

ffirs.qxd 11/23/11 1:26 PM Page vi

This page is intentionally left blank

SYSTEM
ANALYSIS AND

DESIGN
Fifth Edition

ffirs.qxd 11/23/11 1:26 PM Page i

ffirs.qxd 11/23/11 1:26 PM Page ii

This page is intentionally left blank

SYSTEM
ANALYSIS AND

DESIGN

John Wiley & Sons, Inc.

http://www.wiley.com/college/dennis

Fifth Edition

ALAN DENNIS
Indiana University

BARBARA HALEY WIXOM
University of Virginia

ROBERTA M. ROTH
University of Northern Iowa

ffirs.qxd 11/23/11 1:26 PM Page iii

VP & PUBLISHER: Don Fowley
EXECUTIVE EDITOR: Beth Lang Golub
EDITORIAL ASSISTANT: Elizabeth Mills
MARKETING MANAGER: Christopher Ruel
DESIGNER: Maureen Eide
SENIOR PRODUCTION MANAGER: Janis Soo
SENIOR PRODUCTION EDITOR: Joyce Poh

This book was set in 10.5/12 Times New Roman by Aptara and printed and bound by RR Donnelley.
The cover was printed by RR Donnelley.

This book is printed on acid-free paper.

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and understanding for
more than 200 years, helping people around the world meet their needs and fulfill their aspirations. Our
company is built on a foundation of principles that include responsibility to the communities we serve and
where we live and work. In 2008, we launched a Corporate Citizenship Initiative, a global effort to address
the environmental, social, economic, and ethical challenges we face in our business. Among the issues we
are addressing are carbon impact, paper specifications and procurement, ethical conduct within our busi-
ness and among our vendors, and community and charitable support. For more information, please visit our
website: www.wiley.com/go/citizenship.

Copyright © 2012, 2009 John Wiley & Sons, Inc. All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976
United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc. 222 Rosewood
Drive, Danvers, MA 01923, website www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030-5774, (201)748-6011, fax (201)748-6008, website http://www.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in
their courses during the next academic year. These copies are licensed and may not be sold or transferred
to a third party. Upon completion of the review period, please return the evaluation copy to Wiley. Return
instructions and a free of charge return shipping label are available at www.wiley.com/go/returnlabel. Out-
side of the United States, please contact your local representative.

Library of Congress Cataloging-in-Publication Data

Dennis, Alan.
Systems analysis and design /Alan Dennis, Barbara Haley Wixom, Roberta M. Roth.–5th ed.

p. cm.
Includes index.

ISBN 978-1-118-05762-9 (acid-free paper)
1. System design. 2. System analysis. 3. Computer architecture. I. Wixom, Barbara Haley,

1969-II. Roth, Roberta M. (Roberta Marie), 1955-III. Title.
QA76.9.S88D464 2012
004.2’2–dc23

2011043317

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

CREDITS

ffirs.qxd 11/23/11 1:26 PM Page iv

http://www.copyright.com
http://www.wiley.com/go/permissions

To Kelly

To Chris, Haley, and Hannah

To my father—an inspiration to all who know him; and as always, to Rich and the boys.

ffirs.qxd 11/23/11 1:26 PM Page v

ffirs.qxd 11/23/11 1:26 PM Page vi

This page is intentionally left blank

PURPOSE OF THIS BOOK

Systems Analysis and Design (SAD) is an exciting, active field in which analysts
continually learn new techniques and approaches to develop systems more effec-
tively and efficiently. However, there is a core set of skills that all analysts need to
know no matter what approach or methodology is used. All information systems
projects move through the four phases of planning, analysis, design, and imple-
mentation; all projects require analysts to gather requirements, model the business
needs, and create blueprints for how the system should be built; and all projects
require an understanding of organizational behavior concepts like change manage-
ment and team building.

This book captures the dynamic aspects of the field by keeping students
focused on doing SAD while presenting the core set of skills that we feel every sys-
tems analyst needs to know today and in the future. This book builds on our pro-
fessional experience as systems analysts and on our experience in teaching SAD in
the classroom.

This book will be of particular interest to instructors who have students do a
major project as part of their course. Each chapter describes one part of the process,
provides clear explanations on how to do it, gives a detailed example, and then has
exercises for the students to practice. In this way, students can leave the course with
experience that will form a rich foundation for further work as a systems analyst.

OUTSTANDING FEATURES

A Focus on Doing SAD

The goal of this book is to enable students to do SAD—not just read about it, but
understand the issues so that they can actually analyze and design systems. The
book introduces each major technique, explains what it is, explains how to do it,
presents an example, and provides opportunities for students to practice before they
do it in a real-world project. After reading each chapter, the student will be able to
perform that step in the system development life cycle (SDLC) process.

PREFACE

fpref.qxd 11/23/11 1:27 PM Page vii

Rich Examples of Success and Failure

The book includes a running case about a fictitious company called Tune Source.
Each chapter shows how the concepts are applied in situations at Tune Source.
Unlike running cases in other books, this text focuses examples on planning, man-
aging, and executing the activities described in the chapter, rather than on detailed
dialogue between fictitious actors. In this way, the running case serves as a template
that students can apply to their own work. Each chapter also includes numerous
Concepts in Action boxes that describe how real companies succeeded—and
failed—in performing the activities in the chapter. Many of these examples are
drawn from our own experiences as systems analysts.

Incorporation of Object-Oriented Concepts and Techniques

The field is moving toward object-oriented concepts and techniques, both
through UML 2.0, the new standard for object-oriented analysts and design, as
well as by gradually incorporating object-oriented concepts into traditional tech-
niques. We have taken two approaches to incorporating object-oriented analysis
and design into the book. First, we have integrated several object-oriented con-
cepts into our discussion of traditional techniques, although this may not be
noticed by the students because few concepts are explicitly labeled as object-
oriented concepts. For example, we include the development of use cases
as the first step in process modeling (i.e., data flow diagramming) in Chapter 4,
and the use (and reuse) of standard interface templates and use scenarios for
interface design in Chapter 9.

Second, and more obvious to students, we include a final chapter on the major
elements of UML 2.0 that can be used as an introduction to object-oriented analysts
and design. This chapter can be used at the end of a course—while students are busy
working on projects—or can be introduced after or instead of Chapters 5 and 6.

Real-World Focus

The skills that students learn in a systems analysis and design course should mirror
the work that they ultimately will do in real organizations. We have tried to make
this book as “real” as possible by building extensively on our experience as profes-
sional systems analysts for organizations such as IBM, the U.S. Department of
Defense, and the Australian Army. We have also worked with diverse industry advi-
sory boards of IS professionals and consultants in developing the book and have
incorporated their stories, feedback, and advice throughout. Many students who use
this book will eventually apply the skills on the job in a business environment, and
we believe that they will have a competitive edge by understanding what success-
ful practitioners feel is relevant in the real world.

Project Approach

We have presented the topics in this book in the SDLC order in which an analyst
encounters them in a typical project. Although the presentation necessarily is linear
(because students have to learn concepts in the way in which they build on each
other), we emphasize the iterative, complex nature of SAD as the book unfolds.

viii Preface

fpref.qxd 11/23/11 1:27 PM Page viii

The presentation of the material should align well with courses that encourage stu-
dents to work on projects, because it presents topics as students need to apply them.

Graphic Organization

The underlying metaphor for the book is doing SAD through a project. We have tried
to emphasize this graphically throughout the book so that students can better under-
stand how the major elements in the SDLC are related to each other. First, at the start
of every major phase of the system development life cycle, we present a graphic
illustration showing the major deliverables that will be developed and added to the
“project binder” during that phase. Second, at the start of each chapter, we present a
checklist of key tasks or activities that will be performed to produce the deliverables
associated with this chapter. These graphic elements—the binder of deliverables tied
to each phase and the task checklist tied to each chapter—can help students better
understand how the tasks, deliverables, and phases are related to and flow from one
to another.

Finally, we have highlighted important practical aspects throughout the book
by marking boxes and illustrations with a “push pin.” These topics are particularly
important in the practical day-to-day life of systems analysts and are the kind of
topics that junior analysts should pull out of the book and post on the bulletin board
in their office to help them avoid costly mistakes

WHAT’S NEW IN THE FIFTH EDITION

The fifth edition contains several significant enhancements, including new and
updated content, a new Spotlight on Ethics feature, a new example scenario, and
many new Concepts in Action.

In Part 1, Planning, the discussion of the role of the systems analyst has been
revised, with new emphasis on the business analyst role, plus an overview of poten-
tial career path options. New to this edition, Business Process Management (BPM)
is introduced to provide a context for how well-managed organizations continu-
ously seek to refine and enhance business processes. BPM frequently identifies the
need for new or revised information systems to support business processes. This
important connection between BPM and information system development pro-
jects is emphasized. The discussion of Business Process Automation (BPA), Busi-
ness Process Improvement (BPI), and Business Process Reengineering (BPR) has
been moved to Chapter 1 to help classify the types of projects that may be identi-
fied from BPM initiatives. The section on Economic Feasibility has been revised
and reorganized in response to requests from adopters of the book. We have moved
the explanation of the detailed calculations associated with project cash flow analy-
sis and measures of project value from an appendix into Chapter 1, and have
improved and clarified the discussion to aid student understanding. Finally, we have
expanded our discussion of Agile Development in the section on development
methodologies in order to provide more coverage of this development approach.
This textbook does not attempt to provide complete coverage of Agile Development
methodologies, however.

Part 2, Analysis, has been substantially changed in order to provide a more
rigorous and thorough treatment of Requirements Determination. We provide an

Preface ix

fpref.qxd 11/23/11 1:27 PM Page ix

expanded discussion on the categories of requirements that must be discovered in a
systems development project and how those requirements relate to each other. The
section on Requirement Elicitation techniques includes additional material on JAD
and eJAD. New emphasis is included on how systems analysts not only elicit
requirements, but also must make sense of them by applying Requirements Analy-
sis techniques. This new emphasis is an important change in this edition, as it
enables students to understand the critical role played by the system analyst in inter-
preting and translating business and user requirements into essential functional
requirements for the new system, not just as a “gatherer” of requirements. We have
also added considerably more coverage of Use Case Analysis in Chapter 4. We
believe that written use cases are increasingly more important in clarifying user
requirements and then transforming those requirements into functional require-
ments, and we have revised our discussion of this material to reflect this emphasis.
We have also developed a new example scenario used throughout this section of the
book to introduce and illustrate use cases, process models, and data models.

In Part 3, Design, the software acquisition strategies section has been revised
to include more coverage of application service providers and Software as a Ser-
vice. We have made substantial updates to the Architecture Design material, with
expanded explanation of the Client-Server computing model. We have also
included a discussion of several of the newer architectural concepts, including zero-
client computing, virtualization, and cloud computing.

Throughout the book, the chapter objectives have been revised to reflect more
active learning objectives. Chapter references to outside sources have been updated
to current resources wherever possible. The new Spotlight on Ethics features pro-
vide timely and real ethical dilemmas that confront systems analysts. New Con-
cepts in Action features appear throughout the book to provide updated, real-world
illustrations of the textbook content.

ORGANIZATION OF THIS BOOK

This book is organized by the phases of the systems development life cycle
(SDLC). Each chapter has been written to teach students specific tasks that analysts
need to accomplish over the course of a project, and the deliverables that will be
produced from the tasks. As students complete the book, tasks will be “checked
off ” and deliverables will be completed and filed in a project binder. Along the way,
students will be reminded of their progress by road maps that indicate where their
current task fits into the larger context of SAD.

Part 1 covers the first phase of the SDLC, the Planning Phase. Chapter 1
introduces the SDLC, the roles and skills needed for a project team, project initi-
ation, the systems request, and feasibility analysis. Chapter 2 discusses project
selection, the selection of an SDLC methodology for the project, and project man-
agement, with emphasis on the work plan, staffing plan, project charter, risk
assessment, and tools used to help manage and control the project.

Part 2 presents techniques needed during the analysis phase. In Chapter 3,
students are introduced to requirements determination and are taught a variety of
analysis techniques to help with business process automation, business process
improvement, and business process reengineering. Chapter 4 focuses on use
cases, Chapter 5 covers process models, and Chapter 6 explains data models and
normalization.

x Preface

fpref.qxd 11/23/11 1:27 PM Page x

The Design Phase is covered in Part 3 of the textbook. In Chapter 7, stu-
dents create an alternative matrix that compares custom, packaged, and outsourc-
ing alternatives. Chapter 8 focuses on designing the system architecture, which
includes the architecture design, hardware/software specification, and security
plan. Chapter 9 focuses on the user interface and presents interface design; in this
chapter, students learn how to create use scenarios, the interface structure dia-
gram, interface standards, and interface prototypes. Finally, data storage design
and program design are discussed in Chapters 10 and 11, which contain informa-
tion regarding the data storage design, the program structure chart, and program
specifications.

The Implementation Phase is presented in Chapters 12 and 13. Chapter 12
focuses on system construction, and students learn how to build and test the system.
It includes information about the test plan and user documentation. Conversion is
covered in Chapter 13, where students learn about the conversion plan, the change
management plan, the support plan, and the project assessment.

Chapter 14 provides a background of object orientation and explains several
key object concepts supported by the standard set of object-modeling techniques
used by systems analysts and developers. Then, we explain how to draw four of the
most effective models in UML: the use case diagram, the sequence diagram, the
class diagram, and the behavioral state machine diagram.

SUPPLEMENTS
(www.wiley.com/college/dennis)

Online Instructors Manual

The instructors manual provides resources to support the instructor both in and out
of the classroom:

• Short experiential exercises can be used to help students experience and
understand key topics in each chapter.

• Short stories have been provided by people working in both corporate and
consulting environments for instructors to insert into lectures to make con-
cepts more colorful and real.

• Additional mini-cases for every chapter allow students to perform some of
the key concepts that were learned in the chapter.

• Answers to end-of-chapter questions and exercises are provided.

Online Instructor’s Resources

• PowerPoint slides are provided that instructors can tailor to their classroom
needs and that students can use to guide their reading and studying activities.

• Test Bank includes a variety of questions ranging from multiple choice to
essay-style questions. A computerized version of the Test Bank is also available.

WebCT and Blackboard Courses

These online course management systems are tools that facilitate the organization
and delivery of course materials on the Web. Easy to use, they provide powerful
communication, loaded content, flexible course administration, and sophisticated
online testing and diagnostic systems.

Preface xi

fpref.qxd 11/23/11 1:27 PM Page xi

Student Web Site

• Web Resources provide instructors and students with Web links to resources
that reinforce the major concepts in each chapter. See http://www.wiley.com/
college/dennis.

• Web Quizzes help students prepare for class tests.

CASE Software

Two CASE (computer-aided software engineering) tools can be purchased with the text:
1. Visible Systems Corporation’s Visible Analyst Student Edition.
2. Microsoft’s Visio

Contact your local Wiley sales representative for details, including pricing and order-
ing information.

Project Management Software

A 60-day trial edition of Microsoft Project can be purchased with the textbook.
Note that Microsoft has changed their policy and no longer offers the 120-day trial
previously available. Contact your local Wiley sales representative for details.

Another option now available to education institutions adopting this Wiley
textbook. is a free 3-year membership to the MSDN Academic Alliance. The
MSDN AA is designed to provide the easiest and most inexpensive way for academic
departments to make the latest Microsoft software available in labs, classrooms,
and on student and instructor PCs.

Microsoft Project software is available through this Wiley and Microsoft
publishing partnership, free of charge with the adoption of any qualified Wiley text-
book. Each copy of Microsoft Project is the full version of the software, with no
time limitation, and can be used indefinitely for educational purposes. Contact
your Wiley sales representative for details. For more information about the MSDN
AA program, go to http://msdn.microsoft.com/academic/.

ACKNOWLEDGMENTS

We extend our thanks to the many people who contributed to the preparation of this
fourth and past editions. We are indebted to the staff at John Wiley & Sons for their
support, including Beth Lang Golub, Executive Editor, Elizabeth Mills, Editorial
Assistant, Christopher Ruel, Marketing Manager, Joyce Poh, Senior Production
Editor, and Maureen Eide, Senior Designer.

We would like to thank the following reviewers and focus-group participants
for their helpful and insightful comments:

Name School
Qiyang Chen Montclair State University
Wayne E. Pauli Dakota State University
Anthony Scime The College at Brockport
Kathleen Hunter Walden University, School of Nursing
Ram B. Misra Montclair State University
Marisa Wilson Walden
Nancy Russo Northern Illinois University
Shouhong Wang University of Massachusetts Dartmouth

xii Preface

fpref.qxd 11/23/11 1:27 PM Page xii

James Anthos South University
Elaine Seeman East Carolina University
Seyed Roosta Albany State University
Gunes Koru UMBC
Supapon Cheniam Chulalongkorn University
Samuel C. Yang California State University Fullerton
Marisa Wilson Walden
Corrinne Fiedler University of Minnesota
Richard Gram WPI
Patty Santoianni Sinclair Community College
Jeff Tirschman Towson University
Arpan Jani University of Wisconsin—River Falls
Murugan Anandarajan Drexel University
Sharad Maheshwari Hampton University
Anthony Norcio UMBC
Michael Lapke Rhode Island College
Younghwa Gabe Lee University of Kansas
Bruce Hunt Cal State Fullerton
Peter Otto Union Graduate College
Chuck Downing Northern Illinois University
Younghwa Gabe Lee University of Kansas
Dr Wolfgang Garn University of Surrey
Alice Shemi University of Botswana
Pawel Kalczynski Cal State Fullerton
Alan Anderson Gwinnett Technical Institute
Michael Martel Ohio University—Main Campus
Lawrence Feidelman FA U
Robert Nields Cincinnati State Technical and Community College

We would like to thank the many practioners from private practice, public organi-
zations, and consulting firms for helping us add a real-world component to this pro-
ject. A special remembrance goes to Matt Anderson from Accenture, who was a
role model for all who knew him—who demonstrated excellence in systems analy-
sis and design and in life in general.

Thanks also to our families and friends for their patience and support along the way,
especially to Christopher, Haley, and Hannah Wixom; Alec Dennis; and Richard Jones.

Alan Dennis Barb Wixom
ardennis@indiana.edu bwixom@mindspring.com

Robby Roth
Roberta.Roth@uni.edu

Preface xiii

fpref.qxd 11/23/11 1:27 PM Page xiii

fpref.qxd 11/23/11 1:27 PM Page xiv

This page is intentionally left blank

BRIEF CONTENTS

Preface v

PART ONE PLANNING PHASE 3

CHAPTER 1 THE SYSTEMS ANALYST AND INFORMATION SYSTEMS DEVELOPMENT 5
CHAPTER 2 PROJECT SELECTION AND MANAGEMENT 45

PART TWO ANALYSIS PHASE 99

CHAPTER 3 REQUIREMENTS DETERMINATION 101
CHAPTER 4 USE CASE ANALYSIS 147
CHAPTER 5 PROCESS MODELING 183
CHAPTER 6 DATA MODELING 223

PART THREE DESIGN PHASE 257

CHAPTER 7 MOVING INTO DESIGN 259
CHAPTER 8 ARCHITECTURE DESIGN 281
CHAPTER 9 USER INTERFACE DESIGN 313
CHAPTER 10 PROGRAM DESIGN 365
CHAPTER 11 DATA STORAGE DESIGN 405

PART FOUR IMPLEMENTATION PHASE 443

CHAPTER 12 MOVING INTO IMPLEMENTATION 445
CHAPTER 13 TRANSITION TO THE NEW SYSTEM 471
CHAPTER 14 THE MOVEMENT TO OBJECTS 503

ftoc.qxd 11/23/11 1:27 PM Page xv

ftoc.qxd 11/23/11 1:27 PM Page xvi

This page is intentionally left blank

Preface v

PART ONE PLANNING PHASE 3

CHAPTER 1 THE SYSTEMS ANALYST AND INFORMATION
SYSTEMS DEVELOPMENT 5

Introduction 6
The Systems Analyst 8

Systems Analyst Skills 8
Systems Analyst Roles 9

The Systems Development Life Cycle 10
Planning 13
Analysis 13
Design 14
Implementation 15

Project Identification and Initiation 15
System Request 18
Applying the Concepts at Tune Source 20

Feasibility Analysis 23
Technical Feasibility 24
Economic Feasibility 25
Organizational Feasibility 32
Applying the Concepts at Tune Source 34

Summary 37
Appendix 1A—Detailed Economic Feasibility Analysis for Tune Source 41

CHAPTER 2 PROJECT SELECTION AND MANAGEMENT 45

Introduction 46
Project Selection 47

Applying the Concepts at Tune Source 48
Creating the Project Plan 51

Project Methodology Options 51

CONTENTS

ftoc.qxd 11/23/11 1:27 PM Page xvii

Selecting the Appropriate Development Methodology 59
Estimating the Project Time Frame 61
Developing the Work Plan 63

Staffing The Project 65
Staffing Plan 65
Coordinating Project Activities 70

Managing and Controlling The Project 73
Refining Estimates 74
Managing Scope 75
Timeboxing 77
Managing Risk 78

Applying The Concepts At Tune Source 80
Staffing the Project 81
Coordinating Project Activities 81

Summary 84
Appendix 2A: The Function Point Approach 89
Appendix 2B: Project Management Tools: The Gantt Chart

and PERT Chart 94
Gantt Chart 94
PERT Chart 94

PART TWO ANALYSIS PHASE 99

CHAPTER 3 REQUIREMENTS DETERMINATION 101

Introduction 102
The Analysis Phase 102
Requirements Determination 104

What Is a Requirement? 104
The Process of Determining Requirements 107
The Requirements Definition Statement 109

Requirements elicitation Techniques 111
Requirements Elicitation in Practice 111
Interviews 112
Joint Application Development (JAD) 119
Questionnaires 123
Document Analysis 126
Observation 126
Selecting the Appropriate Techniques 128

Requirements Analysis Strategies 130
Problem Analysis 130
Root Cause Analysis 130
Duration Analysis 132
Activity-Based Costing 133
Informal Benchmarking 133
Outcome Analysis 134
Technology Analysis 134
Activity Elimination 136
Comparing Analysis Strategies 136

xviii Contents

ftoc.qxd 11/23/11 1:27 PM Page xviii

Applying The Concepts At Tune Source 136
Eliciting and Analyzing Requirements 136
Requirements Definition 137
System Proposal 137

Summary 139

CHAPTER 4 USE CASE ANALYSIS 147

Introduction 148
Use Cases 149

Elements of a Use Case 150
Alternative Use Case Formats 154
Use Cases and the Functional Requirements 156
Use Cases and Testing 156
Building Use Cases 157

Applying The Concepts At Tune Source 172
Identifying the Major Use Cases 172
Elaborating on the Use Cases 173

Summary 177

CHAPTER 5 PROCESS MODELING 183

Introduction 184
Data Flow Diagrams 185

Reading Data Flow Diagrams 185
Elements of Data Flow Diagrams 187
Using Data Flow Diagrams to Define Business Processes 189
Process Descriptions 193

Creating Data Flow Diagrams 193
Creating the Context Diagram 194
Creating Data Flow Diagram Fragments 196
Creating the Level 0 Data Flow Diagram 199
Creating Level 1 Data Flow Diagrams (and Below) 199
Validating the Data Flow Diagrams 206

Applying the Concepts At Tune Source 210
Creating the Context Diagram 210
Creating Data Flow Diagram Fragments 210
Creating the Level 0 Data Flow Diagram 211
Creating Level 1 Data Flow Diagrams (and Below) 211
Validating the Data Flow Diagrams 217

Summary 217

CHAPTER 6 DATA MODELING 223

Introduction 224
The Entity Relationship Diagram 224

Reading an Entity Relationship Diagram 225
Elements of an Entity Relationship Diagram 226
The Data Dictionary and Metadata 230

Contents xix

ftoc.qxd 11/23/11 1:27 PM Page xix

Creating An Entity Relationship Diagram 233
Building Entity Relationship Diagrams 233
Advanced Syntax 235
Applying the Concepts at Tune Source 236

Validating An Erd 240
Design Guidelines 240
Normalization 243
Balancing Entity Relationship Diagrams with Data Flow Diagrams 243

Summary 245
Appendix 6A: Normalizing the Data Model 250

PART THREE DESIGN PHASE 257

CHAPTER 7 MOVING INTO DESIGN 259

Introduction 260
Transition from Requirements to Design 260
System Acquisition Strategies 262

Custom Development 264
Packaged Software 265
Outsourcing 267

Influences on the Acquisition Strategy 270
Business Need 270
In-House Experience 271
Project Skills 271
Project Management 272
Time Frame 272

Selecting an Acquisition Strategy 272
Alternative Matrix 274
Applying the Concepts at Tune Source 275

Summary 277

CHAPTER 8 ARCHITECTURE DESIGN 281

Introduction 282
Elements of an Architecture Design 282

Architectural Components 282
Client–Server Architectures 283
Client–Server Tiers 284
Less Common Architectures 286
Advances in Architecture Configurations 288
Comparing Architecture Options 290

Creating An Architecture Design 290
Operational Requirements 291
Performance Requirements 292
Security Requirements 294
Cultural and Political Requirements 299
Designing the Architecture 302

Hardware And Software Specification 304

xx Contents

ftoc.qxd 11/23/11 1:27 PM Page xx

Applying The Concepts At Tune Source 306
Creating an Architecture Design 306
Hardware and Software Specification 308

Summary 308

CHAPTER 9 USER INTERFACE DESIGN 313

Introduction 314
Principles for User Interface Design 314

Layout 315
Content Awareness 317
Aesthetics 319
User Experience 321
Consistency 322
Minimize User Effort 322

User Interface Design Process 323
Use Scenario Development 324
Interface Structure Design 325
Interface Standards Design 327
Interface Design Prototyping 329
Interface Evaluation 332

Navigation Design 334
Basic Principles 334
Types of Navigation Controls 335
Messages 338

Input Design 340
Basic Principles 341
Types of Inputs 343
Input Validation 345

Output Design 347
Basic Principles 347
Types of Outputs 348
Media 349

Applying The Concepts At Tune Source 351
Use Scenario Development 351
Interface Structure Design 351
Interface Standards Design 353
Interface Template Design 353
Design Prototyping 354
Interface Evaluation 355

Summary 357

CHAPTER 10 PROGRAM DESIGN 365

Introduction 366
Moving from Logical to Physical Process Models 366

The Physical Data Flow Diagram 366
Applying the Concepts at Tune Source 369

Designing Programs 371
Structure Chart 374

Contents xxi

ftoc.qxd 11/23/11 1:27 PM Page xxi

Syntax 374
Building the Structure Chart 377
Applying the Concepts at Tune Source 380
Design Guidelines 384

Program Specification 391
Syntax 391
Applying the Concepts at Tune Source 394

Summary 397

CHAPTER 11 DATA STORAGE DESIGN 405

Introduction 406
Data Storage Formats 406

Files 407
Databases 409
Selecting a Storage Format 415
Applying the Concepts at Tune Source 417

Moving from Logical to Physical Data Models 418
The Physical Entity Relationship Diagram 418
Revisiting the CRUD Matrix 421
Applying the Concepts at Tune Source 421

Optimizing Data Storage 424
Optimizing Storage Efficiency 425
Optimizing Access Speed 427
Estimating Storage Size 432
Applying the Concepts at Tune Source 435

Summary 436

PART FOUR IMPLEMENTATION PHASE 443

CHAPTER 12 MOVING INTO IMPLEMENTATION 445

Introduction 446
Managing the Programming Process 446

Assigning Programming Tasks 446
Coordinating Activities 447
Managing the Schedule 448

Testing 449
Test Planning 451
Unit Tests 454
Integration Tests 454
System Tests 454
Acceptance Tests 456

Developing Documentation 456
Types of Documentation 457
Designing Documentation Structure 458
Writing Documentation Topics 460
Identifying Navigation Terms 461

xxii Contents

ftoc.qxd 11/23/11 1:27 PM Page xxii

Applying the Concepts at Tune Source 463
Managing Programming 463
Testing 463
Developing User Documentation 466

Summary 467

CHAPTER 13 TRANSITION TO THE NEW SYSTEM 471

Introduction 472
Making the Transition to the New System 472
The Migration Plan 473

Selecting the Conversion Strategy 474
Preparing a Business Contingency Plan 478
Preparing the Technology 480
Preparing People for the New System 481
Understanding Resistance to Change 481
Revising Management Policies 483
Assessing Costs and Benefits 484
Motivating Adoption 486
Enabling Adoption: Training 488

Postimplementation Activities 491
System Support 491
System Maintenance 492
Project Assessment 495

Applying the Concepts at Tune Source 496
Implementation Process 497
Preparing the People 497
Postimplementation Activities 497

Summary 498

CHAPTER 14 THE MOVEMENT TO OBJECTS 503

Introduction 504
Basic Characteristics of Object-Oriented Systems 505

Classes and Objects 505
Methods and Messages 506
Encapsulation and Information Hiding 506
Inheritance 507
Polymorphism and Dynamic Binding 509

Object-Oriented Systems Analysis and Design 510
Use Case Driven 511
Architecture Centric 511
Iterative and Incremental 511
Benefits of Object-Oriented Systems Analysis and Design 511

Unified Modeling Language, Version 2.0 513
The Rational Unified Process (RUP) 514
Four Fundamental UML Diagrams 514

Contents xxiii

ftoc.qxd 11/23/11 1:27 PM Page xxiii

Use Case Diagram 517
Elements of a Use Case Diagram 517
Creating a Use Case Diagram 520

Class Diagram 521
Elements of a Class Diagram 522
Simplifying Class Diagrams 527
Creating a Class Diagram 527

Sequence Diagram 530
Creating a Sequence Diagram 533

Behavioral State Machine Diagram 535
Elements of a Behavioral State Machine Diagram 535
Creating a Behavioral State Machine Diagram 537

Summary 539

INDEX 547

xxiv Preface

ftoc.qxd 11/23/11 1:27 PM Page xxiv

SYSTEM
ANALYSIS AND

DESIGN
Fifth Edition

ftoc.qxd 11/23/11 1:27 PM Page 1

PA
RT

 F
O

U
R:

 I
M

PL
EM

EN
TA

TI
O

N
PA

RT
 T

H
RE

E:
 D

ES
IG

N
PA

RT
 T

W
O

:
AN

AL
YS

IS
PA

RT
 O

N
E:

 P
LA

N
N

IN
G

Initial System
Request
Fig 1-5

CHAPTER

1

Use Cases

Process
Models

Alternative Matrix

Architecture
Design

Interface Design

Hardware/Software
Specification

Physical Process
Model

Physical Data
Model

Program Design

Database & File
Specification

Data
Model

Requirements
Definition

Feasibility
Study

Fig 1-15

CHAPTER

1

Project
Plan

Fig 2-23, 2-24

CHAPTER

2

Completed
Programs

Test Plan

Documentation

Training Plan

Problem Report CHAPTER

13

CHAPTER

13

Change Request CHAPTER

13

Migration Plan

Change
Management Plan

Support
Plan

CHAPTER
13

PROJECT PLAN

SYSTEM PROPOSAL

SYSTEM SPECIFICATION

INSTALLED SYSTEM
CHAPTER
13

CHAPTER
13

CHAPTER
12

CHAPTER
12

CHAPTER
11

CHAPTER
10

CHAPTER
10

CHAPTER
9

CHAPTER
8

CHAPTER
8

CHAPTER
7

CHAPTER
3

CHAPTER
5 CHAPTER

4

CHAPTER
6

CHAPTER
11

CHAPTER
12

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 9/21/11 11:14 AM Page 2

Project
Management

Project
Initiation

W
orkplan

Staffing
Plan

Analysis Plan
Initial System

Request

Standards
Risk

Assessm
ent

CHAPTER

2

CHAPTER

1

The Planning Phase
is the fundamental two-step process

of understanding why
an information system should be developed

and creating a plan for how
the project team will develop it.

The deliverables from both steps
are combined into the project plan,

which is presented to the project sponsor and
approval committee at the end of the

Planning Phase. They decide whether it is
advisable to proceed with the system

development project.

P A R T O N E
PLANNING

PHASE
PLANNING

PHASE

Feasibility
Analysis

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 12/5/11 2:22 PM Page 3

P L A N N I N G

T A S K C H E C K L I S T

Identify project.

Develop systems request.

Analyze technical feasibility.
Analyze economic feasibility.

Analyze organizational feasibility.

Perform project selection review.

Estimate project time.

Identify project tasks.

Create work breakdown structure.

Create PERT charts.

Create Gantt charts.

Manage scope.

Staff project.

Create project charter.

Set up CASE repository.

Develop standards.

Begin documentation.

Assess and manage risk.

P L A N N I N G A N A L Y S I S D E S I G N

▼

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 12/5/11 2:22 PM Page 4

I M P L E M E N TAT I O N

his chapter introduces the role of the systems analyst in information systems devel-
opment projects. First, the fundamental four-stage systems development life cycle

(planning, analysis, design, and implementation) is established as the basic framework for
the IS development process. Next, ways in which organizations identify and initiate poten-
tial projects are discussed. The first steps in the process are to identify a project that will
deliver value to the business and to create a system request that provides the basic infor-
mation about the proposed system. Next, the analysts perform a feasibility analysis to
determine the technical, economic, and organizational feasibility of the system.

OBJECTIVES

■ Explain the role played in information systems development by the systems
analyst.

■ Describe the fundamental systems development life cycle and its four phases.
■ Explain how organizations identify IS development projects.
■ Explain the importance of linking the information system to business needs.
■ Be able to create a system request.
■ Describe technical, economic, and organizational feasibility assessment.
■ Be able to perform a feasibility analysis.

CHAPTER OUTLINE

C H A P T E R 1

T

THE SYSTEMS ANALYST
AND INFORMATION

SYSTEMS DEVELOPMENT

Introduction
The Systems Analyst

Systems Analyst Skills
Systems Analyst Roles

The Systems Development Life Cycle
Planning
Analysis
Design
Implementation

Project Identification and Initiation
System Request
Applying the Concepts at Tune Source

Feasibility Analysis
Technical Feasibility
Economic Feasibility
Organizational Feasibility
Applying the Concepts at Tune Source

Appendix 1A—Detailed Economic
Feasibility Analysis for Tune Source

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 9/21/11 11:14 AM Page 5

INTRODUCTION

The systems development life cycle (SDLC) is the process of determining how an
information system (IS) can support business needs, designing the system, building
it, and delivering it to users. If you have taken a programming class or have pro-
grammed on your own, this probably sounds pretty simple. In the real world, how-
ever, it is not so easy.

In 2010, an estimated $2.4 trillion was spent by organizations and govern-
ments on IT hardware, software, and services worldwide. This spending level was
projected to increase by 3.5% in 2011.1 Unfortunately, a study conducted in 2008
found success is “improbable” in 68% of technology projects.2 Many of the systems
that aren’t totally abandoned are delivered to the users significantly late, cost far
more than expected, and have fewer features than originally planned.

A 2009 study attempting to quantify the costs of this failure rate estimated a toll
on the global economy of $6.2 trillion.3 While this specific outcome has been ques-
tioned by some, the point remains that the cost of IT project failures is staggering both
in terms of the proportion of projects that fail and the costs of those failures.4

Today, both businesses and governments experience embarrassing and costly
errors in their information systems. Here is a sample of just a few notable software
glitches that occurred in 2010:

■ A software error resulted in Toys R Us double billing some shoppers for pur-
chases made on Black Friday.

■ Verizon Wireless had to refund $50 million to customers due to billing system
errors.

■ Chase banking customers were unable to access their online banking accounts
for over 24 hours due to a computer glitch.

■ McAfee’s anti-virus software product caused its users’ computers to lock up.
McAfee offered affected customers a free 2-year subscription and reimbursement
for costs incurred to repair the machines.

■ A U.S. Navy drone (unmanned aerial vehicle) reportedly flew into restricted air
space near Washington D.C. when operators lost control for about 20 minutes
due to a software issue.5

Although we would like to promote this book as a “silver bullet” that will
keep you from experiencing failed IS projects, we must admit that such a silver
bullet guaranteeing IS development success does not exist.6 Instead, this book will

6 Chapter 1 The Systems Analyst and Information Systems Development

1 http://www.gartner.com/it/page.jsp?id=1419513; accessed February, 2011.
2 http://www.iag.biz/images/resources/iag business analysis benchmark - full report.pdf; accessed February,
2011.
3 http://www.objectwatch.com/whitepapers/ITComplexityWhitePaper.pdf; accessed February, 2011.
4 http://www.zdnet.com/blog/projectfailures/critique-62-trillion-global-IT-failure-stats/7695?tag=mantle_
skin;content; accessed February, 2011.
5 http://www.zdnet.com/blog/projectfailures/ten-great-software-glitches-for-2010/11941?tag=mantle_skin;
content; accessed February, 2011.
6 The idea of using the silver bullet metaphor was first described in a paper by Frederick Brooks. See Frederick
P. Brooks, Jr., “No Silver Bullet—Essence and Accident in Software Engineering,” Information Processing
1986, the Proceedings of the IFIP Tenth World Computing Conference, H.-J. Kugler (ed.), 1986: 1069–76.

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 9/21/11 11:14 AM Page 6

provide you with many fundamental concepts and practical techniques that you
can use to improve the probability of success.

The key person in the SDLC is the systems analyst, who analyzes the business
situation, identifies opportunities for improvements, and designs an information
system to implement the improvements. Many systems analysts view their profes-
sion as one of the most interesting, exciting, and challenging jobs around. As a systems
analyst, you will work as a team with a variety of people, including business and
technical experts. You will feel the satisfaction of seeing systems that you designed
and developed make a significant positive business impact, while knowing that your
unique skills helped make that happen.

It is important to remember that the primary objective of the systems analyst
is not to create a wonderful system. The primary goal is to create value for the organ-
ization, which for most companies means increasing profits. (Government agencies
and not-for-profit organizations measure value differently.) Many failed systems
were abandoned because the analysts tried to build a wonderful system without
clearly understanding how the system would support the organization’s goals,
improve business processes, and integrate with other information systems to provide
value. An investment in an information system is like any other investment, such as
a new machine tool. The goal is not to acquire the tool, because the tool is simply a
means to an end; the goal is to enable the organization to perform work better so
that it can earn greater profits or serve its constituents more effectively.

This book will introduce you to the fundamental skills you will need to be a
systems analyst. This is a pragmatic book that discusses best practices in systems
development; it does not present a general survey of systems development that

Introduction 7

A significant proportion of IT projects
fail to fulfill their original objectives, resulting in wasted
resources and a damaged reputation for the responsible
IT department. In many cases, the causes of the failure
are organizational issues, not technical issues.

Qantas, the Australian national airline, has
endured two high-profile IT failures in recent years. In
1995, Project eQ, a 10-year technology services con-
tract with IBM, was cancelled after four years, at a cost
of $200 million. Poor planning contributed to the failure
to upgrade a complex and unwieldy IT infrastructure
saddled with 700-odd applications written in older pro-
gramming languages.

In 2008, Qantas canceled Jetsmart, a $40 million
parts-management system implementation, due in part to
a dispute with the unionized users (aircraft mechanics) of
the system. The union advised its members not to assist
with the implementation, claiming the software unneces-
sarily increased the members’ workload.

An analysis of these IT failures reveals several con-
tributing factors. First, Qantas faced the challenges of a
complicated technical infrastructure and outdated legacy
applications. More significantly, however, was the failure of
company leadership to understand basic IT issues. In pub-
lic statements, the company CFO seemed not to care about
the user perspectives on new software, preferring instead to
put in what management thought was appropriate. This atti-
tude, in part, led to union problems and claims of poorly
designed, hard-to-use software and inadequate training.

Aging applications and an unwieldy technical
infrastructure are challenges faced by many organiza-
tions today. But the senior-management attitude that
seemingly disregards the views of software users casts
serious questions about Qantas’ prospects for IT project
success in the future.

Source: http:/blogs.zdnet.com/projectfailures/, February 29,
2008.

1-A MANAGERIAL CAUSES OF IT FAILURES

IN ACTION

CONCEPTS

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 9/21/11 11:14 AM Page 7

exposes you to everything about the topic. By definition, systems analysts do things
and challenge the current way that an organization works. To get the most out of
this book, you will need to actively apply the ideas and concepts in the examples
and in the “Your Turn” exercises that are presented throughout to your own systems
development project. This book will guide you through all the steps for delivering
a successful information system. In the text, we illustrate how one organization,
called Tune Source, applies the steps in one project, developing a Web-based digital
music sales system. (Other illustrations of successful IS projects are provided on
the course Web site.) By the time you finish the book, you won’t be an expert ana-
lyst, but you will be ready to start building systems for real.

In this chapter, we first introduce the role of the systems analyst in informa-
tion systems development projects. We discuss the wide range of skills needed to
be successful in this role, and we explain various specialties that systems analysts
may develop. We then introduce the basic SDLC that information systems projects
follow. This life cycle is common to all projects and serves as a framework for
understanding how information systems projects are accomplished. We discuss how
projects are identified and initiated within an organization and how they are initially
described in a system request. Finally, we describe the feasibility analysis that is
performed, which drives the decision whether to proceed with the project.

THE SYSTEMS ANALYST

The systems analyst plays a key role in information systems development projects.
The systems analyst works closely with all project team members so that the team
develops the right system in an effective way. Systems analysts must understand
how to apply technology to solve business problems. In addition, systems analysts
may serve as change agents who identify the organizational improvements needed,
design systems to implement those changes, and train and motivate others to use
the systems.

Systems Analyst Skills

New information systems introduce change to the organization and its people.
Leading a successful organizational change effort is one of the most difficult jobs
that someone can do. Understanding what to change, knowing how to change it,
and convincing others of the need for change require a wide range of skills. These
skills can be broken down into six major categories: technical, business, analytical,
interpersonal, management, and ethical.

Analysts must have the technical skills to understand the organization’s existing
technical environment, the new system’s technology foundation, and the way in which
both can be fit into an integrated technical solution. Business skills are required to
understand how IT can be applied to business situations and to ensure that the IT deliv-
ers real business value. Analysts are continuous problem solvers at both the project and
the organizational level, and they put their analytical skills to the test regularly.

Often, analysts need to communicate effectively, one-on-one with users and
business managers (who often have little experience with technology) and with pro-
grammers (who often have more technical expertise than the analyst does). They
must be able to give presentations to large and small groups and to write reports.
Not only do they need to have strong interpersonal abilities, but they also need to

8 Chapter 1 The Systems Analyst and Information Systems Development

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 9/21/11 11:14 AM Page 8

manage people with whom they work, and they must manage the pressure and risks
associated with unclear situations.

Finally, analysts must deal fairly, honestly, and ethically with other project team
members, managers, and system users. Analysts often deal with confidential informa-
tion or information that, if shared with others, could cause harm (e.g., dissent among
employees); it is important for analysts to maintain confidence and trust with all people.

Systems Analyst Roles

As organizations and technology have become more complex, most large organiza-
tions now build project teams that incorporate several analysts with different, but
complementary, roles. In smaller organizations, one person may play several of
these roles. Here we briefly describe these roles and how they contribute to a sys-
tems development project.

The systems analyst role focuses on the IS issues surrounding the system.
This person develops ideas and suggestions for ways that IT can support and
improve business processes, helps design new business processes supported by IT,
designs the new information system, and ensures that all IS standards are main-
tained. The systems analyst will have significant training and experience in analysis
and design and in programming.

The Systems Analyst 9

Suppose you decide to become an
analyst after you graduate. What type of analyst would
you most prefer to be? What type of courses should you
take before you graduate? What type of summer job or
internship should you seek?

QUESTION:
Develop a short plan that describes how you will prepare

for your career as an analyst.

1-1 BEING AN ANALYSTY O U R

T U R N

James is a systems analyst on a new account manage-
ment system for Hometown National Bank. At a recent
meeting with the project sponsor, James learned about
some new ideas for the system that were not a part of the
original project scope. Specifically, the bank’s marketing
director has asked that some of the data that will be col-
lected by the new system from customers who open new
checking and savings accounts also be used as the basis
of a marketing campaign for various loan products the
bank offers.

James is uncomfortable with the request. He is not
sure the bank has the right to use a person’s data for pur-
poses other than the original intent. Who “owns” this
data, the bank that collected it as a part of a customer
opening an account, or the customer who the data
describes? Should James insist that the customers give
authorization to use “their” data in this way? Or should
he say nothing and ignore the issue? Is it necessary (or
appropriate) for a systems analyst to be an ethical watch-
dog in a systems development project? Why or why not?

SPOTLIGHT ON ETHICS-1

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 9/21/11 11:14 AM Page 9

The business analyst role focuses on the business issues surrounding the sys-
tem. This person helps to identify the business value that the system will create,
develops ideas for improving the business processes, and helps design new business
processes and policies. The business analyst will have business training and expe-
rience, plus knowledge of analysis and design.

The requirements analyst role focuses on eliciting the requirements from the
stakeholders associated with the new system. As more organizations recognize the
critical role that complete and accurate requirements play in the ultimate success of
the system, this specialty has gradually evolved. Requirements analysts understand
the business well, are excellent communicators, and are highly skilled in an array
of requirements elicitation techniques (discussed in Chapter 3).

The infrastructure analyst role focuses on technical issues surrounding the ways
the system will interact with the organization’s technical infrastructure (hardware,
software, networks, and databases). This person ensures that the new information
system conforms to organizational standards and helps to identify infrastructure
changes that will be needed to support the system. The infrastructure analyst will
have significant training and experience in networking, database administration,
and various hardware and software products. Over time, an experienced infrastruc-
ture analyst may assume the role of software architect, who takes a holistic view of
the organization’s entire IT environment and guides application design decisions
within that context.

The change management analyst role focuses on the people and management
issues surrounding the system installation. This person ensures that adequate doc-
umentation and support are available to users, provides user training on the new
system, and develops strategies to overcome resistance to change. The change man-
agement analyst will have significant training and experience in organizational
behavior and specific expertise in change management.

The project manager role ensures that the project is completed on time and
within budget and that the system delivers the expected value to the organization.
The project manager is often a seasoned systems analyst who, through training and
experience, has acquired specialized project management knowledge and skills.
More will be said about the project manager in the next chapter.

The roles and the names used to describe them may vary from organization
to organization. In addition, there is no single typical career path through these
professional roles. Some people may enter the field as a more technically-oriented
programmer/analyst. Others may enter as a business-oriented functional specialist
with an interest in applying IT to solve business problems. As shown in Figure 1-1,
those who are interested in the broad field of information systems development may
follow a variety of paths during their career.

THE SYSTEMS DEVELOPMENT LIFE CYCLE

In many ways, building an information system is similar to building a house. First,
the owner describes the vision for the house to the developer. Second, this idea is
transformed into sketches and drawings that are shown to the owner and refined
(often, through several drawings, each improving on the other) until the owner
agrees that the pictures depict what he or she wants. Third, a set of detailed blue-
prints is developed that presents much more specific information about the house

10 Chapter 1 The Systems Analyst and Information Systems Development

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 9/21/11 11:14 AM Page 10

The Systems Development Life Cycle 11

FIGURE 1-1
Career Paths for System Developers

FIGURE 1-2
The Systems Development Life Cycle

(e.g., the layout of rooms, placement of plumbing fixtures and electrical outlets, and
so on). Finally, the house is built following the blueprints—and often with some
changes and decisions made by the owner as the house is erected.

Building an information system using the SDLC follows a similar set of four
fundamental phases: planning, analysis, design, and implementation (Figure 1-2).
Each phase is itself composed of a series of steps, which rely on techniques that
produce deliverables (specific documents and files that explain various elements of
the system). Figure 1-3 provides more detail on the steps, techniques, and deliver-
ables that are included in each phase of the SDLC and outlines how these topics are
covered in this textbook.

Figures 1-2 and 1-3 suggest that the SDLC phases proceed in a logical path
from start to finish. In some projects, this is true. In many projects, however, the
project team moves through the steps consecutively, incrementally, iteratively, or in

Entry-level
business function

specialist

Entry-level
programmer/

analyst

Change
management

analyst

Project
manager

Software
architect

Requirements
analyst

Infrastructure
analyst

Business
analyst

Systems
analyst

More common path

Less common path

ImplementationDesignAnalysisPlanning

Idea
System
Success

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 11/3/11 7:23 AM Page 11

12 Chapter 1 The Systems Analyst and Information Systems Development

Planning 1 Identify opportunity Project identification System request
Focus: Why build 1 Analyze feasibility Technical feasibility Feasibility study

this system? Economic feasibility
How to structure Organizational feasibility

the project? 2 Develop workplan Time estimation Project plan
Primary outputs: Task identification — work plan
— System Request with Work breakdown structure

feasibility study PERT chart
— Project plan Gantt chart

Scope management
2 Staff project Project staffing — Staffing plan

Project charter
2 Control and direct project CASE repository — Standards list

Standards — Risk assessment
Documentation
Timeboxing
Risk management

Analysis 3 Develop analysis strategy Business process automation System proposal
Focus: Who, what, Business process improvement

where, and when for Business process reengineering
this system? 3 Determine business Interview — Requirements definition

Primary output requirements JAD session
— System proposal Questionnaire

Document analysis
Observation

4 Create use cases Use case analysis — Use cases
5 Model processes Data flow diagramming — Process models
6 Model data Entity relationship modeling — Data model

Normalization

Design 7 Design physical system Design strategy Alternative matrix
Focus: How will this System specification

system work? 8 Design architecture Architecture design — Architecture report
Primary output: Hardware & software selection — Hardware & software specification
— System specification 9 Design interface Use scenario — Interface design

Interface structure
Interface standards
Interface prototype
Interface evaluation

10 Design programs Data flow diagramming — Physical process model
Program structure chart — Program design
Program specification

11 Design databases and files Data format selection — Database & file specification
Entity relationship modeling — Physical data model
Denormalization
Performance tuning
Size estimation

Implementation 12 Construct system Programming Test plan
Focus: delivery and Software testing Programs

support of completed Performance testing Documentation
system Migration plan

Primary output: 13 Install system Conversion strategy selection — Conversion plan
— Installed system — Business contingency plan

Training — Training plan
13 Maintain system Support selection Support plan

System maintenance Problem report
Project assessment Change request

13 Post-implementation Post-implementation audit Post-implementation audit report

Phase Chapter Step Technique Deliverable

FIGURE 1-3
Systems Development Life Cycle Phases

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 9/21/11 11:14 AM Page 12

The Systems Development Life Cycle 13

other patterns. Different projects may emphasize different parts of the SDLC or
approach the SDLC phases in different ways, but all projects have elements of these
four phases.

For now, there are two important points to understand about the SDLC. First,
you should get a general sense of the phases and steps that IS projects move through
and some of the techniques that produce certain deliverables. In this section, we
provide an overview of the phases, steps, and some of the techniques that are used
to accomplish the steps. Second, it is important to understand that the SDLC is a
process of gradual refinement. The deliverables produced in the analysis phase pro-
vide a general idea what the new system will do. These deliverables are used as
input to the design phase, which then refines them to produce a set of deliverables
that describes in much more detailed terms exactly how the system should be built.
These deliverables in turn are used in the implementation phase to guide the
creation of the actual system. Each phase refines and elaborates on the work done
previously.

Planning

The planning phase is the fundamental process of understanding why an informa-
tion system should be built and determining how the project team will go about
building it. It has two steps:

1. During project initiation, the system’s business value to the organization is
identified—how will it lower costs or increase revenues? Most ideas for new sys-
tems come from outside the IS area (from the marketing department, accounting
department, etc.) in the form of a system request. A system request presents a
brief summary of a business need, and it explains how a system that supports the
need will create business value. The IS department works together with the per-
son or department generating the request (called the project sponsor) to conduct
a feasibility analysis. The feasibility analysis examines key aspects of the pro-
posed project:

■ The technical feasibility (Can we build it?)
■ The economic feasibility (Will it provide business value?)
■ The organizational feasibility (If we build it, will it be used?)

