Systems Analy5|s ' Z
& Design

WITH UML VERSION 2.0

AN OBJECT-ORIENTED APPROACH

This page is intentionally left blank

System Analysis Design
UML Version 2.0

AN OBJECT-ORIENTED APPROACH

Fourth Edition

Alan Dennis
Indiana University

Barbara Haley Wixom
University of Virginia

David Tegarden
Virginia Tech

$)WILEY
John Wiley & Sons, Inc.

VP & PUBLISHER: Don Fowley

EXECUTIVE EDITOR: Beth Lang Golub
EDITORIAL ASSISTANT: Elizabeth Mills
MARKETING MANAGER: Christopher Ruel
DESIGNER: Maureen Eide
SENIOR PRODUCTION MANAGER: Janis Soo
ASSOCIATE PRODUCTION MANAGER: Joyce Poh

This book was set in 10/12 Minion by Aptara and printed and bound by RR Donnelley. The cover was printed
by RR Donnelley.

This book is printed on acid free paper.

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and understanding for more
than 200 years, helping people around the world meet their needs and fulfill their aspirations. Our company is
built on a foundation of principles that include responsibility to the communities we serve and where we live
and work. In 2008, we launched a Corporate Citizenship Initiative, a global effort to address the environmental,
social, economic, and ethical challenges we face in our business. Among the issues we are addressing are carbon
impact, paper specifications and procurement, ethical conduct within our business and among our vendors, and
community and charitable support. For more information, please visit our website: www.wiley.com/go/citizenship.

Copyright © 2012, 2009 John Wiley & Sons, Inc. All rights reserved. No part of this publication may be repro-
duced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photo-
copying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United
States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc. 222 Rosewood Drive, Danvers,
MA 01923, website www.copyright.com. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, (201)748-6011,
fax (201)748-6008, website http://www.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in
their courses during the next academic year. These copies are licensed and may not be sold or transferred to a
third party. Upon completion of the review period, please return the evaluation copy to Wiley. Return instruc-
tions and a free of charge return shipping label are available at www.wiley.com/go/returnlabel. Outside of the
United States, please contact your local representative.

Library of Congress Cataloging-in-Publication Data

Dennis, Alan.

Systems analysis design, UML version 2.0 : an object oriented approach/Alan Dennis, Barbara Haley
Wixom, David Tegarden.—4th ed.

p.cm.

Includes index.

ISBN 978-1-118-03742-3 (acid free paper)

1. System analysis. 2. System design. 3. UML (Computer science) I. Wixom, Barbara Haley,
1969-11. Tegarden, David Paul. IIL Title.

QA402.D395 2012
003—dc23
2011044320

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

http://www.copyright.com
http://www.wiley.com/go/permissions

Preface 1IX

Chapter 1
Introduction to Systems
Analysis and Design 1

INTRODUCTION 2
THE SYSTEMS DEVELOPMENT LIFE CYCLE 3

Planning 4
Analysis 4
Design 5

Implementation 6
SYSTEMS DEVELOPMENT
METHODOLOGIES 6
Structured Design 8
Rapid Application Development
(RAD) 10
Agile Development 14
Selecting the Appropriate Development
Methodology 18
TYPICAL SYSTEMS ANALYST ROLES
AND SKILLS 20
Business Analyst 21
Systems Analyst 21
Infrastructure Analyst 22
Change Management Analyst 22
Project Manager 22
BAsic CHARACTERISTICS OF OBJECT-
ORIENTED SYSTEMS 23
Classes and Objects 23
Methods and Messages 24
Encapsulation and Information
Hiding 24
Inheritance 25
Polymorphism and Dynamic Binding 27
OBJECT-ORIENTED SYSTEMS ANALYSIS
AND DESIGN (OOSAD) 28
Use-Case Driven 28
Architecture-centric 29
Iterative and Incremental 29

Benefits of Object-Oriented Systems Analysis
and Design 29
THE UNIFIED PROCESS 30
Phases 30
Workflows 32
Extensions to the Unified Process 35
THE UNIFIED MODELING LANGUAGE 39
APPLYING THE CONCEPTS AT CD
SELECTIONS 41
Summary 41

Chapter 2
Project Management 48

INTRODUCTION 49

PROJECT IDENTIFICATION 51
System Request 52

FEASIBILITY ANALYSIS 54
Technical Feasibility 55
Economic Feasibility 56
Organizational Feasibility 64

PROJECT SELECTION 66

TRADITIONAL PROJECT MANAGEMENT TOOLS 69
Work Breakdown Structures 70
Gantt Chart 71
Network Diagram 71

PrOJECT EFFORT ESTIMATION 73

CREATING AND MANAGING

THE WORKPLAN 79
Evolutionary Work Breakdown Structures and
Iterative Workplans 79

Managing Scope 84
Timeboxing 84
Refining Estimates 86
Managing Risk 87

STAFFING THE PROJECT 88
Characteristics of a Jelled Team 88
Staffing Plan 90
Motivation 93
Handling Conflict 94

iv

Contents

ENVIRONMENT AND INFRASTRUCTURE
MANAGEMENT 96
CASE Tools 96
Standards 97
Documentation 98
APPLYING THE CONCEPTS AT CD
SELECTIONS 100
Summary 100

PART ONE
ANALYSIS MODELING 107

Chapter 3
Requirements
Determination 109

Chapter 4
Business Process and
Functional Modeling 153

INTRODUCTION 110
REQUIREMENTS DETERMINATION 110
Defining a Requirement 112
Requirements Definition 115
Determining Requirements 116
Creating a Requirements Definition 117
Real-World Problems with Requirements
Determination 117
REQUIREMENTS ANALYSIS STRATEGIES 118
Business Process Automation (BPA) 118
Business Process Improvement
(BPI) 121
Business Process Reengineering 122
Selecting Appropriate Strategies 123
REQUIREMENTS-GATHERING
TECHNIQUES 125
Interviews 126
Joint Application Development
(JAD) 132
Questionnaires 136
Document Analysis 138
Observation 139
Selecting the Appropriate
Techniques 141
ALTERNATIVE REQUIREMENTS
DOCUMENTATION TECHNIQUES 143
Concept Maps 144
Story Cards and Task Lists 144
THE SYSTEM PROPOSAL 146
APPLYING THE CONCEPTS AT CD
SELECTIONS 147
Summary 148

INTRODUCTION 154
BUSINESS PROCESS IDENTIFICATION
WITH USE CASES AND USE-CASE
DiaGrams 155
Elements of Use Case Diagrams 155
Identifying the Major Use Cases 160
Creating a Use-Case Diagram 161
BUSINESS PROCESS MODELING WITH
ACTIVITY DIAGRAMS 163
Elements of an Activity Diagram 165
Guidelines for Creating Activity
Diagrams 170
Creating Activity Diagrams 171
BUSINESS PROCESS DOCUMENTATION
WITH USE CASES AND USE-CASE
DESCRIPTIONS 173
Types of Use Cases 175
Elements of a Use-Case Description 175
Guidelines for Creating Use-Case
Descriptions 179
Creating Use Case Descriptions 180
VERIFYING AND VALIDATING THE BUSINESS PROCESSES
AND FUNCTIONAL
MODELS 184
Verification and Validation through
Walkthroughs 184
Functional Model Verification and
Validation 185
APPLYING THE CONCEPTS AT
CD SELECTIONS 188
Summary 188

Chapter 5
Structural Modeling 195

INTRODUCTION 195
STRUCTURAL MODELS 196
Classes, Attributes, and Operations 197
Relationships 197
OBJECT IDENTIFICATION 199
Textual Analysis 199
Brainstorming 201
Common Object Lists 201
Patterns 202

CRC CARDS 205
Responsibilities and Collaborations 205
Elements of a CRC Card 206
Role-Playing CRC Cards with Use Cases 207
CLAsS DIAGRAMS 208
Elements of a Class Diagram 208
Simplifying Class Diagrams 217
Object Diagrams 217
CREATING STRUCTURAL MODELS USING
CRC CARDS AND CLASS DIAGRAMS 218
Example 220
VERIFYING AND VALIDATING THE
STRUCTURAL MODEL 227
APPLYING THE CONCEPTS AT CD SELECTIONS 230
Summary 231

Chapter 6
Behavioral Modeling 236

INTRODUCTION 236
BEHAVIORAL MODELS 237
INTERACTION DIAGRAMS 238
Objects, Operations, and Messages 238
Sequence Diagrams 238
Communication Diagrams 246
BEHAVIORAL STATE MACHINES 253
States, Events, Transitions, Actions,
and Activities 253
Elements of a Behavioral State Machine 255
Creating a Behavioral State Machine 258
CRUDE ANALYSIS 260
VERIFYING AND VALIDATING THE
BEHAVIORAL MODEL 264
APPLYING THE CONCEPTS AT CD SELECTIONS 266
Summary 266

PART TWO
DESIGN MODELING 271

Chapter 7
Moving on to Design 273

INTRODUCTION 274
VERIFYING AND VALIDATING THE ANALYSIS
MODELS 275

Contents Vv

Balancing Functional and
Structural Models 276
Balancing Functional and
Behavioral Models 278
Balancing Structural and Behavioral
Models 287
Summary 289
EVOLVING THE ANALYSIS MODELS INTO DESIGN
MODELS 289
Factoring 291
Partitions and Collaborations 292
Layers 293
PACKAGES AND PACKAGE DIAGRAMS 296
Guidelines for Creating Package
Diagrams 298
Creating Package Diagrams 300
Verifying and Validating Package
Diagrams 302
DESIGN STRATEGIES 302
Custom Development 303
Packaged Software 304
Outsourcing 305
Selecting a Design Strategy 307
DEVELOPING THE ACTUAL DESIGN 309
Alternative Matrix 310
APPLYING THE CONCEPTS AT CD
SELECTIONS 311
Summary 311

Chapter 8
Class and Method
Design 317

INTRODUCTION 317
REVIEW OF THE BASIC CHARACTERISTICS
OF OBJECT ORIENTATION 319

Classes, Objects, Methods, and Messages 320
Encapsulation and Information Hiding 320
Polymorphism and Dynamic Binding 320
Inheritance 321

DESIGN CRITERIA 325
Coupling 325
Cohesion 328
Connascence 330

OBJECT DESIGN ACTIVITIES 331
Adding Specifications 332
Identifying Opportunities for Reuse 333

