70–71

evolutionary, 79–84
underlying problems with, 79–80

Workflows, 30
in enhanced Unified Process, 80
in Unified Process, 32–35
in Unified Process extensions, 32–39

Workplan (project management), 4, 79–88
evolutionary WBSs, 79–84
iterative, 79–84
refining estimates, 86–87
risk management, 87–88
scope management, 84
task information in, 69
timeboxing, 84–85

XX
Xerox, 413n.1
XP (extreme programming), 15–16, 18

YY
Yourdon, Edward, 184, 325
Yo-yo problem, 534

BMndx.qxd 12/2/11 2:02 PM Page 592

CHAPTER 1: INTRODUCTION TO SYSTEMS ANALYSIS AND DESIGN
Throughout this book, many new concepts about object-oriented systems analysis and
design are introduced. As a way to make these new concepts more relevant, we apply them
to a fictitious company called CD Selections. CD Selections is a chain of 50 music stores in
California, with headquarters in Los Angeles. Annual sales last year were $50 million, and
they have been growing at about 3 to 5 percent per year for the past few years. The firm has
been interested in expanding their presence beyond California. Margaret Mooney, Vice
President of Marketing, has become excited by and concerned about the rise of Internet
sites selling CDs and sites such as iTunes that sell digital music. She believes that the Inter-
net has great potential, but she wants to use it in the right way. Rushing into e-commerce
without considering its effect on existing brick-and-mortar stores and the implications on
existing systems at CD Selections could cause more harm than good.

Currently, CD Selections has a website that provides basic information about the com-
pany and about each of its stores (e.g., map, operating hours, phone number). The website
was developed by an Internet consulting firm and is hosted by a prominent local Internet
service provider (ISP) in Los Angeles. The IT department at CD Selections has become
experienced with Internet technology as it has worked with the ISP to maintain the site;
however, it still has a lot to learn when it comes to conducting business over the Web. Mar-
garet is interested in investigating the possibility of creating an e-commerce site that will
work with the current systems used by CD Selections. In future chapters, we revisit CD
Selections to see how the concepts introduced in the individual chapters affect Margaret
and the team developing a Web-based solution for CD Selections.

AA PP PP EE NN DD II XX

CD SELECTIONS

11

CHAPTER 2: PROJECT MANAGEMENT
In this chapter, we introduced how object-oriented systems development projects were
managed. Specifically, we described how projects were identified and how the identification
led to a system request. Next, we presented the three different types of feasibility analysis
and how their results helped in selecting a project. After that, we reviewed a set of tradi-
tional project management tools that can be applied to planning and managing of an
object-oriented systems development project and demonstrated employing use-case points
as a method that can be used to estimate the effort it will take to develop an object-oriented
system. We next discussed the use of evolutionary work breakdown structures and iterative
workplans in conjunction with the Unified Process. We then covered the issues related to
assigning the right people to the development team. Finally, we described topics associated
with the environment and infrastructure management workflows of the Unified Process. In
this installment of the CD Selections case, we see how Margaret and the development team
work through all of these topics with regard to the Web-based solution that they hope to
create.

Project Identification and System Request
At CD Selections, all potential IT projects are reviewed and approved by a project steering
committee that meets quarterly. The committee has representatives from IT as well as from
the major areas of the business. For Margaret, the first step was to prepare a system request
for the committee. Using the system request template (see Figure 2-2) Margaret prepared a
system request (see Figure 2-A). Of course, the sponsor is Margaret, and the business needs
are to increase sales and to better service retail customers. Notice that the need does not
focus on the technology, such as the need “to upgrade our Web page” The focus is on the
business aspects: sales and customer service.

For now, the business requirements are described at a very high level of detail. In
this case, Margaret’s vision for the requirements includes the ability to help brick-and-
mortar stores reach out to new customers. Specifically, customers should be able to
search for products over the Internet, locate a retail store that contains the product, put
a product on “hold” for later store pick-up, and order products that are not currently
being stocked.

The business value describes how the requirements will affect the business. Margaret
found identifying intangible business value to be fairly straightforward in this case. The
Internet is a “hot” area, so she expects the Internet to improve customer recognition and
satisfaction. Estimating tangible value is more difficult. She expects that Internet-ordering
will increase sales in the retail stores, but by how much?

Margaret decided to have her marketing group do some market research to learn how
many retail customers do not complete purchases because the store does not carry the item
they are looking for. They learned that stores lose approximately 5% of total sales from
“out-of-stocks and non-stocks.” This number gave Margaret some idea of how much sales
could increase from the existing customer base (i.e., about $50,000 per store), but it does
not indicate how many new customers the system will generate.

Estimating how much revenue CD Selections should anticipate from new Internet cus-
tomers was not simple. One approach was to use some of CD Selections’ standard models
for predicting sales of new stores. Retail stores average about $1 million in sales per year
(after they have been open a year or two), depending upon location factors such as city
population, average incomes, proximity to universities, and so on. Margaret estimated that
adding the new Internet site would have similar effects of adding a new store. This would

22 AAppppeennddiixx CD Selections

suggest on-going revenues of $1 million, give or take several hundred thousand dollars,
after the website had been operating for a few years.

Together, the sales from existing customer ($2.5 million) and new customers ($1 mil-
lion) totaled approximately $3.5 million. Margaret created conservative and optimistic esti-
mates by reducing and increasing this figure by 25 percent. This created a possible range of
values from $2,625,000 to $4,375,000. Margaret is conservative, so she decided to include
the lower number as her sales projection.

Finally, Margaret wanted to impress on the project steering committee the importance
of funding this specific project. To accomplish this, she made sure that the committee real-
ized that the Marketing Department viewed the system that this project would produce as
a strategic investment. And, she made certain that the committee realized, for the system to
have an early success and an immediate impact, that the system really needed to be opera-
tional before the holiday shopping season next year. Consequently, she included this addi-
tional information as part of the system request.

Chapter 2: Project Management 33

FFIIGGUURREE 22--AA System Request for CD Selections

SSyysstteemm RReeqquueesstt——IInntteerrnneett OOrrddeerr PPrroojjeecctt

PPrroojjeecctt ssppoonnssoorr:: Margaret Mooney, Vice President of Marketing

BBuussiinneessss NNeeeedd:: This project has been initiated to reach new Internet customers and to better
serve existing customers using Internet sales support.

BBuussiinneessss RReeqquuiirreemmeennttss::

Using the Web, customers should be able to search for products and identify the brick-and-mortar
stores that have them in stock. They should be able to put items on hold at a store location or place
an order for items that are not carried or are not in stock. The functionality that the system should
have is as follows:

• Search through the CD Selections inventory of products.
• Identify the retail stores that have the product in stock.
• Put a product on hold at a retail store and schedule a time to pick up the product.
• Place an order for products not currently in stock or not carried by CD Selections.
• Receive confirmation that an order can be placed and when the item will be in stock.

BBuussiinneessss VVaalluuee::

We expect that CD Selections will increase sales by reducing lost sales due to out-of-stock or non-
stocked items and by reaching out to new customers through its Internet presence. We expect the
improved services will reduce customer complaints, primarily because 50% of all customer com-
plaints stem from out-of-stocks or non-stocked items. Also, CD Selections should benefit from
improved customer satisfaction and increased brand recognition due to its Internet presence.
Conservative estimates of tangible value to the company include:

• $750,000 (75% of $1,000,000) in sales from new customers
• $1,875,000 (75% of $2,500,000) in sales from existing customers
• $50,000 in sales from customers not facing “out-of-stock or non-stocked” items

SSppeecciiaall IIssssuueess oorr CCoonnssttrraaiinnttss::

• The Marketing Department views this as a strategic system. This Internet system will add value
to our current business model, and it also will serve as a proof-of-concept for future Internet
endeavors. For example, in the future, CD Selections may want to sell products directly over the
Internet.

• The system should be in place for the holiday shopping season next year.

Feasibility Analysis
Once Margaret and her Marketing group completed the system request, they submitted it
to the steering committee for their next meeting. When the steering committee met, they
placed the Internet Order project high on its list of projects. A senior systems analyst, Alec
Adams, was assigned to help Margaret conduct a feasibility analysis because of his famil-
iarity with CD Selections’ sales and distribution systems. He also was an avid user of the
Web and had been offering suggestions for the improvement of CD Selections’ Web site.

Alec and Margaret worked closely together over the next few weeks on the feasibility analy-
sis. Figure 2-B presents the executive summary page of the feasibility analysis; the report itself
was about 10 pages long, and it provided additional detail and supporting documentation.

As shown in Figure 2-B, the project is somewhat risky from a technical perspective. CD
Selections has minimal experience with the proposed application and the technology
because the ISP had been managing most of the website technology to date. One solution
may be to hire a consultant with e-commerce experience to work with the IT department
and to offer guidance. Further, the new system would have to exchange order information
with the company’s brick-and-mortar order system. Currently, individual retail stores sub-
mit orders electronically, so receiving orders and exchanging information with the Internet
systems should be possible.

The economic feasibility analysis includes refined assumptions that Margaret made in
the system request. Figure 2-C shows the summary spreadsheet that lead to the conclusions
on the feasibility analysis. Development costs are expected to be about $250,000. This is a
very rough estimate, as Alec has had to make some assumptions about the amount of time
it will take to design and program the system. These estimates will be revised after a
detailed workplan has been developed and as the project proceeds1. Traditionally, operat-
ing costs include the costs of the computer operations. In this case, CD Selections has had
to include the costs of business staff, because they are creating a new business unit,
resulting in a total of about $450,000 each year. Margaret and Alec have decided to use a
conservative estimate for revenues although they note the potential for higher returns. This
shows that the project can still add significant business value, even if the underlying
assumptions prove to be overly optimistic. The spreadsheet was projected over three years,
and the ROI and break-even point were included.

The organizational feasibility is presented in Figure 2-B. There is a strong champion,
well placed in the organization to support the project. The project originated in the busi-
ness or functional side of the company, not the IT department, and Margaret has carefully
built up support for the project among the senior management team.

This is an unusual system in that the ultimate end users are the consumers external to
CD Selections. Margaret and Alec have not done any specific market research to see how
well potential customers will react to the CD Selections system, so this is a risk.

An additional stakeholder in the project is the management team responsible for the
operations of the traditional stores and the store managers. They should be quite
supportive given the added service that they now can offer. However, Margaret must con-
vince them that the Internet Sales System will not be viewed as a threat to stores’ future
sales. As such, Margaret and Alec need to make sure that the management team and store
managers are included in the development of the system so that they can incorporate the
system into their business processes.

44 AAppppeennddiixx CD Selections

1 Some of the salary information may seem high to you. Most companies use a “full cost” model for estimating
salary cost in which all benefits (e.g., health insurance, retirement, payroll taxes) are included in salaries when esti-
mating costs.

Chapter 2: Project Management 55

IInntteerrnneett OOrrddeerr FFeeaassiibbiilliittyy AAnnaallyyssiiss EExxeeccuuttiivvee SSuummmmaarryy

Margaret Mooney and Alec Adams created the following feasibility analysis for the CD Selections Internet Order System Project. The System
Proposal is attached, along with the detailed feasibility study. The highlights of the feasibility analysis are as follows:

TTeecchhnniiccaall FFeeaassiibbiilliittyy
The Internet Order System is feasible technically, although there is some risk.
CD Selections’ risk regarding familiarity with Internet order applications is high

• The Marketing Department has little experience with Internet-based marketing and sales.
• The IT Department has strong knowledge of the company’s existing order systems; however, it has not worked with Web-enabled

order systems.
• Hundreds of retailers that have Internet Order applications exist in the marketplace.

CD Selections’ risk regarding familiarity with the technology is medium.

• The IT Department has relied on external consultants and an Information Service Provider to develop its existing Web environment.
• The IT Department has gradually learned about Web systems by maintaining the current Web site.
• Development tools and products for commercial Web application development are available in the marketplace, although the IT depart-

ment has little experience with them.
• Consultants are readily available to provide help in this area.

The project size is considered medium risk.

• The project team likely will include fewer than ten people.
• Business user involvement will be required.
• The project timeframe cannot exceed a year because of the holiday season implementation deadline, and it should be much

shorter.

The compatibility with CD Selections’ existing technical infrastructure should be good.

• The current Order System is a client-server system built using open standards. An interface with the Web should be possible.
• Retail stores already place and maintain orders electronically.
• An Internet infrastructure already is in place at retail stores and at the corporate headquarters.
• The ISP should be able to scale their services to include a new Order System.

EEccoonnoommiicc FFeeaassiibbiilliittyy
A cost–benefit analysis was performed; see attached spreadsheet for details. A conservative approach shows that the Internet Order System
has a good chance of adding to the bottom line of the company significantly.
ROI over 3 years: 229 percent
Total benefit after three years: $3.5 million (adjusted for present value)
Break-even occurs: after 1.32 years
Intangible Costs and Benefits

• Improved customer satisfaction
• Greater brand recognition

OOrrggaanniizzaattiioonnaall FFeeaassiibbiilliittyy
From an organizational perspective, this project has low risk. The objective of the system, which is to increase sales, is aligned well with the
senior management’s goal of increasing sales for the company. The move to the Internet also aligns with Marketing’s goal to become more
savvy in Internet marketing and sales.

The project has a project champion, Margaret Mooney, Vice President of Marketing. Margaret is well positioned to sponsor this project and to
educate the rest of the senior management team when necessary. To date, much of senior management is aware of and supports the initiative.

The users of the system, Internet consumers, are expected to appreciate the benefits of CD Selections’ Web presence. And, management
in the retail stores should be willing to accept the system, given the possibility of increased sales at the store level.

AAddddiittiioonnaall CCoommmmeennttss

• The Marketing Department views this as a strategic system. This Internet system will add value to our current business model, and it also
will serve as a proof of concept for future Internet endeavors.

• We should consider hiring a consultant with expertise in similar applications to assist with the project.
• We will need to hire new staff to operate the new system, from both the technical and business operations aspects.

FFIIGGUURREE 22--BB Feasibility Analysis for CD Selections

TEMPLATE
can be found at
www.wiley.com
/college/dennis

66 AAppppeennddiixx CD Selections

Increased sales from new customers 0 750,000 772,500
Increased sales from existing customers 0 1,875,000 1,931,250
Reduction in customer complaint calls 0 50,000 50,000

TTOOTTAALL BBEENNEEFFIITTSS:: 0 2,675,000 2,753,750

PPVV ooff BBEENNEEFFIITTSS:: 00 22,,552211,,444444 22,,552200,,007711 55,,004411,,551155

PPVV ooff AALLLL BBEENNEEFFIITTSS:: 00 22,,552211,,444444 55,,004411,,551155

Labor: Analysis and Design 42,000 0 0
Labor: Implementation 120,000 0 0
Consultant Fees 50,000 0 0
Training 5,000 0 0
Office Space and Equipment 2,000 0 0
Software 10,000 0 0
Hardware 25,000 0 0

TTOOTTAALL DDEEVVEELLOOPPMMEENNTT CCOOSSTTSS:: 254,000 0 0

Labor: Webmaster 85,000 87,550 90,177
Labor: Network Technician 60,000 61,800 63,654
Labor: Computer Operations 50,000 51,500 53,045
Labor: Business Manager 60,000 61,800 63,654
Labor: Assistant Manager 45,000 46,350 47,741
Labor: 3 Staff 90,000 92,700 95,481
Software Upgrades 1,000 1,000 1,000
Software Licenses 3,000 1,000 1,000
Hardware Upgrades 5,000 3,000 3,000
User Training 2,000 1,000 1,000
Communications Charges 20,000 20,000 20,000
Marketing Expenses 25,000 25,000 25,000

TTOOTTAALL OOPPEERRAATTIIOONNAALL CCOOSSTTSS:: 446,000 452,700 464,751

TTOOTTAALL CCOOSSTTSS:: 700,000 452,700 464,751

PPVV ooff CCOOSSTTSS:: 667799,,661122 442266,,771133 442255,,331133 11,,553311,,663388

PPVV ooff AALLLL CCOOSSTTSS:: 667799,,661122 11,,110066,,332255 11,,553311,,663388

TToottaall PPrroojjeecctt BBeenneefifittss CCoossttss :: ((770000,,000000)) 22,,222222,,330000 22,,228888,,999999

YYeeaarrllyy NNPPVV:: ((667799,,661122)) 22,,009944,,773311 22,,009944,,775588 33,,550099,,887788

CCuummuullaattiivvee NNPPVV:: ((667799,,661122)) 11,,441155,,111199 33,,550099,,887788

RReettuurrnn oonn IInnvveessttmmeenntt:: 222299..1166%% (3,509,878/1,531,638)

BBrreeaakk--eevveenn PPooiinntt:: 11..3322 yyeeaarrss (Break-even occurs in year 2;
(2,094,731 ! 1,415,119]/2,094,731 " 0.32)

IInnttaannggiibbllee BBeenneefifittss:: Greater brand recognition

Improved customer satisfaction

22001122 22001133 22001144 TToottaall

FFIIGGUURREE 22--CC Economic Feasibility Analysis for CD Selections

Project Selection
The approval committee met and reviewed the Internet Sales System project along with
two other projects–one that called for the implementation of a corporate Intranet and
another that proposed in-store kiosks that would provide customers with information
about the CDs that the store carried. Unfortunately, the budget would only allow for one
project to be approved, so the committee carefully examined the costs, expected benefits,

risks, and strategic alignment of all three projects. Currently, a primary focus of upper
management is increasing sales in the retail stores and the Internet system and kiosk pro-
ject best aligned with that goal. Given that both projects had equal risk, but that the Inter-
net Order project expected a much greater return, the committee decided to fund the
Internet Sales System.

Project Effort Estimation
Given the success of the system request being funded, Alec was very excited about managing
the Internet Sales System project at CD Selections, but he realized that his project team would
have very little time to deliver at least some parts of the system because the company wanted
the application developed in time for the holiday season. Therefore, he decided that the pro-
ject should follow an Enhanced Unified Process-based approach (see Figure 1-18). In this
way, he could be sure that some version of the product would be in the hands of the users
within several months, even if the completed system would be delivered at a later date.

As project manager, Alec had to estimate the project’s effort and schedule–some of
his least favorite jobs because of how tough it is to do at the very beginning of the project.
But he knew that the users would expect at least general ranges for a product delivery date.
He began by attempting to estimate the project’s effort using use case points. Using the Use
Case Point Template (see Figure 2-17) and the sample filled out worksheet (see Figure 2-18)
Alec could estimate the effort to create the new system.

First, Alec had to sit down with Margaret and attempt to identify all of the different
users that would interact with the system and to identify the different business processes
that the system would support. At this point in time, Alec explained to Margaret that this
was a very rough, but necessary estimate. Once they identified these, Alec categorized the
different types of users into actors and identified the business processes as use cases. Once
this was done, Alec and Margaret had to classify each actor and use case as being simple,
average, or complex. In the case of the actors, Bricks and Mortar store and Distribution
System had a well defined API. As such they were classified as simple actors. On the other
hand, the Customer actor was classified as being complex. This gave an Unadjusted Actor
Weight Total Value of 5. (See Figure 2-D).

Second, Alec and Margaret classified each use case based on the number of unique
transactions that each had to handle. In this case, there were 2 simple use cases (Place
InStore Hold and Place Special Order), 1 average use case (Create New Customer), and 2
complex use cases (Place Order and Checkout). Based on these, a value of 100 to the Unad-
justed Use Case Weight Total was computed (See Figure 5-20).

Third, Alec computed a value of 55 for the Unadjusted Use Case Points. Fourth, he
rated each of the technical complexity factors, rated each of the environmental factors,
and computed the values for TCF and EF (See Figure 2-D). Fifth, using the Unadjusted
Use Case Points and the TCF and EF values, Alec calculated a value of 67.5 for Adjusted
Use Case Points. Sixth, based on the decision rule to determine whether to use 20 or 28
as the value of the person hours multiplier, Alec realized that he should use 28. Next,
Alec was able to estimate the effort for the project to be 1,889.89 person hours. This
equates to about 12 person months (1,889.89/160). In other words, it would take a sin-
gle person working full time about 1 year to complete the project. However, Alec
remembered the hurricane model (see Figure 2-22) and realized that at this point in the
development, this estimate would have to be modified substantially since they have not
created a requirements definition, system proposal, or a business process and functional
model. Furthermore, since CD Selections had never built this type of system, based on
his past experience with other systems, he suggested to simply double the estimate for
right now and to redo it once they have a better understanding of the requirements.

Chapter 2: Project Management 77

88 AAppppeennddiixx CD Selections

UUnnaaddjjuusstteedd AAccttoorr WWeeiigghhttiinngg TTaabbllee::

AAccttoorr TTyyppee DDeessccrriippttiioonn WWeeiigghhttiinngg FFaaccttoorr NNuummbbeerr RReessuulltt

Simple External System with well-defined API 1 2 2
Average External System using a protocol-based 2 0 0

interface, e.g., HTTP, TCT/IP, or a database
Complex Human 3 1 3

UUnnaaddjjuusstteedd AAccttoorr WWeeiigghhtt TToottaall ((UUAAWW)) 55

UUnnaaddjjuusstteedd UUssee CCaassee WWeeiigghhttiinngg TTaabbllee::

UUssee CCaassee TTyyppee DDeessccrriippttiioonn WWeeiigghhttiinngg FFaaccttoorr NNuummbbeerr RReessuulltt

Simple 1–3 transactions 5 2 10
Average 4–7 transactions 10 1 10
Complex >7 transactions 15 2 30

UUnnaaddjjuusstteedd UUssee CCaassee WWeeiigghhtt TToottaall ((UUUUCCWW)) 5500

Unadjusted use case points (UUCP) " UAW # UUCW 55 " 5 # 50

TTeecchhnniiccaall CCoommpplleexxiittyy FFaaccttoorrss::

FFaaccttoorr NNuummbbeerr DDeessccrriippttiioonn WWeeiigghhtt AAssssiiggnneedd VVaalluuee ((00––55)) WWeeiigghhtteedd VVaalluuee NNootteess

T1 Distributed system 2.0 5 10.0
T2 Response time or throughput 1.0 5 5.0

performance objectives
T3 End-user online efficiency 1.0 5 5.0
T4 Complex internal processing 1.0 4 4.0
T5 Reusability of code 1.0 3 3.0
T6 Easy to install 0.5 3 1.5
T7 Ease of use 0.5 5 2.5
T8 Portability 2.0 4 8.0
T9 Ease of change 1.0 3 3.0
T10 Concurrency 1.0 3 3.0
T11 Special security objectives included 1.0 5 5.0
T12 Direct access for third parties 1.0 5 5.0
T13 Special User training required 1.0 3 3.0

TTeecchhnniiccaall FFaaccttoorr VVaalluuee ((TTFFaaccttoorr)) 5588..00

Technical complexity factor (TCF) " 0.6 # (0.01 * TFactor) 1.18 " 0.6 # (0.01 * 58)

EEnnvviirroonnmmeennttaall FFaaccttoorrss::

FFaaccttoorr NNuummbbeerr DDeessccrriippttiioonn WWeeiigghhtt AAssssiiggnneedd VVaalluuee ((00––55)) WWeeiigghhtteedd VVaalluuee NNootteess

E1 Familiarity with system 1.5 1 1.5
development process being used

E2 Application experience 0.5 2 1.0
E3 Object-oriented experience 1.0 0 0.0
E4 Lead analyst capability 0.5 3 1.5
E5 Motivation 1.0 4 4.0
E6 Requirements stability 2.0 4 8.0
E7 Part time staff –1.0 0 0.0
E8 Difficulty of programming language –1.0 4 –4.0

EEnnvviirroonnmmeennttaall FFaaccttoorr VVaalluuee ((EEFFaaccttoorr)) 1122..00

Environmental factor (EF) " 1.4 # (–0.03 * EFactor) 1.04 " 1.4 # (–.03 * 12)
Adjusted use case points (UCP) " UUCP *TCF *ECF 67.5 " 55 * 1.18 * 1.04
Person hours multiplier (PHM) PHM " 28
Person hours " UPC * PHM 1,889.9 " 67.5 * 28

FFIIGGUURREE 22--DD Use-Case Points Estimation for the Internet Sales Systems

Chapter 2: Project Management 99

II.. Business Modeling
aa.. Inception

11.. Understand current business situation
22.. Uncover business process problems
33.. Identify potential projects

bb.. Elaboration
cc.. Construction
dd.. Transition
ee.. Production

IIII.. Requirements
aa.. Inception

11.. Identify appropriate requirements analysis technique
22.. Identify appropriate requirements gathering techniques
33.. Identify functional and nonfunctional requirements II.a.1, II.a.2
44.. Analyze current systems II.a.1, II.a.2
55.. Create requirements definition II.a.3, II.a.4

AA.. Determine requirements to track
BB.. Compile requirements as they are elicited II.a.5.A
CC.. Review requirements with sponsor II.a.5.B

DDuurraattiioonn DDeeppeennddeennccyy

FFIIGGUURREE 22--EE
Evolutionary Work
Breakdown Structure
for the Inception Phase
for CD Selections. (Continued)

Creating and Managing the Workplan
Once the estimation was underway, Alec began to create an evolutionary work breakdown
structure and iterative workplan to identify the tasks that would be needed to complete the
system. He started by reviewing the Enhanced Unified Process phases and workflows (see
Figure 1-18) and the evolutionary work breakdown structure template (see Figure 2-19).
At this point in time, Alec does not know enough to create a complete workplan. Conse-
quently, he has included as much detail as he knows to be correct (see Figure 2-E). For
example, Alec feels confident about the estimation of time to create the requirements def-
inition and to elicit the requirements. However, he does not know whether how long it will
take to develop the functional, structural, or behavioral analysis models until after he has a
better idea of the actual requirements. Until this determination can be made, any estima-
tion as to the time required would be simply a guess. As time passes, Alec expects to know
much more about the development process and will add much more detail to the work-
plan. (Remember that the development process and the project management processes are
iterative and incremental in nature.)