The system request and feasibility analysis are presented to an information sys-
tems approval committee (sometimes called a steering committee), which decides
whether the project should be undertaken.

2. Once the project is approved, it enters project management. During project
management, the project manager creates a work plan, staffs the project, and
puts techniques in place to help the project team control and direct the proj-
ect through the entire SDLC. The deliverable for project management is a
project plan that describes how the project team will go about developing the
system.

Analysis

The analysis phase answers the questions of who will use the system, what the sys-
tem will do, and where and when it will be used. (See Figure 1-3.) During this
phase, the project team investigates any current system(s), identifies improvement

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 9/21/11 11:14 AM Page 13

opportunities, and develops a concept for the new system. This phase has three
steps:

1. An analysis strategy is developed to guide the project team’s efforts. Such a
strategy usually includes a study of the current system (called the as-is system)
and its problems, and envisioning ways to design a new system (called the to-be
system).

2. The next step is requirements gathering (e.g., through interviews, group work-
shops, or questionnaires). The analysis of this information—in conjunction with
input from the project sponsor and many other people—leads to the development
of a concept for a new system. The system concept is then used as a basis to
develop a set of business analysis models that describes how the business will
operate if the new system were developed. The set typically includes models that
represent the data and processes necessary to support the underlying business
process.

3. The analyses, system concept, and models are combined into a document called
the system proposal, which is presented to the project sponsor and other key
decision makers (e.g., members of the approval committee) who will decide
whether the project should continue to move forward.

The system proposal is the initial deliverable that describes what business
requirements the new system should meet. Because it is really the first step in the
design of the new system, some experts argue that it is inappropriate to use the term
analysis as the name for this phase; some argue a better name would be analysis
and initial design. Because most organizations continue to use the name analysis
for this phase, we will use it in this book as well. It is important to remember, how-
ever, that the deliverable from the analysis phase is both an analysis and a high-level
initial design for the new system.

Design

The design phase decides how the system will operate in terms of the hardware,
software, and network infrastructure that will be in place; the user interface, forms,
and reports that will be used; and the specific programs, databases, and files that
will be needed. Although most of the strategic decisions about the system are made
in the development of the system concept during the analysis phase, the steps in the
design phase determine exactly how the system will operate. The design phase has
four steps:

1. The design strategy must be determined. This clarifies whether the system will
be developed by the company’s own programmers, whether its development will
be outsourced to another firm (usually a consulting firm), or whether the com-
pany will buy an existing software package.

2. This leads to the development of the basic architecture design for the system that
describes the hardware, software, and network infrastructure that will be used. In
most cases, the system will add to or change the infrastructure that already exists
in the organization. The interface design specifies how the users will move
through the system (e.g., by navigation methods such as menus and on-screen
buttons) and the forms and reports that the system will use.

14 Chapter 1 The Systems Analyst and Information Systems Development

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 9/21/11 11:14 AM Page 14

3. The database and file specifications are developed. These define exactly what
data will be stored and where they will be stored.

4. The analyst team develops the program design, which defines the programs that
need to be written and exactly what each program will do.

This collection of deliverables (architecture design, interface design, database
and file specifications, and program design) is the system specification that is used
by the programming team for implementation. At the end of the design phase, the
feasibility analysis and project plan are reexamined and revised, and another
decision is made by the project sponsor and approval committee about whether to
terminate the project or continue. (See Figure 1-3.)

Implementation

The final phase in the SDLC is the implementation phase, during which the system
is actually built (or purchased, in the case of a packaged software design and
installed). This is the phase that usually gets the most attention, because for most
systems it is the longest and most expensive single part of the development process.
This phase has three steps:

1. System construction is the first step. The system is built and tested to ensure
that it performs as designed. Since the cost of fixing bugs can be immense, test-
ing is one of the most critical steps in implementation. Most organizations
spend more time and attention on testing than on writing the programs in the
first place.

2. The system is installed. Installation is the process by which the old system is
turned off and the new one is turned on. There are several approaches that may
be used to convert from the old to the new system. One of the most important
aspects of conversion is the training plan, used to teach users how to use the new
system and help manage the changes caused by the new system.

3. The analyst team establishes a support plan for the system. This plan usually
includes a formal or informal post-implementation review, as well as a systematic
way for identifying major and minor changes needed for the system.

PROJECT IDENTIFICATION AND INITIATION

Where do project ideas come from? A project is identified when someone in the
organization identifies a business need to build a system. Examples of business
needs include supporting a new marketing campaign, reaching out to a new type
of customer, or improving interactions with suppliers. Sometimes, needs arise
from some kind of “pain” within the organization, such as a drop in market share,
poor customer service levels, unacceptable product defect rates, or increased com-
petition. New business initiatives and strategies may be created and a system to
support them is required, or a merger or acquisition may require systems to be
integrated.

Business needs also can surface when the organization identifies unique and
competitive ways of using IT. Many organizations keep an eye on emerging tech-
nology, which is technology that is still being developed and not yet viable for

Project Identification and Initiation 15

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 9/21/11 11:14 AM Page 15

widespread business use. For example, if companies stay abreast of technological
advances such as cloud computing, RFID (radio frequency identification), or Web
2.0, they can develop business strategies that leverage the capabilities of these tech-
nologies and introduce them into the marketplace as a first mover. Ideally, companies
can take advantage of this first mover position by making money and continuing to
innovate while competitors trail behind.

Today, many new information system projects grow out of business process
management (BPM) initiatives. BPM is a methodology used by organizations to
continuously improve end-to-end business processes. Business process manage-
ment can be applied to internal organizational processes and to processes spanning
multiple business partners. By studying and improving their underlying business
processes, organizations can achieve several important benefits, including:

■ enhanced process agility, giving the organization the ability to adapt more rap-
idly and effectively to a changing business environment;

■ improved process alignment with industry “best practices”; and
■ increased process efficiencies as costs are identified and eliminated from process

workflows.

BPM generally follows a continuous cycle of systematically creating, assess-
ing, and altering business processes. Business analysts, with their in-depth business
knowledge, play a particularly important role in business process management by:

1. defining and mapping the steps in a business process,
2. creating ways to improve on steps in the process that add value,
3. finding ways to eliminate or consolidate steps in the process that don’t add value,
4. creating or adjusting electronic workflows to match the improved process maps.

The last step is particularly relevant to our discussion since the need for infor-
mation systems projects is frequently identified here. In fact, the automation of
business processes (termed Business Process Automation), is the foundation of
many information technology systems. In these situations, technology components
are used to complement or substitute for manual information management
processes with the intent of gaining cost efficiencies.

BPM practitioners recognize, however, that it is not always advisable to just
“pave the cow paths” by simply adding automation to speed up existing processes
(step 4 above). In many situations, Business Process Improvement results from
studying the business processes, creating new, redesigned processes to improve the
process workflows, and/or utilizing new technologies enabling new process struc-
tures (steps 2, 3, and 4 above). For example, could a retail store’s checkout process
be redesigned along the lines of the EZPass toll collection system on highways?
Could customers check out and pay with their mobile devices while clerks simply
review the contents of the customer’s shopping bag?

Projects with a goal of business process improvement make moderate
changes to the organization’s operations, and can improve efficiency (i.e., doing
things right) and improve effectiveness (i.e., doing the right things). These types of
projects involve more risk than business process automation projects since more
significant changes are made to the organization’s operations.

Business Process Management may also reveal the need for the complete
revamping of the organization’s business processes, termed Business Process

16 Chapter 1 The Systems Analyst and Information Systems Development

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 9/22/11 10:41 AM Page 16

Reengineering (BPR). BPR means changing the fundamental way in which the
organization operates—“obliterating” the current way of doing business and mak-
ing major changes to take advantage of new ideas and new technology. As you
might expect, BPR projects involve substantial risk due to the significant organiza-
tional and operational changes that result. Top management support and careful
management are critical in these fairly rare types of projects.

Both IT people (i.e., the information systems experts) and business people
(i.e., the subject matter experts) should work closely together to find ways for tech-
nology to support business needs. In this way, organizations can leverage the
exciting technologies available while ensuring that projects are based upon real
business objectives such as increasing sales, improving customer service, and
decreasing operating expenses. Ultimately, information systems need to affect the
organization’s bottom line (in a positive way!).

When a strong business need for an information system is recognized, often as
a result of BPM, a person (or group) who has an interest in the system’s success typ-
ically steps forward. We call this person (or group) the project sponsor. Often, the
project sponsor develops the initial vision of the new system. The project sponsor
works throughout the SDLC to make sure that the project is moving in the right direc-
tion from the perspective of the business and serves as the primary point of contact
for the project team. Usually, the sponsor of the project is from a business function
such as marketing, accounting, or finance; however, members of the IT area also can
sponsor or cosponsor a project.

The size or scope of the project often determines the kind of sponsor who is
involved. A small, departmental system might be sponsored by a single manager;
however, a large, organizational initiative might be sponsored by the entire senior
management team and even the CEO. If a project is primarily technical in nature
(e.g., improvements to the existing IT infrastructure or research into the viability of
an emerging technology), then sponsorship from IT is appropriate. When projects

Project Identification and Initiation 17

A project to streamline the work of
the Commonwealth of Massachusetts Senate and House
of Representatives ended in failure. Ed Bell, veteran CIO
from the financial services industry, was hired as a
consultant to assess the failed project and advise how to
proceed.

After studying the situation, Bell recommended
stepping back and re-thinking the entire situation. Bell
embarked on a project that would create a platform for
the future and integrate all the workflow processes of the
Massachusetts Senate and House. Having just experi-
enced a project failure, legislative leaders and their staffs
were more open-minded to the changes Bell proposed.
Bell emphasized educating the senior leadership team on
what IT does, what a software development life cycle is,
what the roles of a project involve, and stressed that “we

are in this together, or we fail together.” In addition, it
was a time of relative political harmony—both the House
and Senate got along.

Via an intranet, the new system provides workflow
alerts and to-do lists, so legislators know what is required
of them as bills pass through the legislative process.
There is also a completely revamped public website that
will enable the public to stay informed of legislative
action nearly real time.

Bell recognized that the legislative process is built
on relationships and connections. His vision for the sys-
tem was not to try and change the way the legislative
process works, but to complement it.

Linda Tucci, “Business process automation for the business’
sake.” SearchCIO.com, Sept. 30, 2010.

1-B SUCCESS FROM FAILURE . . . EVENTUALLY

IN ACTION

CONCEPTS

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 9/22/11 10:42 AM Page 17

18 Chapter 1 The Systems Analyst and Information Systems Development

A major retail store recently spent
$24 million dollars on a large private satellite communi-
cation system that provides state-of-the-art voice, data,
and video transmission between stores and regional
headquarters. When an item gets sold, the scanner soft-
ware updates the inventory system in real time. As a
result, store transactions are passed on to regional and
national headquarters instantly, which keeps inventory
records up to date. One of the store’s major competitors
has an older system in which transactions are uploaded
at the end of a business day. The first company feels that
its method of instant communication and feedback allows
it to react more quickly to changes in the market, giving
the company a competitive advantage. For example, if
an early winter snowstorm causes stores across the upper

Midwest to start selling high-end (and high-profit) snow
throwers quite quickly, the company’s nearest warehouse
can prepare next-day shipments to maintain a good
inventory balance, while the competitor may not move
quite as quickly and thus lose out on such quick inventory
turnover.

QUESTIONS:
1. Do you think a $24 million investment in a private

satellite communication system could be justified by
a cost-benefit analysis? Could this be done with a
standard communication line (with encryption)?

2. How might the competitor attempt to close the “infor-
mation gap” in this example?

1-2 IMPLEMENTING A SATELLITE DATA NETWORKY O U R

T U R N

have great importance to the business, yet are technically complex, joint sponsor-
ship by both the business and IT functions may be necessary.

The business need drives the high-level business requirements for the system.
Business requirements describe the reasons for developing the system and outline
the benefits it will provide the organization. These requirements need to be explained
at a high level so that the approval committee and, ultimately, the project team under-
stand what the business expects from the final product. Business requirements sum-
marize the features and capabilities the information system will have to include,
such as the ability to collect customer orders online or the ability for suppliers to
receive inventory information as orders are placed and sales are made.

The project sponsor has the insights needed to determine the business value
that will be gained from the system, in both tangible and intangible ways. Tangible
value can be quantified and measured easily (e.g., 2% reduction in operating costs).
An intangible value results from an intuitive belief that the system provides impor-
tant, but hard-to-measure, benefits to the organization (e.g., improved customer
service, a better competitive position).

Once the project sponsor identifies a project that meets an important business
need and he or she can identify the business requirements and business value of
the system, it is time to formally initiate the project. In most organizations, project
initiation begins by preparing a system request.

System Request

A system request is a document that describes the business reasons for building a
system and the value that the system is expected to provide. The project sponsor
usually completes this form as part of a formal system project selection process
within the organization. Most system requests include five elements: project spon-
sor, business need, business requirements, business value, and special issues. (See
Figure 1-4.) The sponsor describes the person who will serve as the primary contact

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 9/21/11 11:14 AM Page 18

Project Sponsor The person who initiates the Several members of the finance
project and who serves as the department
primary point of contact for the Vice president of marketing
project on the business side IT manager

Steering committee
CIO
CEO

Business Need The business-related reason for Increase sales
initiating the system Improve market share

Improve access to information
Improve customer service
Decrease product defects
Streamline supply acquisition

processes

Business Requirements The business capabilities that the Provide onIine access to information
system will provide Capture customer demographic

information
Include product search capabilities
Produce management reports
Include online user support

Business Value The benefits that the system will 3% increase in sales
create for the organization 1% increase in market share

Reduction in headcount by 5*FTEs
$200,000 cost savings from

decreased supply costs
$150,000 savings from removal

of existing system

Special Issues or Issues that are relevant to the Government-mandated deadline
Constraints implementation of the system for May 30

that need to be known by the System needed in time for the
approval committee Christmas holiday season

Top-level security clearance needed
by project team to work with data

* � Full-time equivalentFIGURE 1-4
Elements of the System Request Form

Element Description Examples

At Sprint, network projects originate
from two vantage points—IT and the business units. IT
projects usually address infrastructure and support needs.
The business-unit projects typically begin after a business
need is identified locally, and a business group informally
collaborates with IT regarding how a solution can be
delivered to meet customer expectations.

Once an idea is developed, a more formal request
process begins, and an analysis team is assigned to inves-
tigate and validate the opportunity. This team includes
members from the user community and IT, and they scope
out at a high level what the project will do; create estimates

for technology, training, and development costs; and create
a business case. This business case contains the economic
value added and the net present value of the project.

Of course, not all projects undergo this rigorous
process. The larger projects require more time to be allo-
cated to the analysis team. It is important to remain flexible
and not let the process consume the organization. At the
beginning of each budgetary year, specific capital expen-
ditures are allocated for operational improvements and
maintenance. Moreover, this money is set aside to fund
quick projects that deliver immediate value without going
through the traditional approval process. Don Hallacy

1-C INTERVIEW WITH DON HALLACY, PRESIDENT, TECHNOLOGY SERVICES, SPRINT CORPORATION

IN ACTION

CONCEPTS

Project Identification and Initiation 19

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 9/21/11 11:14 AM Page 19

for the project, and the business need presents the reasons prompting the project. The
business requirements of the project refer to the business capabilities that the sys-
tem will need to have, and the business value describes the benefits that the organ-
ization should expect from the system. Special issues are included on the document
as a catchall category for other information that should be considered in assessing
the project. For example, the project may need to be completed by a specific dead-
line. Project teams need to be aware of any special circumstances that could affect
the outcome of the system.

The completed system request is submitted to the approval committee for
consideration. This approval committee could be a company steering committee
that meets regularly to make information systems decisions, a senior executive who
has control of organizational resources, or any other decision-making body that
governs the use of business resources. The committee reviews the system request
and makes an initial determination, based on the information provided, of whether
to investigate the proposed project or not. If so, the next step is to conduct a feasi-
bility analysis.

Applying the Concepts at Tune Source

Throughout the book, we will apply the concepts in each chapter to a fictitious com-
pany called Tune Source. For example, in this section, we will illustrate the creation
of a system request. Tune Source is a company headquartered in southern California.
Tune Source is the brainchild of three entrepreneurs with ties to the music industry:
John Margolis, Megan Taylor, and Phil Cooper. Originally, John and Phil partnered
to open a number of brick and mortar stores in southern California specializing in
hard-to-find and classic jazz, rock, country, and folk recordings. Megan soon was

20 Chapter 1 The Systems Analyst and Information Systems Development

The South Dakota Department of
Labor, Workers’ Compensation division was sinking
under a load of paper files. As a state agency which
ascertains that employees are treated fairly when they
are injured on the job, the agency had a plethora of
paper files and filing cabinets. If a person (or company)
called to see the status of an injury claim, the clerk who
received the call would have to take a message, get the
paper file, review the status, and call the person back.
Files were stored in huge filing cabinets and were
entered by year and case number (for example, the
415th person injured in 2008 would be in a file num-
bered 08-415). But most callers did not remember the file
number and would give their name and address and the
date of injury. The clerk would look in a spiral notebook
for the last name around the date that was given—and
then find the file number to retrieve the folder. Some folders

were small—possibly documenting a minor cut or minor
injury, and the employee was back to work after a brief
treatment period. Other folders could be very large, with
numerous medical reports from several doctors verifying
the extent of a serious injury and treatment (such as an arm
amputation). A digital solution was suggested—reports
could be submitted online via a secure website. Medical
reports could be submitted electronically, either as a pdf
file or as a faxed digital file. This solution would also
mean that the clerk taking the phone call could query the
database by the person’s name and access the informa-
tion in a matter of seconds.

QUESTION:
Prepare a systems request for this project. Fill in as much

as you can on the basis of the information provided.

1-3 TOO MUCH PAPER, PART 1Y O U R

T U R N

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 9/21/11 11:14 AM Page 20

invited to join the partnership because of her contacts and knowledge of classical
music. Tune Source quickly became known as the place to go to find rare audio
recordings. Annual sales last year were $40 million with annual growth at about
3%–5% per year.

Background John, Megan, and Phil, like many others in the music industry,
watched with alarm the rise of music-sharing websites like Napster, as music con-
sumers shared digital audio files without paying for them, denying artists and
record labels royalties associated with sales. Once the legal battle over copyright
infringement was resolved and Napster was shut down, the partners set about estab-
lishing agreements with a variety of industry partners in order to offer a legitimate
digital music download resource for customers in their market niche. Phil has asked
Carly Edwards, a rising star in the Tune Source marketing department, to spearhead
the digital music download project.

Tune Source currently has a website that enables customers to search for and
purchase CDs. This site was initially developed by an Internet consulting firm and
is hosted by a prominent local Internet Service Provider (ISP) in Los Angeles. The
IT department at Tune Source has become experienced with Internet technology as
it has worked with the ISP to maintain the site.

System Request At Tune Source, new IT projects are reviewed and approved by a
project steering committee that meets quarterly. The committee has representatives
from IT as well as from the major areas of the business. Carly’s first step was to pre-
pare a system request for the committee.

Figure 1-5 shows the system request she prepared. The project sponsor is
Carly, and the business needs are to increase sales and provide a music download
capability demanded by a very competitive marketplace. Notice that the need does
not focus on the technology associated with the project. The emphasis is on the
business aspects: increasing sales and maintaining a competitive position in the
company’s market.

In the system request, the project sponsor focuses on describing his or her
vision of the business requirements at a very high level. Carly has expressed a
clear vision of how this system will affect Tune Source: sales of individual music
downloads, revenue from customer subscriptions, sales from cross-selling of CDs,
and sales of music download gift cards. Carly acknowledges customer demand for
this capability and also recognizes the need to respond to this demand in order to
retain the business of its loyal customer base.

The estimates of tangible value were difficult to develop, since this venture is
completely new to Tune Source. To prepare for this, Carly had several of her staff
members conduct both an in-store customer survey and an online customer survey to
assess the customers’ interest in individual music downloads, subscription programs,
and gift cards. The surveys also attempted to gauge the customers’ price sensitivity
for these offerings.

From the survey results, Carly and her staff developed a range of sales pro-
jections for the various revenue streams: a high-level estimate, a medium-level
estimate, and low-level estimate. They also developed probability assessments
for each of these outcomes, settling on a 25% likelihood for the high-level esti-
mate, a 60% likelihood for the medium-level estimate, and a 15% likelihood for
the low-level estimate. Based on the sales projections and the probability esti-
mates, a weighted average estimated sales figure was computed for each revenue
stream.

Project Identification and Initiation 21

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 9/21/11 11:14 AM Page 21

22 Chapter 1 The Systems Analyst and Information Systems Development

Think about your own university or
college and choose an idea that could improve student
satisfaction with the course enrollment process. Currently,
can students enroll for classes from anywhere? How long
does it take? Are directions simple to follow? Is online
help available?

Next, think about how technology can help sup-
port your idea. Would you need completely new technol-
ogy? Can the current system be changed?

QUESTION:
Create a system request that you could give to the

administration that explains the sponsor, business
need, business requirements, and potential value of
the project. Include any constraints or issues that
should be considered.

1-4 CREATE A SYSTEM REQUESTY O U R

T U R N

Project Sponsor: Carly Edwards, Assistant Vice President, Marketing

Business Need: This project has been initiated to increase sales by creating the capability of sell-
ing digital music downloads to customers through kiosks in our stores, and over the Internet using
our website.

Business Requirements: Using the Web or in-store kiosks, customers will be able to search for and
purchase digital music downloads. The specific functionality that the system should have includes
the following:

• Search for music in our digital music archive.
• Listen to music samples.
• Purchase individual downloads at a fixed fee per download.
• Establish a customer subscription account permitting unlimited downloads for a monthly fee.
• Purchase music download gift cards.

Business Value: We expect that Tune Source will increase sales by enabling existing customers
to purchase specific digital music tracks and by reaching new customers who are interested in our
unique archive of rare and hard-to-find music. We expect to gain a new revenue stream from
customer subscriptions to our download services. We expect some increase in cross-selling, as
customers who have downloaded a track or two of a CD decide to purchase the entire CD
in a store or through our website. We also expect a new revenue stream from the sale of
music download gift cards.

Conservative estimates of tangible value to the company include the following:

• $757,500 in sales from individual music downloads
• $950,000 in sales from customer subscriptions
• $205,000 in additional in-store or website CD sales
• $153,000 in sales from music download gift cards

Special Issues or Constraints:

• The marketing department views this as a strategic system. The ability to offer digital music
downloads is critical in order to remain competitive in our market niche. Our music archive
of rare and hard-to-find music is an asset that is currently underutilized.

• Many of our current loyal customers have been requesting this capability, and we need to
provide this service or face the loss of these customers’ business.

• Because customers have a number of music download options available to them elsewhere, we
need to bring this system to market as soon as possible.

System Request—Digital Music Download Project

FIGURE 1-5
System Request for Tune Source

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 9/21/11 11:14 AM Page 22

For example, for individual downloads,

Expected sales � (900,000 * .25) � (750,000 * .60) � (550,000 * .15)
� 225,000 � 450,000 � 82,500
� 757,500

These projections are summarized in Figure 1-6.
After analyzing the survey results, Carly and her staff were confident that the

sales projections and probability estimates were as accurate as they could make them
this early in the project. The completed system request is shown in Figure 1-5.

Steering Committee Approval Carly Edwards presented the system request for the
digital music download project to the Tune Source project steering committee at its
next meeting. Response to the request was uniformly positive. The strong interest in
the project by John, Megan, and Phil, the company’s top executives, helped to spur
the committee’s rapid approval of the project. Following approval of the system
request, Jason Wells, a senior systems analyst in the IT department, was assigned to
work with Carly to develop a preliminary feasibility analysis for the project.

FEASIBILITY ANALYSIS

Once the need for the system and its business requirements have been defined, the
approval committee may authorize the systems analyst to prepare a more detailed
business case to better understand the proposed information system project. Feasi-
bility analysis guides the organization in determining whether to proceed with the
project. Feasibility analysis also identifies the important risks associated with the
project that must be managed if the project is approved. As with the system request,
each organization has its own process and format for the feasibility analysis, but
most include techniques to assess three areas: technical feasibility, economic feasi-
bility, and organizational feasibility (see Figure 1-7). The results of evaluating these
three feasibility factors are combined into a feasibility study deliverable that is sub-
mitted to the approval committee at the end of project initiation.

You might wonder at the omission of the element of time as a risk factor for
the project. While the time available for a project can certainly be a concern, we
consider time to be a project management issue. We will discuss project manage-
ment strategies that can be used when time is tight in Chapter 2.

Feasibility Analysis 23

Individual Downloads Subscriptions Cross-Selling of CDs Gift Cards

High-level estimate $900,000 $1,100,000 $250,000 $180,000
(prob. � 25%)

Medium-level estimate 750,000 950,000 200,000 150,000
(prob. � 60%)

Low-level estimate 550,000 700,000 150,000 120,000
(prob. � 15%)

Weighted average $757,500 $950,000 $205,000 $153,000
expected sales

Sales Projections

FIGURE 1-6
Sales Projections for Tune Source
Digital Music Download Project

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 9/21/11 11:14 AM Page 23

Although we will discuss feasibility analysis now within the context of project
initiation, most project teams will revise their feasibility study throughout the
SDLC and revisit its contents at various checkpoints during the project. If at any
point the project’s risks and limitations outweigh its benefits, the project team may
decide to cancel the project or make substantial revisions.

Technical Feasibility

The first technique in the feasibility analysis is to assess the technical feasibility of
the project, the extent to which the system can be successfully designed, developed,
and installed by the IT group. Technical feasibility analysis is, in essence, a technical
risk analysis that strives to answer the question: “Can we build it?”7

Many risks can endanger the successful completion of the project. First and
foremost is the users’ and analysts’ familiarity with the application. When analysts
are unfamiliar with the business application area, they have a greater chance of
misunderstanding the users or missing opportunities for improvement. The risks
increase dramatically when the users themselves are less familiar with an application,
such as with the development of a system to support a new business innovation (e.g.,
Microsoft starting up a new Internet dating service). In general, the development of
new systems is riskier than extensions to an existing system, because existing systems
tend to be better understood.

Familiarity with the technology is another important source of technical
risk. When a system will use technology that has not been used before within the

24 Chapter 1 The Systems Analyst and Information Systems Development

7 We use the words “build it” in the broadest sense. Organizations can also choose to buy a commercial software
package and install it, in which case the question might be “Can we select the right package and successfully
install it?”

Technical Feasibility: Can We Build It?

• Familiarity with application: Less familiarity generates more risk.

• Familiarity with technology: Less familiarity generates more risk.

• Project size: Large projects have more risk.

• Compatibility: The harder it is to integrate the system with the company’s existing
technology, the higher the risk will be.

Economic Feasibility: Should We Build It?

• Development costs

• Annual operating costs

• Annual benefits (cost savings and/or increased revenues)

• Intangible benefits and costs

Organizational Feasibility: If We Build It, Will They Come?

• Project champion(s)

• Senior management

• Users

• Other stakeholders

• Is the project strategically aligned with the business?
FIGURE 1-7
Feasibility Analysis Assessment Factors

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 9/21/11 11:14 AM Page 24

organization, there is a greater chance that problems and delays will occur because
of the need to learn how to use the technology. Risk increases dramatically when
the technology itself is new (e.g., web development using Ajax).

Project size is an important consideration, whether measured as the number
of people on the development team, the length of time it will take to complete the
project, or the number of distinct features in the system. Larger projects present
more risk, because they are more complicated to manage and because there is a
greater chance that some important system requirements will be overlooked or
misunderstood. The extent to which the project is highly integrated with other
systems (which is typical of large systems) can cause problems, because complexity
is increased when many systems must work together.

Finally, project teams need to consider the compatibility of the new system
with the technology that already exists in the organization. Systems rarely are built
in a vacuum—they are built in organizations that have numerous systems already in
place. New technology and applications need to be able to integrate with the
existing environment for many reasons. They may rely on data from existing sys-
tems, they may produce data that feed other applications, and they may have to use
the company’s existing communications infrastructure. A new CRM system, for
example, has little value if it does not use customer data found across the organiza-
tion in existing sales systems, marketing applications, and customer service systems.

The assessment of a project’s technical feasibility is not cut and dried, because
in many cases, some interpretation of the underlying conditions is needed (e.g., how
large does a project need to grow before it becomes less feasible?). One approach
is to compare the project under consideration with prior projects undertaken by the
organization. Another option is to consult with experienced IT professionals in the
organization or with external IT consultants; often, they will be able to judge
whether a project is feasible from a technical perspective.

Economic Feasibility

The second element of a feasibility analysis is to perform an economic feasibility
analysis (also called a cost–benefit analysis). This attempts to answer the question
“Should we build the system?” Economic feasibility is determined by identifying
costs and benefits associated with the system, assigning values to them, calculating
future cash flows, and measuring the financial worthiness of the project. As a result
of this analysis, the financial opportunities and risks of the project can be under-
stood. Keep in mind that organizations have limited capital resources and multiple
projects will be competing for funding. The more expensive the project, the more
rigorous and detailed the analysis should be. Before illustrating this process with a
detailed example, we first introduce the framework we will apply to evaluate project
investments and the common assessment measures that are used.

Cash Flow Analysis and Measures IT projects commonly involve an initial invest-
ment that produces a stream of benefits over time, along with some ongoing sup-
port costs. Therefore, the value of the project must be measured over time. Cash
flows, both inflows and outflows, are estimated over some future period. Then, these
cash flows are evaluated using several techniques to judge whether the projected
benefits justify incurring the costs.

A very basic cash flow projection is shown in Figure 1-8 to demonstrate these
evaluation techniques. In this simple example, a system is developed in Year 0 (the

Feasibility Analysis 25

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 9/21/11 11:14 AM Page 25

26 Chapter 1 The Systems Analyst and Information Systems Development

Total Benefits 45,000 50,000 57,000 152,000

Total Costs 100,000 10,000 12,000 16,000 138,000

Net Benefits
(Total Benefits � Total Costs) (100,000) 35,000 38,000 41,000 14,000

Cumulative Net Cash Flow (100,000) (65,000) (27,000) 14,000

Year 0 Year 1 Year 2 Year 3 Total

FIGURE 1-8
Simple Cash Flow Projection

current year) costing $100,000. Once the system is operational, benefits and on-
going costs are projected over three years. In row 3 of this figure, net benefits are
computed by subtracting each year’s total costs from its total benefits. Finally, in
row 4, we have computed a cumulative total of the net cash flows.

Two of the common methods for evaluating a project’s worth can now be
determined. Each of these calculations will be explained here:

Return on Investment The return on investment (ROI) is a calculation that measures
the average rate of return earned on the money invested in the project. ROI is a simple
calculation that divides the project’s net benefits (total benefits � total costs) by the
total costs. The ROI formula is:

A high ROI suggests that the project’s benefits far outweigh the project’s cost,
although exactly what constitutes a “high” ROI is unclear. ROI is commonly used in
practice; however, it is hard to interpret and should not be used as the only measure
of a project’s worth.

Break-Even Point Another common approach to measuring a project’s worth is the
break-even point. The break-even point (also called the payback method) is defined
as the number of years it takes a firm to recover its original investment in the proj-
ect from net cash flows. As shown in row 4 of Figure 1-8, the project’s cumulative
cash flow figure becomes positive during Year 3, so the initial investment is “paid
back” over two years plus some fraction of the third year.

 ROI �
152,000 � 138,000

138,000
�

14,000

138,000
� 10.14%

 ROI �
Total Benefits � Total Costs

Total Costs

(In the year in which Cumulative Cash Flow turns positive):

Using the values in Figure 1-8, the BEP calculation is:

BEP � 2 �
41,000 � 14,000

41,000
� 2 �

28,000

41,000
� 2.68 years

�
That year’s Net Cash Flow � That year’s Cumulative Cash Flow

That year’s Net Cash Flow

Number of

BEP �
years of
negative
cash flow

3

4

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 9/21/11 11:14 AM Page 26

The break-even point is intuitively easy to understand and does give an indi-
cation of a project’s liquidity, or the speed at which the project generates cash
returns. Also, projects that produce higher returns early in the project’s life are
thought to be less risky, since we can anticipate near-term events with more accu-
racy than we can long-term events. The break-even point ignores cash flows that
occur after the break-even point has been reached; therefore, it is biased against
longer-term projects.

Discounted Cash Flow Technique The simple cash flow projection shown in
Figure 1-8, and the return on investment and break-even point calculations all share
the weakness of not recognizing the time value of money. In these analyses, the
timing of cash flows is ignored. A dollar in Year 3 of the project is considered to
be exactly equivalent to a dollar received in Year 1.

Discounted cash flows are used to compare the present value of all cash
inflows and outflows for the project in today’s dollar terms. The key to understand-
ing present values is to recognize that if you had a dollar today, you could invest it
and receive some rate of return on your investment. Therefore, a dollar received in
the future is worth less than a dollar received today, since you forgo that potential
return. If you have a friend who owes you $100 today, but instead gives you that
$100 in three years—you’ve been had! Assuming you could have invested that
dollar at a 10% rate of return, you’ll be receiving the equivalent of $75 in today’s
terms.

The basic formula to convert a future cash flow to its present value is:

The rate of return used in the present value calculation is sometimes called
the required rate of return, or the cost of obtaining the capital needed to fund the
project. Many organizations will have determined the appropriate rate of return to
use when analyzing IT investments. The systems analyst should consult with the
organization’s finance department.

Using our previous illustration, $100 received in 3 years with a required rate
of return of 10% has a PV of $75.13.

In Figure 1-9, the present value of the projected benefits and costs shown in
Figure 1-8 have been calculated using a 10% required rate of return.

PV �
100

11 � .1023
�

100

1.331
� 75.13

PV �
Cash flow amount

11 � rate of return2n
 where n is the year in which the cash flow occurs.

Feasibility Analysis 27

Total Benefits 45,000 50,000 55,000

PV of Total Benefits 40,909 41,322 42,825 125,056

Total Costs 100,000 10,000 12,000 16,000

PV of Total Costs 100,000 9,091 9,917 12,021 131,029

Year 0 Year 1 Year 2 Year 3 Total

FIGURE 1-9
Discounted Cash Flow Projection

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 9/21/11 11:14 AM Page 27

Net Present Value (NPV) The NPV is simply the difference between the total pres-
ent value of the benefits and the total present value of the costs.

As long as the NPV is greater than zero, the project is considered economi-
cally acceptable. Unfortunately for this project, the NPV is less than zero, indicat-
ing that for a required rate of return of 10%, this project should not be accepted.
The required rate of return would have to be something less than 6.65% before this
project returns a positive NPV. This example illustrates the fact that sometimes the
“naïve” techniques of ROI and BEP find that the project appears acceptable, but the
more rigorous and financially correct NPV technique finds the project is actually
unacceptable.

Figure 1-10 reviews the steps involved in performing an economic feasibility
analysis. Each step will be illustrated by an example in the upcoming sections.

Identify Costs and Benefits The systems analyst’s first task when developing an
economic feasibility analysis is to identify the kinds of costs and benefits the system
will have and list them along the left-hand column of a spreadsheet. Figure 1-11
lists examples of costs and benefits that may be included. The costs and benefits can
be broken down into four categories: (1) development costs, (2) operational costs,
(3) tangible benefits, and (4) intangibles. Development costs are those tangible
expenses that are incurred during the creation of the system, such as salaries for the
project team, hardware and software expenses, consultant fees, training, and office
space and equipment. Development costs are usually thought of as one-time costs.

 � $125,056 � $131,029 � 1$5,9732
 NPV � g PV of Total Benefits � g PV of Total Costs

28 Chapter 1 The Systems Analyst and Information Systems Development

1. Identify Costs and Benefits List the tangible costs and benefits for the project.
Include both one-time and recurring costs.

2. Assign Values to Costs and Benefits Work with business users and IT professionals to create
numbers for each of the costs and benefits. Even
intangibles should be valued if at all possible.

3. Determine Cash Flow Forecast what the costs and benefits will be over a
certain period, usually, three to five years. Apply a
growth rate to the values, if necessary.

4. Assess Project’s Economic Value Evaluate the project’s expected returns in comparison to
its costs. Use one or more of the following evaluation
techniques:

• Return on Investment (ROI) Calculate the rate of return earned on the money
invested in the project, using the ROI formula.

• Break-Even Point (BEP) Find the year in which the cumulative project benefits
exceed cumulative project costs. Apply the breakeven
formula, using figures for that year. This calculation
measures how long it will take for the system to produce
benefits that cover its costs.

• Net Present Value (NPV) Restate all costs and benefits in today’s dollar terms
(present value), using an appropriate discount rate.
Determine whether the total present value of benefits is
greater than or less than the total present value of costs.

FIGURE 1-10
Steps to Conduct an Economic
Feasibility Analysis

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 9/21/11 11:14 AM Page 28

Operational costs are those tangible costs that are required to operate the system,
such as the salaries for operations staff, software licensing fees, equipment
upgrades, and communications charges. Operational costs are usually thought of as
ongoing costs.

Tangible benefits include revenue that the system enables the organization to
collect, such as increased sales. In addition, the system may enable the organization
to avoid certain costs, leading to another type of tangible benefit: cost savings. For
example, if the system produces a reduction in needed staff, lower salary costs
result. Similarly, a reduction in required inventory levels due to the new system pro-
duces lower inventory costs. In these examples, the reduction in costs is a tangible
benefit of the new system.

Of course, a project also can affect the organization’s bottom line by reaping
intangible benefits or incurring intangible costs. Intangible costs and benefits are
more difficult to incorporate into the economic feasibility analysis because they are
based on intuition and belief rather than on “hard numbers.” Nonetheless, they
should be listed in the spreadsheet along with the tangible items.

Assign Values to Costs and Benefits Once the types of costs and benefits have been
identified, the analyst needs to assign specific dollar values to them. This may seem
impossible—How can someone quantify costs and benefits that haven’t happened
yet? And how can those predictions be realistic? Although this task is very difficult,
you have to do the best you can to come up with reasonable numbers for all of the
costs and benefits. Only then can the approval committee make an informed deci-
sion about whether or not to move ahead with the project.

The most effective strategy for estimating costs and benefits is to rely on the
people who have the best understanding of them. For example, costs and benefits
that are related to the technology or the project itself can be provided by the company’s
IT group or external consultants, and business users can develop the numbers asso-
ciated with the business (e.g., sales projections, order levels). The company also can

Feasibility Analysis 29

FIGURE 1-11
Example of Costs and Benefits
for Economic Feasibility

Development team salaries Software upgrades
Consultant fees Software licensing fees
Development training Hardware repairs
Hardware and software Hardware upgrades
Vendor installation Operational team salaries
Office space and equipment Communications charges
Data conversion costs User training

Increased sales Increased market share
Reductions in staff Increased brand recognition
Reductions in inventory Higher quality products
Reductions in IT costs Improved customer service
Better supplier prices Better supplier relations

Development Costs Operational Costs

Tangible Benefits Intangible Benefits

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 9/21/11 11:14 AM Page 29

consider past projects, industry reports, and vendor information, although these
sources probably will be a bit less accurate. Likely, all of the estimates will be
revised as the project proceeds.

If predicting a specific value for a cost or benefit is proving difficult, it may
be useful to estimate a range of values for the cost or benefit and then assign a like-
lihood (probability) estimate to each value. With this information, an expected
value for the cost or benefit can be calculated. Recall the calculations shown in
Figure 1-6 in which the Tune Source marketing staff developed expected values for
projected sales. As more information is learned during the project, the value esti-
mates and the probability estimates can be revised, resulting in a revised expected
value for the cost or benefit.

What about the intangible benefits and costs? Sometimes, it is acceptable to
list intangible benefits, such as improved customer service, without assigning a dol-
lar value. Other times, estimates have to be made regarding how much an intangi-
ble benefit is “worth.” We suggest that you quantify intangible costs or benefits if at
all possible. If you do not, how will you know if they have been realized? Suppose
that a system claims to improve customer service. This benefit is intangible, but let’s
assume that the improvement in customer service will decrease the number of cus-
tomer complaints by 10% each year over three years and that $200,000 is currently
spent on phone charges and phone operators who handle complaint calls. Suddenly,
we have some very tangible numbers with which to set goals and measure the orig-
inally intangible benefit.

A detailed cost–benefit analysis is shown in Figure 1-12. In this example, ben-
efits accrue because the project is expected to increase sales, reduce customer com-
plaint calls, and lower inventory costs. For simplicity, all development costs are
assumed to occur in the current year 2012, and all benefits and operational costs are
assumed to begin when the system is implemented at the start of 2013, and continue
through 2016. Notice that the customer service intangible benefit has been quanti-
fied, based on a decrease in customer complaint phone calls. The intangible benefit
of being able to offer services that competitors currently offer was not quantified,
but it was listed so that the approval committee will consider the benefit when
assessing the system’s economic feasibility.

30 Chapter 1 The Systems Analyst and Information Systems Development

I conducted a case study at Carlson
Hospitality, a global leader in hospitality services, encom-
passing more than 1300 hotel, resort, restaurant, and
cruise ship operations in 79 countries. One of its brands,
Radisson Hotels & Resorts, researched guest stay informa-
tion and guest satisfaction surveys. The company was able
to quantify how much of a guest’s lifetime value can be
attributed to his or her perception of the stay experience.
As a result, Radisson knows how much of the collective
future value of the enterprise is at stake, given the perceived

quality of the stay experience. Using this model, Radisson
can confidently show that a 10% increase in customer sat-
isfaction among the 10% of highest quality customers will
capture a one-point market share for the brand. Each point
in market share for the Radisson brand is worth $20 million
in additional revenue. Barbara Wixom

QUESTION:
How can a project team use this information to help

determine the economic feasibility of a system?

1-D INTANGIBLE VALUE AT CARLSON HOSPITALITY

IN ACTION

CONCEPTS

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 9/21/11 11:14 AM Page 30

Determine Cash Flow A formal cost–benefit analysis usually contains costs and
benefits over a selected number of years (usually, three to five years) to show cash
flow over time. (See Figures 1-8 and 1-12.) For example, Figure 1-12 lists the same
amount for customer complaint calls, inventory costs, hardware, and software for
all four years. Often, amounts are augmented by some rate of growth to adjust for
inflation or business improvements, as shown by the 6% increase that is added to
the sales numbers in the sample spreadsheet. Similarly, labor costs are assumed to
increase at a 4% rate each year. Finally, totals are added to determine what the over-
all benefits and costs.

Determine ROI Figure 1-12 includes the ROI calculation for our example project.
This project’s ROI is calculated to be 14.1%.

Determine BEP Figure 1-12 also includes the BEP calculation for our example
project. This project’s BEP is calculated to be 3.37 years.

Feasibility Analysis 31

FIGURE 1-12
Cost–Benefit Analysis—Simple Cash Flow Method

Benefits

Increased sales 500,000 530,000 561,800 595,508 2,187,308

Reduction in customer complaint callsa 70,000 70,000 70,000 70,000 280,000

Reduced inventory costs 68,000 68,000 68,000 68,000 272,000

Total Benefitsb 638,000 668,000 699,800 733,508 2,739,308

Development Costs

2 servers @ $125,000 250,000 0 0 0 0 250,000

Printer 100,000 0 0 0 0 100,000

Software licenses 34,825 0 0 0 0 34,825

Server software 10,945 0 0 0 0 10,945

Development labor 1,236,525 0 0 0 0 1,236,525

Total Development Costs 1,632,295 0 0 0 0 1,632,295

Operational Costs

Hardware 50,000 50,000 50,000 50,000 200,000

Software 20,000 20,000 20,000 20,000 80,000

Operational labor 115,000 119,600 124,384 129,359 488,343

Total Operational Costs 185,000 189,600 194,384 199,359 768,343

Total Costs 1,632,295 185,000 189,600 194,384 199,359 2,400,638

Total Benefits � Total Costs (1,632,295) 453,000 478,400 505,416 534,149 338,670

Cumulative Net Cash Flow (1,632,295) (1,179,295) (700,895) (195,479) 338,670

Return on Investment (ROI) 14.1% (338,670/2,400,638)

Break-even Point 3.37 years (3 years of negative cumulative cash flow �
[534,149 � 338,670]/534,149 � .37)

a Customer service values are based on reduced costs of handling customer complaint phone calls.
b An important yet intangible benefit will be the ability to offer services that our competitors currently offer.

2012 2013 2014 2015 2016 Total

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 9/21/11 11:14 AM Page 31

Determine NPV In Figure 1-13, the present value of the costs and benefits has been
calculated and added to our example spreadsheet, using a 6% rate of return. The
NPV is simply the difference between the total present value of the benefits and the
total present value of the costs. As long as the NPV is greater than zero, the project
is considered economically viable. In this example, since NPV is $68,292, the proj-
ect should be accepted from an economic feasibility perspective.

Organizational Feasibility

The final technique used for feasibility analysis is to assess the organizational
feasibility of the system: how well the system ultimately will be accepted by its
users and incorporated into the ongoing operations of the organization. There are
many organizational factors that can have an impact on the project, and seasoned
developers know that organizational feasibility can be the most difficult feasibility
dimension to assess. In essence, an organizational feasibility analysis attempts to
answer the question “If we build it, will they come?”

32 Chapter 1 The Systems Analyst and Information Systems Development

FIGURE 1-13
Cost–Benefit Analysis—Discounted Cash Flow Method

Benefits

Increased sales 500,000 530,000 561,800 595,508

Reduction in customer complaint callsa 70,000 70,000 70,000 70,000

Reduced inventory costs 68,000 68,000 68,000 68,000

Total Benefitsb 638,000 668,000 699,800 733,508

Present Value Total Benefits 601,887 594,518 587,566 581,007 2,364,978

Development Costs

2 Servers @ $125,000 250,000 0 0 0 0

Printer 100,000 0 0 0 0

Software licenses 34,825 0 0 0 0

Server software 10,945 0 0 0 0

Development labor 1,236,525 0 0 0 0

Total Development Costs 1,632,295 0 0 0 0

Operational Costs

Hardware 50,000 50,000 50,000 50,000

Software 20,000 20,000 20,000 20,000

Operational labor 115,000 119,600 124,384 129,359

Total Operational Costs 185,000 189,600 194,384 199,359

Total Costs 1,632,295 185,000 189,600 194,384 199,359

Present Value Total Costs 1,632,295 174,528 168,743 163,209 157,911 2,296,686

NPV (PV Total Benefits � PV Total Costs) 68,292

a Customer service values are based on reduced costs of handling customer complaint phone calls.
b An important yet intangible benefit will be the ability to offer services that our competitors currently offer.

2012 2013 2014 2015 2016 Total

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 9/21/11 11:14 AM Page 32

One way to assess the organizational feasibility of the project is to understand
how well the goals of the project align with business objectives. Strategic alignment
is the fit between the project and business strategy—the greater the alignment, the
less risky the project will be, from an organizational feasibility perspective. For
example, if the marketing department has decided to become more customer
focused, then a CRM project that produces integrated customer information would
have strong strategic alignment with marketing’s goal. Many projects fail if the IT
department alone initiates them and there is little or no alignment with business-
unit or organizational strategies.

A second way to assess organizational feasibility is to conduct a stakeholder
analysis.8 A stakeholder is a person, group, or organization that can affect (or can
be affected by) a new system. In general, the most important stakeholders in the
introduction of a new system are the project champion, system users, and organiza-
tional management (see Figure 1-14), but systems sometimes affect other stake-
holders as well. For example, the IS department can be a stakeholder of a system
because IS jobs or roles may be changed significantly after the system’s implemen-
tation. One key stakeholder—outside of the champion, users, and management—in
Microsoft’s project that embedded Internet Explorer as a standard part of Windows
was the U.S. Department of Justice.

The champion is a high-level executive and is usually, but not always, the
project sponsor who created the system request. The champion supports the project
by providing time and resources (e.g., money) and by giving political support
within the organization by communicating the importance of the system to other
organizational decision makers. More than one champion is preferable because if
the champion leaves the organization, the support could leave as well.

While champions provide day-to-day support for the system, organizational
management also needs to support the project. Such management support conveys to

Feasibility Analysis 33

Many companies are undergoing
server virtualization. This is the concept of putting multi-
ple “virtual” servers onto one physical device. The pay-
offs can be significant: fewer servers, less electricity, less
generated heat, less air conditioning, less infrastructure
and administration costs, increased flexibility, less physical
presence (that is, smaller server rooms), faster mainte-
nance of servers, and more. There are costs, of course,
such as licensing the virtualization software, labor costs
in establishing the virtual servers onto a physical device,
labor costs in updating tables, and access. But determining

the return on investment can be a challenge. Some
companies have lost money on server virtualization,
while most would say that they have gained a positive
return on investment but have not really quantified the
results.

QUESTIONS:
1. How might a company really determine the return on

investment for server virtualization?
2. Is this a project that a systems analyst might be involved

in? Why or why not?

1-E RETURN ON INVESTMENT

IN ACTION

CONCEPTS

8 A good book on stakeholder analysis that presents a series of stakeholder analysis techniques is R. O. Mason
and I. I. Mittroff, Challenging Strategic Planning Assumptions: Theory, Cases, and Techniques, New York:
John Wiley & Sons, 1981.

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 9/21/11 11:14 AM Page 33

the rest of the organization the belief that the system will make a valuable contribution
and that necessary resources will be made available. Ideally, management should
encourage people in the organization to use the system and to accept the many
changes that the system will likely create.

A third important set of stakeholders is the system users who ultimately
will use the system once it has been installed in the organization. Too often, the
project team meets with users at the beginning of a project and then disappears
until after the system is created. In this situation, rarely does the final product
meet the expectations and needs of those who are supposed to use it, because
needs change and users become savvier as the project progresses. User partici-
pation should be promoted throughout the development process to make sure
that the final system will be accepted and used, by getting users actively
involved in the development of the system (e.g., performing tasks, providing
feedback, and making decisions).

The final feasibility study helps organizations make wiser investments
regarding IS because it forces project teams to consider technical, economic, and
organizational factors that can affect their projects. It protects IT professionals
from criticism by keeping the business units educated about decisions and posi-
tioned as the leaders in the decision-making process. Remember—the feasibility
study should be revised several times during the project at points where the project
team makes critical decisions about the system (e.g., before the design begins).
The final feasibility study can be used to support and explain the critical choices
that are made throughout the SDLC.

Applying the Concepts at Tune Source

The steering committee met and placed the digital music download project high on
its list of projects.

34 Chapter 1 The Systems Analyst and Information Systems Development

Champion A champion: • Make a presentation about the objectives of the
• Initiates the project project and the proposed benefits to those executives
• Promotes the project who will benefit directly from the system.
• Allocates his or her time to the project • Create a prototype of the system to demonstrate its
• Provides resources potential value.

Organizational Organizational managers: • Make a presentation to management about the
Management • Know about the project objectives of the project and the proposed benefits.

• Budget enough money for the project • Market the benefits of the system, using memos and
• Encourage users to accept and use the system organizational newsletters.

• Encourage the champion to talk about the project with
his or her peers.

System Users Users: • Assign users official roles on the project team.
• Make decisions that influence the project • Assign users specific tasks to perform, with clear
• Perform hands-on activities for the project deadlines.
• Ultimately determine whether the project is • Ask for feedback from users regularly (e.g., at

successful by using or not using the system weekly meetings).