Vi

Contents

Restructuring the Design 336

Optimizing the Design 337

Mapping Problem-Domain Classes to

Implementation Languages 340

CONSTRAINTS AND CONTRACTS 343

Types of Constraints 345

Elements of a Contract 348
METHOD SPECIFICATION 354

General Information 354

Events 354

Message Passing 356

Algorithm Specifications 356

Example 357
APPLYING THE CONCEPTS AT CD SELECTIONS =~ 361
Summary 362

Chapter 9
Data Management Layer
Design 367

INTRODUCTION 368
OBJECT PERSISTENCE FORMATS 368
Sequential and Random Access Files 369
Relational Databases 372
Object-Relational Databases 374
Object-Oriented Databases 374
NoSQL Data Stores 375
Selecting an Object persistence
Format 377
MAPPING PROBLEM DOMAIN OBJECTS TO OBJECT
PERSISTENCE FORMATS 380
Mapping Problem Domain Objects to an
OODBMS Format 380
Mapping Problem Domain Objects to an
ORDBMS Format 384
Mapping Problem Domain Objects to a
RDBMS Format 387
OPTIMIZING RDBMS-BASED OBJECT
STORAGE 390
Optimizing Storage Efficiency 390
Optimizing Data Access Speed 396
Estimating Data Storage Size 400
DESIGNING DATA ACCESS AND
MANIPULATION CLASSES 401
NONFUNCTIONAL REQUIREMENTS AND DATA
MANAGEMENT LAYER DESIGN 405
APPLYING THE CONCEPTS AT CD SELECTIONS 406
Summary 406

Chapter 10
Human-Computer Interaction
Layer Design 412

INTRODUCTION 413
PRINCIPLES FOR USER INTERFACE
DEesiGN 414
Layout 414
Content Awareness 416
Aesthetics 418
User Experience 420
Consistency 420
Minimizing User Effort 421
USER INTERFACE DESIGN PROCESS 421
Use Scenario Development 422
Interface Structure Design = 425
Interface Standards Design 426
Interface Design Prototyping 427
Interface Evaluation 432
Common Sense Approach to User
Interface Design 434
NAVIGATION DESIGN 435
Basic Principles 436
Types of Navigation Controls 437
Messages 440
Navigation Design Documentation 441
INPUT DESING 443
Basic Principles 443
Types of Inputs 445
Input Validation 448
OuTpUT DESING 448
Basic Principles 448
Types of Outputs 451
Media 451
MOBILE COMPUTING AND USER INTERFACE
DEesIGN 453
SOCIAL MEDIA AND USER INTERFACE
DEsiGN 456
INTERNATIONAL AND CULTURAL ISSUES AND USER
INTERFACE DESIGN 459
Multilingual Requirements 459
Color 460
Cultural Differences 461
NONFUNCTIONAL REQUIREMENTS AND
HUMAN-COMPUTER INTERACTION
LAYER DESIGN 463
APPLYING THE CONCEPTS AT CD
SELECTIONS 464
Summary 464

Chapter 11

Physical Architecture Layer
Design 473

INTRODUCTION 473
ELEMENTS OF THE PHYSICAL ARCHITECTURE
LAYER 474
Architectural Components 474
Server-Based Architectures 475
Client-Based Architectures 476
Client—Server Architectures 476
Client—Server Tiers 478
Selecting a Physical Architecture 479
Croubp COMPUTING 482
GREEN IT 485
INFRASTRUCTURE DESING 486
Deployment Diagram 486
Network Model 489
HARDWARE AND SYSTEM SOFTWARE
SPECIFICATIONS 492
NONFUNCTIONAL REQUIREMENTS AND
PHYSICAL ARCHITECTURE LAYER DESIGN 495
Operational Requirements 495
Performance Requirements 498
Security Requirements 500
Cultural and Political Requirements 503
Synopsis 504
APPLYING THE CONCEPTS AT CD SELECTIONS 507
Summary 507

PART THREE

CONSTRUCTION, INSTALLATION,

AND OPERATIONS 513

Chapter 12
Construction 515

INTRODUCTION 515

MANAGING PROGRAMMING 517
Assigning Programmers 517
Coordinating Activities 518
Managing the Schedule 519
Cultural Issues 520

DESIGNING TESTS 525
Testing and Object Orientation 526
Test Planning 528

Contents

Unit Tests 530
Integration Tests 534
System Tests 534
Acceptance Tests 535
DEVELOPING DOCUMENTATION 535
Types of Documentation 536
Designing Documentation Structure 537
Writing Documentation Topics 538
Identifying Navigation Terms 539
APPLYING THE CONCEPTS AT CD
SELECTIONS 541
Summary 541

Chapter 13
Installation and
Operations 545

vii

INTRODUCTION 545
CULTURAL ISSUES AND INFORMATION
TECHNOLOGY ADOPTION 547
CONVERSION 549
Conversion Style 550
Conversion Location 551
Conversion Modules 552
Selecting the Appropriate Conversion
Strategy 553
CHANGE MANAGEMENT 555
Understanding Resistance to Change 556
Revising Management Policies 558
Assessing Costs and Benefits 559
Motivating Adoption 561
Enabling Adoption: Training 562
POST-IMPLEMENTATION ACTIVITIES 564
System Support 564
System Maintenance 566
Project Assessment 567
APPLYING THE CONCEPTS AT CD
SELECTIONS 569
Summary 569

INDEX 574

Available on line at
www.wiley.com/college/dennis
APPENDIX 1

APPENDIX 2

APPENDIX 3

This page is intentionally left blank

PURPOSE OF THIS BOOK

Systems Analysis and Design (SAD) is an exciting, active field in which analysts continually
learn new techniques and approaches to develop systems more effectively and efficiently.
However there is a core set of skills that all analysts need to know—no matter what
approach or methodology is used. All information systems projects move through the four
phases of planning, analysis, design, and implementation; all projects require analysts to
gather requirements, model the business needs, and create blueprints for how the system
should be built; and all projects require an understanding of organizational behavior con-
cepts like change management and team building. Today, the cost of developing modern
software is composed primarily of the cost associated with the developers themselves and
not the computers. As such, object-oriented approaches to developing information systems
hold much promise in controlling these costs.

Today, the most exciting change to systems analysis and design is the move to object-
oriented techniques, which view a system as a collection of self-contained objects that have
both data and processes. This change has been accelerated through the creation of the Uni-
fied Modeling Language (UML). UML provides a common vocabulary of object-oriented
terms and diagramming techniques that is rich enough to model any systems development
project from analysis through implementation.

This book captures the dynamic aspects of the field by keeping students focused on
doing SAD while presenting the core set of skills that we feel every systems analyst needs to
know today and in the future. This book builds on our professional experience as systems
analysts and on our experience in teaching SAD in the classroom.

This book will be of particular interest to instructors who have students do a major
project as part of their course. Each chapter describes one part of the process, provides clear
explanations on how to do it, gives a detailed example, and then has exercises for the
students to practice. In this way, students can leave the course with experience that will
form a rich foundation for further work as a systems analyst.

OUTSTANDING FEATURES

A Focus on Doing SAD

The goal of this book is to enable students to do SAD—not just read about it, but under-
stand the issues so they can actually analyze and design systems. The book introduces
each major technique, explains what it is, explains how to do it, presents an example,
and provides opportunities for students to practice before they do it for real in a project.
After reading each chapter, the student will be able to perform that step in the system
development process.

X Preface

Rich Examples of Success and Failure

The book includes a running case about a fictitious company called CD Selections. Each
chapter shows how the concepts are applied in situations at CD Selections. Unlike running
cases in other books, we have tried to focus these examples on planning, managing, and
executing the activities described in the chapter, rather than on detailed dialogue between
fictitious actors. In this way, the running case serves as a template that students can apply
to their own work. Each chapter also includes numerous Concepts in Action boxes, many
of which were written by Dr. Bruce White from Quinnipiac University, that describe how
real companies succeeded—and failed—in performing the activities in the chapter.

Real World Focus

The skills that students learn in a systems analysis and design course should mirror the
work that they ultimately will do in real organizations. We have tried to make this book as
“real” as possible by building extensively on our experience as professional systems analysts
for organizations such as Arthur Andersen, IBM, the U.S. Department of Defense, and the
Australian Army. We have also worked with a diverse industry advisory board of IS profes-
sionals and consultants in developing the book and have incorporated their stories, feed-
back, and advice throughout. Many students who use this book will eventually use the skills
on the job in a business environment, and we believe they will have a competitive edge in
understanding what successful practitioners feel is relevant in the real world.

Project Approach

We have presented the topics in this book in the order in which an analyst encounters them
in a typical project. Although the presentation is necessarily linear (because students have
to learn concepts in the way in which they build on each other), we emphasize the iterative,
complex nature of SAD as the book unfolds. The presentation of the material should align
well with courses that encourage students to work on projects because it presents topics as
students need to apply them.

WHAT’S NEW IN THIS EDITION

In this edition, we have increased the coverage of and better organized the text around the
enhanced Unified Process; provided a greater focus on nonfunctional requirements; pro-
vided a greater emphasis on the iterative and incremental development associated with
object-oriented analysis and design; added figures and examples, along with additional
explanatory text that addresses some of the more difficult concepts to learn; better aligned
the CD selections case material; and did some major reorganization. Details of the major
changes are as follows:

1. Given the lack of object-oriented programming experience of the typical student
and the importance of understanding basic object-oriented concepts to perform
object-oriented systems analysis and design, the appendix entitled “Basic Charac-
teristics of Object-Oriented Systems” has been incorporated in Chapter 1.

2. Due to the popularity of the so-called agile approaches to systems development,
we have greatly increased their coverage throughout the text. In Chapter 1, we
have expanded the coverage of both XP and SCRUM. In Chapter 2, we have
added a section regarding “Jelled” teams and their importance when considering
staffing requirements of projects. In Chapter 3, we have added story cards and

Preface Xi

task lists as additional approaches for gathering and documenting requirements.
We have also greatly increased the focus on testing throughout the text. For
example, the verification and validation material in the Moving On to Design
chapter has been distributed over the analysis modeling chapters and the Moving
On to Design chapter.

Given the differences between traditional project management and object-
oriented project management, the project management material has been
rewritten to reflect more of an object-oriented flavor. However, since much of
the traditional project management material is still useful within an object-
oriented context, we still cover it, e.g., net present value and return on invest-
ment, break-even point, work breakdown structures, Gantt charts, network
diagrams and PERT analysis. The reorganization and rewriting of project
management material allowed us to apply better the iterative and incremental
development characteristics of object-oriented systems development to project
management. Finally, we replaced the project size estimation section with an
expansion of the use case points material that was in the functional modeling
chapter in the previous edition.

To increase the focus on business processes, we have reorganized and expanded
the functional modeling material. In this edition, minimize the potential over-
load of different notations used for business process modeling, e.g., the business
process modeling notation or data flow diagrams, we have aligned the use case
construct with the idea of a business process. Consequently, a use case diagram
can be used to provide an overview of the different business processes and how
they interrelate. Each use case can then be decomposed by creating an activity
diagram to represent the details of each use case. Furthermore, each use case can
be described with a use case description.