Staffing the Project
Alec next turned to the task of how to staff his project. On the basis of his earlier estimates,
it appeared that about 3 people would be needed to deliver the system by the holidays
(24 person-months over 10 months of calendar time means 3 people, rounded up).

First, he created a list of the various roles that he needed to fill. He thought he
would need a couple of analysts to work with the analysis and design of the system as
well as an infrastructure analyst to manage the integration of the Internet Sales System

1100 AAppppeennddiixx CD Selections

bb.. Elaboration
cc.. Construction
dd.. Transition
ee.. Production

IIIIII.. Analysis
aa.. Inception

11.. Identify business processes
22.. Identify use cases III.a.1

bb.. Elaboration
cc.. Construction
dd.. Transition
ee.. Production

IIVV.. Design
aa.. Inception

11.. Identify potential classes III.a
bb.. Elaboration
cc.. Construction
dd.. Transition
ee.. Production

VV.. Implementation
aa.. Inception
bb.. Elaboration
cc.. Construction
dd.. Transition
ee.. Production

VVII.. Test
aa.. Inception
bb.. Elaboration
cc.. Construction
dd.. Transition
ee.. Production

VVIIII.. Deployment
aa.. Inception
bb.. Elaboration
cc.. Construction
dd.. Transition
ee.. Production

VVIIIIII.. Configuration and change management
aa.. Inception

11.. Identify necessary access controls for developed artifacts
22.. Identify version control mechanisms for developed artifacts

bb.. Elaboration
cc.. Construction
dd.. Transition
ee.. Production

DDuurraattiioonn DDeeppeennddeennccyy
FFIIGGUURREE 22--EE
(Continued)

Chapter 2: Project Management 1111

IIXX.. Project management
aa.. Inception

11.. Create workplan for the inception phase
22.. Create system request
33.. Perform feasibility analysis IX.a.2

AA.. Perform technical feasibility analysis
BB.. Perform economic feasibility analysis
CC.. Perform organizational feasibility analysis

44.. Identify project size IX.a.3
55.. Identify staffing requirements IX.a.4
66.. Compute cost estimate IX.a.5
77.. Create workplan for first iteration of the elaboration phase IX.a.1
88.. Assess inception phase I.a, II.a, III.a

IV.a, V.a, VI.a
VII.a, VIII.a,
IX.a, X.a, XI.a
XII.a

bb.. Elaboration
cc.. Construction
dd.. Transition
ee.. Production

XX.. Environment
aa.. Inception

11.. Acquire and install CASE tool
22.. Acquire and install programming environment
33.. Acquire and install configuration and change

management tools
44.. Acquire and install project management tools

bb.. Elaboration
cc.. Construction
dd.. Transition
ee.. Production

XXII.. Operations and Support
aa.. Inception
bb.. Elaboration
cc.. Construction
dd.. Transition
ee.. Production

XXIIII.. Infrastructure Management
aa.. Inception

11.. Identify appropriate standards and enterprise models
22.. Identify reuse opportunities, such as patterns, frameworks, and libraries
33.. Identify similar past projects

bb.. Elaboration
cc.. Construction
dd.. Transition
ee.. Production

DDuurraattiioonn DDeeppeennddeennccyy

with CD Selections’ existing technical environment. Alec also needed people who had
good programmer skills and who could be responsible for ultimately implementing the
system. Anne and Brian are two analysts with strong technical and interpersonal skills
(although Anne is less balanced, having greater technical than interpersonal abilities),
and Alec believed that they were available to bring onto this project. He wasn’t certain
if they had experience with the actual Web technology that would be used on the pro-
ject, but he decided to rely on vendor training or an external consultant to build those
skills later when they were needed. Because the project was so small, Alec envisioned all
of the team members reporting to him because he would be serving as the project’s
manager.

Alec created a staffing plan that captured this information, and he included a special
incentive structure in the plan (see Figure 2-F). Meeting the holiday deadline was very
important to the project’s success, so he decided to offer a day off to the team members who
contributed to meeting that date. He hoped that this incentive would motivate the team to
work very hard. Alec also planned to budget money for pizza and sodas for times when the
team worked long hours.

Before he left for the day, Alec drafted a project charter, to be fine-tuned after the team
got together for its kickoff meeting (i.e., the first time the project team gets together). The
charter listed several norms that Alec wanted to put in place from the start to eliminate any
misunderstanding or problems that could come up otherwise (see Figure 2-G).

1122 AAppppeennddiixx CD Selections

Project Manager Oversees the project to ensure that it meets its Alec
objectives in time and within budget.

Infrastructure Analyst Ensures the system conforms to infrastructure Anne
standards at CD Selections.

Ensures that the CD Selections infrastructure
can support the new system.

Systems Analyst Designs the information system—with a focus Anne
on interfaces with the distribution system.

Systems Analyst Designs the information system—with a focus Brian
on the data models and system performance.

Programmer Codes system. Anne

RReeppoorrttiinngg SSttrruuccttuurree:: All project team members will report to Alec.
SSppeecciiaall IInncceennttiivveess:: If the deadline for the project is met, all team members who contributed to this
goal will receive a free day off to be taken over the holiday season.

RRoollee DDeessccrriippttiioonn AAssssiiggnneedd TToo

FFIIGGUURREE 22--FF
Staffing Plan for the
Internet Sales System

Project objective: The Internet order system project team will create a working Web-based
system to sell CDs to CD Selections’ customers in time for the holiday season.

The Internet order system team members will:

1. Attend a staff meeting each Friday at 2 PM. to report on the status of assigned tasks.
2. Update the workplan with actual data each Friday by 5 PM.
3. Discuss all problems with Alec as soon as they are detected.
4. Agree to support each other when help is needed, especially for tasks that could hold back

the progress of the project.
5. Post important changes to the project on the team bulletin board as they are made.

FFIIGGUURREE 22--GG
Project Charter for the
Internet Order System

Coordinating Project Activities
Alec wanted the Internet Sales System project to be well coordinated, so he immediately put
several practices in place to support his responsibilities. First, he acquired the CASE tool
used at CD Selections and set up the product so that it could be used for the analysis-phase
tasks (e.g., drawing the functional, structural, and behavioral models). The team members
would likely start creating diagrams and defining components of the system fairly early on.
He pulled out some standards that he uses on all development projects and made a note to
review them with his project team at the kickoff meeting for the system. He also had his
assistant set up binders for the project deliverables that would start rolling in. Already he
was able to include the system request, feasibility analysis, initial workplan, staffing plan,
project charter, standards list, and risk assessment.

Chapter 2: Project Management 1133

CHAPTER 3: REQUIREMENTS DETERMINATION
In this chapter, we introduced how the requirements are determined in object-oriented
systems development projects. Specifically, we described what a requirement is, how to
create a requirements definition, and a set of problems that can arise when determining
requirements. Next, we reviewed three different requirements analysis strategies, along
with a set of techniques that can be used in conjunction with the strategies. After that, we
reviewed a set of generic requirements-gathering techniques and a couple of alternative
techniques that can be used with an object-oriented system development project. Finally,
we showed how the results of the requirements determination processes, along with an
updated system request, feasibility analysis, and workplan, are organized into and docu-
mented by a system proposal. In this installment of the CD Selections case, we see how Alec
and Margaret work through all of these topics with regards to the Web-based solution that
they hope to create.

Once the CD Selections steering committee approved the system proposal and feasi-
bility analysis, the project team began performing project management and analysis activ-
ities. In addition to the material described in the previous installment, these activities
included gathering requirements using a variety of techniques, and analyzing the require-
ments that were gathered. Furthermore, Alec and Margaret decided to hire an Internet
marketing and sales consultant, Chris Campbell, to advise Alec, Margaret, and the project
team during the inception phase. Some highlights of the project team’s activities are pre-
sented below.

Requirements Analysis Techniques
Margaret suggested that the project team conduct several joint application development
(JAD) sessions with store managers, marketing analysts, and Web-savvy members of the IT
staff. Together, the groups could work through some business process improvement (BPI)
techniques and brainstorm how improvements could be made to the current order process
using a new Web-based system.

Alec facilitated three JAD sessions that were conducted over the course of a week. Alec’
past facilitation experience helped the 8-person meetings run smoothly and stay on track.
First, Alec used technology analysis, and suggested several important Web technologies that
could be used for the system. The JAD session generated ideas about how CD Selections
could apply each of the technologies to the Internet order project. Alec had the group cat-
egorize the ideas into three sets: “definite” ideas that would have a good probability of pro-
viding business value; “possible” ideas that might add business value; and “unlikely” ideas.

Next, Alec applied informal benchmarking by introducing the Web sites of several
leading retailers and pointing out the features that they offered on-line. He selected some
sites based on their success with Internet sales, and others based on their similarity to the
vision for CD Selections’ new system. The group discussed the features that were common
across most retailers versus unique functionality, and they created a list of suggested busi-
ness requirements for the project team.

Requirements Gathering Techniques
Alec believed that it would be important to understand the order processes and systems
that already existed in the organization because they would have to be closely integrated
with the Web order system. Three requirements gathering techniques proved to be helpful
in understanding the current systems and processes–document analysis, interviews, and
observation.

1144 AAppppeennddiixx CD Selections

Chapter 3: Requirements Determination 1155

2 This JAD session was not originally planned. As such, the workplan (see Figure 2-E) should be modified

First, the project team collected existing reports (e.g., order forms, screenshots of the
on-line order screens) and system documentation (functional, structural and behavioral
models) that shed light on the as-is system. They were able to gather a good amount of
information about the brick-and-mortar order processes and systems in this way. When
questions arose, they conducted short interviews with the person who provided the docu-
mentation for clarification.

Next, Alec interviewed the senior analysts for the order and inventory systems to get a
better understanding of how those systems worked. He asked if they had any ideas for the
new system, as well as any integration issues that would need to be addressed. Alex also
interviewed a contact from the ISP and the IT person who supported CD Selections’ cur-
rent website–both provided information about the existing communications infrastructure
at CD Selections and its Web capabilities. Finally, Alex spent a half-day visiting two of the
retail stores and observing exactly how the order and hold processes worked in the brick-
and-mortar facilities.

Requirements Definition
Throughout all of the above activities, the project team collected information and tried
to identify the business requirements for the system from the information. As the pro-
ject progressed, requirements were added to the requirements definition and grouped
by requirement type. When questions arose, they worked with Margaret, Chris, and Alec
to confirm that requirements were in scope. The requirements that fell outside of the
scope of the current system were typed into a separate document that would be saved
for future use.

After gathering and documenting the requirements, the requirements definition was
distributed to Margaret, two marketing employees who would work with the system on the
business side, and several retail store managers. This group then met for a two-day JAD ses-
sion to clarify, finalize, and prioritize business requirements2.

The project team spent time creating functional, structural and behavioral models
(Chapters 4, 5, and 6) that depicted the objects in the future system. Members of market-
ing and IT departments reviewed the documents during interviews with the project team.
Figure 3-A shows a portion of the final requirements definition and Figure 3-B represents
the requirements in the form of a concept map.

System Proposal
Alec reviewed the requirements definition and the other deliverables that the project
team created during the inception phase. Given Margaret’s desire to have the system
operating before next year’s Christmas season, Alec decided to timebox the project, and
he determined what functionality could be included in the system by that schedule dead-
line (see Chapter 2). He suggested that the project team develop the system in three ver-
sions rather than attempting to develop a complete system that provided all the features
initially. The first version, to be operational well before the holidays, would implement a
“basic” system that would have the “standard” order features of other Internet retailers.
The second version, planned for late spring or early summer, would have several features
unique to CD Selections. The third version would add more “advanced” features, such as
the ability to listen to a sample of music over the Internet, to find similar CDs, and to
write reviews.

1166 AAppppeennddiixx CD Selections

NNoonnffuunnccttiioonnaall RReeqquuiirreemmeennttss

1. Operational Requirements
1.1 The Internet sales system will draw information from the main CD information database, which contains basic information

about CDs (e.g., title, artist, ID number, price, quantity in inventory). The Internet sales system will not write information to
the main CD information database.

1.2 The Internet sales system will store orders for new CDs in the special order system and will rely on the special order system
to complete the special orders generated.

1.3 A new module for the in-store system will be written to manage the “holds” generated by the Internet sales system. The
requirements for this new module will be documented as part of the Internet sales system because they are necessary for the
Internet sales system to function.

2. Performance Requirements
No special performance requirements are anticipated.

3. Security Requirements
No special security requirements are anticipated.

4. Cultural and Political Requirements.
No special cultural and political requirements are anticipated.

FFuunnccttiioonnaall RReeqquuiirreemmeennttss
1. Maintain CD Information

1.1 The Internet sales system will need a database of basic information about the CDs that it can sell over the Internet, similar
to the CD database at each of the retail stores (e.g., title, artist, ID number, price, quantity in inventory).

1.2 Every day, the Internet sales system will receive an update from the distribution system that will be used to update this CD
database. Some new CDs will be added, some will be deleted, and others will be revised (e.g., a new price).

1.3 The electronic marketing (EM) manager (a position that will need to be created) will also have the ability to update information
(e.g., prices for sales).

2. Maintain CD Marketing Information
2.1 The Internet sales system provides an additional opportunity to market CDs to current and new customers. The system will

provide a database of marketing materials about selected CDs that will help Web users learn more about them (e.g., music
reviews, links to Web sites, artist information, and sample sound clips). When information about a CD that has additional
marketing information is displayed, a link will be provided to the additional information.

2.2 Marketing materials will be supplied primarily by vendors and record labels so that we can better promote their CDs. The EM
manager of the marketing department will determine what marketing materials will be placed in the system and will be
responsible for adding, changing, and deleting the materials.

3. Place Order
3.1 Customers will access the Internet sales system to look for CDs of interest. Some customers will search for specific CDs or CDs

by specific artists, whereas other customers will want to browse for interesting CDs in certain categories (e.g., rock, jazz, classical).
3.2 When the customer has found all the CDs he or she wants, the customer will "check out" by providing personal information (e.g.,

name, e-mail, address, credit card), and information regarding the order (e.g., the CDs to purchase, and the quantity for each item).
3.3 The system will verify the customer's credit card information with an online credit card center and either accept the order or

reject it.
3.4 Customers will also be able check to see if their preferred stores have the CDs in stock. They will use zip code to find stores

close to their location. If the CD is available at a preferred store, a customer can immediately place a hold on the CD in stock
and then come into the store and pick it up.

3.5 If the CD is not available in the customer’s preferred store, the customer can request that the CD be special ordered to that
store for later pickup. The customer will be notified by e-mail when the requested CD arrives at the requested store; the CD
will be placed on hold (which will again expire after 7 days). This process will work similarly to the current special order
systems already available in the regular stores.

3.6 Alternatively, the customer can mail order the CD (see requirement 4).
4. Fill Mail Orders

4.1 When a CD is mail-ordered, the Internet sales system will send the mail order to the mail order distribution system.
4.2 The mail-order distribution system will handle the actual sending of CDs to customers; it will notify the Internet sales system

and e-mail the customer.
4.3 Weekly reports can be run by the EM manager to check the order status.

FFIIGGUURREE 33--AA CD Selections Requirements Definition

Chapter 3: Requirements Determination 1177

Based on the requirements definition, Alec revised the workplan accordingly, and
he worked with Margaret and the folks in marketing to review the feasibility analysis
and update it where appropriate. Furthermore, Alec and Margaret realized that they
had missed both actors and use cases. Consequently, they went back and revised the
project effort estimation (see Figure 3-C). At this point in time, the effort estimation
went from about 12 person months to over 20 person months. As Alec explained to
Margaret, until we complete a rough functional model of the business processes, this
estimation is still fairly volatile. However, since Alec, Margaret, and the development
team have a reasonable understanding of the functional requirements, they decided to
stay with the original effort estimation of 24 person months (Remember, Alec doubled
the estimation.). Using the System Proposal Template in Figure 3-16, Alec combined all
of the deliverables from the project a System Proposal and submitted to the steering
committee for approval. Figure 3-D shows the outline of the CD Selections System
Proposal. Margaret and Alec met with the committee and presented the highlights of
what was learned during the inception phase and the final concept of the new system.
Based on the proposal and presentation, the steering committee decided that they
would continue to fund the Internet Sales System.

FFIIGGUURREE 33--BB Concept Map Requirements Model

mayImplyAdditional

requiresCreationOf

requiresUseOf
requiresAccessTo

impliesAdditional

CD DB

Requirements

Maintain CD Information Security Requirements

Operational Requirements

Performance Requirements
Fill Mail Orders

"Hold" System

Place Order

SpecialOrderSystem

Functional
Requirements

Nonfunctional
Requirements

Cultural and Political
Requirements

Maintain CD Marketing
Information

include

include include

1188 AAppppeennddiixx CD Selections

UUnnaaddjjuusstteedd AAccttoorr WWeeiigghhttiinngg TTaabbllee::

AAccttoorr TTyyppee DDeessccrriippttiioonn WWeeiigghhttiinngg FFaaccttoorr NNuummbbeerr RReessuulltt

Simple External System with well-defined API 1 2 2
Average External System using a protocol-based 2 1 2

interface, e.g., HTTP, TCT/IP, or a database
Complex Human 3 2 6

UUnnaaddjjuusstteedd AAccttoorr WWeeiigghhtt TToottaall ((UUAAWW)) 1100

UUnnaaddjjuusstteedd UUssee CCaassee WWeeiigghhttiinngg TTaabbllee::

UUssee CCaassee TTyyppee DDeessccrriippttiioonn WWeeiigghhttiinngg FFaaccttoorr NNuummbbeerr RReessuulltt

Simple 1–3 transactions 5 3 15
Average 4–7 transactions 10 1 10
Complex >7 transactions 15 4 60

UUnnaaddjjuusstteedd UUssee CCaassee WWeeiigghhtt TToottaall ((UUUUCCWW)) 8855

Unadjusted use case points (UUCP) " UAW # UUCW 95 " 10 # 85

TTeecchhnniiccaall CCoommpplleexxiittyy FFaaccttoorrss::

FFaaccttoorr NNuummbbeerr DDeessccrriippttiioonn WWeeiigghhtt AAssssiiggnneedd VVaalluuee ((00––55)) WWeeiigghhtteedd VVaalluuee NNootteess

T1 Distributed system 2.0 5 10.0
T2 Response time or throughput 1.0 5 5.0

performance objectives
T3 End-user online efficiency 1.0 5 5.0
T4 Complex internal processing 1.0 4 4.0
T5 Reusability of code 1.0 3 3.0
T6 Easy to install 0.5 3 1.5
T7 Ease of use 0.5 5 2.5
T8 Portability 2.0 4 8.0
T9 Ease of change 1.0 3 3.0
T10 Concurrency 1.0 3 3.0
T11 Special security objectives included 1.0 5 5.0
T12 Direct access for third parties 1.0 5 5.0
T13 Special User training required 1.0 3 3.0

TTeecchhnniiccaall FFaaccttoorr VVaalluuee ((TTFFaaccttoorr)) 5588..00

Technical complexity factor (TCF) " 0.6 # (0.01 * TFactor) 1.18 " 0.6 # (0.01 * 58)

EEnnvviirroonnmmeennttaall FFaaccttoorrss::

FFaaccttoorr NNuummbbeerr DDeessccrriippttiioonn WWeeiigghhtt AAssssiiggnneedd VVaalluuee ((00––55)) WWeeiigghhtteedd VVaalluuee NNootteess

E1 Familiarity with system 1.5 1 1.5
development process being used

E2 Application experience 0.5 2 1.0
E3 Object-oriented experience 1.0 0 0.0
E4 Lead analyst capability 0.5 3 1.5
E5 Motivation 1.0 4 4.0
E6 Requirements stability 2.0 4 8.0
E7 Part time staff –1.0 0 0.0
E8 Difficulty of programming language –1.0 4 –4.0

EEnnvviirroonnmmeennttaall FFaaccttoorr VVaalluuee ((EEFFaaccttoorr)) 1122..00

Environmental factor (EF) " 1.4 # (–0.03 * EFactor) 1.04 " 1.4 # (–.03 * 12)
Adjusted use case points (UCP) " UUCP *TCF *ECF 116.584 " 95 * 1.18 * 1.04
Person hours multiplier (PHM) PHM " 28
Person hours " UPC * PHM 3,264.352 " 116.584 * 28

FFIIGGUURREE 33--CC Use-Case Points Estimation for the Internet Sales Systems

Chapter 3: Requirements Determination 1199

11.. TTaabbllee ooff CCoonntteennttss

22.. EExxeeccuuttiivvee SSuummmmaarryy
To be completed once everything else is done.

33.. SSyysstteemm RReeqquueesstt
See Figure 2-A.

44.. WWoorrkkppllaann
See Figure 2-E.

55.. FFeeaassiibbiilliittyy AAnnaallyyssiiss
See Figures 2-B and 2-C.

66.. RReeqquuiirreemmeennttss DDeefifinniittiioonn
See Figures 3-A and 3-B.

77.. FFuunnccttiioonnaall MMooddeell
To be completed in the future (see Chapter 4).

88.. SSttrruuccttuurraall MMooddeellss
To be completed in the future (see Chapter 5).

99.. BBeehhaavviioorraall MMooddeell
To be completed in the future (see Chapter 6).

AAppppeennddiicceess
A. Effort Estimate

See Figure 3-C.