Role To Enhance Organizational Feasibility

FIGURE 1-14
Important Stakeholders for Organizational Feasibility

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 9/21/11 11:14 AM Page 34

Feasibility Analysis 35

The next step was for Carly and Jason to develop the feasibility analysis.
Figure 1-15 presents the executive summary page of the feasibility study: The
report itself was about 10 pages long, and it provided additional detail and sup-
porting documentation.

As shown in Figure 1-15, the project is somewhat risky from a technical per-
spective. Tune Source has minimal experience with the proposed application and
the technology. One solution may be to hire a consultant to work with the IT depart-
ment and to offer guidance.

The economic feasibility analysis includes the assumptions that Carly made
in the system request. The summary spreadsheet that led to the values in the feasi-
bility analysis has been included in Appendix 1A. Development costs are expected
to be about $280,000. This is a very rough estimate, as Jason has had to make some
assumptions about the amount of time it will take to design and program the sys-
tem. Nonetheless, the digital music download system appears to be very strong
economically.

Think about the idea that you devel-
oped in “Your Turn 1-4” to improve your university or col-
lege course enrollment process.

QUESTIONS:
1. List three things that influence the technical feasibility

of the system.

2. List three things that influence the economic feasibility
of the system.

3. List three things that influence the organizational fea-
sibility of the system.

4. How can you learn more about the issues that affect
the three kinds of feasibility?

1-6 CREATE A FEASIBILITY ANALYSISY O U R

T U R N

Review the description of the South
Dakota workers’ compensation project in Your Turn 1-3.
There were legal hurdles to implementing a digital solution
to handle workers’ compensation claims. One hurdle was
that the previous paper method had physical signatures
from employees signing off that they had received treat-
ment or that the doctor had signed off on medical treatment
performed. How could such permissions be preserved and
duplicated digitally?

In addition, some clerks were afraid that the digital
solution might not work. What if they could not find an
electronic file on the computer? What if a hard drive

crashed or the files were accidentally deleted? What if
they could not retrieve the electronic file?

QUESTIONS:
1. What legal issues might arise from having only “digital

signatures” or only electronic/paper copies of docu-
ments instead of physical documents? How do these
issues affect the project’s feasibility?

2. In terms of organizational feasibility and adoption,
what might an analyst do to convince these clerks to
adopt and use the new technology?

1-5 TOO MUCH PAPER, PART 2Y O U R

T U R N

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 9/21/11 11:14 AM Page 35

The organizational feasibility is presented in Figure 1-15. There is a strong
champion, well placed in the organization, to support the project. The project orig-
inated in the business or functional side of the company, not the IS department, and
support for the project among the senior management team is strong.

36 Chapter 1 The Systems Analyst and Information Systems Development

Digital Music Download Project Executive Summary

Carly Edwards and Jason Wells created the following feasibility analysis for the Tune Source Digital Music Download Project. The System Request is
attached, along with the detailed feasibility study. The highlights of the feasibility analysis are as follows:

Technical Feasibility

The Digital Music Download system is feasible technically, although there is some risk.

Tune Source’s risk regarding familiarity with music download applications is moderately high.
• The Marketing Department has little experience with a subscription-based business model.
• The IT department has strong knowledge of the company’s existing Web-based CD sales system, but it has not worked with music downloads or

customer subscriptions.
• Numerous music download sites exist on the Internet.

Tune Source’s risk regarding familiarity with the technology is moderately low.
• The IT department has knowledge of the current Web-based order entry system and the databases and Internet technology it uses.
• The IT department has no direct knowledge of the technology required to store and deliver digital music downloads; however, many of the tech-

nical issues will be the responsibility of the ISP.
• Consultants are readily available to provide help in this area.

The project size is considered medium risk.
• The project team will likely consist of 10 or fewer people.
• Business user involvement will be required.
• The project time frame is somewhat critical, since the system is needed to maintain our competitive position in the market.

The compatibility with Tune Source’s existing technical infrastructure should be good.
• An Internet infrastructure is already in place at the retail stores and corporate headquarters.
• The ISP should be able to scale its services to accommodate the new Digital Music Download system.

Economic Feasibility

A cost–benefit analysis was performed; see attached spreadsheet for details (provided in Appendix 1A). Conservative estimates show that the Digital
Music Download system has a good chance of significantly enhancing the company’s bottom line.

ROI over 3 years: 280%
NPV over 3 years: $4,180,431
Break-even occurs after 0.17 years

Intangible Costs and Benefits
Improved customer satisfaction.
Enhanced competitive position through expansion of our brand into the music download market.

Organizational Feasibility

From an organizational perspective, this project has low risk. The top executives of the company have a strong interest in the project, and the
project champion, Carly Edwards, is a respected and knowledgeable marketing executive.

The users of the system, Internet consumers and in-store kiosk users, are expected to appreciate the entry of Tune Source into the music download
arena. Management at the stores may have some concern about lost CD sales; however, since customers have so many other options available for
music downloads, this system may prevent our losing those customers to other digital music sources and may provide us with the opportunity to cross-
sell those customers from our CD inventory.

Additional comments:

• The Marketing Department views this as a strategic system. This system will allow us to leverage our music archive and our well-established
market position to establish a presence in the digital music download business. Our customers have been requesting such a capability, and we
believe it will be well accepted.

• We should consider hiring a consultant with expertise in similar applications to assist with the project.
• We will need new staff to operate the system and potentially to provide customer service for subscribers and gift-card holders.

FIGURE 1-15
Feasibility Analysis Executive Summary for Tune Source

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 9/21/11 11:14 AM Page 36

Summary 37

Additional stakeholders in the project are the management team responsible
for the operations of the traditional stores and the store managers. They should be
quite supportive, given the added service that they now can offer. Carly and Jason
need to make sure that they are included in the development of the system so that
they can appropriately incorporate it into their business processes.

SUMMARY

Systems Analyst Skills and Specializations
The systems analyst is a key person in the development of information systems. The
systems analyst helps to analyze the business situation, identify opportunities for
improvements, and design an information system that adds value to the organiza-
tion. The systems analyst serves as a change agent, and this complex responsibility
requires a wide range of skills, including technical, business, analytical, interper-
sonal, management, and ethical. In some organizations, systems analysts may
develop a specialization such as business analyst, requirements analyst, infrastructure
analyst, change management analyst, or project manager.

The System Development Life Cycle
All system development projects follow essentially the same fundamental process
called the system development life cycle (SDLC). The SDLC starts with a planning
phase in which the project team identifies the business value of the system, conducts
a feasibility analysis, and plans the project. The second phase is the analysis phase,
in which the team develops an analysis strategy, gathers information, and builds a
set of analysis models. In the next phase, the design phase, the team develops the
design strategy, the physical design, architecture design, interface design, database
and file specifications, and program design. In the final phase, implementation, the
system is built, installed, and maintained.

Project Identification and Initiation
Projects are identified when someone recognizes a business need that can be satis-
fied through the use of information technology. Project initiation is the point at
which an organization creates and assesses the original goals and expectations for
a new system. The first step in the process is to identify the business value for the
system by developing a system request that provides basic information about the
proposed system. Next, the analysts perform a feasibility analysis to determine
the technical, economic, and organizational feasibility of the system.

System Request
The business value for an information system is identified and then described in a
system request. This form contains the project’s sponsor, business need, business
requirements, and business value of the information system, along with any other
issues or constraints that are important to the project. The document is submitted to
an approval committee who determines whether the project would be a wise invest-
ment of the organization’s time and resources.

Feasibility Analysis
A feasibility analysis is then used to provide more detail about the risks associated
with the proposed system, and it includes technical, economic, and organizational
feasibilities. The technical feasibility focuses on whether the system can be built, by

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 11/3/11 7:25 AM Page 37

38 Chapter 1 The Systems Analyst and Information Systems Development

1. What are the six general skills all project team
members should have?

2. What are the major roles on a project team?
3. Compare and contrast the role of a systems analyst,

business analyst, and infrastructure analyst.
4. Compare and contrast phases, steps, techniques, and

deliverables.

5. Describe the major phases in the systems develop-
ment life cycle (SDLC).

6. Describe the principal steps in the planning phase.
What are the major deliverables?

7. Describe the principal steps in the analysis phase.
What are the major deliverables?

QUESTIONS

Analysis models
Analysis phase
Analysis strategy
Approval committee
Architecture design
As-is system
Break-even analysis
Business analyst
Business need
Business process automation

(BPA)
Business process improvement

(BPI)
Business process management

(BPM)
Business process reengineering

(BPR)
Business requirements
Business value
Cash-flow method
Champion
Change management analyst
Compatibility
Construction
Cost–benefit analysis
Database and file specifications
Deliverable
Design phase

Design strategy
Development costs
Economic feasibility
Emerging technology
Familiarity with technology
Familiarity with the application
Feasibility analysis
Feasibility study
First mover
Functionality
Gradual refinement
Implementation phase
Infrastructure analyst
Installation
Intangible benefits
Intangible costs
Intangible value
Interface design
Net present value (NPV)
Operation costs
Organizational feasibility
Organizational management
Payback method
Phase
Planning phase
Program design
Project initiation
Project management

Project manager
Project plan
Project size
Project sponsor
Requirements analyst
Software architect
Special issues
Stakeholder
Stakeholder analysis
Steering committee
Step
Strategic alignment
Support plan
System proposal
System request
System specification
System users
Systems analyst
Systems development life cycle

(SDLC)
Tangible benefits
Tangible value
Technical feasibility
Technique
To-be system
Training plan
Work plan

KEY TERMS

examining the risks associated with the users’ and analysts’ familiarity with the appli-
cation, familiarity with the technology, project size, and compatibility with existing
systems. The economic feasibility addresses whether the system should be built. It
includes a cost–benefit analysis of development costs, operational costs, tangible
benefits, and intangible costs and benefits. Finally, the organizational feasibility
analysis assesses how well the system will be accepted by its users and incorporated
into the ongoing operations of the organization. The strategic alignment of the project
and a stakeholder analysis can be used to assess this feasibility dimension.

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 9/21/11 11:14 AM Page 38

Exercises 39

A. Look in the classified section of your local newspa-
per. What kinds of job opportunities are available for
people who want analyst positions? Compare and
contrast the skills that the ads solicit with the skills
that were presented in this chapter.

B. Think about your ideal analyst position. Write a
newspaper ad to hire someone for that position. What
requirements would the job have? What skills and
experience would be required? How would appli-
cants demonstrate that they have the appropriate
skills and experience?

C. Locate a news article in an IT trade magazine (e.g.,
Computerworld) about an organization that is
implementing a new computer system. Describe the
tangible and intangible values that the organization
likely will realize from the new system.

D. Car dealers have realized how profitable it can be to
sell automobiles by using the Web. Pretend that you
work for a local car dealership that is part of a large
chain such as CarMax. Create a system request that

you might use to develop a Web-based sales system.
Remember to list special issues that are relevant to
the project.

E. Suppose that you are interested in buying yourself a
new computer. Create a cost–benefit analysis that
illustrates the return on investment that you would
receive from making this purchase. Computer-related
websites (www.dell.com, www.hp.com) should reveal
real tangible costs that you can include in your
analysis. Project your numbers out to include a three-
year period and provide the net present value of the
final total.

F. Consider the Amazon.com website. The manage-
ment of the company decided to extend its Web-
based system to include products other than books
(e.g., wine, specialty gifts). How would you have
assessed the feasibility of this venture when the idea
first came up? How “risky” would you have con-
sidered the project that implemented this idea?
Why?

EXERCISES

8. Describe the principal steps in the design phase.
What are the major deliverables?

9. Describe the principal steps in the implementation
phase. What are the major deliverables?

10. Which phase in the SDLC is the most important?
11. What does gradual refinement mean in the context

of SDLC?
12. Describe the four steps of business process man-

agement. Why do companies adopt BPM as a
management strategy?

13. Compare and contrast BPA, BPI, and BPR. Which is
most risky? Which has the greatest potential value?

14. Give three examples of business needs for a system.
15. Describe the roles of the project sponsor and the

approval committee.
16. What is the purpose of an approval committee? Who

is usually on this committee?
17. Why should the system request be created by a

businessperson as opposed to an IS professional?
18. What is the difference between intangible value and

tangible value? Give three examples of each.
19. What are the purposes of the system request and the

feasibility analysis? How are they used in the project
selection process?

20. Describe two special issues that may be important
to list on a system request.

21. Describe the three dimensions of feasibility analysis.
22. What factors are used to determine project size?
23. Describe a “risky” project in terms of technical

feasibility. Describe a project that would not be
considered risky.

24. What are the steps for assessing economic feasibility?
Describe each step.

25. List two intangible benefits. Describe how these
benefits can be quantified.

26. List two tangible benefits and two operational costs
for a system. How would you determine the values
that should be assigned to each item?

27. Explain how an expected value can be calculated
for a cost or benefit. When would this be done?

28. Explain the net present value and return on invest-
ment for a cost–benefit analysis. Why would these
calculations be used?

29. What is the break-even point for the project? How
is it calculated?

30. What is stakeholder analysis? Discuss three stake-
holders that would be relevant for most projects.

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 9/21/11 11:14 AM Page 39

40 Chapter 1 The Systems Analyst and Information Systems Development

1. Barbara Singleton, manager of western regional sales
at the WAMAP Company, requested that the IS depart-
ment develop a sales force management and tracking
system that would enable her to better monitor the per-
formance of her sales staff. Unfortunately, due to the
massive backlog of work facing the IS department, her
request was given a low priority. After six months of
inaction by the IS department, Barbara decided to take
matters into her own hands. Following the advice of
friends, Barbara purchased a PC and simple database
software and constructed a sales force management
and tracking system on her own.

Although Barbara’s system has been “completed”
for about six weeks, it still has many features that do
not work correctly, and some functions are full of
errors. Barbara’s assistant is so mistrustful of the sys-
tem that she has secretly gone back to using her old
paper-based system, since it is much more reliable.

Over dinner one evening, Barbara complained to a
systems analyst friend, “I don’t know what went wrong
with this project. It seemed pretty simple to me. Those
IS guys wanted me to follow this elaborate set of steps
and tasks, but I didn’t think all that really applied to a
PC-based system. I just thought I could build this sys-
tem and tweak it around until I got what I wanted with-
out all the fuss and bother of the methodology the IS
guys were pushing. I mean, doesn’t that just apply to
their big, expensive systems?”

Assuming that you are Barbara’s systems analyst
friend, how would you respond to her complaint?

2. The Amberssen Specialty Company is a chain of 12 retail
stores that sell a variety of imported gift items, gourmet
chocolates, cheeses, and wines in the Toronto area.
Amberssen has an IS staff of three people who have cre-
ated a simple, but effective, information system of
networked point-of-sale registers at the stores, and a cen-
tralized accounting system at the company headquarters.
Harry Hilman, the head of Amberssen’s IS group, has

just received the following memo from Bill Amberssen,
Sales Director (and son of Amberssen’s founder):

Harry—It’s time Amberssen Specialty launched itself on
the Internet. Many of our competitors are already there,
selling to customers without the expense of a retail
storefront, and we should be there too. I project that we
could double or triple our annual revenues by selling our
products on the Internet. I’d like to have this ready by
Thanksgiving, in time for the prime holiday gift-shopping
season. Bill

After pondering this memo for several days, Harry
scheduled a meeting with Bill so that he could clarify
Bill’s vision of this venture. Using the standard content of
a system request as your guide, prepare a list of questions
that Harry needs to have answered about this project.

3. The Decker Company maintains a fleet of 10 service
trucks and crews that provide a variety of plumbing,
heating, and cooling repair services to residential cus-
tomers. Currently, it takes on average about 6 hours
before a service team responds to a service request.
Each truck and crew averages 12 service calls per
week, and the average revenue earned per service call
is $150. Each truck is in service 50 weeks per year.
Due to the difficulty in scheduling and routing, there is
considerable slack time for each truck and crew during
a typical week.

In an effort to more efficiently schedule the trucks and
crews and improve their productivity, Decker manage-
ment is evaluating the purchase of a prewritten routing
and scheduling software package. The benefits of the sys-
tem will include reduced response time to service
requests and more productive service teams, but manage-
ment is having trouble quantifying these benefits.

One approach is to make an estimate of how much
service response time will decrease with the new sys-
tem, which then can be used to project the increase in
the number of service calls made each week. For exam-
ple, if the system permits the average service response

MINICASES

G. Interview someone who works in a large organiza-
tion, and ask him or her to describe the approval
process that exists for proposed new development
projects. What do they think about the process?
What are the problems? What are the benefits?

H. Reread the “Your Turn 1-2” box (Implementing a
Satellite Data Network). Create a list of the stake-
holders that should be considered in a stakeholder
analysis of this project.

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 9/21/11 11:14 AM Page 40

time to fall to 4 hours, management believes that each
truck will be able to make 16 service calls per week on
average—an increase of 4 calls per week. With each
truck making 4 additional calls per week and the aver-
age revenue per call at $150, the revenue increase per
truck per week is $600 (4 � $150). With 10 trucks in
service 50 weeks per year, the average annual revenue
increase will be $300,000 ($600 � 10 � 50).

Decker Company management is unsure whether
the new system will enable response time to fall to 4
hours on average, or will be some other number.
Therefore, management has developed the following
range of outcomes that may be possible outcomes of
the new system, along with probability estimates of
each outcome occurring:

New Response Time # Calls/Truck/Week Likelihood
2 hours 20 20%
3 hours 18 30%
4 hours 16 50%

Given these figures, prepare a spreadsheet model that
computes the expected value of the annual revenues to
be produced by this new system.

4. Martin is working to develop a preliminary cost–benefit
analysis for a new client-server system. He has identi-
fied a number of cost factors and values for the new
system, summarized in the following tables:

Development Costs—Personnel

2 Systems Analysts 400 hours/ea @ $50/hour

4 Programmer Analysts 250 hours/ea @ $35/hour

1 GUI Designer 200 hours/ea @ $40/hour

1 Telecommunications
Specialist 50 hours/ea @ $50/hour

1 System Architect 100 hours/ea @ $50/hour

1 Database Specialist 15 hours/ea @ $45/hour

1 System Librarian 250 hours/ea @ $15/hour

Development Costs—Training

4 Oracle training registration $3500/student

Development Costs—New Hardware and Software

1 Development server $18,700

1 Server software (OS, misc.) $1500

1 DBMS server software $7500

7 DBMS client software $950/client

Annual Operating Costs—Personnel

2 Programmer Analysts 125 hours/ea @ $35/hour

1 System Librarian 20 hours/ea @ $15/hour

Annual Operating Costs—Hardware, Software, and Misc.

1 Maintenance agreement for server $995

1 Maintenance agreement for server $525
DBMS software

Preprinted forms 15,000/year @ $.22/form

The benefits of the new system are expected to come
from two sources: increased sales and lower inventory
levels. Sales are expected to increase by $30,000 in the
first year of the system’s operation and will grow at a
rate of 10% each year thereafter. Savings from lower
inventory levels are expected to be $15,000 per year for
each year of the project’s life.

Using a format similar to the spreadsheets in this
chapter, develop a spreadsheet that summarizes this
project’s cash flow, assuming a four-year useful life
after the project is developed. Compute the present
value of the cash flows, using an interest rate of 9%.

What is the NPV for this project? What is the ROI
for this project? What is the break-even point? Should
this project be accepted by the approval committee?

Figure 1A-1 contains the summary spreadsheet for the
Tune Source digital music download project. As shown,
Carly’s original sales projections are used for the first
year’s revenues. Sales are expected to grow 4% in the
second year and 3% in the third year.

Cost projections are based on Jason’s assumptions
about the time it will take to develop the system and the
resources that will be required. Operating costs have a
considerable new labor component because a new busi-
ness unit is being created, requiring additional staff.*

APPENDIX 1A—DETAILED ECONOMIC FEASIBILITY ANALYSIS FOR TUNE SOURCE

* Some of the salary information may seem high to you. But keep in mind
that most companies use a “full cost” model for estimating salary cost in

which all benefits (e.g., health insurance, retirement, payroll taxes) are
included in salaries when estimating costs.

Appendix 1A—Detailed Economic Feasibility Analysis for Tune Source 41

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 9/21/11 11:14 AM Page 41

42 Chapter 1 The Systems Analyst and Information Systems Development

Benefits
Increased sales from individual music downloads 757,500 787,800 811,434 2,356,734
Increased sales from customer subscriptions 950,000 988,000 1,017,640 2,955,640
Increased sales from in-store or website CD sales 205,000 213,200 219,596 637,796
Increased sales from music download gift cards 153,000 159,120 163,894 476,014

Total Benefits 2,065,500 2,148,120 2,212,564 6,426,184

Present Value Total Benefits 1,948,585 1,911,819 1,857,711 5,718,115

Development Costs
Labor: Analysis and design 42,000 0 0 0 42,000
Labor: Implementation 120,000 0 0 0 120,000
Consultant fees 50,000 0 0 0 50,000
Development training 5,000 0 0 0 5,000
Office space and equipment 2,000 0 0 0 2,000
In-store kiosks 25,000 0 0 0 25,000
Software 10,000 0 0 0 10,000
Hardware 25,000 0 0 0 25,000

Total Development Costs 279,000 0 0 0 279,000

Operational Costs
Labor: Webmaster 85,000 87,550 90,177 262,727
Labor: Network technician 60,000 61,800 63,654 185,454
Labor: Computer operations 50,000 51,500 53,045 154,545
Labor: Business manager 60,000 61,800 63,654 185,454
Labor: Assistant manager 45,000 46,350 47,741 139,091
Labor: Three staff 90,000 92,700 95,481 278,181
Software upgrades 1,000 1,000 1,000 3,000
Software licenses 3,000 1,000 1,000 5,000
Hardware upgrades 5,000 3,000 3,000 11,000
User training 2,000 1,000 1,000 4,000
Additional ISP charges 15,000 17,000 18,500 50,500
Communications charges 20,000 20,000 20,000 60,000
Marketing expenses 25,000 25,000 25,000 75,000

Total Operational Costs 461,000 469,700 483,251 1,413,951

Total Costs 279,000 461,000 469,700 483,251 1,692,951

Total Benefits � Total Costs (279,000) 1,604,500 1,678,420 1,729,313 4,733,233

Cumulative Net Cash Flow (279,000) 1,325,500 3,003,920 4,733,233

Present Value Total Costs 279,000 434,906 418,031 405,747 1,537,684

Return on Investment (ROI) 280% (6,426,184/1,692,951)

Break-Even Point 0.17 years (costs are fully recovered in the first year;
[1,604,500 � 1,325,500]/1,604,500)

NPV (PV Total Benefits � PV Total Costs) 4,180,431 (5,718,115 � 1,537,684)

Intangible Benefits: Improved customer satisfaction
Enhanced market position

2012 2013 2014 2015 Total

FIGURE 1A-1
Economic Feasibility Analysis for Tune Source

A

B

C

D

E

F

Figure 1A-1 incorporates several of the financial
analysis techniques we have discussed. The rows
marked A and C summarize the annual benefits and
costs, respectively. The row marked D shows the yearly
net benefits (total benefits � total costs). The ROI

calculation shows that this project is expected to return
280% on the investment, calculated by dividing the
total benefits in row A by the total costs in row C.

Row E shows the cumulative cash flow for the
project, and this is used to determine the break-even

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 9/21/11 11:14 AM Page 42

Appendix 1A—Detailed Economic Feasibility Analysis for Tune Source 43

point. As seen in Figure 1A-1, the project fully recovers
its costs in the first year, since the cumulative net cash
flow is positive in the first year.

The row marked B computes the present value
of each year’s total benefits, and the row marked F
computes the present value of each year’s total costs.
These values are used in the NPV calculation. The

total present value of costs is subtracted from the total
present value of benefits, and the result is a large pos-
itive number, indicating the high desirability of this
investment.

This spreadsheet shows that this project can add
significant business value even if the underlying assump-
tions prove to be overly optimistic.

c01TheSystemsAnalystAndInformationSystemsDevelopment.qxd 9/21/11 11:14 AM Page 43

P L A N N I N G

T A S K C H E C K L I S T

Identify project.
Develop systems request.

Analyze technical feasibility.
Analyze economic feasibility.

Analyze organizational feasibility.

Perform project selection review.

Estimate project time.

Identify project tasks.

Create work breakdown structure.

Create PERT charts.

Create Gantt charts.

Manage scope.

Staff project.

Create project charter.

Set up CASE repository.

Develop standards.

Begin documentation.

Assess and manage risk.

P L A N N I N G A N A L Y S I S D E S I G N

▼

✓

✓

✓

✓

✓

c02ProjectSelectionAndManagement.qxd 12/5/11 2:25 PM Page 44

I M P L E M E N TAT I O N

his chapter discusses how organizations evaluate and select projects to undertake
from the many available projects. Once a project has been selected, the project

manager plans the project. Project management involves selecting a project methodology,
creating the project work plan, identifying project staffing requirements, and preparing to
manage and control the project. These steps produce important project management deliv-
erables, including the work plan, staffing plan, standards list, project charter, and risk
assessment.

OBJECTIVES

■ Explain how projects are selected in some organizations.
■ Describe various approaches to the SDLC that can be used to structure a devel-

opment project.
■ Explain how to select a project methodology based on project characteristics.
■ Become familiar with project estimation.
■ Be able to create a project work plan.
■ Describe project staffing issues and concerns.
■ Describe and apply techniques to coordinate and manage the project.
■ Explain how to manage risk on the project.

CHAPTER OUTLINE

C H A P T E R 2

T

PROJECT SELECTION
AND MANAGEMENT

Introduction
Project Selection

Applying the Concept at Tune Source
Creating the Project Plan

Project Methodology Options
Selecting the Appropriate

Methodology
Estimating the Project Time Frame
Developing the Work Plan
Staffing the Project
Coordinating Project Activities

Managing and Controlling the Project
Refining Estimates
Managing Scope
Timeboxing
Managing Risk

Applying the Concepts at Tune Source
Summary
Appendix 2A—The Function Point

Approach
Appendix 2B—Project Management

Tools: The Gantt Chart and PERT
Chart

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 45

INTRODUCTION

Most IT departments face a demand for IT projects that far exceeds the depart-
ment’s ability to supply them. In the past 10 years, business application growth has
exploded, and chief information officers (CIOs) are challenged to select projects
that will provide the highest possible return on IT investments while managing
project risk. In a recent analysis, AMR Research Inc. found that 2%–15% of
projects taken on by IT departments are not strategic to the business.1 In today’s
globally competitive business environment, the corporate IT department needs to
carefully prioritize, select, and manage its portfolio of development projects.

Historically, IT departments have tended to select projects by ad hoc methods:
first-in, first-out; political clout; or the squeaky wheel getting the grease. In recent
years, IT departments have collected project information and mapped the projects’
contributions to business goals, using a project portfolio perspective.2 Project port-
folio management, a process of selecting, prioritizing, and monitoring project results,
has become a critical success factor for IT departments facing too many potential
projects with too few resources.3 Software for project portfolio management, such as
Hewlett Packard’s Project and Portfolio Management, Primavera Systems’ ProSight,
and open-source Project.net, has become a valuable tool for IT organizations.

Once selected, a systems development project undergoes a thorough process of
project management, the process of planning and controlling the project within a spec-
ified time frame, at minimum cost, with the desired outcomes.4 A project manager has
the primary responsibility for managing the hundreds of tasks and roles that need to be
carefully coordinated. Project management has evolved into an actual profession with
many training options and professional certification (e.g., Project Management Pro-
fessional, or PMP) available through the Project Management Institute (www.pmi.org).
Dozens of software products are available to support project management activities.

Although training and software are available to help project managers, unrea-
sonable demands set by project sponsors and business managers can make project
management very difficult. Too often, the approach of the holiday season, the chance
at winning a proposal with a low bid, or a funding opportunity pressures project
managers to promise systems long before they are realistically able to deliver them.
These overly optimistic timetables are thought to be one of the biggest problems that
projects face; instead of pushing a project forward faster, they result in delays.

Thus, a critical success factor for project management is to start with a real-
istic assessment of the work that needs to be accomplished and then manage the
project according to the plan. This can be accomplished by carefully following the
basic steps of project management as outlined in this chapter. First, the project man-
ager chooses a system development methodology that fits the characteristics of the
project. Based on the size of the system, estimates of a time frame are made. Then,
a list of tasks to be performed is created that forms the basis of the project work
plan. Staffing needs are determined, and the project manager sets in place mecha-
nisms to coordinate the project team throughout the project. Finally, the project
manager monitors the project and refines estimates as work proceeds.

46 Chapter 2 Project Selection and Management

1 Tucci, Linda, “PPM Strategy a CIO’s Must-Have in Hard Times,” SearchCIO.com, March 5, 2008.
2 Ibid.
3 Tucci, Linda, “Project portfolio management takes flight at Sabre,” SearchCIO.com, November 28, 2007.
4 A good book on project management is by Robert K. Wysocki, Effective Project Management: Traditional,
Adaptive, Extreme, 5th Ed., New York: John Wiley & Sons, 2009. Also, the Project Management Institute
(www.pmi.org) and the Information Systems Special Interest Group of the Project Management Institute
(www.pmi-issig.org) have valuable resources on project management in information systems.

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 46

PROJECT SELECTION

Many IT organizations tackle a number of important initiatives simultaneously. For
example, new software applications may be under development; new business
models may be under consideration; organizational structures may be revised; new
technical infrastructures may be evaluated. Collectively, these endeavors are man-
aged as a program by the IT steering committee. The steering committee must provide
oversight and governance to the entire set of projects that are undertaken by the IT
organization. The individual projects that are accepted by the steering committee
are temporary endeavors undertaken to create a unique product or service.

Investments in information systems projects today are evaluated in the context
of an entire portfolio of projects. Decision makers look beyond project cost and
consider a project’s anticipated risks and returns in relation to other projects. Com-
panies prioritize their business strategies and then assemble and assess project port-
folios on the basis of how they meet those strategic needs.

The focus on a project’s contribution to an entire portfolio of projects rein-
forces the need for the feasibility study as described in Chapter 1. The approval
committee has the responsibility to evaluate not only the project’s costs and expected
benefits, but also the technical and organizational risks associated with the project.
The feasibility analysis is submitted back to the approval committee, along with an
updated system request. Using this information, the approval committee can exam-
ine the business need (found in the system request) and the project risks (described
in the feasibility analysis).

Portfolio management takes into consideration the different kinds of projects that
exist in an organization—large and small, high risk and low risk, strategic and tactical.

Project Selection 47

Information systems are at the core of
Sabre Holdings Corporation. The Sabre reservation system
is the booking system of choice for travel agencies world-
wide. Sabre is also the parent company of Travelocity.
com, the second largest online travel agency in the United
States.

Like many companies, Sabre’s IT department strug-
gles with many more project requests than it has resources
to accomplish—as many as 1500 proposals for 600
funded projects annually. Because of the volatile, compet-
itive nature of the travel industry, Sabre is especially chal-
lenged to be certain that IT is doing the right projects
under constantly changing conditions. While traditional
project management techniques focus on getting individ-
ual projects done, Sabre needs to be able to rapidly
change the entire set of projects it’s working on as market
conditions shift.

Project portfolio management software collects and
manages information about all projects—those that are

underway and those that are awaiting approval. The soft-
ware helps prioritize projects, allocate employees, moni-
tor projects in real time, flag cost and time variances,
measure the ROI, and help the IT department objectively
measure the efficiency and efficacy of IT investments.

Primavera Systems’ PPM software has enabled
Sabre Holdings to update its queue of projects regularly,
and projects are now prioritized quarterly instead of
annually. A study of users of Hewlett Packard’s PPM Cen-
ter software found that in all cases, the investment in the
software paid for itself in a year. Other findings were an
average 30% increase in on-time projects, a 12% reduc-
tion in budget variance, and a 30% reduction in the
amount of time IT spent on project reporting.

Sources: Tucci, Linda, “Project portfolio management takes
flight at Sabre,“ SearchCIO.com, November 28, 2007.
Tucci, Linda, “PPM strategy a CIO’s must-have in hard times,”
SearchCIO.com, March 5, 2008.

2-A PROJECT PORTFOLIO MANAGEMENT: AN ESSENTIAL TOOL FOR IT DEPARTMENTS

IN ACTION

CONCEPTS

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 47

(See Figure 2-1 for different ways of classifying projects.) A good project portfolio will
have the most appropriate mix of projects for the organization’s needs. The committee
acts as a portfolio manager, with the goal of maximizing benefits versus costs and bal-
ancing other important factors of the portfolio. For example, an organization may want
to keep high-risk projects to a level less than 20% of its total project portfolio.

The approval committee must be selective about where to allocate resources,
because the organization has limited funds. This involves trade-offs in which the
organization must give up something in return for something else in order to keep
its portfolio well balanced. If there are three potentially high-payoff projects, yet all
have very high risk, then maybe only one of the projects will be selected. Also, there
are times when a system at the project level makes good business sense, but it
does not at the organization level. Thus, a project may show a very strong economic
feasibility and support important business needs for a part of the company; how-
ever, it is not selected. This could happen for many reasons—because there is no
money in the budget for another system, the organization is about to go through
some kind of change (e.g., a merger, an implementation of a company-wide system
like an ERP), projects that meet the same business requirements already are under-
way, or the system does not align well with current or future corporate strategy.

Applying the Concepts at Tune Source

The approval committee met and reviewed the Digital Music Download project along
with two other projects—one that called for a new supply-chain portal and another that
involved the enhancement of Tune Source’s data warehouse. Unfortunately, the budget
would allow for only one project to be approved, so the committee carefully examined

48 Chapter 2 Project Selection and Management

Size What is the size? How many people are needed to work on the
project?

Cost How much will the project cost the organization?

Purpose What is the purpose of the project? Is it meant to improve the
technical infrastructure? support a current business strategy?
improve operations? demonstrate a new innovation?

Length How long will the project take before completion? How much
time will go by before value is delivered to the business?

Risk How likely is it that the project will succeed or fail?

Scope How much of the organization is affected by the system? a
department? a division? the entire corporation?

Economic Value How much money does the organization expect to receive in
return for the amount the project costs?FIGURE 2-1

Ways to Classify Projects

It seems hard to believe that an
approval committee would not select a project that meets
real business needs, has a high potential ROI, and has a
positive feasibility analysis. Think of a company that you

have worked for or know about. Describe a scenario in
which a project may be very attractive at the project
level, but not at the organization level.

2-1 TO SELECT OR NOT TO SELECTY O U R

T U R N

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 48

Project Selection 49

In April 1999, one of Capital Blue
Cross’ health-care insurance plans had been in the field
for three years, but hadn’t performed as well as expected.
The ratio of premiums to claims payments wasn’t meeting
historic norms. In order to revamp the product features or
pricing to boost performance, the company needed to
understand why it was underperforming. The stakehold-
ers came to the discussion already knowing they needed
better extraction and analysis of usage data in order to
understand product shortcomings and recommend
improvements.

After listening to input from the user teams, the stake-
holders proposed three options. One was to persevere
with the current manual method of pulling data from flat
files via ad hoc reports and retyping it into spreadsheets.

The second option was to write a program to
dynamically mine the needed data from Capital’s customer
information control system (CICS). While the system was

processing claims, for instance, the program would pull
out up-to-the-minute data at a given point in time for users
to analyze.

The third alternative was to develop a decision-
support system to allow users to make relational queries
from a data mart containing a replication of the relevant
claims and customer data.

Each of these alternatives was evaluated on cost,
benefits, risks, and intangibles.

QUESTION:
1. What are three costs, benefits, risks, and intangibles

associated with each project?
2. Based on your answer to question 1, which project

would you choose?

Source: “Capital Blue Cross,” CIO Magazine, February 15,
2000, by Richard Pastore.

2-2 PROJECT SELECTIONY O U R

T U R N

A CIO needs to have a global view
when identifying and selecting projects for her organiza-
tion. I would get lost in the trees if I were to manage on
a project-by-project basis. Given this, I categorize my
projects according to my three roles as a CIO, and the
mix of my project portfolio changes depending on the
current business environment.

My primary role is to keep the business running.
That means every day when each person comes to work,
they can perform his or her job efficiently. I measure this
using various service level, cost, and productivity meas-
ures. Projects that keep the business running could have
a high priority if the business were in the middle of a
merger, or a low priority if things were running smoothly,
and it were “business as usual.”

My second role is to push innovation that creates
value for the business. I manage this by looking at our
lines of business and asking which lines of business cre-
ate the most value for the company. These are the areas
for which I should be providing the most value. For
example, if we had a highly innovative marketing strat-
egy, I would push for innovation there. If operations
were running smoothly, I would push less for innovation
in that area.

My third role is strategic, to look beyond today
and find new opportunities for both IT and the business
of providing energy. This may include investigating
process systems, such as automated meter reading or
looking into the possibilities of wireless technologies.

Lyn McDermid

2-B INTERVIEW WITH LYN MCDERMID, CIO, DOMINION VIRGINIA POWER

IN ACTION

CONCEPTS

the costs, expected benefits, risks, and strategic alignment of all three projects. Cur-
rently, top management is anxious to bring the digital music download capability to
market in order to satisfy the demands of its existing customers and potentially expand
its customer base. The Digital Music Download project is best aligned with that goal.
Therefore, the committee decided to fund the Digital Music Download project.

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 49

50 Chapter 2 Project Selection and Management

At Marriott, we don’t have IT projects—
we have business initiatives and strategies that are
enabled by IT. As a result the only time a traditional “IT
project” occurs is when we have an infrastructure
upgrade that will lower costs or leverage better function-
ing technology. In this case, IT has to make a business
case for the upgrade and prove its value to the company.

The way IT is involved in business projects in the
organization is twofold. First, senior IT positions are filled
by people with good business understanding. Second,
these people are placed on key business committees and
forums where the real business happens, such as finding
ways to satisfy guests. Because IT has a seat at the table,
we are able to spot opportunities to support business
strategy. We look for ways in which IT can enable or bet-
ter support business initiatives as they arise.

Therefore, business projects are proposed, and IT
is one component of them. These projects are then eval-
uated the same as any other business proposal, such as
a new resort—by examining the return on investment and
other financial measures.

At the organizational level, I think of projects as
must-do’s, should-do’s, and nice-to-do’s. The “must-do’s”
are required to achieve core business strategy, such as
guest preference. The “should-do’s” help grow the busi-
ness and enhance the functionality of the enterprise.
These can be somewhat untested, but good drivers of
growth. The “nice-to-do’s” are more experimental and
look further out into the future.

The organization’s project portfolio should have a
mix of all three kinds of projects, with a much greater pro-
portion devoted to the “must-do’s.” Carl Wilson

2-C INTERVIEW WITH CARL WILSON, CIO, MARRIOTT CORPORATION

IN ACTION

CONCEPTS

Hygeia Travel Health is a Toronto-
based health insurance company whose clients are the
insurers of foreign tourists to the United States and Canada.
Its project selection process is relatively straightforward.
The project evaluation committee, consisting of six senior
executives, splits into two groups. One group includes the
CIO, along with the heads of operations and research and
development, and it analyzes the costs of every project.
The other group consists of the two chief marketing officers
and the head of business development, and they analyze
the expected benefits. The groups are permanent, and to
stay objective, they don’t discuss a project until both sides
have evaluated it. The results are then shared, both on a
spreadsheet and in conversation. Projects are then
approved, passed over, or tabled for future consideration.

Last year, the marketing department proposed pur-
chasing a claims database filled with detailed information
on the costs of treating different conditions at different facil-
ities. Hygeia was to use this information to estimate how
much money insurance providers were likely to owe on a
given claim if a patient was treated at a certain hospital as
opposed to any other. For example, a 45-year-old man suf-
fering a heart attack may accrue $5000 in treatment costs
at hospital A, but only $4000 at hospital B. This information

would allow Hygeia to recommend the less expensive
hospital to its customer. That would save the customer
money and help differentiate Hygeia from its competitors.

The benefits team used the same three-meeting
process to discuss all the possible benefits of implement-
ing the claims database. Members of the team talked to
customers and made a projection by using Hygeia’s past
experience and expectations about future business
trends. The verdict: The benefits team projected a rev-
enue increase of $210,000. Client retention would rise
by 2%, and overall, profits would increase by 0.25%.

The costs team, meanwhile, came up with large
estimates: $250,000 annually to purchase the database
and an additional $71,000 worth of internal time to
make the information usable. Put it all together and it was
a financial loss of $111,000 in the first year.

The project still could have been good for marketing—
maybe even good enough to make the loss acceptable.
But some of Hygeia’s clients were also in the claims infor-
mation business and, therefore, potential competitors.
This, combined with the financial loss, was enough to
make the company reject the project.

Source: “Two Teams Are Better Than One,” CIO Magazine, July
15, 2001, by Ben Worthen.

2-D A PROJECT THAT DOES NOT GET SELECTED

IN ACTION

CONCEPTS

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 50

CREATING THE PROJECT PLAN

Once the project is launched by being selected by the approval committee, it is time
to carefully plan the project. The project manager will follow a set of project man-
agement guidelines, sometimes referred to as the project management life cycle, as
he or she organizes, guides, and directs the project from inception to completion.
Generally speaking, the project management phases consist of initiation, planning,
execution, control, and closure.

In large organizations or on large projects, the role of project manager is com-
monly filled by a professional specialist in project management. In smaller organiza-
tions or on smaller projects, the systems analyst may fill this role. The project manager
must make a myriad of decisions regarding the project, including determining the best
project methodology, developing a work plan for the project, determining a staffing
plan, and establishing mechanisms to coordinate and control the project.

Project Methodology Options

As we discussed in Chapter 1, the Systems Development Life Cycle (SDLC) provides
the foundation for the processes used to develop an information system. A method-
ology is a formalized approach to implementing the SDLC (i.e., it is a list of steps and
deliverables). There are many different systems development methodologies, and they
vary in terms of the progression that is followed through the phases of the SDLC.
Some methodologies are formal standards used by government agencies, while others
have been developed by consulting firms to sell to clients. Many organizations have
their own internal methodologies that have been refined over the years, and they
explain exactly how each phase of the SDLC is to be performed in that company. Here
we will review several of the predominant methodologies that have evolved over time.

Waterfall Development With waterfall development, analysts and users proceed
sequentially from one phase to the next. (See Figure 2-2.) The key deliverables for
each phase are typically voluminous (often, hundreds of pages) and are presented

Creating the Project Plan 51

FIGURE 2-2
Waterfall Development

System

Planning

Analysis

Design

Implementation

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 51

to the approval committee and project sponsor for approval as the project moves
from phase to phase. Once the work produced in one phase is approved, the phase
ends and the next phase begins. As the project progresses from phase to phase, it
moves forward in the same manner as a waterfall. While it is possible to go backward
through the phases (e.g., from design back to analysis), it is quite difficult. (Imagine
yourself as a salmon trying to swim upstream in a waterfall).

Waterfall development methodologies have the advantages of identifying
requirements long before programming begins and limiting changes to the require-
ments as the project proceeds. The key disadvantages are that the design must be
completely specified before programming begins, a long time elapses between the
completion of the system proposal in the analysis phase and the delivery of system,
and testing is treated almost as an afterthought in the implementation phase. In addi-
tion, the deliverables are often a poor communication mechanism, so important
requirements may be overlooked in the volumes of documentation. If the project team
misses an important requirement, expensive post-implementation programming may
be needed. Users may forget the original purpose of the system, since so much time
has elapsed between the original idea and actual implementation. Also, in today’s
dynamic business environment, a system that met the existing environmental condi-
tions during the analysis phase may need considerable rework to match the environ-
ment when it is implemented. This rework requires going back to the initial phase and
making needed changes through each of the subsequent phases in turn.

52 Chapter 2 Project Selection and Management

FIGURE 2-3
Parallel Development

System

Planning

Analysis

Design

Implementation

Design

Implementation

Implementation

Design

Implementation

Design

Subproject 2

Subproject 1

Subproject 3

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 52

There are two important variants of waterfall development. The parallel devel-

opment methodologies evolved to address the lengthy time frame of waterfall devel-
opment. As shown in Figure 2-3, instead of doing the design and implementation in
sequence, a general design for the whole system is performed. Then the project is
divided into a series of subprojects that can be designed and implemented in parallel.
Once all subprojects are complete, there is a final integration of the separate pieces,
and the system is delivered.

Parallel development reduces the time required to deliver a system, so
changes in the business environment are less likely to produce the need for rework.
The approach still suffers from problems caused by voluminous deliverables. It also
adds a new problem: If the subprojects are not completely independent, design
decisions in one subproject may affect another, and at the project end, integrating
the subprojects may be quite challenging.

The V-model is another variation of waterfall development that pays more
explicit attention to testing. As shown in Figure 2-4, the development process pro-
ceeds down the left-hand slope of the V, defining requirements and designing sys-
tem components. At the base of the V, the code is written. On the upward-sloping
right side of the model, testing of components, integration testing, and, finally,
acceptance testing are performed. A key concept of this model is that as require-
ments are specified and components designed, testing for those elements is also
defined. In this manner, each level of testing is clearly linked to a part of the analy-
sis or design phase, helping to ensure high quality and relevant testing and maxi-
mize test effectiveness.

Creating the Project Plan 53

Design

Implementation
(coding)

Acceptance

test design

System

test design

Integration

test design

Unit

test design

Unit
testing

Integration
testing

System
testing

Acceptance
testing

Analysis

FIGURE 2-4
V-Model

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 53

The V-model is simple and straightforward and improves the overall quality
of systems through its emphasis on early development of test plans. Testing focus
and expertise is involved in the project earlier rather than later; plus, the testers gain
knowledge of the project early. It still suffers from the rigidity of the waterfall
development process, however, and is not always appropriate for the dynamic
nature of the business environment.

Rapid Application Development (RAD)5 Rapid application development is a collec-
tion of methodologies that emerged in response to the weaknesses of waterfall
development and its variations. RAD incorporates special techniques and computer
tools to speed up the analysis, design, and implementation phases in order to get
some portion of the system developed quickly and into the hands of the users for
evaluation and feedback. CASE (computer-aided software engineering) tools, JAD
(joint application development) sessions, fourth-generation/visual programming
languages (e.g., Visual Basic.NET), and code generators may all play a role in
RAD. While RAD can improve the speed and quality of systems development, it
may also introduce a problem in managing user expectations. As systems are devel-
oped more quickly and users gain a better understanding of information technology,
user expectations may dramatically increase and system requirements may expand
during the project (sometimes known as scope creep or feature creep).

RAD may be conducted in a variety of ways. Iterative development breaks the
overall project into a series of versions that are developed sequentially. The most impor-
tant and fundamental requirements are bundled into the first version of the system. This
version is developed quickly by a mini-waterfall process, and once implemented, the
users can provide valuable feedback to be incorporated into the next version of the sys-
tem. (See Figure 2-5.) Iterative development gets a preliminary version of the system
to the users quickly so that business value is provided. Since users are working with the
system, important additional requirements may be identified and incorporated into sub-
sequent versions. The chief disadvantage of iterative development is that users begin to
work with a system that is intentionally incomplete. Users must accept that only the
most critical requirements of the system will be available in the early versions and must
be patient with the repeated introduction of new system versions.

System prototyping performs the analysis, design, and implementation phases
concurrently in order to quickly develop a simplified version of the proposed sys-
tem and give it to the users for evaluation and feedback. (See Figure 2-6). The sys-
tem prototype is a “quick and dirty” version of the system and provides minimal
features. Following reaction and comments from the users, the developers reana-
lyze, redesign, and reimplement a second prototype that corrects deficiencies and
adds more features. This cycle continues until the analysts, users, and sponsor agree
that the prototype provides enough functionality to be installed and used in the
organization. System prototyping very quickly provides a system for users to eval-
uate and reassures users that progress is being made. The approach is very useful
when users have difficulty expressing requirements for the system. A disadvantage,
however, is the lack of careful, methodical analysis prior to making design and
implementation decisions. System prototypes may have some fundamental design
limitations that are a direct result of an inadequate understanding of the system’s
true requirements early in the project.

54 Chapter 2 Project Selection and Management

5 One of the best RAD books is that by Steve McConnell, Rapid Development, Redmond, WA: Microsoft
Press, 1996.

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 54

Creating the Project Plan 55

System

version 1

Planning

Analysis

Analysis

Implementation

Design

Analysis

Implementation

Design

Analysis

Implementation

Design

System

version 2

System

version 3

FIGURE 2-5
Iterative Development

System

prototype

System

Planning

Analysis

Design

Implementation

Implementation

FIGURE 2-6
System Prototyping

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 55

56 Chapter 2 Project Selection and Management

FIGURE 2-7
Throwaway Prototyping

Throwaway prototyping6 includes the development of prototypes, but uses the
prototypes primarily to explore design alternatives rather than as the actual new system
(as in system prototyping). As shown in Figure 2-7, throwaway prototyping has a
fairly thorough analysis phase that is used to gather requirements and to develop
ideas for the system concept. Many of the features suggested by the users may not
be well understood, however, and there may be challenging technical issues to be
solved. Each of these issues is examined by analyzing, designing, and building a
design prototype. A design prototype is not intended to be a working system. It con-
tains only enough detail to enable users to understand the issues under consideration.

For example, suppose that users are not completely clear on how an order
entry system should work. The analyst team might build a series of HTML pages
to be viewed on a Web browser to help the users visualize such a system. In this
case, a series of mock-up screens appear to be a system, but they really do nothing.
Or, suppose that the project team needs to develop a sophisticated graphics program
in Java. The team could write a portion of the program with artificial data to ensure
that they could create a full-blown program successfully.

A system that is developed by this type of methodology probably requires sev-
eral design prototypes during the analysis and design phases. Each of the prototypes
is used to minimize the risk associated with the system by confirming that important
issues are understood before the real system is built. Once the issues are resolved,
the project moves into design and implementation. At this point, the design proto-
types are thrown away, which is an important difference between this approach and
system prototyping, in which the prototypes evolve into the final system.

Throwaway prototyping balances the benefits of well-thought-out analysis
and design phases with the advantages of using prototypes to refine key issues before
a system is built. It may take longer to deliver the final system compared with

Design

prototype

System

Analysis

Analysis

Design

Implementation

Planning

Implementation

Design

6 Our description of the throwaway prototyping is a modified version of the Spiral Development Model devel-
oped by Barry Boehm, “A Spiral Model of Software Development and Enhancement,” Computer, May, 1988,
21(5):61–72.

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 56

system prototyping (because the prototypes do not become the final system), but
the approach usually produces more stable and reliable systems.

Agile Development Agile development7 is a group of programming-centric method-
ologies that focus on streamlining the SDLC. Much of the modeling and documen-
tation overhead is eliminated; instead, face-to-face communication is preferred. A
project emphasizes simple, iterative application development in which every itera-
tion is a complete software project, including planning, requirements analysis,
design, coding, testing, and documentation. (See Figure 2.8). Cycles are kept short
(one to four weeks), and the development team focuses on adapting to the current
business environment. There are several popular approaches to agile development,
including extreme programming (XP)8, Scrum9, and dynamic systems development
method (DSDM).10 Here, we briefly describe extreme programming.

Extreme programming11 emphasizes customer satisfaction and teamwork.
Communication, simplicity, feedback, and courage are core values. Developers com-
municate with customers and fellow programmers. Designs are kept simple and clean.
Early and frequent testing provides feedback, and developers are able to courageously
respond to changing requirements and technology. Project teams are kept small.

An XP project begins with user stories that describe what the system needs to
do. Then, programmers code in small, simple modules and test to meet those needs.
Users are required to be available to clear up questions and issues as they arise. Stan-
dards are very important to minimize confusion, so XP teams use a common set of
names, descriptions, and coding practices. XP projects deliver results sooner than even
the RAD approaches, and they rarely get bogged down in gathering requirements for
the system.