As in the third edition, the material included within the analysis modeling
chapters has been more tightly coupled. This is especially true with regard to

the idea of iterative and incremental development. The text now emphasizes that
systems must be incrementally built by iterating over each of the models and
over the intersection of the models. For example, the normal flow of events
contained within a use-case description is associated with the activities on an
activity diagram, the operations on a class diagram, the behaviors on the CRC
cards, the messages on sequence and communication diagrams, and transitions
on behavioral state machines. As such, any change to any one of these most likely
will force changes in the others. Furthermore, we have extended CRUD analysis
to CRUDE analysis that includes the idea of simply executing a method associated
with another object.

With regards to the requirements determination, we have expanded the coverage
of non-functional requirements throughout the design modeling chapters.

We have expanded the material that addresses global concerns. For example,
we have created a new section that addresses international and cultural issues
with regard to user interface design and we have expanded the coverage of
cultural issues with regards to construction and the installation and operations
of information systems.

Given all of the technological changes that have taken place since the third
edition, we have also included material that addresses NoSQL data stores, mobile
computing, social media, cloud computing, and green IT in the design modeling
chapters.

xii Preface

9. To decrease the cognitive load required for much of the material in the text,
additional figures and explanatory material have been added.

Finally, to provide a more complete version of the CD Selection case, we have moved the
case to an online format. However, at the end of each chapter in the text, a very short
synopsis of the case is provided.

ORGANIZATION OF THIS BOOK

This edition of the book is loosely organized around the phases and workflows of the
enhanced Unified Process. Each chapter has been written to teach students specific tasks
that analysts need to accomplish over the course of a project, and the deliverables that will
be produced from the tasks. As students complete the chapters, they will realize the itera-
tive and incremental nature of the tasks in object-oriented systems development.

Chapter 1 introduces the SDLC, systems development methodologies, roles and skills
needed for a systems analyst, the basic characteristics of object-oriented systems, object-
oriented systems analysis, the Unified Process, and the UML. Chapter 2 presents topics
related to the project management workflow of the Unified Process, including project iden-
tification, system request, feasibility analysis, project selection, traditional project manage-
ment tools (including work breakdown structures, network diagrams, and PERT analysis),
project effort estimation using use case points, evolutionary work breakdown structures,
iterative workplans, scope management, timeboxing, risk management, and staffing the
project. Chapter 2 also addresses issues related to the Environment and Infrastructure
management workflows of the Unified Process.

Part One focuses on creating analysis models. Chapter 3 introduces students to an
assortment of analysis techniques to help with business automation, business improvement,
and business process reengineering, a variety of requirements-gathering techniques that are
used to determine the functional and nonfunctional requirements of the system, and to a
system proposal. Chapter 4 focuses on constructing business process and functional models
using use case diagrams, activity diagrams, and use case descriptions. Chapter 5 addresses
producing structural models using CRC cards, class diagrams, and object diagrams. Chap-
ter 6 tackles creating behavioral models using sequence diagrams, communication dia-
grams, behavioral state machines, and CRUDE analysis and matrices. Chapters 4 through 6
also cover the verification and validation of the models described in each chapter.

Part Two addresses design modeling. In Chapter 7, students learn how to verify and vali-
date the analysis models created during analysis modeling and to evolve the analysis models
into design models via the use of factoring, partitions, and layers. The students also learn to
create an alternative matrix that can be used to compare custom, packaged, and outsourcing
alternatives. Chapter 8 concentrates on designing the individual classes and their respective
methods through the use of contracts and method specifications. Chapter 9 presents the issues
involved in designing persistence for objects. These issues include the different storage formats
that can be used for object persistence, how to map an object-oriented design into the chosen
storage format, and how to design a set of data access and manipulation classes that act as a
translator between the classes in the application and the object persistence. This chapter also
focuses on the nonfunctional requirements that impact the data management layer. Chapter
10 presents the design of the human—computer interaction layer, where students learn how to
design user interfaces using use scenarios, windows navigation diagrams, storyboards, win-
dows layout diagrams, HTML prototypes, language prototypes, real use cases, interface stan-
dards, and user interface templates, to perform user interface evaluations using heuristic
evaluation, walkthrough evaluation, interactive evaluation, and formal usability testing, and to

Preface xiii

address nonfunctional requirements such as user interface layout, content awareness, aesthet-
ics, user experience, and consistency. This chapter also addresses issues related to mobile com-
puting, social media, and international and cultural issues with regards to user interface
design. Chapter 11 focuses on the physical architecture and infrastructure design, which
includes deployment diagrams and hardware/software specification. In today’s world, this also
includes issues related to cloud computing and green IT. This chapter, like the previous design
chapters, covers the impact that nonfunctional requirements can have on the physical archi-
tecture layer.

Part Three provides material that is related to the construction, installation, and oper-
ations of the system. Chapter 12 focuses on system construction, where students learn how
to build, test, and document the system. Installation and operations are covered in Chap-
ter 13, where students learn about the conversion plan, change management plan, support
plan, and project assessment. Additionally, these chapters address the issues related to
developing systems in a flat world, where developers and users are distributed throughout
the world.

ACKNOWLEDGMENTS

For the fourth edition, we would like to thank the students of the ACIS 3515: Information
Systems Development I and ACIS 3516: Information Systems Development II classes at
Virginia Tech for giving many suggestions that drove most of the changes from the third
edition to the fourth edition. We would like to especially thank Ashley, Ben, Daniel, Jason,
Jason, Jason (yes, there were three of them), Kyle, Lucy, and Omar. Their suggestions were
invaluable in improving the text and examples.

We would like to thank the following reviewers for their helpful and insightful com-
ments on the fourth edition: David Champion, DeVry University, Columbus, OH campus;
Jeff Cummings, Indiana University; Junhua Ding, East Carolina University; Robert
Dollinger, University of Wisconsin-Stevens Point; Abhijit Dutt, Carnegie Mellon Univer-
sity; Yujong Hwang, DePaul University; Zongliang Jiang, North Carolina A&T State
University; Raymond Kirsch, La Salle University; Gilliean Lee, Lander University; Steve
Machon, DeVry University; Makoto Nakayama, College of CDM, DePaul University; Para-
suraman Nurani, Devry University; Selwyn Piramuthu, University of Florida; Iftikhar
Sikder, Cleveland State University; Fan Zhao, Florida Gulf Coast University; and Dan Zhu,
Iowa State University.

For the third edition, we would like to thank the students of the ACIS 3515: Informa-
tion Systems Development I and ACIS 3516: Information Systems Development II classes
at Virginia Tech for giving many suggestions that drove most of the changes from the
second edition to the third edition. Their feedback was invaluable in improving the text
and examples.

We would also like to thank the following reviewers for their helpful and insightful
comments on the first, second, and third editions: Evans Adams, Fort Lewis College;
Murugan Anandarajon, Drexel University; Ron Anson, Boise State University; Noushin
Ashrafi, University of Massachusetts, Boston; Dirk Baldwin, University of Wisconsin-
Parkside; Robert Barker, University of Louisville; Qing Cao, University of Missouri—Kansas
City; Terry Fox, Baylor University; Ahmad Ghafarian, North Georgia College & State
University; Donald Golden, Cleve-land State University; Cleotilde Gonzalez, Carnegie
Melon University; Daniel V. Goulet, University of Wisconsin—Stevens Point; Harvey
Hayashi, Loyalist College of Applied Arts and Technology; Scott James, Saginaw Valley
State University; Rajiv Kishore, State University of New York—Buffalo; Ravindra Krovi,
University of Akron; Jean-Piere Kuilboer, University of Massachusetts, Boston; Leo

Xiv Preface

Legorreta, California State University Sacramento; Diane Lending, James Madison
University; Major Fernando Maymi, West Point University; Daniel Mittleman, DePaul
University; Fred Niederman, Saint Louis University; H. Robert Pajkowski, DeVry Insti-
tute of Technology, Scarborough, Ontario; June S. Park, University of Iowa; Graham
Peace, West Virginia University; Tom Pettay, DeVry Institute of Technology, Columbus,
Ohio; J. Drew Procaccino, Rider University; Neil Ramiller, Portland State University;
Eliot Rich, University at Albany, State University of New York; Marcus Rothenberger,
University of Wisconsin—Milwaukee; Carl Scott, University of Houston; Keng Siau,
University of Nebraska—Lincoln; Jonathan Trower, Baylor University; June Verner, Drexel
University; Anna Wachholz, Sheridan College; Bill Watson, Indiana University—Purdue
University Indianapolis; Randy S.Weinberg, Carnegie Mellon University; Eli J.Weissman,
DeVry Institute of Technology, Long Island City, NY; Heinz Roland Weistroffer, Virginia
Commonwealth University; Amy Wilson, DeVry Institute of Technology, Decatur, GA;
Amy Woszczynski, Kennesaw State University; and Vincent C.Yen, Wright State University.

SUPPLEMENTS http://www.wiley.com/college/dennis

Instructor’s Resources Web Site
B PowerPoint slides, which instructors can tailor to their classroom needs and that
students can use to guide their reading and studying activities

B Test Bank, that includes a variety of questions ranging from multiple choice to
essay style questions. A computerized version of the Test Bank will also be available.

Online Instructor’s Manual

The Instructor’s Manual provides resources to support the instructor both inside and out
of the classroom:

B Short experiential exercises that instructors can use to help students experience
and understand key topics in each chapter.

B Short stories have been provided by people working in both corporate and con-
sulting environments for instructors to insert into lectures to make concepts
more colorful and real

B Additional minicases for every chapter allow students to perform some of the key
concepts that were learned in the chapter.

B Solutions to end of chapter questions and exercises are provided.

Student Website

B Relevant Web links, including career resources Web site.
B Web quizzes help students prepare for class tests.

Cases in Systems Analysis and Design

A separate Case Book on CD-ROM provides a set of more than a dozen cases that can be
used to supplement the book and provide exercises for students to practice with. The cases
are primarily drawn from the United States and Canada, but also include a number of
international cases. We are always looking for new cases, so if you have a case that might be
appropriate please contact us directly (or your local Wiley sales representative).

Preface xv

Software Tools

Three Software Tools can be purchased with the text in special packages:

1. Visible Systems Corporation’s Visible Analyst Student Edition.

2. Microsoft’s Visio.

3. Microsoft’s Project.
A 60-day trial edition of Microsoft Project can be purchased with the textbook.
Note that Microsoft has changed their policy and no longer offers the 120-day
trial previously available.

Another option now available to education institutions adopting this Wiley
textbook is a free 3-year membership to the MSDN Academic Alliance. The MSDN
AA is designed to provide the easiest and most inexpensive way for academic
departments to make the latest Microsoft software available in labs, classrooms, and
on student and instructor PCs.