B. Staffing Plan
See Figure 2-F.

C. Project Charter
See Figure 2-G.

FFIIGGUURREE 33--DD
Outline of the CD
Selections System
Proposal

2200 AAppppeennddiixx CD Selections

CHAPTER 4: BUSINESS PROCESS AND FUNCTIONAL MODELING
In this chapter, we introduced how business processes are identified, modeled, and docu-
mented using the functional models of the UML. Specifically, we described how the func-
tional requirements of business processes are identified by use cases and use-case diagrams.
We described how activity diagrams model business processes and we described how use-
case descriptions are used to more fully document the business processes. Finally, we
described how to verify and validate the evolving representations of the business processes
contained in the functional models. The basic functional and non-functional requirements
for the CD Selections Internet Sales System were developed previously. At this point
in time, you should go back and carefully review these requirements (see Figures 2-A, 2-B,
2-C, 2-E, 3A, 3B, and 3-C). In this installment of the CD Selections case, we see how Alec
and Margaret work through all of these topics with regard to the Web-based solution that
they hope to create.

Business Process Identification with Use-Cases and Use-Case Diagrams
As a first step toward developing a model of the functional requirements, Alec and his team
decided to model these high-level business processes as use cases and to draw a use case
diagram showing the interaction between business processes and the systems environment
and how the business processes interact among themselves. To begin the business process
identification process, Alec and the team went back and reviewed the requirements defini-
tion (see Figure 3-A).

The first business process identified in the requirements definition was Maintain CD
Information. The Distribution System triggers this business process when it distributes
new information for use in the CD database. Besides the Distribution System, another
stakeholder was identified: EM Manager. Vendors trigger the second business process,
Maintain CD Marketing Information, when CD Selections receive new marketing materi-
als. An again, it seemed to the project team that the Electronic Marketing (EM) Manager
would be an interested stakeholder. The third business process, Place Order, is much more
interesting. In this case, the customer triggers the process. Again, the EM Manager is an
interested stakeholder. This process has many more inputs. The final business process, Fill
Mail Orders, seems to deal with the distribution system, customers, a credit card center,
and the EM Manager. Furthermore, unlike the other business processes, it is unclear what
exactly triggers its execution.

Once the team felt comfortable with their understanding of the requirements, they
began the modeling process by setting the scope of the project. To begin with, they felt that
the subject boundary should be drawn in such a manner that anything that is not part of
CD Selections’ Internet Sales System, such as the vendors, credit card center, and customers
should be identified as primary actors. Therefore, these were considered outside of the
scope of the system. The other potential actors identified could be the distribution system,
EM Manager, and the current CD Selections stores. Upon closer review of Figure 3-A, Alec
and Margaret felt that the distribution system and the current CD Selections stores should
be outside the scope of the Internet Sales system. Consequently, they also should be iden-
tified as primary actors. In the case of the EM Manager, Alec and Margaret believed that
the EM Manager should be considered as part of the Internet Sales System and therefore
should not be identified as a primary actor. Remember, primary actors are only those that
can be viewed as being outside of the scope of the system. The decision on whether the EM
Manager, the current CD Selections stores, or the distribution system is inside or outside
of the system is somewhat arbitrary. From a customer’s perspective, the distribution system

Chapter 4: Business Process and Functional Modeling 2211

and the current CD Selections stores could be seen as being inside of the overall system and
it could be argued that the EM Manger is a primary user of the Internet Sales System. At
this point in the process, it was important to make a decision and to move on. During the
process of writing the detailed use cases, there would be ample opportunities to revisit this
decision to determine whether the set of use cases identified are necessary and sufficient to
describe the requirements of the Internet Sales System for CD Selections. As you can see,
based on the above, finding the systems boundaries and listing the primary actors are heav-
ily intertwined.

Based on the above, Alec and his team decided that the four high-level business
processes should be modeled as use cases. However, upon closer review of and reflection
on the Place Order process, the team felt that the Fill Mail Order business process seemed
to be best treated as a part of the Place Order process instead of a separate business process
(see Point 3.6 of the Functional Requirements in Figure 3-A). Based on these decisions,
Alec created a first cut use case diagram of the Internet Sales System. He followed the
guidelines in the textbook. First, he decided where to place the use cases on the diagram
and drew them. Second, based on the actors that would interact with the different use cases,
he decided where to place them in the diagram and drew them there. Third, he drew the
subject boundary to portray the scope of the system. And finally, he drew the associations
between the actors and the use cases to portray the interactions between the system
processes and the systems environment. Figure 4-A portrays the first cut use case diagram
created by Alec.

Internet Sales System

Maintain CD
Marketing

Information
Vendor

Maintain CD
Information

* *

*

*

*

Customer

Place Order

* *

*

*
*

**

<<actor>>
Bricks and

Mortar Store

<<actor>>
Distribution

System

<<actor>>
Credit Card

Center

FFIIGGUURREE 44--AA
First-Cut Use Case
Diagrams for CD
Selections

2222 AAppppeennddiixx CD Selections

At this point in the process, the project team began writing the overview use cases for
the three high-level business processes: Maintain CD Information, Maintain CD Market-
ing Information, and Place Order. Remember, that an overview use case only has five pieces
of information: use case name, ID number, primary actor, type, and a brief description.
Having drawn the use case diagram, the team has already identified the primary actors and
has associated the actors with the three use cases. Furthermore, since they are just
beginning the development process, all three use cases type will be Overview and Essential.
Since the ID numbers are simply used for identification purposes (i.e., they act as a key in
a database), their values can be assigned in a sequential manner. This only left the team
with two pieces of information for each use case to write. The use case name should be an
action verb/noun phrase combination (e.g., Make Appointment). In the CD Selections
Internet Sales situation, Maintain CD Information, Maintain CD Marketing Information,
and Place Order seem to capture the essence of each of the use cases. Finally, a brief
description was written to describe the purpose of the use case or the goal of the primary
actor using the use case. Even though the description can range from a sentence to a short
essay, the team only wanted to capture the primary issues in the use case and to make them
explicit. Finally, the team carefully reviewed the current set of use cases. Take a moment to
review the use cases and make sure you understand them. Based on the descriptions of all
three use cases, the team felt that these three were a good basic representation of the pri-
mary business processes in the system. Figure 4-B portrays the overview, essential use cases
for the Maintain CD Information, Maintain CD Marketing Information, and Place CD
Orders use cases.

Business Process Modeling with Activity Diagrams
Reviewing the functional requirements described in Figure 3-A, the overview, essential
use cases and the first cut Use Case Diagram, Alec sat down with Margaret to priori-
tize the three use cases. Based on their meeting, it was decided that the development
team should focus on the most difficult and largest of the use cases first: Place Order.
Consequently, Alec and the development team decided to carefully review point 3 of
the functional requirements (see Figure 3-A). Upon doing this, the team identified a
set of additional sub-processes that needed to be addressed: Search/Browse CDs (see
point 3.1), Checkout (see point 3.2), Verify Credit Card Information (see point 3.3),
Place in Store Hold (see point 3.4), Place Special Order (see point 3.5), and Fill Mail
Order (see points 3.6 and 4). By carefully reviewing these sub-processes, the team real-
ized that there needed to be a sub-process associated with the Checkout process that
would support the creation of new customers. Upon further discussion and reflection,
the team also decided to fold the Verify Credit Card Information sub-process back into
the Checkout sub-process. The logic behind this decision was that this sub-process was
really simply an action in the Checkout sub-process that simply sent a message to a
Credit Card Center. Consequently, it did not make sense to factor it out as a separate
sub-process. After the team had completed this process, Alec decided to create an activ-
ity diagram that portrayed the logical flow through the Place CD Order use case (busi-
ness process). Following the process to draw an activity diagram described in the
textbook, Alex decided to model the six sub-processes (Search/Browse CDs, Checkout,
Create New Customer, Place in Store Hold, Place Special Order, and Fill Mail Order)
as activities. Next, he identified the three decisions that needed to be modeled (to place
an order or not, to create a new customer or not, and whether the customer wanted to
place a special order, an in store hold, or a mail order). He then identified the control
flows necessary to link the activities and control nodes together. The resulting activity

FFIIGGUURREE 44--BB Overview of the three Major Use Cases (Business Processes) for CD Selections

Association: Distribution System
Include:
Extend:
Generalization:

Use Case Name:

Primary/Actor:

Stakeholders and Interests:

Brief Description:

Trigger:

Type:

Use Case Type:

Relationships:

Maintain CD Information ID: 1 Importance Level: High

Distribution System Overview, Essential

This adds, deletes, and modifies the basic information about the CDs we have available for sale (e.g., album
name, artist(s), price, quantity on hand, etc.).

Association: Ve n d o r
Include:
Extend:
Generalization:

Use Case Name:

Primary/Actor:

Stakeholders and Interests:

Brief Description:

Trigger:

Type:

Use Case Type:

Relationships:

Maintain CD Marketing Information ID: 2 Importance Level: High

Vendor Overview, Essential

This adds, deletes, and modifies the additional marketing material.

Association: Customer, Bricks and Mortar Store, Distribution System, Credit Card Center
Include:
Extend:
Generalization:

Use Case Name:

Primary/Actor:

Stakeholders and Interests:

Brief Description:

Trigger:

Type:

Use Case Type:

Relationships:

Place Order ID: 3 Importance Level: High

Customer Overview, Essential

This supports the customer searching and browsing the web site, and creating and placing order through
the web site.

Chapter 4: Business Process and Functional Modeling 2233

2244 AAppppeennddiixx CD Selections

[No Order] [Place Order]

[In Store Hold] [Mail Order]

[New Customer]

[Existing Customer]

[Special Order]

Search/Browse

Checkout

Place Special Order Fill Mail OrderPlace InStore Hold

Create New Customer

FFIIGGUURREE 44--CC Activity Diagram for the Place Order Use Case for
CD Selections

diagram representing the Place Order use case (business process) is portrayed in
Figure 4-C. Finally, the team decided to go back and modify the Use Case diagram to
reflect these changes. In this case, the team decided to model each of the sub-processes
as a separate use case (see Figure 4-D). This then required the team to go back and

Chapter 4: Business Process and Functional Modeling 2255

Internet Sales System

Maintain CD
Marketing

Information

Search/Browse
CDs

Vendor

* *

*

*

*

*

* *

* *

*
*

*
*

Customer

PlaceOrder

Checkout

Create New
Customer

<<actor>>
Bricks and

Mortar Store

<<actor>>
Distribution

System

<<actor>>
CreditCard

Center

Place InStore
Hold

Place Special
Order

Fill Mail Order

Maintain CD
Information

<<include>>

<<include>>

<<extend>>

<<
ex

te
nd

>>

<<ex
ten

d>
>

<<
ex

te
nd

>>

FFIIGGUURREE 44--DD Use Case Diagram for CD Selections

create an overview, essential use case description for each of the newly identified use
cases (see Figure 4-E).

Business Process Documentation with Use Cases
and Use Case Descriptions
Based on their review of the overview, essential use case descriptions, the project team
decided that the Place Order use case was the most interesting. Based on this decision, the
team began the conversion of the overview essential use case description to a detail,
essential use case description. At this point in time, in addition to the information already
contained in the overview, essential use case description (see Figure 4-B), the project team
had the information necessary to fill in the stakeholders and interests and the trigger and
type. In this case, the stakeholders were the customer actor and the EM Manager. The trig-
ger was the customer visiting the web site to place an order. Since the customer is an actor,
the type of trigger would be external. If the EM Manager had triggered the use case, the
type would have been internal since the EM Manager was deemed earlier to be part of the
system, i.e., the EM Manager is possibly an internal actor. Finally, it is possible for tempo-
ral triggers to exist where the use case would be triggered by the system’s clock.

FFIIGGUURREE 44--EE Overview of the Six Newly Identified Use Cases for CD Selections

Association:
Include:
Extend:
Generalization:

Use Case Name:

Primary/Actor:

Stakeholders and Interests:

Brief Description:

Trigger:

Type: External

Use Case Type:

Relationships:

Search/Browse CDs ID: 5 Importance Level: High

Customer

Customer initiates a search of the CD database.

Overview, Essential

The Customer searches and/or browses through the available CDs contained in the database to identify potential
CDs to purchase.

Customer - wants to be able to find CDs to purchase
EM Manager - wants to ensure that the customer finds the CDs to purchase

Association: Credit Card Center
Include:
Extend:
Generalization:

Use Case Name:

Primary/Actor:

Stakeholders and Interests:

Brief Description:

Trigger:

Type: External

Use Case Type:

Relationships:

Checkout ID: 6 Importance Level: High

Customer signals the system they want to finalize their order.

Overview, Essential

This describes the checkout process that closes the customer’s order including credit card authorization.

Customer - wants to be finalize the order
Credit Card Center - wants to provide effective and efficient service to CD Selections
EM Manager - wants to maximize order closings

Customer

Association:
Include:
Extend: Checkout
Generalization:

Use Case Name:

Primary/Actor:

Stakeholders and Interests:

Brief Description:

Trigger:

Type: External

Use Case Type:

Relationships:

Create New Customer ID: 7 Importance Level: High

An unknown customer attempts to checkout.

Overview, EssentialCustomer

This describes how a new customer is added to the customer database.

Customer - wants to be able to purchase CDs from CD Selections
EM Manager - wants to increase CD Selections customer base

2266 AAppppeennddiixx CD Selections

Association: Bricks and Mortar Store
Include:
Extend: Place Order
Generalization:

Use Case Name:

Primary/Actor:

Stakeholders and Interests:

Brief Description:

Trigger:

Type: External

Use Case Type:

Relationships:

Place Special Order ID: 8 Importance Level: High

Customer

Customer selects CD on order for a special order at a bricks and mortar store.

Overview, Essential

This describes how a customer places a special order using the Internet Sales System.

Customer - wants to be able to place a special order of CDs for in store pickup
EM Manager - wants to increase sales associated with the Internet Sales System
Bricks and Mortar Store Manager - wants to increase sales associated with the store

Association: Bricks and Mortar Store
Include:
Extend: Place Order
Generalization:

Use Case Name:

Primary/Actor:

Stakeholders and Interests:

Brief Description:

Trigger:

Type: External

Use Case Type:

Relationships:

Place In Store Hold ID: 9 Importance Level: High

Customer selects CD on order for an in store hold to be picked up at a bricks and mortar store.

Overview, EssentialCustomer

This describes how a customer places an in store hold using the Internet Sales System.

Customer - wants to be able to place an in store hold on a CD for in store pickup
EM Manager - wants to increase sales associated with the Internet Sales System
Bricks and Mortar Store Manager - wants to increase sales associated with the store

Association: Distribution System
Include:
Extend: Place Order
Generalization:

Use Case Name:

Primary/Actor:

Stakeholders and Interests:

Brief Description:

Trigger:

Type: External

Use Case Type:

Relationships:

Fill Mail Order ID: 10 Importance Level: High

Customer selects CD on order for a mail order to be completed by the distribution system.

Overview, EssentialCustomer

This describes how a customer places a mail order using the Internet Sales System. This includes mail orders are
moved from the Internet Sales System into the distribution system and how order status information is updated
by the distribution system.

Customer - wants to be receive order in a timely manner
EM Manager - wants to maximize order throughput
Distribution System - wants to complete order processing in a timely manner

Chapter 4: Business Process and Functional Modeling 2277

2288 AAppppeennddiixx CD Selections

The project team then needed to gather and organize the information needed to define
the Place Order use case in more detail. Specifically, they needed to begin writing the Nor-
mal Flow of Events (see Figures 4-11 and 4-14 for examples). This was done based on the
results of the earlier analyses described in Chapter 3, as well as through a series of JAD
meetings with the project sponsor and the key marketing department managers and staff
who would ultimately operate the system.

The goal at this point is to describe how the chosen use case operates: Place Order.
Using the activity diagram as a starting point, Alec and the team decided to visualize plac-
ing a CD order over the Web and to think about how other electronic commerce Web sites
work–that is, role play. As they role played the Place Order use case, they realized that after
the customer connected to the Web site, they probably begin searching, perhaps for a spe-
cific CD, perhaps for a category of music, but in any event, they entered some informa-
tion for their search. The Web site then should present a list of CDs matching their request
along with some basic information about the CDs (e.g., artist, title, and price). If one of
the CDs is of interest to them, they might seek more information about it, such as the list
of songs, liner notes, reviews, etc. Once they found a CD they like, they will add it to their
order and perhaps continue looking for more CDs. Once they are done–perhaps immedi-
ately–they will “check out” by presenting their order with information on the CDs they
want and giving additional information such as mailing address, credit card, etc.

When the team wrote the use case’s Normal Flow Of Events, they paid close attention
to the seven guidelines described in the textbook. Alec realized that that the first step was
to present the customer with the home page or a form to fill in to search for an album. Even
though this is technically correct, this type of step was very “small” compared to the other
steps that followed3. It was analogous to making the first step “hand the user a piece of
paper.” At this point, the team was only looking for the three to seven major steps. Based
on the role playing and the application of the earlier principles (see Figure 4-12), the team
successfully identified a set of steps (see Figure 4-F)

The first major step performed by the system is to respond to the customer’s search
inquiry, which might include a search for a specific album name or albums by a specific
artist. Or, it might be the customer wanting to see all the classical or alternative CDs in
stock. Or, it might be a request to see the list of special deals or CDs on “sale.” In any event,
the system finds all the CDs matching the request, and shows a list of CDs in response.
The user will view this response, and perhaps will decide to seek more information about
one or more CDs. He or she will click on it, and the system will provide additional infor-
mation. Perhaps the user will also want to see any extra marketing material that is avail-
able as well. The user will then select one or more CDs for purchase, decide how to take
delivery of each CD, and perhaps continue with a new search. These steps correspond to
events 1 through 7 in 4-F.

The user may later make changes to the CDs selected, either by dropping some or
changing the number ordered. At some point the user will “checkout” by verifying the CDs
he or she has selected for purchase, and providing information about him or herself (e.g.,
name, mailing address, credit card). The system will calculate the total payment, and verify
the credit card information with the credit card center. At this point in the transaction, the
system will send an order confirmation to the customer, and the customer typically leaves
the web site. Figure 4-F shows the use case at this point. Note that the Normal Flow of
Events has been added to the form, but nothing else has changed. At this point in time, the
Place Order use case had eight events. Given the purpose of this use case, this seemed to be
a reasonable number of events.

3Since it is so small, it violates the fourth principle (see Figure 4-12).

Chapter 4: Business Process and Functional Modeling 2299

Use Case Name:

Primary Actor:

Stakeholders and Interests:

Brief Description:

ID: Importance Level:

Trigger:

Normal Flow of Events:

SubFlows:

Alternate/exceptional Flows:

Type: External

Place Order 3 High

Customer

Customer – wants to search Web site to purchase CD
EM manager – wants to maximize customer satisfaction

Use Case Type: Detail, Essential

Customer visits Web site and places order.

Customer
Search/Browse CDs, Checkout

1. Customer executes the Search/Browse CDs use case.
2. The System provides the Customer a list of recommended CDs.
3. The Customer chooses one of the CDs to find out additional information.
4. The System provides the Customer with basic information and reviews on the CD.
5. The Customer iterates over 3 through 4 until done shopping.
6. The Customer executes the Checkout use case.
7. The Customer leaves the Web site.

This supports the customer searching and browsing the web site, and creating and placing order
through the web site.

Relationships:
Association:
Include:
Extend:
Generalization:

FFIIGGUURREE 44--FF Normal Flow of Events of Places Order Use Case

The next step in writing a use case deals with alternate or exceptional flows. (Note:
Remember the Normal Flow of Events only captures the typical set of events that end in
a successful transaction.) With the Place Order use case, the development team defined
success as a new order being placed. However, the team identified two sets of events that
were exceptions to the normal flow. First, event 3 assumed that the list of recommended
CDs were acceptable to the customer. However, as one of the team members pointed out,
that is an unrealistic assumption. As such, two exceptional flows have been identified and
written (3a-1 and 3a-2 in Figure 4-G) to handle this specific situation. Second, a cus-
tomer may want to abort the entire order instead of going through the checkout process.
In this case, exceptional flow 6a was created. Next, the team carefully reviewed the
detailed, essential use case description for the Place Order use case (see Figure 4-G). The
final step that Alec and the team performed was to repeat the entire process for each of
the remaining use cases.

Once the team had completed evolving the overview, essential use cases to detail, essen-
tial use cases, Alec and his team had to go back through all of the functional representations
of the business process to guarantee that the functional model was consistent, i.e., they had
to verify and validate the business processes and functional models. Using Figure 4-16 as a

3300 AAppppeennddiixx CD Selections

Use Case Name:

Primary Actor: Customer

Stakeholders and Interests:

Brief Description:

ID: Importance Level:

Trigger:

Normal Flow of Events:

SubFlows:

Alternate/exceptional Flows:

Type: External

Place Order 3 High

Customer – wants to search Web site to purchase CD.
EM manager – wants to maximize customer satisfaction.

Use Case Type: Detail, Essential

Customer visits Web site and places order.

Customer
Search/Browse CDs, Checkout

1. Customer executes the Search/Browse CDs use case.
2. The System provides the Customer a list of recommended CDs.
3. The Customer chooses one of the CDs to find out additional information.
4. The System provides the Customer with basic information and reviews on the CD.
5. The Customer iterates over 3 through 4 until done shopping.
6. The Customer executes the Checkout use case.
7. The Customer leaves the Web site.

3a-1. The Customer submits a new search request to the system.
3a-2. The Customer iterates over steps 2 through 3 until satisfied with search results or gives up.
6a. The Customer aborts the order.

This supports the customer searching and browsing the web site, and creating and placing order
through the web site.

Relationships:
Association:
Include:
Extend:
Generalization:

FFIIGGUURREE 44--GG Places Order Use Case with Alternate/exceptional Flows

guideline, Alec and his team checked each activity diagram against the use case descriptions
and use case diagram and they checked the to be sure that each use case in the use case dia-
gram had a completed use case description.

Finally, based on the current functional model, Alec revised the workplan again and
he worked with Margaret and the folks in marketing to review the feasibility analysis and
update it where appropriate. Furthermore, Alec and Margaret realized that the number of
use cases had changed. Consequently, they went back and revised the project effort
estimation (see Figure 4-H). At this point in time, the effort estimation went from about
over 20 person months to approximately 24 months. Based on this new estimate, both
Alec and Margaret were glad that Alec had originally doubled the estimation of 12
months. As Alec told Margaret, “sometimes it is better to be lucky, then to be good.” Given
the fact that the team has never built this type of system before, they were indeed lucky.
In the future, Alec and Margaret realized that they would have to do a better job at esti-
mating. But, with experience they felt that they would indeed be better in being able to
estimate the number and complexity of the actors and use cases in this type of system.
And that this would improve their estimation ability without having to revert to Alec’s
let’s double the estimate approach.