For small projects with highly motivated, cohesive, stable, and experienced
teams, XP should work just fine. However, if the project is not small or the teams aren’t

Creating the Project Plan 57

7 For more information, see www.AgileAlliance.org.
8 For more information, see www.extremeprogramming.org.
9 For more information, see www.controlchaos.com.
10 For more information, see www.dsdm.com
11 For more information, see K. Beck, Extreme Programming Explained: Embrace Change, Reading, MA:
Addison-Wesley, 2000, and M. Lippert, S. Roock, and H. Wolf, Extreme Programming in Action: Practical
Experiences from Real World Projects, New York: John Wiley & Sons, 2002.

Implementation

Design

Analysis

System

Planning

FIGURE 2-8
Extreme Programming

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 57

jelled,12 then the likelihood of success for the XP project is reduced. Consequently, the
use of XP in combination with outside contractors produces a highly questionable out-
come, since the outside contractors may never “jell” with insiders.13 XP requires a
great deal of discipline to prevent projects from becoming unfocused and chaotic. Fur-
thermore, it is recommended only for small groups of developers (not more than 10),
and it is not advised for mission-critical applications. Since little analysis and design
documentation is produced with XP, there is only code documentation; therefore,
maintenance of large systems developed using XP may be impossible. Also, since
mission-critical business information systems tend to exist for a long time, the utility
of XP as a business information system development methodology is in doubt. Finally,
the methodology requires considerable on-site user input, something that is frequently
difficult to obtain.14

Agile versus Waterfall-Based Methodologies Agile development approaches have
existed for over a decade. Agile development practices were created in part
because of dissatisfaction with the sequential, inflexible structure of waterfall-
based approaches. Presently, agile development has made inroads into software
development organizations, and studies show an even split between agile and
waterfall users.15 Many organizations are experimenting with agile even while
continuing to employ traditional waterfall approaches (see Concepts in Action 2F).

58 Chapter 2 Project Selection and Management

12 A “jelled team” is one that has low turnover, a strong sense of identity, a sense of eliteness, a feeling that
they jointly own the product being developed, and enjoyment in working together. For more information
regarding jelled teams, see T. DeMarco and T. Lister, Peopleware: Productive Projects and Teams, New York:
Dorsett House, 1987.
13 Considering the tendency for offshore outsourcing, this is a major obstacle for XP to overcome. For more
information on offshore outsourcing, see P. Thibodeau, “ITAA panel debates outsourcing pros, cons,” Com-
puterworld Morning Update, September 25, 2003; and S. W. Ambler, “Chicken Little Was Right,” Software
Development, October 2003.
14 Many of the observations described here on the utility of XP as a development approach are based on con-
versations with Brian Henderson-Sellers.
15 Jan Stafford, “Agile and waterfall neck and neck as business side fails to engage.” SearchSoftwareQuality.com,
March 16, 2009.

Travelers Insurance Company of
Hartford, Connecticut has adopted agile development
methodologies. The insurance field can be competitive,
and Travelers wanted to have the shortest “time to
implement” in the field. Travelers set up development
teams of six people—two systems analysts, two repre-
sentatives from the user group (such as claim services),
a project manager, and a clerical support person. In the
agile approach, the users are physically assigned to the
development team for the project. While at first it might
seem that the users are just sitting around drinking cof-
fee and not doing their regular jobs, that is not the case.
The rapport that is developed within the team allows for

instant communication. The interaction is very deep and
profound. The resulting software product is delivered
quickly—and, generally, with all the features and
nuances that the users wanted.

QUESTIONS:
1. Could this be done differently, such as through JAD

sessions or having the users review the program on a
weekly basis, rather than taking the users away from
their real jobs to work on development?

2. What mind-set does an analyst need to work on such
an approach?

2-E AGILE DEVELOPMENT AT TRAVELERS

IN ACTION

CONCEPTS

c02ProjectSelectionAndManagement.qxd 9/22/11 10:46 AM Page 58

In fact, suggesting that an organization must be “all agile” or “all waterfall” is a
false choice. Many software developers are actively seeking to integrate the best
elements of both waterfall and agile into their software development practices.
Hybrid agile-waterfall approaches are evolving. The process of developing
information systems is never static. Most IS departments and project managers
recognize that the choice of the “best” development methodology depends on
project characteristics, as we discuss in the next section.

Selecting the Appropriate Development Methodology

As the previous section shows, there are many methodologies. The first challenge
faced by project managers is to select which methodology to use. Choosing a
methodology is not simple, because no one methodology is always best. (If it were,
we’d simply use it everywhere!) Many organizations have standards and policies to
guide the choice of methodology. You will find that organizations range from hav-
ing one “approved” methodology to having several methodology options to having
no formal policies at all.

Figure 2-9 summarizes some important methodology selection criteria. One
important item not discussed in this figure is the degree of experience of the analyst
team. Many of the RAD and agile development methodologies require the use of new
tools and techniques that have a significant learning curve. Often, these tools and tech-
niques increase the complexity of the project and require extra time for learning. Once
they are adopted and the team becomes experienced, the tools and techniques can sig-
nificantly increase the speed in which the methodology can deliver a final system.

Clarity of User Requirements When the user requirements for what the system
should do are unclear, it is difficult to understand them by talking about them and
explaining them with written reports. Users normally need to interact with tech-
nology to really understand what the new system can do and how to best apply it to
their needs. System prototyping and throwaway prototyping are usually more
appropriate when user requirements are unclear, because they provide prototypes
for users to interact with early in the SDLC. Agile development may also be appro-
priate if on-site user input is available.

Creating the Project Plan 59

with unclear user
requirements Poor Poor Poor Good Excellent Excellent Excellent

with unfamiliar
technology Poor Poor Poor Good Poor Excellent Poor

that are complex Good Good Good Good Poor Excellent Poor

that are reliable Good Good Excellent Good Poor Excellent Good

with short time
schedule Poor Good Poor Excellent Excellent Good Excellent

with schedule visibility Poor Poor Poor Excellent Excellent Good Good

Usefulness in
Developing System Throwaway Agile
Systems Waterfall Parallel V-Model Iterative Prototyping Prototyping Development

FIGURE 2-9
Criteria for Selecting a Methodology

c02ProjectSelectionAndManagement.qxd 11/3/11 7:54 AM Page 59

Familiarity with Technology When the system will use new technology with which
the analysts and programmers are not familiar (e.g., the first Web development pro-
ject with Ajax), applying the new technology early in the methodology will improve
the chance of success. If the system is designed without some familiarity with the
base technology, risks increase because the tools may not be capable of doing what
is needed. Throwaway prototyping is particularly appropriate for situations where
there is a lack of familiarity with technology, because it explicitly encourages the
developers to create design prototypes for areas with high risks. Iterative develop-
ment is good as well, because opportunities are created to investigate the technol-
ogy in some depth before the design is complete. While one might think that system
prototyping would also be appropriate, it is much less so because the early proto-
types that are built usually only scratch the surface of the new technology. Typically,
it is only after several prototypes and several months that the developers discover
weaknesses or problems in the new technology.

System Complexity Complex systems require careful and detailed analysis and
design. Throwaway prototyping is particularly well suited to such detailed analysis
and design, but system prototyping is not. The waterfall methodologies can handle
complex systems, but without the ability to get the system or prototypes into users’
hands early on, some key issues may be overlooked. Although iterative develop-
ment methodologies enable users to interact with the system early in the process,
we have observed that project teams who follow these methodologies tend to devote
less attention to the analysis of the complete problem domain than they might if
they were using other methodologies.

System Reliability System reliability is usually an important factor in system
development. After all, who wants an unreliable system? However, reliability is just
one factor among several. For some applications, reliability is truly critical (e.g.,
medical equipment, missile control systems), while for other applications it is
merely important (e.g., games, Internet video). The V-model is useful when relia-
bility is important, due to its emphasis on testing. Throwaway prototyping is most
appropriate when system reliability is a high priority, because detailed analysis and
design phases are combined with the ability for the project team to test many dif-
ferent approaches through design prototypes before completing the design. System
prototyping is generally not a good choice when reliability is critical, due to the
lack of careful analysis and design phases that are essential to dependable systems.

60 Chapter 2 Project Selection and Management

Suppose that you are an analyst for
the ABC Company, a large consulting firm with offices
around the world. The company wants to build a new
knowledge management system that can identify and
track the expertise of individual consultants anywhere in
the world on the basis of their education and the various
consulting projects on which they have worked. Assume
that this is a new idea that has never before been

attempted in ABC or elsewhere. ABC has an interna-
tional network, but the offices in each country may use
somewhat different hardware and software. ABC man-
agement wants the system up and running within a year.

QUESTION:
What methodology would you recommend that ABC

Company use? Why?

2-3 SELECTING A METHODOLOGYY O U R

T U R N

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 60

Short Time Schedules Projects that have short time schedules are well suited for
RAD methodologies because those methodologies are designed to increase the
speed of development. Iterative development and system prototyping are excellent
choices when time lines are short because they best enable the project team to
adjust the functionality in the system on the basis of a specific delivery date. If the
project schedule starts to slip, it can be readjusted by removal of the functionality
from the version or prototype under development. Waterfall-based methodologies
are the worst choice when time is at a premium, because they do not allow for easy
schedule changes.

Schedule Visibility One of the greatest challenges in systems development is know-
ing whether a project is on schedule. This is particularly true of the waterfall-based
methodologies because design and implementation occur at the end of the project.
The RAD methodologies move many of the critical design decisions to a position
earlier in the project to help project managers recognize and address risk factors
and keep expectations in check.

Estimating the Project Time Frame

As the previous section illustrated, some development methodologies have evolved
in an attempt to accelerate the project through the SDLC as rapidly as possible
while still producing a quality system. Regardless of whether time is a critical issue
on a project or not, the project manager will have to develop a preliminary estimate
of the amount of time the project will take. Estimation16 is the process of assigning
projected values for time and effort.

Creating the Project Plan 61

British Airways experienced prob-
lems in software development despite a willing and capa-
ble development team. Mike Croucher, brought in as
chief software engineer, recommended a move to agile
development after studying BA’s development process.
The movement to agile was carefully conducted, recog-
nizing that agile represents a huge cultural shift for the
developers. BA development team members who were
amenable to and suitable for agile methods were trained
as agile mentors and coaches to help ease the transition.

Converting to agile methods enabled BA to substan-
tially shorten the time requirements of certain projects. In
some cases, a project that might have taken nine months

following a traditional methodology was completed in
eight weeks. Only about 25% of the organization has
changed to agile, however. BA recognized a continuing
role for the waterfall methodology in certain areas of
the organization and does not intend to force-fit agile every-
where. At BA, agile is used when the user base is requiring
speed, flexibility, and customer-oriented design. Agile is
ideal when an area requiring small functionality can be
developed and deployed earlier, according to Croucher.

Source: Mondelo, Daniel J. “Where agile development works
and where it doesn’t: A user story.” SearchSoftwareQuality.com.
February 24, 2010.

2-F WHERE AGILE WORKS AND DOESN’T WORK

IN ACTION

CONCEPTS

16 Good books for further reading on software estimation are T. Capers Jones, Estimation Software Costs,
New York: McGraw Hill, 1989; Coombs, IT Project Estimation: A Practical Guide to the Costing of Software,
Cambridge University Press, 2003; and Steve McConnell, Software Estimation: Demystifying the Black Art,
Microsoft Press, 2006.

c02ProjectSelectionAndManagement.qxd 9/22/11 10:48 AM Page 61

Estimation can be performed manually or with the help of an estimation soft-
ware package like Construx Estimate,TM Costar,TM or KnowledgePLAN®—there
are over 50 available on the market. The estimates developed at the start of a pro-
ject are usually based on a range of possible values (e.g., the design phase will take
three to four months) and gradually become more specific as the project moves for-
ward (e.g., the design phase will be completed on March 22).

The numbers used to calculate these estimates can come from several sources.
They can be provided with the methodology that is used, taken from projects with
similar tasks and technologies, or provided by experienced developers. Generally
speaking, the numbers should be conservative. A good practice is to keep track of
the actual time and effort values during the SDLC so that numbers can be refined
along the way, and the next project can benefit from real data. One of the greatest
strengths of systems consulting firms is the past experience that they offer to a pro-
ject; they have estimates and methodologies that have been developed and honed
over time and applied to hundreds of projects.

There are two basic ways to estimate the time required to build a system. The
simplest method uses the amount of time spent in the planning phase to predict the
time required for the entire project. The idea is that a simple project will require lit-
tle planning, and a complex project will require more planning; so using the amount
of time spent in the planning phase is a reasonable way to estimate overall project
time requirements.

With this approach, you take the time spent in (or estimated for) the planning
phase and use industry standard percentages (or percentages from the organization’s
own experiences) to calculate estimates for the other SDLC phases. Industry stan-
dards suggest that a “typical” business application system spends 15% of its effort
in the planning phase, 20% in the analysis phase, 35% in the design phase, and 30%
in the implementation phase. This would suggest that if a project takes four months
in the planning phase, then the rest of the project likely will take a total of 22.66
person-months (4 �.15 � 22.66). These same industry percentages are then used to
estimate the amount of time in each phase (Figure 2-10). The obvious limitation of
this approach is that it can be difficult to take into account the specifics of your indi-
vidual project, which may be simpler or more difficult than the “typical” project.

A more precise approach to estimation is called the function point approach.
This approach is a more complex—and, it is hoped, more reliable—way of esti-
mating time and effort for a project. The details of the function point approach are
explained in Appendix 2A.

62 Chapter 2 Project Selection and Management

Typical industry 15% 20% 35% 30%
standards for
business
applications

Estimates based Actual: Estimated: Estimated: Estimated:
on actual figures 4 person- 5.33 person- 9.33 person- 8 person-
for first stage months months months months
of SDLC

SDLC = systems development life cycle.

Planning Analysis Design Implementation

FIGURE 2-10
Estimating Project Time Using
Industry Standards

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 62

Developing the Work Plan

Once a project manager has a general idea of the size and approximate schedule for
the project, he or she creates a work plan, which is a dynamic schedule that records
and keeps track of all of the tasks that need to be accomplished over the course of
the project. The project manager first must assemble important details about each
task to be completed. Figure 2-11 shows the type of task information needed,
including when it needs to be completed, the person assigned to do the work, and
any deliverables that will result. The level of detail and the amount of information
captured by the work plan depend on the needs of the project (and the detail usu-
ally increases as the project progresses). Usually, the work plan is the main com-
ponent of the project management software that we mentioned earlier.

To create a work plan, the project manager identifies the tasks that need to be
accomplished and determines how long each one will take. Then the tasks are
organized within a work breakdown structure.

Identify Tasks Remember that the overall objectives for the system were recorded
on the system request, and the project manager’s job is to identify all the tasks that
will be needed to accomplish those objectives. This is a daunting task, certainly.
The methodology that was selected by the project manager should be a valuable
resource, however. The methodology that seems most appropriate for the project
provides a list of steps and deliverables.

A project manager can take the methodology, select the steps and deliverables
that apply to the current project, and add them to the work plan. If an existing
methodology is not available within the organization, methodologies can be pur-
chased from consultants or vendors, or books like this textbook can serve as guid-
ance. Using an existing methodology is the most popular way to create a work plan,
because most organizations have a methodology that they use for projects.

If a project manager prefers to begin from scratch, he or she can use a
structured, top-down approach whereby high-level tasks are defined first and
then broken down into subtasks. Each step is then broken down in turn and num-
bered in a hierarchical fashion. A list of tasks hierarchically numbered in this
way is called a work breakdown structure, and it is the backbone of the project

Creating the Project Plan 63

Name of the task Perform economic feasibility

Start date Jan 05, 2013

Completion date Jan 19, 2013

Person assigned to the task Project sponsor Mary Smith

Deliverable(s) Cost–benefit analysis

Completion status Complete

Priority High

Resources needed Spreadsheet software

Estimated time 16 hours

Actual time 14.5 hours

Task Information Example

FIGURE 2-11
Task Information

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 63

workplan. Figure 2-12 shows a portion of a work breakdown structure for the
design phase of an actual data warehouse development project. Each of the main
tasks focuses on one of the required design deliverables. Within each task, there
are subtasks listed that detail the activities required to complete the main task.

The work breakdown structure can be organized in one of two ways: by SDLC
phase or by product. For example, if a firm decided that it needed to develop a Web
site, the firm could create a work breakdown structure based on the SDLC phases:
planning, analysis, design, and implementation. In this case, a typical task that
would take place during planning would be feasibility analysis. This task would be
broken down into the different types of feasibility analysis: technical, economic,
and organizational. Each of these would be further broken down into a series of
subtasks. Alternatively, the firm could organize the work plan along the lines of the
different products to be developed. In the case of a Web site, for example, the prod-
ucts could include applets, application servers, database servers, the various sets of
Web pages, a site map, and so on. Each of these products could be decomposed into
the different tasks associated with the phases of the SDLC. With either approach,
once the overall structure is determined, tasks are identified and included in the
work breakdown structure of the work plan.

64 Chapter 2 Project Selection and Management

1 Design phase 30 Open

1.1 Develop database design document 9 Open

1.1.1 Staging database design 9 Open

1.1.2 Suspense database design 9 Open

1.2 Develop rejects-handling design document 9 1.1.1, 1.1.2 Open

1.2.1 Rejects-handling engine design 9 Open

1.3 Develop OLAP design document 9 1.1.1, 1.1.2 Open

1.3.1 Universe design 9 Open

1.4 Develop OLAP design part 1 8 Open

1.4.1 High-priority reports design 8 Open

1.5 Develop application design document 9 Open

1.5.1 Group consolidation and corporate reporting 9 Open
(GCCR) maintenance application design

1.6 Extract, transform, load (ETL) design document 2 Open

1.6.1 Data export utility design 2 Open

1.7 Application design document 25 Open

1.7.1 Web entry application UI design 25 Open

1.7.2 Web entry application UI design sign-off 1 Open

1.7.3 Web entry forms and database model validation 11 Open

1.8 Functional requirements document 9 Open

1.8.1 Application design 9 Open

1.8.1.1 User authentication 4 Open

1.8.1.2 Call logging 2 Open

1.8.1.3 Search 3 Open

(Thanks to Priya Padmanhabhan for suggesting this example.)

Task ID Task Name Duration (days) Dependency Status

FIGURE 2-12
Work Breakdown Structure

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 64

The number of tasks and level of detail depend on the complexity and size of
the project. The larger the project, the more important it becomes to define tasks in
detail so that essential steps are not overlooked.

The Project Work Plan The project work plan is the mechanism used to manage the
tasks that are listed in the work breakdown structure. It is the project manager’s pri-
mary tool for managing the project. Using it, the project manager can tell whether
the project is ahead of or behind schedule, how well the project was estimated, and
what changes need to be made to meet the project deadline.

Basically, the work plan is a table that lists all of the tasks in the work break-
down structure, along with important task information such as the people who are
assigned to perform the tasks, the actual hours that the tasks took, and the variances
between estimated and actual completion times. (See Figure 2-13). At a minimum, the
information should include the duration of the task, the current statuses of the tasks
(i.e., open, complete), and the task dependencies, which occur when one task cannot
be performed until another task is completed. For example, Figure 2-13 shows that
task 1.2 and task 1.3 cannot begin until task 1.1 is completed. Key milestones, or
important dates, are also identified on the work plan. Presentations to the approval
committee, the start of end-user training, a company retreat, and the due date of the
system prototype are the types of milestones that may be important to track.

STAFFING THE PROJECT

Staffing the project includes determining how many people should be assigned to the
project, matching people’s skills with the needs of the project, motivating them to meet
the project’s objectives, and minimizing project team conflict that will occur over time.
The deliverable for this part of project management is a staffing plan, which describes
the number and kinds of people who will work on the pro-ject, the overall reporting
structure, and the project charter, which describes the project’s objectives and rules.

Staffing Plan

The first step to staffing is determining the average number of staff needed for the
project. To calculate this figure, divide the total person-months of effort by the
optimal schedule. So to complete a 40 person-month project in 10 months, a team
should have an average of four full-time staff members, although this may change
over time as different specialists enter and leave the team (e.g., business analysts,
programmers, technical writers).

Many times, the temptation is to assign more staff to a project to shorten the
project’s length, but this is not a wise move. Adding staff resources does not trans-
late into increased productivity; staff size and productivity share a disproportionate
relationship, mainly because a large number of staff members is more difficult to
coordinate. The more a team grows, the more difficult it becomes to manage. Imagine
how easy it is to work on a two-person project team: the team members share a
single line of communication. But adding two people increases the number of com-
munication lines to six, and greater increases lead to more dramatic gains in com-
munication complexity. Figure 2-14 and Your Turn 2-4 illustrate the impact of
adding team members to a project team.

One way to reduce efficiency losses on teams is to understand the complexity
that is created in numbers and to build in a reporting structure that tempers its effects.

Staffing the Project 65

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 65

66

FI
G

UR
E

2-
13

Pro
jec

t W
ork

 Pl
an

1
De

sig
n

Ph
as

e
31

Fr

i
Fr

i
O

pe
n

11
/1

6/
13

12

/2
8/

13

1.
1

De
ve

lo
p

da
ta

ba
se

 d
es

ig
n

M
eg

an

9
M

on

Th
ur

s
O

pe
n

do
cu

m
en

t
12

/3
/1

3
12

/1
3/

13

1.
1.

1
St

ag
in

g
da

ta
ba

se
 d

es
ig

n
M

eg
an

9

M
on

Th

ur
s

O
pe

n
12

/3
/1

3
12

/1
3/

13

1.
1.

2
Su

sp
en

se
 d

at
ab

as
e

M
eg

an

9
M

on

Th
ur

s
O

pe
n

de
sig

n
12

/3
/1

3
12

/1
3/

13

1.
2

De
ve

lo
p

re
je

ct
s-h

an
dl

in
g

M
eg

an

9
Fr

i
W

ed

1.
1.

1,
 1

.1
.2

O

pe
n

de
sig

n
do

cu
m

en
t

12
/1

4/
13

12

/2
6/

13

1.
2.

1
Re

je
ct

s-h
an

dl
in

g
en

gi
ne

M

eg
an

9

Fr
i

Fr
i

O
pe

n
de

sig
n

12
/1

4/
13

12

/2
6/

13

1.
3

De
ve

lo
p

O
LA

P
de

sig
n

Jo
ac

hi
m

9

Fr
i

W
ed

1.

1.
1,

 1
.1

.2

O
pe

n
do

cu
m

en
t

12
/1

4/
13

12

/2
6/

13

1.
3.

1
U

ni
ve

rse
 d

es
ig

n
Jo

ac
hi

m

9
Fr

i
W

ed

O
pe

n
12

/1
4/

13

12
/2

6/
13

1.
4

De
ve

lo
p

O
LA

P
de

sig
n

Ke
vi

n
8

Fr
i

Tu
es

O

pe
n

pa
rt

1
12

/7
/1

3
12

/1
8/

13

1.
4.

1
H

ig
h-

pr
io

rit
y

re
po

rts

Ke
vi

n
8

Fr
i

Tu
es

O

pe
n

de
sig

n
12

/7
/1

3
12

/1
8/

13

1.
5

De
ve

lo
p

ap
pl

ic
at

io
n

To
m

as

9
Fr

i
W

ed

O
pe

n
de

sig
n

do
cu

m
en

t
12

/1
4/

13

12
/2

6/
13

1.
5.

1
G

ro
up

 c
on

so
lid

at
io

n
To

m
as

9

Fr
i

W
ed

O

pe
n

an
d

co
rp

or
at

e
re

po
rti

ng

12
/1

4/
13

12

/2
6/

13
(G

C
C

R)
 m

ai
nt

en
an

ce

ap
pl

ic
at

io
n

de
sig

n

Es
tim

a
te

d

A
ct

ua
l

D
ur

a
tio

n
St

a
rt

Fi

ni
sh

St

a
rt

Fi

ni
sh

D

ur
a
tio

n
D

ep
en

d
en

cy

St
a
tu

s
Ta

sk
 I

D

Ta
sk

 N
a
m

e
A

ss
ig

ne
d
 T

o
(d

a
ys

)
D

a
te

D

a
te

D

a
te

D

a
te

va

ri
a
nc

e

(C
on

tin
ue

d)

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 66

67

FI
G

UR
E

2-
13

Pro
jec

t W
ork

 Pl
an

1.
6

Ex
tra

ct
, t

ra
ns

fo
rm

, l
oa

d
Jo

ac
hi

m

2
Th

u
Fr

i
O

pe
n

(E
TL

) d
es

ig
n

do
cu

m
en

t
12

/2
7/

13

12
/2

8/
13

1.
6.

1
Da

ta
 e

xp
or

t u
tili

ty
 d

es
ig

n
Jo

ac
hi

m

2
Th

u
Fr

i
O

pe
n

12
/2

7/
13

12

/2
8/

13

1.
7

Ap
pl

ic
at

io
n

de
sig

n
M

ei
-lin

g
25

Fr

i
Fr

i
O

pe
n

do
cu

m
en

t
11

/1
6/

13

12
/2

1/
13

1.
7.

1
W

eb
 e

nt
ry

 a
pp

lic
at

io
n

M
ei

-lin
g

25

Fr
i

Fr
i

O
pe

n
U

I d
es

ig
n

11
/1

6/
13

12

/2
1/

13

1.
7.

2
W

eb
 e

nt
ry

 a
pp

lic
at

io
n

M
ei

-lin
g

1
Fr

i
Fr

i
O

pe
n

U
I d

es
ig

n
sig

n-
of

f
12

/3
0/

13

12
/3

0/
13

1.
7.

3
W

eb
 e

nt
ry

 fo
rm

s
an

d
Ke

vi
n

11

W
ed

W

ed

O
pe

n
da

ta
ba

se
 m

od
el

 v
al

id
at

io
n

11
/2

1/
13

12

/5
/1

3

1.
8

Fu
nc

tio
na

l r
eq

ui
re

m
en

ts
C

ha
nt

el
le

9

M
on

Th

u
O

pe
n

do
cu

m
en

t
12

/1
0/

13

12
/2

0/
13

1.
8.

1
Ap

pl
ic

at
io

n
de

sig
n

C
ha

nt
el

le

9
M

on

Th
u

O
pe

n
12

/1
0/

13

12
/2

0/
13

1.
8.

1.
1

U
se

r a
ut

he
nt

ic
at

io
n

C
ha

nt
el

le

4
M

on

Th
u

O
pe

n
12

/1
0/

13

12
/1

3/
13

1.
8.

1.
2

C
al

l l
og

gi
ng

C

ha
nt

el
le

2

Fr
i

M
on

O

pe
n

12
/1

4/
13

12

/1
7/

13

1.
8.

1.
3

Se
ar

ch

C
ha

nt
el

le

3
Tu

e
Th

u
O

pe
n

12
/1

8/
13

12

/2
0/

13

(T
ha

nk
s

to
 P

riy
a

Pa
dm

an
ha

bh
an

 fo
r s

ug
ge

sti
ng

 th
is

ex
am

pl
e.

)

Es
tim

a
te

d

A
ct

ua
l

D
ur

a
tio

n
St

a
rt

Fi

ni
sh

St

a
rt

Fi

ni
sh

D

ur
a
tio

n
D

ep
en

d
en

cy

St
a
tu

s
Ta

sk
 I

D

Ta
sk

 N
a
m

e
A

ss
ig

ne
d
 T

o
(d

a
ys

)
D

a
te

D

a
te

D

a
te

D

a
te

V

a
ri

a
nc

e

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 67

Two-person team Four-person team
FIGURE 2-14
Increasing Complexity with Larger Teams

The rule of thumb is to keep team sizes under 8 to 10 people; therefore, if more peo-
ple are needed, create subteams. In this way, the project manager can keep the com-
munication effective within small teams, which in turn communicate to a contact at
a higher level in the project.

After the project manager understands how many people are needed for the
project, he or she creates a staffing plan that lists the roles that are required for the
project and the proposed reporting structure for the project. Typically, a project will
have one project manager who oversees the overall progress of the development
effort, with the core of the team composed of the various types of analysts
described in Chapter 1. A functional lead usually is assigned to manage a group of
analysts, and a technical lead oversees the progress of a group of programmers and
more technical staff members.

There are many structures for project teams; Figure 2-15 illustrates one pos-
sible configuration of a project team. After the roles are defined and the structure is
in place, the project manager needs to think about which people can fill each role.
Often, one person fills more than one role on a project team.

When you make assignments, remember that people have technical skills and
interpersonal skills, and both are important on a project. Technical skills are useful for
working with technical tasks (e.g., programming in Java) and in trying to understand
the various roles that technology plays in the particular project (e.g., how a Web server
should be configured on the basis of a projected number of hits from customers).

Interpersonal skills, on the other hand, include interpersonal and communica-
tion abilities that are used when dealing with business users, senior management

Figure 2-14 shows the increasing
number of communication channels that exist as a team
grows from two members to four members. Using the fig-
ure as a guide, draw the number of communication chan-
nels that will be needed in a six-member team. Now,
determine the number of communication channels that
will be needed in an eight-person team.

QUESTIONS:
1. How many communication channels are there in the

six-member team? The eight-member team?
2. From your results, how effective do you think a 12-

member team would be? A 16-member team?

2-4 COMMUNICATION COMPLEXITYY O U R

T U R N

68 Chapter 2 Project Selection and Management

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 68

Staffing the Project 69

executives, and other members of the project team. They are particularly critical for
performing the requirements-gathering activities and when addressing organiza-
tional feasibility issues. Each project will require unique technical and interper-
sonal skills. For example, a Web-based project may require Internet experience or
Java programming knowledge, or a highly controversial project may need analysts
who are particularly adept at managing political or volatile situations.

Ideally, project roles are filled with people who have the right skills for the job;
however, the people who fit the roles best may not be available; they may be working on
other projects, or they may not exist in the company. Therefore, assigning project team
members really is a combination of finding people with the appropriate skill sets and
finding people who are available. When the skills of the available project team members
do not match those actually required by the project, the project manager has several
options to improve the situation. First, people can be pulled off other projects, and
resources can be shuffled around. This is the most disruptive approach from the organi-
zation’s perspective. Another approach is to use outside help—such as a consultant or
contractor—to train team members and start them off on the right foot. Training classes
are usually available for both technical and interpersonal instruction, if time is available.
Mentoring may also be an option; a project team member can be sent to work on another
similar project so that he or she can return with skills to apply to the current job.

Motivation Assigning people to tasks isn’t enough; project managers need to moti-
vate the people to make the project a success. Motivation has been found to be the
number-one influence on people’s performance,17 but determining how to motivate
the team can be quite difficult. You may think that good project managers motivate
their staff by rewarding them with money and bonuses, but most project managers
agree that this is the last thing that should be done. The more often you reward team
members with money, the more they expect it—and most times monetary motiva-
tion won’t work.

Assuming that team members are paid a fair salary, technical employees on
project teams are much more motivated by recognition, achievement, the work

FIGURE 2-15
Possible Reporting Structure

Functional
lead

Project
manager

ProgrammerAnalyst Analyst Analyst Programmer

Technical
lead

17 Barry W. Boehm, Software Engineering Economics, Englewood Cliffs, NJ: Prentice Hall, 1981. One of the best
books on managing project teams is by Tom DeMarco and Timothy Lister, Peopleware: Productive Projects
and Teams, New York: Dorset House, 1987.

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 69

itself, responsibility, advancement, and the chance to learn new skills.18 If you feel
that you need to give some kind of reward for motivational purposes, try a pizza or
free dinner, or even a kind letter or award. These often have much more effective
results. Figure 2-16 lists some other motivational don’ts that you should avoid to
ensure that motivation on the project is as high as possible.

Handling Conflict The third component of staffing is organizing the project to mini-
mize conflict among group members. Group cohesiveness (the attraction that mem-
bers feel to the group and to other members) contributes more to productivity than do
project members’ individual capabilities or experiences.19 Clearly defining the roles
on the project and holding team members accountable for their tasks is a good way to
begin mitigating potential conflict on a project. Some project managers develop a
project charter that lists the project’s norms and ground rules. For example, the charter
may describe when the project team should be at work, when staff meetings will
be held, how the group will communicate with each other, and the procedures for
updating the work plan as tasks are completed. Figure 2-17 lists additional techniques
that can be used at the start of a project to keep conflict to a minimum.

Coordinating Project Activities

Like all project management responsibilities, the act of coordinating project activ-
ities continues throughout the entire project until a system is delivered to the project
sponsor and end users. This step includes putting efficient development practices in

70 Chapter 2 Project Selection and Management

18 F. H. Hertzberg, “One More Time: How Do You Motivate Employees?” Harvard Business Review, 1968,
January–February.
19B. Lakhanpal, “Understanding the Factors Influencing the Performance of Software Development Groups:
An Exploratory Group-Level Analysis,” Information and Software Technology, 1993, 35(8):468–473.

Assign unrealistic deadlines Few people will work hard if they realize that a deadline is
impossible to meet.

Ignore good efforts People will work harder if they feel that their work is
appreciated. Often, all it takes is public praise for a job
well done.

Create a low-quality product Few people can be proud of working on a project that is
of low quality.

Give everyone on the project If everyone is given the same reward, then high-quality
a raise people will believe that mediocrity is rewarded—and they

will resent it.

Make an important decision Buy-in is very important. If the project manager needs to
without the team’s input make a decision that greatly affects the members of her

team, she should involve them in the decision-making
process.

Maintain poor working conditions A project team needs a good working environment, or
motivation will go down the tubes. This includes lighting,
desk space, technology, privacy from interruptions, and
reference resources.

Source: Adapted from Rapid Development, Redmond, WA: Microsoft Press, 1996, by Steve McConnell.

Don’ts Reasons

FIGURE 2-16
Motivational Don’ts

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 70

• Clearly define plans for the project.
• Make sure the team understands how the project is important to the organization.
• Develop detailed operating procedures and communicate these to the team members.
• Develop a project charter.
• Develop schedule commitments ahead of time.
• Forecast other priorities and their possible impact on project.

Source: H. J. Thamhain and D. L. Wilemon, “Conflict Management in Project Life Cycles,” Sloan
Management Review, Spring 1975.

FIGURE 2-17
Conflict Avoidance Strategies

place and mitigating risk. These activities occur over the course of the entire SDLC,
but it is at this point in the project that the project manager needs to put them in
place. Ultimately, these activities ensure that the project stays on track and that the
chance of failure is kept at a minimum. The rest of this section will describe each
of these activities in more detail.

CASE Tools Computer-aided software engineering (CASE) is a category of software
that automates all or part of the development process. Some CASE software packages
are primarily used during the analysis phase to create integrated diagrams of the sys-
tem and to store information regarding the system components (often called upper
CASE), whereas others are design-phase tools that create the diagrams and then gen-
erate code for database tables and system functionality (often called lower CASE).
Integrated CASE, or I-CASE, contains functionality found in both upper-CASE and
lower-CASE tools in that it supports tasks that happen throughout the SDLC. CASE
comes in a wide assortment of flavors in terms of complexity and functionality, and
there are many good programs available in the marketplace, such as the Visible
Analyst Workbench, Oracle Designer, Rational Rose, and the Logic Works suite.

The benefits of using CASE are numerous. With CASE tools, tasks are much
faster to complete and alter; development information is centralized; and informa-
tion is illustrated through diagrams, which typically are easier to understand. Poten-
tially, CASE can reduce maintenance costs, improve software quality, and enforce
discipline; and some project teams even use CASE to assess the magnitude of
changes to the project.

Of course, like anything else, CASE should not be considered a silver bullet
for project development. The advanced CASE tools are complex applications that
require significant training and experience to achieve real benefits. Often, CASE
serves only as a glorified diagramming tool that supports the practices described in
Chapter 5 (process modeling) and Chapter 6 (data modeling). Our experience has
shown that CASE is a helpful way to support the communication and sharing of
project diagrams and technical specifications—as long as it is used by trained
developers who have applied CASE on past projects.

The central component of any CASE tool is the CASE repository, otherwise
known as the information repository or data dictionary. The CASE repository stores
the diagrams and other project information, such as screen and report designs, and
it keeps track of how the diagrams fit together. For example, most CASE tools will
warn you if you place a field on a screen design that doesn’t exist in your data
model. As the project evolves, project team members perform their tasks by using
CASE. As you read through the textbook, we will indicate when and how the CASE
tool can be used so that you can see how CASE supports the project tasks.

Staffing the Project 71

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 71

Standards Members of a project team need to work together, and most project man-
agement software and CASE tools provide access privileges to everyone working
on the system. When people work together, however, things can get pretty confus-
ing. To make matters worse, people sometimes get reassigned in the middle of a
project. It is important that their project knowledge does not leave with them and
that their replacements can get up to speed quickly.

Standards are created to ensure that team members are performing tasks
in the same way and following the same procedures. Standards can range from
formal rules for naming files to forms that must be completed when goals are
reached to programming guidelines. See Figure 2-18 for some examples of the
types of standards that a project may include. When a team forms standards and
then follows them, the project can be completed faster because task coordina-
tion becomes less complex.

Standards work best when they are created at the beginning of each major
phase of the project and well communicated to the entire project team. As the team
moves forward, new standards are added when necessary. Some standards (e.g.,
file-naming conventions, status reporting) are applied to the entire SDLC, whereas
others (e.g., programming guidelines) are appropriate only for certain tasks.

Documentation Another technique that project teams put in place during the plan-
ning phase is good documentation, which includes detailed information about the
tasks of the SDLC. Often, the documentation is stored in project binder (s) that con-
tain all the deliverables and all the internal communication that takes place—the
history of the project.

A poor project management practice is permitting the project team to wait
until the last minute to create documentation. This typically leads to an undocu-
mented system that no one understands. In fact, many problems that companies had
in updating their systems to handle the year-2000 crisis were the result of the lack
of documentation. Good project teams learn to document the system’s history as it
evolves, while the details are still fresh in their memory.

A simple way to set up your documentation is to get some binders and use
dividers to separate content according to the major phases of the project. An addi-
tional divider should contain internal communication, such as the minutes from
status meetings, written standards, letters to and from the business users, and a dic-
tionary of relevant business terms. Then, as the project moves forward, place the
deliverables from each task into the project binder with descriptions so that some-
one outside of the project will be able to understand it, and keep a table of contents
up to date with the content that is added. Documentation takes time up front, but it
is a good investment that will pay off in the long run.

72 Chapter 2 Project Selection and Management

Select a computer-aided software
engineering (CASE) tool—either one that you will use for
class, a program that you own, or a tool that you can
examine over the Web. Create a list of the capabilities
that are offered by the CASE tool.

QUESTION:
Would you classify the CASE as upper CASE, lower

CASE, or integrated CASE (I-CASE)? Why?

2-5 COMPUTER-AIDED SOFTWARE ENGINEERING TOOL ANALYSISY O U R

T U R N

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 72

MANAGING AND CONTROLLING THE PROJECT

The science (or art) of project management is in making trade-offs among three
important concepts: the size of the system (in terms of what it does), the time to
complete the project (when the project will be finished), and the cost of the project.
Think of these three things as interdependent levers that the project manager con-
trols throughout the SDLC. Whenever one lever is pulled, the other two levers are
affected in some way. For example, if a project manager needs to readjust a dead-
line to an earlier date, then the only solution is to decrease the size of the system
(by eliminating some of its functions) or to increase costs by adding more people
or having team members work overtime. Often, a project manager will have to work
with the project sponsor to change the goals of the project, such as developing a
system with less functionality or extending the deadline for the final system, so that
the project has reasonable goals that can be met.

Therefore, in the beginning of the project, the manager needs to estimate each
of these levers and then continuously assess how to roll out the project in a way that
meets the organization’s needs.

Managing and Controlling the Project 73

Documentation standards The date and project name should appear as a header on
all documentation.

All margins should be set to 1 inch.

All deliverables should be added to the project binder and
recorded in its table of contents.

Coding standards All modules of code should include a header that lists the
programmer, last date of update, and a short description
of the purpose of the code.

Indentation should be used to indicate loops, if-then-else
statements, and case statements.

On average, every program should include one line of
comments for every five lines of code.

Procedural standards Record actual task progress in the work plan every Monday
morning by 10 A.M.

Report to project update meeting on Fridays at 3:30 P.M.

All changes to a requirements document must be approved
by the project manager.

Specification requirement standards Name of program to be created

Description of the program’s purpose

Special calculations that need to be computed

Business rules that must be incorporated into the program

Pseudocode

Due date

User interface design standards Labels will appear in boldface text, left-justified, and
followed by a colon.

The tab order of the screen will move from top left to
bottom right.

Accelerator keys will be provided for all updatable fields.

Types of Standards Examples

FIGURE 2-18
A Sampling of Project Standards

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 73

Once the project begins, the project manager monitors the progress of the
team on the project tasks. As the project team members make periodic status
reports, the project manager updates the project work plan. As discussed in Appen-
dix 2B, the Gantt chart and PERT chart are valuable tools for the project manager
to use to evaluate project progress and, if necessary, redirect resources. As the project
proceeds, it may be necessary for the project manager to revise the original esti-
mates made for the project. In addition, the manager must be on the watch for
increases in project scope, which can make completing the project on time and
under budget very difficult. Finally, the project manager should constantly assess
the risk profile of the project and take steps to manage those risks.

Refining Estimates

The estimates that are produced during the planning phase will need to be refined
as the project progresses. This does not necessarily mean that estimates were poorly
done at the start of the project; it is virtually impossible to develop an exact assess-
ment of the project’s schedule before the analysis and design phases are conducted.
A project manager should expect to be satisfied with broad ranges of estimates that
become more and more specific as the project’s product becomes better defined.

In the planning phase, when a system is first requested, the project sponsor
and project manager attempt to predict how long the SDLC will take, how much it
will cost, and what the system will ultimately do when it is delivered (i.e., its func-
tionality). However, the estimates are based on very little knowledge of the system.
As the project moves into the analysis phase, more information is gathered, the sys-
tem concept is developed, and the estimates become even more accurate and pre-
cise. As the system moves closer to completion, the accuracy and precision increase
until the final system is delivered.

74 Chapter 2 Project Selection and Management

I was once on a project to develop a
system that should have taken a year to build. Instead,
the business need demanded that the system be ready
within 5 months—impossible!

On the first day of the project, the project manager
drew a triangle on a white board to illustrate some
tradeoffs that he expected to occur over the course of the
project. The corners of the triangle were labeled Func-
tionality, Time, and Money. The manager explained,
“We have too little time. We have an unlimited budget.
We will not be measured by the bells and whistles that
this system contains. So over the next several weeks, I
want you as developers to keep this triangle in mind and
do everything it takes to meet this 5-month deadline.”

At the end of the 5 months, the project was deliv-
ered on time; however, the project was incredibly over

budget, and the final product was “thrown away” after it
was used because it was unfit for regular usage. Remark-
ably, the business users felt that the project was very suc-
cessful because it met the very specific business needs for
which it was built. They believed that the trade-offs that
were made were worthwhile. Barbara Wixom

QUESTIONS:
1. What are the risks in stressing only one corner of the

triangle?
2. How would you have managed this project? Can you

think of another approach that might have been more
effective?

2-G TRADE-OFFS

IN ACTION

CONCEPTS

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 74

According to one of the leading experts in software development,20 a well-
done project plan (prepared at the end of the planning phase) has a 100% margin of
error for project cost and a 25% margin of error for schedule time. In other words,
if a carefully done project plan estimates that a project will cost $100,000 and take
20 weeks, the project will actually cost between $0 and $200,000 and take between
15 and 25 weeks. Figure 2-19 presents typical margins of error for other stages in
the project. It is important to note that these margins of error apply only to well-
done plans; a plan developed without much care has a much greater margin of error.

What happens if you overshoot an estimate (e.g., the analysis phase ends up
lasting two weeks longer than expected)? There are a number of ways to adjust
future estimates. If the project team finishes a step ahead of schedule, most project
managers shift the deadlines sooner by the same amount but do not adjust the prom-
ised completion date. The challenge, however, occurs when the project team is late
in meeting a scheduled date. Three possible responses to missed schedule dates are
presented in Figure 2-20. We recommend that if an estimate proves too optimistic
early in the project, do not expect to make up for lost time—very few projects end
up working this way. Instead, change your future estimates to include an increase
similar to the one that was experienced. For example, if the first phase was com-
pleted 10% over schedule, increase the rest of your estimates by 10%.

Managing Scope

You may assume that your project will be safe from scheduling problems because
you carefully estimated and planned your project up front. However, the most com-
mon reason for schedule and cost overruns occurs after the project is underway—
scope creep.

Scope creep happens when new requirements are added to the project after
the original project scope was defined and “frozen.” It can happen for many rea-
sons: Users may suddenly understand the potential of the new system and realize
new functionality that would be useful; developers may discover interesting capa-
bilities to which they become very attached; a senior manager may decide to let this
system support a new strategy that was developed at a recent board meeting.

Managing and Controlling the Project 75

20 Barry W. Boehm and colleagues, “Cost Models for Future Software Life Cycle Processes: COCOMO 2.0,”
in J. D. Arthur and S. M. Henry (eds), Annals of Software Engineering: Special Volume on Software Process
and Product Measurement, Amsterdam: J. C. Baltzer AG Science Publishers, 1995.

Planning phase System request 400 60

Project plan 100 25

Analysis phase System proposal 50 15

Design phase System specifications 25 10

Source: Barry W. Boehm and colleagues, “Cost Models for Future Software Life Cycle Processes: COCOMO
2.0,” in J. D. Arthur and S. M. Henry (eds.) Annals of Software Engineering Special Volume on Software
Process and Product Measurement, Amsterdam: J. C. Baltzer AG Science Publishers, 1995.

Typical Margins of Error for
Well-Done Estimates

Phase Deliverable Cost (%) Schedule Time (%)

FIGURE 2-19
Margins of Error in Cost and Time
Estimates

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 75

Unfortunately, after the project begins, it becomes increasingly difficult to
address changing requirements. The ramifications of change become more exten-
sive, the focus is removed from original goals, and there is at least some impact on
cost and schedule. Therefore, the project manager must actively work to keep the
project tight and focused.

The keys are to identify the requirements as well as possible in the beginning of
the project and to apply analysis techniques effectively. For example, if needs are fuzzy
at the project’s onset, a combination of intensive meetings with the users and proto-
typing could be used so that users “experience” the requirements and better visualize
how the system could support their needs. In fact, the use of meetings and prototyping
has been found to reduce scope creep to less than 5% on a typical project.

Of course, some requirements may be missed no matter what precautions you
take, but several practices can help to control additions to the task list. First, the
project manager should allow only absolutely necessary requirements to be added
after the project begins. Even at that point, members of the project team should
carefully assess the ramifications of the addition and present the assessment back
to the users. For example, it may require two more person-months of work to cre-
ate a newly defined report, which would throw off the entire project deadline by
several weeks. Any change that is implemented should be carefully tracked so that
an audit trail exists to measure the change’s impact.

Sometimes, changes cannot be incorporated into the present system even
though they truly would be beneficial. In this case, these additions to scope should

76 Chapter 2 Project Selection and Management

Assumptions Actions Level of Risk

If you assume that the rest of the project
is simpler than the part that was late
and is also simpler than believed
when the original schedule estimates
were made, you can make up lost
time.

Do not change schedule. High risk

If you assume that the rest of the project
is simpler than the part that was late
and is no more complex than the
original estimate assumed, you can’t
make up the lost time, but you will
not lose time on the rest of the
project.

Increase the entire schedule by the total
amount of time that you are behind
(e.g., if you missed the scheduled
date by two weeks, move the rest of
the schedule dates to two weeks
later). If you included padded time at
the end of the project in the original
schedule, you may not have to
change the promised system delivery
date; you’ll just use up the padded
time.

Moderate risk

If you assume that the rest of the project
is as complex as the part that was
late (your original estimates were too
optimistic), then all the scheduled
dates in the future underestimate the
real time required by the same
percentage as the part that was late.

Increase the entire schedule by the per-
centage of weeks that you are behind
(e.g., if you are two weeks late on
part of the project that was supposed
to take eight weeks, you need to
increase all remaining time estimates
by 25%). If this moves the new deliv-
ery date beyond what is acceptable
to the project sponsor, the scope of
the project must be reduced.

Low risk

FIGURE 2-20
Possible Actions When a Schedule Date
Is Missed

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 76

be recorded as future enhancements to the system. The project manager can offer
to provide functionality in future releases of the system, thus getting around telling
someone no.

Timeboxing

Up until now, we have described projects that are task oriented. In other words, we
have described projects that have a schedule that is driven by the tasks that need to
be accomplished, so the greater number of tasks and requirements, the longer the
project will take. Some companies have little patience for development projects
that take a long time, and these companies take a time-oriented approach that places
meeting a deadline above delivering functionality.

Think about your use of word processing software. For 80% of the time, you
probably use only 20% of the features, such as the spelling checker, boldfacing, and
cutting and pasting. Other features, such as document merging and creation of mail-
ing labels, may be nice to have, but they are not a part of your day-to-day needs.
The same goes for other software applications; most users rely on only a small sub-
set of their capabilities. Ironically, most developers agree that, typically, 75% of a
system can be provided relatively quickly, with the remaining 25% of the function-
ality demanding most of the time.

To resolve this incongruency, a technique called timeboxing has become quite
popular, especially when rapid application development (RAD) methodologies are
used. This technique sets a fixed deadline for a project and delivers the system by
that deadline no matter what, even if functionality needs to be reduced. Time
boxing ensures that project teams don’t get hung up on the final “finishing touches”
that can drag out indefinitely, and it satisfies the business by providing a product
within a relatively fast time frame.

There are several steps to implementing timeboxing on a project (Figure 2-21).
First, set the date of delivery for the proposed goals. The deadline should not be
impossible to meet, so it is best to let the project team determine a realistic due
date. Next, build the core of the system to be delivered; you will find that time-
boxing helps create a sense of urgency and helps keep the focus on the most
important features. Because the schedule is absolutely fixed, functionality that
cannot be completed needs to be postponed. It helps if the team prioritizes a list
of features beforehand to keep track of what functionality the users absolutely
need. Quality cannot be compromised, regardless of other constraints, so it is
important that the time allocated to activities is not shortened unless the require-
ments are changed (e.g., don’t reduce the time allocated to testing without reduc-
ing features). At the end of the period, a high-quality system is delivered. Likely,
future iterations will be needed to make changes and enhancements, and the
timeboxing approach can be used once again.

Managing and Controlling the Project 77

1. Set the date for system delivery.
2. Prioritize the functionality that needs to be included in the system.
3. Build the core of the system (the functionality ranked as most important).
4. Postpone functionality that cannot be provided within the time frame.
5. Deliver the system with core functionality.
6. Repeat steps 3 through 5, to add refinements and enhancements.FIGURE 2-21

Steps for Timeboxing

c02ProjectSelectionAndManagement.qxd 11/3/11 7:31 AM Page 77

Managing Risk

One final facet of project management is risk management, the process of assess-
ing and addressing the risks that are associated with developing a project. Many
things can cause risks: weak personnel, scope creep, poor design, and overly opti-
mistic estimates. The project team must be aware of potential risks so that problems
can be avoided or controlled well ahead of time.

Typically, project teams create a risk assessment, or a document that tracks
potential risks along with an evaluation of the likelihood of the risk and its
potential impact on the project (Figure 2-22). A paragraph or two is included that
explains potential ways that the risk can be addressed. There are many options:
A risk could be publicized, avoided, or even eliminated by dealing with its root
cause. For example, imagine that a project team plans to use new technology, but
its members have identified a risk in the fact that its members do not have the
right technical skills. They believe that tasks may take much longer to perform
because of a high learning curve. One plan of attack could be to eliminate the
root cause of the risk—the lack of technical experience by team members—by
finding time and resources that are needed to provide proper training to the
team.