Microsoft Project 2007 software is available through this Wiley and Microsoft
publishing partnership, free of charge with the adoption of any qualified Wiley text-
book. Each copy of Microsoft Project is the full version of the software, with no time
limitations, and can be used indefinitely for educational purposes. For more infor-
mation about the MSDN AA program, go to http://msdn.microsoft.com/academic/.

Contact your local Wiley sales representative for details, including pricing and ordering
information.

This page is intentionally left blank

CHAPTER 1

INTRODUCTION TO SYSTEMS
ANALYSIS AND DESIGN

OBJECTIVES

CHAPTER OUTLINE

Chapter 1 introduces the systems development life cycle (SDLC), the fundamental four-
phase model (planning, analysis, design, and implementation) common to all information
systems development projects. It describes the evolution of system development method-
ologies and discusses the roles and skills required of a systems analyst. The chapter then
overviews the basic characteristics of object-oriented systems and the fundamentals of
object-oriented systems analysis and design and closes with a description of the Unified

Process and its extensions and the Unified Modeling Language.

design

Language

Introduction

The Systems Development Life Cycle
Planning
Analysis
Design
Implementation

Systems Development Methodologies
Structured Design
Rapid Application Development (RAD)
Agile Development
Selecting the Appropriate Development

Methodology

Typical Systems Analyst Roles and Skills
Business Analyst
Systems Analyst
Infrastructure Analyst

Understand the fundamental systems development life cycle and its four phases
Understand the evolution of systems development methodologies

Be familiar with the different roles played by and the skills of a systems analyst

Be familiar with the basic characteristics of object-oriented systems

Be familiar with the fundamental principles of object-oriented systems analysis and

Be familiar with the Unified Process, its extensions, and the Unified Modeling

Change Management Analyst
Project Manager
Basic Characteristics of Object-Oriented
Systems
Classes and Objects
Methods and Messages
Encapsulation and Information Hiding
Inheritance
Polymorphism and Dynamic Binding
Object-Oriented Systems Analysis and
Design (OOSAD)
Use-Case Driven
Architecture-Centric
Iterative and Incremental
Benefits of Object-Oriented Systems
Analysis and Design

2 Chapter 1 Introduction to Systems Analysis and Design

INTRODUCTION

The Unified Process The Unified Modeling Language
Phases Applying the Concepts at CD Selections
Workflows Summary

Extensions to the Unified Process

The systems development life cycle (SDLC) is the process of understanding how an infor-
mation system (IS) can support business needs by designing a system, building it, and
delivering it to users. If you have taken a programming class or have programmed on your
own, this probably sounds pretty simple. Unfortunately, it is not. A 1996 survey by the
Standish Group found that 42 percent of all corporate IS projects were abandoned before
completion. A similar study done in 1996 by the General Accounting Office found 53 percent
of all U.S. government IS projects were abandoned. Unfortunately, many of the systems
that are not abandoned are delivered to the users significantly late, cost far more than
planned, and have fewer features than originally planned. Most of us would like to think
that these problems only happen to “other” people or “other” organizations, but they happen
in most companies. Even Microsoft has a history of failures and overdue projects (e.g.,
Windows 1.0, Windows 95).! Although we would like to promote this book as a silver bul-
let that will keep you from IS failures, we readily admit that a silver bullet that guarantees
IS development success simply does not exist. Instead, this book provides you with several
fundamental concepts and many practical techniques that you can use to improve the
probability of success.

The key person in the SDLC is the systems analyst, who analyzes the business situation,
identifies opportunities for improvements, and designs an information system to imple-
ment them. Being a systems analyst is one of the most interesting, exciting, and challeng-
ing jobs around. Systems analysts work with a variety of people and learn how they conduct
business. Specifically, they work with a team of systems analysts, programmers, and others
on a common mission. Systems analysts feel the satisfaction of seeing systems that they
designed and developed make a significant business impact, knowing that they contributed
unique skills to make that happen.

However, the primary objective of a systems analyst is not to create a wonderful sys-
tem; instead, it is to create value for the organization, which for most companies means
increasing profits (government agencies and not-for-profit organizations measure value
differently). Many failed systems have been abandoned because the analysts tried to build
a wonderful system without clearly understanding how the system would fit with an orga-
nization’s goals, current business processes, and other information systems to provide
value. An investment in an information system is like any other investment, such as a new
machine tool. The goal is not to acquire the tool, because the tool is simply a means to an
end; the goal is to enable the organization to perform work better so it can earn greater
profits or serve its constituents more effectively.

This book introduces the fundamental skills a systems analyst needs. This pragmatic
book discusses best practices in systems development; it does not present a general survey
of systems development that covers everything about the topic. By definition, systems
analysts do things and challenge the current way that organizations work. To get the most

! For more information on the problem, see Capers Jones, Patterns of Software System Failure and Success (London:
International Thompson Computer Press, 1996); Capers Jones, Assessment and Control of Software Project
Risks (Englewood Cliffs, NJ: Yourdon Press, 1994); Julia King, “IS Reins in Runaway Projects,” Computer world
(February 24, 1997).

The Systems Development Life Cycle 3

out of this book, you will need to actively apply to your own systems development project
the ideas and concepts in the examples and in the “Your Turn” exercises that are presented
throughout. This book guides you through all the steps for delivering a successful informa-
tion system. Also, it illustrates how one organization (called CD Selections) applies the steps
in one project (developing a Web-based CD sales system). By the time you finish the book,
you won’t be an expert analyst, but you will be ready to start building systems for real.

This chapter first introduces the basic SDLC that IS projects follow. This life cycle is
common to all projects, although the focus and approach to each phase of the life cycle may
differ. The next section describes three fundamentally different types of systems development
methodologies: structured design, rapid application development, and agile development.
The third section describes the roles played by and the skills necessary for a systems analyst.
The final four sections introduce the fundamental characteristics of object-oriented systems,
object-oriented systems analysis and design, a specific object-oriented systems development
methodology (the Unified Process), and a specific object-oriented systems development
graphical notation (the Unified Modeling Language).

o \[el34l N 1-A An Expensive False Start

IN ACTION

A real-estate group in the federal government cospon-
sored a data warehouse with the information technology
(IT) department. In the formal proposal written by IT, costs
were estimated at $800,000, the project’s duration was
estimated to be eight months, and the responsibility for
funding was defined as the business unit’s. The IT depart-
ment proceeded with the project before it even knew if

took a year. Three weeks before technical delivery, the IT
director canceled the project. This failed endeavor cost the
organization and taxpayers $2.5 million.

Source: Hugh J. Watson et al., “Data Warehousing Failure: Case Studies
and Findings,” The Journal of Data Warehousing 4, (no. 1) (1999): 44-54.

Questions

the project had been accepted.

The project actually lasted two years because require-
ments gathering took nine months instead of one and a
half, the planned user base grew from 200 to 2,500, and
the approval process to buy technology for the project

1. Why did this system fail?

2. Why would a company spend money and time on a
project and then cancel it?

3. What could have been done to prevent this?

THE SYSTEMS DEVELOPMENT LIFE CYCLE

In many ways, building an information system is similar to building a house. First, the house
(or the information system) starts with a basic idea. Second, this idea is transformed into a
simple drawing that is shown to the customer and refined (often through several drawings,
each improving on the last) until the customer agrees that the picture depicts what he or she
wants. Third, a set of blueprints is designed that presents much more detailed information
about the house (e.g., the type of water faucets, where the telephone jacks will be placed).
Finally, the house is built following the blueprints, often with some changes directed by the
customer as the house is erected.

The SDLC has a similar set of four fundamental phases: planning, analysis, design, and
implementation. Different projects might emphasize different parts of the SDLC or approach
the SDLC phases in different ways, but all projects have elements of these four phases. Each
phaseis itself composed of a series of steps, which rely upon techniques that produce deliverables
(specific documents and files that provide understanding about the project).

4 Chapter 1 Introduction to Systems Analysis and Design

For example, in applying for admission to a university, all students go through the
same phases: information gathering, applying, and accepting. Each of these phases has
steps; for example, information gathering includes steps such as searching for schools,
requesting information, and reading brochures. Students then use techniques (e.g., Internet
searching) that can be applied to steps (e.g., requesting information) to create deliverables
(e.g., evaluations of different aspects of universities).

In many projects, the SDLC phases and steps proceed in a logical path from start to
finish. In other projects, the project teams move through the steps consecutively, incre-
mentally, iteratively, or in other patterns. In this section, we describe the phases, the actions,
and some of the techniques that are used to accomplish the steps at a very high level. Not
all organizations follow the SDLC in exactly the same way. As we shall shortly see, there are
many variations on the overall SDLC.

For now, there are two important points to understand about the SDLC. First, you
should get a general sense of the phases and steps through which IS projects move and
some of the techniques that produce certain deliverables. Second, it is important to under-
stand that the SDLC is a process of gradual refinement. The deliverables produced in the
analysis phase provide a general idea of the shape of the new system. These deliverables are
used as input to the design phase, which then refines them to produce a set of deliverables
that describes in much more detailed terms exactly how the system will be built. These
deliverables, in turn, are used in the implementation phase to produce the actual system.
Each phase refines and elaborates on the work done previously.

Planning

The planning phase is the fundamental process of understanding why an information system
should be built and determining how the project team will go about building it. It has two steps:

1. During project initiation, the system’s business value to the organization is identified:
How will it lower costs or increase revenues? Most ideas for new systems come from
outside the IS area (e.g., from the marketing department, accounting department) in
the form of a system request. A system request presents a brief summary of a business
need, and it explains how a system that supports the need will create business value.
The IS department works together with the person or department that generated the
request (called the project sponsor) to conduct a feasibility analysis.

The feasibility analysis examines key aspects of the proposed project:

® The idea’s technical feasibility (Can we build it?)
B The economic feasibility (Will it provide business value?)
m The organizational feasibility (If we build it, will it be used?)

The system request and feasibility analysis are presented to an information systems
approval committee (sometimes called a steering committee), which decides
whether the project should be undertaken.

2. Once the project is approved, it enters project management. During project man-
agement, the project manager creates a workplan, staffs the project, and puts tech-
niques in place to help the project team control and direct the project through the
entire SDLC. The deliverable for project management is a project plan, which
describes how the project team will go about developing the system.

Analysis

The analysis phase answers the questions of who will use the system, what the system will do,
and where and when it will be used. During this phase, the project team investigates any current
system(s), identifies opportunities for improvement, and develops a concept for the new system.

The Systems Development Life Cycle 5

This phase has three steps:

1. An analysis strategy is developed to guide the project team’s efforts. Such a strategy
usually includes an analysis of the current system (called the as-is systemn) and its
problems and then ways to design a new system (called the to-be system).