Chapter 4: Business Process and Functional Modeling 3311

UUnnaaddjjuusstteedd AAccttoorr WWeeiigghhttiinngg TTaabbllee::

AAccttoorr TTyyppee DDeessccrriippttiioonn WWeeiigghhttiinngg FFaaccttoorr NNuummbbeerr RReessuulltt

Simple External System with well-defined API 1 2 2
Average External System using a protocol-based 2 1 2

interface, e.g., HTTP, TCT/IP, or a database
Complex Human 3 2 6

UUnnaaddjjuusstteedd AAccttoorr WWeeiigghhtt TToottaall ((UUAAWW)) 1100
UUnnaaddjjuusstteedd UUssee CCaassee WWeeiigghhttiinngg TTaabbllee::

UUssee CCaassee TTyyppee DDeessccrriippttiioonn WWeeiigghhttiinngg FFaaccttoorr NNuummbbeerr RReessuulltt

Simple 1–3 transactions 5 3 15
Average 4–7 transactions 10 1 10
Complex >7 transactions 15 5 75

UUnnaaddjjuusstteedd UUssee CCaassee WWeeiigghhtt TToottaall ((UUUUCCWW)) 110000

Unadjusted use case points (UUCP) " UAW # UUCW 110 " 10 # 100
TTeecchhnniiccaall CCoommpplleexxiittyy FFaaccttoorrss::

FFaaccttoorr NNuummbbeerr DDeessccrriippttiioonn WWeeiigghhtt AAssssiiggnneedd VVaalluuee ((00––55)) WWeeiigghhtteedd VVaalluuee NNootteess

T1 Distributed system 2.0 5 10.0
T2 Response time or throughput 1.0 5 5.0

performance objectives
T3 End-user online efficiency 1.0 5 5.0
T4 Complex internal processing 1.0 4 4.0
T5 Reusability of code 1.0 3 3.0
T6 Easy to install 0.5 3 1.5
T7 Ease of use 0.5 5 2.5
T8 Portability 2.0 4 8.0
T9 Ease of change 1.0 3 3.0
T10 Concurrency 1.0 3 3.0
T11 Special security objectives included 1.0 5 5.0
T12 Direct access for third parties 1.0 5 5.0
T13 Special User training required 1.0 3 3.0

TTeecchhnniiccaall FFaaccttoorr VVaalluuee ((TTFFaaccttoorr)) 5588..00

Technical complexity factor (TCF) " 0.6 # (0.01 * TFactor) 1.18 " 0.6 # (0.01 * 58)
EEnnvviirroonnmmeennttaall FFaaccttoorrss::

FFaaccttoorr NNuummbbeerr DDeessccrriippttiioonn WWeeiigghhtt AAssssiiggnneedd VVaalluuee ((00––55)) WWeeiigghhtteedd VVaalluuee NNootteess

E1 Familiarity with system 1.5 1 1.5
development process being used

E2 Application experience 0.5 2 1.0
E3 Object-oriented experience 1.0 0 0.0
E4 Lead analyst capability 0.5 3 1.5
E5 Motivation 1.0 4 4.0
E6 Requirements stability 2.0 4 8.0
E7 Part time staff !1.0 0 0.0
E8 Difficulty of programming language !1.0 4 !4.0

EEnnvviirroonnmmeennttaall FFaaccttoorr VVaalluuee ((EEFFaaccttoorr)) 1122..00

Environmental factor (EF) " 1.4 # (!0.03 * EFactor) 1.04 " 1.4 # (!.03 * 12)
Adjusted use case points (UCP) " UUCP *TCF *ECF 134.992 " 110 * 1.18 * 1.04
Person hours multiplier (PHM) PHM " 28
Person hours = UPC * PHM 3,779.776 = 134.992 * 28

FFIIGGUURREE 44--HH Use-Case Points Estimation for the Internet Sales Systems

CHAPTER 5: STRUCTURAL MODELING
In the previous chapter’s installment of the CD Selections case, we saw how Alec, Margaret,
and the team worked through building functional models of the business processes (see
Figures 4-A through 4-G) contained in their evolving Web-based solution. In this chapter,
we introduced how structural models using CRC cards and class and object diagrams could
be created, verified, and validated. In this installment of the CD Selections case, we see how
Alec and Margaret work through creating, verifying, and validating the structural models of
the Web-based solution based on the one completed detailed, essential use case: Place Order
(see Figure 4-G). Even though we are using just one of the use cases for our example, you
should remember that to create a complete structural model all use cases should be used.

Create CRC Cards
The first step Alec and the team was to create the set of CRC cards by performing textual analy-
sis on the use cases. To begin with, Alec chose the Place Order use case (see Figure 4-G). He
and his team then used the textual analysis rules (see Figure 5-1) to identify the candidate
classes, attributes, operations, and relationships. Using these rules on the Normal Flow of
Events, they identified Customer, Search Request, CD, CD List, and Review as candidate
classes. They uncovered three different types of search requests: Title Search, Artist Search, and
Category Search. By applying the textual analysis rules to the Brief Description, an additional
candidate class was discovered: Order. By reviewing the verbs contained in this use case, they
saw that a Customer places an Order and that a Customer makes a Search Request.

To be as thorough as possible, Alec and his team also reviewed the original require-
ments used to create the use case. The original requirements are contained in Figure 3-A.
After reviewing this information, they identified a set of attributes for the Customer (name,
address, e-mail, and credit card) and Order (CDs to purchase and quantity) classes and
uncovered additional candidate classes: CD Categories and Credit Card Center. Further-
more, they realized that the Category Search class used the CD Categories class. Finally,
they also identified three subclasses of CD Categories: Rock, Jazz, and Classical. Alec’s goal,
at this point in time, was to be as complete as possible. As such, he realized that they may
have identified many candidate classes, attributes, operations, and relationships that may
not be included in the final structural model. Regardless, the current list of candidate
classes included: Customer, Order, Search Request, Title Search, Artist Search, Category
Search, CD, CD List, Review, CD Categories, Rock, Jazz, Classical, and Credit Card Center.

Review CRC Cards
The second step for Alec and his team was to carefully review the current set of CRC cards to
determine if they had missed any potential candidate classes, attributes, operations, or relation-
ships. Furthermore, the team then used the current candidate classes and a common object list
as input to brainstorming additional candidate classes, attributes, operations, and relationships.
For example, Alec asked the team members to take a minute and think about what information
they would like to keep about CDs. The information that they thought of was a set of attributes,
for example, title, artist, quantity on hand, price, and category.

He then asked them to take another minute and think about the information that
they should store about orders and an order’s responsibilities. The responsibilities they
identified were a set of operations, including calculate tax, calculate extension price, cal-
culate shipping, and calculate total. Currently, the attributes (CDs to purchase and
quantity) of Order implied that a customer should be allowed to order multiple copies
of the same CD and allow different CDs to be ordered on the same order. However, the
current structural model did not allow this. As such, they created a new class that was

3322 AAppppeennddiixx CD Selections

Chapter 5: Structural Modeling 3333

Front:

Class Name: Customer ID: 1

Responsibilities

Associated Use Cases: 3Description: An individual that may or has purchased merchandise
 from the CD Selections Internet sales system

Type: Concrete, Domain

Collaborators

Back:

Attributes:

Middle initial

Last name

City

Street address

First name

Country

Zip code

Credit card

E-mail

State

Relationships:
Generalization (a-kind-of):

Aggregation (has-parts):

Other Associations: Order; Search Request

FFIIGGUURREE 55--AA Customer Class CRC Card

associated with both the Order class and the CD class: Order Line Item. This new class
only had one attribute, quantity, but it had two relationships: one with Order and the
other with CD.

When they reviewed the Customer class, they decided that the name and address
attributes needed to be expanded; name should become last name, first name, and middle
initial, and address should become street address, city, state, country, and zip code. The
updated Customer class and Order class CRC cards are shown in Figures 5-A and 5-B,
respectively. Once they completed the CRC cards for the Customer and Order class, the
team completed the CRC cards for the remaining candidate classes: Order Line Item,
Search Request, Title Search, Artist Search, Category Search, CD, CD List, Review, CD Cat-
egories, Rock, Jazz, Classical, and Credit Card Center.

3344 AAppppeennddiixx CD Selections

Front:

Class Name: Order ID: 2

Responsibilities

Associated Use Cases: 3Description: An order that has been placed by a customer which
 includes the individual items purchased by the customer

Type: Concrete, Domain

Collaborators

Back:

Attributes:

Shipping

Total

Tax

Calculate tax

Calculate shipping

Calculate total

Relationships:
Generalization (a-kind-of):

Aggregation (has-parts):

Other Associations: Order Item; Customer

FFIIGGUURREE 55--BB
Order Class CRC card

Role Play the CRC Cards
The third step was to role-play the classes recorded on the CRC cards. The purpose of this
step was to validate the current state of the evolving structural model. Alec handed out the
CRC cards to different members of his team. Using the CRC cards, they began executing
the different use cases (see Figures 4-B, 4-E, and 4-G), one at a time, to see if the current
structural model could support each use case or whether the use case caused the “system”
to crash. Anytime the “system” crashed, there was something missing: a class, an attribute,
a relationship, or an operation. They would then add the missing information to the struc-
tural model and try executing the use case again.

First, Alec and the team decided that the customer had requested the system to per-
form a search for all of the CDs associated with a specific artist. Based on the current CRC
cards, the team felt that the system would produce an accurate list of CDs. They then tried
to ask the system for a set of reviews of the CD. At this point in the exercise, the system

Chapter 5: Structural Modeling 3355

crashed. The CRC cards did not have the Review class associated with the CD class. There-
fore, there was no way to retrieve the requested information. This observation raised
another question. Was there other marketing information that should be made available to
the customer, for example, artist information and sample clips?

Next, the team realized that vendor information should be a separate class that was asso-
ciated with a CD rather than an additional attribute of a CD. This was because vendors had
additional information and operations themselves. If the team had modeled the vendor infor-
mation as an attribute of CD, then the additional information and operations would have been
lost. They continued role-playing each of the use cases until they were comfortable with the
structural model’s ability to support each and every one. Based on the above, the team created
CRC cards for the newly identified classes: Mkt Info, Artist Info, Sample Clip, and Vendor.

Create Class Diagram
The fourth step was to create the class diagram from the CRC cards. Figure 5-C shows the
current state of the evolving structural model as depicted in a class diagram based on the
Places Order use case.

Review Class Diagram
The fifth step was to review the structural model for missing and/or unnecessary classes,
attributes, operations, and relationships. At this point, the team challenged all components of
the model (class, attribute, relationship, or operation) that did not seem to be adding any-
thing useful to the model. If a component could not be justified sufficiently, then they
removed it from the structural model. By carefully reviewing the current state of the struc-
tural model, they were able to challenge over a third of the classes contained in the class dia-
gram (see Figure 5-C). It seemed that the CD categories, and their subclasses, were not really
necessary. There were no attributes or operations for these classes. As such, the idea of CD
categories was modeled as an attribute of a CD. The category attribute for the CD class was
previously uncovered during the brainstorming step. Also, upon further review of the Search
Request class and its subclasses, it was decided that the subclasses were really nothing more
than a set of operations of the Search Request class. This was an example of process decom-
position creeping into the modeling process. From an object-oriented perspective, we must
always be careful to not allow this to occur. However, during the previous steps in the mod-
eling process, Alec wanted to include as much information as possible in the model. He felt
that it was more beneficial to remove this type of information after it had crept into the
model than to take a chance on not capturing the information required to solve the problem.

Incorporate Patterns
The sixth step was to incorporate any useful patterns into the structural model (see
Figure 5-5). Two patterns that could be useful in this case are the Transaction pattern and
the Party pattern (see Figure 5-3). Using these two patterns, Alec and his team uncovered
two subclasses of the Customer class, Person and Organization, and they raised the issue of
the Place class. However, in this case, all transactions would be taking place in the same
place, cyberspace, and therefore the team decided not to include it.

Review the Model
The seventh and final step was to carefully review the structural model. In this case, Alec
and the team had to make sure that the CRC cards and the class diagram were in total
agreement. Figure 5-D shows the Places Order use case view of the structural model as por-
trayed in a class diagram developed by Alec and his team. This version of the class diagram
incorporates all of the modification described previously.

O
rd

er
 It

em
C

D

Ti
tle

 S
ea

rc
h

A
rt

is
t S

ea
rc

h
Ro

ck
Ja

zz
C

la
ss

ic
al

C
at

eg
or

y
Se

ar
ch

C
D

 C
at

eg
or

ie
s

M
kt

 In
fo

Ve
nd

or

Re
vi

ew

A
rt

is
t I

nf
o

Sa
m

pl
e

C
lip

C
re

di
t C

ar
d

C
en

te
r

1.
.*

0.
.*

0.
.*

0.
.*

0.
.*

*

* *

0.
.1

1

1

*
1

*
1

*

*

*

* *

*

*

*

1
1

1

1

1

Se
ar

ch
 R

eq

C
us

to
m

er
O

rd
er

C
D

 L
is

t

ch
ec

ks
di

st
rib

ut
es pr
om

ot
es

classifies

pl
ac

es

m
ak

es

in
cl

ud
es

co
nt

ai
ns

co
ns

is
ts

 o
f

us
es

re
su

lts
 in

FFII
GG

UU
RR

EE
55

--CC
Pr

el
im

in
ar

y
C

D
 S

el
ec

tio
ns

 In
te

rn
et

 S
al

es
 S

ys
te

m
 C

la
ss

 D
ia

gr
am

 (P
la

ce
s

O
rd

er
 U

se
 C

as
e

V
ie

w
)

3366

C
re

di
t C

ar
d

C
en

te
r

*

*

* *

*

*
*

*
*

*
*

**

* * *

*

*

*

Pe
rs

on
O

rg
an

iz
at

io
n

C
us

to
m

er
O

rd
er

O
rd

er
 It

em
C

D
M

kt
 In

fo

Ve
nd

or

Re
vi

ew

A
rt

is
t I

nf
o

Sa
m

pl
e

C
lip

Se
ar

ch
 R

eq
C

D
 L

is
t

0.
.1

1

1

1

1

ch
ec

ks
di

st
rib

ut
es

pr
om

ot
es

in
cl

ud
es

re
su

lts
 in

pl
ac

es makes

co
nt

ai
ns

consist of

FFII
GG

UU
RR

EE
55

--DD
C

D
 S

el
ec

tio
ns

 In
te

rn
et

 S
al

es
 S

ys
te

m
 C

la
ss

 D
ia

gr
am

 (P
la

ce
s

O
rd

er
 U

se
 C

as
e

V
ie

w
)

3377

CHAPTER 6: BEHAVIORAL MODELING
Since Alec, Margaret, and the team have now completed rough functional and structural
models for their evolving Web-based solution, they have decided that it was time to move
on and begin to create the behavioral models. Alec understood that in some ways, the
behavioral models allow them to complete their understanding of the problem. In this
installment of the CD Selections case, the team creates sequence diagrams, communication
diagrams, behavioral state machines, and a CRUDE matrix. As in the previous installments,
we see how the team goes about creating, verifying, and validating the behavioral models
of the Web-based system they hope to implement. As in Chapter 5, you should realize that
the team created behavioral models for all of the use cases and classes in the evolving sys-
tem description. However, in the sections that follow, we only see the models associated
with the Place Order use case and the Order class. The sections are organized in the same
manner as the chapter: sequence diagrams, communication diagrams, behavioral state
machines, and CRUDE matrix.

Sequence Diagrams
To begin with Alec decided that the team should follow the guidelines for creating sequence
diagrams listed in Figure 6-4. Next, Alec decided that the team should follow six steps to
create a sequence diagram described in the textbook. Consequently, Alec first needed to
determine the context of the sequence diagram. He decided to use a scenario4 from the
Place Order use case that was created with the business process and functional modeling
installment in Chapter 4 and illustrated in Figure 4-G. (Refer to the original use case for
the details.) Figure 6-A lists the Normal Flow of Events that contains the scenario that this
sequence diagram describes.

The second step was to identify the actors and objects that participated in the scenario
being modeled. The classes associated with the Place Order use case are shown in Figure 5-D.
For example, the classes used for the Place Order use case include Customer, CD, Marketing
Information, Credit Card Center, Order, Order Item, Vendor, Search Request, CD List,
Review, Artist Information, Sample Clip, Person, and Organization.

During the role playing of the CRC Cards, Anne, one of the analysts assigned to the
CD Selections Internet System Development Team, asked whether a Shopping Cart class
should be included. She stated that every Internet sales site she had been to had a shop-
ping cart that was used to build an order. However, the instance of the Shopping Cart
class only existed until either an order was placed or the shopping cart was emptied.
Based on this obvious oversight, both the Place Order use case and the class diagram will
have to be modified. Brian, another analyst, pointed out that the CDs themselves were

Normal Flow of Events:
1. Customer executes the Search/Browse CDs use case.
2. The System provides the Customer a list of recommended CDs.
3. The Customer chooses one of the CDs to find out additional information.
4. The System provides the Customer with basic information and reviews on the CD.
5. The Customer iterates over 3 through 4 until done shopping.
6. The Customer executes the Checkout use case.
7. The Customer leaves the Web site.

FFIIGGUURREE 66--AA
Normal Flow of Events
of the Places Order
Use Case

4Remember, as stated previously, a scenario is a single executable path through a use case.

3388 AAppppeennddiixx CD Selections

Chapter 6: Behavioral Modeling 3399

going to have to be associated with some type of searchable storage. Otherwise, it would
be impossible to find the CD in which the customer was interested. However, Alec
decided that the CD List class would suffice for both the searchable storage and a tem-
porary instance that would be created as a result of a search request. Alec pointed out to
the team that this process was fairly typical in object-oriented development. The more
the development team learned about the requirements, the more the models (functional,
structural, and behavioral) would evolve. Alec reminded them that the important thing
to remember was that an object-oriented development process was incremental and it
iterated over all of the models. As such, as they understood the problem better, the team
would most likely have to make changes to the functional and structural models already
completed.

Based on the team’s current understanding of the Place Order use case, they decided
that instances of the Search Request, CD List, CD, Marketing Material, Customer, Review,
Artist Information, Sample Clip, and Shopping Cart classes would be required to describe
this scenario. Furthermore, they realized that the Customer actor interacted with the sce-
nario. To complete this step, the team laid out the objects on the sequence diagram by
drawing them, from left to right, across the diagram.

The third step was to set the lifeline for each object. To do this, they drew a vertical dot-
ted line below each of the objects (aSR, aCDL, CDs, aCD, MI, aR, AI, SC, and anOrder) and
the actor (aCustomer). They placed an X at the bottom of the lifelines for aCDL and aSC
since they “go away” at the end of this process.

The fourth step was to add the messages to the diagram. By examining the steps in Fig-
ure 6-A, the team was able to determine the way in which the messages should be added to
the diagram. Figure 6-B shows the diagram they created. Notice how they did not include
messages back to Customer in response to “create SR” and “add CD.” In these cases, the
team assumed that aCustomer would receive response messages about the requested CD
and inserted CD, respectively.

The fifth step was to add the execution occurrence to each object’s and actor’s lifeline.
This was done by drawing a narrow rectangle box over top of the lifelines to represent when
the objects (actors) are sending and receiving messages (e.g., in Figure 6-B aCustomer is
active during the entire process, while aSR is only active at the beginning of the process (the
top of the diagram)).

Finally, the CD Selections team validated the diagram by ensuring that the diagram
accurately and completely represented the scenario of the Place Order use case being mod-
eled. Figure 6-B portrays their completed sequence diagram.

Communication Diagrams
Brian, one of the analysts, pointed out to the team that sequence diagrams and communi-
cation diagrams essentially modeled the same things. As such, he felt that it was not worth
the time for the team to do both. And since they had already completed the sequence dia-
grams, he really did not want to do the communication diagrams also. However, even
though the diagrams are very similar in what they portray, Alec decided that it would be
worth the team’s time to build both. He felt that it could be possible that the different for-
mats of the diagrams might uncover additional requirements. As such, the team also cre-
ated communication diagrams.

Alec chose to create the communication diagrams by following the steps to create
communication diagrams described in the textbook. Like creating sequence diagrams, the
first step in the process was to determine the context of the communication diagram. Alec
chose to start with the same scenario of the Place Order use case that he and the team had
used previously when they created the sequence diagrams (see Figure 6-B).

FFII
GG

UU
RR

EE
66

--BB
Se

qu
en

ce
 D

ia
gr

am
 fo

r
th

e
Pl

ac
es

 O
rd

er
 U

se
 C

as
e

C
re

at
eS

R(
)

Fi
nd

 C
D

s(
)

C
re

at
e

C
D

L(
)

G
et

 B
as

ic
 In

fo
()

G
et

 M
kt

 In
fo

()

G
et

 R
ev

ie
w

()

ad
d

C
D

()

C
re

at
e

O
rd

er
()

G
et

 A
rti

st
 In

fo
()

G
et

 S
am

pl
e

C
lip

()

aC
us

to
m

er

X
X

C
D

s:
C

D
Li

st
aC

D
:C

D
M

I:M
kt

 In
fo

aR
:R

ev
ie

w
A

I:A
rt

is
t I

nf
o

aS
C

:S
ho

pp
in

gC
ar

t
SC

:S
am

pl
e

C
lip

an
O

rd
er

:O
rd

er

sd
 P

la
ce

 O
rd

er
 U

se
 C

as
e

aC
D

L:
C

D
Li

st

aS
R:

Se
ar

ch
Re

q

4400

Chapter 6: Behavioral Modeling 4411

By executing the second step, the CD Selections team again identified the objects and
the associations that link the objects together. Since they are using the same scenario as they
did in the previously described sequence diagram, instances of the Search Request, CD List,
CD, Marketing Material, Customer, Review, Artist Information, Sample Clip, and Shopping
Cart classes should be the ones included. Also, the since the Customer actor interacts with
the scenario, it should also be included. Furthermore, the team identified the associations
between the objects (e.g., the instances of CD are associated with instances of Mkt Info,
which, in turn, are associated with instances of Review, Artist Info, and Sample Clip).

During the third step, the team placed the objects on the diagram based on the asso-
ciations that they have with the other objects in the collaboration. This was done to
increase the readability, and hence, the understandability of the diagram (see Figure 6-C).

During the fourth step, the CD Selections team added the messages to the associations
between the objects. For example, in Figure 6-C, the Create SR() message is the first mes-
sage sent and the FindCDs() message is the second message sent. The aCustomer actor
sends the Create SR() message to the aSR object, and the aSR object sends the FindCDs()
message to the CDs object.

Finally, the CD Selections team executed the fifth and final step: validating the dia-
gram. They accomplished this by ensuring that the scenario of the Place Order use case was
accurately and completely represented by the diagram. See Figure 6-C for the completed
communication diagram for this particular scenario of the Place Order use case. Further-
more, they compared the previously created sequence diagram (see Figure 6-B) with the
communication diagram (see Figure 6-C) to ensure that that both diagrams were equiva-
lent. The only difference between the two diagrams was the ease to portray the time order-
ing of the messages in the sequence diagram to represent how the objects interacted with
each other in the communication diagram.

FFIIGGUURREE 66--CC Communication Diagram for the Places Order Use Case

sd Place Order Use Case

aCustomer

4: Get Basic Info()

2: Fi
nd CDs()

1: C
rea

te
SR

()

CDs:CDList

aCDL:CDList

aCD:CD

anOrder:Order

MI:Mkt Info AI:Artist Info

aR:Review

SC:Sample Clip

aSR:Search Request

aSC:Shopping Cart

6: G
et

Rev
iew

()

3: Create CDL()

5: Get Mkt Info()

9: add CD()10: Create Order()

8: Get Sample Clip()

7: Get Artist Info()

Behavioral State Machines
As in the previous example diagrams, we focus our attention only on the Place Order use
case. Alec decided to follow the guidelines for creating a behavioral state machine (see
Figure 6-10) and to follow the five steps for creating behavioral state machines described in
the textbook. Like the earlier diagrams, the first step was to determine the context for the
behavioral state machine to be drawn. Upon reviewing the objects involved in the scenario
described by the sequence diagram (see Figure 6-A) and the communication diagram (see
Figure 6-B) Alec decided that the team should focus on the Order class.

The second step was to identify the various states that an order will go through during
its lifetime. To enable the discovery of the initial, final, and stable states of an order, Alec
and the development team interviewed a customer representative that dealt with process-
ing customer orders on a regular basis. Based on this interview, the team uncovered the life
of an order (see Figure 6-D) from start to finish, from an order’s perspective.