78 Chapter 2 Project Selection and Management

System projects are notorious for
being late and over budget. When should management
stop a project that is late or costing more than the
intended budget? Consider this case:

Valley Enterprises opted to implement Voice over
Internet Protocol (VoIP) service in its Phoenix, Arizona,
service area. The company has 15 locations in the
Phoenix area, all with local area networks and all with
secure Wi-Fi connections. The company’s current phone
system was designed and implemented in the 1950s,
when Valley operated in three locations. As more locations
were added, standard telecommunications solutions
were implemented, with little thought devoted to compat-
ibility. Over the years, phone services were added as new
buildings and facilities arose. Valley CEO Doug Wilson
heard of VoIP at a trade show and contacted TMR
Telecommunications Consultants, requesting a bid. TMR
spent a week with the CIO of Valley Enterprises, gathering
data, and submitted a bid for $50,000 in late 2007. The
project was to be started by March 2008 and completed
by January 2009. The bid was accepted.

TMR started the project in March 2008. In late July
2008, TMR was bought out by Advanced Communica-

tions of Scottsdale, Arizona. The merger delayed the
project by over a month initially. In early September
2008, some of the same personnel from TMR, as well as
a new project manager from Advanced Communica-
tions, went back to the project.

By March 2009, the project had already cost
$150,000 and only 8 of the locations had imple-
mented VoIP. Advanced Communications insisted that
the local area networks were obsolete and were unable
to carry the expanded load without major upgrades to
the bandwidth, the routers, and other telecommunica-
tions equipment.

QUESTIONS:
1. Is it time to end this project? Why or why not?
2. What negotiations should have occured between TMR

and Valley Enterprises prior to December 2008?
3. What should a project manager/project coordinator from

Valley Enterprises have done when the project first started
to slip?

2-H MANAGING A LATE PROJECT: WHEN TO SAY “WHEN”?
IN ACTION

CONCEPTS

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 78

Most project managers keep abreast of potential risks, even prioritizing them
according to their magnitude and importance. Over time, the list of risks will
change as some items are removed and others surface. The best project managers,
however, work hard to keep risks from having an impact on the schedule and costs
associated with the project.

Managing and Controlling the Project 79

I once started on a small project (four
people) in which the original members of the project
team had not set up any standards for naming electronic
files. Two weeks into the project, I was asked to write a
piece of code that would be referenced by other files that
had already been written. When I finished my piece, I
had to go back to the other files and make changes to
reflect my new work. The only problem was that the lead
programmer decided to name the files using his initials
(e.g., GG1.prg, GG2.prg, GG3.prg)—and there were
over 200 files! I spent two days opening every one of
those files because there was no way to tell what their
contents were.

Needless to say, from then on, the team created a
code for file names that provided basic information
regarding the file’s contents and they kept a log that
recorded the file name, its purpose, the date of last
update, and programmer for every file on the project.

Barbara Wixom

QUESTION:
Think about a program that you have written in the past.

Would another programmer be able to make changes
to it easily? Why or why not?

2-I POOR NAMING STANDARDS

IN ACTION

CONCEPTS

RISK ASSESSMENT

RISK #1: The development of this system likely will be slowed
considerably because project team members have
not programmed in Java prior to this project.

Likelihood of risk: High probability of risk

Potential impact on the project: This risk likely will increase the time to complete
programming tasks by 50%.

Ways to address this risk:

It is very important that time and resources are allocated to up-front training in Java for
the programmers who are used for this project. Adequate training will reduce the initial
learning curve for Java when programming begins. Additionally, outside Java expertise
should be brought in for at least some part of the early programming tasks. This
person should be used to provide experiential knowledge to the project team so that
Java-related issues (of which novice Java programmers would be unaware) are
overcome.
RISK #2:

etc.…FIGURE 2-22
Sample Risk Assessment

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 79

APPLYING THE CONCEPTS AT TUNE SOURCE

Jason Wells was very excited about managing the Digital Music Download project
at Tune Source, but he realized that his project team should move rapidly to deliver
at least some parts of the system because of the company’s desire to bring the appli-
cation to market as quickly as possible. Therefore, he decided that the project
should follow a RAD iterative development methodology, combined with the time-
boxing technique. In this way, he could be sure that some version of the system
would be operational within several months, even if the final system was delivered
at a later date.

Jason knew that Carly Edwards and Tune Source’s top managers wanted at
least general ranges for a product delivery date. He expected to spend three weeks
planning the project. Therefore, using industry standard percentages, he estimated
that the entire project should be complete in 20 weeks (3 weeks/15%). Recall from
Figure 2-10 that the planning phase typically takes 15% of the entire project. Jason’s
initial plan was to develop the basic music download purchase capability in the first
version of the system. The second version will add the subscription purchase capa-
bility, and the third version will add the gift card purchase capability.

80 Chapter 2 Project Selection and Management

As Seattle University’s David
Umphress has pointed out, watching most organizations
develop systems is like watching reruns of Gilligan’s
Island. At the beginning of each episode, someone comes
up with a cockamamie scheme to get off the island that
seems to work for a while, but something goes wrong and
the castaways find themselves right back where they
started—stuck on the island. Similarly, most companies
start new projects with grand ideas that seem to work, only
to make a classic mistake and deliver the project behind
schedule, over budget, or both. Here we summarize four
classic mistakes in the planning and project management
aspects of the project and discuss how to avoid them:
1. Overly optimistic schedule: Wishful thinking can lead to an

overly optimistic schedule that causes analysis and
design to be cut short (missing key requirements) and
puts intense pressure on the programmers, who pro-
duce poor code (full of bugs).
Solution: Don’t inflate time estimates; instead, explicitly
schedule slack time at the end of each phase to
account for the variability in estimates, using the mar-
gins of error from Figure 2-19.

2. Failing to monitor the schedule: If the team does not regu-
larly report progress, no one knows if the project is on
schedule.

Solution: Require team members to honestly report
progress (or the lack of progress) every week. There is
no penalty for reporting a lack of progress, but there
are immediate sanctions for a misleading report.

3. Failing to update the schedule: When a part of the sched-
ule falls behind (e.g., information gathering uses all of
the slack in item 1 above plus 2 weeks), a project
team often thinks it can make up the time later by
working faster. It can’t. This is an early warning that
the entire schedule is too optimistic.
Solution: Immediately revise the schedule and inform the
project sponsor of the new end date or use timeboxing
to reduce functionality or to move it into future versions.

4. Adding people to a late project: When a project misses a
schedule, the temptation is to add more people to
speed it up. This makes the project take longer
because it increases coordination problems and
requires staff to take time to explain what has already
been done.
Solution: Revise the schedule, use timeboxing, throw
away bug-filled code, and add people only to work
on an isolated part of the project.

Source: Adapted from Rapid Development, Redmond, WA:
Microsoft Press, 1996, pp. 29–50, by Steve McConnell.

2-1 AVOIDING CLASSIC PLANNING MISTAKES

T I P

PRACTICAL

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 80

With a general time frame determined, Jason began to identify the tasks that
would be needed to complete the system. He used a RAD methodology that Tune
Source had in-house, and he borrowed its high-level phases (e.g., analysis) and the
major tasks associated with them (e.g., create requirements definition, gather
requirements, analyze current system). These were recorded in a work plan created
in Microsoft Project. Jason expected to define the steps in much more detail at the
beginning of each phase (Figure 2-23).

Staffing the Project

Jason next turned to the task of how to staff his project. According to his earlier esti-
mates, it appeared that about three people would be needed to deliver the system.

First, he created a list of the various roles that he needed to fill. He thought he
would need several analysts to work with the analysis and design of the Digital
Music Download system, as well as an infrastructure analyst to manage the integra-
tion of the system with Tune Source’s existing technical environment. Jason also
needed people who had good programming skills and who could be responsible for
ultimately implementing the system. Kenji, Ming, and Maria are three analysts with
strong technical and interpersonal skills (although Kenji is less balanced, having
greater technical than interpersonal abilities), and Jason believed that they were
available to bring onto this project. He wasn’t certain whether they had experience
with the actual Web technology that would be used on the project, but he decided to
rely on vendor training or an external consultant to build those skills later when they
were needed. Because the project was so small, Jason envisioned all of the team
members reporting to him because he would be serving as the project’s manager.

Jason created a staffing plan that captured this information, and he included a
special incentive structure in the plan (Figure 2-24). Rapid implementation was
very important to the project’s success, so he decided to offer a day off to the team
members who contributed to meeting that date. He hoped that this incentive would
motivate the team to work very hard. Jason also planned to budget money for pizza
and sodas for times when the team worked long hours.

Before he left for the day, Jason drafted a project charter, to be fine-tuned after
the team got together for its kick-off meeting (i.e., the first time the project team gets
together). The charter listed several norms that Jason wanted to put in place from
the start to eliminate any misunderstanding or problems that could come up other-
wise (Figure 2-25).

Coordinating Project Activities

Jason wanted the Digital Music Download project to be well coordinated, so he
immediately put several practices in place to support his responsibilities. First, he
acquired the CASE tool used at Tune Source and set up the product so that it could
be used for the analysis-phase tasks (e.g., drawing the data flow diagrams). The
team members would likely start creating diagrams and defining components of the
system fairly early on. He pulled out some standards that he uses on all develop-
ment projects and made a note to review them with his project team at the kick-off
meeting for the system. He also had his assistant set up binders for the project deliv-
erables that would start rolling in. Already, he was able to include the system
request, feasibility analysis, initial work plan, staffing plan, project charter, stan-
dards list, and risk assessment.

Applying the Concepts at Tune Source 81

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 81

82 Chapter 2 Project Selection and Management

FIGURE 2-23
Gantt Chart

Overall analysis

Task NameID

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Jason, Carly,
Ming

Jason, Carly

Ming

Ming

Maria

Maria

Maria

Maria

Ming, Kenji

Maria, Kenji,
Ming
Maria, Kenji,
Ming
Jason, Maria,
Kenji, Ming
Jason, Ming,
Kenji, Maria

Kenji

Kenji

Kenji

Ming

Maria, Kenji

Jason

Define Version 1
scope

JAD session

Informal
benchmarking
Prioritize
requirements

Version 1

Version 2

Version 3

Develop use
cases
Develop process
models
Develop data
models

System
architecture

User interface

Database

Write programs

Identify High-Level

Requirements

Detailed

Requirements

Preliminary

Design

Implementation

Acquire
HW & SW
Construct
database

Convert data

Testing

Installation

Programs

10 days

6 days

2 days

4 days

2 days

2 days

61 days

17 days

5 days

12 days

3 days

27 days

5 days

7 days

10 days

5 days

20 days

10 days

4 days

42 days

28 days

10 days

56 days

10 days

7 days

Mon

2/4/13

Fri
2/8/13

Tue
2/12/13

Thu
2/14/13

Mon

2/18/13

Mon

2/18/13

Mon
2/25/13

Mon

2/18/13

Wed
4/24/13

Wed
5/8/13

Tue
5/14/13

Thu
7/11/13

Thu
2/28/13

Wed
3/13/13

Mon

2/25/13

Mon
2/25/13

Thu
3/14/13

Mon
3/25/13

Wed
3/27/13

Mon
2/18/13

Wed
3/17/13

Mon
2/18/13

Mon
2/25/13

Mon

2/4/13

Mon
2/4/13

3

2

5

6

9

9

6

10

11

13,10

13

15

19

22

23

24

16, 10

20, 21

Fri

2/15/13

Mon
2/11/13

Wed
2/13/13

Fri
2/15/13

Mon

5/13/13

Tue

3/12/13

Wed
2/27/13

Tue

3/27/13

Mon
5/13/13

Wed
7/12/13

Mon
8/19/13

Tu e
3/26/13

Mon

5/13/13

Fri
3/8/13

Fri
3/22/13

Fri
3/29/13

Tu e
4/23/13

Tu e
5/7/13

Thu
3/21/13

Fri
2/22/13

Wed
3/13/13

Fri
2/22/13

Tu e
3/12/13

Mon

2/11/13

Thu
2/7/13

StartDuration Finish Predecessors Resource Names

(Continued)

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 82

Applying the Concepts at Tune Source 83

Jason, Carly, Ming

Maria, Kenji

Jason

Jason, Carly

Ming

Ming

Ming

Maria

Maria

Kenji

Kenji

Kenji

Maria

Maria

Ming, Kenji

Maria, Kenji, Ming

Jason, Maria, Kenji, Ming

Jason, Ming, Kenji, Maria

Maria, Kenji, Ming

February March April May June July August September

2/4 2/11 2/18 2/25 3/4 3/11 3/18 3/25 4/1 4/8 4/15 4/22 4/29 5/6 5/13 5/20 5/27 6/3 6/10 6/17 6/24 7/1 7/8 7/16 7/22 7/29 8/5 8/12 8/19 8/26 9/2 9/9 9/16 9/23

FIGURE 2-23
Gantt Chart

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 83

84 Chapter 2 Project Selection and Management

Project manager Oversees the project to ensure that it meets its Jason
objectives on time and within budget

Infrastructure analyst Ensures that the system conforms to infrastructure Kenji
standards at Tune Source; ensures that
the Tune Source infrastructure can support
the new system

Systems analyst Designs the information system—with a focus Kenji
on interfaces with the CD sales system

Systems analyst Designs the information system—with a focus Ming
on the process models and interface design

Systems analyst Designs the information system—with a focus Maria
on the data models and system performance

Programmer Codes system Ming

Programmer Codes system Kenji

Reporting structure: All project team members will report to Jason.

Special incentives: If the deadline for the project is met, all team members who contributed to this goal will receive
a free day off, to be taken over the holiday season.

Role Description Assigned To

FIGURE 2-24
Staffing Plan for the Digital Music
Download System

Project objective: The Digital Music Download project team will create a working
Web-based system to provide digital music downloads to Tune Source’s customers as
rapidly as possible.

The Digital Music Download team members will

1. Attend a staff meeting each Friday at 2 P.M. to report on the status of assigned tasks.
2. Update the work plan with actual data each Friday by 5 P.M.
3. Discuss all problems with Jason as soon as they are detected.
4. Agree to support each other when help is needed, especially for tasks that could hold

back the progress of the project.
5. Post important changes to the project on the team bulletin board as they are made.

FIGURE 2-25
Project Charter for the Digital Music
Download System

SUMMARY

Project Selection
Once the feasibility analysis has been completed, it is submitted back to the
approval committee along with a revised system request. The committee then
decides whether to approve the project, decline the project, or table it until addi-
tional information is available. The project selection process takes into account
all of the projects in the organization, using portfolio management. The approval
committee weighs many factors and makes trade-offs before a project is
selected.

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 84

Creating the Project Plan
There are a number of different project methodologies that can be used to structure
and guide systems development projects. Several of the key methodologies are
waterfall development and its variations: parallel development and the V-model;
rapid application development, including iterative development, system prototyp-
ing, and throwaway prototyping; and agile development, including extreme pro-
gramming, Scrum, and others. The project manager evaluates characteristics of the
project, including factors such as clarity of user requirements, familiarity with tech-
nology, complexity, reliability, time frame, and schedule visibility, to select the
most appropriate methodology to use for the project.

The project manager then estimates the time frame for the project. Past expe-
rience, industry standards, and techniques such as function-point analysis, provide
help in this task. The project methodology provides lists of tasks and deliverables
for projects, which the project manager modifies, depending on the needs of the
specific project. To create a work plan, the project manager refines the tasks into a
work breakdown structure, and task time estimates and other information are
entered into the work plan.

Staffing involves determining how many people should be assigned to the
project, assigning project roles to team members, developing a reporting structure
for the team, and matching people’s skills with the needs of the project. Staffing
also includes motivating the team to meet the project’s objectives and minimizing
conflict among team members. Both motivation and cohesiveness have been found
to greatly influence performance of team members in project situations. Team
members are motivated most by such nonmonetary things as recognition, achieve-
ment, and the work itself. Conflict can be minimized by clearly defining the roles
on a project and holding team members accountable for their tasks. Some managers
create a project charter that lists the project’s norms and ground rules.

Coordinating project activities includes putting efficient development prac-
tices in place and mitigating risk, and these activities occur over the course of the
entire SDLC. Three techniques are available to help coordinate activities on a proj-
ect: computer-aided software engineering (CASE), standards, and documentation.
CASE is a category of software that automates all or part of the development
process; standards are formal rules or guidelines that project teams must follow
during the project; and documentation includes detailed information about the tasks
of the SDLC. Often, documentation is stored in project binder(s) that contain all the
deliverables and all the internal communication that takes place—the history of the
project.

Managing and Controlling the Project
As the project progresses, the project manager collects status reports from the
team members and updates the work plan. Graphical tools such as Gantt and PERT
charts help depict progress on tasks and clarify critical task dependencies. Project
managers try to avoid introducing scope creep or feature creep into the schedule.
As inevitable project changes arise, however, project managers try to balance the
project size (number of features), time frame, and cost. Estimates may have to be
revised as more is learned about the system. Timeboxing can be used to deal with
shortened time frames. The project manager also keeps a close watch on the pro-
ject risk. A risk assessment should be created and updated to evaluate the likeli-
hood of various risks and their potential impact on the project.

Summary 85

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 85

86 Chapter 2 Project Selection and Management

Agile development
CASE repository
Chief information officer
Computer-aided software

engineering (CASE)
Design prototype
Documentation
Estimation
Feature creep
Functional lead
Group cohesiveness
Integrated CASE
Interpersonal skills
Iterative development
Lower CASE

Methodology
Milestones
Motivation
Parallel development
Project binder
Project management
Project manager
Project portfolio management
Rapid application development
Reporting structure
Risk assessment
Risk management
Scope creep
Staffing plan
Standards

System prototyping
Task dependencies
Technical skills
Technical lead
Throwaway prototyping
Timeboxing
Trade-offs
Upper CASE
V-model
Versions
Work breakdown structure
Work plan
Waterfall development

KEY TERMS

1. Describe how projects are selected in organizations.
2. Describe how project portfolio management is used

by IT departments.
3. Describe the major elements and issues with waterfall

development.
4. Describe the major elements and issues with parallel

development.
5. Describe the major elements and issues with the

V-model.
6. Describe the major elements and issues with itera-

tive development.
7. Describe the major elements and issues with system

prototyping.
8. Describe the major elements and issues with throw-

away prototyping.
9. Describe the major elements and issues with agile

development.
10. Compare and contrast structured design method-

ologies in general with rapid application develop-
ment (RAD) methodologies in general.

11. Compare and contrast extreme programming and
throwaway prototyping.

12. What are the key factors in selecting a methodology?
13. Why do many projects end up having unreasonable

deadlines? How should a project manager react to
unreasonable demands?

14. Name two ways to identify the tasks that need to be
accomplished over the course of a project.

15. What is the difference between a methodology and
a work plan? How are the two terms related?

16. Some companies hire consulting firms to develop the
initial project plans and manage the project, but use
their own analysts and programmers to develop the
system. Why do you think some companies do this?

17. Describe the differences between a technical lead
and a functional lead. How are they similar?

18. Describe three technical skills and three interper-
sonal skills that would be very important to have on
any project.

19. What are the best ways to motivate a team? What
are the worst ways?

20. List three techniques to reduce conflict.
21. What is the difference between upper CASE (com-

puter-aided software engineering) and lower CASE?
22. Describe three types of standards, and provide

examples of each.
23. What belongs in the project binder? How is the

project binder organized?
24. What are the trade-offs that project managers must

manage?
25. What is scope creep, and how can it be managed?
26. What is timeboxing, and why is it used?
27. Create a list of potential risks that could affect the

outcome of a project.
28. Describe the factors that the project manager must

evaluate when a project falls behind schedule.

QUESTIONS

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 86

Exercises 87

1. What is a function point, and how is it used?
2. Describe the three steps of the function point

approach.

3. What is the formula for calculating the effort for a
project?

APPENDIX 2A QUESTIONS

A. Suppose that you are a project manager using the
waterfall development methodology on a large and
complex project. Your manager has just read the lat-
est article in Computerworld that advocates replac-
ing the waterfall methodology with prototyping and
comes to your office requesting you to switch. What
do you say?

B. Suppose that you are an analyst developing a new
information system to automate the sales transac-
tions and manage inventory for each retail store in a
large chain. The system would be installed at each
store and would exchange data with a mainframe
computer at the company’s head office. What
methodology would you use? Why?

C. Suppose that you are an analyst developing a new
executive information system (EIS) intended to pro-
vide key strategic information from existing corpo-
rate databases to senior executives to help in their
decision making. What methodology would you
use? Why?

D. Suppose that you are an analyst working for a small
company to develop an accounting system. What
methodology would you use? Why?

E. Visit a project management Web site, such as the
Project Management Institute (www.pmi.org). Most
have links to project management software products,
white papers, and research. Examine some of the
links for project management to better understand a
variety of Internet sites that contain information
related to this chapter.

F. Select a specific project management topic like
computer-aided software engineering (CASE), proj-
ect management software, or timeboxing, and use
the Web search for information on that topic. The

URL listed in question E or any search engine (e.g.,
Yahoo!, Google,) can provide a starting point for
your efforts.

G. Pretend that the career services office at your uni-
versity wants to develop a system that collects stu-
dent résumés and makes them available to students
and recruiters over the Web. Students should be able
to input their résumé information into a standard
résumé template. The information then is presented
in a résumé format, and it also is placed in a data-
base that can be queried through an online search
form. You have been placed in charge of the project.
Develop a plan for estimating the project. How long
do you think it would take for you and three other
students to complete the project? Provide support
for the schedule that you propose.

H. Refer to the situation in question G. You have been
told that recruiting season begins a month from
today and that the new system must be used. How
would you approach this situation? Describe what
you can do as the project manager to make sure that
your team does not burn out from unreasonable
deadlines and commitments.

I. Consider the system described in question G. Create
a work plan listing the tasks that will need to be
completed to meet the project’s objectives. Create a
Gantt chart and a PERT chart in a project manage-
ment tool (e.g., Microsoft Project), or use a spread-
sheet package to graphically show the high-level
tasks of the project.

J. Suppose that you are in charge of the project
described in question G, and the project will be
staffed by members of your class. Do your classmates
have all of the right skills to implement such a

EXERCISES

1. Compare and contrast the Gantt chart and the PERT
chart.

2. Of what value is the Gantt chart to the project man-
ager? The PERT chart?

APPENDIX 2B QUESTIONS

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 87

88 Chapter 2 Project Selection and Management

1. Emily Pemberton is an IS project manager facing a dif-
ficult situation. Emily works for the First Trust Bank,
which has recently acquired the City National Bank.
Prior to the acquisition, First Trust and City National
were bitter rivals, fiercely competing for market share in
the region. Following the acrimonious takeover, numer-
ous staff were laid off in many banking areas, including
IS. Key individuals were retained from both banks’ IS
areas, however, and were assigned to a new consolidated
IS department. Emily has been made project manager
for the first significant IS project since the takeover, and
she faces the task of integrating staffers from both banks
on her team. The project they are undertaking will be
highly visible within the organization, and the time
frame for the project is somewhat demanding. Emily
believes that the team can meet the project goals suc-
cessfully, but success will require that the team become
cohesive quickly and that potential conflicts are avoided.
What strategies do you suggest that Emily implement in
order to help ensure a successfully functioning project
team?

2. Marcus Weber, IS project manager at ICAN Mutual
Insurance Co., is reviewing the staffing arrangements
for his next major project, the development of an expert
system-based underwriters assistant. This new system
will involve a whole new way for the underwriters to
perform their tasks. The underwriters assistant system
will function as sort of an underwriting supervisor,
reviewing key elements of each application, checking
for consistency in the underwriter’s decisions, and
ensuring that no critical factors have been overlooked.
The goal of the new system is to improve the quality of
the underwriters’ decisions and to improve underwriter
productivity. It is expected that the new system will
substantially change the way the underwriting staff do
their jobs.

Marcus is dismayed to learn that due to budget con-
straints, he must choose between one of two available
staff members. Barry Filmore has had considerable
experience and training in individual and organizational
behavior. Barry has worked on several other projects in
which the end users had to make significant adjustments

MINICASES

project? If not, how will you go about making sure
that the proper skills are available to get the job done?

K. Consider the application that is used at your school
to register for classes. Complete a function point
worksheet to determine the size of such an applica-
tion. You will need to make some assumptions about
the application’s interfaces and the various factors
that affect its complexity.

L. Read “Your Turn 2-5” in Appendix 2A of this chap-
ter. Create a risk assessment that lists the potential
risks associated with performing the project, along
with ways to address the risks.

M. Pretend that your instructor has asked you and two
friends to create a Web page to describe the course
to potential students and provide current class infor-
mation (e.g., syllabus, assignments, readings) to cur-
rent students. You have been assigned the role of
leader, so you will need to coordinate your activities
and those of your classmates until the project is
completed. Describe how you would apply the proj-
ect management techniques that you have learned in
this chapter to this situation. Include descriptions of
how you would create a work plan, staff the project,
and coordinate all activities—yours and those of
your classmates.

N. Select two project management software packages
and research them, using the Web or trade maga-
zines. Describe the features of the two packages. If
you were a project manager, which one would you
use to help support your job? Why?

O. Select two estimation software packages and
research them, using the Web or trade magazines.
Describe the features of the two packages. If you
were a project manager, which one would you use to
help support your job? Why?

P. In 1997, Oxford Health Plans had a computer prob-
lem that caused the company to overestimate rev-
enue and underestimate medical costs. Problems
were caused by the migration of its claims process-
ing system from the Pick operating system to a
UNIX-based system that uses Oracle database soft-
ware and hardware from Pyramid Technology. As a
result, Oxford’s stock price plummeted, and fixing
the system became the number-one priority for the
company. Pretend that you have been placed in
charge of managing the repair of the claims process-
ing system. Obviously, the project team will not be
in good spirits. How will you motivate team mem-
bers to meet the project’s objectives?

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 88

Appendix 2A—The Function Point Approach 89

The function point approach20 is an estimating tech-
nique that can be used to estimate the size of the new
system, the effort that will be required to complete the
system, and the time the project will require. This
approach requires detailed knowledge of system to be
developed. When this knowledge is available, the function

point approach produces a much more precise estimate
for the project than the industry standard method men-
tioned earlier in Chapter 2.

The function point approach uses a three-step
process (Figure 2A-1). First, the project manager esti-
mates the size of the project in terms of the number of

APPENDIX 2A—THE FUNCTION POINT APPROACH

to the new system, and Barry seems to have a knack for
anticipating problems and smoothing the transition to a
new work environment. Marcus had hoped to have
Barry’s involvement in this project.

Marcus’s other potential staff member is Kim
Danville. Prior to joining ICAN Mutual, Kim had con-
siderable work experience with the expert system tech-
nologies that ICAN has chosen for this expert system
project. Marcus was counting on Kim to help integrate
the new expert system technology into ICAN’s systems
environment, and also to provide on-the-job training and
insights to the other developers on this team.

Given that Marcus’s budget will permit him to add
only Barry or Kim to this project team, but not both,
what choice do you recommend for him? Justify your
answer.

3. Tom, Jan, and Julie are IS majors at Great State Univer-
sity. These students have been assigned to a class project
by one of their professors, requiring them to develop a
new Web-based system to collect and update information

on the IS program’s alumni. This system will be used by
the IS graduates to enter job and address information as
they graduate, and then make changes to that information
as they change jobs and/or addresses. Their professor
also has a number of queries that she is interested in
being able to implement. Based on their preliminary dis-
cussions with their professor, the students have devel-
oped this list of system elements:

Inputs: 1 low complexity, 2 medium complexity, 1 high
complexity

Outputs: 4 medium complexity
Queries: 1 low complexity, 4 medium complexity,

2 high complexity
Files: 3 medium complexity
Program interfaces: 2 medium complexity

Assume that an adjusted project complexity factor of
1.2 is appropriate for this project. Calculate the
total adjusted function points for this project.

FIGURE 2A-1
Estimating Project Time, Using the
Function Point Approach

(months)

(person-months)
Estimate effort required

Estimate time required

(function points and
lines of code)

Estimate system size

20 Two good books that focus on function points are J. Brian Dreger,
Function Point Analysis, Englewood Cliffs, NJ: Prentice Hall, 1989; and
C. R. Symons, Software Sizing and Estimating: MK II FPA, New York:

John Wiley & Sons, 1991. Additional information on function point
analysis can be found at www.ifpug.org.

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 89

90 Chapter 2 Project Selection and Management

lines of code the new system will require. This size
estimate is then converted into the amount of effort
required to develop the system in terms of the number
of person-months. The estimated effort is then con-
verted into an estimated schedule time in terms of the
number of months from start to finish.

Step 1: Estimate System Size The first step is to estimate
the size of a project by using function points, a concept
developed in 1979 by Allen Albrecht of IBM. A function
point is a measure of program size that is based on the
system’s number and complexity of inputs, outputs,
queries, files, and program interfaces.

To calculate the function points for a project, com-
ponents are listed on a worksheet to represent the major
elements of the system. For example, data-entry screens
are kinds of inputs, reports are outputs, and database
queries are kinds of queries. (See Figure 2A-2.) The
project manager records the total number of each com-
ponent that the system will include, and then he or she
breaks down the number to show the number of compo-
nents that have low, medium, and high complexity. In
Figure 2A-2, there are 19 outputs that need to be devel-
oped for the system, 4 of which have low complexity, 10
that have medium complexity, and 5 that are very com-
plex. After each line is filled in, a total number of points
are calculated per line by multiplying each number by a

complexity index. The complexity index values are
drawn from function point research and tell us, for
example, that a low complexity input is “worth” three
function points, while a high complexity output is
“worth” seven function points. The line totals are added
up to determine the total unadjusted function points
(TUFP) for the project.

The complexity of the overall system is greater than
the sum of its parts. Things like the familiarity of the pro-
ject team with the business area and the technology that
will be used to implement the project also may influence
how complex a project will be. A project that is very com-
plex for a team with little experience might have little
complexity for a team with lots of experience. To create a
more realistic size for the project, a number of additional
system factors such as end-user efficiency, reusability, and
data communications are assessed in terms of their effect
on the project’s complexity. (See Figure 2A-2.) These
assessments are totaled and placed into a formula to cal-
culate an adjusted project complexity (APC) factor. The
APC factor has a baseline value of 0.65, and the total Pro-
cessing Complexity (PC) score (converted to hundredths)
is added to the baseline amount. The TUFP value is mul-
tiplied by the APC factor to determine the ultimate size of
the project in terms of total adjusted function points
(TAFP). This number should give the project manager a
reasonable idea as to how big the project will be.

Nielsen Media used function point
analysis (FPA) for an upgrade to the Global Sample Man-
agement System (GSMS) for Nielsen Media/NetRatings,
which keeps track of the Internet rating sample, a group
of 40,000 homes nationwide that volunteer to participate
in ongoing ratings.

In late fall of 1998, Nielsen Media did an FP count
based on the current GSMS. (FPA is always easier and
more accurate when there is an existing system.) Nielsen
Media had its counters—three quality assurance staff—do
their FPA, and then input their count into Knowledge-Plan,
a productivity modeling tool. In early 1999, seven pro-
grammers began writing code for the system, which they
were expected to complete in 10 months. As November
approached, the project was adding staff to try to meet
the deadline. When it became evident that the deadline
would not be met, a new FP count was conducted. The

GSMS had grown to 900 FPs. Besides the original 500
plus 20%, there were 300 FPs attributable to features and
functions that had crept into the project.

How did that happen? The way it always does:
The developers and users had added a button here, a
new feature there, and soon the project was much larger
than it was originally. But Nielsen Media had put a stake
in the ground at the beginning from which they could
measure growth along the way.

The best practice is to run the FPA and productivity
model at the project’s launch and again when there is a
full list of functional requirements. Then do another analy-
sis anytime there is a major modification in the functional
definition of the project.

Source: “Ratings Game,” CIO Magazine, October 2000, by Bill
Roberts.

2A-A FUNCTION POINTS AT NIELSEN

IN ACTION

CONCEPTS

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 90

Appendix 2A—The Function Point Approach 91

FIGURE 2A-2
Function Point-Estimation Worksheet

Description

System Components:

Inputs

Outputs

Queries

Files

Program Interfaces

23

101

39

150

25

338

1 × 6

5 × 7

3 × 6

0 × 15

2 × 10

2 × 4

10 × 5

0 × 4

15 × 10

0 × 7

3 × 3

4 × 4

7 × 3

0 × 7

1 × 5

6

19

10

15

3

Total Unadjusted Function Points (TUFP):

Total

Number
Low

Complexity

Medium High Total

Overall System:

Data communications

Heavy use configuration

Transaction rate

End-user efficiency

Complex processing

Installation ease

Multiple sites

Performance

Distributed functions

Online data entry

Online update

Reusability

Operational ease

Extensibility

(0 = no effect on processing complexity; 3 = great effect on processing complexity)

Total Processing Complexity (PC):

3

0

0

0

0

0

0

0

2

2

0

0

0

0

7

Adjusted Project Complexity (APC):

.65 + (0.01 x 7) = .72

Total Adjusted Function Points (TAFP):

.72 (APC) x 338 (TUFP) = 243 (TAFP)

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 91

92 Chapter 2 Project Selection and Management

Sometimes a shortcut is used to determine the
complexity of the project. Instead of calculating the
exact APC score for the 14 factors listed in Figure 2A-2,
project managers estimate an APC value that ranges
from 0.65 for very simple systems to 1.00 for “normal”
systems to as much as 1.35 for complex systems. This
estimated APC score is then applied to the TUFP to
compute the TAFP. For example, a very simple system
that has 200 unadjusted function points would have a
size of 130 adjusted function points (200 � .65 � 130).
However, if the system with 200 unadjusted function
points were very complex, its function point size would
be 270 (200 � 1.35 � 270).

In the planning phase, the exact nature of the sys-
tem has not yet been determined, so it is impossible to
know exactly how many inputs, outputs, and so forth
will be in the system. It is up to the project manager to
make an intelligent guess. Some people feel that using
function points this early in a project is not practical for
this reason. We believe function points can be a useful
tool for understanding a project’s size at any point in the
SDLC. Later in the project, once more is known about
the system, the project manager will revise the esti-
mates, using this better knowledge to produce more
accurate results.

Once you have estimated the number of function
points, you need to convert the number of function
points into the lines of code that will be required to build
the system. The number of lines of code depends on the
programming language you choose to use. Figure 2A-3
presents a very rough conversion guide for some popu-
lar languages.

For example, the system in Figure 2A-2 has 243
function points. If you were to develop the system in
COBOL, it would typically require approximately
26,730 lines of code to write it. Conversely, if you were
to use Visual Basic, it typically would take 7290 lines of
code. If you could develop the system by using a pack-
age such as Excel or Access, it would take between 2430
and 9720 lines of code. There is a great range for
packages, because different packages enable you to do
different things and not all systems can be built with
certain packages. Sometimes you end up writing lots of
extra code to do some simple function because the pack-
age does not have the capabilities you need.

There is also a very important message from the data
in this figure. Since there is a direct relationship between
lines of code and the amount of effort and time required to
develop a system, the choice of development language has
a significant impact on the time and cost of projects.

Imagine that job hunting has been
going so well that you need to develop a system to sup-
port your efforts. The system should allow you to input
information about the companies with which you inter-
view, the interviews and office visits that you have sched-
uled, and the offers that you receive. It should be able to
produce reports, such as a company contact list, an inter-
view schedule, and an office visit schedule, as well as
generate thank-you letters to be brought into a word
processor to customize. You also need the system to
answer queries, such as the number of interviews by city
and your average offer amount.

QUESTIONS:
1. Determine the number of inputs, outputs, interfaces,

files, and queries that this system requires. For each
element, determine whether the complexity is low,

medium, or high. Record this information on a work-
sheet similar to the one in Figure 2A-2.

2. Calculate the total function points for each line on
your worksheet by multiplying the number of each ele-
ment with the appropriate complexity score.

3. Sum up the total unadjusted function points.
4. Suppose that the system will be built by you using

Visual Basic (VB). Given your VB skills, multiply the
TUFP score by the APC score that best estimates how
complex the system will be for you to develop (.65 =
simple, 1 = average, 1.35 = complex), and calculate
a TAFP value.

5. Using the table in Figure 2A-3, determine the number
of lines of code that correspond to VB. Multiply this
number by the TAFP to find the total lines of code that
your system will require.

2A-1 CALCULATE SYSTEM SIZEY O U R

T U R N

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 92

Step 2: Estimate Effort Required Once an understanding is
reached about the size of the system, the next step is to
estimate the effort that is required to build it. Effort is a
function of the system size combined with production
rates (how much work someone can complete in a given
time). Much research has been done on software pro-
duction rates. One of the most popular algorithms, the
COCOMO model,21 was designed by Barry W. Boehm
to convert a lines-of-code estimate into a person-month
estimate. There are different versions of the COCOMO
model that vary with the complexity of the software, the
size of the system, the experience of the developers, and
the type of software that you are developing (e.g., busi-
ness application software such as the registration system

at your university; commercial software such as Word;
or system software such as Windows). For small to
moderate-size business software projects (i.e., 100,000
lines of code and 10 or fewer programmers), the model
is quite simple:

effort (in person-months) � 1.4 � thousands of lines of code

For example, let’s suppose that we were going to
develop a business software system requiring 10,000
lines of code. This project would typically take 14 person-
months of effort. If the system in Figure 2A-2 were
developed in COBOL (which equates to 26,730 lines of
code), it would require about 37.42 person-months of
effort.

C 130

COBOL 110

Java 55

C++ 50

Turbo Pascal 50

Visual Basic 30

PowerBuilder 15

HTML 15

Packages (e.g., Access, Excel) 10–40

Source: Capers Jones, Software Productivity Research, http://www.spr.com

Approximate Number of Lines
Language of Code per Function Point

FIGURE 2A-3
Converting from Function Points to Lines
of Code

Appendix 2A—The Function Point Approach 93

Refer to the project size and lines of
code that you calculated in “Your Turn 2A-1.”

QUESTIONS:
1. Determine the effort of your project in person-months

of effort by multiplying your lines of code (in thou-
sands) by 1.4.

2. Calculate the schedule time in months for your project
by using the formula 3.0 � person-months1/3.

3. Based on your numbers, how much time will it take to
complete the project if you are the developer?

2A-2 CALCULATE EFFORT AND SCHEDULE TIMEY O U R

T U R N

21 The original COCOMO model is presented by Barry W. Boehm in
Software Engineering Economics, Englewood Cliffs, NJ: Prentice Hall,
1981. Since then, much additional research has been done. The latest
version of COCOMO, COCOMO II, is described in B. W. Boehm,

C. Abts, A. W. Brown, S. Chulani, B. K. Clark, E. Horowitz, R. Madachy,
D. Reifer, and B. Steece, Software Cost Estimation with COCOMO II, Upper
Saddle River, NJ: Prentice Hall PTR, 2000. For the latest updates, see
http://sunset.use.edu/csse/research/COCOMOII/cocomo_main.html.

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 93

94 Chapter 2 Project Selection and Management

Step 3: Estimate Time Required Once the effort is under-
stood, the optimal schedule for the project can be esti-
mated. Historical data or estimation software can be
used as aids, or one rule of thumb is to determine sched-
ule by the following equation:

schedule time (months) � 3.0 � person-months1/3

This equation is widely used, although the specific
numbers vary (e.g., some estimators may use 3.5 or 2.5

instead of 3.0). The equation suggests that a project that
has an effort of 14 person-months should be scheduled
to take a little more than 7 months to complete. Contin-
uing the Figure 2A-2 example, the 37.42 person-months
would require a little over 10 months. It is important to
note that this estimate is for the analysis, design, and
implementation phases; it does not include the planning
phase.

Project managers utilize several tools to help manage
projects. The project work plan, discussed previously, is
a critical element of managing projects. In addition, two
graphical tools are widely used to understand the rela-
tionship between project tasks and to monitor progress
on the project.

Gantt Chart

A Gantt chart is a horizontal bar chart that shows the
same task information as the project work plan, but in a
graphical way. Sometimes a picture really is worth a
thousand words, and the Gantt chart can communicate
the high-level status of a project much faster and easier
than the work plan. Creating a Gantt chart is simple and
can be done with a spreadsheet package, graphics soft-
ware (e.g., Microsoft VISIO), or a project management
package.

First, tasks are listed as rows in the chart, and time
is listed across the top in increments based on the needs
of the projects. (See Figure 2B-1). A short project may
be divided into hours or days, whereas a medium-sized
project may be represented in weeks or months. Hori-
zontal bars are drawn to represent the duration of each
task; the bar’s beginning and end mark exactly when the
task will begin and end. As people work on tasks, the
appropriate bars are filled in proportionately to how
much of the task is finished. Too many tasks on a Gantt
chart can become confusing, so it’s best to limit the
number of tasks to around 20 to 30. If there are more
tasks, break them down into subtasks and create Gantt
charts for each level of detail.

There are many things a project manager can see
by looking quickly at a Gantt chart. In addition to see-
ing how long tasks are and how far along they are, the
project manager also can tell which tasks are sequential,
which tasks occur at the same time, and which tasks

overlap in some way. He or she can get a quick view of
tasks that are ahead of schedule and behind schedule by
drawing a vertical line on today’s date. If a bar is not
filled in and appears to the left of the line, that task is
behind schedule.

There are a few special notations that can be
placed on a Gantt chart. Project milestones are shown
by upside-down triangles or diamonds. Arrows are
drawn between the task bars to show task dependencies.
Sometimes, the names of people assigned to each task
are listed next to the task bars to show what human
resources have been allocated to each task.

PERT Chart

A second graphical way to look at the project work plan
information is the PERT chart, which displays the proj-
ect tasks in a flowchart. (See Figure 2B-2). PERT (Pro-
gram Evaluation and Review Technique) is a network
analysis technique that can be used when the individual
task time estimates are fairly uncertain. Instead of
assigning a specific value as the duration estimate,
PERT uses three time estimates: optimistic, most likely,
and pessimistic. It then combines the three estimates
into a single weighted average estimate using the fol-
lowing formula:

The PERT chart is drawn graphically with boxes
(called nodes) representing each task and lines (called
arcs) showing the dependency between tasks. The time
estimates are shown in the nodes. Usually, the partially
completed tasks are displayed with a diagonal line
through the node, and completed tasks contain crossed
lines.

APPENDIX 2B-PROJECT MANAGEMENT TOOLS: THE GANTT CHART AND PERT CHART

PERT
weighted �
average

optimistic value � (4 * most likely value)
� pessimistic value

6

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 94

Appendix 2B—Project Management Tools: The Gantt Chart and Pert Chart 95

FIGURE 2B-1
Gantt Chart

- Design Phase

Rejects-handling engine design

- Develop database design

document

Megan

Megan

Megan

Joachim

Mei-ling

Kevin

Tomas

Kevin

Task Name

31 days

9 days

9 days

Fri

11/15/13

Mon
12/2/13

Fri

12/13/13

Fri
12/13/13

Fri

12/13/13

Fri
12/13/13

Fri

12/13/13

Fri
12/13/13

Fri
12/13/13

Tue
12/18/13

Fri

11/15/13

Fri
11/15/13

Fri
11/29/13

Wed
11/20/13

Mon

12/9/13

Mon

12/9/13

Mon
12/9/13

Thu

12/26/13

Thu
12/26/13

Fri

12/6/13

Fri
12/6/13

Mon

12/2/13

Mon
12/2/13

Fri

12/27/13

Thu
12/12/13

Wed

12/25/13
3,4

3,4

Wed
12/25/13

Wed

12/25/13

Wed
12/25/13

Wed

12/25/13

Wed
12/25/13

Thu
12/19/13

Fri
12/20/13

Fri
11/29/13

Wed
12/4/13

Thu

12/19/13

Thu

12/19/13

Thu
12/12/13

Mon
12/16/13

Fri
12/27/13

Fri

12/27/13

Fri

12/20/13

Tue

12/17/13

Tue
12/17/13

Thu

12/12/13

Thu
12/12/13

Duration Start Finish Prede.
15, '13 22, '13

Nov Dec

6, '13 13, '13 20, '13 27, '13

Jan

3, '1429, '13

Staging database design 9 days

Suspense database design 9 days

9 days

9 days

- Develop rejects-handling

design document

- Develop OLAP design document

Universe design 9 days

- Develop OLAP design part 1 8 days

High-priority reports design 8 days

9 days

9 days

2 days

2 days

- Develop application

design document

GCCR maintenance
application design

- ETL design document

Data export utility design

26 days- Application design document

User authentication

Web entry application UI
design sign-off
Web entry forms and database
model validation

- Functional requirements

document

- Application design 9 days

4 days

Call logging 2 days

Search 3 days

Web entry application UI design 26 days

1 day

11 days

9 days

Chantelle

Chantelle

Chantelle

Joachim

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 95

96 Chapter 2 Project Selection and Management

FIGURE 2B-2
PERT Chart

Develop database design
document

Start: 12/2/13 ID: 2
Finish: 12/12/13 Dur: 9 days
Comp: 0%

Develop OLAP design part 1

Start: 12/6/13 ID: 9
Finish: 12/0/13 Dur: 8 days
Comp: 0%

Develop application design
document

Start: 12/13/13 ID: 11
Finish: 12/25/13 Dur: 9 days
Comp: 0%

ETL design document

Start: 12/26/13 ID: 13
Finish: 12/27/13 Dur: 2 days
Comp: 0%

Application design
document

Start: 11/15/13 ID: 15
Finish: 12/19/13 Dur: 26 days
Comp: 0%

Functional requirements
document

Start: 12/9/13 ID: 19
Finish: 12/19/13 Dur: 9 days
Comp: 0%

Design phase

Start: 11/15/13 ID: 1
Finish: 12/27/13 Dur: 31 days
Comp: 0%

Develop rejects-handling
design document

Start: 12/18/13 ID: 5
Finish: 12/25/13 Dur: 9 days
Comp: 0%

Develop OLAP design
document

Start: 12/13/13 ID: 7
Finish: 12/25/13 Dur: 9 days
Comp: 0%

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 96

Appendix 2B—Project Management Tools: The Gantt Chart and Pert Chart 97

PERT charts are the best way to communicate task
dependencies because they lay out the tasks in the order
in which they need to be completed. The critical path
method (CPM) allows the identification of the critical
path in the network, the longest path from project incep-
tion to completion. The critical path shows all of the
tasks that must be completed on schedule for the project
as a whole to finish on schedule. If any of the tasks on
the critical path (called critical tasks) takes longer than

expected, the entire project will fall behind. CPM can be
used with or without PERT.

Project management software packages like
Microsoft Project enable the project manager to input
the work plan once and then display the information in
many different formats. You can toggle between the
work plan, a Gantt chart, and a PERT chart, depending
on your project management needs.

c02ProjectSelectionAndManagement.qxd 9/22/11 7:55 AM Page 97

PA
RT

 F
O

U
R:

 I
M

PL
EM

EN
TA

TI
O

N
PA

RT
 T

H
RE

E:
 D

ES
IG

N
PA

RT
 T

W
O

:
AN

AL
YS

IS
PA

RT
 O

N
E:

 P
LA

N
N

IN
G

Initial System
Request

CHAPTER

1

Use Cases
Fig 4-1, 4-7, 4-10

Process Models
Fig 5-5, 5-9, 5-13,

5-15, 5-16

Alternative Matrix

Architecture
Design

Interface Design

Hardware/Software
Specification

Physical Process
Model

Physical Data
Model

Program Design

Database & File
Specification

Data
Model

Fig 6-1, 6-11, 6-15

Requirements
Definition

Fig 3-3, 3-13, 3-14

Feasibility
Study

CHAPTER

1

Project
Plan

CHAPTER

2

Completed
Programs

Test Plan

Documentation

Training Plan

Problem Report CHAPTER

13

CHAPTER

13

Change Request CHAPTER

13

Migration Plan

Change
Management Plan

Support
Plan

CHAPTER
13

PROJECT PLAN

SYSTEM PROPOSAL

SYSTEM SPECIFICATION

INSTALLED SYSTEM
CHAPTER
13

CHAPTER
13

CHAPTER
12

CHAPTER
12

CHAPTER
11

CHAPTER
10

CHAPTER
10

CHAPTER
9

CHAPTER
8

CHAPTER
8

CHAPTER
7

CHAPTER
3

CHAPTER
5 CHAPTER

4

CHAPTER
6

CHAPTER
11

CHAPTER
12

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 98

Process
Modeling

Use Case
Analysis

Data
Modeling

Requirements
Determination

Process
M

odel
Use Cases

Data
M

odel

CHAPTER

4

CHAPTER

5

CHAPTER

6

CHAPTER

3

The analysis phase
answers the questions

of who will use the system,
what the system will do,

and
where and when it will be used.

All of the deliverables are combined
into a system proposal,

which is presented to management,
who decides whether the project should

continue to move forward.

P A R T T W O
ANALYSIS

PHASE
ANALYSIS

PHASE

Requirem
ents

Definition

c03RequirementsDetermination.qxd 12/5/11 2:27 PM Page 99

A N A L Y S I S

T A S K C H E C K L I S T

P L A N N I N G

▼

Apply requirements analysis techniques (business

process automation, business process improvement,

or business process reengineering).

Use requirements gathering techniques (interview,

JAD session, questionnaire, document analysis, or

observation).

Develop requirements definition.

Develop use cases.

Develop data flow diagrams.

Develop entity relationship model.

Normalize entity relationship model.

A N A L Y S I S D E S I G N

▼

c03RequirementsDetermination.qxd 12/5/11 2:27 PM Page 100

uring the analysis phase, the analyst determines the functional requirements for the
new system. This chapter begins by describing the analysis phase and its primary

deliverable, the system proposal. The concept of a requirement is explained and several
categories of requirements are defined. The purpose and structure of the requirements def-
inition statement is outlined. Techniques to elicit requirements are discussed, including inter-
views, JAD sessions, questionnaires, document analysis, and observation. Finally, several
requirements analysis strategies are described to help the analyst discover requirements.

OBJECTIVES

■ Explain the analysis phase of the SDLC.
■ Describe the content and purpose of the requirements definition statement.
■ Classify requirements correctly as business, user, functional, or nonfunctional

requirements.
■ Employ the requirement elicitation techniques of interviews, JAD sessions,

questionnaires, document analysis, and observation.
■ Define the role that each requirement elicitation technique plays in determining

requirements.
■ Describe several analysis strategies that can help the analyst discover requirements.

CHAPTER OUTLINE

C H A P T E R 3

D

REQUIREMENTS
DETERMINATION

Introduction
The Analysis Phase
Requirements Determination

What Is a Requirement?
The Process of Determining

Requirements
The Requirements Definition

Statement
Requirements Elicitation Techniques

Requirements Elicitation in Practice
Interviews
Joint Application Development (JAD)
Questionnaires
Document Analysis
Observation
Selecting the Appropriate Techniques

Requirements Analysis Strategies
Problem Analysis
Root Cause Analysis
Duration Analysis
Activity-Based Costing
Informal Benchmarking
Outcome Analysis
Technology Analysis
Activity Elimination
Comparing Analysis Strategies

Applying the Concepts at Tune Source
Eliciting and Analyzing

Requirements
Requirements Definition
System Proposal

Summary

I M P L E M E N TAT I O N

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 101

INTRODUCTION

Part 2 of this textbook focuses on the analysis phase of the SDLC. The work per-
formed in the analysis phase involves expanding the vision described in the system
request into a thorough, detailed understanding of exactly what the new system
needs to do. As the detailed understanding of what the new system must do evolves,
those details will be expressed and documented in several ways, including a detailed
requirements definition statement (this chapter), use cases (Chapter 4), process models
(Chapter 5), and data model (Chapter 6). Although the structure of a textbook requires
that these topics are presented sequentially, in practice, the systems analyst uses all of
the tools and techniques discussed in Chapters 3 through 6 throughout the analysis
phase to define, clarify, and document the requirements for the new system.