2. The next step is requirements gathering (e.g., through interviews or question-
naires). The analysis of this information—in conjunction with input from the
project sponsor and many other people—leads to the development of a concept
for a new system. The system concept is then used as a basis to develop a set of
business analysis models, which describe how the business will operate if the new
system is developed. The set of models typically includes models that represent
the data and processes necessary to support the underlying business process.

3. The analyses, system concept, and models are combined into a document called
the system proposal, which is presented to the project sponsor and other key deci-
sion makers (e.g., members of the approval committee) who decide whether the
project should continue to move forward.

The system proposal is the initial deliverable that describes what business requirements the
new system should meet. Because it is really the first step in the design of the new system,
some experts argue that it is inappropriate to use the term “analysis” as the name for this
phase; some argue a better name would be “analysis and initial design.” Most organizations
continue to use the name analysis for this phase, however, so we use it in this book as well.
Just keep in mind that the deliverable from the analysis phase is both an analysis and a
high-level initial design for the new system.

Design

The design phase decides how the system will operate, in terms of the hardware, software,
and network infrastructure; the user interface, forms and reports; and the specific pro-
grams, databases, and files that will be needed. Although most of the strategic decisions
about the system were made in the development of the system concept during the analysis
phase, the steps in the design phase determine exactly how the system will operate. The
design phase has four steps:

1. The design strategy is first developed. It clarifies whether the system will be devel-
oped by the company’s own programmers, whether the system will be outsourced
to another firm (usually a consulting firm), or whether the company will buy an
existing software package.

2. This leads to the development of the basic architecture design for the system,
which describes the hardware, software, and network infrastructure to be used. In
most cases, the system will add or change the infrastructure that already exists in
the organization. The interface design specifies how the users will move through the
system (e.g., navigation methods such as menus and on-screen buttons) and the
forms and reports that the system will use.

3. The database and file specifications are developed. These define exactly what data
will be stored and where they will be stored.

4. The analyst team develops the program design, which defines the programs that
need to be written and exactly what each program will do.

This collection of deliverables (architecture design, interface design, database and file spec-
ifications, and program design) is the system specification that is handed to the programming
team for implementation. At the end of the design phase, the feasibility analysis and project
plan are reexamined and revised, and another decision is made by the project sponsor and
approval committee about whether to terminate the project or continue.

6 Chapter 1 Introduction to Systems Analysis and Design

Implementation

The final phase in the SDLC is the implementation phase, during which the system is actu-
ally built (or purchased, in the case of a packaged software design). This is the phase that
usually gets the most attention, because for most systems it is the longest and most expen-
sive single part of the development process. This phase has three steps:

1. System construction is the first step. The system is built and tested to ensure it per-
forms as designed. Because the cost of bugs can be immense, testing is one of the
most critical steps in implementation. Most organizations give more time and
attention to testing than to writing the programs in the first place.

2. The system is installed. Installation is the process by which the old system is turned
off and the new one is turned on. It may include a direct cutover approach (in
which the new system immediately replaces the old system), a parallel conversion
approach (in which both the old and new systems are operated for a month or two
until it is clear that there are no bugs in the new system), or a phased conversion
strategy (in which the new system is installed in one part of the organization as an
initial trial and then gradually installed in others). One of the most important
aspects of conversion is the development of a training plan to teach users how to
use the new system and help manage the changes caused by the new system.

3. The analyst team establishes a support plan for the system. This plan usually
includes a formal or informal post-implementation review as well as a systematic
way for identifying major and minor changes needed for the system.

O P 1-B Keeping Up with Consumer Electronics
IN ACTION
Consumer electronics is a very competitive business. Questions

What might be the success story of the year one year is)

a forgotten item two years later. Rapid product commoditi- 1. What external data analysis should a consumer
zation makes the consumer electronics marketplace very electronics company use to determine marketplace
competitive. Getting the right products to market at the needs and its abilities to compete effectively in a
right time with the right components is an ongoing chal- marketplace?
lenge for telecommunications and consumer electronics 2. Staying one step ahead of competitors requires a

goods companies.

corporate strategy and the support of information
systems. How can information systems and systems
analysts contribute to an aggressive corporate strategy?

SYSTEMS DEVELOPMENT METHODOLOGIES

A methodology is a formalized approach to implementing the SDLC (i.e., it is a list of steps
and deliverables). There are many different systems development methodologies, and each
one is unique, based on the order and focus it places on each SDLC phase. Some method-
ologies are formal standards used by government agencies, whereas others have been
developed by consulting firms to sell to clients. Many organizations have internal method-
ologies that have been honed over the years, and they explain exactly how each phase of
the SDLC is to be performed in that company.

There are many ways to categorize methodologies. One way is by looking at whether
they focus on business processes or the data that support the business. A process-centered

aParent

Systems Development Methodologies 7

aRefrigerator aCupboard aSandwich alunch alunchBag

GetJelly

Get@

A

¥

GetPeanutButter

Get

)@

=]

read

A

CreateSandwich

A

GetCookies

v

CreateLunch

GetLunchBag

e

A

PutLunchInBag

¥

@

FIGURE 1-1

A Simple Behavioral Model for Making a Simple Lunch

methodology emphasizes process models as the core of the system concept. In Figure 1-1,
for example, process-centered methodologies would focus first on defining the processes
(e.g., assemble sandwich ingredients). Data-centered methodologies emphasize data mod-
els as the core of the system concept. In Figure 1-1, data-centered methodologies would
focus first on defining the contents of the storage areas (e.g., refrigerator) and how the con-
tents were organized.? By contrast, object-oriented methodologies attempt to balance the
focus between process and data by incorporating both into one model. In Figure 1-1, these

2 The classic modern process-centered methodology is that by Edward Yourdon, Modern Structured Analysis
(Englewood Cliffs, NJ: Yourdon Press, 1989). An example of a data-centered methodology is information engi-
neering; see James Martin, Information Engineering, vols. 1-3 (Englewood Cliffs, NJ: Prentice Hall, 1989). A
widely accepted standardized non—object-oriented methodology that balances processes and data is IDEF; see
FIPS 183, Integration Definition for Function Modeling, Federal Information Processing Standards Publications,
U.S. Department of Commerce, 1993.

8 Chapter 1 Introduction to Systems Analysis and Design

methodologies would focus first on defining the major elements of the system (e.g., sand-
wiches, lunches) and look at the processes and data involved with each element.

Another important factor in categorizing methodologies is the sequencing of the
SDLC phases and the amount of time and effort devoted to each.? In the early days of com-
puting, programmers did not understand the need for formal and well-planned life-cycle
methodologies. They tended to move directly from a very simple planning phase right into
the construction step of the implementation phase—in other words, from a very fuzzy,
not-well-thought-out system request into writing code. This is the same approach that you
sometimes use when writing programs for a programming class. It can work for small pro-
grams that require only one programmer, but if the requirements are complex or unclear,
you might miss important aspects of the problem and have to start all over again, throw-
ing away part of the program (and the time and effort spent writing it). This approach also
makes teamwork difficult because members have little idea about what needs to be accom-
plished and how to work together to produce a final product. In this section, we describe
three different classes of system development methodologies: structured design, rapid
application development, and agile development.

Structured Design

The first category of systems development methodologies is called structured design. These
methodologies became dominant in the 1980s, replacing the previous ad hoc and undisci-
plined approach. Structured design methodologies adopt a formal step-by-step approach
to the SDLC that moves logically from one phase to the next. Numerous process-centered
and data-centered methodologies follow the basic approach of the two structured design
categories outlined next.

Waterfall Development The original structured design methodology (still used today)
is waterfall development. With waterfall development—based methodologies, the analysts
and users proceed in sequence from one phase to the next (see Figure 1-2). The key deliv-
erables for each phase are typically very long (often hundreds of pages in length) and are
presented to the project sponsor for approval as the project moves from phase to phase.
Once the sponsor approves the work that was conducted for a phase, the phase ends and
the next one begins. This methodology is referred to as waterfall development because it
moves forward from phase to phase in the same manner as a waterfall. Although it is pos-
sible to go backward in the SDLC (e.g., from design back to analysis), it is extremely diffi-
cult (imagine yourself as a salmon trying to swim upstream against a waterfall, as shown
in Figure 1-2).

Structured design also introduced the use of formal modeling or diagramming tech-
niques to describe the basic business processes and the data that support them. Traditional
structured design uses one set of diagrams to represent the processes and a separate set of
diagrams to represent data. Because two sets of diagrams are used, the systems analyst must
decide which set to develop first and use as the core of the system: process-model diagrams
or data-model diagrams. There is much debate over which should come first, the processes
or the data, because both are important to the system. As a result, several different struc-
tured design methodologies have evolved that follow the basic steps of the waterfall model
but use different modeling approaches at different times. Those that attempt to emphasize
process-model diagrams as the core of the system are process centered, whereas those that
emphasize data-model diagrams as the core of the system concept are data centered.

3 A good reference for comparing systems development methodologies is Steve McConnell, Rapid Development
(Redmond, WA: Microsoft Press, 1996).

FIGURE 1-2

A Waterfall
Development-based
Methodology

Systems Development Methodologies 9

» s
Planning \

Implementation \
System)

The two key advantages of the structured design waterfall approach are that it identifies
system requirements long before programming begins and it minimizes changes to the
requirements as the project proceeds. The two key disadvantages are that the design must
be completely specified before programming begins and that a long time elapses between
the completion of the system proposal in the analysis phase and the delivery of the system
(usually many months or years). Lengthy deliverables often result in poor communication;
the result is that important requirements can be overlooked in the voluminous documenta-
tion. Users are rarely prepared for their introduction to the new system, which occurs long
after the initial idea for the system was introduced. If the project team misses important
requirements, expensive post-implementation programming may be needed (imagine your-
self trying to design a car on paper; how likely would you be to remember interior lights that
come on when the doors open or to specify the right number of valves on the engine?).

A system can also require significant rework because the business environment has
changed from the time that the analysis phase occurred. When changes do occur, it means
going back to the initial phases and following the change through each of the subsequent
phases in turn.

Parallel Development Parallel development methodology attempts to address the prob-
lem of long delays between the analysis phase and the delivery of the system. Instead of
doing design and implementation in sequence, it performs a general design for the whole
system and then divides the project into a series of distinct subprojects that can be designed
and implemented in parallel. Once all subprojects are complete, the separate pieces are
integrated and the system is delivered (see Figure 1-3).

The primary advantage of this methodology is that it can reduce the time to deliver
a system; thus, there is less chance of changes in the business environment causing rework.
However, the approach still suffers from problems caused by paper documents. It also
adds a new problem: Sometimes the subprojects are not completely independent; design
decisions made in one subproject can affect another, and the end of the project can
require significant integration efforts.