The third step is to determine the sequence of the states that an order object will pass
through during its lifetime. Based on the order’s lifecycle portrayed in Figure 6-D, the team
identified and laid out the states of the order on the behavioral state machine.

Next, the team identified the events, actions, and guard conditions associated with the
transitions between the states of the order. For example, the event “Order is created” moves
the order from the “initial” state to the “In process” state (see Figure 6-E). During the “Pro-
cessing” state, a credit authorization is requested. The guard condition “Authorization "
Approved” prevents the order to move from the “Processing” state to the “Placed”
state unless the credit authorization has been approved. Also, the guard condition
“Authorization " Denied” prevents the order to move from the “Processing” state to
the “Denied” state unless the credit authorization has been denied. As such,
between the two guard conditions, the order is stuck in the processing state until the
credit authorization has been either approved or denied.

The team finally validated the Order’s behavioral state machine by ensuring that each
state was reachable and that it was possible to leave all states except for the final states. Fur-
thermore, the team made sure that all states and transitions for the order had been mod-
eled. At this point in time, one of the analysts on the team, Brian, suggested that possibly
there were multiple types of orders being described in the behavioral state machine. Specif-
ically, he thought that there were denied and accepted orders. Based on this discovery, he
suggested that two new classes, for each subtype of order, be created. However, upon fur-
ther review by the entire team, it was decided that adding these classes to the class diagram
and modifying all of the other diagrams to reflect this change would not add anything to
the understanding of the problem. Therefore, it was decided not to add the classes. How-
ever, in many cases, modeling the states that an object will go through during its lifetime
may in fact uncover additional useful subclasses. Figure 6-E illustrates the behavioral state
machine that the CD Selections team created for an order object5.

4422 AAppppeennddiixx CD Selections

1. The customer creates an order on the Web.
2. The customer submits the order once he or she is finished.
3. The credit authorization needs to be approved for the order to be accepted.
4. If denied, the order is returned to the customer for changes or deletion.
5. If accepted, the order is placed.
6. The order is shipped to the customer.
7. The customer receives the order.
8. The order is closed.

FFIIGGUURREE 66--DD
The Life of an Order

5If the development team had more carefully read our textbook, they would have seen that they could have reused
the Order behavioral state machine in Figure 6-17.

FFII
GG

UU
RR

EE
66

--EE
Be

ha
vi

or
al

 S
ta

te
 M

ac
hi

ne
 fo

r
th

e
O

rd
er

 c
la

ss

O
rd

er

D
en

ie
d

O
rd

er
 is

cr

ea
te

d
C

us
to

m
er

su

bm
its

 o
rd

er

C
us

to
m

er

ed
its

 o
rd

er

in
fo

rm
at

io
n

A
ut

ho
riz

at
io

n
=

D
en

ie
d

O
rd

er
 s

en
t

fo
r c

re
di

t
au

th
or

iz
at

io
n

C
us

to
m

er

w
ith

dr
aw

s
or

de
r r

eq
ue

st

O
rd

er
 s

en
t t

o
cu

st
om

er

C
us

to
m

er

ac
ce

pt
s

sh
ip

m
en

t
Re

ce
iv

ed

A
ut

ho
riz

at
io

n
=

A
pp

ro
ve

d

O
rd

er
 is

cl

os
ed

In
 p

ro
ce

ss
O

rd
er

ed
Pr

oc
es

si
ng

Pl
ac

ed
Sh

ip
pe

d

4433

CRUDE Matrix
As an attempt to tie the functional, structural, and behavioral models together, Alec
decided to create a CRUDE matrix. To accomplish this, Alec assigned Anne the task of cre-
ating the matrix. As in the previous examples, we have limited this example to the Place
Order use case.

To begin with, Anne created a class-by-class matrix. She then placed a (C)reate, (R)ead,
(U)pdate, (D)elete, or a (E)xecute in each cell of the matrix that represented an interaction
between instances of the classes. For example in Figures 6-B and 6-C, an instance of
SearchReq created an instance of CDList. Also, in Figures 6-B and 6-C, an instance of
CD references an instance of MktInfo. In this case, an “R” was placed in the CD:MktInfo
cell. Figure 6-F shows the CRUDE matrix that Anne created based on the Place Order
use case.

Verifying and Validating the Behavioral Model
Once the team had completed all of the sequence diagrams, communication diagrams,
behavioral state machines, and the CRUDE matrix, Alec had the team verify and validate
the behavioral model. To accomplish this, Alec had the team use Figure 6-24 to identify
where all of the common aspects of the different representations could be easily identified.
For example, Alec pointed out that messages were not only contained in communication
and sequence diagrams, but that they were also associated with the transitions in a
behavioral state machines and the cell entries of the CRUDE matrix. Even though the team
felt confident that the different representations were all consistent with each other, based
on his past experience with teams that had short cut the verification and validation process,
Alec insisted that all of the representations had to be verified and validated. Furthermore,
Alec reminded them that they still needed to go back and modify the class diagram (see
Figure 5-D) to include the Shopping Cart class. Consequently, the team still had quite a bit
of work to do.

CCuussttoommeerr RU U C

SSeeaarrcchhRReeqq CR

CCDDLLiisstt

CCDD R

MMkktt IInnffoo U U U

RReevviieeww

AArrttiisstt IInnffoo

SSaammppllee CClliipp

SShhooppppiinngg
CCaarrtt

OOrrddeerr

AArrttiisstt SSaammppllee SShhooppppiinngg
CCuussttoommeerr SSeeaarrcchhRReeqq CCDDLLiisstt CCDD MMkktt IInnffoo RReevviieeww IInnffoo CClliipp CCaarrtt OOrrddeerr

FFIIGGUURREE 66--FF CRUDE Matrix for the Places Order Use Case

4444 AAppppeennddiixx CD Selections

CHAPTER 7: MOVING ON TO DESIGN
In the previous installments of the CD Selections case, we saw how Alec, Margaret, and
the team had identified the functional and nonfunctional requirements (see Figure 3-A)
and had completed the functional (see Figure 4-B, 4C, 4D, 4E, and 4G), structural (see
Figures 5-A, 5-B, and 5-D), and behavioral models (Figure 6-B, 6-C, 6-E, and 6-F) of
their evolving Web-based solution. However, before they can move into design, they real-
ize that they needed to logically partition the model of the problem-domain. To do this,
they have decided to create a package diagram that will represent an overview of the
analysis models for their evolving system. In this section of the case, we see how Alec and
his team prepared to move from an analysis, or problem-domain, orientation to a design,
or solution-domain, orientation. Below, we will see that to get ready for this transition,
Alec and his team first create a package diagram to partition the problem-domain layer.
Next, they go through a verification and validation of all of the analysis models, and
finally, they choose a design strategy to develop the actual design. As in the previous
installments of the case, we only deal with the Place Order use case. However, you should
remember that object-oriented systems development is holistic. Therefore, to be
complete, Alec and his team had to complete the analysis models for all of the use cases
associated with the case.

Packages and Package Diagrams
At this point in the development of the Internet Sales System for CD Selections, Alec wants
to explicitly partition the evolving system. To do this, Alec decided to use packages to rep-
resent both the layers and partitions in each layer. Once he made this decision, he chose to
follow the guidelines in Figure 7-21 and the steps for identifying packages and building
package diagrams in the textbook. Since, at this point in the development, the team has
only been focusing on analysis models, Alec decided that the team should only concentrate
on identifying potential partitions on the Problem Domain Layer.

The second step, cluster classes together, was accomplished by reviewing the rela-
tionships among the different classes (see Figures 5-D, 6-C, and 6-F). Through this
review process, the team saw that there were generalization, aggregation, various asso-
ciations, and message sending relationships. They also saw the entries in the CRUDE
matrix. Since they understood that classes in a generalization hierarchy should be kept
together, they clustered the Customer, Person, and Organization classes together to
form a partition. Brian pointed out that it is also preferred to keep classes together that
participate in aggregation relationships. Based on aggregation relationships, they clus-
tered the Mkt Info, Review, Artist Info, and Sample Clip classes together in a partition.
Based on the association relationship and the message-sending pattern of activity
between the CD and Mkt Info classes, Anne suggested that they should be in the same
partition. Furthermore, since the Vendor class was only related to the CD class, Alec
suggested that they be placed in the same partition. Finally, the development team
decided to place the Order and Order Item classes together and they decided that the
“temporary” classes used during the shopping process should be grouped together:
Search Req, CD List, Shopping Cart, and SC Item classes together in their own parti-
tions. If you remember, in the previous installation, Anne had recommended including
a Shopping Cart class. Once they did that, they realized that they also needed to include
a Shopping Cart Item class.

The third step was to model each of these partitions as packages. Figure 7-A shows the
classes being contained in their respective packages. Observe that the Credit-Card center
currently is not contained in any package.

Chapter 7: Moving on to Design 4455

PD
 L

ay
er

O
rd

er
 P

ac
ka

ge
C

D
 P

ac
ka

ge

Sh
op

pi
ng

 P
ac

ka
ge

C
us

to
m

er
 P

ac
ka

ge

O
rg

an
iz

at
io

n

C
us

to
m

er
Sh

op
pi

ng
 c

ar
t

SC
 It

em

Pe
rs

on

C
re

di
t C

ar
d

C
en

te
r

O
rd

er
 It

em

Re
vi

ew

A
rt

is
t I

nf
o

Sa
m

pl
e

C
lip

C
D

Ve
nd

or

M
kt

 In
fo

O
rd

er

C
D

 L
is

t
Se

ar
ch

 R
eq

1
0.

.1

* *

* *

**

1
11

*

**
*

**

*

*

*

*

*
* *

*

*
**

checks

pl
ac

es
in

cl
ud

es

*
*

in
cl

ud
es

co
nt

ai
ns

co
nt

ai
ns

m
ak

es

us
es

Re
su

lts
 in

distributes

promotes

co
ns

is
ts

 o
f

FFII
GG

UU
RR

EE
77

--AA
Pa

ck
ag

e
D

ia
gr

am
 o

f t
he

 P
D

 L
ay

er
 o

f C
D

 S
el

ec
tio

ns
 In

te
rn

et
 S

al
es

 S
ys

te
m

4466

Next, Alec quickly identified four associations among the different packages: the Cus-
tomer Package and the Order Package, the Customer Package and the Shopping Package,
the Order Package and the CD Package, and the Shopping Package and the CD Package. He
also identified an association between the Credit Card Center class and the Customer Pack-
age. Based on these associations, five dependency relationships were identified.

The fifth and final step was to place the dependency relationships on the package dia-
gram. Again, to increase the understandability of the dependency relationships among the
different packages, Alec decided to create a pure package diagram that only depicted the
highest-level packages (and in this case the Credit Card Center class) and the dependency
relationships (see Figure 7-B).

Verifying and Validating the Analysis Models
Upon completing the partitioning of the Problem Domain Layer, the team felt pretty
good about what they had accomplished. However, based on his understanding of what
was coming up next, Alec wanted to be sure that the analysis models–functional, struc-
tural, behavioral–and the partitions made sense, he decided that all of the work to date
needed to go through a verification and validation step. To say the least, the team was
not all that excited about this. In fact, Brian pointed out that the team had been verify-
ing and validating everything as they went along. As such, he argued that this would

FFIIGGUURREE 77--BB
Overview Package
Diagram of the PD
Layer of CD Selections
Internet Sales System

PD Layer

Customer Package

Order Package

Shopping Package

CD Package

Credit Card Center

Chapter 7: Moving on to Design 4477

simply be a waste of time. But, Alec prevailed. He explained that in past projects, when
they had not assured the quality of the Problem Domain Layer that teams had run into
significant problems. These problems included the system not solving the right prob-
lem, significant cost overruns, and the system not being delivered on time. Since, this
team was relatively inexperienced with the technology that they were about to use, Alec
told the team, that there was not enough slack in the workplan to run into problems
related to the analysis models. He suggested that the team perform a walkthrough with
the analysis models and to ensure that all the relationships among the diagrams were
fully tested (see Figures 7-1, 7-2, 7-8, 7-13, 7-16)).

The good news was that given all of the verification and validation that they had
performed on the individual models, the team did not uncover any additional errors
within the models. Brian sort of brought up his earlier point in a “I told you so” man-
ner. However, Alec let him blow off a little steam and simply reminded the team that it
was better to have done the verification and validation step now and not have to be
sorry later. He pointed out that the other layers are mostly dependent on the Problem
Domain Layer (see Figure 7-19) and any mistake not caught now could be very costly
to catch it later.

Developing the Actual Design
Now that the team had verified and validated the analysis models, Alec had to decide
on a design strategy. As he saw it, he had three different approaches that he could take
with the new system: he could develop the entire system using development resources
from CD Selections, he could buy a commercial Internet sales packaged software pro-
gram (or a set of different packages and integrate them), or he could hire a consulting
firm or service provider to create the system. Immediately, Alec ruled out the third
option. Building Internet applications, especially sales systems, was important to the
CD Selections’ business strategy. By outsourcing the Internet Sales System, CD Selec-
tions would not develop Internet application development skills and business skills
within the organization.

Instead, Alec decided that a custom development project using the company’s stan-
dard Web development tools would be the best choice for CD Selections. In this way, the
company would be developing critical technical and business skills in-house, and the pro-
ject team would be able to have a high level of flexibility and control over the final prod-
uct. Also, Alec wanted the new Internet Sales System to directly interface with the existing
distribution system, and there was a chance that a packaged solution would not be able to
integrate as well into the CD Selections environment.

There was one part of the project that potentially could be handled using packaged
software: the shopping cart portion of the application. Alec realized that a multitude of
programs have been written and are available (at low prices) to handle a customer’s order
transaction over the Web. These programs allow customers to select items for an order
form, input credit card and billing information, and finalize the order transaction. Alec
believed that the project team should at least consider some of these packaged alternatives
so that less time had to be spent writing a program that handled basic Web tasks, and more
time could be devoted to innovative marketing ideas and custom interfaces with the distri-
bution system.

To help better understand some of the shopping cart programs that were available in the
market and how their adoption could benefit the project, Alec created an alternative matrix
that compared three different shopping cart programs to one another (see Figure 7-C).
Although all three alternatives had positive points, Alec saw Alternative B (WebShop) as the
best alternative for handling the shopping cart functionality for the new Internet sales

4488 AAppppeennddiixx CD Selections

Chapter 7: Moving on to Design 4499

system. WebShop was written in JAVA, the tool that CD Selections selected as its standard
Web development language; the expense was reasonable, with no hidden or recurring costs;
and there was a person in-house who had some positive experience with the program. Alec
made a note to look into acquiring WebShop as the shopping cart program for the Internet
sales system.

AAlltteerrnnaattiivvee 11:: AAlltteerrnnaattiivvee 22:: AAlltteerrnnaattiivvee 33::
SShhoopp--WWiitthh--MMee WWeebbSShhoopp SShhoopp--NN--GGoo

TTeecchhnniiccaall • Developed using C: very • Developed using C and JAVA: • Developed using JAVA: would like
FFeeaassiibbiilliittyy little C experience in-house would like to develop in-house to develop in-house JAVA skills

JAVA skills
• Orders sent to company • Flexible export features for • Orders saved to a number of

using email files passing order information to file formats
other systems

EEccoonnoommiicc • $150 initial charge • $700 up front charge, • $200/year
FFeeaassiibbiilliittyy no yearly fees

OOrrggaanniizzaattiioonnaall • Program used by other • Program used by other retail • Brand new application: few
FFeeaassiibbiilliittyy retail music companies music companies companies have experience with

Shop-N-Go to date

OOtthheerr BBeenneefifittss • Very simple to use • Tom in IS support has had
limited, but positive experience
with this program

• Easy to customize

OOtthheerr LLiimmiittaattiioonnss • The interface is not easily
customized

FFIIGGUURREE 77--CC Alternative Matrix for Shopping Cart Program

CHAPTER 8: CLASS AND METHOD DESIGN
Up until now, Alec, Margaret, and the development team members have been focusing
on being sure that they captured the underlying behavior and structure of the evolv-
ing system. During this installment, Alec instructs the team members to make sure that
the connascence is minimized at all levels of the design, to identify any opportunities
for reuse, to consider restructuring and optimizing the evolving specification. Fur-
thermore, he instructed them to identify any and all constraints that need to be mod-
eled. He also suggested that they define the invariants in a separate text file and to
define the preconditions and postconditions for all public methods using contracts.
Finally, he instructed the team to specify every method using the method specification
form.

Alec and his team began the detailed object design process by reviewing the class
and package diagram for the problem domain layer (see Figures 7-A and 7-B). Alec
made it clear that the team should be aware of the cohesion, coupling, and connascence
design criteria and to review the models with those in mind. Furthermore, he insisted
that they look to see if there were any additional specifications necessary, any opportu-
nities for reuse that could be exploited, and any further restructuring of the design. Alec
assigned Anne to review all results and to look for any possible optimizations that could
be implemented. Finally, since the implementation would be in Java, he asked Anne to
also ensure that the design could be implemented in a single-inheritance-based
language.

Upon their review, it was discovered that there were quite a few many-to-many
(*..*) association relationships on the class diagram. Alec questioned whether this was
a correct representation of the actual situation. Brian admitted that when they put
together the class diagram, they had decided to model most of the associations as a
many-to-many multiplicity, figuring that this could be easily fixed at a later point in
time when they had more precise information. Alec also questioned why this issue was
not addressed during the verification and validation step. However, he did not assign
any blame at this point in time. Instead, since Brian was the team member that was most
familiar with structural modeling and was the analyst in charge of the data management
layer (see Chapter 9), Alec assigned him to evaluate the multiplicity of each association
in the model and to restructure and optimize the evolving problem domain model.

Figure 8-A shows the updated version of the class diagram. As you can see, Brian
included both the lower and upper values of the multiplicity of the associations. He did
this to remove any ambiguity about the associations. Since there is a one-to-one rela-
tionship between the CD class and the Mkt Info class, Brian considered merging them
into a single class. However, he decided that not all CDs would necessarily have any mar-
keting information associated with them for the CD to be included in an order. Conse-
quently, he reasoned that the Mkt Info associated with every CD would be optional and
he should keep the Mkt Info separate. He also realized that, even though the team had
attempted to verify and validate the structural model, they had not gotten the multiplic-
ities correct in many places. For example, he recognized that he should have known that
an artist could be associated with multiple CDs. Consequently, without changing the
multiplicities, the Artist Info would have been duplicated for each CD with which the
artist was associated.

Upon reviewing the new revised class diagram and since Brian had already spent quite
a bit of time on the classes in the CD package, Alec assigned it to him. The classes in the CD
package were CD, Vendor, Mkt Info, Review, Artist Info, and Sample Clip. Since Anne was
going to have to review all classes and packages from a more technical perspective, Alec

5500 AAppppeennddiixx CD Selections

FFII
GG

UU
RR

EE
88

--AA
Re

vi
se

d
C

D
 S

el
ec

tio
ns

 In
te

rn
et

 S
al

es
 S

ys
te

m
 C

la
ss

 D
ia

gr
am

 (P
la

ce
s

O
rd

er
 U

se
 C

as
e

V
ie

w
)

O
rg

an
iz

at
io

n

C
us

to
m

er
Sh

op
pi

ng
 c

ar
t

SC
 It

em

Pe
rs

on

C
re

di
t C

ar
d

C
en

te
r

O
rd

er
 It

em

Re
vi

ew

A
rt

is
t I

nf
o

Sa
m

pl
e

C
lip

C
D

Ve
nd

or

M
kt

 In
fo

O
rd

er

C
D

 L
is

t
Se

ar
ch

 R
eq

1.
. 1

0.

.1

0.
.*

0.
.*

0.
. 1 1.

. 1

1.
. *

1.
. 1

 1.
. *

1.
. 1

 0.
.*

0.
.*

0.
. 1

0.
.*

1.
. 1

1.
. 1

0.
.*

1.
. 1

0.
.*

0.
. 1

1.
. 1

0.
.*

0.
.*

1.
.*

1.
.1

1.
.1

0.
.*

1.
.1

checks

pl
ac

es
in

cl
ud

es

1.
. 1

0.

.*

in
cl

ud
es

co
nt

ai
ns

co
nt

ai
ns

m
ak

es

us
es

re
su

lts
 in

di
st

rib
ut

es

pr
om

ot
es

co
ns

is
ts

 o
f

5511

decided to take on the Customer and Order packages himself (see Figures 7-A and 7-B).
However, since the Shopping package could become rather technical, he assigned it to Anne.

Based on earlier projects, Alec suspected that there could be a set of patterns that
should be useful in developing the Order Package. With a little work, Alec uncovered
the Order, Product Order, and Product classes described in the textbook (see Figures
8-15, 8-19, and 8-20). By using these reusable classes, Alec was able to better define the
Order, Order Item, and CD classes, respectively. He also discovered the Iterator and
Whole-Part patterns (see Figures 8-13A, 8-13B, and 8-14). He decided that he should
reuse the Iterator pattern in both the Customer and Order packages. He also recom-
mended to Brian and to Anne to use the Product class as a basis for the CD class.
Finally, Alec recommended to Brian to consider the Whole-Part pattern in the CD
package for the Mkt Info class and to Anne, the use of the Iterator pattern for the
Shopping Cart and CD List classes in the Shopping package. Alec hopes that by using
these patterns the overall quality of the Internet Sales System will be improved in com-
parison to starting from scratch. Figure 8-B portrays the Order and Customer packages
after Alec used the patterns.

Next, Brian added invariants, pre-conditions, and post-conditions to the classes and
their methods. For example, Figure 8-C portrays the back of the CRC card for the CD class.
He decided to add only the invariant information to the CRC cards and not the class diagram
to keep the class diagram as simple and as easy to understand as possible. Notice the addi-
tional set of multiplicity, domain, and referential integrity invariants added to the attributes
and relationships. Furthermore, Brian created contracts for each method. For example,

Order Package

Customer Package

Organization

Customer

Person

Credit Card Center << Interface >> Aggregate << Interface >> lterator

Order Item

CD

Order

1.. 1

0..*

0..*
0.. 1

1.. 10..* 1..*

1.. 1

checks

places includes
contains

FFIIGGUURREE 88--BB Class Diagram for the Customer and Order classes in the Customer and Order
Packages

5522 AAppppeennddiixx CD Selections

Chapter 8: Class and Method Design 5533

Figure 8-D portrays the contract for the GetReview() method associated with the Mkt Info
class. Notice that there is a pre-condition for this method to succeed—Review attribute not
Null. Given the overall simplicity of the contracts with the classes in the CD package, Brian
decided not to use OCL like constraints (see Figure 8-18). He hopes when the team brings
everything back together, that the use of English-like constraints will be sufficient.