THE ANALYSIS PHASE

The analysis phase is so named because the term analysis refers to breaking a
whole into its parts with the intent of understanding the parts’ nature, function, and
interrelationships. In the context of the SDLC, the outputs of the planning phase
(the system request, feasibility study, and project plan), outline the business goals
for the new system, define the project’s scope, assess project feasibility, and provide
the initial work plan. These planning phase deliverables are the key inputs into the
analysis phase. In the analysis phase, the systems analyst works extensively with
the business users of the new system to understand their needs from the new system.
The basic process of analysis involves three steps:

■ Understand the existing situation (the as-is system).
■ Identify improvements.
■ Define requirements for the new system (the to-be system).

Sometimes the first step (i.e., understanding the as-is system) is skipped or done in a
limited manner. This happens when no current system exists, if the existing system
and processes are irrelevant to the future system, or if the project team is using a RAD
or agile development methodology in which the as-is system is not emphasized. Tra-
ditional methods such as waterfall and parallel development (see Chapter 2) typically
allot significant time to understanding the as-is system and identifying improvements
before moving to capture requirements for the to-be system. Newer RAD and agile
methodologies, such as iterative development, system prototyping, throwaway proto-
typing, and extreme programming (see Chapter 2), focus almost exclusively on
improvements and the to-be system requirements, and they devote little time for
investigating the current as-is system. Experience shows that it is useful to study the
current situation whenever possible. The insights gained from reviewing the existing
system can be quite valuable to the project team.

To move the users “from here to there,” an analyst needs strong critical think-
ing skills. Critical thinking is the ability to recognize strengths and weaknesses and
recast an idea in an improved form. These skills are needed in order for the analyst
to understand issues and develop new and improved business processes that are
supported by information system technologies. These skills are essential in exam-
ining the results of requirements discovery and translating those requirements into
a concept for the new system.

102 Chapter 3 Requirements Determination

c03RequirementsDetermination.qxd 9/23/11 9:11 AM Page 102

As an example, let’s say that a user states that the new system should “elimi-
nate inventory stock-outs.” While this might be a worthy project goal, the analyst
needs to think about it critically in order to formulate the statement in terms of use-
ful requirements. The analyst could first have the users think about circumstances
leading to stock-outs (e.g., supplier orders are not placed in a timely way), and then
describe the issues that lead to these circumstances (e.g., on-hand inventory levels
are updated only once a week; delays occur in identifying the best supply source for
the items; delays occur in receiving approval of the supply order, etc.). By focusing
on these issues, the team is in a better position to develop new business processes
that address these concerns. The new requirements will then be based on the issues
that truly need to be fixed. In this case, the requirements might include, in part:

■ The system shall update on-hand inventory levels twice per day.
■ The system shall produce an out-of-stock notification immediately when an item

quantity on hand reaches the item reorder point.
■ The system shall include a recommended supplier with every out-of-stock

notification.
■ The system shall produce a supply purchase order that is sent to the appropriate

manager for approval.
■ The system shall send an approved supply purchase order to the supplier via

secure electronic communication.

As this example demonstrates, the analyst cannot realistically expect that the true
requirements for the new system are easily gathered following a few conversations
with the stakeholders. The analyst must be prepared to dig into the situation and dis-
cover requirements. This is not often an easy process.

A number of techniques and tools can be used by the analyst to facilitate this
process of discovering requirements. In this chapter, we will describe those tech-
niques and tools so that you can learn how to use them during the analysis phase. We
will also explain the critical role that requirements play in defining the new system.
As mentioned above, the analyst also employs tools during this phase that are the
subject of complete chapters: use cases (Chapter 4), process models (Chapter 5), and
data models (Chapter 6).

The final deliverable of the analysis phase is the system proposal, which com-
piles the detailed requirements definition statement, use cases, process models, and
data model together with a revised feasibility analysis and work plan. At the con-
clusion of the analysis phase, the system proposal is presented to the approval com-
mittee, usually in the form of a system walk-through. The goal of the walk-through
is to explain the system in moderate detail so that the users, managers, and key deci-
sion makers clearly understand it, can identify any needed modifications, and are
able to make a decision about whether the project should continue. Before moving
into the design phase, the project should be reviewed to ensure that it continues to
contribute business value to the organization. If approved, the system proposal
components (requirements definition, use cases, process models, and data model)
are used as inputs to the steps in the design phase, which further refine them and
define in much more detail how the system will be built.

The line between the analysis and design phases is very blurry, because the
deliverables created in the analysis phase are really the first step in the design of the
new system. Many of the major design decisions for the new system are found in
the analysis deliverables. In fact, a better name for the analysis phase would really

The Analysis Phase 103

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 103

be “analysis and initial design,” but because this name is rather long and because
most organizations simply call this phase “analysis,” we will, too. Nonetheless, it is
important to remember that the deliverables from the analysis phase are really the
first step in the design of the new system.

In many ways, determining requirements is the single most critical aspect of
the entire SDLC. Although many factors contribute to the failure of systems devel-
opment projects, failing to determine the correct requirements is a primary cause.1

A 2008 study of Fortune 500 company software projects found just 37% of survey
respondents felt the project met users’ needs.2 Therefore, analysts should devote
considerable attention to the work performed in the analysis phase. It is here that
the major elements of the system first begin to emerge. If the requirements are later
found to be incorrect or incomplete, significant rework may be needed, adding sub-
stantial time and cost to the project.

During requirements determination, the to-be system concept is easy to
change because little work has been done yet. As the system moves through the sub-
sequent SDLC phases (design and implementation), it becomes harder and harder
to return to requirements determination and make major changes because of all of
the rework that is involved. This is why the iterative approaches of many RAD and
agile methodologies are so effective—small batches of requirements can be identi-
fied and implemented in incremental stages, allowing the overall system to change
and evolve over time. Also, methodologies such as the V-model stress that tests for
the system should be defined at the same time that the requirements are being
defined. That way, testing is not just a last-minute, thrown-together process, but
instead is based directly on the requirements of the system as they are being
defined.

REQUIREMENTS DETERMINATION

Requirements determination is performed to transform the system request’s high-
level statement of business requirements into a more detailed, precise list of what
the new system must do to provide the needed value to the business. This detailed
list of requirements is supported, confirmed, and clarified by the other activities of
the analysis phase: creating use cases, building process models, and building a data
model. We first explain what a requirement is and discuss the process of creating a
requirements definition statement.

What Is a Requirement?

A requirement is simply a statement of what the system must do or what characteris-
tics it needs to have. During a systems development project, requirements will be cre-
ated that describe what the business needs (business requirements); what the users
need to do (user requirements); what the software should do (functional require-
ments); characteristics the system should have (nonfunctional requirements); and how
the system should be built (system requirements). Although this list of requirement

104 Chapter 3 Requirements Determination

1 For example, see Kweku Ewusi-Mensah, Software Development Failures: Anatomy of Failed Projects, MIT
Press, 2003.
2 Janet Mullaney, “Requirements gathering resources, practices lacking at Fortune 500 companies,”
SearchSoftwareQuality.com, Aug. 20, 2008.

c03RequirementsDetermination.qxd 11/3/11 7:36 AM Page 104

categories may seem intimidating at first, the categories merely reflect the purpose
of the requirements and the stage in the SDLC in which they are defined.

We have already discussed the creation of the systems request in the planning
phase of the SDLC. In the system request, there are statements that describe the rea-
sons for proposing the systems development project. These statements reflect the
business requirements that this system, if built, will fulfill. These business require-
ments help define the overall goals of the system and help clarify the contributions
it will make to the organization’s success. Examples of business requirements
include: “Increase market share”; “Shorten order processing time”; “Reduce cus-
tomer service costs”; “Lower inventory spoilage”; “Improve responsiveness to
customer service requests”; and “Provide account access to mobile customers.”
When the systems development project is complete, success will be measured by
evaluating whether the stated business requirements have actually been achieved;
therefore, they provide the overall direction for the project.

During the analysis phase, requirements are written from the perspective of
the business, and they focus on what the system needs to do in order to satisfy busi-
ness user needs. A good starting place is to concentrate on what the user actually
needs to accomplish with the system in order to fulfill a needed job or task. These
user requirements describe tasks that the users perform as an integral part of the
business’ operations, such as: “Schedule a client appointment”; “Place a new cus-
tomer order”; “Re-order inventory”; “Determine available credit”; and “Look up
account balances.” Use cases (discussed in Chapter 4) are tools used to clarify the
steps involved in performing these user tasks. By understanding what the user
needs to do in terms of tasks to perform, the analyst can then determine ways in
which the new system can support the users’ needs.

Determining ways in which the new system can support user needs leads to
statements of the system’s functional requirements. A functional requirement
relates directly to a process the system has to perform as a part of supporting a user
task and/or information it needs to provide as the user is performing a task. The
International Institute of Business Analysis (IIBA) defines functional requirements
as “the product capabilities, or things that a product must do for its users.”3 Func-
tional requirements begin to define how the system will support the user in com-
pleting a task. For example, assume the user requirement is “Schedule a client
appointment.” The functional requirements associated with that task include: “Deter-
mine client availability,” “Find available openings matching client availability,”
“Select desired appointment,” “Record appointment,” and “Confirm appointment.”
Notice how these functional requirements expand upon the user’s task to describe
capabilities and functions that the system will need to include, allowing the user to
complete the task.

As the analyst works with the business users of the system to discover user and
functional requirements, the user may reveal processes that will be needed or infor-
mation that will be needed. For example, as shown in Figure 3-1, the user may state
“The system must retain customer order history for three years” (an information
need). The analyst should probe for the reasoning behind this statement, such as
“The system should allow registered customers to review their own order history for
the past three years” (a process need). Similarly, the user may state “The system
should check incoming customer orders for inventory availability” (a process need).
An alert analyst will recognize the related information need, “The system should

Requirements Determination 105

3 International Institute of Business Analysis, Guide to Business Analysis Body of Knowledge® (BABOK®), 2nd Ed.

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 105

maintain real-time inventory levels at all warehouses.” All of these requirements are
necessary to fully understand the system that is being developed.

Process models (Chapter 5) are used to explain the relationship of functions/
processes to the system users, how the functions/processes relate to each other, how
data is entered and produced by functions/processes, and how functions/processes
create and use stored data. Process models help clarify the software components
that will be needed to accomplish the functional requirements. In addition, the
functional requirements begin to define the data that must be kept track of in order
to accomplish the user tasks. The data component of the system is defined in the
data model (Chapter 6).

106 Chapter 3 Requirements Determination

Process-oriented A process the system must perform; ■ The system must allow registered customers to review their own
a process the system must do order history for the past three years.

■ The system must check incoming customer orders for inventory
availability.

■ The system should allow students to view a course schedule while
registering for classes.

Information-oriented Information the system must contain ■ The system must retain customer order history for three years.
■ The system must include real-time inventory levels at all warehouses.
■ The system must include budgeted and actual sales and expense

amounts for current year and three previous years.

Functional
Requirement Description Examples

FIGURE 3-1
Functional Requirements

One of the most common mistakes
made by new analysts is to confuse functional and non-
functional requirements. Pretend that you received the fol-
lowing list of requirements for a sales system:

Requirements for Proposed System:
The system should…

1. be accessible to Web users.
2. include the company standard logo and color scheme.
3. restrict access to profitability information.
4. include actual and budgeted cost information.
5. provide management reports.
6. include sales information that is updated at least

daily.

7. have 2-second maximum response time for prede-
fined queries and 10-minute maximum response time
for ad hoc queries.

8. include information from all company subsidiaries.
9. print subsidiary reports in the primary language of

the subsidiary.
10. provide monthly rankings of salesperson performance.

QUESTIONS:
1. Which requirements are functional business require-

ments? Provide two additional examples.
2. Which requirements are nonfunctional business

requirements? What kind of nonfunctional require-
ments are they? Provide two additional examples.

3-1 IDENTIFYING REQUIREMENTSY O U R

T U R N

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 106

User requirements and functional requirements defined in the analysis phase will
flow into the design phase, where they evolve to become more technical, describing how
the system will be implemented. Requirements in the design phase reflect the devel-
oper’s perspective, and they usually are called system requirements. These requirements
focus on describing how to create the software product that will be produced from the
project. More will be said about system requirements in Part 3 of the textbook.

Before we continue, we want to stress that it can be difficult to draw a black-
and-white dividing line between these categories of requirement—and, confusingly,
some companies use the terms interchangeably. The important thing to remember
is that a requirement is a statement of what the system must do, and the focus of
requirements will change over time as the project moves from planning to analysis
to design to implementation. Requirements evolve from broad statements of over-
all business needs from the system to detailed statements of the business capabili-
ties that a system should support to detailed technical statements of the way in
which the capabilities will be implemented in the new system.

The final category of requirements is nonfunctional requirements. The IIBA
defines this group of requirements as “the quality attributes, design, and imple-
mentation constraints, and external interfaces which a product must have.”4

Although the term “nonfunctional” is not very descriptive, this requirement cate-
gory includes important behavioral properties that the system must have, such as
performance and usability. The ability to access the system through a mobile device
would be considered a nonfunctional requirement. Nonfunctional requirements are
primarily used in the design phase when decisions are made about the user inter-
face, the hardware and software, and the system’s underlying architecture. Many of
these requirements will be discovered during conversations with users in the analy-
sis phase, however, and should be recorded as they are discovered.

Figure 3-2 lists different kinds of nonfunctional requirements and examples of
each kind. Notice that the nonfunctional requirements describe a variety of system
characteristics: operational, performance, security, and cultural and political. These
characteristics do not describe business processes or information, but they are very
important in understanding what the final system should be like. For example, the
project team needs to know whether a system must be highly secure, requires sub-
second response time, or has to reach a multilingual customer base. These require-
ments will affect design decisions that will be made in the design phase, particularly
architecture design, so we will revisit them in detail in Chapter 8. The goal at this
point is to identify any major issues. In addition, if the methodology in use includes
developing test plans during analysis, then these requirements will be important in
establishing testing benchmarks that will be needed later.

The Process of Determining Requirements

Both business and IT perspectives are needed to determine requirements during the
analysis phase. Systems analysts may not understand the true business needs of the
users. A recent study by the Standish Group found that the lack of user involvement
is the top reason for IT project failure.5 On the other hand, the business users may

Requirements Determination 107

4 Ibid.
5 Frank Hayes, “Chaos is back,” Computerworld, November 8, 2004.

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 107

108 Chapter 3 Requirements Determination

Operational The physical and technical environments in ■ The system can run on handheld devices.
which the system will operate ■ The system should be able to integrate with the existing

inventory system.
■ The system should be able to work on any Web browser.

Performance The speed, capacity, and reliability of the system ■ Any interaction between the user and the system should
not exceed 2 seconds.

■ The system downloads new status parameters within
5 minutes of a change.

■ The system should be available for use 24 hours per day,
365 days per year.

■ The system supports 300 simultaneous users from
9–11 A.M.; 150 simultaneous users at all other times.

Security Who has authorized access to the system under ■ Only direct managers can see personnel records of staff.
what circumstances ■ Customers can see their order history only during business

hours.
■ The system includes all available safeguards from viruses,

worms, Trojan horses, etc.

Cultural and Political Cultural and political factors and legal ■ The system should be able to distinguish between U.S.
requirements that affect the system currency and currency from other nations.

■ Company policy is to buy computers only
from Dell.

■ Country managers are permitted to authorize custom user
interfaces within their units.

■ Personal information is protected in compliance with the
Data Protection Act.

Source: The Atlantic Systems Guild, http://www.systemsguild.com

Nonfunctional
Requirement Description Examples

FIGURE 3-2
Nonfunctional Requirements

I once worked on a consulting pro-
ject in which my manager created a requirements defini-
tion without listing nonfunctional requirements. The project
was then estimated based on the requirements definition
and sold to the client for $5,000. In my manager’s mind,
the system that we would build for the client would be a
very simple stand-alone system running on current tech-
nology. It shouldn’t take more than a week to analyze,
design, and build.

Unfortunately, the client had other ideas. They
wanted the system to be used by many people in three
different departments, and they wanted the ability for any
number of people to work on the system concurrently. The

technology they had in place was antiquated, but
nonetheless they wanted the system to run effectively on
the existing equipment. Because we didn’t set the project
scope properly by including our assumptions about non-
functional requirements in the requirements definition, we
basically had to do whatever they wanted.

The capabilities they wanted took weeks to design
and program. The project ended up taking four months,
and the final project cost was $250,000. Our company
had to pick up the tab for everything except the agreed
upon $5,000. This was by far the most frustrating project
situation I ever experienced. Barbara Wixom

3-A WHAT CAN HAPPEN IF YOU IGNORE NONFUNCTIONAL REQUIREMENTS

IN ACTION

CONCEPTS

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 108

not be aware of the opportunities that a new technology may offer. It is important
that the team carefully considers the underlying business process and how best to
support that business process with information system technology.

A good analogy is building a house or an apartment. We have all lived in a
house or apartment, and most of us have some understanding of what we would like
in our homes. If we were asked to design a dwelling from scratch, however, it would
be a challenge because we lack appropriate design skills and technical engineering
skills. Likewise, an architect acting alone would probably miss some of our unique
requirements.

Therefore, the most effective approach is to have both businesspeople and
analysts working together to determine requirements. In fact, the analysis phase
involves significant interactions with people who have an interest in the new system
(often called stakeholders). One of the first tasks for the analyst is to identify the pri-
mary sources of requirements, including the project sponsor, project champion(s),
all users of the system (both direct and indirect), and possibly others. It is important
that all user perspectives are included.

The analyst must also consider how best to elicit the requirements from the
stakeholders. There are a variety of elicitation techniques that can be used to
acquire information, including interviews, questionnaires, observation, joint appli-
cation development (JAD), and document analysis. We will discuss these tech-
niques in the next section. The information gathered by these techniques is critically
analyzed and used to craft the requirements definition statement. The analyst works
with the entire project team and the business users to verify, change, and complete
the list of requirements and, if necessary, to prioritize the importance of the require-
ments that are identified. During this process, use cases, process models, and data
models may be used to clarify and define the ideas for the new system. This process
continues throughout the analysis phase, and the requirements definition evolves
over time as new requirements are identified and as the project moves into later
phases of the SDLC.

Beware: The evolution of the requirements definition must be carefully
managed. Keeping the requirements list tight and focused is a key to project suc-
cess. The project team cannot keep adding new items to the requirements defini-
tion or the system will keep growing and growing and never get finished. Instead,
the project team carefully identifies requirements and evaluates which ones fit
within the system scope. When a requirement reflects a real business need, but is
not within the scope of the current system or current release, it should be evalu-
ated in terms of its importance and impact on time and budget. It may be that the
requirement is essential enough to add to the current project, along with appro-
priate adjustments to the project scope, budget, and time frame. We should not
assume that the requirements for the project can never be changed. However, it is
also possible that the requirement might be added to a list of future requirements
or given a low priority. The management of requirements (and system scope) is
one of the hardest parts of managing a project!

The Requirements Definition Statement

The requirements definition statement—usually just called the requirements
definition—is a straightforward text report that simply lists the functional and non-
functional requirements in an outline format. Figure 3-3 shows a sample requirements
definition for Holiday Travel Vehicles, a fictitious recreational vehicle dealership.

Requirements Determination 109

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 109

As shown in Figure 3-3, it is common to number the requirements in a legal
or outline format so that each requirement is clearly identified. It is important that
the requirements be identified with unique numbers so that each requirement can
be easily tracked through the entire development process. For clarity, the require-
ments are typically grouped into functional and nonfunctional groupings. Then,

110 Chapter 3 Requirements Determination

 Nonfunctional Requirements

 1. Operational

 1.1 The system should run on tablet PCs to be used by salespeople.
 1.2 The system should interface with the shop management system.
 1.3 The system should connect to printers wirelessly.

 2. Performance
 2.1 The system should support a sales staff of 15 salespeople.
 2.2 The system should be updated with pending offers on vehicles every 15 minutes.

 3. Security

 3.1 No salesperson can access any other salesperson's customer contacts.
 3.2 Only the owner and sales manager may approve customer offers.
 3.3 Use of each tablet PC should be restricted to the salesperson to whom it is assigned.

 4. Cultural and Political

 4.1 Company policy says that all computer equipment is purchased from Dell.
 4.2 Customer personal information is protected in compliance with the Data Protection Act.
 4.3 The system will conform to the state's "lemon law."

 Functional Requirements

 1. New Vehicle Management

 1.1 The system will allow managers to view the current new vehicle inventory.
 1.2 The system will allow the new vehicle manager to place orders for new vehicles.
 1.3 The system will record the addition of new vehicles to inventory when they are received
 from the manufacturers.

2. Vehicle Sales Management

 2.1 The system will enable salespersons to create a customer offer.
 2.2 The system will allow salespeople to know whether an offer is pending on a specific vehicle.
 2.3 The system will enable managers to record approval of a customer offer.
 2.4 The system will prepare a sales contract.
 2.5 The system will prepare a shop work order based on customer requested dealer options.
 2.6 The system will record a customer deposit.
 2.7 The system will record a customer payment.
 2.8 The system will create a record of the customer's vehicle purchase.

3. Used Vehicle Management

 3.1 The system will record information on a customer trade-in vehicle ... etc.

FIGURE 3-3
Sample Requirements Definition

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 110

within each of those groups, they are classified further by the type of requirement
or by business area.

Sometimes, requirements are prioritized on the requirements definition state-
ment. They can be ranked as having “high,” “medium,” or “low” importance in the
new system, or they can be labeled with the version of the system that will address
the requirement (e.g., release 1, release 2, release 3). This practice is particularly
important with RAD methodologies that deliver requirements in batches by devel-
oping incremental versions of the system.

The most obvious purpose of the requirements definition is to provide a clear
statement of what the new system should do in order to achieve the system vision
described in the system request. The use cases, process models, and data models
provide additional explanatory content in different formats. A critically important
purpose of the requirements definition, however, is to define the scope of the sys-
tem. The document describes to the analysts exactly what the final system needs to
do. In addition, it serves to establish the users’ expectations for the system. If and
when discrepancies or misunderstandings arise, the document serves as a resource
for clarification.

REQUIREMENTS ELICITATION TECHNIQUES

An analyst is very much like a detective (and business users sometimes are like elu-
sive suspects). He or she knows that there is a problem to be solved and therefore
must look for clues that uncover the solution. Unfortunately, the clues are not
always obvious (and often are missed), so the analyst needs to notice details, talk
with witnesses, and follow leads, just as Sherlock Holmes would have done. The
best analysts will thoroughly search for requirements using a variety of techniques
and make sure that the current business processes and the needs for the new system
are well understood before moving into design. You don’t want to discover later that
you have key requirements wrong—surprises like this late in the SDLC can cause
all kinds of problems.

Requirements Elicitation in Practice

Before discussing the five requirements elicitation techniques in detail, a few prac-
tical tips are in order. First, the analyst should recognize that important side effects
of the requirements definition process include building political support for the
project and establishing trust and rapport between the project team and the ulti-
mate users of the system. Every contact and interaction between the analyst and a
potential business user or manager is an opportunity to generate interest, enthusi-
asm, and commitment to the project. Therefore, the analyst should be prepared to
make good use of these opportunities as they arise during the requirements
definition process.

Second, the analyst should carefully determine who is included in the
requirements definition process. The choice to include (or exclude) someone is
significant; involving someone in the process implies that the analyst views that
person as an important resource and values his or her opinions. You must include
all of the key stakeholders (the people who can affect the system or who will be
affected by the system). This might include managers, employees, staff members,

Requirements Elicitation Techniques 111

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 111

and even some customers and suppliers. Also, be sensitive to the fact that some
people may have significant influence within the organization even if they do not
rank high in the formal organizational hierarchy. If you do not involve a key per-
son, that individual may feel slighted, causing problems during implementation
(e.g., saying “I could have told them this might happen, but they didn’t ask me!”).

Finally, do everything possible to respect the time commitment that you are
asking the participants to make. The best way to do this is to be fully prepared and
to make good use of all the types of requirements elicitation techniques. Although,
as we will see, interviewing is the most commonly used technique, other indirect
methods may help the analyst develop a basic understanding of the business domain
so that the direct techniques are more productive. In general, a useful strategy for
the analyst to employ is to begin requirements gathering by interviewing senior
managers to gain an understanding of the project and get the “big picture.” These
preliminary interviews can then be followed by document analysis and, possibly,
observation of business processes to learn more about the business domain, the
vocabulary, and the as-is system. More interviews may then follow to collect the
rest of the information needed to understand the as-is system.

In our experience, identifying improvements is most commonly done through
JAD sessions because these sessions enable the users and key stakeholders to work
together and create a shared understanding of the possibilities for the to-be system.
Occasionally, these JAD sessions are followed by questionnaires sent to a much
larger group of users or potential users to get a broad range of opinions. The con-
cept for the to-be system is frequently developed through interviews with senior
managers, followed by JAD sessions with users of all levels, to make sure that the
key requirements of the new system are well understood.

In this section, we focus on the five most commonly used requirements
elicitation techniques: interviews, JAD sessions, questionnaires, document analy-
sis, and observation.

Interviews

The interview is the most commonly used requirements elicitation technique. After
all, it is natural—usually, if you need to know something, you ask someone. In gen-
eral, interviews are conducted one on one (one interviewer and one interviewee),
but sometimes, due to time constraints, several people are interviewed at the same
time. There are five basic steps to the interview process: selecting interviewees,
designing interview questions, preparing for the interview, conducting the inter-
view, and postinterview follow-up.6

Selecting Interviewees An interview schedule should be created, listing who will
be interviewed, the purpose of the interview, and where and when it will take place.
(See Figure 3-4.) The schedule can be an informal list that is used to help set up
meeting times or a formal list that is incorporated into the work plan. The people
who appear on the interview schedule are selected on the basis of the analyst’s
information needs. The project sponsor, key business users, and other members of
the project team can help the analyst determine who in the organization can best
provide important information about requirements. These people are listed on the
interview schedule in the order in which they should be interviewed.

112 Chapter 3 Requirements Determination

6 A good book on interviewing is Brian James, The Systems Analysis Interview, Manchester: NCC
Blackwell, 1989.

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 112

People at different levels of the organization will have different viewpoints on
the system, so it is important to include both managers who manage the processes
and staff who actually perform the processes to gain both high-level and low-level
perspectives on an issue. Also, the kinds of interview subjects that you need may
change over time. For example, at the start of the project the analyst has a limited
understanding of the as-is business process. It is common to begin by interviewing
one or two senior managers to get a strategic view and then move to mid-level man-
agers who can provide broad, overarching information about the business process
and the expected role of the system being developed. Once the analyst has a good
understanding of the big picture, lower-level managers and staff members can fill
in the exact details of how the process works. Like most other things about systems
analysis, this is an iterative process—starting with senior managers, moving to mid-
level managers, then staff members, back to mid-level managers, and so on,
depending upon what information is needed along the way.

It is quite common for the list of interviewees to grow, often by 50%–75%.
As you interview people, you likely will identify more information that is needed
and additional people who can provide the information.

Andria McClellan Director, Accounting Strategic vision for new Mon, March 1
accounting system 8:00–10:00 A.M.

Jennifer Draper Manager, Accounts Current problems with Mon, March 1
Receivable accounts receivable 2:00–3:15 P.M.

process; future goals

Mark Goodin Manager, Accounts Current problems with Mon, March 1
Payable accounts payable 4:00–5:15 P.M.

process; future goals

Anne Asher Supervisor, Data Entry Accounts receivable and Wed, March 3
payable processes 10:00–11:00 A.M.

Fernando Merce Data Entry Clerk Accounts receivable and Wed, March 3
payable processes 1:00–3:00 P.M.

Purpose of
Name Position Interview Meeting

FIGURE 3-4
Sample Interview Schedule

Requirements Elicitation Techniques 113

In 1990, I led a consulting team for a
major development project for the U.S. Army. The goal was
to replace eight existing systems used on virtually every
Army base across the United States. The as-is process and
data models for these systems had been built, and our job
was to identify improvement opportunities and develop
to-be process models for each of the eight systems.

For the first system, we selected a group of mid-level
managers (captains and majors) recommended by their
commanders as being the experts in the system under

construction. These individuals were the first and sec-
ond line managers of the business function. The indi-
viduals were expert at managing the process, but did
not know the exact details of how the process worked.
The resulting to-be process model was very general and
nonspecific. Alan Dennis

QUESTION:
Suppose you were in charge of the project. Create an

interview schedule for the remaining seven projects.

3-B SELECTING THE WRONG PEOPLE

IN ACTION

CONCEPTS

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 113

114 Chapter 3 Requirements Determination

Closed-Ended Questions • How many telephone orders are received per day?

• How do customers place orders?

• What information is missing from the monthly sales report?

Open-Ended Questions • What do you think about the way invoices are currently
processed?

• What are some of the problems you face on a daily basis?

• What are some of the improvements you would like to see in the
way invoices are processed?

Probing Questions • Why?

• Can you give me an example?

• Can you explain that in a bit more detail?

Types of Questions Examples

FIGURE 3-5
Three Types of Questions

Designing Interview Questions There are three types of interview questions:
closed-ended questions, open-ended questions, and probing questions. Closed-
ended questions require a specific answer. You can think of them as being similar to
multiple choice or arithmetic questions on an exam. (See Figure 3-5.) Closed-ended
questions are used when the analyst is looking for specific, precise information
(e.g., how many credit card requests are received per day). In general, precise ques-
tions are best. For example, rather than asking “Do you handle a lot of requests?”
it is better to ask “How many requests do you process per day?”

Closed-ended questions enable analysts to control the interview and obtain
the information they need. However, these types of questions don’t uncover why the
answer is the way it is, nor do they uncover information that the interviewer does
not think to ask ahead of time.

Open-ended questions are those that leave room for elaboration on the part of
the interviewee. They are similar in many ways to essay questions that you might find
on an exam. (See Figure 3-5 for examples.) Open-ended questions are designed to
gather rich information and give the interviewee more control over the information
that is revealed during the interview. Sometimes the subjects the interviewee chooses
to discuss uncover information that is just as important as the answer (e.g., if the inter-
viewee talks only about other departments when asked for problems, it may suggest
that he or she is reluctant to admit his or her own department’s problems).

The third type of question is the probing question. Probing questions follow
up on what has just been discussed in order for the interviewer to learn more, and
they often are used when the interviewer is unclear about an interviewee’s answer.
They encourage the interviewee to expand on or to confirm information from a pre-
vious response, and they are a signal that the interviewer is listening and interested
in the topic under discussion. Many beginning analysts are reluctant to use probing
questions because they are afraid that the interviewee might be offended at being
challenged or because they believe it shows that they didn’t understand what the
interviewee said. When done politely, probing questions can be a powerful tool in
requirements discovery.

In general, you should not ask questions about information that is readily
available from other sources. For example, rather than asking what information is
used to perform to a task, it is simpler to show the interviewee a form or report (see
document analysis later) and ask what information on it is used. This helps focus

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 114

Requirements Elicitation Techniques 115

High-level: very general How
can

order
processing

be improved?

Medium-level: moderately How can we
specific reduce the number

of times that customers
return items they’ve ordered?

Low-level: very specific How can we reduce the number
of errors in order processing

(e.g., shipping the wrong products)?FIGURE 3-6
Top-Down and Bottom-Up Questioning
Strategies

Bottom-Up

Top-Down

the interviewee on the task and saves time, because he or she does not need to
describe the information in detail—he or she just needs to point it out on the form
or report.

Your interview questions should anticipate the type of information the inter-
viewee is likely to know. Managers are often somewhat removed from the details of
daily business processes and so might be unable to answer questions about them,
whereas lower-level staff members could readily respond. Conversely, lower-level
employees may not be able to answer broad, policy-oriented questions, while man-
agers could. Since no one wants to appear ignorant, avoid confounding your inter-
viewees with questions outside their areas of knowledge.

No type of question is better than another, and usually a combination of ques-
tions is used during an interview. At the initial stage of an IS development project
the as-is process can be unclear, so the interview process begins with unstructured
interviews, interviews that seek a broad and roughly defined set of information. In
this case, the interviewer has a general sense of the information needed, but few
closed-ended questions to ask. These are the most challenging interviews to con-
duct because they require the interviewer to ask open-ended questions and probe
for important information “on the fly.”

As the project progresses, the analyst comes to understand the business
process much better, and he or she needs very specific information about how busi-
ness processes are performed (e.g., exactly how a customer credit request is
approved). At this time, the analyst conducts structured interviews in which specific
sets of questions are developed prior to the interviews. There usually are more
closed-ended questions in a structured interview than in the unstructured approach.

No matter what kind of interview is being conducted, interview questions
must be organized into a logical sequence so that the interview flows well. For
example, when trying to gather information about the current business process, the
analyst will find it useful to move in logical order through the process or from the
most important issues to the least important.

There are two fundamental approaches to organizing the interview questions:
top-down or bottom-up; see Figure 3-6. With the top-down interview, the inter-
viewer starts with broad, general issues and gradually works towards more specific

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 115

ones. With the bottom-up interview, the interviewer starts with very specific ques-
tions and moves to broad questions. In practice, analysts mix the two approaches,
starting with broad general issues, moving to specific questions, and then back to
general issues.

The top-down approach is an appropriate strategy for most interviews. (It is
certainly the most common approach.) The top-down approach enables the inter-
viewee to become accustomed to the topic before he or she needs to provide
specifics. It also enables the interviewer to understand the issues before moving to
the details, because the interviewer may not have sufficient information at the start
of the interview to ask very specific questions. Perhaps most importantly, the top-
down approach enables the interviewee to raise a set of big-picture issues before
becoming enmeshed in details, so the interviewer is less likely to miss important
issues.

One case in which the bottom-up strategy may be preferred is when the analyst
already has gathered a lot of information about issues and just needs to fill in some
holes with details. Or, bottom-up may be appropriate if lower-level staff members
feel threatened or are unable to answer high-level questions. For example, “How
can we improve customer service?” may be too broad a question for a customer
service clerk, whereas a specific question is readily answerable (e.g., “How can we
speed up customer returns?”). In any event, all interviews should begin with non-
controversial questions first and then gradually move into more contentious issues
after the interviewer has developed some rapport with the interviewee.

Preparing for the Interview It is important to prepare for the interview in the same
way that you would prepare to give a presentation. You should have a general inter-
view plan which lists the questions that you will ask in the appropriate order; antic-
ipates possible answers and provides how you will follow up with them; and
identifies segues between related topics. Confirm the areas in which the interviewee
has knowledge so you do not ask questions that he or she cannot answer. Review
the topic areas, the questions, and the interview plan, and clearly decide which ones
have the greatest priority in case you run out of time.

In general, structured interviews with closed-ended questions take more time
to prepare than unstructured interviews. So, some beginning analysts prefer
unstructured interviews, thinking that they can “wing it.” This is very dangerous
and often counterproductive, because any information not gathered in the first inter-
view would have to be obtained by follow-up efforts, and most people do not like
to be interviewed repeatedly about the same issues.

Be sure to prepare the interviewee as well. When you schedule the interview,
inform the interviewee of the reason for the interview and the areas you will be dis-
cussing far enough in advance so that he or she has time to think about the issues
and organize his or her thoughts. This is particularly important when you are an out-
sider to the organization and for interviewing lower-level employees who often are
not asked for their opinions and who may be uncertain about why you are inter-
viewing them.

Conducting the Interview When you start the interview, the first goal is to build
rapport with the interviewee so that he or she trusts you and is willing to tell you
the whole truth, not just give the answers that he or she thinks you want. You
should appear to be professional and an unbiased, independent seeker of informa-
tion. The interview should start with an explanation of why you are there and why

116 Chapter 3 Requirements Determination

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 116

you have chosen to interview the person, and then move into your planned inter-
view questions.

It is critical to carefully record all the information that the interviewee pro-
vides. In our experience, the best approach is to take careful notes—write down
everything the interviewee says, even if it does not appear immediately relevant.
Don’t be afraid to ask the person to slow down or to pause while you write,
because this is a clear indication that the interviewee’s information is important
to you. One potentially controversial issue is whether or not to tape-record the
interview. Recording ensures that you do not miss important points, but it can be
intimidating for the interviewee. Most organizations have policies or generally
accepted practices about the recording of interviews, so find out what they are
before you start an interview. If you are worried about missing information and
cannot tape the interview, then bring along a second person to take detailed
notes.

As the interview progresses, it is important that you understand the issues that
are discussed. If you do not understand something, be sure to ask. Don’t be afraid
to ask “dumb questions,” because the only thing worse than appearing “dumb” is to
be “dumb” by not understanding something that you could have cleared up by ques-
tioning. If you don’t understand something during the interview, you certainly
won’t understand it afterward. Try to recognize and define jargon, and be sure to
clarify jargon you do not understand. One good strategy to increase your under-
standing during an interview is to periodically summarize the key points that the
interviewee is communicating. This avoids misunderstandings and also demon-
strates that you are listening.

Finally, be sure to separate facts from opinion. The interviewee may say, for
example, “We process too many credit card requests.” This is an opinion, and it is
useful to follow this up with a probing question requesting support for the statement
(e.g., “Oh, how many do you process in a day?”). It is helpful to check the facts
because any differences between the facts and the interviewee’s opinions can point
out key areas for improvement. Suppose that the interviewee complains about a
high or increasing number of errors, but the logs show that errors have been
decreasing. This suggests that errors are viewed as a very important problem that
should be addressed by the new system, even if they are declining.

As the interview draws to a close, be sure to give the interviewee time to ask
questions or provide information that he or she thinks is important but was not part
of your interview plan. In most cases, the interviewee will have no additional con-
cerns or information, but in some cases this will lead to unanticipated, but impor-
tant information. Likewise, it can be useful to ask the interviewee if there are other
people who should be interviewed. Make sure that the interview ends on time. (If
necessary, omit some topics or plan to schedule another interview.)

As a last step in the interview, briefly explain what will happen next. (See the
next section.) You don’t want to prematurely promise certain features in the new
system or a specific delivery date, but you do want to reassure the interviewee that
his or her time was well spent and very helpful to the project.

Beginning systems analysts may naively think that conducting an interview
is as easy as conversing with a friend. Unfortunately, this is almost never true.
Interviewees often are not able or willing to hand over the needed information in
a neat, organized fashion. In some cases, they may not want to share what they
know at all. Analysts should hone their interpersonal skills to improve their inter-
viewing success. (See Practical Tip 3-1.)

Requirements Elicitation Techniques 117

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 117

Interpersonal skills are those that
enable you to develop rapport with others, and they are
very important for interviewing. They help you to com-
municate with others effectively. Some people develop
good interpersonal skills at an early age; they simply
seem to know how to communicate and interact with
others. Other people are less “lucky” and need to work
hard to develop their skills.

Interpersonal skills, like most skills, can be learned.
Here are some tips:

• Don’t worry, be happy. Happy people radiate confi-
dence and project their feelings on others. Try inter-
viewing someone while smiling and then interviewing
someone else while frowning and see what happens!

• Pay attention. Pay attention to what the other person is
saying (which is harder than you might think). See how
many times you catch yourself with your mind on some-
thing other than the conversation at hand.

• Summarize key points. At the end of each major theme
or idea that someone explains, you should repeat the

key points back to the speaker (e.g., “Let me make
sure I understand. The key issues are …”). This demon-
strates that you consider the information important—
and also forces you to pay attention. (You can’t repeat
what you didn’t hear.)

• Be succinct. When you speak, be succinct. The goal in
interviewing (and in much of life) is to learn, not to
impress. The more you speak, the less time you give to
others.

• Be honest. Answer all questions truthfully, and if you
don’t know the answer, say so.

• Watch body language (yours and theirs). The way a
person sits or stands conveys much information. In gen-
eral, a person who is interested in what you are say-
ing sits or leans forward, makes eye contact, and often
touches his or her face. A person leaning away from
you or with an arm over the back of a chair is disin-
terested. Crossed arms indicate defensiveness or
uncertainty, while “steepling” (sitting with hands raised
in front of the body with fingertips touching) indicates
a feeling of superiority.

3-1 DEVELOPING INTERPERSONAL SKILLS

T I P

PRACTICAL

118 Chapter 3 Requirements Determination

Early in my consulting career I was
sent to a client organization with the goal of interview-
ing the only person in the organization who knew how
the accounts receivable system worked, and developing
documentation for that system (nonexistent at the time).
The interviewee was on time, polite, and told me
absolutely nothing of value about the accounts receiv-
able system, despite my best efforts over several inter-
view sessions. Eventually, my manager called me off this

project, and our attempt to document this system was
abandoned. Roberta Roth

QUESTIONS:
1. Why do you suppose the interviewee was so unco-

operative?
2. Can you think of any ways to avoid this failed out-

come?

3-C THE RELUCTANT INTERVIEWEE

IN ACTION

CONCEPTS

Post-interview Follow-up After the interview is over, the analyst needs to prepare
an interview report that describes the information from the interview (Figure 3-7).
The report contains interview notes, information that was collected over the course
of the interview and is summarized in a useful format. In general, the interview
report should be written within 48 hours of the interview, because the longer you
wait, the more likely you are to forget information.

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 118

Often, the interview report is sent to the interviewee with a request to read it
and inform the analyst of clarifications or updates. Make sure the interviewee is con-
vinced that you genuinely want his or her corrections to the report. Usually, there are
few changes, but the need for any significant changes suggests that a second interview
will be required. Never distribute someone’s information without prior approval.

Joint Application Development (JAD)

Joint application development (or JAD as it is more commonly known) is an infor-
mation gathering technique that allows the project team, users, and management to
work together to identify requirements for the system. IBM developed the JAD tech-
nique in the late 1970s, and it is often the most useful method for collecting infor-
mation from users.7 Capers Jones claims that JAD can reduce scope creep by 50%,
and it prevents the requirements for a system from being too specific or too vague,
both of which can cause trouble during later stages of the SDLC.8 JAD is a struc-
tured process in which 10 to 20 users meet under the direction of a facilitator skilled
in JAD techniques. The facilitator is a person who sets the meeting agenda and
guides the discussion, but does not join in the discussion as a participant. He or
she does not provide ideas or opinions on the topics under discussion and remains

Interview Notes Approved by: Linda Estey

Person Interviewed: Linda Estey,

Director, Human Resources

Interviewer: Barbara Wixom

Purpose of Interview:

• Understand reports produced for Human Resources by the current system.
• Determine information requirements for future system.

Summary of Interview:
• Sample reports of all current HR reports are attached to this report. The information that is not used

and missing information are noted on the reports.
• Two biggest problems with the current system are:

1. The data are too old. (The HR Department needs information within 2 days of month end;
currently information is provided to them after a 3-week delay.)

2. The data are of poor quality. (Often, reports must be reconciled with the HR departmental
database.)

• The most common data errors found in the current system include incorrect job-level information
and missing salary information.

Open Items:
• Get current employee roster report from Mary Skudrna (extension 4355).
• Verify calculations used to determine vacation time with Mary Skudrna.
• Schedule interview with Jim Wack (extension 2337) regarding the reasons for data quality problems.

Detailed Notes: See attached transcript.
FIGURE 3-7
Interview Report

Requirements Elicitation Techniques 119

7 More information on JAD can be found in J. Wood and D. Silver, Joint Application Development, New York:
John Wiley & Sons, 1989; and Alan Cline, “Joint Application Development for Requirements Collection and
Management,” http://www.carolla.com/wp-jad.htm.
8 See Kevin Strehlo, “Catching up with the Jones and ‘Requirement’ Creep,” InfoWorld, July 29, 1996; and
Kevin Strehlo, “The Makings of a Happy Customer: Specifying Project X,” Infoworld, Nov 11, 1996.

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 119

neutral during the session. The facilitator must be an expert in both group process
techniques and systems analysis and design techniques. One or two scribes assist the
facilitator by recording notes, making copies, and so on. Often, the scribes will use
computers and CASE tools to record information as the JAD session proceeds.

The JAD group meets for several hours, several days, or several weeks until all
of the issues have been discussed and the needed information is collected. Most JAD
sessions take place in a specially prepared meeting room, away from the partici-
pants’ offices, so that they are not interrupted. The meeting room is usually arranged
in a U shape so that all participants can easily see each other. (See Figure 3-8.) At
the front of the room (the open part of the “U”), there is a whiteboard, flip chart
and/or overhead projector for use by the facilitator, who leads the discussion.

One problem with JAD is that it suffers from the traditional problems associ-
ated with groups: Sometimes people are reluctant to challenge the opinions of others

120 Chapter 3 Requirements Determination

FIGURE 3-8
Joint Application Development Meeting Room

Flip chart sheets

Whiteboard Screen

Computers

Projectors Printer

Name cards

Name cards

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 120

Requirements Elicitation Techniques 121

9 For more information on e-JAD, see A. R. Dennis, G. S. Hayes, and R. M. Daniels, “Business Process
Modeling with Groupware,” Journal of Management Information Systems, 1999, 15(4); 115–142.

Interviewing is not as simple as it first
appears. Select two people from class to go to the front
of the room to demonstrate an interview. (This also can
be done in groups.) Have one person be the interviewer,
and the other the interviewee. The interviewer should
conduct a 5-minute interview regarding the school course
registration system. Gather information about the existing
system and how the system can be improved. If there is
time, repeat with another pair.

QUESTIONS:
1. Describe the body language of the interview pair.
2. What kind of interview was conducted?
3. What kinds of questions were asked?
4. What was done well? How could the interview be

improved?

3-2 INTERVIEW PRACTICEY O U R

T U R N

(particularly their boss), a few people often dominate the discussion, and not every-
one participates. In a 15-member group, for example, if everyone participates
equally, then each person can talk for only 4 minutes each hour and must listen for
the remaining 56 minutes—not a very efficient way to collect information.

Electronic JAD, or e-JAD, attempts to overcome these problems by the use of
groupware. In an e-JAD meeting room, each participant uses special software on a
networked computer to anonymously submit ideas, view all ideas generated by the
group, and rate and rank ideas through voting. The facilitator uses the electronic tools
of the e-JAD system to guide the group process, maintaining anonymity and enabling
the group to focus on each idea’s merits and not the power or rank of the person who
contributed the idea. In this way, all participants can contribute at the same time,
without fear of reprisal from people with differing opinions. Initial research suggests
that e-JAD can reduce the time required to run JAD sessions by 50%–80%.9

Selecting Participants Selecting JAD participants is done in the same basic way as
selecting interview participants. Participants are selected on the basis of informa-
tion they can contribute, to provide a broad mix of organizational levels, and to
build political support for the new system. The need for all JAD participants to be
away from their offices at the same time can be a major problem. The office may
need to be closed or run with a skeleton staff until the JAD sessions are complete.

Ideally, the participants who are released from regular duties to attend the JAD
sessions should be the very best people in that business unit. However, without strong
management support, JAD sessions can fail, because those selected to attend the JAD
session are people who are less likely to be missed (i.e., the least competent people).

The facilitator should be someone who is an expert in JAD or e-JAD tech-
niques and, ideally, someone who has experience with the business under discus-
sion. In many cases, the JAD facilitator is a consultant external to the organization
because the organization may not have a regular day-to-day need for JAD or e-JAD
expertise. Developing and maintaining this expertise in-house can be expensive.

Designing the JAD Session JAD sessions can run from as little as a half day to sev-
eral weeks, depending upon the size and scope of the project. In our experience, most
JAD sessions tend to last 5 to 10 days spread over a 3-week period. Most e-JAD

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 121

sessions tend to last 1 to 4 days in a 1-week period. JAD and e-JAD sessions usu-
ally move beyond the collection of information into producing analysis deliver-
ables. For example, the users and the analysts collectively can create use cases,
process models, or the requirements definition.

As with interviewing, JAD success depends upon a careful plan. JAD sessions
usually are designed and structured along the same principles as interviews. Most
JAD sessions are designed to collect specific information from users, and this
requires the development of a set of questions prior to the meeting. A difference
between JAD and interviewing is that all JAD sessions are structured—they must
be carefully planned. In general, closed-ended questions are seldom used, because
they do not spark the open and frank discussion that is typical of JAD. In our expe-
rience, it is better to proceed top-down in JAD sessions when gathering informa-
tion. Typically, 30 minutes is allocated to each separate agenda item, and frequent
breaks are scheduled throughout the day because participants tire easily.

Preparing for the JAD Session As with interviewing, it is important to prepare the
analysts and participants for the JAD session. Because the sessions can go beyond the
depth of a typical interview and usually are conducted off-site, participants can be
more concerned about how to prepare. It is important that the participants understand
what is expected of them. If the goal of the JAD session, for example, is to develop an
understanding of the current system, then participants can bring procedure manuals
and documents with them. If the goal is to identify improvements for a system, then
they can think about how they would improve the system prior to the JAD session.

Conducting the JAD Session Most JAD sessions try to follow a formal agenda, and
most have formal ground rules that define appropriate behavior. Common ground
rules include following the schedule, respecting others’ opinions, accepting dis-
agreement, and ensuring that only one person talks at a time.

The role of the JAD facilitator can be challenging. Many participants come to
the JAD session with strong feelings about the system being discussed. Channeling
these feelings so that the session moves forward in a positive direction and getting
participants to recognize and accept—but not necessarily agree on—opinions and
situations different from their own requires significant expertise in systems analy-
sis and design, JAD, and interpersonal skills. Few systems analysts attempt to facil-
itate JAD sessions without being trained in JAD techniques, and most apprentice
with a skilled JAD facilitator before they attempt to lead their first session.

The JAD facilitator performs three key functions. First, he or she ensures that
the group sticks to the agenda. The only reason to digress from the agenda is when it
becomes clear to the facilitator, project leader, and project sponsor that the JAD ses-
sion has produced some new information that is unexpected and requires the JAD ses-
sion (and perhaps the project) to move in a new direction. When participants attempt
to divert the discussion away from the agenda, the facilitator must be firm, but polite,
in leading the discussion back to the agenda and getting the group back on track.

Second, the facilitator must help the group understand the technical terms and
jargon that surround the system development process and help the participants
understand the specific analysis techniques used. Participants are experts in their
business area, but they probably are not experts in systems analysis. The facilitator
must therefore minimize the learning required and teach participants how to effec-
tively provide the right information.

Third, the facilitator records the group’s input on a public display area, which can
be a whiteboard, flip chart, or computer display. He or she structures the information

122 Chapter 3 Requirements Determination

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 122

that the group provides and helps the group recognize key issues and important solu-
tions. Under no circumstance should the facilitator insert his or her opinions into the
discussion. The facilitator must remain neutral at all times and simply help the group
through the process. The moment the facilitator offers an opinion on an issue, the
group will no longer see him or her as a neutral party, but rather as someone who
could be attempting to sway the group into some predetermined solution.

However, this does not mean that the facilitator should not try to help the group
resolve issues. For example, if two items appear to be the same to the facilitator, the
facilitator should not say, “I think these may be similar.” Instead, the facilitator
should ask, “Are these similar?” If the group decides that they are, the facilitator can
combine them and move on. However, if the group decides that they are not simi-
lar (despite what the facilitator believes), the facilitator should accept the decision
and move on. The group is always right, and the facilitator has no opinion.