10 Chapter 1 Introduction to Systems Analysis and Design

Planning

FIGURE 1-3

Integration

Implementation

Subproject 3

System)

A Parallel Development-based Methodology

Rapid Application Development (RAD)

A second category of methodologies includes rapid application development (RAD)-based
methodologies. These are a newer class of systems development methodologies that
emerged in the 1990s. RAD-based methodologies attempt to address both weaknesses of
structured design methodologies by adjusting the SDLC phases to get some part of the
system developed quickly and into the hands of the users. In this way, the users can better
understand the system and suggest revisions that bring the system closer to what is
needed.*

Most RAD-based methodologies recommend that analysts use special techniques and
computer tools to speed up the analysis, design, and implementation phases, such as com-
puter-aided software engineering (CASE) tools, joint application design (JAD) sessions,
fourth-generation or visual programming languages that simplify and speed up program-
ming (e.g., Visual Basic), and code generators that automatically produce programs from
design specifications. The combination of the changed SDLC phases and the use of these
tools and techniques improves the speed and quality of systems development. However,
there is one possible subtle problem with RAD-based methodologies: managing user expec-
tations. Owing to the use of the tools and techniques that can improve the speed and quality
of systems development, user expectations of what is possible can change dramatically. As a

4 One of the best RAD books is Steve McConnell, Rapid Development (Redmond, WA: Microsoft Press, 1996).

Systems Development Methodologies 11

»
Planning Analysis |

Analysis

Implementation

Analysis

System)
version 1

Analysis

| Sys.tem)
N version 2

Implementation

System)
version 3

FIGURE 1-4 A Phased Development-based Methodology

user better understands the information technology (IT), the systems requirements tend to
expand. This was less of a problem when using methodologies that spent a lot of time thor-
oughly documenting requirements. Process-centered, data-centered, and object-oriented
methodologies that follow the basic approaches of the three RAD categories are described
in the following sections.

Phased Development A phased development-based methodology breaks an overall system
into a series of versions that are developed sequentially. The analysis phase identifies the
overall system concept, and the project team, users, and system sponsor then categorize the
requirements into a series of versions. The most important and fundamental requirements
are bundled into the first version of the system. The analysis phase then leads into design
and implementation—but only with the set of requirements identified for version 1 (see
Figure 1-4).

Once version 1 is implemented, work begins on version 2. Additional analysis is per-
formed based on the previously identified requirements and combined with new ideas and

12 Chapter 1 Introduction to Systems Analysis and Design

FIGURE 1-5

A Prototyping-based
Methodology

issues that arose from the users’ experience with version 1. Version 2 then is designed and
implemented, and work immediately begins on the next version. This process continues
until the system is complete or is no longer in use.

Phased development-based methodologies have the advantage of quickly getting a
useful system into the hands of the users. Although the system does not perform all the
functions the users need at first, it does begin to provide business value sooner than if the
system were delivered after completion, as is the case with the waterfall and parallel
methodologies. Likewise, because users begin to work with the system sooner, they are
more likely to identify important additional requirements sooner than with structured
design situations.

The major drawback to phased development is that users begin to work with systems
that are intentionally incomplete. It is critical to identify the most important and useful
features and include them in the first version and to manage users” expectations along the
way.

Prototyping A prototyping-based methodology performs the analysis, design, and imple-
mentation phases concurrently, and all three phases are performed repeatedly in a cycle
until the system is completed. With these methodologies, the basics of analysis and design
are performed, and work immediately begins on a system prototype, a quick-and-dirty pro-
gram that provides a minimal amount of features. The first prototype is usually the first
part of the system that is used. This is shown to the users and the project sponsor, who
provide comments. These comments are used to reanalyze, redesign, and re-implement a
second prototype, which provides a few more features. This process continues in a cycle
until the analysts, users, and sponsor agree that the prototype provides enough functionality
to be installed and used in the organization. After the prototype (now called the “system”) is
installed, refinement occurs until it is accepted as the new system (see Figure 1-5).

The key advantage of a prototyping-based methodology is that it very quickly provides
a system with which the users can interact, even if it is not ready for widespread organiza-
tional use at first. Prototyping reassures the users that the project team is working on the
system (there are no long delays in which the users see little progress), and prototyping
helps to more quickly refine real requirements. Rather than attempting to understand a sys-
tem specification on paper, the users can interact with the prototype to better understand
what it can and cannot do.

The major problem with prototyping is that its fast-paced system releases challenge
attempts to conduct careful, methodical analysis. Often the prototype undergoes such
significant changes that many initial design decisions become poor ones. This can cause

> -
Planning \

Analysis
. NN System .
Design prototype Implementation
Implementation l

T System)

Systems Development Methodologies 13

problems in the development of complex systems because fundamental issues and prob-
lems are not recognized until well into the development process. Imagine building a car
and discovering late in the prototyping process that you have to take the whole engine out
to change the oil (because no one thought about the need to change the oil until after it had
been driven 10,000 miles).

Throwaway Prototyping Throwaway prototyping-based methodologies are similar to
prototyping-based methodologies in that they include the development of prototypes;
however, throwaway prototypes are done at a different point in the SDLC. These prototypes
are used for a very different purpose than those previously discussed, and they have a very
different appearance (see Figure 1-6).

The throwaway prototyping—based methodologies have a relatively thorough analysis
phase that is used to gather information and to develop ideas for the system concept. How-
ever, users might not completely understand many of the features they suggest, and there
may be challenging technical issues to be solved. Each of these issues is examined by ana-
lyzing, designing, and building a design prototype. A design prototype is not a working
system; it is a product that represents a part of the system that needs additional refinement,
and it contains only enough detail to enable users to understand the issues under consid-
eration. For example, suppose users are not completely clear on how an order-entry system
should work. The analyst team might build a series of HTML pages viewed using a Web
browser to help the users visualize such a system. In this case, a series of mock-up screens
appear to be a system, but they really do nothing. Or suppose that the project team needs
to develop a sophisticated graphics program in Java. The team could write a portion of the
program with pretend data to ensure that they could do a full-blown program successfully.

A system developed using this type of methodology probably relies on several design
prototypes during the analysis and design phases. Each of the prototypes is used to mini-
mize the risk associated with the system by confirming that important issues are under-
stood before the real system is built. Once the issues are resolved, the project moves into
design and implementation. At this point, the design prototypes are thrown away, which is
an important difference between these methodologies and prototyping methodologies, in
which the prototypes evolve into the final system.

»
Planning \

. » -
Analysis \

\ Design \
\ 8 N
_/ \
\
\
\
AN

Analysis
. , Design .
Design prototype Implementation
Implementation l

T System)

FIGURE 1-6 A Throwaway Prototyping-based Methodology

14 Chapter 1 Introduction to Systems Analysis and Design

Throwaway prototyping-based methodologies balance the benefits of well-thought-
out analysis and design phases with the advantages of using prototypes to refine key issues
before a system is built. It can take longer to deliver the final system as compared to proto-
typing-based methodologies (because the prototypes do not become the final system), but
this type of methodology usually produces more stable and reliable systems.

Agile Development’

A third category of systems development methodologies is still emerging today: agile devel-
opment. All agile development methodologies are based on the agile manifesto and a set of
twelve principles. The emphasis of the manifesto is to focus the developers on the working
conditions of the developers, the working software, the customers, and addressing chang-
ing requirements instead of focusing on detailed systems development processes, tools, all-
inclusive documentation, legal contracts, and detailed plans. These programming-centric
methodologies have few rules and practices, all of which are fairly easy to follow. These
methodologies are typically based only on the twelve principles of agile software. These
principles include the following:

m Software is delivered early and continuously through the development process,
satisfying the customer.

®m Changing requirements are embraced regardless of when they occur in the devel-
opment process.

m Working software is delivered frequently to the customer.
Customers and developers work together to solve the business problem.

m Motivated individuals create solutions; provide them the tools and environment
they need and trust them to deliver.

m Face-to-face communication within the development team is the most efficient
and effective method of gathering requirements.

® The primary measure of progress is working, executing software.

Both customers and developers should work at a pace that is sustainable. That is,
the level of work could be maintained indefinitely without any worker burnout.

Agility is heightened through attention to both technical excellence and good design.
Simplicity, the avoidance of unnecessary work, is essential.
Self-organizing teams develop the best architectures, requirements, and designs.

Development teams regularly reflect on how to improve their development
processes.

Based on these principles, agile methodologies focus on streamlining the system-development
process by eliminating much of the modeling and documentation overhead and the time
spent on those tasks. Instead, projects emphasize simple, iterative application development.®
All agile development methodologies follow a simple cycle through the traditional phases
of the systems development process (see Figure 1-7). Virtually all agile methodologies are
used in conjunction with object-oriented technologies.

However, agile methodologies do have critics. One of the major criticisms deals with
today’s business environment, where much of the actual information systems development

> Three good sources of information on agile development and object-oriented systems are S. W. Ambler, Agile
Modeling: Effective Practices for Extreme Programming and The Unified Process (New York: Wiley, 2002); C.
Larman, Agile & Iterative Development: A Manager’s Guide (Boston: Addison-Wesley, 2004); and R. C. Martin,
Agile Software Development: Principles, Patterns, and Practices (Upper Saddle River, NJ: Prentice Hall, 2003).

6 See www.agilealliance.com.

FIGURE 1-7
Typical Agile

Development
Methodology

Systems Development Methodologies 15

!

Planning

Analysis
System)

Design

b

Implementation

is offshored, outsourced, and/or subcontracted. Given agile development methodologies
requiring co-location of the development team, this seems to be a very unrealistic assump-
tion. A second major criticism is that if agile development is not carefully managed, and by
definition it is not, the development process can devolve into a prototyping approach that
essentially becomes a “programmers gone wild” environment where programmers attempt
to hack together solutions. A third major criticism, based on the lack of actual documen-
tation created during the development of the software, raises issues regarding the auditability
of the systems being created. Without sufficient documentation, neither the system nor the
systems-development process can be assured. A fourth major criticism is based on whether
agile approaches can deliver large mission-critical systems.

Even with these criticisms, given the potential for agile approaches to address
the application backlog and to provide timely solutions to many business problems,
agile approaches should be considered in some circumstances. Furthermore, many of
the techniques encouraged by attending to the underlying purpose of the agile mani-
festo and the set of twelve agile principles are very useful in object-oriented systems
development. Two of the more popular examples of agile development methodologies
are extreme programming (XP) and Scrum. We describe both of these methodologies
in the next two sections.