Back:

Attributes:

CD Name (1..1) (String)

Pub Date (1..1) (Date)

Artist Name (1..1) (String)

CD Number (1..1) (unsigned long)

Artist Number (1..1) (unsigned long)

Vendor (1..1) (Vendor)

Vendor ID (1..1) (unsigned long) {Vendor ID = Vendor.GetVendorID()}

Relationships:
Generalization (a-kind-of):

Aggregation (has-parts):

Other Associations: Order Item {1..1) SC Item (1..1} CD List {0..*} Vendor {1..1}

Mkt Info {0..1}
FFIIGGUURREE 88--CC Back of
CD CRC Card

Method Name:

Clients (Consumers): CD

Class Name: ID:

Associated Use Cases:
 Place Order

Description of Responsibilities:
 Return review objects for the Detailed Report Screen to display

Preconditions:
 Review attribute not Null

Postconditions:

Arguments Received:

Type of Value Returned:
 List of Review objects

GetReview() Mkt Info 89

FFIIGGUURREE 88--DD Get
Review Method
Contract

5544 AAppppeennddiixx CD Selections

FFIIGGUURREE 88--EE Create Review Method Specification

Method Name:

Contract ID:

Class Name:

! Visual Basic ! Smalltalk ! C++ ! Java"

ID:

Programmer: Date Due:

Programming Language:

Triggers/Events:

Algorithm Specification:

Misc. Notes:

Data Type: Notes:
Arguments Received:

Data Type: Notes:
Argument Returned:

ClassName.MethodName: Data Type: Notes:
Messages Sent & Arguments Passed:

GetReview()

List List of Review objects

IF Review Not Null
 Return Review
Else
 Throw Null Exception

Detail Button on Basic Report is pressed

89 John Smith 7/7/12

Mkt Info 453

Upon completing the CRC cards and contracts, Brian moved on to specifying the
detailed design for each method. For example, the method specification for the GetReview()
method is given in Figure 8-E. Brian developed this specification by reviewing the Place
Order use case (see Figure 4-G), the sequence diagram (see Figure 6-B), and the contract
(see Figure 8-D). Notice that Brian is enforcing the pre-condition on the contract by testing

FFIIGGUURREE 88--FF Revised Package Diagram for the CD Package on the PD Layer
of CD Selections Internet Sales System

CD Package

Sample Clip

Review

Artist InfoMkt Info

Vendor

CD

distributes

promotes

0..1

0..*

0..*

0..*1..*

0..*

1..1

1..1

1..1

1..1

Chapter 8: Class and Method Design 5555

to see whether the Review attribute that contains the list of reviews contains a value or not.
Since the method is to be implemented in Java, he has specified that an exception is to be
thrown if there are no reviews. Finally, Brian updated the class diagram for the CD package
(see Figure 8-F). After looking at the diagram, Brian realized that there could be additional
changes necessary depending on how the team decided to implement the data management
layer (see Chapter 9). However, he decided that without any additional information
regarding the data management layer, the current representation would have to suffice.

5566 AAppppeennddiixx CD Selections

FFIIGGUURREE 99--AA
Types of Data in
Internet Sales System

Customer information

Order Information

Marketing Information

Information that will be
exchanged with the Distri-
bution System

Temporary Information

Simple (mostly text)

Simple (text and numbers)

Both simple and complex
(eventually the system will
contain audio clips, video, etc.)

Simple text, formatted specifi-
cally for importing into the
Distribution System

The Web component will
likely need to hold informa-
tion for temporary periods of
time. (e.g., the shopping card
will store order information
before the order is actually
placed)

Transactions

Transactions

Transactions

Transactions

Transactions

Relational

Relational

Object add-on?

Transaction file

Transaction file

Data Type Use Suggested Format

CHAPTER 9: DATA MANAGEMENT LAYER DESIGN
In the previous installments of the CD Selections case, we saw how Alec, Margaret, and the
development team had worked through developing models and designs of the problem
domain classes. Now that the design of the problem domain layer is somewhat stable, the
team has moved into developing the models and designs of the solution domain (data
management, human–computer interaction, and physical architecture) classes. In this
installment, we follow the team members that have been assigned to the development of
the data management layer classes for the Web-based system being developed for CD Selec-
tions.

To begin with, Margaret met with Alec to make sure that he realize that the CD Selec-
tions Internet Sales System needed to both present CD information effectively to users and
to capture order data. Alec recognized that these goals were dependent upon a good design
of the data management layer for the new application. He approached the design of the
data management layer first by asking Brian to take charge of this task. Second, Alec made
sure that Brian followed the following four steps:

select the object-persistence format,
map the problem domain classes to the selected format,
optimize the selected format for processing efficiency, and
design the data access and manipulation classes.

Brian assured Alec that he would do so and keep him abreast of the data management
layer design as it progressed. Based on a quick review of the requirements, Brian requested
to add two database experts to help with the design of the data management layer: John
and Susan. After a little deliberation, Alec decided it would be worth the additional expense
to add them to the team.

Select Object-Persistence Format
The first thing that Brian did was to call a meeting of his data management layer team to
discuss two issues that would drive the object-persistence format selection: what kind of
objects would be in the system and how they would be used. Using a whiteboard, they listed
their ideas (see Figure 9-A). The project team agreed that the bulk of the data in the system

would be the text and numbers that are exchanged with Web users regarding customers and
orders. A relational database would be able to handle the data effectively, and the technol-
ogy would be well received at CD Selections because relational technology is already in
place throughout the organization.

However, they realized that relational technology was not optimized to handle com-
plex data, such as the images, sound, and video that the marketing facet of the system ulti-
mately will require. Alec asked Brian to look into relational databases that offered object
add-on products (i.e., an RDBMS that could become an ORDBMS). It might be possible
for the team to invest in a RDBMS foundation and then upgrade to an ORDBMS version
of the same product. However, in the meantime, Alec decided to store sample clips using a
random file. This way, they could still deliver the system as envisioned while keeping the
technology requirements reasonable.

The team also noted that it must design two transaction files to handle the interface
with the distribution system and the Web shopping cart program. The Internet Sales Sys-
tem will regularly download order information to the distribution system using a transac-
tion file containing all the required information for that system. Also, the team must design
the file that stores temporary order information on the Web server as customers shop
through the Web site. The file would contain the fields that ultimately would be transferred
to an order object. Of course, Alec realized that other data needs might arise over time, but
he felt confident that the major data issues were identified (e.g., like the capability to han-
dle complex data) and that the design of the data management layer would be based on the
proper storage technologies.

Map Problem Domain Objects to Object-persistence format
Based on the decision to use an RDBMS and a random file to store the problem
domain objects, Brian created an object-persistence design. To begin, Brian first
reviewed the current class and package diagrams for the evolving Internet Sales System
(see Figures 7-A, 7-B, 8-A, 8-B, and 8-F). Focusing on these figures, Brian and his team
began applying the appropriate mapping rules (see Figure 9-9). Based on Rule 1, Brian
identified 12 problem domain classes that needed to have there objects stored; as such,
Brian created 11 RDBMS tables and 1 file to represent these objects. These included
Credit Card Center table, Customer table, Person table, Organization table, Order
table, Order Item table, CD table, Vendor table, Mkt Info table, Review table, Artist
Info table, and Sample Clip File. He also created a set of tentative primary keys for each
of the tables and the file. Based on the fact that the objects in the Shopping Package
(see Figures 7-A, 7-B, and 8-A), Shopping Cart, SC Item, Search Req, and CD List, are
only temporary, Brian decided that there was no real need to address them at this point
in the design.

Using Rule 4, Brian identified the need for the CD table and the Mkt Info table to
both have each others primary key stored as a foreign key to the other table. Upon fur-
ther reflection, Brian reasoned that because an actual instance of marketing information
was only going to be associated with a single instance of CD and vice versa, he could have
merged the two tables together. However, the team had earlier decided to keep them
separate, so he decided to simply use the primary key of the CD table as the primary key
of the Mkt Info table.

While reviewing the current set of attributes for each of the tables, John suggested
that the development had left out the idea of a CD containing a set of tracks. As such,
they added a multi-valued attribute, tracks, to the CD problem domain class. However,
Brian then pointed out that when they apply Rule 5 to the CD class, they really needed
to factor the tracks attribute out as a separate table. Furthermore, as Brian, John, and

Chapter 9: Data Management Layer Design 5577

Susan discussed the track attribute further, it was decided to include it as a problem
domain class also.

Next, the data management layer team applied Rule 6 to the evolving object-persis-
tence design. In doing this, Susan pointed out that the checks relationship between the Cus-
tomer and Credit Card Center problem domain classes was a multivalued association.
Furthermore, Brian then pointed out the same was true for the aggregation relationship
between the Artist Info and Mkt Info problem domain classes. Therefore, these relation-
ships needed their own table in the relational database. Not to be upstaged by Brian and
Susan, John immediately pointed out that Rule 7 was applicable to 8 associations: Cus-
tomer places Order, Order includes Order Item, Order Item contains CD, Vendor distrib-
utes CD, Mkt Info promotes CD, CD contains Tracks, and the three aggregation
associations with the Mkt Info class (Review, Artist Info, and Sample Clip). As such, quite
a few primary keys had to be copied into the relevant tables as foreign keys (e.g., the pri-
mary key of the Customer table had to be copied to the Order table). Can you identify the
others?

Finally, Susan suggested the solution to the inheritance problem because RDBMSs
do not support inheritance. She pointed out that when applying Rule 8a to the Cus-
tomer superclass and the Person and Organization subclasses, the primary key of the
Customer table also had to be copied to the tables representing the subclasses. Further-
more, she pointed out that an exclusive-or (XOR) condition existed between the two
subclasses.

Based on all of the suggestions and hard work accomplished by the data management
layer team, Brian was able to create a design of the object persistence for the Internet Sales
System (see Figure 9-B).

Optimize Object Persistence and Estimate its Size
Upon completing the object persistence design, Brian requested a meeting with the
development team to walkthrough the design.6 After the walkthrough, Alec asked
Brian to stay behind to discuss the data management layer model. Now that the team
had a good idea of the type of object-persistence formats that would be used, they
were ready for the third step: optimizing the design for performance efficiency. Since
Brian was the analyst in charge of the data management layer, Alec wanted to discuss
with him whether the model was optimized for storage efficiency. He also needed this
done before the team discussed access speed issues. Brian assured Alec that the cur-
rent object persistence model was in third normal form. He was confident of this
because the project team followed the modeling guidelines that lead to a well-formed
model.

Brian then asked about the file formats for the two transaction files identified in the
earlier meeting. Alec suggested that he normalize the files to better understand the various
tables that would be involved in the import procedure. Figure 9-C shows the initial file lay-
out for the Distribution System import file as well as the steps that were taken as Brian
applied each normalization rule.

The next step for the design of the data management layer was to optimize the design
for access speed. Alec met with the data management layer design team and talked about
the techniques that were available to speed up access. Together they listed all of the data

5588 AAppppeennddiixx CD Selections

6It seems that Brian finally got the importance of verifying and validating everything.

FFII
GG

UU
RR

EE
99

--BB
In

te
rn

et
 S

al
es

 S
ys

te
m

 O
bj

ec
t P

er
si

st
en

ce
 D

es
ig

n

1.
.1

0.
.*

0.
.*

0.
.*

1.
.1

1.
.1

0.
.*

0.
.*

1.
.1

1.
.1

1.
.*

1.
.1

1.
.*

1.
.1

1.
.1

1.
.*

1.
.1

1.
.*

0.
.1

1.
.1

0.

.*
1.

.1

1.
.1

0.
.1

0.
.1

1.
.1

C
us

to
m

er
 T

ab
le

-C
us

tP
rim

ar
yK

ey

Ve
nd

or
 T

ab
le

-V
en

do
rP

rim
ar

yK
ey

M
kt

 In
fo

 T
ab

le

-C
D

Pr
im

ar
yK

ey

A
rt

is
t I

nf
o

Ta
bl

e

-A
rti

st
Pr

im
ar

yK
ey

In
di

vi
du

al
 T

ab
le

-C
us

tP
rim

ar
yK

ey

O
rg

an
iz

at
io

na
l T

ab
le

-C
us

tP
rim

ar
yK

ey

C
re

di
t C

ar
d

C
en

te
r T

ab
le

-C
C

C
Pr

im
ar

yK
ey

C
he

ck
s T

ab
le

-C
us

tP
rim

ar
yK

ey

-C
C

C
Pr

im
ar

yK
ey

O
rd

er
 T

ab
le

-C
us

tP
rim

ar
yK

ey

-O
rd

er
Pr

im
ar

yK
ey

O
rd

er
 It

em
 T

ab
le

-O
rd

er
Pr

im
ar

yK
ey

-C

D
Pr

im
ar

yK
ey

C
D

 T
ab

le

-C
D

Pr
im

ar
yK

ey

-V
en

do
rP

rim
ar

yK
ey

Tr
ac

ks
 T

ab
le

-C
D

Pr
im

ar
yK

ey

-T
ra

ck
sP

rim
ar

yK
ey

M
kt

A
rt

is
tI

nf
o

Ta
bl

e

-C
D

Pr
im

ar
yK

ey

-A
rti

st
Pr

im
ar

yK
ey

Re
vi

ew
 T

ab
le

-C
D

Pr
im

ar
yK

ey

-R
ev

ie
w

Pr
im

ar
yK

ey

Sa
m

pl
e

C
lip

 F
ile

-C
D

Pr
im

ar
yK

ey

-S
am

pl
eC

lip
Pr

im
ar

yK
ey

{X
O

R}

1.
.1

0.

.*

5599

Item

-Item No (PK)
-Item Desc
-Item Price

Item

-Item No (PK)
-Item Desc
-Item Price

1..*

1..1

0..*

0..*

 Order Cust Cust Cust Cust Cust Item Item Item Item
 Number Fname Lname HomeAdd ShipAdd Pay No* Desc* Price* Qty*

 A (7) A (20) A (20) A (150) A (150) 9999.99 A (7) A (20) 9999.99 9999

 * Item No, Item Desc, Item Price, and Item Qty repeats four (4) times.

File Layout Required for Distribution System

0NF:

1NF:

2NF:

3NF:

There is one partial dependencies in the above data model since Item qty is dependent on the
whole primary key while Item Desc and Item Price is dependent only on Item No.

Remove repeating groups of items and place them in a separate Item entity

Remove transitive dependencies. Customer home-address is dependent upon Cust-fname and
Cust-lname (and these do not serve as the identifier for the Order entity); therefore, a Customer
entity is added to contain customer information. Order then contains only order information
and necessary foreign keys.

Order Item

Order No (PK) (FK)
Item No (PK) (FK)
Item Qty

Order Item

Order No (PK) (FK)
Item No (PK) (FK)
Item Qty

Order

-Order No (PK)
-Cust FName
-Cust LName
-Cust Home Address
-Cust Ship Address
-Cust Payment

Customer

-Cust No (PK)
-Cust FName
-Cust LName
-Cust Home Address

Order

-Order No (PK)
-Cust Ship Address
-Cust Payment
-Cust No (FK)

Item

-Item No (PK)
-Item Desc
-Item Price
-Item Qty
-Order No (PK) (FK)

1..*0..*

1..*0..*

Order

-Order No (PK)
-Cust FName
-Cust LName
-Cust Home Address
-Cust Ship Address
-Cust Payment

FFIIGGUURREE 99--CC
Distribution System
Import File
Normalization Process
6600

that will be supported by the Internet Sales System and discussed how all of the data would
be used. Based on these discussions, they developed the strategy to identify the specific
techniques to put in place (see Figure 9-D).

Ultimately, clustering strategies, indexes, and denormalization decisions were applied
to the physical data model, and a volumetrics report was run from the CASE tool to esti-
mate the initial and projected size of the database. The report suggested that an initial stor-
age capacity of about 450 megabytes would be needed for the expected one-year life of the
first version of the system. Additional storage capacity would be needed for the second ver-
sion that would include sound files for samples of the songs, but for the moment not much
storage would be needed.

Since Anne was in charge of managing the server hardware acquisition, Alec gave the
estimates to her so that the she could make sure that the technology could handle the
expected volume of data for the Internet Sales System. She then would send the estimates
to the DBMS vendor during the implementation of the software so that the DBMS could
be configured properly.

Data Access and Manipulation Class Design
The final step in designing the data management layer was to develop the design of the data
access and manipulation classes that would act as translators between the object persistence
and the problem domain classes. Since the CD package (see Figures 7-A, 7-B, 8-A, and
8-F) was the most important package, Alec asked Brian to complete the design of the data
management layer for the CD package and report back to Alec when he was finished. Upon
reviewing the concrete problem domain classes in the CD package, Brian realized that he
needed to have seven data access and manipulation classes; one for each concrete problem
domain class. These classes would be fully dependent on their related problem domain
classes. Next, Brian mapped the data access and manipulation classes down to the RDBMS
tables and the random file associated with storing the objects (see Figure 9-B). In this case,
there were seven RDBMS tables and one random file. Again, the data access and manipu-
lation classes are dependent on the object-persistence format. Brian created Figure 9-E to
depict the data management layer and problem domain layer for the CD package of the
Internet sales system.

SSuuggggeessttiioonnss ttoo IImmpprroovvee
TTaarrggeett CCoommmmeennttss DDaattaa AAcccceessss SSppeeeedd

All tables

All tables

CD information

Order Information

Entire Physical Model

Basic table manipulation

Sorts and Grouping

Users will need to search CD
information by title, artist, and
category

Operators should be able to
locate information about a
particular customer’s order

Investigate denormalization
opportunities for all fields that
are not updated very often

• Investigate if records should be clus-
tered physically by primary key

• Create indexes for primary keys
• Create indexes for foreign key fields

• Create indexes for fields that are fre-
quently sorted or grouped

• Create indexes for CD title, artist,
and category

• Create an index in the Order table
for orders by customer name

• Investigate one-to-one relationships
• Investigate look-up tables
• Investigate one-to-many relationships

FFIIGGUURREE 99--DD
Internet Sales
System Performance

Chapter 9: Data Management Layer Design 6611

6622 AAppppeennddiixx CD Selections

FFII
GG

UU
RR

EE
99

--EE
D

at
a

M
an

ag
em

en
t L

ay
er

 a
nd

 P
ro

bl
em

 D
om

ai
n

La
ye

r
D

es
ig

n
fo

r
th

e
C

D
 P

ac
ka

ge
 o

f t
he

 In
te

rn
et

 S
al

es
 S

ys
te

m

Sa
m

pl
e

C
lip

 F
ile

Sa
m

pl
e

C
lip

-D
A

M

A
rt

is
t I

nf
o-

D
A

M
A

rt
is

t I
nf

o
Ta

bl
e

M
kt

A
rt

is
tI

nf
o

Ta
bl

e

Ve
nd

or
 T

ab
le

M
kt

 In
fo

 T
ab

le

Tr
ac

ks
 T

ab
le

C
D

 T
ab

le
C

D
-D

A
M

M
kt

 In
fo

-D
A

M
M

kt
 In

fo

Re
vi

ew
-D

A
M

Tr
ac

ks
-D

A
M

C
D

Tr
ac

ks

Re
vi

ew

A
rt

is
t I

nf
o

Sa
m

pl
e

C
lip

Ve
nd

or
-D

A
M

Ve
nd

or

Re
vi

ew
 T

ab
le

D
at

a
A

cc
es

s
an

d
M

an
ag

em
en

t C
la

ss
es

O
bj

ec
t P

er
si

st
en

ce
Pr

ob
le

m
 D

om
ai

n
C

la
ss

es

0.
.*

0.
.*

0.
.*

0.
.*

0.
.*

0.
.*

0.
.*

0.
.*

1.
.*

1.
.*

1.
.*

1.
.1

1.
.1

1.
.1

1.
.1

1.
.1

1.
.1

1.
.1

1.
.1

1.
.1

1.
.*

1.
.1

0.
.1

0.
.1

1.
.1

1.
.1

co
nt

ai
ns

di
st

rib
ut

es

pr
om

ot
es

6622

When Brian was going over the data management layer design with Alec (see Figure 9-E),
Alec noticed that the Artist Info-DAM class was dependent upon both the Artist Info
Table and the MktArtistInfo Table. Brian explained that this was necessary since an
instance of the Artist Info problem domain class can only exist if a related instance of
the Mkt Info problem domain class exists (see the multiplicities of 1..*). To guarantee
this, the Artist Info-DAM class must depend on the existence of both the Artist Info
Table and the table that represents the required relationship: MktArtistInfo Table. How-
ever, since the relationship from the Mkt Info problem domain class to the Artist Info
class was optional (see multiplicities of 0..*), the Mkt Info-DAM class was not depen-
dent on the MktArtistInfo Table. If it had been a required relationship also, then the
Mkt Info-Dam class would have also been dependent on the relationship based table.
Based on Brian’s design and explanation, Alec felt that the design of the data manage-
ment layer was completed.

Chapter 9: Data Management Layer Design 6633

CHAPTER 10: HUMAN-COMPUTER INTERACTION LAYER DESIGN
Previously, Alec had the development team focusing on developing the analysis models of
the problem domain. In the previous chapter’s installment, Alec had split part of the team
and had assigned them to work on the data management layer and to develop its design. In
this installment, we follow the development team members that have been assigned to the
human–computer interaction layer. Based on what Margaret has learned about mobile
computing, social media, and globalization, she really wants to be able to deploy across
multiple platforms in such a way that CD Selections will be able to reach a global market.
However, Alec isn’t quite sure that trying to deploy over multiple incompatible platforms
is a good idea.

To begin with, the team reviewed the functional models for the CD Selections Inter-
net Sales System. The use case diagram showed that there were three different high-level
use cases in (see Figures 4-A and 4-D): Maintain CD Information, Place Order, and Main-
tain CD Marketing Information. There are also six additional use cases, Search/Browse
CDs, Checkout, Create New Customer, Place In Store Hold, Place Special Order, and Fill
Mail Order, associated with the Place Order use case.

Based on the perceived complexity of developing the current system without the
deployment on multiple incompatible platforms, Alec was able to convince Margaret
that even though he agreed with her as to the importance of both mobile and social com-
puting platforms, that it would be better if they delayed the design and deployment for
those platforms until a later version of the system is developed. Furthermore, given that
the current system’s focus was more about bringing in more customers to the bricks and
mortar stores, they also agreed to delay the internationalization of the web site until a
later version.

To keep the complexity of the current example under control, in this section, we focus
only on the Place Order, Browse/Search CDs, and Checkout use cases.

Use Scenario Development
The first step in the interface design process was to develop the key use scenarios for
the Internet Sales System. Since Alec assigned the human computer interaction layer
design to himself, he began by examining the essential use cases (see Figures 4-B
through 4-G) and thinking about the types of users and how they would interact with
the system. To begin with, Alec identified two use scenarios: the browsing shopper and
the hurry-up shopper (see Figure 10-A).7 Alec also thought of several other use sce-
narios for the Web site in general, but omitted them since they were not relevant to the
Internet sales portion. Likewise, he thought of several use scenarios that did not lead
to sales (e.g., fans looking for information about their favorite artists and albums), and
omitted them as well.

Interface Structure Design
Next, Alec created a window navigation diagram (WND) for the Web system. He began
with the Place Order, Browse/Search CDs, and Checkout essential use cases to ensure that

6644 AAppppeennddiixx CD Selections

7 Of course, it may be necessary to modify the original essential use cases in light of these new subtypes of cus-
tomer. Furthermore, the structural and behavioral models may have to be modified. Remember that object-ori-
ented systems analysis and design is incremental and iterative, as such, additional requirements can be uncovered
at any time.

all functionality defined for the system was included in the WND. Figure 10-B shows the
WND for the Web portion of the Internet Sales System. The system will start with a home
page that contains the main menu for the sales system. Based on the essential use cases,
Alec identified four basic operations that he felt made sense to support on the main
menu: search the CD catalog, search by music category, review the contents of the shop-
ping cart, and to actually place the order. Each of these was modeled as a hyperlink on
the home page.

Alec then decided to model the full search option as a pop-up search menu that
allowed the customer to choose to search the CD catalog based on artist, title, or composer.
He further decided that a textbox would be required to allow the customer to type in the
name of the artist, title, or composer depending on the type of search requested. Finally, he
chose to use a button to submit the request to the system. After the “submit” button is
pressed, the system produces a report that was composed of hyperlinks to the individual
information on each CD. A CD report containing the basic information is generated by
clicking on the hyperlink associated with the CD. On the basic report, Alec added buttons
for choosing to find out additional information on the CD and to add the CD to the shop-
ping cart. If the “Detail” Button is pressed, a detailed report containing the marketing
information on the CD is produced. Finally, Alec decided to include a button on this report
to add the CD to the shopping cart.