It is common for the JAD participants to make use of a number of tools during
the JAD session in order to fully define the new system. Use cases may be created to
describe how the users will interact with the new system. Prototypes may be created
to more fully understand the user interface or navigation through the system. Process
models can be constructed to understand the software that will be developed, while a
data model can be used to describe the data that will be captured and maintained. The
facilitator and the analysts on the project team should use every tool at their disposal
to help the participants clarify and define their needs for the new system.

Post-JAD Follow-up As with interviews, a JAD post-session report is prepared and
circulated among session attendees. The post-session report is essentially the same
as the interview report in Figure 3-7. Since the JAD sessions are longer and provide
more information, it usually takes a week or two after the JAD session before the
report is complete.

Questionnaires

A questionnaire is a set of written questions for obtaining information from indi-
viduals. Questionnaires often are used when there is a large number of people from
whom information and opinions are needed. In our experience, questionnaires are
commonly used for systems intended for use outside of the organization (e.g., by
customers or vendors) or for systems with business users spread across many geo-
graphic locations. Most people automatically think of paper when they think of
questionnaires, but today more questionnaires are being distributed in electronic
form, either via e-mail or on the Web. Electronic distribution can save a significant
amount of money, compared with distributing paper questionnaires.

Requirements Elicitation Techniques 123

Organize yourselves into groups of
four to seven people, and pick one person in each group
to be the JAD facilitator. Using a blackboard, white-
board, or flip chart, gather information about how the
group performs some process (e.g., working on a class

assignment, making a sandwich, paying bills, getting to
class). How did the JAD session go? Based on your expe-
rience, what are some pros and cons of using JAD in a
real organization?

3-3 JAD PRACTICEY O U R

T U R N

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 123

Selecting Participants As with interviews and JAD sessions, the first step is to
select the individuals to whom the questionnaire will be sent. However, it is not
usual to select every person who could provide useful information. The standard
approach is to select a sample, or subset, of people who are representative of the
entire group. Sampling guidelines are discussed in most statistics books, and most
business schools include courses that cover the topic, so we will not discuss it here.
The important point in selecting a sample, however, is to realize that not everyone
who receives a questionnaire will actually complete it. On average, only 30%–50%
of paper and e-mail questionnaires are returned. Response rates for Web-based
questionnaires tend to be significantly lower (often, only 5%–30%).

124 Chapter 3 Requirements Determination

I have run more than a hundred JAD
sessions and have learned several standard “facilitator
tricks.” Here are some common problems and some ways
to deal with them.

• Reducing domination. The facilitator should ensure that
no one person dominates the group discussion. The
only way to deal with someone who dominates is head
on. During a break, approach the person, thank him
or her for their insightful comments, and ask them to
help you make sure that others also participate.

• Encouraging noncontributors. Drawing out people
who have participated very little is challenging
because you want to bring them into the conversation
so that they will contribute again. The best approach is
to ask a direct factual question that you are certain
they can answer. And it helps to ask the question using
some repetition to give them time to think. For example
“Pat, I know you’ve worked shipping orders a long
time. You’ve probably been in the Shipping Depart-
ment longer than anyone else. Could you help us
understand exactly what happens when an order is
received in Shipping?”

• Side discussions. Sometimes participants engage in
side conversations and fail to pay attention to the
group. The easiest solution is simply to walk close to
the people and continue to facilitate right in front of
them. Few people will continue a side conversion
when you are two feet from them and the entire
group’s attention is on you and them.

• Agenda merry-go-round. The merry-go-round occurs
when a group member keeps returning to the same
issue every few minutes and won’t let go. One solution
is to let the person have five minutes to ramble on
about the issue while you carefully write down every
point on a flip chart or computer file. This flip chart or
file is then posted conspicuously on the wall. When the

person brings up the issue again, you interrupt them,
walk to the paper and ask them what to add. If they
mention something already on the list, you quickly
interrupt, point out that it is there, and ask what other
information to add. Don’t let them repeat the same
point, but write any new information.

• Violent agreement. Some of the worst disagreements
occur when participants really agree on the issues but
don’t realize that they agree because they are using dif-
ferent terms. An example is arguing whether a glass is
half empty or half full; they agree on the facts, but can’t
agree on the words. In this case, the facilitator has to
translate the terms into different words and find common
ground so the parties recognize that they really agree.

• Unresolved conflict. In some cases, participants don’t
agree and can’t understand how to determine what alter-
natives are better. You can help by structuring the issue.
Ask for criteria by which the group will identify a good
alternative (e.g., “Suppose this idea really did improve
customer service. How would I recognize the improved
customer service?”). Then once you have a list of crite-
ria, ask the group to assess the alternatives using them.

• True conflict. Sometimes, despite every attempt, partic-
ipants just can’t agree on an issue. The solution is to
postpone the discussion and move on. Document the
issue as an “open issue” and list it prominently on a
flip chart. Have the group return to the issue hours
later. Often the issue will resolve itself by then and you
haven’t wasted time on it. If the issue cannot be
resolved later, move it to the list of issues to be decided
by the project sponsor or some other more senior mem-
ber of management.

• Use humor. Humor is one of the most powerful tools a
facilitator has and thus must be used judiciously. The
best JAD humor is always in context; never tell jokes but
take the opportunity to find the humor in the situation.
Alan Dennis

3-2 MANAGING PROBLEMS IN JAD SESSIONS

T I P

PRACTICAL

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 124

Designing the Questionnaire Developing good questions is critical for questionnaires
because the information on a questionnaire cannot be immediately clarified for a con-
fused respondent. Questions on questionnaires must be very clearly written and must
leave little room for misunderstanding; therefore, closed-ended questions tend to be
most commonly used. Questions must enable the analyst to clearly separate facts from
opinions. Opinion questions often ask the respondent the extent to which they agree or
disagree (e.g., “Are network problems common?”), while factual questions seek more
precise values (e.g., “How often does a network problem occur: once an hour, once a
day, or once a week?”). See Figure 3-9 for guidelines on questionnaire design.

Perhaps the most obvious issue—but one that is sometimes overlooked—is to
have a clear understanding of how the information collected from the questionnaire
will be analyzed and used. You must address this issue before you distribute the
questionnaire, because it is too late afterward.

Questions should be relatively consistent in style so that the respondent
does not have to read instructions for each question before answering it. It is gen-
erally a good practice to group related questions together to make them simpler
to answer. Some experts suggest that questionnaires should start with questions
important to respondents, so that the questionnaire immediately grabs their inter-
est and induces them to answer it. Perhaps the most important step is to have sev-
eral colleagues review the questionnaire and then pretest it with a few people
drawn from the groups to whom it will be sent. It is surprising how often seem-
ingly simple questions can be misunderstood.

Administering the Questionnaire The key issue in administering the questionnaire is
getting participants to complete the questionnaire and send it back. Dozens of market-
ing research books have been written about ways to improve response rates. Com-
monly used techniques include clearly explaining why the questionnaire is being
conducted and why the respondent has been selected; stating a date by which the ques-
tionnaire is to be returned; offering an inducement to complete the questionnaire
(e.g., a free pen); and offering to supply a summary of the questionnaire responses.
Systems analysts have additional techniques to improve responses rates inside the
organization, such as personally handing out the questionnaire and personally contact-
ing those who have not returned them after a week or two, as well as requesting the
respondents’ supervisors to administer the questionnaires in a group meeting.

Questionnaire Follow-up It is helpful to process the returned questionnaires and
develop a questionnaire report soon after the questionnaire deadline. This ensures
that the analysis process proceeds in a timely fashion and that respondents who
requested copies of the results receive them promptly.

Requirements Elicitation Techniques 125

• Begin with nonthreatening and interesting questions.
• Group items into logically coherent sections.
• Do not put important items at the very end of the questionnaire.
• Do not crowd a page with too many items.
• Avoid abbreviations.
• Avoid biased or suggestive items or terms.
• Number questions to avoid confusion.
• Pretest the questionnaire to identify confusing questions.
• Provide anonymity to respondents.FIGURE 3-9

Good Questionnaire Design

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 125

126 Chapter 3 Requirements Determination

Organize yourselves into small
groups. Have each person develop a short question-
naire to collect information about the frequency in
which group members perform some process (e.g.,
working on a class assignment, making a sandwich,
paying bills, getting to class), how long it takes them,
how they feel about the process, and opportunities for
improving the process.

Once everyone has completed his or
her questionnaire, ask each member to pass it to the right
and then complete his or her neighbor’s questionnaire.

Pass the questionnaire back to the creator when it is
completed.

QUESTIONS:
1. How did the questionnaire you completed differ from

the one you created?
2. What are the strengths of each questionnaire?
3. How would you analyze the survey results if you had

received 50 responses?
4. What would you change about the questionnaire that

you developed?

3-4 QUESTIONNAIRE PRACTICEY O U R

T U R N

Document Analysis

Project teams often use document analysis to understand the as-is system. Under
ideal circumstances, the project team that developed the existing system will have
produced documentation, which was then updated by all subsequent projects. In
this case, the project team can start by reviewing the documentation and examining
the system itself.

Unfortunately, most systems are not well documented, because project teams
fail to document their projects along the way, and when the projects are over, there is
no time to go back and document. Therefore, there may not be much technical docu-
mentation about the current system available, or it may not contain updated informa-
tion about recent system changes. However, there are many helpful documents that do
exist in the organization: paper reports, memorandums, policy manuals, user training
manuals, organization charts, and forms. Problem reports filed by the system users
can be another rich source of information about issues with the existing system.

But these documents (forms, reports, policy manuals, organization charts)
only tell part of the story. They represent the formal system that the organization
uses. Quite often, the “real,” or informal system differs from the formal one, and
these differences, particularly large ones, give strong indications of what needs to
be changed. For example, forms or reports that are never used likely should be elim-
inated. Likewise, boxes or questions on forms that are never filled in (or are used
for other purposes) should be rethought. See Figure 3-10 for an example of how a
document can be interpreted.

The most powerful indication that the system needs to be changed is when
users create their own forms or add additional information to existing ones. Such
changes clearly demonstrate the need for improvements to existing systems. Thus,
it is useful to review both blank and completed forms to identify these deviations.
Likewise, when users access multiple reports to satisfy their information needs, it
is a clear sign that new information or new information formats are needed.

Observation

Observation, the act of watching processes being performed, is a powerful tool to gain
insight into the as-is system. Observation enables the analyst to see the reality of a
situation, rather than listening to others describe it in interviews or JAD sessions.

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 126

Several research studies have shown that many managers really do not remember how
they work and how they allocate their time. (Quick, how many hours did you spend
last week on each of your courses?) Observation is a good way to check the validity
of information gathered from other sources such as interviews and questionnaires.

In many ways, the analyst becomes an anthropologist as he or she walks
through the organization and observes the business system as it functions. The goal
is to keep a low profile, to not interrupt those working, and to not influence those
being observed. Nonetheless, it is important to understand that what analysts
observe may not be the normal day-to-day routine because people tend to be
extremely careful in their behavior when they are being watched.10 Even though

Requirements Elicitation Techniques 127

Name: Buffy Pat Smith

Pet’s Name: Buffy MaleCollie 7/6/07

Address: 100 Central Court. Apartment 10

Toronto, Ontario K7L 3N6

Phone Number: 555-3400

416-

Do you have insurance: yes

Insurance Company: Pet’s Mutual

Policy Number: KA-5493243

CENTRAL VETERINARY CLINIC

Patient Information Card

The customer made a mistake.
This should be labeled
Owner’s Name to prevent
confusion.

The customer did not include
area code in the phone
number. This should be made
more clear.

The staff had to add additional
information about the type of animal
and the animal’s date of birth and
gender. This information should be
added to the new form in the to-be
system.

FIGURE 3-10
Performing a Document Analysis

10 This illustrates the Hawthorne effect: an increase in worker productivity produced by the psychological
stimulus of being singled out and made to feel important. See R. H. Frank and J. D. Kaul, “The Hawthorne
Experiments: First Statistical Interpretation,” American Sociological Review, 1978, 43: 623–643.

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 127

128 Chapter 3 Requirements Determination

At my neighborhood Publix grocery
store, the cashiers always handwrite the total amount of
the charge on every credit card charge form, even
though it is printed on the form. Why? Because the “back
office” staff people who reconcile the cash in the cash
drawers with the amount sold at the end of each shift find
it hard to read the small print on the credit card forms.
Writing in large print makes it easier for them to add the

values up. However, cashiers sometimes make mistakes
and write the wrong amount on the forms, which causes
problems. Barbara Wixom

QUESTIONS:
1. What does the credit card charge form indicate about

the existing system?
2. How can you make improvements with a new system?

3-D PUBLIX CREDIT CARD FORMS

IN ACTION

CONCEPTS

Visit the library at your college or
university and observe how the book check-out process
occurs. First, watch several students checking books out,
and then check one out yourself. Prepare a brief sum-
mary report of your observations.

When you return to class, share your observations
with others. You may notice that not all the reports pres-
ent the same information. Why? How would the infor-
mation be different had you used the interview or JAD
technique?

3-5 OBSERVATION PRACTICEY O U R

T U R N

normal practice may be to break formal organizational rules, the observer is
unlikely to see this. (Remember how you drove the last time a police car followed
you?) Thus, what you see may not be what you really want.

Observation is often used to supplement interview information. The location
of a person’s office and its furnishings gives clues as to their power and influence in
the organization, and such clues can be used to support or refute information given
in an interview. For example, an analyst might become skeptical of someone who
claims to use the existing computer system extensively if the computer is never
turned on while the analyst visits. In most cases, observation will support the infor-
mation that users provide in interviews. When it does not, it is an important signal
that extra care must be taken in analyzing the business system.

Selecting the Appropriate Techniques

Each of the requirements elicitation techniques just discussed has strengths and
weaknesses. No one technique is always better than the others, and in practice most
projects benefit from a combination of techniques. Thus, it is important to under-
stand the strengths and weaknesses of each technique and when to use each. (See
Figure 3-11.) One issue not discussed is that of the analysts’ experience. In general,
document analysis and observation require the least amount of training, while JAD
sessions are the most challenging.

Type of Information The first characteristic is type of information. Some tech-
niques are more suited for use at different stages of the analysis process, whether
understanding the as-is system, identifying improvements, or developing the to-be

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 128

system. Interviews and JAD are commonly used in all three stages. In contrast,
document analysis and observation usually are most helpful for understanding the
as-is system, although they occasionally provide information about improvements.
Questionnaires are often used to gather information about the as-is system, as well
as general information about improvements.

Depth of Information The depth of information refers to how rich and detailed the
information is that the technique usually produces and the extent to which the tech-
nique is useful at obtaining not only facts and opinions, but also an understanding
of why those facts and opinions exist. Interviews and JAD sessions are very useful
at providing a good depth of rich and detailed information and helping the analyst
to understand the reasons behind them. At the other extreme, document analysis
and observation are useful for obtaining facts, but little beyond that. Questionnaires
can provide a medium depth of information, soliciting both facts and opinions with
little understanding of why.

Breadth of Information Breadth of information refers to the range of information
and information sources that can be easily collected by that technique. Question-
naires and document analysis both are easily capable of soliciting a wide range of
information from a large number of information sources. In contrast, interviews
and observation require the analyst to visit each information source individually
and, therefore, take more time. JAD sessions are in the middle because many infor-
mation sources are brought together at the same time.

Integration of Information One of the most challenging aspects of requirements
gathering is the integration of information from different sources. Simply put, dif-
ferent people can provide conflicting information. Combining this information and
attempting to resolve differences in opinions or facts is usually very time consum-
ing because it means contacting each information source in turn, explaining the dis-
crepancy, and attempting to refine the information. In many cases, the individual
wrongly perceives that the analyst is challenging his or her information, when in
fact the source of conflict is another user in the organization. This can make the user
defensive and make it hard to resolve the differences.

All techniques suffer integration problems to some degree, but JAD sessions
are designed to improve integration because all information is integrated when it is
collected, not afterward. If two users provide conflicting information, the conflict

Requirements Elicitation Techniques 129

Type of information As-is, improvements, As-is, improvements, As-is, improvements As-is As-is
to-be to-be

Depth of information High High Medium Low Low

Breadth of information Low Medium High High Low

Integration of information Low High Low Low Low

User involvement Medium High Low Low Low

Cost Medium Low–Medium Low Low Low–Medium

Joint Application Document
Interviews Design Questionnaires Analysis Observation

FIGURE 3-11
Comparison of Requirements Elicitation Techniques

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 129

becomes immediately obvious, as does the source of the conflict. The immediate
integration of information is the single most important benefit of JAD that distin-
guishes it from other techniques, and this is why most organizations use JAD for
important projects.

User Involvement User involvement refers to the amount of time and energy the
intended users of the new system must devote to the analysis process. It is gener-
ally agreed that, as users become more involved in the analysis process, the chance
of success increases. However, user involvement can have a significant cost, and not
all users are willing to contribute valuable time and energy. Questionnaires, docu-
ment analysis, and observation place the least burden on users, while JAD sessions
require the greatest effort.

Cost Cost is always an important consideration. In general, questionnaires, docu-
ment analysis, and observation are low-cost techniques (although observation can be
quite time consuming). The low cost does not imply that they are more or less effec-
tive than the other techniques. We regard interviews and JAD sessions as having mod-
erate costs. In general, JAD sessions are much more expensive initially, because they
require many users to be absent from their offices for significant periods, and they
often involve highly paid consultants. However, JAD sessions significantly reduce the
time spent in information integration and thus cost less in the long term.

REQUIREMENTS ANALYSIS STRATEGIES

The previous section discussed five essential techniques that analysts will use to inter-
act with stakeholders in the system development project to elicit and define require-
ments. As we discussed earlier in the chapter, the analyst often must encourage the
stakeholders to think critically about the needs for the new system and discover the
true underlying requirements. In this section, we present several strategies that the
analyst can employ with the stakeholders to accomplish this goal.

Problem Analysis

The most straightforward (and probably the most commonly used) requirements analy-
sis strategy is problem analysis. Problem analysis means asking the users and man-
agers to identify problems with the as-is system and to describe how to solve them in
the to-be system. Most users have a very good idea of the changes they would like to
see, and most will be quite vocal about suggesting them. Most changes tend to solve
problems rather than capitalize on opportunities, but this is possible, too. Improve-
ments from problem analysis tend to be small and incremental (e.g., add a field to store
the customer’s cell phone number; provide a new report that currently does not exist).

This type of improvement often is very effective at improving a system’s effi-
ciency or ease of use. However, it often provides only minor improvements in
business value—the new system is better than the old, but it may be hard to identify
significant monetary benefits from the new system.

Root Cause Analysis

The ideas produced by problem analysis tend to be solutions to problems. All solu-
tions make assumptions about the nature of the problem, assumptions that may or
may not be valid. In our experience, users (and most people in general) tend to jump
quickly to solutions without fully considering the nature of the problem. Sometimes

130 Chapter 3 Requirements Determination

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 130

the solutions are appropriate, but many times they address a symptom of the prob-
lem, not the true problem or root cause itself.11

For example, suppose that the users report that “inventory stock-outs happen
frequently.” Inventory stock-outs are not good, of course, and one obvious way to
reduce their occurrence is to increase the quantity of items kept in stock. This action
incurs costs, however, so it is worthwhile to investigate the underlying cause of the
frequent stock-outs instead of jumping to a quick-fix solution. The solutions that
users propose (or systems that analysts consider) may address either symptoms or
causes, but without careful analysis, it is difficult to tell which one. Finding out later
that you’ve just spent millions of dollars and have not fixed the true underlying
problem is a horrible feeling!

Root cause analysis focuses on problems first rather than solutions. The
analyst starts by having the users generate a list of problems with the current sys-
tem, then prioritizes the problems in order of importance. Starting with the most
important, the users and/or analysts generate all possible root causes for the problem.
As shown in Figure 3-12, the problem of “too frequent stock-outs” has several

Requirements Analysis Strategies 131

11 Two good books that discuss the problems in finding the root causes to problems are E. M. Goldratt and
J. Cox, The Goal, Croton-on-Hudson, NY: North River Press, 1986; and E. M. Goldratt, The Haystack Syn-
drome, Croton-on-Hudson, NY: North River Press, 1990.

FIGURE 3-12
Root Cause Analysis for Inventory Stock Outs

Supplier order lag
Inaccurate on-hand

counts

Lag in supplier
order approval

Lag in recording
sold inventory

Reorder point too
low

Lag in identifying
best supplier

Infrequent manual
count reconciliation

Economic Order
Quantity (EOQ) too

low

Lag in sending
order to supplier

Lag in recording
items received from

suppliers

Incorrect reorder
quantities

Frequent inventory
stock-outs

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 131

potential root causes (inaccurate on-hand counts; incorrect reorder points; lag in
placing supplier orders). Each possible root cause is investigated and additional
root causes are identified. As Figure 3-12 shows, it is sometimes useful to display
the potential root causes in a tree-like hierarchy. Ultimately, the investigation
process reveals the true root cause or causes of the problem, enabling the team to
design the system to correct the problem with the right solution. The key point in
root cause analysis is to always challenge the obvious and dig into the problem
deeply enough that the true underlying cause(s) is revealed.

Duration Analysis

Duration analysis requires a detailed examination of the amount of time it takes to
perform each process in the current as-is system. The analysts begin by determin-
ing the total amount of time it takes, on average, to perform a set of business
processes for a typical input. They then time each of the individual steps (or sub-
processes) in the business process. The time to complete the basic steps are then
totaled and compared with the total for the overall process. A significant difference
between the two—and, in our experiences, the total time often can be 10 or even

132 Chapter 3 Requirements Determination

Few niches crashed more spectacu-
larly during Web 1.0 than the pet sector. In 2000, over just
nine months, Pets.com managed to raise a jaw-dropping
$82.5 million in an IPO, air a $1.2 million Super Bowl ad
starring its sock puppet mascot, land funding from
Amazon.com build a network of cavernous warehouses ...
and go out of business without making a penny in profit.
When Pets.com rolled over and died in November 2000, it
presaged scores of dot-com disasters to follow and slammed
the door on online pet businesses, seemingly for good.

So when San Francisco Web designer Ted Rhein-
gold co-founded Dogster.com in January 2004 as a kind
of canine version of Friendster, the news drew smirks
from the few who bothered to notice. How could Dogster,
a pet site cobbled together on weekends and launched
on a shoestring budget, expect to succeed where lavishly
funded pet sites had flamed out? The consensus on
Dogster was unanimous: It would fail.

And indeed, it has failed. Over and over. But, alas,
each knock has been a boost. Dogster has discovered
ways to turn its mistakes into better features. With pretty
much no promotion, Dogster (and sister site Catster.com)
has evolved into a premier pet lover’s social network.
Membership exceeds 275,000; the site features 340,000
photos and profiles of dogs and cats, and a blue-chip
advertising list that includes Disney, Holiday Inn, and
Target. Dogster, come to find out, has a good profit sheet.

In many ways, the site is a prime example of how
a Web deployment fails, but fails well by quick feature
launch, seeing what works, and fixing things fast.
According to Rheingold, “When we roll out a new fea-
ture, we know we’re probably not going to get it right the
first time.” Dogster and similar companies have discov-
ered that continually reviewing user data—most impor-
tantly, the discouraging events—provides important
direction for enhancements. Says Rheingold, “Instead of
working on a feature for months trying to get it perfect,
we’ll work on something for two weeks and then spend
two or three days listening to users and fine-tuning it.”

Source: “A Startup’s Best Friend? Failure,” Tom McNichol, Busi-
ness 2.0. San Francisco: March 2007, vol. 8, iss. 2, p. 39–41.

QUESTIONS:
1. Do you agree with Dogster’s view, or should compa-

nies aim for “zero-defect” operations? Why or why
not? What implications does this business model have
for systems analysts?

2. Startup companies like Dogster are not the only com-
panies that are implementing the “fail fast” strategy.
Large companies like Google have used it and are still
using it—in Google’s case, with the implementation of
the Google Toolbar. Cite another company that has
used this strategy. Has it been successful?

3-E SUCCESS FROM FAILURE

IN ACTION

CONCEPTS

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 132

100 times longer than the sum of the parts—indicates that this part of the process
is badly in need of a major overhaul.

For example, suppose that the analysts are working on a home mortgage sys-
tem and discover that, on average, it takes 30 days for the bank to approve a mort-
gage. They then look at each of the basic steps in the process (e.g., data entry, credit
check, title search, appraisal, etc.) and find that the total amount of time actually
spent on each mortgage is about 8 hours. This is a strong indication that the over-
all process is badly broken, because it takes 30 days to perform 1 day’s work.

These problems likely occur because the process is badly fragmented. Many
different people must perform different activities before the process is complete. In
the mortgage example, the application probably sits on many peoples’ desks for long
periods of time before it is processed. Processes in which many different people work
on small parts of the inputs are prime candidates for process integration or paral-
lelization. Process integration means changing the fundamental process so that fewer
people work on the input, which often requires changing the processes and retraining
staff to perform a wider range of duties. Process parallelization means changing the
process so that all the individual steps are performed at the same time. For example
in the mortgage application example, there is probably no reason that the credit check
cannot be performed at the same time as the appraisal and title check.

Activity-Based Costing

Activity-based costing is a similar analysis that examines the cost of each major
process or step in a business process rather than the time taken.12 The analysts iden-
tify the costs associated with each of the basic functional steps or processes, identify
the most costly processes, and focus their improvement efforts on them.

Assigning costs is conceptually simple. You just examine the direct cost of
labor and materials for each input. Materials costs are easily assigned in a manu-
facturing process, while labor costs are usually calculated on the basis of the
amount of time spent on the input and the hourly cost of the staff. However, as you
may recall from a managerial accounting course, there are indirect costs such as
rent, depreciation, and so on that also can be included in activity costs.

Informal Benchmarking

Benchmarking refers to studying how other organizations perform a business
process in order to learn how your organization can do something better. Bench-
marking helps the organization by introducing ideas that employees may never have
considered, but that have the potential to add value.

Informal benchmarking is fairly common for “customer-facing” business
processes (i.e., those processes that interact with the customer). With informal
benchmarking, the managers and analysts think about other organizations, or visit
them as customers to watch how the business process is performed. In many cases,
the business studied may be a known leader in the industry or simply a related firm.
For example, suppose that the team is developing a Web site for a car dealer. The

Requirements Analysis Strategies 133

12 Many books have been written on activity-based costing. Useful ones include K. B. Burk and D. W. Webster,
Activity-Based Costing, Fairfax, VA: American Management Systems, 1994; and D. T. Hicks, Activity-Based
Costing: Making It Work for Small and Mid-Sized Companies, New York: John Wiley, 1998. The two books by Eli
Goldratt mentioned previously (The Goal and The Haystack Syndrome) also offer unique insights into costing.

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 133

project sponsor, key managers, and key team members would likely visit the
Web sites of competitors, those of others in the car industry (e.g., manufacturers,
accessories suppliers), and those of other industries that have won awards for their
Web sites.

Outcome Analysis

Outcome analysis focuses on understanding the fundamental outcomes that provide
value to customers. While these outcomes sound as though they should be obvious,
they often aren’t. For example, suppose that you are an insurance company and one
of your customers has just had a car accident. What is the fundamental outcome
from the customer’s perspective? Traditionally, insurance companies have answered
this question by assuming that the customer wants to receive the insurance payment
quickly. To the customer, however, the payment is only a means to the real outcome:
a repaired car. The insurance company might benefit by extending its view of the
business process past its traditional boundaries to include, not simply paying for
repairs, but performing the repairs or contracting with an authorized body shop to
do them.

With this approach, the system analysts encourage the managers and project
sponsor to pretend that they are customers and to think carefully about what the
organization’s products and services enable the customers to do—and what they
could enable the customer to do.

Technology Analysis

Many major changes in business over the past decade have been enabled by new
technologies. Technology analysis therefore starts by having the analysts and man-
agers develop a list of important and interesting technologies. Then the group sys-
tematically identifies how each and every technology could be applied to the busi-
ness process and identifies how the business would benefit.

For example, one useful technology might be the Internet. A manufacturer
could develop an extranet application for its suppliers. Rather than ordering parts for
its products, the manufacturer makes its production schedule available electronically
to its suppliers, who ship the needed parts so that they arrive at the plant just in time.
This saves significant costs because it eliminates the need for people to monitor the
production schedule and issue purchase orders.

134 Chapter 3 Requirements Determination

A group of executives from a Fortune
500 company used duration analysis to discuss their pro-
curement process. Using a huge wall of Velcro and a
handful of placards, a facilitator proceeded to map out
the company’s process for procuring a $50 software
upgrade. Having quantified the time it took to complete
each step, she then assigned costs based on the salaries
of the employees involved. The 15-minute exercise left the

group stunned. Their procurement process had gotten so
convoluted that it took 18 days, countless hours of paper-
work and nearly $22,000 in people time to get the
product ordered, received, and up and running on the
requester’s desktop.

Source: “For Good Measure,” CIO Magazine, March 1, 1999,
by Debby Young.

IN ACTION

CONCEPTS 3-F A PROCESS IN NEED OF IMPROVEMENT

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 134

Requirements Analysis Strategies 135

IBM Credit was a wholly owned
subsidiary of IBM responsible for financing mainframe
computers sold by IBM. While some customers bought
mainframes outright or obtained financing from other
sources, financing computers provided significant addi-
tional profit.

When an IBM sales representative made a sale, he
or she would immediately call IBM Credit to obtain a
financing quote. The call was received by a credit officer
who would record the information on a request form. The
form would then be sent to the credit department to check
the customer’s credit status. This information would be
recorded on the form, which was then sent to the busi-
ness practices department, which would write a contract
(sometimes reflecting changes requested by the cus-
tomer). The form and the contract would then go to the
pricing department, which used the credit information to
establish an interest rate and record it on the form. The
form and contract was then sent to the clerical group,
where an administrator would prepare a cover letter
quoting the interest rate and send the letter and contract
via Federal Express to the customer.

The problem at IBM Credit was a major one. Get-
ting a financing quote took anywhere from four to eight
days (six days, on average), giving the customer time to
rethink the order or find financing elsewhere. While the
quote was being prepared, sales representatives would
often call to find out where the quote was in the process,
so that they could tell the customer when to expect it.
However, no one at IBM Credit could answer the question,
because the paper forms could be in any department and

it was impossible to locate one without physically walk-
ing through the departments and going through the piles
of forms on everyone’s desk.

IBM Credit examined the process and changed it so
that each credit request was logged into a computer system
so that each department could record an application’s
status as soon as it was completed and sent it to the next
department. In this way, sales representatives could call
the credit office and quickly learn the status of each appli-
cation. IBM used some sophisticated management science
queuing theory analysis to balance workloads and staff
across the different departments so that no applications
would be overloaded. They also introduced performance
standards for each department (e.g., the pricing decision
had to be completed within one day after that department
received an application).

However, process times got worse, even though
each department was achieving almost 100 percent com-
pliance on its performance goals. After some investiga-
tion, managers found that when people got busy, they
conveniently found errors that forced them to return the
credit request to the previous department for correction,
thereby removing it from their time measurements.

QUESTIONS:
What techniques can you use to identify improvements?
Choose one technique and apply it to this situation—
what improvements did you identify?

Source: Reengineering the Corporation, New York: Harper Busi-
ness, 1993, by M. Hammer and J. Champy.

3-6 IBM CREDITY O U R

T U R N

Municipal, city, and county govern-
ments are seriously affected by the recent economic
downturn and resulting budgetary pressure. Fewer
employees mean it is harder to provide services in the
same old way to citizens. Forward-thinking managers of
governmental entities recognize that social media may
be the wave of the future. Social media can allow citi-

zens to be a part of the government services, not just a
recipient of government services. Citizens can report
issues such as potholes in roads or abandoned vehicles
when they see them and government services can repair
them while out in the field. Citizens are part of the
process and get immediate satisfaction by helping to
solve problems.

IN ACTION

CONCEPTS 3-G “LIKE” YOUR LOCAL GOVERNMENT

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 135

Activity Elimination

Activity elimination is exactly what it sounds like. The analysts and managers work
together to identify how the organization could eliminate each and every activity in
the business process, how the function could operate without it, and what effects
are likely to occur. Initially, managers are reluctant to conclude that processes can
be eliminated, but this is a “force-fit” exercise in that they must eliminate each
activity. In some cases the results are silly; nonetheless, participants must address
each and every activity in the business process.

For example, in the home mortgage approval process discussed earlier, the
managers and analysts would start by eliminating the first activity, entering the data
into the mortgage company’s computer. This leads to one of two obvious possibili-
ties: (1) Eliminate the use of a computer system or (2) make someone else do the
data entry (e.g., the customer, over the Web). They would then eliminate the next
activity, the credit check. Silly, right? After all, making sure the applicant has good
credit is critical in issuing a loan, isn’t it? Not really. The real answer depends upon
how many times the credit check identifies bad applications. If all or almost all
applicants have good credit and are seldom turned down by a credit check, then the
cost of the credit check may not be worth the benefit of the few bad loans it prevents.
Eliminating it may actually result in lower costs, even with the cost of bad loans,
unless the number of applicants with poor credit greatly increases.

Comparing Analysis Strategies

Each of the requirements analysis strategies discussed here has its own purpose.
No one technique is inherently better than the others. Remember that an organi-
zation will likely have a wide range of projects in its portfolio; the requirements
analysis strategy should be chosen to fit the nature of the project. Problem analysis
and root cause analysis tend to be most useful in situations with a narrow focus
where efficiency gains are sought. Duration analysis and activity-based costing
strategies help the team find the most “broken” business processes so that those
processes can be redesigned and improved. Outcome analysis, technology analysis,
and informal benchmarking help the team think “outside the box” and are very
useful when the team is trying to create completely new ways of accomplishing
the business processes.

APPLYING THE CONCEPTS AT TUNE SOURCE

Once the Tune Source approval committee approved the system request and feasi-
bility analysis, the project team began performing analysis activities. These included
gathering requirements by a variety of techniques and analyzing the requirements that
were gathered. Some highlights of the project team’s activities are presented next.

Eliciting and Analyzing Requirements

Jason believed that it would be important to understand the current Web-based
sales processes and systems that already existed in the organization, because they
would have to be closely integrated with the Digital Music Download system. Two
requirements-gathering techniques proved to be helpful in understanding the cur-
rent systems and processes—document analysis and interviews.

First, the project team collected existing reports (e.g., sales forms, screen
shots of the online sales screens) and system documentation (data models, process

136 Chapter 3 Requirements Determination

c03RequirementsDetermination.qxd 11/3/11 7:36 AM Page 136

models) that shed light on the as-is system. They were able to gather a good amount
of information about the existing order processes and systems in this way. When
questions arose, they conducted short interviews with the person who provided the
documentation, for clarification.

Next, Jason interviewed the senior analysts for the current sales systems to get a
better understanding of how those systems worked. He asked whether they had any
ideas for the new system, as well as whether there were any integration issues that would
need to be addressed. Jason also interviewed a contact from the ISP and the IT person
who supported Tune Source’s current Web site—both provided information about the
existing communications infrastructure at Tune Source and its Web capabilities.

Carly suggested that the project team conduct several JAD sessions with store
managers, marketing analysts, and Web-savvy members of the IT staff. Together, the
groups could brainstorm the features desired in the Digital Music Download system.

Jason facilitated three JAD sessions that were conducted over the course of a
week. Jason’s past facilitation experience helped the eight-person meetings run
smoothly and stay on track. Because this project introduces a new business process,
Jason used technology analysis and suggested several important Web technologies
that could be used for the system. The JAD session generated ideas about how Tune
Source could apply each of the technologies to the Digital Music Download system.
Jason had the group categorize the ideas into three sets: “definite” ideas that would
have a good probability of providing business value, “possible” ideas that might
add business value, and “unlikely” ideas.

Next, Jason applied informal benchmarking by introducing the Web sites of
several leading retailers and pointing out the features that they offered online. He
selected some sites on the basis of their success with Internet sales, and others on the
basis of their similarity to the vision for Tune Source’s new system. The group dis-
cussed the features that were common across most retailers, versus unique function-
ality, and they created a list of suggested business requirements for the project team.

Requirements Definition

Throughout all of these activities, the project team collected information and tried
to identify the business requirements for the system from the information. As the
project progressed, requirements were added to the requirements definition and
grouped by requirements type. When questions arose, they worked with Carly and
Jason to confirm that requirements were in scope. The requirements that fell out-
side of the scope of the current system were typed into a separate document that
would be saved for future use.

At the end of the analysis phase, the requirements definition was distributed
to Carly, two marketing employees who would work with the system on the busi-
ness side, and several retail store managers. This group then met for a two-day JAD
session to clarify, finalize, and prioritize the requirements and to create use cases
(Chapter 4) to show how the system would be used.

The project team also spent time creating process models (Chapter 5) and
data models (Chapter 6) that depicted the processes and data in the future system.
Members of marketing and IT reviewed the documents during interviews with the
project team. Figure 3-13 shows a portion of the final requirements definition.

System Proposal

Jason reviewed the requirements definition and the other deliverables that the project
team created during the analysis phase. Given Carly’s desire to have the system in

Applying The Concepts At Tune Source 137

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 137

138 Chapter 3 Requirements Determination

production as soon as possible, Jason decided to timebox the project. He had orig-
inally decided to approach the project in three versions (iterative development, see
Chapter 2), and he is satisfied that this is a good way to structure the project. The
first version, to be operational in the late spring, would implement a basic digital
music download capability that will enable customers to download music on a fixed
price per download basis. The second version, planned to be ready by midsummer,
would incorporate a customer subscription program. The marketing department has
yet to determine its preferred subscription program. It is considering a low fee,
longer-term program or a higher fee, shorter-term program. By the time the project
team is ready to begin version 2, however, the details should be nailed down. The
third version, expected to be ready by late summer, will add the gift card option, enti-
tling the gift card holder to a fixed number of downloads over a limited time.

FIGURE 3-13
Tune Source Requirements Definition

Functional Requirements:

1. Search and Browse

1.1 The system will allow customers to browse music choices by predefined categories.
1.2 The system will allow customers to search for music choices by title, artist, and genre.
1.3 The system will allow customers to listen to a short sample of a music selection.
1.4 The system will enable the customer to add music selections to a “favorites” list.

2. Purchase
2.1 The system will enable the customer to create a customer account (if desired) that will store customer data and payment

information.
2.2 The system will enable the customer to specify the music choice for download.
2.3 The system will collect and verify payment information. Once payment is verified, the music selection download process will

begin.

3. Promote
3.1 The system will keep track of the customer’s interests on the basis of samples selected for listening and will use this information to

promote music selections during future visits to the Web site.
3.2 Marketing department can create promotions and specials on the Web site.
3.3 Based on customer’s previous purchases, music choices can be targeted to the customer on future visits to the Web site.

(Customers who like X will also like Y.)
3.4 On the basis of customer interests, customers can be notified of special offers on CDs that can be purchased at the regular Tune

Source Web site or in a Tune Source store.

Nonfunctional Requirements:

1. Operational

1.1 The digital music database will be constructed to facilitate searches by title, artist, and genre.
1.2 The system will run on any Web browser and on in-store kiosks.
1.3 In the event of a failure during a download, the customer will be able to restart the download.

2. Performance
2.1 Download speeds will be monitored and kept at an acceptable level.

3. Security
3.1 Customer information will be secured.
3.2 Payment information will be encrypted and secured.

4. Cultural and political
No special cultural and political requirements are expected.

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 138

Jason reviewed the work plan and made some slight changes. He also con-
ferred with Carly and the marketing department members to review the feasibility
analysis. No major changes were made to it at this point; the project remains highly
feasible overall. All of the deliverables from the project were then combined into a
system proposal and submitted to the approval committee. Figure 3-14 shows the
outline of the Tune Source system proposal. Carly and Jason met with the approval
committee and presented the highlights of what was learned during the analysis
phase and the final concept of the new system. On the basis of the proposal and
presentation, the approval committee decided that it would continue to fund the
Digital Music Download system.

SUMMARY

Analysis
Analysis focuses on capturing the business requirements for the system. Analysis
identifies the “what” of the system, and it leads directly into the design phase, dur-
ing which the “how” of the system is determined. Many deliverables are created
during the analysis phase, including the requirements definition, use cases, process
models, and a data model. At the end of analysis, all of these deliverables, along
with revised planning and project management deliverables, are combined into a
system proposal and submitted to the approval committee for a decision regarding
whether or not to move ahead with the project.

Summary 139

1. Table of Contents

2. Executive Summary
A summary of all the essential information in the proposal so that a busy executive can read it
quickly and decide what parts of the plan to read in more depth.

3. System Request
The revised system request form. (See Chapter 1.)

4. Work plan
The original work plan, revised after having completed the analysis phase. (See Chapter 2.)

5. Feasibility Analysis
A revised feasibility analysis, using the information from the analysis phase. (See Chapter 1.)

6. Requirements Definition
A list of the functional and nonfunctional business requirements for the system (this chapter).

7. Use Cases
A set of use cases that illustrate the basic processes that the system needs to support. (See
Chapter 4.)

8. Process Model
A set of process models and descriptions for the to-be system. (See Chapter 5.) This may include
process models of the current as-is system that will be replaced.

9. Data Model
A set of data models and descriptions for the to-be system. (See Chapter 6.) This may include
data models of the as-is system that will be replaced.

Appendices

These contain additional material relevant to the proposal, often used to support the recom-
mended system. This might include results of a questionnaire survey or interviews, industry
reports and statistics, etc.

FIGURE 3-14
Outline of the Tune Source
System Proposal

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 139

140 Chapter 3 Requirements Determination

Requirements Determination
Requirements determination is the part of analysis in which the project team turns
the very high level explanation of the business requirements stated in the system
request into a more precise list of requirements. A requirement is simply a state-
ment of what the system must do or what characteristic it needs to have. Business
requirements describe the “what” of the system, and system requirements describe
“how” the system will be implemented. A functional requirement relates directly to
a process the system has to perform or information it needs to contain. Nonfunc-
tional requirements refer to behavioral properties that the system must have, such
as performance and usability. All of the functional and nonfunctional business
requirements that fit within the scope of the system are written in the requirements
definition.

Requirements Elicitation Techniques
Five techniques can be used to elicit the business requirements for the proposed
system: interviews, joint application development, questionnaires, document analy-
sis, and observation. Interviews involve meeting one or more people and asking
them questions. There are five basic steps to the interview process: selecting inter-
viewees, designing interview questions, preparing for the interview, conducting the
interview, and post-interview follow-up. Joint application development (JAD)
allows the project team, users, and management to work together to identify
requirements for the system. Electronic JAD attempts to overcome common prob-
lems associated with groups by using groupware. A questionnaire is a set of writ-
ten questions developed for obtaining information from individuals. Questionnaires
often are used when there is a large number of people from whom information and
opinions are needed. Document analysis entails reviewing the existing documenta-
tion and examining the system itself. It can provide insights into the formal and
informal system. Observation, the act of watching processes being performed, is a
powerful tool for gathering information about the as-is system because it enables
the analyst to see the reality of a situation firsthand.

Requirements Analysis Strategies
Analysts often have to help the business users think critically about their new sys-
tem requirements. Several strategies are helpful. Problem analysis and root cause
analysis are two strategies that can assist the business users in understanding the
problems and issues of the current system that require fixing. Duration analysis,
activity-based costing, and informal benchmarking are three popular analysis
strategies that help the team discover processes most in need of redesign. Finally,
outcome analysis, technology analysis, and activity elimination are three strategies
that can be used to “force” the business users to think about the business processes
in new, novel ways, perhaps discovering completely new ways to accomplish the
business processes.

Activity elimination
Activity-based costing
Analysis
As-is system
Benchmarking
Bottom-up interview

Breadth of analysis
Business requirement
Closed-ended question
Critical thinking skills
Document analysis
Duration analysis

Electronic JAD (e-JAD)
Facilitator
Formal system
Functional requirement
Ground rule
Informal benchmarking

KEY TERMS

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 140

Questions 141

Informal system
Interpersonal skill
Interview
Interview notes
Interview report
Interview schedule
Joint application development

(JAD)
Nonfunctional requirements
Observation
Open-ended question
Outcome analysis
Parallelization

Postsession report
Potential business value
Probing question
Problem analysis
Process integration
Project cost
Questionnaire
Requirement
Requirements definition
Requirements determination
Risk
Root cause
Root cause analysis

Sample
Scribe
Stakeholder
Structured interview
Symptom
System proposal
System requirement
Technology analysis
To-be system
Top-down interview
Unstructured interview
User requirements
Walk-through

1. What is the meaning of analysis? What is the pur-
pose of the analysis phase of the SDLC?

2. What are the key elements of the system proposal?
3. A system development project may be approached

in one of two ways: as a single, monolithic project
in which all requirements are considered at once or
as a series of smaller projects focusing on smaller
sets of requirements. Which approach seems to be
more successful? Why do you suppose that this is
true?

4. Distinguish between business, user, and functional
requirements.

5. Explain what is meant by a functional requirement.
What are two types of functional requirements?
Give two examples of each.

6. Explain what is meant by a nonfunctional require-
ment. What are the primary types of nonfunctional
requirements? Give two examples of each. What role
do nonfunctional requirements play in the project
overall?

7. What is the value of producing a requirements def-
inition and having the project sponsor and key users
review and approve it?

8. What are the three basic steps of the analysis
process? Is each step performed in every project?
Why or why not?

9. Discuss the appropriate way to set up and conduct
interviews to elicit requirements.

10. Give an example of a closed-ended question, an
open-ended question, and a probing question.
When would each type of question be used?

11. “Interviews should always be conducted as structured
interviews.” Do you agree with this statement? Why
or why not?

12. Discuss the considerations that should be made
when determining who to include in interviews
and/or JAD sessions.

13. Is the primary purpose of requirements determina-
tion to discover facts or to discover opinions?
Explain your answer.

14. Describe the five major steps in conducting JAD
sessions.

15. Describe the primary roles involved in JAD ses-
sions. What is the major contribution made by the
person(s) fulfilling each role?

16. Discuss the reasons that question design for ques-
tionnaires is so difficult.

17. Why is document analysis useful? What insights
into the organization can it provide?

18. Outline suggestions to make observation a useful,
reliable requirements elicitation technique.

19. Describe a strategy for using the various require-
ments elicitation techniques in a project.

20. Discuss problem analysis as an analysis strategy.
What are the strengths and limitations of this
technique?

21. Discuss root cause analysis as an analysis strategy.
What are the strengths and limitations of this
technique?

22. Compare and contrast duration analysis and activity-
based costing. What role do these activities play as
analysis strategies?

23. How can informal benchmarking contribute to
requirements determination?

24. Compare and contrast outcome analysis, technol-
ogy analysis, and activity elimination. What general
contribution do these strategies play in determining
requirements?

QUESTIONS

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 141

142 Chapter 3 Requirements Determination

A. Review the Amazon.com Web site. Develop the
requirements definition for the site. Create a list of
functional business requirements that the system
meets. What different kinds of nonfunctional busi-
ness requirements does the system meet? Provide
examples for each kind.

B. Pretend that you are going to build a new system
that automates or improves the interview process for
the career services department of your school.
Develop a requirements definition for the new system.
Include both functional and nonfunctional system
requirements. Pretend that you will release the sys-
tem in three different versions. Prioritize the require-
ments accordingly.

C. Describe in very general terms the as-is business
process for registering for classes at your university.
Collaborate with another student in your class and
evaluate the process using problem analysis and
root cause analysis. Based on your work, list some
example improvements that you identified.

D. Describe in very general terms the as-is business
process for applying for admission at your univer-
sity. Collaborate with another student in your class
and evaluate the process using informal bench-
marking. Based on your work, list some example
improvements that you identified.

E. Describe in very general terms the as-is business
process for registering for classes at your university.
Collaborate with another student in your class and
evaluate the process using activity elimination.
Based on your work, list some example improve-
ments that you identified.

F. Suppose that your university is having a dramatic
increase in enrollment and is having difficulty
finding enough seats in courses for students so
that they can take courses required for graduation.
Perform a technology analysis to identify new
ways to help students complete their studies and
graduate.

G. Suppose that you are the analyst charged with devel-
oping a new system for the university bookstore

with which students can order books online and have
them delivered to their dorms and off-campus hous-
ing. What requirements-gathering techniques will
you use? Describe in detail how you would apply the
techniques.

H. Suppose that you are the analyst charged with
developing a new system to help senior managers
make better strategic decisions. What requirements-
gathering techniques will you use? Describe in
detail how you would apply the techniques.

I. Find a partner and interview each other about what
tasks you/they did in the last job held (full-time,
part-time, past, or current). If you haven’t worked
before, then assume that your job is being a student.
Before you do this, develop a brief interview plan.
After your partner interviews you, identify the type
of interview, interview approach, and types of ques-
tions used.

J. Find a group of students and run a 60-minute JAD
session on improving alumni relations at your uni-
versity. Develop a brief JAD plan, select two tech-
niques that will help identify improvements, and
then develop an agenda. Conduct the session, using
the agenda, and write your post-session report.

K. Find a questionnaire on the Web that has been cre-
ated to capture customer information. Describe the
purpose of the survey, the way questions are worded,
and how the questions have been organized. How
can the questionnaire be improved? How will the
responses be analyzed?

L. Develop a questionnaire that will help gather infor-
mation regarding processes at a popular restaurant
or the college cafeteria (e.g., ordering, customer
service). Give the questionnaire to 10–15 students,
analyze the responses, and write a brief report that
describes the results.

M. Contact the career services department at your uni-
versity and find all the pertinent documents
designed to help students find permanent and/or
part-time jobs. Analyze the documents and write a
brief report.

EXERCISES

1. The state firefighters’ association has a membership of
15,000. The purpose of the organization is to provide
some financial support to the families of deceased
member firefighters and to organize a conference each

year bringing together firefighters from all over the
state. Annually, members are billed dues and calls.
“Calls” are additional funds required to take care of
payments made to the families of deceased members.

MINICASES

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 142

Minicases 143

The bookkeeping work for the association is handled
by the elected treasurer, Bob Smith, although it is
widely known that his wife, Laura, does all of the
work. Bob runs unopposed each year at the election,
since no one wants to take over the tedious and time-
consuming job of tracking memberships. Bob is paid
a stipend of $8000 per year, but his wife spends well
over 20 hours per week on the job. The organization,
however, is not happy with their performance.

A computer system is used to track the billing and
receipt of funds. This system was developed in 1984
by a computer science student and his father. The sys-
tem is a DOS-based system written in dBase 3. The
most immediate problem facing the treasurer and his
wife is the fact that the software package no longer
exists, and there is no one around who knows how to
maintain the system. One query in particular takes
17 hours to run. Over the years, they have just avoided
running this query, although the information in it
would be quite useful. Questions from members con-
cerning their statements cannot easily be answered.
Usually, Bob or Laura just jots down the inquiry and
returns a call with the answer. Sometimes it takes 3 to
5 hours to find the information needed to answer the
question. Often, they have to perform calculations
manually, since the system was not programmed to
handle certain types of queries. When member infor-
mation is entered into the system, each field is pre-
sented one at a time. This makes it very difficult to
return to a field and correct a value that was entered.
Sometimes a new member is entered, but disappears
from the records. The report of membership used in
the conference materials does not alphabetize mem-
bers by city. Only cities are listed in the correct order.

What requirements analysis technique or techniques
would you recommend for this situation? Explain your
answer.

2. Brian Callahan, IS project manager, is just about ready
to depart for an urgent meeting called by Joe Camp-
bell, manager of manufacturing operations. A major
BPI project, sponsored by Joe, recently cleared the
approval hurdle, and Brian helped bring the project
through project initiation. Now that the approval com-
mittee has given the go-ahead, Brian has been working
on the project’s analysis plan.