Extreme Programming’ Extreme programming (XP) is founded on four core values:
communication, simplicity, feedback, and courage. These four values provide a foundation
that XP developers use to create any system. First, the developers must provide rapid feed-
back to the end users on a continuous basis. Second, XP requires developers to follow the
KISS principle.® Third, developers must make incremental changes to grow the system, and
they must not only accept change, they must embrace change. Fourth, developers must
have a quality-first mentality. XP also supports team members in developing their own
skills. Three of the key principles that XP uses to create successful systems are continuous
testing, simple coding performed by pairs of developers, and close interactions with end
users to build systems very quickly.

Testing and efficient coding practices are the core of XP. Code is tested each day and
is placed into an integrative testing environment. If bugs exist, the code is backed out until

7 For more information, see K. Beck, eXtreme Programming Explained: Embrace Change (Reading, MA: Addison-
Wesley, 2000), C. Larman, Agile & Iterative Development: A Manager’s Guide (Boston: Addison-Wesley, 2004), M.
Lippert, S. Roock, and H. Wolf, eXtreme Programming in Action: Practical Experiences from Real World Projects
(New York: Wiley, 2002), or www.extremeprogramming.com.

8 Keep it simple, stupid.

16 Chapter 1 Introduction to Systems Analysis and Design

it is completely free of errors. XP relies heavily on refactoring, which is a disciplined way
to restructure code to keep it simple.

An XP project begins with user stories that describe what the system needs to do.
Then, programmers code in small, simple modules and test to meet those needs. Users are
required to be available to clear up questions and issues as they arise. Standards are very
important to minimize confusion, so XP teams use a common set of names, descriptions,
and coding practices. XP projects deliver results sooner than even the RAD approaches, and
they rarely get bogged down in gathering requirements for the system.

XP adherents claim many strengths associated with developing software using XP.
Programmers work closely with all stakeholders, and communication among all stake-
holders is improved. Continuous testing of the evolving system is encouraged. The system
is developed in an evolutionary and incremental manner, which allows the requirements
to evolve as the stakeholders understand the potential that the technology has in provid-
ing a solution to their problem. Estimation is task driven and is performed by the pro-
grammer who will implement the solution for the task under consideration. Because all
programming is done in pairs, a shared responsibility for each software component devel-
ops among the programmers. Finally, the quality of the final product increases during
each iteration.

For small projects with highly motivated, cohesive, stable, and experienced teams, XP
should work just fine. However, if the project is not small or the teams aren’t jelled,® the
success of an XP development effort is doubtful. This tends to throw into doubt the whole
idea of bringing outside contractors into an existing team environment using XP.!0 The
chance of outsiders jelling with insiders might simply be too optimistic. XP requires a great
deal of discipline; otherwise projects will become unfocused and chaotic. XP it is recom-
mended only for small groups of developers—no more than ten developers—and it is not
advised for large mission-critical applications. Owing to the lack of analysis and design
documentation, there is only code documentation associated with XP, so maintaining large
systems built with XP may be impossible. And because mission-critical business informa-
tion systems tend to exist for a long time, the utility of XP as a business information sys-
tem development methodology is in doubt. Finally, the methodology needs a lot of on-site
user input, something to which many business units cannot commit.!' However, some of
the techniques associated with XP are useful in object-oriented systems development. For
example, user stories, pair programming, and continuous testing are invaluable tools from
which object-oriented systems development could benefit.

Scrum!? Scrum is a term that is well known to rugby fans. In rugby, a scrum is used to
restart a game (see Figure 1-8). In a nutshell, the creators of the Scrum method believe that
no matter how much you plan, as soon as the software begins to be developed, chaos breaks

9 A jelled team is one that has low turnover, a strong sense of identity, a sense of eliteness, a feeling that they jointly
own the product being developed, and enjoyment in working together. For more information regarding jelled
teams, see T. DeMarco and T. Lister, Peopleware: Productive Projects and Teams (New York: Dorset/House, 1987).
10 Considering the tendency for offshore outsourcing, this is a major obstacle for XP to overcome. For more infor-
mation on offshore outsourcing, see P. Thibodeau, “ITAA Panel Debates Outsourcing Pros, Cons,” Computerworld
Morning Update (September 25, 2003), and S. W. Ambler, “Chicken Little Was Right,” Software Development
(October 2003).

1 Many of the observations on the utility of XP as a development approach were based on conversations with
Brian Henderson-Sellers.

12 For more information see C. Larman, Agile & Iterative Development: A Manager’s Guide (Boston: Addison-
Wesley, 2004), K. Schwaber and M. Beedle, Agile Software Development with Scrum (Upper Saddle River,
NJ: Prentice Hall, 2001), and R. Wysocki, Effective Project Management: Traditional, Agile, Extreme, 5th Ed.
(Indianapolis, IN: Wiley Publishing, 2009).

FIGURE 1-8
Rugby Scrum
(Rugby Game)

(Source: Alan Brooke/Image
Source)

Systems Development Methodologies 17

out and the plans go out the window.!3 The best you can do is to react to where the prover-
bial rugby ball squirts out. You then sprint with the ball until the next scrum. In the case of
the Scrum methodology, a sprint lasts thirty working days. At the end of the sprint, a system
is delivered to the customer.

Of all systems development approaches, on the surface, Scrum is the most chaotic. To
control some of the innate chaos, Scrum development focuses on a few key practices. Teams
are self-organized and self-directed. Unlike other approaches, Scrum teams do not have a
designated team leader. Instead, teams organize themselves in a symbiotic manner and set
their own goals for each sprint (iteration). Once a sprint has begun, Scrum teams do not
consider any additional requirements. Any new requirements that are uncovered are placed
on a backlog of requirements that still need to be addressed. At the beginning of every work-
day, a Scrum meeting takes place. At the end of each sprint, the team demonstrates the soft-
ware to the client. Based on the results of the sprint, a new plan is begun for the next sprint.

Scrum meetings are one of the most interesting aspects of the Scrum development
process. The team members attend the meetings, but anyone can attend. However, with
very few exceptions, only team members may speak. One prominent exception is manage-
ment providing feedback on the business relevance of the work being performed by the
specific team. In this meeting, all team members stand in a circle and report on what they
accomplished during the previous day, state what they plan to do today, and describe any-
thing that blocked progress the previous day. To enable continuous progress, any block
identified is dealt with within one hour. From a Scrum point of view, it is better to make a
“bad” decision about a block at this point in development than to not make a decision.
Because the meetings take place each day, a bad decision can easily be undone. Larman!*
suggests that each team member should report any additional requirements that have been
uncovered during the sprint and anything that the team member learned that could be use-
ful for other team members to know.

13 Scrum developers are not the first to question the use of plans. One of President Eisenhower’s favorite maxims
was, “In preparing for battle I have always found that plans are useless, but planning is indispensable.” M. Dobson,
Streetwise Project Management: How to Manage People, Processes, and Time to Achieve the Results You Need (Avon,
MA: F+W Publications, 2003) p. 43.

14 C. Larman, Agile & Iterative Development: A Manager’s Guide (Boston: Addison-Wesley, 2004).

18 Chapter 1 Introduction to Systems Analysis and Design

Ability to Develop
Systems

With Unclear User Requirements
With Unfamiliar Technology
That Are Complex

That Are Reliable

With a Short Time Schedule

With Schedule Visibility

Structured Agile
Methodologies RAD Methodologies Methodologies
Throwaway
Waterfall Parallel Phased Prototyping Prototyping XP SCRUM

Poor Poor Good Excellent Excellent Excellent Excellent
Poor Poor Good Poor Excellent Good Good
Good Good Good Poor Excellent Good Good
Good Good Good Poor Excellent Excellent Excellent
Poor Good Excellent Excellent Good Excellent Excellent
Poor Poor Excellent Excellent Good Excellent Excellent

FIGURE 1-9 Ciriteria for Selecting a Methodology

One of the major criticisms of Scrum, as with all agile methodologies, is that it is ques-
tionable whether Scrum can scale up to develop very large, mission-critical systems. A typ-
ical Scrum team size is no more than seven members. The only organizing principle put
forth by Scrum followers to address this criticism is to organize a scrum of scrums. Each
team meets every day, and after the team meeting takes place, a representative (not leader)
of each team attends a scrum-of-scrums meeting. This continues until the progress of
entire system has been determined. Depending on the number of teams involved, this
approach to managing a large project is doubtful. However, as in XP and other agile devel-
opment approaches, many of the ideas and techniques associated with Scrum development
are useful in object-oriented systems development, such as the focus of a Scrum meeting,
the evolutionary and incremental approach to identifying requirements, and the incre-
mental and iterative approach to the development of the system.

Selecting the Appropriate Development Methodology

Because there are many methodologies, the first challenge faced by analysts is selecting
which methodology to use. Choosing a methodology is not simple, because no one
methodology is always best. (If it were, we’'d simply use it everywhere!) Many organizations
have standards and policies to guide the choice of methodology. You will find that organi-
zations range from having one “approved” methodology to having several methodology
options to having no formal policies at all.

Figure 1-9 summarizes some important criteria for selecting a methodology. One
important item not discussed in this figure is the degree of experience of the analyst team.
Many of the RAD-based methodologies require the use of new tools and techniques that
have a significant learning curve. Often these tools and techniques increase the complexity
of the project and require extra time for learning. However, once they are adopted and the
team becomes experienced, the tools and techniques can significantly increase the speed at
which the methodology can deliver a final system.

Clarity of User Requirements When the user requirements for a system are unclear, it
is difficult to understand them by talking about them and explaining them with written
reports. Users normally need to interact with technology to really understand what a new
system can do and how to best apply it to their needs. RAD and agile methodologies are
usually more appropriate when user requirements are unclear.

Systems Development Methodologies 19

Familiarity with Technology When the system will use new technology with which the
analysts and programmers are not familiar (e.g., the first Web development project with
Java), early application of the new technology in the methodology will improve the chance
of success. If the system is designed without some familiarity with the base technology,
risks increase because the tools might not be capable of doing what is needed. Throwaway
prototyping—based methodologies are particularly appropriate if users lack familiarity with
technology because they explicitly encourage the developers to develop design prototypes for
areas with high risks. Phased development—based methodologies are good as well, because
they create opportunities to investigate the technology in some depth before the design is
complete. Also, owing to the programming-centric nature of agile methodologies, both XP
and Scrum are appropriate. Although you might think prototyping-based methodologies are
also appropriate, they are much less so because the early prototypes that are built usually only
scratch the surface of the new technology. It is generally only after several prototypes and sev-
eral months that the developers discover weaknesses or problems in the new technology.

System Complexity Complex systems require careful and detailed analysis and design.
Throwaway prototyping—based methodologies are particularly well suited to such detailed
analysis and design, but prototyping-based methodologies are not. The traditional struc-
tured design—based methodologies can handle complex systems, but without the ability to
get the system or prototypes into the users’ hands early on, some key issues may be over-
looked. Although phased development—based methodologies enable users to interact with
the system early in the process, we have observed that project teams who follow these tend
to devote less attention to the analysis of the complete problem domain than they might
using other methodologies. Finally, agile methodologies are a mixed bag when it comes to
system complexity. If the system is going to be a large one, then, owing to the lack of formal
project management techniques used, agile methodologies will perform poorly. However,
if the system is small to medium size, then agile approaches will be excellent. We rate them
good on these criteria.