The second basic operation supported on the home page was to allow the user to
search the CD catalog by category of music. Like the previous operation, Alec chose to
model the category search with a pop up search menu. In this case, once the customer
chose the category, the system would produce the report with the hyperlinks to the indi-
vidual information on each CD. From that point on, the navigation would be identical to
the previous searches.

Chapter 10: Human-Computer Interaction Layer Design 6655

FFIIGGUURREE 1100--AA Use Scenarios for the Browsing and Hurry-Up Customers

Use scenario: The Hurry-up Shopper
User knows exactly what he or she wants

and wants it quickly

1. User will search for a specific artist or CD (1).
2. User will look at the price and perhaps other
 information (3).
3. User will want to place the order (6) or do
 another search (1) or surf on the other
 Web sites (3a-2).

Use scenario: The Browsing Shopper User is not
sure what he or she wants to buy and will

browse for several CDs

1. User may search for a specific artist or
 browse through a music category (1).

The numbers in parentheses refer to specific events in the essential use case.

2. User will likely read the basic
 information for several CDs, as well as
 the marketing material for some. He or she
 will likely listen to music samples and
 browse related CDs (after we implement
 these) (3).
3. User will put several CDs in the shopping
 cart and will continue browsing (5).
4. Eventually, the user will want to place the
 order but will probably want to look
 through the shopping cart, possibly
 discarding some CDs first (6).

6666 AAppppeennddiixx CD Selections

FFIIGGUURREE 1100--BB CD-Selections Initial WND for the Web portion of the Internet Sales System

<<Report>>
Detailed Report

<<Button>>
Add

<<HyperLink>>
Full Search

<<Pop Up Menu>>
Search Menu

<<Pop Up Menu>>
Search Menu

<<HyperLink Rep>>
CD List

<<HyperLink>>
Search by Cat

<<HyperLink>>
Review Cart

<< Report>>
Shopping Cart

<<HyperLink>>
Place Order

<< window>>
Main Menu

(System Home Page)

<< Msg Box>>
Confirmation

Message

<< Msg Box>>
Confirmation

Message

<< Msg Box>>
Order

Confirmation

<<TextBox>>
Artist List

<<Button>>
Submit

<<Form>>
Order Form

<<Button>>
Order

<<TextBox>>
Title List

<<Button>>
Submit

<<TextBox>>
Composer List

<<Button>>
Submit

<<Report>>
Basic Report

<<Button>>
Detail

<<Button>>
Add

Choose Category
Search

Choose Review
Cart

Choose Place
Order

Choose Full
Search

Choose
Artist

Choose
Title

Choose
Composer

Click Link Click Link

Click CD Link

Click Link

Press Order
Button

Choose Category

Press Submit
Button

Press Submit
Button

Pr
es

s
Su

bm
it

Bu
tto

n

Press Button

Click Link

Click
Delete

CD Link

Pr
es

s
A

dd
 B

ut
to

n

Pr
es

s
A

dd
 B

ut
to

n
Click Delete
All CDs Link

Click Place
Order Link

The third operation supported was to review the contents of the shopping cart. In
this case, Alec decided to model the shopping cart as a report that contained three types
of hyperlinks; one for removing an individual CD from the shopping cart, one for
removing all CDs from the shopping cart, and one for placing the order. The removal
hyperlinks would remove the individual CD (or all of the CDs) from the shopping cart
if the user would confirm the operation. The place order link would send the customer
to an order form. Once the customer filled out the order form, the customer would
press the order button. The system would then respond with an order confirmation
message box.

The fourth operation supported on the home page was to allow the customer to place
an order directly. Upon review, Alec decided that the place order and review cart operations
were essentially identical. As such, he decided to force the user to have the Place Order and
Review Shopping Cart operations go through the same process.

Alec also envisioned that by using frames, the user would be able to return to the home
page from any screen. Documenting these would give the WND too many lines, so Alec
simply put a note describing it with the WND.

The Revised WND
Alec then examined the use scenarios to see how well the initial WND enabled different
types of users to work through the system. He started with the Browsing Shopping use
scenario and followed it through the WND, imagining what would appear on each screen
and pretending to navigate through the system. He found the WND to work well, but he
noticed a couple of minor issues related to the shopping cart. First, he decided that it
would make sense to allow the customer to retrieve the information related to the CDs
contained in the shopping cart. As such, he changed the stereotype of the user interface
component from Report to HyperLink Rep and added a hyperlink from the Shopping
Cart to the Basic Report created by the different search requests. Second, he noticed that
the Shopping Cart was using hyperlinks to link to the Removal and Place Order
processes. However, in all the other elements of the WND, he was using buttons to model
the equivalent ideas. As such, he decided to change the Shopping Cart component to
model these connections as buttons. Of course, this forced him to modify the transitions
as well.

Alec next explored the Hurry-up Shopper use scenario. In this case, the WND did
not work as well. Moving from the home page, to the search page, to the list of match-
ing CDs, to the CD page with price and other information takes three mouse clicks.
This falls within the three clicks rule, but for someone in a hurry, this may be too many.
Alec decided to add a “quick-search” option to the home page that would enable the
user to enter one search criteria (e.g., just artist name or title, rather than a more
detailed search as would be possible on the search page) that would with one click take
the user to the one CD that matched the criteria or to a list of CDs if there were more
than one. This would enable an impatient user to get to the CD of interest in one or
two clicks.

Once the CD is displayed on the screen, the Hurry-up Shopper use scenario would
suggest that the user would immediately purchase the CD, do a new search, or abandon
the Web site and surf elsewhere. This suggested two important changes. First, there had
to be an easy way to go to the place order screen. As the WND stands (see Figure 10-B),
the user must add the item to the shopping cart and then click on the link on the HTML
frame to get to the place order screen. While the ability of users to notice the place order
link in the frame would await the interface evaluation stage, Alec suspected, based on
past experience, that a significant number of users would not see it. Therefore, he
decided to add a buttons to the Basic Report screen and the Detailed Report screen called
“Buy” (See Figure 10-C).

Second, since the Hurry-up Shopper might want to search for another CD instead
of buying the CD, Alec decided to include the quick-search item from the home page on
the frame. This would make all searches immediately available from anywhere in the
system. This would mean that all functionality on the home page would now be carried
on the frame. Alec updated the note on the bottom attached to the WND to reflect the
change.

Chapter 10: Human-Computer Interaction Layer Design 6677

FFII
GG

UU
RR

EE
11

00
--CC

C
D

-S
el

ec
tio

ns
 r

ev
is

ed
 W

N
D

 fo
r

th
e

W
eb

 p
or

tio
n

of
 th

e
In

te
rn

et
 S

al
es

 S
ys

te
m

 (c
ha

ng
es

 a
re

 h
ig

hl
ig

ht
ed

)

<<
Re

po
rt

>>

D
et

ai
le

d
Re

po
rt

<<
Re

po
rt

>>

Ba
si

c
Re

po
rt

<<
Bu

tt
on

>>

A
dd

<<
Bu

tt
on

>>

D
et

ai
l

<<
W

in
do

w
>>

C

om
po

se
r

Li
st

<<
Te

xt
Bo

x>
>

Se
ar

ch
 It

em

<<
Bu

tt
on

>>

Su
bm

it

<<
W

in
do

w
>>

Ti

tle
 L

is
t

<<
Te

xt
Bo

x>
>

Se
ar

ch
 It

em

<<
Bu

tt
on

>>

Su
bm

it

<<
H

yp
er

Li
nk

>>

Fu
ll

Se
ar

ch

<<
Po

p
U

p
M

en
u>

>
Se

ar
ch

 M
en

u
<<

Po
p

U
p

M
en

u>
>

Se
ar

ch
 M

en
u

<<
H

yp
er

Li
nk

 R
ep

>>

C
D

 L
is

t

<<
H

yp
er

Li
nk

>>

Se
ar

ch
 b

y
C

at
<<

H
yp

er
Li

nk
>>

Re

vi
ew

 C
ar

t
<<

H
yp

er
Li

nk
>>

Pl

ac
e

O
rd

er

<<
 w

in
do

w
>>

M

ai
n

M
en

u
(S

ys
te

m
 H

om
e

Pa
ge

)

<<
 M

sg
 B

ox
>>

C

on
fir

m
at

io
n

M
es

sa
ge

<<
 M

sg
 B

ox
>>

C

on
fir

m
at

io
n

M
es

sa
ge

<<
 M

sg
 B

ox
>>

O

rd
er

C

on
fir

m
at

io
n

<<
W

in
do

w
>>

Q

ui
ck

 S
ea

rc
h

<<
Te

xt
Bo

x>
>

Se
ar

ch
 It

em

<<
D

ro
pD

ow
nL

is
t>

>
Se

ar
ch

 Ty
pe

<<
Fo

rm
>>

O

rd
er

 F
or

m

<<
Bu

tt
on

>>

O
rd

er

C
ho

os
e

C
at

eg
or

y
Se

ar
ch

C
ho

os
e

Re
vi

ew

C
ar

t
C

ho
os

e
Pl

ac
e

O
rd

er
C

ho
os

e
Fu

ll
Se

ar
ch

C
ho

os
e

Q
ui

ck

Se
ar

ch

C
ho

os
e

A
rti

st

C
ho

os
e

Ti
tle

C
ho

os
e

C
om

po
se

r

C
lic

k
Li

nk
C

lic
k

Li
nk

C
lic

k
C

D
 L

in
k

Pr
es

s
Bu

tto
n

C
lic

k
Li

nk
C

lic
k

Li
nk

Pr
es

s
O

rd
er

Bu
tto

n
Pr

es
s

D
el

et
e

Bu
tto

n

C
ho

os
e

C
at

eg
or

y

Pr
es

s
Su

bm
it

Bu
tto

n
Press Submit Button

Press Submit Button

Pr
es

s
Su

bm
it

Bu
tto

n

Press Add Button

Press CD Link

Press Add Button

Pr
es

s
Bu

tto
n

Pr
es

s
Bu

tto
n

Pr
es

s
D

el
et

e
A

ll
C

D
s

Bu
tto

n

<<
W

in
do

w
>>

A

rt
is

t L
is

t

<<
Te

xt
Bo

x>
>

Se
ar

ch
 It

em

<<
Bu

tt
on

>>

Su
bm

it

<<
H

yp
er

Li
nk

 R
ep

>>

Sh
op

pi
ng

 C
ar

t

<<
Bu

tt
on

>>

Pl
ac

e
O

rd
er

<<
Bu

tt
on

>>

D
el

et
e

A
ll

<<
Bu

tt
on

>>

D
el

et
e

Press Button

<<
Bu

tt
on

>>

Bu
y

<<
Bu

tt
on

>>

Bu
y

<<
Bu

tt
on

>>

Su
bm

it

<<
Bu

tt
on

>>

A
dd

6688

Finally, upon review of the WND, Alec decided to remodel the Artist List, Title List,
and Composer Lists as window stereotypes instead of textbox stereotypes. He then added
a Search Item textbox to each of these elements. Figure 10-C shows the revised WND for
the Web portion of the Place Order use case. All changes are highlighted.

Interface Standards Design
Once the WND was complete, Alec moved on to develop the interface standards for the sys-
tem. The interface metaphor was straightforward: a CD Selections music store. The key
interface objects and actions were equally straightforward, as was the use of the CD Selec-
tions logo icon (see Figure 10-D).

Interface Template Design
For the interface template, Alec decided on a simple, clean design that had a modern back-
ground pattern, with the CD-Selections logo in the upper-left corner. The template had
two navigation areas: one menu across the top for navigation within the entire Web site
(e.g., overall Web site home page, store locations) and one menu down the left edge for
navigation within the Internet sales system. The left edge menu contained the links to the
top-level operations (see WND in Figure 10-C), as well as the “quick search” option. The
center area of the screen is used for displaying forms and reports when the appropriate
operation is chosen (see Figure 10-E).

At this point, Alec decided to seek some quick feedback on the interface structure and
standards before investing time in prototyping the interface designs. Therefore, he met
with Margaret Mooney, the project sponsor, and Chris Campbell, the consultant, to discuss
the emerging design. Making changes at this point would be much simpler than after doing
the prototype. Margaret and Chris had a few suggestions, so after the meeting Alec made
the changes and moved into the design prototyping step.

Design Prototyping
Alec decided to develop a hypertext mark-up language (HTML) prototype of the system.
The Internet sales system was new territory for CD Selections and a strategic investment in

Chapter 10: Human-Computer Interaction Layer Design 6699

IInntteerrffaaccee MMeettaapphhoorr:: A CD Selections Music Store

IInntteerrffaaccee OObbjjeeccttss
• CCDD:: All items, whether CD, tape, or DVD, unless it is important to distinguish among them
• AArrttiisstt:: Person or group who records the CD
• TTiittllee:: Title or name of CD
• CCoommppoosseerr:: Person or group who wrote the music for the CD (primarily used for classical music)
• MMuussiicc CCaatteeggoorryy:: Type of music. Current categories include: Rock, Jazz, Classical, Country, Alter-

native, Soundtracks, Rap, Folk, Gospel.
• CCDD LLiisstt:: List of CD(s) that match the specified criteria
• SShhooppppiinngg CCaarrtt:: Place to store CDs until they are requested

IInntteerrffaaccee AAccttiioonnss
• SSeeaarrcchh ffoorr:: Display a CD list that matches specified criteria
• BBrroowwssee:: Display a CD list sorted in order by some criteria
• OOrrddeerr:: Authorize special order or place hold

IInntteerrffaaccee IIccoonnss
• CCDD SSeelleeccttiioonnss LLooggoo:: Will be used on all screens

FFIIGGUURREE 1100--DD
CD Selections
Interface Standards

a new business model, so it was important to make sure that no key issues were overlooked.
The HTML prototype would provide the most detailed information and enable interactive
evaluation of the interface.

In designing the prototype, Alec started with the home screen and gradually worked
his way through all the screens. The process was very iterative and he made many changes
to the screens as he worked. Once he had an initial prototype designed, he posted it on CD
Selections intranet and solicited comments from several friends with lots of Web experi-
ence. He revised it based on the comments he received. Figure 10-F presents some screens
from the prototype.

Interface Evaluation
The next step was interface evaluation. Alec decided on a two-phase evaluation. The first
evaluation was to be an interactive evaluation conducted by Margaret, her marketing man-
agers, selected staff members, selected store managers, and Chris. They worked hands-on
with the prototype and identified several ways to improve it. Alec modified the HTML pro-
totype to reflect the changes suggested by the group and asked Margaret and Chris to
review it again.

The second evaluation was another interactive evaluation, this time by a series of two
focus groups of potential customers—one with little Internet experience, the other with
extensive Internet experience. Once again, several minor changes were identified. Alec
again modified the HTML prototype and asked Margaret and Chris to review it again.
Once they were satisfied, the interface design was complete.

Navigation Design Documentation
The last step that Alec completed was to document the navigation design through the
use of real use cases. To accomplish this, Alec gathered together the essential use case
(see Figure 4-G), the use scenarios (see Figure 10-A), the window navigation diagram

7700 AAppppeennddiixx CD Selections

FFIIGGUURREE 1100--EE CD
Selections Interface
Template for the Web
Portion of the Internet
Sales System

Chapter 10: Human-Computer Interaction Layer Design 7711

FFIIGGUURREE 1100--FF
Sample Interfaces from
the CD Selections
Design Prototype

(a)

(b)

(see Figure 10-C), and the user interface prototype (see Figures 10-E and 10-F). First,
he copied the contents of the essential use case to the real use case. He changed the type
from detail, essential to detail, real and the primary actor was specialized to browsing
customer instead of simply customer. Second, he wrote the specific set of steps and
responses that described the interaction between the browsing customer and system.
Figure 10-G shows a partial listing of the steps in the Normal Flow of Events and
SubFlows sections of the real use case. Last, he repeated the steps for the hurry-up cus-
tomer. Based on the detailed, real use cases, Alec realized that changes really needed to
be cascaded back to the use case diagram and the detailed, essential use case descrip-
tions. Again, this is typical of the iterative and incremental nature of object-oriented
system development.

7722 AAppppeennddiixx CD Selections

FFIIGGUURREE 1100--GG The Browsing Customer Real Use Case (Partial Listing Only)

Use-Case Name:

Primary Actor:

Stakeholders and Interests:

Brief Description:

ID: Importance Level:

Trigger:

Normal Flow of Events:

SubFlows:

Alternate/Exceptional Flows:

Type: External

Place Order 15 High

The Browsing Customer

Customer Wants to search web site to purchase CD
EM Manager Wants to maximize Customer satisfaction.

Use-Case Type: Detail, Real

Customer visits web site

Checkout, Browse/Search CDs

1. The Customer visits the Web site.
2. The System displays the Home Page
 If the Customer wants to do a Full Search, execute S-1: Full Search
 If the Customer wants to Browse by Music Type, execute S-2: Browse by Music Type
 If the Customer wants to see any Special Deals, execute S-3: Special Deals
 If the Customer wants to see the contents of the Shopping Cart, execute S-4: Shopping Cart
 If the Customer wants to Buy Now, execute S-5: Buy Now
3. The Customer leaves the site.

S-1: Full Search
1. The Customer clicks the Full Search hyperlink
2. The System displays the search type pop-up menu
 If the Customer chooses an Artist search, execute S-1a: Artist List
 If the Customer chooses an Title search, execute S-1a: Title List
 If the Customer chooses an Composer search, execute S-1a: composer List

S-1a: Artist List
1. The System displays the Artist List window in the Center Area of the Home Page.
2. The Customer enters the Artist Name into the Search Item text box.
3. The Customer presses the Submit button.
4. The System executes S-2a: CD List.

S-2a: CD List
1. The System displays the CD List hyperlink report.
2. The Customer chooses a CD to review by clicking the CD link.
3. The System executes s-2b: Display Basic Report
4. Iterate over steps 2 and 3.

This use case describes how customers can search the web site and place orders.

Relationships:
Association:
Include:
Extend:
Generalization:

CHAPTER 11: PHYSICAL ARCHITECTURE LAYER DESIGN
As with the previous two chapters, this installment of the CD Selections case we see
that Alec has spun off part of his team to focus on designing the physical architecture
layer. However, given the dependence among the human–computer interaction, data
management, and physical architecture layers, this group finds that they must be in rel-
atively constant contact with the other groups. Otherwise, deploying the problem
domain, human–computer interaction, and data management layers over the architec-
ture could prove to be difficult. Consequently, Alec has decided to be focus his coordi-
nation efforts among the different layer groups by heading up the physical architecture
layer’s group. He saw this as a way to better understand the implications of deploying
the system over multiple, and possibly incompatible, platforms (see the previous
installment).

Alec realized that the hardware, software, and networks that would support the new
application would need to be integrated into the current infrastructure at CD Selections.
Consequently, he had asked Anne to review the high-level nonfunctional requirements
developed in the analysis phase (see Figure 3-A) and by conducting a JAD session and a
series of interviews with managers in the marketing department and three store managers
to refine the nonfunctional requirements into more detail. Figure 11-A shows some of the
results. The clear business need for a Web-based architecture required a thin client–server
architecture for the Internet sales portion of the system.

CD Selections had a formal architecture group responsible for managing CD Selec-
tions architecture and its hardware and software infrastructure. Therefore, Anne set up a
meeting with the development team and the architecture group. During the meeting, she
confirmed that CD Selections was still moving toward a target client–server architecture,
although the central mainframe still existed as the primary server for many server-based
applications.

They discussed the Internet system and decided that it should be built using a three-
tier thin client–server architecture. Everyone believed that it was hard to know at this point
exactly how much traffic this Web site would get and how much power the system would
require, but a client–server architecture would allow CD Selections to easily scale up the
system as needed.

By the end of the meeting, it was agreed that a three-tiered client–server architecture
was the best configuration for the Internet portion of the Internet sales system (i.e., the
Place Order process in Figures 4-D and 4-G). Customers would use their personal com-
puters running a Web browser as the client. A database server would store the Internet sys-
tem’s databases; whereas, an application server would have Web server software and the
application software to run the system.

A separate two-tier client server system will maintain the CD and CD Marketing Mate-
rial information (i.e., see Figure 4-D). This system will have an application for the personal
computers of the staff working in the Internet sales group that communicates directly with
the database server and enables staff to update the information. The database server will
have a separate program to enable it to exchange data with CD Selections’ distribution sys-
tem on the company mainframe. Furthermore, the in-store system was currently built
using a two-tier client–server architecture, so the portion of the system responsible for the
in-store holds would conform to that architecture.

Next, Anne created a network model to show the major components of the Internet
sales system (see Figure 11-B). The Internet sales system is on a separate network segment
separated from the CD Selections’ main network by a firewall that separates the network

Chapter 11: Physical Architecture Layer Design 7733

7744 AAppppeennddiixx CD Selections

11.. OOppeerraattiioonnaall RReeqquuiirreemmeennttss
Technical Environment 1.1 The system will work over the Web environment with Internet Explorer and Real Audio.

1.2 Customers will only need Internet Explorer and RA on their desktops.

System Integration 1.3 The Internet sales system will read information from the main CD information database, which con-
tains basic information about the CD (e.g., title, artist, id number, price, quantity in inventory). The
Internet order system will not write information to the main CD information database.

1.4 The Internet sales system will transmit orders for new CDs in the special order system, and will rely
on the special order system to complete the special orders generated.

1.5 The Internet sales system will read and write to the main inventory database.
1.6 A new module for the In-store system will be written to manage the “holds” generated by the Inter-

net system. The requirements for this new module will be documented as part of the Internet sales
system because they are necessary for the Internet sales system to function.

1.7 A new module will be written to handle the mail order sales. The requirements for this new module
will be documented as part of the Internet sales system because they are necessary for the Internet
sales system to function.

Portability 1.8 The system will need to remain current with evolving Web standards, especially those pertaining to
music formats.

Maintainability 1.9 No special maintainability requirements are anticipated.

22.. PPeerrffoorrmmaannccee RReeqquuiirreemmeennttss
Speed 2.1 Response times must be less than 7 seconds.

2.2 The inventory database must be updated in real time.
2.3 In-store holds must be sent to the store within 5 minutes.

Capacity 2.4 There will be a maximum of 20–50 simultaneous users at peak use times.
2.5 The system will support streaming audio to up to forty simultaneous users.
2.6 The system will send up to 5K of data to each store daily.
2.7 The in-store hold database will require 10–20K of disk space per store.

Availability and Reliability 2.8 The system should be available 24/7.
2.9 The system shall have 99 percent uptime performance.

33.. SSeeccuurriittyy RReeqquuiirreemmeennttss
System Value 3.1 No special system value requirements are anticipated.

Access Control 3.2 Only store managers will be able to override In-Store Holds.

Encryption/Authentication 3.3 No special encryption/authentication requirements are anticipated.

Virus Control 3.4 No special virus control requirements are anticipated.

44.. CCuullttuurraall aanndd PPoolliittiiccaall RReeqquuiirreemmeennttss
Multilingual 4.1 No special multilingual requirements are anticipated.

Customization 4.2 No special customization requirements are anticipated.

Unstated Norms 4.3 No special unstated norms requirements are anticipated.

Legal 4.4 No special legal requirements are anticipated.

FFIIGGUURREE 1111--AA Selected Nonfunctional Requirements for the CD Selections Internet Sales System

from the Internet while granting access to the Web and database servers. The Internet sales
system has two parts. A firewall is used to connect the Web/Application server to the
Internet, while another firewall further protects the Internet sales group’s client computers
and database server from the Internet. In order to improve response time, a direct connec-
tion is made from the Web/Application server to the database server because these will

Chapter 11: Physical Architecture Layer Design 7755

FFIIGGUURREE 1111--BB Deployment Diagram of Network Model for the CD Selections Internet Sales
System

Database
Server

Web Application
Server

Data-
base

Firewall

Firewall

Internet

Mainframe

Firewall

CD Selections’
Main Network

Internet Sales System
Network

Internet Sales Group
Workstations

Internet Customer
Workstation

Internet Customer
Workstation

Workstation

Workstation

Workstation

exchange a lot of data. Based on these decisions, she also created a deployment diagram
that shows how the problem domain, human computer interaction, and data management
layers would be deployed over the physical architecture layer (see Figure 11-C).