System Reliability System reliability is usually an important factor in system develop-
ment; after all, who wants an unreliable system? However, reliability is just one factor
among several. For some applications, reliability is truly critical (e.g., medical equipment,
missile-control systems), whereas for other applications (e.g., games, Internet video) it is
merely important. Because throwaway prototyping methodologies combine detailed analysis
and design phases with the ability for the project team to test many different approaches
through design prototypes before completing the design, they are appropriate when system
reliability is a high priority. Prototyping methodologies are generally not a good choice
when reliability is critical because it lacks the careful analysis and design phases that are
essential for dependable systems. However, owing to the heavy focus on testing, evolution-
ary and incremental identification of requirements, and iterative and incremental develop-
ment, agile methods may be the best overall approach.

Short Time Schedules Projects that have short time schedules are well suited for RAD-
based and agile methodologies because these methodologies are designed to increase the
speed of development. RAD-based and agile methodologies are excellent choices when
timelines are short because they best enable the project team to adjust the functionality in
the system based on a specific delivery date, and if the project schedule starts to slip, it can
be readjusted by removing functionality from the version or prototype under development.
Waterfall-based methodologies are the worst choice when time is at a premium because
they do not allow easy schedule changes.

20 Chapter 1 Introduction to Systems Analysis and Design

Schedule Visibility One of the greatest challenges in systems development is determin-
ing whether a project is on schedule. This is particularly true of the structured design
methodologies because design and implementation occur at the end of the project. The
RAD-based methodologies move many of the critical design decisions earlier in the project
to help project managers recognize and address risk factors and keep expectations in check.
However, given the daily progress meetings associated with Agile approaches, schedule
visibility is always on the proverbial front burner.

1-1 Selecting a Methodology

Suppose you are an analyst for the Roanoke Software
Consulting Company (RSCC), a large consulting firm
with offices around the world. The company wants to
build a new knowledge management system that can

international network, but the offices in each country
may use somewhat different hardware and software.
RSCC management wants the system up and running
within a year.

identify and track the expertise of individual consultants
anywhere in the world based on their education and the
various consulting projects on which they have worked.
Assume that this is a new idea that has never before
been attempted in RSCC or elsewhere. RSCC has an

Question

1. What type of methodology would you recommend
that RSCC use? Why?

TYPICAL SYSTEMS ANALYST ROLES AND SKILLS

It is clear from the various phases and steps performed during the SDLC that the project
team needs a variety of skills. Project members are change agents who identify ways to
improve an organization, build an information system to support them, and train and
motivate others to use the system. Leading a successful organizational change effort is one
of the most difficult jobs that someone can do. Understanding what to change and how to
change it—and convincing others of the need for change—requires a wide range of skills.
These skills can be broken down into six major categories: technical, business, analytical,
interpersonal, management, and ethical.

Analysts must have the technical skills to understand the organization’s existing tech-
nical environment, the technology that will make up the new system, and the way both can
fit into an integrated technical solution. Business skills are required to understand how IT
can be applied to business situations and to ensure that the IT delivers real business value.
Analysts are continuous problem solvers at both the project and the organizational level,
and they put their analytical skills to the test regularly.

Analysts often need to communicate effectively one-on-one with users and business
managers (who often have little experience with technology) and with programmers (who
often have more technical expertise than the analyst). They must be able to give presentations
to large and small groups and write reports. Not only do they need to have strong interper-
sonal abilities, but they also need to manage people with whom they work and they need to
manage the pressure and risks associated with unclear situations.

Finally, analysts must deal fairly, honestly, and ethically with other project team mem-
bers, managers, and system users. Analysts often deal with confidential information or
information that, if shared with others, could cause harm (e.g., dissent among employees);
it is important to maintain confidence and trust with all people.

FIGURE 1-10
Project Team Roles

Typical Systems Analyst Roles and Skills 21

Role Responsibilities

Business analyst Analyzing the key business aspects of the system
Identifying how the system will provide business value
Designing the new business processes and policies

Systems analyst Identifying how technology can improve business processes
Designing the new business processes
Designing the information system
Ensuring that the system conforms to information systems standards

Infrastructure analyst Ensuring the system conforms to infrastructure standards
Identifying infrastructure changes needed to support the system

Change management analyst ~ Developing and executing a change management plan
Developing and executing a user training plan
Project manager Managing the team of analysts, programmers, technical writers, and
other specialists
Developing and monitoring the project plan
Assigning resources

Serving as the primary point of contact for the project

In addition to these six general skill sets, analysts require many specific skills associated
with roles performed on a project. In the early days of systems development, most organi-
zations expected one person, the analyst, to have all the specific skills needed to conduct a
systems development project. Some small organizations still expect one person to perform
many roles, but because organizations and technology have become more complex, most
large organizations now build project teams containing several individuals with clearly
defined responsibilities. Different organizations divide the roles differently, but Figure 1-10
presents one commonly used set of project team roles. Most IS teams include many other
individuals, such as the programmers, who actually write the programs that make up the
system, and technical writers, who prepare the help screens and other documentation (e.g.,
users manuals and systems manuals).

Business Analyst

A business analyst focuses on the business issues surrounding the system. These issues include
identifying the business value that the system will create, developing ideas and suggestions for
how the business processes can be improved, and designing the new processes and policies in
conjunction with the systems analyst. This individual likely has business experience and some
type of professional training (e.g., the business analyst for accounting systems is likely a CPA
[in the United States] or a CA [in Canada]). He or she represents the interests of the project
sponsor and the ultimate users of the system. A business analyst assists in the planning and
design phases but is most active in the analysis phase.

Systems Analyst

A systems analyst focuses on the IS issues surrounding the system. This person develops
ideas and suggestions for how information technology can improve business processes,
designs the new business processes with help from the business analyst, designs the new
information system, and ensures that all IS standards are maintained. A systems analyst

22 Chapter 1 Introduction to Systems Analysis and Design

likely has significant training and experience in analysis and design, programming, and even
areas of the business. He or she represents the interests of the IS department and works
intensively through the project but perhaps less so during the implementation phase.

Infrastructure Analyst

An infrastructure analyst focuses on the technical issues surrounding how the system will
interact with the organization’s technical infrastructure (e.g., hardware, software, net-
works, and databases). An infrastructure analyst’s tasks include ensuring that the new
information system conforms to organizational standards and identifying infrastructure
changes needed to support the system. This individual probably has significant training
and experience in networking, database administration, and various hardware and soft-
ware products. He or she represents the interests of the organization and IS group that will
ultimately have to operate and support the new system once it has been installed. An
infrastructure analyst works throughout the project but perhaps less so during planning
and analysis phases.

Change Management Analyst

A change management analyst focuses on the people and management issues surrounding
the system installation. The roles of this person include ensuring that the adequate docu-
mentation and support are available to users, providing user training on the new system,
and developing strategies to overcome resistance to change. This individual should have
significant training and experience in organizational behavior in general and change man-
agement in particular. He or she represents the interests of the project sponsor and users
for whom the system is being designed. A change management analyst works most actively
during the implementation phase but begins laying the groundwork for change during the
analysis and design phases.

Project Manager

A project manager is responsible for ensuring that the project is completed on time and
within budget and that the system delivers all benefits intended by the project sponsor. The
role of the project manager includes managing the team members, developing the project
plan, assigning resources, and being the primary point of contact when people outside the
team have questions about the project. This individual likely has significant experience in
project management and has probably worked for many years as a systems analyst before-
hand. He or she represents the interests of the IS department and the project sponsor. The
project manager works intensely during all phases of the project.

1-2 Being an Analyst

Suppose you decide to become an analyst after you grad- Question

uate. Decide what type of analyst you would prefer to be

and what types of courses you should take before you Develop a short plan that describes how you will prepare
graduate. Then decide the type of summer job or intern- for your career as an analyst.

ship you should seek.

Basic Characteristics of Object-Oriented Systems 23

BASIC CHARACTERISTICS OF OBJECT-ORIENTED SYSTEMS

FIGURE 1-11
Classes and Objects

Object-oriented systems focus on capturing the structure and behavior of information sys-
tems in little modules that encompass both data and process. These little modules are
known as objects. In this section, we describe the basic characteristics of object-oriented
systems, which include classes, objects, methods, messages, encapsulation, information
hiding, inheritance, polymorphism, and dynamic binding.!

Classes and Objects

A class is the general template we use to define and create specific instances, or objects. Every
object is associated with a class. For example, all the objects that capture information about
patients could fall into a class called Patient, because there are attributes (e.g., name, address,
birth date, phone, and insurance carrier) and methods (e.g., make appointment, calculate last
visit, change status, and provide medical history) that all patients share (see Figure 1-11).

An object is an instantiation of a class. In other words, an object is a person, place, or
thing about which we want to capture information. If we were building an appointment
system for a doctor’s office, classes might include Doctor, Patient, and Appointment. The
specific patients, such as Jim Maloney, Mary Wilson, and Theresa Marks, are considered
instances, or objects, of the patient class (see Figure 1-11).

Each object has attributes that describe information about the object, such as a
patient’s name, birth date, address, and phone number. Attributes are also used to repre-
sent relationships between objects; for example, there could be a department attribute in
an employee object with a value of a department object that captures in which department
the employee object works. The state of an object is defined by the value of its attributes
and its relationships with other objects at a particular point in time. For example, a patient
might have a state of new or current or former.

Each object also has behaviors. The behaviors specify what the object can do. For
example, an appointment object can probably schedule a new appointment, delete an
appointment, and locate the next available appointment. In object-oriented programming,
behaviors are implemented as methods (see the next section).

Patient

-name
-address

-birthdate

-phone

-insurance carrier

+make appointment()
+calculate last visit()
+change status()

+provides medical history()
+create()

Jim Maloney : Patient Mary Wilson : Patient | [Theresa Marks : Patient

15 In Chapter 8, we review the basic characteristics of object-oriented systems in more detail.

24 Chapter 1 Introduction to Systems Analysis and Design

FIGURE 1-12
Messages and
Methods

Patient

-name
-address
create —» -birthdate
-phone

Q -insurance carrier -
.
A +make appointment()

+calculate last visit()
+change status()

+provides medical history()
+create()

Receptionist

One of the more confusing aspects of object-oriented systems development is the fact
that in most object-oriented programming languages, both classes and instances of classes
can have attributes and methods. Class attributes and methods tend to be used to model
attributes (or methods) that deal with issues related to