Given that the Web interface could reach a geographically dispersed group, the devel-
opment team realized that it needed to plan for 24/7 system support. As such, Anne sched-
uled a meeting to talk with the CD Selections systems operations group and discussed how
they might be able to support the Internet system outside of standard working hours.

After examining the network model, the architecture group and the development team
decided that the only components that needed to be acquired for the project were a data-
base server, a Web server, and five new client computers for the marketing group, who will
maintain the CD marketing materials. They developed a hardware and software specifica-
tion for these components and handed them off to the purchasing department to start the
acquisition process.

7766 AAppppeennddiixx CD Selections

FFIIGGUURREE 1111--CC
Deployment Diagram
of Layers for the CD
Selections Internet
Sales System

<<Client Workstation>>
Internet Customer

<<HCI Layer>>
Internet Sales

System

<<Web Server>>
Internet Sales System

Web Server

<<PD Layer>>
Internet Sales

System

<<DB Server>>
Internet Sales System

Database Server

<<DM Layer>>
Internet Sales

System

<<Client Workstation>>
Internet Sales System

Group Member

<<HCI Layer>>
Internet Sales

System

<<PD Layer>>
Internet Sales

System

<<TCP/IP>>

<<TCP/IP>>

<<TC
P/IP>>

CHAPTER 12: CONSTRUCTION
Because the material in this chapter actually takes place throughout the systems develop-
ment process, this installment of the CD Selections case simply revisits some of the earlier
installments and shows where this material has either already been described or where the
development team should have performed these tasks.

Managing Programming
To keep the project on schedule, Anne requested that she be allowed to assign three program-
mers from the CD Selections programming staff to develop the three major parts of the Inter-
net Sales System. The first was the Web interface, both the client side (browser) and the server
side. The second was the client-server-based management system (managing the CD infor-
mation and marketing materials data bases). The third was the interfaces between the Internet
Sales System and CD Selections’ existing distribution system and the credit card center.
Programming went smoothly and despite a few minor problems went according to plan.

Testing
While Anne and the programmers were working, Alec began developing the test plans. The
test plans for the three components were similar, but slightly more intensive for the Web
interface component (see Figure 12-A). Unit testing would use black box testing based on
the CRC cards, class diagrams, and contracts for all components. For example, the Order
class was described in the chapter (see Figures 12-4, 12-6, and 12-7) and the CD class has
been described in earlier installments (see Figures 8-C and 8-D).

Integration testing for the Web interface and system management component would
be subjected to all user interface and use case tests to ensure the interface works properly.
The system interface component would undergo system interface tests to ensure that the
system performed calculations properly and was capable of exchanging data with the CD
Selections’ other systems and the credit card center.

Systems tests are by definition tests of the entire system—all components together. How-
ever, not all parts of the system would receive the same level of testing. Requirements tests
would be conducted on all parts of the system to ensure that all requirements were met. Secu-
rity was a critical issue, so the security of all aspects of the system would be tested. Security tests
would be developed by CD Selections’ infrastructure team, and once the system passed those
tests, an external security consulting firm would be hired to attempt to break-in to the system.

Performance was an important issue for the parts of the system used by the customer
(the Web interface and the system interfaces to the credit card and inventory systems) but
not as important for the management component that would be used by staff, not cus-
tomers. The customer-facing components would undergo rigorous performance testing to
see how many transactions (whether searching or purchasing) they could handle before

Chapter 12: Construction 7777

Unit tests Black-box tests Black-box tests Black-box tests
Integration tests User interface tests; User interface tests; System interface tests

use-case tests use-case tests
System tests Requirements tests; Requirements tests; Requirements tests;

security tests; security tests security tests;
performance tests; performance tests
usability tests

Acceptance tests Alpha test; beta test Alpha test; beta test Alpha test; beta test

FFIIGGUURREE 1122--AA
Test Plan for
CD Selections

TTeesstt SSttaaggee WWeebb IInntteerrffaaccee SSyysstteemm MMaannaaggeemmeenntt SSyysstteemm IInntteerrffaacceess

they were unable to provide a response time of two seconds or less. Alec also developed an
upgrade plan so that as demand on the system increased, there was a clear plan for when
and how to increase the processing capability of the system.

Finally, formal usability tests would be conducted on the Web interface portion of the
system with six potential users (both novice and expert Internet users).

Acceptance tests would be conducted in two stages, alpha and beta. Alpha tests would
be done during the training of CD Selections’ staff. The Internet Sales manager would work
together with Alec to develop a series of tests and training exercises to train the Internet
Sales group staff on how to use the system. They would then load the real CD data into the
system and begin adding marketing materials. These same staff and other CD Selections
staff members would also pretend to be customers and test the Web interface.

Beta testing would be done by “going live” with the Web site but only announcing its exis-
tence to CD Selections employees. As an incentive to try the Web site (rather than buying from
the store in which they worked) employees would be offered triple their normal employee dis-
count for all products ordered from the Web site. The site would also have a prominent button
on every screen that would enable employees to e-mail comments to the project team, and the
announcement would encourage employees to report problems, suggestions, and compliments
to the project team. After one month, assuming all went well, the beta test would be completed,
and the Internet Sales site linked to main Web site and advertised to the general public.

Developing User Documentation
While Anne and Alec were busy with the programming and test plans, Brian began the
process of developing all necessary documentation. There were three types of documenta-
tion (reference documents, procedures manuals, and tutorials) that needed to be produced
for the Web interface and the management component. Since the number of CD Selections
staff using the system management component would be small, Brian suggested that they
only produce the reference documentation (an online help system). After talking with Alec
and Anne, the team felt that an intensive training program and a one month beta test
period would be sufficient without tutorials and formal procedures manuals. Likewise, they
felt that the process of ordering CDs and the Web interface itself was simple enough to not
require a tutorial on the Web—a help system would be sufficient (and a procedures man-
ual didn’t make sense).

Brian decided that the reference documents for both the Web interface and system
management components would contain help topics for user tasks, commands, and defin-
itions. He also decided that the documentation component would contain four types of
navigation controls: a table of contents, an index, a find, and links to definitions. He did
not feel that the system was complex enough to benefit from a search agent.

After these decisions were discussed with the development team, Brian delegated the
development of the reference documents to a technical writer assigned to the project team.
Figure 12-B shows examples of a few of topics that the writer developed. The tasks and

7788 AAppppeennddiixx CD Selections

Find an album Find Album
Add an album to my shopping cart Browse Artist
Placing an order Quick search Music type
How to buy Full search Special deals
What’s in my shopping cart? Cart

Shopping cart

TTaasskkss CCoommmmaannddss TTeerrmmss

FFIIGGUURREE 1122--BB
Sample Help Topics
for CD Selections

commands were taken directly from the interface design. The list of definitions were devel-
oped once the tasks and commands were developed based on the writer’s experience in
understanding what terms might be confusing to the user.

Once the topic list was developed, the technical writer then began writing the topics
themselves and the navigation controls to access. Figure 12-C shows an example of one
topic taken from the task list: how to place an order. This topic presents a brief description
of what it is and then leads the user through the step by step process needed to complete
the task. The topic also lists the navigation controls that will be used to find the topic, in
terms of the table of contents entries, the index entries, and search entries. It also lists what
words in the topic itself will have links to other topics (e.g., shopping cart).

Chapter 13: Installation and Operations 7799

How to Place an Order

When you are ready to pay for the merchandise
you have selected (the items in your shopping cart)
you can place your order. There are four steps.

1. Move to the Place order Page

Click on the button to move to the

place order page.

2. Make sure you are ordering what you want

The place order screen displays all the items in
your shopping cart. Read through the list to make
sure these are what you want because once you
submit your credit card information you cannot
change the order.

You can delete an item by

Table of Contents list:
How to Place an Order

Index list:
 Credit Card
 Order
 Pay
 Place order

Search find by:
 Credit Card
 Delete Items
 Order
 Pay
 Place order
 Shopping Cart
 Verify Order

Links:
 Shopping Cart

Help Topic Navigation Controls

Place order

FFIIGGUURREE 1122--CC
Sample
Documentation Topic
for CD Selections

CHAPTER 13: INSTALLATION AND OPERATIONS
In this installment of the CD Selections case, we see how the new system is transitioned from
the development team and put into production by the user community. To ensure a smooth
transition, Alec and Margaret oversaw the necessary user training, including employees from
CD Selections help desk department, and the creation of the necessary, relevant docum-
entation. Looking back over the development of the system, Alec and Margaret evaluate the
processes used and the individual development team members to identify lessons learned
throughout the process. Finally, they set up a process to maintain the system.

The installation of the Internet Sales System at CD Selections was somewhat simpler
than the installation of most systems because the system was entirely new; there was no As-
Is system for the new system to replace. Also, there were not a large number of staff mem-
bers who needed to be trained on the operation of the new system.

Conversion
Conversion went smoothly. First, the new hardware was purchased and installed. Then the
software was installed on the Web server and on the client computers to be used by the staff
of the Internet sales group. There was no data conversion per se, although the system
started receiving data downloaded from the distribution system every day as it would dur-
ing normal operations.

Alec decided on a direct conversion (because there was no As-Is system) in the one
location (because there was only one location) of all system modules. The conversion, if
you could call it that, went smoothly through the alpha and beta tests and the system was
declared technically ready for operation.

Change Management
There were few change management issues because there were no existing staff members
who had to change. All new staff was hired, most by internal transfer from other groups
within CD Selections. The most likely stakeholders to be concerned by the change would
be managers and employees in the traditional retail stores who might see the Internet Sales
System as a threat to their stores. Alec therefore developed an information campaign (dis-
tributed through the employee newsletter and internal Web site) that discussed the reasons
for the change and explained that the Internet Sales System was seen as a complement to
the existing stores, not as a competitor. The system was instead targeted at Web-based com-
petitors, such as Amazon.com.

The new management policies were developed, along with a training plan that encom-
passed both the manual work procedures and computerized procedures. Alec decided to
use classroom training for the Internet sales system personnel because there was a small
number of them and it was simpler and more cost effective to train them all together in one
classroom session.

Post-Implementation Activities
Support of the system was turned over to the CD Selections operations group, who had
hired four additional support staff members with expertise in networking and Web-based
systems. System maintenance began almost immediately, with Alec designated as the pro-
ject manager responsible for maintenance of this version of the system plus the develop-
ment of the next version. Alec began the planning to develop the next version of the system.

Project team review uncovered several key lessons learned, mostly involving Web-
based programming and the difficulties in linking to existing Structured Query Language

8800 AAppppeennddiixx CD Selections

(SQL) databases. The project was delivered on budget (see Figure 2-C), with the exception
that more was spent on programming than was anticipated.

A preliminary system review was conducted after two months of operations. Sales
were $40,000 for the first month and $60,000 for the second, showing a gradual increase
(remember that the goal for the first year of operations was $1,000,000). Operating
expenses averaged $60,000 per month, a bit higher than the projected average, owing to
startup costs and the initial marketing campaign. Nonetheless, Margaret Mooney, vice
president of marketing and the project sponsor, was quite pleased. She approved the feasi-
bility study for the follow-on project to develop the second version of the Internet Sales
System. If you recall, there were quite a few features in which Margaret was interested. For
example, deployment on mobile platforms, the use of social media, and the international-
ization of the system was delayed until the next version of the system. Consequently, Alec
got right to work to help Margaret create the system request so that the system develop-
ment process could start all over again.

Chapter 13: Installation and Operations 8811

	Copyright
	Contents
	Preface
	Chapter 1: Introduction to Systems Analysis and Design
	INTRODUCTION
	THE SYSTEMS DEVELOPMENT LIFE CYCLE
	Planning
	Analysis
	Design
	Implementation

	SYSTEMS DEVELOPMENT METHODOLOGIES
	Structured Design
	Rapid Application Development (RAD)
	Agile Development
	Selecting the Appropriate Development Methodology

	TYPICAL SYSTEMS ANALYST ROLES AND SKILLS
	Business Analyst
	Systems Analyst
	Infrastructure Analyst
	Change Management Analyst
	Project Manager

	BASIC CHARACTERISTICS OF OBJECT-ORIENTED SYSTEMS
	Classes and Objects
	Methods and Messages
	Encapsulation and Information Hiding
	Inheritance
	Polymorphism and Dynamic Binding

	OBJECT-ORIENTED SYSTEMS ANALYSIS AND DESIGN (OOSAD)
	Use-Case Driven
	Architecture-centric
	Iterative and Incremental
	Benefits of Object-Oriented Systems Analysis and Design

	THE UNIFIED PROCESS
	Phases
	Workflows
	Extensions to the Unified Process

	THE UNIFIED MODELING LANGUAGE
	APPLYING THE CONCEPTS AT CD SELECTIONS
	Summary

	Chapter 2: Project Management
	INTRODUCTION
	PROJECT IDENTIFICATION
	System Request

	FEASIBILITY ANALYSIS
	Technical Feasibility
	Economic Feasibility
	Organizational Feasibility

	PROJECT SELECTION
	TRADITIONAL PROJECT MANAGEMENT TOOLS
	Work Breakdown Structures
	Gantt Chart
	Network Diagram

	PROJECT EFFORT ESTIMATION
	CREATING AND MANAGING THE WORKPLAN
	Evolutionary Work Breakdown Structures and Iterative Workplans
	Managing Scope
	Timeboxing
	Refining Estimates
	Managing Risk

	STAFFING THE PROJECT
	Characteristics of a Jelled Team
	Staffing Plan
	Motivation
	Handling Conflict

	ENVIRONMENT AND INFRASTRUCTURE MANAGEMENT
	CASE Tools
	Standards
	Documentation

	APPLYING THE CONCEPTS AT CD SELECTIONS
	Summary

	PART ONE: ANALYSIS MODELING
	Chapter 3: Requirements Determination
	INTRODUCTION
	REQUIREMENTS DETERMINATION
	Defining a Requirement
	Requirements Definition
	Determining Requirements
	Creating a Requirements Definition
	Real-World Problems with Requirements Determination

	REQUIREMENTS ANALYSIS STRATEGIES
	Business Process Automation (BPA)
	Business Process Improvement (BPI)
	Business Process Reengineering
	Selecting Appropriate Strategies

	REQUIREMENTS-GATHERING TECHNIQUES
	Interviews
	Joint Application Development (JAD)
	Questionnaires
	Document Analysis
	Observation
	Selecting the Appropriate Techniques

	ALTERNATIVE REQUIREMENTS DOCUMENTATION TECHNIQUES
	Concept Maps
	Story Cards and Task Lists

	THE SYSTEM PROPOSAL
	APPLYING THE CONCEPTS AT CD SELECTIONS
	Summary

	Chapter 4: Business Process and Functional Modeling
	INTRODUCTION
	BUSINESS PROCESS IDENTIFICATION WITH USE CASES AND USE-CASE DIAGRAMS
	Elements of Use Case Diagrams
	Identifying the Major Use Cases
	Creating a Use-Case Diagram

	BUSINESS PROCESS MODELING WITH ACTIVITY DIAGRAMS
	Elements of an Activity Diagram
	Guidelines for Creating Activity Diagrams
	Creating Activity Diagrams

	BUSINESS PROCESS DOCUMENTATION WITH USE CASES AND USE-CASE DESCRIPTIONS
	Types of Use Cases
	Elements of a Use-Case Description
	Guidelines for Creating Use-Case Descriptions
	Creating Use Case Descriptions

	VERIFYING AND VALIDATING THE BUSINESS PROCESSES AND FUNCTIONAL MODELS
	Verification and Validation through Walkthroughs
	Functional Model Verification and Validation

	APPLYING THE CONCEPTS AT CD SELECTIONS
	Summary

	Chapter 5: Structural Modeling
	INTRODUCTION
	STRUCTURAL MODELS
	Classes, Attributes, and Operations
	Relationships

	OBJECT IDENTIFICATION
	Textual Analysis
	Brainstorming
	Common Object Lists
	Patterns

	CRC CARDS
	Responsibilities and Collaborations
	Elements of a CRC Card
	Role-Playing CRC Cards with Use Cases

	CLASS DIAGRAMS
	Elements of a Class Diagram
	Simplifying Class Diagrams
	Object Diagrams

	CREATING STRUCTURAL MODELS USING CRC CARDS AND CLASS DIAGRAMS
	Example

	VERIFYING AND VALIDATING THE STRUCTURAL MODEL
	APPLYING THE CONCEPTS AT CD SELECTIONS
	Summary

	Chapter 6: Behavioral Modeling
	INTRODUCTION
	BEHAVIORAL MODELS
	INTERACTION DIAGRAMS
	Objects, Operations, and Messages
	Sequence Diagrams
	Communication Diagrams

	BEHAVIORAL STATE MACHINES
	States, Events, Transitions, Actions, and Activities
	Elements of a Behavioral State Machine
	Creating a Behavioral State Machine

	CRUDE ANALYSIS
	VERIFYING AND VALIDATING THE BEHAVIORAL MODEL
	APPLYING THE CONCEPTS AT CD SELECTIONS
	Summary

	PART TWO: DESIGN MODELING
	Chapter 7: Moving on to Design
	INTRODUCTION
	VERIFYING AND VALIDATING THE ANALYSIS MODELS
	Balancing Functional and Structural Models
	Balancing Functional and Behavioral Models
	Balancing Structural and Behavioral Models
	Summary

	EVOLVING THE ANALYSIS MODELS INTO DESIGN MODELS
	Factoring
	Partitions and Collaborations
	Layers

	PACKAGES AND PACKAGE DIAGRAMS
	Guidelines for Creating Package Diagrams
	Creating Package Diagrams
	Verifying and Validating Package Diagrams

	DESIGN STRATEGIES
	Custom Development
	Packaged Software
	Outsourcing
	Selecting a Design Strategy

	DEVELOPING THE ACTUAL DESIGN
	Alternative Matrix

	APPLYING THE CONCEPTS AT CD SELECTIONS
	Summary

	Chapter 8: Class and Method Design
	INTRODUCTION
	REVIEW OF THE BASIC CHARACTERISTICS OF OBJECT ORIENTATION
	Classes, Objects, Methods, and Messages
	Encapsulation and Information Hiding
	Polymorphism and Dynamic Binding
	Inheritance

	DESIGN CRITERIA
	Coupling
	Cohesion
	Connascence

	OBJECT DESIGN ACTIVITIES
	Adding Specifications
	Identifying Opportunities for Reuse
	Restructuring the Design
	Optimizing the Design
	Mapping Problem-Domain Classes to Implementation Languages

	CONSTRAINTS AND CONTRACTS
	Types of Constraints
	Elements of a Contract

	METHOD SPECIFICATION
	General Information
	Events
	Message Passing
	Algorithm Specifications
	Example

	APPLYING THE CONCEPTS AT CD SELECTIONS
	Summary

	Chapter 9: Data Management Layer Design
	INTRODUCTION
	OBJECT PERSISTENCE FORMATS
	Sequential and Random Access Files
	Relational Databases
	Object-Relational Databases
	Object-Oriented Databases
	NoSQL Data Stores
	Selecting an Object Persistence Format

	MAPPING PROBLEM DOMAIN OBJECTS TO OBJECT PERSISTENCE FORMATS
	Mapping Problem Domain Objects to an OODBMS Format
	Mapping Problem Domain Objects to an ORDBMS Format
	Mapping Problem Domain Objects to a RDBMS Format

	OPTIMIZING RDBMS-BASED OBJECT STORAGE
	Optimizing Storage Efficiency
	Optimizing Data Access Speed
	Estimating Data Storage Size

	DESIGNING DATA ACCESS AND MANIPULATION CLASSES
	NONFUNCTIONAL REQUIREMENTS AND DATA MANAGEMENT LAYER DESIGN
	APPLYING THE CONCEPTS AT CD SELECTIONS
	Summary

	Chapter 10: Human–Computer Interaction Layer Design
	INTRODUCTION
	PRINCIPLES FOR USER INTERFACE DESIGN
	Layout
	Content Awareness
	Aesthetics
	User Experience
	Consistency
	Minimizing User Effort

	USER INTERFACE DESIGN PROCESS
	Use Scenario Development
	Interface Structure Design
	Interface Standards Design
	Interface Design Prototyping
	Interface Evaluation
	Common Sense Approach to User Interface Design

	NAVIGATION DESIGN
	Basic Principles
	Types of Navigation Controls
	Messages
	Navigation Design Documentation

	INPUT DESIGN
	Basic Principles
	Types of Inputs
	Input Validation

	OUTPUT DESIGN
	Basic Principles
	Types of Outputs
	Media

	MOBILE COMPUTING AND USER INTERFACE DESIGN
	SOCIAL MEDIA AND USER INTERFACE DESIGN
	INTERNATIONAL AND CULTURAL ISSUES AND USER INTERFACE DESIGN
	Multilingual Requirements
	Color
	Cultural Differences

	NONFUNCTIONAL REQUIREMENTS AND HUMAN–COMPUTER INTERACTION LAYER DESIGN
	APPLYING THE CONCEPTS AT CD SELECTIONS
	Summary

	Chapter 11: Physical Architecture Layer Design
	INTRODUCTION
	ELEMENTS OF THE PHYSICAL ARCHITECTURE LAYER
	Architectural Components
	Server-Based Architectures
	Client-Based Architectures
	Client–Server Architectures
	Client–Server Tiers
	Selecting a Physical Architecture

	CLOUD COMPUTING
	GREEN IT
	INFRASTRUCTURE DESIGN
	Deployment Diagram
	Network Model

	HARDWARE AND SYSTEM SOFTWARE SPECIFICATIONS
	NONFUNCTIONAL REQUIREMENTS AND PHYSICAL ARCHITECTURE LAYER DESIGN
	Operational Requirements
	Performance Requirements
	Security Requirements
	Cultural and Political Requirements
	Synopsis

	APPLYING THE CONCEPTS AT CD SELECTIONS
	Summary

	PART THREE CONSTRUCTION, INSTALLATION, AND OPERATIONS
	Chapter 12: Construction
	INTRODUCTION
	MANAGING PROGRAMMING
	Assigning Programmers
	Coordinating Activities
	Managing the Schedule
	Cultural Issues

	DESIGNING TESTS
	Testing and Object Orientation
	Test Planning
	Unit Tests
	Integration Tests
	System Tests
	Acceptance Tests

	DEVELOPING DOCUMENTATION
	Types of Documentation
	Designing Documentation Structure
	Writing Documentation Topics
	Identifying Navigation Terms

	APPLYING THE CONCEPTS AT CD SELECTIONS
	Summary

	Chapter 13: Installation and Operations
	INTRODUCTION
	CULTURAL ISSUES AND INFORMATION TECHNOLOGY ADOPTION
	CONVERSION
	Conversion Style
	Conversion Location
	Conversion Modules
	Selecting the Appropriate Conversion Strategy

	CHANGE MANAGEMENT
	Understanding Resistance to Change
	Revising Management Policies
	Assessing Costs and Benefits
	Motivating Adoption
	Enabling Adoption: Training

	POST-IMPLEMENTATION ACTIVITIES
	System Support
	System Maintenance
	Project Assessment

	APPLYING THE CONCEPTS AT CD SELECTIONS
	Summary

	INDEX
	APPENDIX CD SELECTIONS