One evening, while playing golf with a friend who
works in the manufacturing operations department,
Brian learned that Joe wants to push the project’s time
frame up from Brian’s original estimate of 13 months.
Brian’s friend overheard Joe say, “I can’t see why that

IS project team needs to spend all that time ‘analyzing’
things. They’ve got two weeks scheduled just to look at
the existing system! That seems like a real waste. I
want that team to get going on building my system.”

Because Brian has a little inside knowledge about
Joe’s agenda for this meeting, he has been considering
how to handle Joe. What do you suggest that Brian tell
Joe?

3. Barry has recently been assigned to a project team that
will be developing a new retail store management sys-
tem for a chain of submarine sandwich shops. Barry
has several years of experience in programming, but
has not done much analysis in his career. He was a lit-
tle nervous about the new work he would be doing, but
was confident that he could handle any assignment he
was given.

One of Barry’s first assignments was to visit one of
the submarine sandwich shops and prepare an obser-
vation report on how the store operates. Barry planned
to arrive at the store around noon, but he chose a store
in an area of town he was unfamiliar with, and due to
traffic delays and difficulty in finding the store, he did
not arrive until 1:30 P.M. The store manager was not
expecting him and refused to let a stranger behind the
counter until Barry had him contact the project spon-
sor (the director of store management) back at com-
pany headquarters to verify who he was and what his
purpose was.

After finally securing permission to observe, Barry
stationed himself prominently in the work area behind
the counter so that he could see everything. The staff
had to maneuver around him as they went about their
tasks; however, there were only occasional minor col-
lisions. Barry noticed that the store staff seemed to be
going about their work very slowly and deliberately,
but he supposed that was because the store wasn’t very
busy. At first, Barry questioned each worker about
what he or she was doing, but the store manager even-
tually asked him not to interrupt their work so much—
he was interfering with their service to the customers.

By 3:30, Barry was a little bored. He decided to
leave, figuring that he could get back to the office and
prepare his report before 5:00 P.M. that day. He was
sure that his team leader would be pleased with his
quick completion of his assignment. As he drove, he
reflected, “There really won’t be much to say in this
report. All they do is take the order, make the sand-
wich, collect the payment, and hand over the order. It’s
really simple!” Barry’s confidence in his analytical
skills soared as he anticipated his team leader’s praise.

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 143

144 Chapter 3 Requirements Determination

Back at the store, the store manager shook his head,
commenting to his staff, “He comes here at the slow-
est time of day on the slowest day of the week. He
never even looked at all the work I was doing in the
back room while he was here—summarizing yester-
day’s sales, checking inventory on hand, making up
resupply orders for the weekend … plus he never even
considered our store opening and closing procedures.
I hate to think that the new store management system
is going to be built by someone like that. I’d better
contact Chuck (the director of store management) and
let him know what went on here today.” Evaluate
Barry’s conduct of the observation assignment.

4. Anne has been given the task of conducting a survey of
sales clerks who will be using a new order entry system
being developed for a household products catalog com-
pany. The goal of the survey is to identify the clerks’
opinions on the strengths and weaknesses of the current
system. There are about 50 clerks who work in three
different cities, so a survey seemed like an ideal way of
gathering the needed information from the clerks.

Anne developed the questionnaire carefully and
pretested it on several sales supervisors who were
available at corporate headquarters. After revising it
according to their suggestions, she sent a paper ver-
sion of the questionnaire to each clerk, asking that it
be returned within one week. After one week, she had
only three completed questionnaires returned. After
another week, Anne received just two more completed
questionnaires. Feeling somewhat desperate, Anne
then sent out an e-mail version of the questionnaire,
again to all the clerks, asking them to respond to the
questionnaire by e-mail as soon as possible. She
received two e-mail questionnaires and three mes-
sages from clerks who had completed the paper ver-
sion expressing annoyance at being bothered with the
same questionnaire a second time. At this point, Anne
has just a 14% response rate, which she is sure will not
please her team leader. What suggestions do you have
that could have improved Anne’s response rate to the
questionnaire?

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 144

c03RequirementsDetermination.qxd 9/22/11 9:47 AM Page 145

This page is intentionally left blank

A N A L Y S I S

T A S K C H E C K L I S T

P L A N N I N G A N A L Y S I S D E S I G N

▼

Use requirements elicitation techniques (interview,

JAD session, questionnaire, document analysis, and

observation)

Apply requirements analysis strategies as needed to

discover underlying requirements

Develop the requirements definition

Develop use cases

Develop data flow diagrams

Develop entity relationship model

Normalize entity relationship model

✔

P L A N N I N G

✔

✔

c04UseCaseAnalysis.qxd 9/30/11 10:02 AM Page 146

I M P L E M E N TAT I O N

se cases are used to explain and document the interaction that is required
between the user and the system to accomplish the user’s task. Use cases are cre-

ated to help the development team understand more fully the steps that are involved in
accomplishing the user’s goals. Once created, use cases often can be used to derive
more detailed functional requirements for the new system.

OBJECTIVES

■ Explain the purpose of use cases in the analysis phase of the SDLC.
■ Describe the various parts of a use case and the purpose of each part.
■ Explain the process used to create a use case.
■ Describe how use cases contribute to the functional requirements.
■ Describe how use cases inform the development of test plans.

CHAPTER OUTLINE

C H A P T E R 4

U

USE CASE
ANALYSIS

Introduction
Use Cases

Elements of a Use Case
Alternative Use Case Formats
Use Cases and the Functional

Requirements

Use Cases and Testing
Building Use Cases

Applying the Concepts at Tune Source
Identifying the Major Use Cases
Elaborating on the Use Cases

Summary

c04UseCaseAnalysis.qxd 9/30/11 10:02 AM Page 147

INTRODUCTION

Chapter 3 discussed the overall process of the analysis phase of the SDLC, resulting in
the system proposal deliverable. Within the system proposal is the requirements defi-
nition, defining exactly what the new system should do. As we previously discussed, a
key aspect of determining the requirements for the new system is understanding the
user requirements: the things the users need to accomplish with the new system. In this
chapter, we discuss use cases as a means of expressing user requirements. Since one
of our goals in the systems development project is to create usable software, it is imper-
ative to know what the users intend to do with it. Use cases help us understand and
clarify the users’ required interactions with the system and can reveal most, if not all,
functional requirements of the new system. Consequently, use cases are used exten-
sively in the analysis phase when working with the users in interviews or workshop
settings as a means of discovering user and functional requirements.

For many years, traditional requirements elicitation techniques involved ask-
ing the users what they wanted the system to do. The systems analysts would sit
down with users and try to express what the system should do by drawing process
models and data models. This was a challenge for the users for several reasons.
First, the users may not know what is and is not possible for the system to do. Users
are not likely to truly understand the capabilities and limitations of information sys-
tems technologies, especially new advances in technology. Second, users may have
difficulty envisioning new ways to redesign business processes. Most of us find cre-
ating new ways of doing things to be a challenge because we are so accustomed to
things being done the “old way.” Third, it is common for users to describe things
they think they want from the new system, but our focus should be on the real needs
for the new system. Finally, users often found it difficult to learn the process and
data modeling languages used by the analysts.

Consequently, the concept of the use case has evolved as an important com-
ponent of determining requirements for the new system. Use cases originated as a
part of the object-oriented development world (see Chapter 14), but have been
accepted as a useful tool regardless of the development methodology in use. This is
not surprising since in any development approach (waterfall, RAD, or agile) we
need to hear and understand what the user needs to accomplish with the system.
Use cases are especially valuable for business system applications and Web sites.
Both of these types of systems commonly involve extensive user interactions, so the
use case is particularly helpful. Use cases are not as useful in other settings, such
as batch processes, computationally intensive applications, or data warehousing.
These settings have extensive “internal” complexity but limited user interactions.
Therefore, the use case is not necessarily the best tool to use. As always, the analyst
needs to be skilled in using a number of tools and must be able to select and apply
the appropriate ones for the situation.

A use case represents how a system interacts with its environment by illus-
trating the activities that are performed by the users of the system and the system’s
responses. The goal is to create a set of use cases that describe all the tasks that
users need to perform with the system. Use cases are often thought of as an external
or functional view of a business process, showing how the users view the process
rather than the internal mechanisms by which the process operates. Since use cases
describe the system’s activities from the user’s perspective in words, user involve-
ment is essential in their development. Therefore, creating use cases helps ensure
that users’ insights are explicitly incorporated into the new system.

148 Chapter 4 Use Case Analysis

c04UseCaseAnalysis.qxd 9/30/11 10:02 AM Page 148

Once the team has created a set of use cases that describe the things the users
need to accomplish with the new system, there will be a number of important con-
tributions to the analysis phase. First, the use cases will reveal considerable detail
about the functional requirements of the new system. System developers commonly
find that a well-constructed set of use cases specifies the majority of functional
requirements. Second, use cases are very helpful in understanding exceptions, spe-
cial cases, and error handling requirements in the new system. These requirements
are easy to overlook, but use cases help to discover them. Finally, the text-based use
case is easy for the users to understand, but it also flows easily into the creation of
process models (Chapter 5) and the data model (Chapter 6), which are used by the
analysts to more fully define the software that will be developed in the new system.

At one time, organizations applying traditional system development techniques
used what was called business scenarios to describe user interactions with the system,
while organizations applying object-oriented techniques (see Chapter 14) used what
they called use cases. At present, these distinctions have largely disappeared and the
term use case is widely accepted.1 The use case approach is the same whether the
project team is focusing on understanding the as-is system or defining the to-be sys-
tem, but obviously, the focus is different; the as-is model focuses on current business
processes, whereas the to-be model focuses on desired business processes.

In this chapter, we first explain how to read use cases and describe their basic
elements. We will depict several different styles of use cases. Then we describe the
process applied to build use cases.

USE CASES

A use case depicts a set of activities performed to produce some output result. Each
use case describes how an external user triggers an event to which the system must
respond. For example, in a video store system, a customer might rent a DVD or
return a DVD, or a DVD might become overdue. The acts of renting or returning
DVDs and the passage of time are all events triggering a set of activities the system
must perform. With this type of event-driven modeling, everything in the system
can be thought of as a response to some trigger event. When there are no events, the
system is at rest, patiently waiting for the next event to trigger it. When a trigger
event occurs, the system (and the people using it) responds, performs the actions
defined in the use case, and then returns to the waiting state.

In some situations, the process may be “small,” such as the actions that are per-
formed when a DVD is rented in the previous example. In more complex systems
(such as the Tune Source example in this book), a use case may require several distinct
activities, some of which are performed each time the use case is activated and some
of which are performed only occasionally (e.g., consider the return of a rented DVD,
which very rarely will be returned with damage). Simple use cases may have only one
path through them, while complex use cases may have several possible paths.

Use Cases 149

1 As you will see in Chapter 14, object-oriented techniques take the text-based use cases we describe in this
chapter and create use case diagrams before moving to modeling structure and behavior (similar to the data
and process models we describe in the next chapters). Use case diagrams are described in Chapter 14. We
focus only on the text descriptions of the use cases in this chapter. For a more detailed description of business
scenarios, see Karen McGraw and Karen Harbison, User-Centered Requirements: The Scenario-Based Engi-
neering Process, Mahwah, NJ: Lawrence Erlbaum Associates, 1997. For a more detailed description of use
cases, see I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard, Object-Oriented Software Engineering:
A Use Case Driven Approach, Reading, MA: Addison-Wesley, 1992.

c04UseCaseAnalysis.qxd 9/30/11 10:02 AM Page 149

150 Chapter 4 Use Case Analysis

We create use cases when they are likely to help us better understand the sit-
uation and help convey the required user-system interactions. For very simple
processes that are well explained in the requirements definition, we often do not
need to create a use case. The information in the requirements definition itself is
sufficient to describe what the system should do.

It is important to create use cases whenever we are reengineering processes or
making any changes to business processes that will significantly alter the way peo-
ple work. Remember that the use case describes what the system will do from the
user’s perspective. Therefore, it is critical to involve the user in the creation of the
use case so that the user understands the interactions planned for the new system.
Also, the user helps to ensure that no essential steps or tasks are omitted from the
use case and that rare, special circumstances are included.

Creation of use cases is often done as a part of interview sessions with users
and as a part of JAD sessions. Gathering the information needed for use cases is a
relatively straightforward process—as we will see, use cases are fairly simple to
understand and interpret. It does take considerable practice, however, to learn to
write a meaningful and complete use case. Users work closely with the project team
to create the use cases. In some instances, after some practice, experienced users
are able to write the use cases themselves.

Elements of a Use Case

Use cases can vary considerably from one organization to another in terms of the con-
tent included, the format followed, and the degree of formality employed. We begin
with an example use case that is fairly formal and detailed. This use case is based on
the scenario of a lawn care company that employs specially trained workers to apply
lawn chemicals (fertilizers and pesticides) to customers’ lawns. The company main-
tains a chemical supply warehouse where the employees obtain the needed chemicals
for their lawn care assignments. The process of obtaining lawn chemicals involves
three main steps: authenticating the employee and ensuring he has the required train-
ing and credentials (a legal requirement for those who work with potentially danger-
ous materials such as pesticides); submitting a request for the needed chemical; and
picking up the chemical from the chemical supply warehouse. The example use case
focuses on the second step of this overall process: requesting a chemical. Refer to
Figure 4-1 as we describe the sections of the use case. There are numerous pieces of
information in the use case, each with an important role to play in describing the
response to the triggering event. We will describe each section starting at the top.

Basic Information Each use case has a name and number. The name should be as
simple, yet descriptive, as possible. The number is simply a sequential number that
serves to reference each use case (e.g., UC-2). The description briefly conveys the
use case’s purpose.

The priority may be assigned to indicate the relative significance of the use
case in the overall system. Some use cases will describe essential activities that the
system must perform and hence will have a high priority level. Other use cases may
describe activities that are less critical, having medium or low priority. Classifying
the priority level is especially useful with a methodology that implements the system
in a series of versions so that the most essential system features can be targeted first.

The actor refers a person, another software system, or a hardware device that
interacts with the system to achieve a useful goal. Some organizations use the term
user role rather than actor because there may be several different user groups who

c04UseCaseAnalysis.qxd 9/30/11 10:02 AM Page 150

Use Cases 151

FIGURE 4-1
Request a Chemical Use Case

Use Case Name: Request a chemical ID: UC-2 Priority: High
Actor: Lawn Chemical Applicator (LCA)
Description: The Lawn Chemical Applicator (LCA) specifies the lawn chemical needed for a job by entering its name or ID number. The sys-
tem satisfies the request by reserving the quantity requested or the quantity available and notifying the Chemical Supply Warehouse of
the pick-up.
Trigger: A Lawn Chemical Applicator (LCA) needs a chemical for a job.
Type: External Temporal
Preconditions:

1. The LCA identity is authenticated.
2. The LCA has necessary training and credentials on file.
3. The Chemical Supply datastore is up-to-date and on-line.

Normal Course: Information for Steps:
1.0 Request a lawn chemical from the chemical supply warehouse.

1. The LCA specifies the desired lawn chemical Chemical name or ID
2. The system verifies the chemical is approved for usage List of approved chemicals
3. The system displays the quantity of the lawn chemical on hand Quantity on hand
4. The LCA specifies the quantity needed Quantity needed
5. The system asks the LCA to confirm the request for the quantity needed or the

quantity available (Alternative Course 1.1) Request confirmation
6. The system gives the LCA a Chemical Pick-up Authorization for the quantity requested Chemical Pick-up Authorization
7. The system notifies the Chemical Supply Warehouse of the chemical pick-up Chemical Pick-up Notice
8. The system stores the Lawn Chemical Request in the Chemical Request datastore Lawn Chemical Request

Alternative Courses:
1.1 Quantity available is less than quantity needed (branch at step 5)

1. The system asks the LCA if he wants the quantity available or to cancel the request
2a. The LCA asks to take the quantity available Request quantity available
3a. The system changes the quantity requested to the quantity available
4a. The system gives the LCA a Chemical Pick-up-Authorization for the quantity available Chemical Pick-up Authorization
5a. The system notifies the Chemical Supply Warehouse of the chemical pick-up Chemical Pick-up Notice
6a. The system stores the Lawn Chemical Request in the Chemical Management System Lawn Chemical Request
7a. The system notifies Purchasing of the chemical outage Chemical Outage Notice
2b. The LCA asks to cancel the request Cancellation
3b. The system terminates the use case

Postconditions:
1. The Lawn Chemical Request is stored in the Chemical Management System.
2. The Chemical Pick-up Authorization is produced for the LCA.
3. The Chemical Supply Warehouse is notified of the chemical pick-up.
4. Purchasing is notified of chemical outage.

Exceptions:
E1: Chemical is no longer approved for use (occurs at step 2)

1. The system displays message. “That chemical is no longer approved for use”
2. The system asks the LCA if he wants to request another chemical or to exit
3a The LCA asks to request another chemical
4a. The system starts Normal Course again
3b. The LCA asks to exit
4b. The system terminates the use case

Summary
Inputs Source Outputs Destination

Chemical name or ID LCA Chemical Pick-up LCA
List of approved chemicals Lawn Chemicals Supply datastore Authorization
Chemical quantity on hand Lawn Chemicals Supply datastore Chemical Pick-up Notice Chemical Supply
Quantity needed LCA Warehouse
Request confirmation LCA Lawn Chemical Request Chemical Request
Request quantity LCA datastore
available or Chemical Outage Notice Purchasing
cancellation

�

c04UseCaseAnalysis.qxd 11/3/11 7:47 AM Page 151

interact with the system in the same way. For example, an order entry use case could
be performed with either customers or order entry clerks performing the user role.
In our example, the actor is the Lawn Chemical Applicator (LCA) who is employed
by the lawn care company to apply the lawn chemicals to customers’ lawns.

Another element of basic information is the trigger for the use case—the
event that causes the use case to begin. A trigger can be an external trigger, such as
a customer placing an order, the fire alarm ringing, or in our example, the LCA
needing a chemical for a job. Triggers can also be a temporal trigger, such as a
DVD becoming overdue at the video store or time to pay the rent.

Preconditions Use cases are often performed in a sequence in order to accomplish
an overall business task. While it might be possible to describe everything in one
very large use case, that use case could become unwieldy. Therefore, it is common
practice to create smaller, more focused use cases breaking the whole process down
into parts. When this practice is followed, it is important to define clearly what
needs to be accomplished before each use case begins. These preconditions define
the state the system must be in before the use case commences. In our example, you
can see that in order for an LCA to request a chemical, he must be authenticated,
his training and credentials must be up to date, and the datastore (a generic data
repository) containing Chemical Supply information must be available and up to
date. These tasks are taken care of in a different use case prior to the performance
of this use case. Once these preconditions are established, the LCA can perform the
Request a chemical use case.

Normal Course The next major part of a use case is the description of the major
steps that are performed to execute the response to the event, the inputs used for the
steps, and the outputs produced by the steps. The normal course lists the steps that
are performed when everything flows smoothly in the system. This is sometimes
called the “happy path” because there are no problems or issues that arise when the
steps are able to be followed normally.

As you read through the steps, you can clearly understand the interactions that
occur between the user and the system. The steps are listed in the order in which they
are performed and you can see the “bird’s-eye” perspective illustrated in the steps,
describing what an outsider could observe while watching the user and system interact.

We also include a column in which the information that flows in or out of the
steps is recorded. By recording the information for the steps, the inputs and outputs
to the steps are clarified. We believe this helps to more fully explain the user–
system interactions outlined in the steps.

Notice step 5 in which the step defines two possible actions with an “or”
clause. This is an example of a conditional step involving a branch in the logical
flow. In this case, if the quantity of chemical on hand is not sufficient to fill the
request, the LCA is given the option of taking the quantity of chemical that is avail-
able. If that choice is made, an alternative course is followed, which is described in
the next section of the use case. Any conditional steps are clearly noted in this
fashion and alternative courses are fully described.

Alternative Courses In this section, the steps followed for alternative paths through the
use case are outlined. Alternative courses are included to depict branches in logic that
also will lead to a successful conclusion of the use case. Notice that the location where
the branch in logic from the normal course occurred is clearly stated. The course
described in our example also depicts two potential paths through these steps. If the user

152 Chapter 4 Use Case Analysis

c04UseCaseAnalysis.qxd 9/30/11 10:02 AM Page 152

decides to accept the quantity of chemical available, steps 2a–7a will be performed;
however, if the user decides to cancel the request, steps 2b–3b will be performed.

Postconditions As we explained in the preconditions section, use cases may be
performed in a series in order to accomplish the overall user goal. In this section of
the use case, we define the final products of this use case. In our example, the Lawn
Chemical Request is stored, the LCA has the Chemical Pick-up Authorization, the
Chemical Supply Warehouse is notified of the pick-up, and Purchasing is notified
of any chemical outage. These postconditions also serve to define the preconditions
for the next use case in the series. In our example, that would be the use case that
describes the chemical pick-up at the Chemical Supply Warehouse.

Exceptions In order to be complete, a use case should describe any error conditions or
exceptions that may occur as the use case steps are performed. These are not normal
branches in decision logic, but are unusual occurrences or errors that could potentially
be encountered and will lead to an unsuccessful result. As the use case is written and
reviewed, the analyst should ask the user if there are any special situations or errors that
could occur with each step. If there are, they should be explained as an exception. We
want to be sure that the system does not fail while in use because of an error that no
one thought about. As you probably know, in many systems, handling exceptions can
require more coding effort than the normal and alternative courses. It is essential to try
to identify these trouble spots during the analysis phase so we don’t encounter unex-
pected error conditions and crashes during testing and implementation.

In our example, at step 2 in the normal course, it is possible that a chemical
requested by the LCA is no longer available for use. This happens when a chemi-
cal is deemed too harmful in some way and is legally restricted. The E1 exception
outlines the steps followed to give the LCA a chance to request a different chemi-
cal (steps 3a–4a) or exit (steps 3b–4b).

Summary Inputs and Outputs The final section of the use case summarizes the set of
major inputs and outputs to the steps of the use case. Each of the major inputs and out-
puts to the use case are listed, along with its source or destination. These are all possible
inputs and outputs, not just those that are part of the normal course. In this area, it is
easy to see the inputs supplied by the LCA and the Chemical Supply datastore as the
use case is performed, and the outputs produced and where the outputs go.

Additional Use Case Issues Some organizations may include additional sections on
their use case forms. If appropriate, it may be helpful to include sections devoted to:

■ Frequency of use
■ Business rules
■ Special requirements
■ Assumptions
■ Notes and issues

These sections enable more detail to be listed about the use case as it is learned.
It is important to know exactly what state the system should be in before the

use case can begin and exactly what state the system should be in when the use case
is complete. That is the purpose of the precondition and postcondition sections of
the use case. In our example scenario, the use case depicted in Figure 4-1 was a part
of the larger user goal of obtaining a chemical from the Chemical Supply Ware-
house. We chose to divide that major task into three use cases that are performed in

Use Cases 153

c04UseCaseAnalysis.qxd 11/3/11 7:47 AM Page 153

a series so that each use case is less complex and does not become confusingly
large. When we take this approach, the preconditions and postconditions are essen-
tial, since the state at the conclusion of Use Case 1 (its postconditions) are also the
preconditions for Use Case 2 (our example use case), and the postconditions for
Use Case 2 are the preconditions for Use Case 3. As Figure 4-2 shows, postcondi-
tions of a use case define the required system state (preconditions) for the subse-
quent use case, essentially establishing the boundaries of each use case.

Another advantage to separating the overall user task into separate use cases is
to take advantage of potential reusability of a use case. In our example, it is likely that
there is a need to authenticate and validate credentials in several places throughout the
system. We do not need to develop separate use cases each time this task is needed;
we can simply reuse the one use case we have already created. In situations like this,
it is a good idea to add a notation on the use case (in the Notes and issues section, for
example) describing the multiple places in the system that will utilize this use case.

As you might imagine after studying Figure 4-1, it takes considerable practice to
write use cases well. You should not realistically expect to create a perfect use case on
the first try. The process of building use cases is one of gradual refinement: As users
and analysts work through the parts of the use case, they often return to previous parts
to correct them. As you gain experience, the creation of use cases will become more
intuitive. Being detailed and thorough will get you a long way toward a use case that
contributes a significant understanding of the system that we need to develop.

Also, keep in mind that use cases are read and used by two very different
groups of people, the users/business experts and the system development experts. It
is hard to find a middle ground writing style that will provide the precision needed
by the development experts without overwhelming the users/business experts. Many
organizations have found that use case writing teams are helpful. On the team, there
should be at least one person who has a programming perspective in order to ensure
adequate precision and accuracy in the use case; another person who has deep
knowledge of the business rules that the system must enforce; and another person
who is thoroughly familiar with how the system will actually be used.

Alternative Use Case Formats

The use case in Figure 4-1 represents a fully dressed use case.2 This means that the use
case is very thorough, detailed, and highly structured. This use case also is written as
an essential use case, so that it depicts the user–system interactions as abstract,
technology-independent steps. For example, in step 1 of the Normal Course, “the

154 Chapter 4 Use Case Analysis

FIGURE 4-2
Chain of Use Cases with Boundaries

Authenticate and
validate credentials

Obtain a chemical

Request a chemical Pick up chemical

P
re

co
n

d
it

io
n

s

P
o

st
co

n
d

it
io

n
s

P
o

st
co

n
d

it
io

n
s

P
re

co
n

d
it

io
n

s

P
o

st
co

n
d

it
io

n
s

P
re

co
n

d
it

io
n

s

2 Alistair Cockburn, Writing Effective Use Cases (Boston, MA: Addison-Wesley, 2001).

c04UseCaseAnalysis.qxd 9/30/11 10:02 AM Page 154

LCA specifies the desired lawn chemical.” Nothing is said about the specific way
in which this will be done. This phrasing keeps our options open in terms how this
task will actually be implemented. In the analysis phase, this is the correct
perspective to take, since we do not want our users to limit their thinking to just one
way for the system to work too early in the process.

The fully dressed use case is not always required, but does provide value in
certain circumstances. Fully dressed use cases are especially valuable when:

■ User representatives are not closely engaged with the development team
throughout the project.

■ The application is complex and has a high risk associated with system failures.
■ Comprehensive test cases will be based on the user requirements.
■ Collaborating remote teams need a detailed, shared understanding of the user

requirements.3

The project team may decide that a more casual use case format is acceptable.
We show a casual use case for Request a chemical in Figure 4-3. As you can see,

Use Cases 155

3 Karl E. Weigers, Software Requirements, 2nd ed. (Redmond, WA: Microsoft Press, 2003).

Use Case Name: Request a chemical ID: UC-2 Priority: High
Actor: Lawn Chemical Applicator (LCA)
Description: The Lawn Chemical Applicator (LCA) specifies the lawn chemical needed for a job by entering its name or ID number. The system satis-
fies the request by reserving the quantity requested or the quantity available and notifying the Chemical Supply Warehouse of the pick-up.

Trigger: A Lawn Chemical Applicator (LCA) needs a chemical for a job.

Type: External Temporal

Preconditions:
1. The LCA identity is authenticated.
2. The LCA has necessary training and credentials on file.
3. The Chemical Supply datastore is up-to-date and on-line.

Normal Course:
1.0 Request a lawn chemical from the chemical supply warehouse.

1. The LCA specifies a chemical needed and the quantity needed
2. The system lists chemical and quantity on hand from Chemical Supply datastore

a. If the quantity on hand is less than the quantity needed, the LCA specifies the quantity he will take
b. Purchasing is notified of chemical shortage

3. The system gives the LCA a Chemical Pick-up Authorization for the quantity requested
4. The system notifies the Chemical Supply Warehouse of the chemical pick-up
5. The system stores the Lawn Chemical Request in the Chemical Request datastore

Postconditions:
1. The Lawn Chemical Request is stored in the Chemical Management System.
2. The Chemical Pick-up Authorization is produced for the LCA.
3. The Chemical Supply Warehouse is notified of the chemical pick-up.
4. Purchasing is notified of chemical outage.

Exceptions:
E1: Chemical is no longer approved for use (occurs at step 1)

1. The system displays message. “That chemical is no longer approved for use”
2. The system asks the LCA if he wants to request another chemical or to exit
3a. The LCA asks to request another chemical
4a. The system starts Normal Course again
3b. The LCA asks to exit
4b. The system terminates the use case

�

FIGURE 4-3
Request a Chemical Use Case—Casual Format

c04UseCaseAnalysis.qxd 9/30/11 10:02 AM Page 155

this format is less detailed than Figure 4-1. The essence of the user–system inter-
action is described, but with much less precision. It is important not to get too
caught up in figuring out the “right” level of detail. Your focus should be on describ-
ing the user’s objectives in working with the system completely and accurately so
that we will not have to rework the system later as it is being developed.

Use Cases and the Functional Requirements

As we stated earlier in the chapter, use cases are very helpful tools to use to under-
stand user requirements. It is tempting for novice analysts, however, to incorrectly
assume that the use case is all that is needed to fully define what the system must
do. Use cases do explain the user’s interaction with the system, but they omit a lot
of details that are necessary to know before the system can be developed. Use cases
only convey the user’s point of view. Behind the scenes processing details are prob-
ably not included in the use case. Transforming the user’s view into the developer’s
view by creating functional requirements is one of the important contributions that
the systems analyst makes to the development project. In Figure 4-4, functional
requirements based on the Normal Course in the Request a chemical use case have
been derived. As you can see, these requirements give more information to the
developer about what the system must do to allow the user to accomplish his goals.

Use Cases and Testing

Many organizations develop test plans early in the development process. This strat-
egy has a number of advantages, including giving the testing/quality assurance per-
sonnel an early understanding of the system under development. By studying the use
cases and the functional requirements derived from them, the testing personnel can
readily identify elements of the tests they will want to perform when the system enters
testing. When it comes time to actually perform the tests, the testing personnel are
well prepared and not forced to develop and perform the tests in a rush. In addition,
the quality assurance personnel often are able to make helpful suggestions about the
system and it is valuable to gain this feedback early in the development process.

156 Chapter 4 Use Case Analysis

• The system shall allow the LCA who is logged in to the Chemical Request system to
request one or more chemicals.

• The system shall allow the LCA to specify a chemical by entering its ID number or name.
• The system shall notify the LCA if the chemical is no longer approved for use.
• The system will prompt the LCA for the quantity of the chemical needed.
• The system shall search the Chemical Supply datastore for the quantity available of the

requested chemical and display the quantity available.
• The system shall prompt the user to confirm his request.
• When the request is confirmed, the system shall do the following as a single transaction:

o Assign the next Chemical Request number to the Chemical Request, assign the cur-
rent date and time to the Chemical Request, record the LCA’s name and ID number
on the request.

o Update the amount available of the chemical by subtracting the quantity requested
from the quantity available in the Chemical Supply datastore.

o Print the Chemical Pick-up Authorization Notice for the LCA.
o Send a message to the Chemical Supply Warehouse of the approved Chemical Pick-up.
o Record the approved Chemical Request in the Chemical Request datastore, marked

as “Pending Pick-up.”
• The system shall prompt the LCA to exit the system or to make another chemical request.

FIGURE 4-4
Chemical Request (Normal Course)
Functional Requirements

c04UseCaseAnalysis.qxd 9/30/11 10:02 AM Page 156

Use Cases 157

Building Use Cases

Use cases can be used for both the as-is and the to-be systems; as-is use cases focus
on the current system, whereas to-be use cases focus on the desired new system.
When used for the to-be system, it is fairly common to identify additional require-
ments from the use cases that were not completely specified in the requirements
definition. This, in fact, is one of the reasons use cases are important. After the use
cases have been built, analysts often return to the requirements definition and revise
it according to their improved understanding of the system.

The most common ways to gather information for the use cases are through
the same requirement determination techniques discussed in the previous chapter,
especially interviews and JAD sessions. Observation also is sometimes used for as-is
use cases. Regardless of whether interviews or JAD sessions are used, research
shows that some ways to gather the information for use cases are better than others.
The most effective process has four steps.4 (See Figure 4-5.) These four steps are

1. Identify the use cases. Start a use case report form for each use case Ask who, what, when, and where about the use
by filling in the name, description and trigger. cases (or tasks).
If there are more than nine use cases, What are the major tasks that are performed?
group them into packages. What triggers this task? What tells you to

perform this task?
2. Identify the major steps For each use case, fill in the major steps needed Ask how about each use case.

within each use case. to complete the task. What information/forms/reports do you need to
perform this task?

Who gives you these information/forms/reports?
What information/forms/report does this produce

and where do they go?
How do you produce this report?
How do you change the information on the report?
How do you process forms?
What tools do you use to do this step (e.g., paper,

e-mail, phone)?
3. Identify elements For each step, identify its triggers and its inputs Ask how about each step.

within steps. and outputs. How does the person know when to perform this
step?

What forms/reports/data does this step produce?
What forms/reports/data does this step need?
What happens when this form/report/data is not

available?
4. Confirm the use case. For each use case, validate that it is correct Ask the user to execute the process, using the written

and complete. steps in the use case—that is, have the user
role-play the use case.

a We have used the typical questions for the as-is model (e.g., “What are the…”). These same questions can be used for the to-be model, but they would be
phrased in the future tense (e.g., “What should be the…”).

Step Activities Typical Questions Askeda

FIGURE 4-5
Steps for Writing for Use Cases

4 The approach in this section is based on the work of George Marakas and Joyce Elam, “Semantic Structuring
in Analyst Acquisition and Representation of Facts in Requirements Analysis,” Information Systems Research,
1998, 9(1), 37–63, as well as our own: Alan Dennis, Glenda Hayes, and Robert Daniels, “Business Process Mod-
eling with Group Support Systems,” Journal of Management Information Systems, 1999, 15(4): 115–142.

c04UseCaseAnalysis.qxd 9/30/11 10:02 AM Page 157

performed in order, but, of course, the analyst often cycles among them in an
iterative fashion as he or she moves from use case to use case.

Identify the Major Use Cases As stated previously, use cases document one or more
functional requirements outlined in the requirements definition. Therefore, identifi-
cation of use cases begins with the requirements definition. The process-oriented
functional requirements—things the system must do—suggest a direct action result-
ing from an external or temporal event. The information-oriented functional require-
ments—content the system must have—suggest things that happen involving
information or time triggers to collect or produce information. Let’s begin an exam-
ple of building use cases by revisiting the Holiday Travel Vehicles scenario. We have
already seen a requirements definition for this situation (Figure 3-3). How was this
information obtained? Figure 4-6 contains a transcript of an initial interview

158 Chapter 4 Use Case Analysis

Interview transcript: Sarah (systems analyst) and Hal (owner, Holiday
Travel Vehicles)

Sarah: Hal, the purpose of our discussion today is for you to give me an overview of your business.
As you know, I head up a team that will be helping to develop plans for new information
systems for your business. Initially, I am interested in learning about the major activities that
are performed here as you go about your daily business. Later, I’ll be asking more detailed
questions about these activities.

Hal: Sounds good to me, Sarah. I know the recreational vehicle business pretty well, having
taken over this business from my uncle over 15 years ago. Let’s see ... well, things begin
with our placing orders for new recreational vehicles and travel trailers with our five main
suppliers. We try to keep a good balance of sizes, prices, and styles of RVs and trailers
on hand. We keep our inventory fairly low during the winter, of course. Our peak selling
seasons are spring and fall. After we place our orders, our suppliers send us the vehicles
we’ve requested. When a vehicle that we’ve ordered arrives, we check it into our records
by recording its VIN number, model, name, year, manufacturer, date of arrival, and invoice
cost. We have a new vehicle form that we fill out with all of this information, and we keep
these forms in a file cabinet in our main office.

Of course, the main activity of this business is selling those vehicles. We have a staff of
knowledgeable salespeople who are here to determine our customers’ needs and wants
and find a vehicle or trailer that will fill the bill.

Sarah: Do you record any information about a customer while he’s looking at vehicles?

Hal: No, nothing gets written down until the customer has decided on the vehicle he wants to
buy. Then the salesperson and the customer fill out the offer form. This is pretty informal,
but it does include the customer’s name, the vehicle he wants to buy, the offer he is
making, and a value for the trade-in vehicle if there is one.

Sarah: Who provides the trade-in value?

Hal: The salesperson goes to our used vehicle manager for that.

Sarah: Okay. Then what is done with the offer form?

Hal: Basically, the form contains all the details that I need to decide whether to accept the
offer or not. The salesman brings the offer form in to me, and then I’ll look up the new
vehicle form if necessary to remind me of the vehicle’s base cost. If there’s a trade-in
listed, then I’ll check our Green Book that gives value estimates for older RVs and trailers
to see if the trade-in value listed is reasonable. If I agree to all the terms, then I’ll sign
the offer form and give it back to the salesperson. If I don’t agree to everything, then I
tell the salesperson what I want changed, and he goes back to the customer to continue
the negotiation.

FIGURE 4-6
Holiday Travel Vehicles Interview Transcript

c04UseCaseAnalysis.qxd 9/30/11 10:02 AM Page 158

Use Cases 159

FIGURE 4-6 (continued)

Sarah: So then, does the salesperson make out a new offer form or does he just change the
original one?

Hal: He usually writes out a new one if the customer agrees to modify his offer. It’s less confus-
ing that way.

Sarah: What happens to the original offer form?

Hal: It just gets torn up and thrown away. We don’t want it floating around and someone acci-
dentally finds out the details of a customer’s offer.

Sarah: What if the customer doesn’t want to change his offer? Does the form just get thrown
away then, too?

Hal: No, in that case the salesperson usually keeps the offer form in his own customer file. That
way, he has a record of the customer’s offer and he can use that down the road when he
follows up with the customer and tries to persuade him to submit another offer.

Sarah: So, let’s say the customer finally gets his offer accepted. Then what happens?

Hal: Well, things get a lot more formal now. Once the offer is accepted, the salesperson fills
out a sales contract. This sales contract form contains full customer information, a complete
description of the purchase vehicle, complete details of the trade-in vehicle and trade-in
allowance, and a full description of any dealer-installed options. Then we list ...

Sarah: (interrupting): Sorry, Hal, but that’s the first time I’ve heard you mention dealer-installed
options. Tell me about them.

Hal: Oh, right, I kind of skipped that, didn’t I? Well, we sell base-model vehicles only. If cus-
tomers want them fancied-up with extras and options, we can add them, for a price, of
course! Any options that the customer wants should have been listed on the offer forms I
mentioned earlier.

Sarah: Okay. So let’s go back to when I interrupted. The sales contract is filled out with customer
information, purchased vehicle information, trade-in information, dealer-installed options ...
anything else?

Hal: Just the final negotiated price, taxes, and license fees, and the amount of the required cus-
tomer deposit. Once we’ve received the deposit check, we settle on a delivery date that
gives us the time we need to install the options, and then all parties sign the purchase
contract, and we have ourselves a deal. Oh, and we make sure we list the salesperson’s
name so he can get his commission on the sale later.

Sarah: What happens then?

Hal: Well, the customer typically goes off to arrange financing for the balance due on the pur-
chase. We don’t provide financing ourselves in-house. If the customer needs help with that,
we have a couple of local banks we direct him to that are interested in that kind of business.

We pull the new vehicle form out of our files and staple it to a new form we call the
vehicle purchase record. The vehicle purchase record is kind of a summary of the main
points of the purchase: the customer info, the vehicle info, the options added, and the final
price info. These forms go into our files, ordered by customer, so we have a record of every
customer’s vehicle purchase. At this point, we also write up a work order for the shop that
lists all the work that needs to be done to get the vehicle ready for delivery to the customer.

Sarah: So, when it’s time for a customer to take delivery on the vehicle, what happens?

Hal: The customer comes in with the money needed to finalize the sale and the trade-in vehicle,
if there is one. We go through the new vehicle with him and make sure it is satisfactory.
We then collect his money, get a final signature from him, and give him a copy of the
sales contract form. He gets the keys and is on his way! We then staple the last copy of
the sales contract with the vehicle purchase record, and it gets filed by customer name.

Sarah: What about the trade-in vehicle?

c04UseCaseAnalysis.qxd 9/30/11 10:02 AM Page 159

160 Chapter 4 Use Case Analysis

FIGURE 4-6 (continued)

Hal: We fill out a form called the used vehicle form that describes the vehicle and the trade-in
value. This is kind of like the new vehicle form we fill out when our new vehicles arrive in
inventory. This gives the information we need on the trade-in so we know how we should
price it. If it needs any work, we prepare a shop work order, the work gets done, and the
vehicle is put on the lot.

Sarah: Is there anything else you can think of that’s written down or recorded in these processes
you’ve described?

Hal: Once the customer takes final delivery, we use a sales ledger to record the actual sale and
the tax and license fees we’ve collected. Our bookkeeper needs that. Sarah, it looks like
they need me on the sales floor. Can we talk again later?

Sarah: Sure, Hal. Let me absorb everything you’ve told me today and I’ll get back in touch. This
has been a great start. Thanks!

between Hal, the owner of Holiday Travel Vehicles, and Sarah, a systems analyst
who is working on a project to provide an improved information system for the deal-
ership. This interview took place early in the project when Sarah was just getting
familiar with the organization, and basically focuses on the as-is system. Take a
moment and read the transcript now.

As you read the interview transcript, look for things that happen that cause the
dealership and its people to have to perform some tasks. These will be the major
events of the system. Once you have identified an event, try to discover how the
response to that event is produced. Chances are, the details will be obscure at this
stage, but they will be discovered later as Sarah digs deeper into the operations of
the organization. Make a list of the forms, reports, and files that are mentioned by
Hal. They will become significant as the use cases are filled out. Finally, try to
determine how the event concludes. How do we know it is complete? Is there a
final tangible result? If so, make note of that. So, go ahead and study Figure 4-6.
Make your list before continuing your reading here.

This interview gave Sarah quite a bit of information about the way the dealer-
ship operates. Following the meeting with Hal, Sarah began to organize what she
learned in the interview by identifying the major events that occur in the typical oper-
ations of Holiday Travel Vehicles and the responses made to the events. The events
suggest the primary things the users must accomplish with the system, and the
responses describe the final results of the activities performed when the event occurs.

Before looking at Sarah’s event-response list in Figure 4-7, if you have not
already done so, develop your own list based on your study of the interview tran-
script in Figure 4-6.

As shown in Figure 4-7, Sarah identified six major events from her initial con-
versation with Hal. The first two events deal with new vehicles added to inventory:
identifying the need for additional inventory and placing orders and recording
vehicles arriving from the manufacturers. Events 3, 4, and 5 are associated with
selling vehicles. Finally, event 6 is focused on dealing with trade-in vehicles. Sarah
has also listed, in the Response column, the things that signify that the response to
an event is concluded. How does her list compare to yours?

As Sarah studied the event-response list, she decided that the three events
associated with vehicle sales (events 3, 4, and 5) involved significant user–system
interactions and deserved to be expanded upon with use cases. She decided to focus
on these events first. The other events (1, 2, and 6) may be straightforward enough
that she can create detailed functional requirements without the need for use cases.

c04UseCaseAnalysis.qxd 9/30/11 10:02 AM Page 160

If that doesn’t work, she will develop use cases for them by working with the new
vehicle manager and used vehicle manager at a later time.

As she reflected on events 3, 4, and 5, Sarah could see that these events are
three parts of the overall user goal of selling a vehicle to a customer. As shown in
Figure 4-8, each event is an independent, but related part of the overall goal.

After the use cases are identified, the top parts of the use case form should be
filled in with name, ID, primary actor, short description, and trigger—it may be too
early to assign the importance level of the use case. The goal is to develop a set of
major use cases with the major information about each, rather than jumping into
one use case and describing it completely. This prevents the users and analysts from
forgetting key use cases and helps the users explain the overall set of business
processes that they are responsible for. It also helps users understand how to
describe the use cases and reduces the chance of overlap between use cases. In this
step, the analysts and users identify a set of major use cases that could benefit from
additional definition beyond the requirements definition.

Identifying use cases is an iterative process, with users often changing
their minds about what a use case is and what it includes. It is very easy to get
trapped in the details at this point, so you need to remember that the goal at this
step is to just identify the major use cases. For example, in the list of events
shown in Figure 4-7, we have defined one event as “Customer makes an offer.”
This event includes offers from customers who have trade-in vehicles as well as

FIGURE 4-7
Sample Event-Response List

1) New vehicles are needed for inventory. Purchase order is placed with vehicle manufacturer.

2) New vehicles arrive from manufacturer. Vehicle information is recorded on new vehicle
record.

3) Customer makes an offer on a new vehicle. Details of offer are recorded and presented to
owner for acceptance decision.

4) Customer offer is accepted. Details of accepted offer are recorded on a
sales contract, and customer provides a deposit.

5) Customer takes delivery on new vehicle. Customer pays for vehicle once offer is
accepted, takes possession of the vehicle, and
turns in trade-in. Details of the entire purchase
are saved.

6) Trade-in is added to used vehicle inventory. Used vehicle information is recorded on used
vehicle form.

Event Response

Use Cases 161

Record an offer Accept an offer

Sell a vehicle

Take delivery

P
re

co
n

d
it

io
n

s

P
o

st
co

n
d

it
io

n
s

P
o

st
co

n
d

it
io

n
s

P
re

co
n

d
it

io
n

s

P
o

st
co

n
d

it
io

n
s

P
re

co
n

d
it

io
n

s

FIGURE 4-8
Chain of Use Cases for Selling a Vehicle

c04UseCaseAnalysis.qxd 9/30/11 10:02 AM Page 161

162 Chapter 4 Use Case Analysis

those who don’t have trade-in vehicles. We could describe these two situations
as separate use cases, but this would create a larger set of smaller use cases.
Therefore, these two possible variations of the event will be combined into a
single use case. The trick is to select the right size so that you end up with the
major use cases that need additional explanation beyond the requirements def-
inition. Remember that a use case is a set of end-to-end activities that starts
with a trigger event and continues through many possible paths until some
output has been produced and the system is again at rest.

If the project team discovers more than eight or nine major use cases, this sug-
gests that the system is complex (or that the use cases are not defined at the right
level of detail). If there really are more than eight or nine major use cases,
the use cases are grouped together into packages of related use cases. For example, if
we were to do a more thorough study of a recreational vehicle dealership, we would
likely find more than the six events discussed in our example. The events leading to
uses cases could be grouped logically together in packages, such as all use cases for
inventory, all use cases for sales, all use cases for the shop, etc. These packages are
then treated as the major processes for the top level of the process model, with the use
cases appearing on lower levels, or are treated as separate systems and modeled as
separate systems. (Process modeling will be described in the next chapter.)

Since Sarah was focusing on three use cases, she prepared use case forms for
each with the basic information on the top of the forms (see Figure 4-9). She then
began to complete the use cases by working with a small group of salespeople from
the dealership.

Identify the Major Steps for Each Use Case At this point, the major use cases have
been defined. In short, you have filled in the top portion of the use case (basic infor-
mation). The next step is to complete the main body of the use case form. The users
and analysts work together to describe the envisioned interactions between the user
and the system in order to complete the response to the event.

Before beginning a discussion of the steps, the analyst should ask the users
what tasks need to be completed before the use case steps can begin. This helps
clarify the preconditions that are necessary for the use case. Remember that the pre-
conditions help define the starting state of the system. Record the preconditions in
the proper section on the use case form.

Next, the user–system interactions should be outlined as a series of steps in
the Normal Course section of the form. The steps focus on what an independent
observer would see the user and system do in response to the event. The users
should concentrate on the steps that are followed when everything flows smoothly,
however, make note of places where branches in logic may occur. In general, the
steps should be listed in the order in which they are performed, from first to last,
but there also may be steps that are performed only occasionally, have no formal
sequence in which they are done, or loop back and forth. The order of steps implies
a sequence, but does not require it. It is fine to list steps that have no sequence in
any order you like, but if there is a sequence, you should list the steps in that way.

Each step should be about the same size as the others. For example, if we were
writing steps for preparing a meal, steps such as “Take fork out of drawer” and “Put
fork on table” are much smaller than “Prepare cake, using mix.” If you end up with
more than nine steps or steps that vary greatly in size, you must go back and adjust the
steps. Recognizing the size of the steps takes practice, but will become natural in time.

One good approach to producing the steps for a use case is to have the users visu-
alize themselves actually performing the use case and write down the steps as if they

c04UseCaseAnalysis.qxd 9/30/11 10:02 AM Page 162

Use Cases 163

were writing a recipe for a cookbook. In most cases, the users will be able to quickly
define what they do in as-is use cases. Defining the steps for to-be use cases may take
a bit more coaching. In our experience, the descriptions of the steps change greatly as
the users work through a use case. Our advice is to use a blackboard or whiteboard that
easily can be erased (or paper with pencil) to develop the list of steps. Once the set of
steps is fairly well defined, only then do you write it on the use case form.

Occasionally, a use case is so simple that further refinement is not needed.
The analyst simply writes a brief description and does not bother to develop the
steps within the use case. The information at the top of the use case form is suffi-
cient, because the use case need not be explained in more detail. Some of the use
cases presented in the exercises at the end of this chapter are simple enough that
they do not need information beyond what is at the top of the use case form.

Once the steps have been outlined at the proper level of detail, the postcondi-
tions can be completed. Ask the users how they know they are finished with a task.
What are the tangible results of performing the steps just listed? Record these in
the Postconditions section of the form.

Sarah decided that the best way to understand the use case steps for this part
of the system was to hold a JAD workshop that involved the sales manager and two

Use Case Name: Record an offer ID: UC-3 Priority: High
Actor: Salesperson
Description: This use case describes how the salesperson records a customer offer on a vehicle.
Trigger: Customer decides to make an offer on a vehicle.

Type: External Temporal

Preconditions:
Salesperson is authenticated
Pending offers datastore is available and on-line
Vehicle inventory datastore is available and on-line

Use Case Name: Evaluate an offer ID: UC-4 Priority: High
Actor: Sales manager
Description: This use case describes how the sales manager evaluates an offer and accepts it or suggests an offer revision.
Trigger: A Pending offer is created and the sales manager is notified.
Type: External Temporal

Preconditions:
Sales manager is authenticated
Pending offer is available in the Pending Offers datastore

Use Case Name: Take delivery ID: UC-5 Priority: High
Actor: Salesperson
Description: This use case describes how the salesperson completes the vehicle sale to the customer.
Trigger: Customer has the final payment for the vehicle.
Type: External Temporal

Preconditions:
Salesperson is authenticated
Sales Contract is complete

�

�

�

FIGURE 4-9
Major Use Cases with Basic Information

c04UseCaseAnalysis.qxd 9/30/11 10:02 AM Page 163

senior salespeople. In the workshop, the participants began by describing the ini-
tial state of the system. Sarah asked them to think about what needed to be accom-
plished before the use case steps could begin. Then, she asked them to describe
how they envisioned working with the system to complete the task. Sarah was
careful to guide them to think in terms of essential steps that did not assume a par-
ticular form of system implementation. Since the goal was to describe the user-
system interactions in a new system, Sarah also helped the participants think of
what could be done using technology rather than just thinking about the “old way”
the steps were performed. As the team worked, it became clear that initially, Sarah
had only envisioned recording new offers on vehicles. She did not think about the
revision of an offer after it had been rejected. However, after discussion, the team
felt that there were only minor differences in recording a new offer versus modify-
ing a previous offer following an offer rejection. Therefore, use case 3 (Record an
offer) was written to apply to either situation. After a number of iterations and revi-
sions, the team settled on the partial use cases shown in Figure 4-10. Notice as you

164 Chapter 4 Use Case Analysis

Use Case Name: Record an offer ID: UC-3 Priority: High
Actor: Salesperson
Description: This use case describes how the salesperson records a customer offer on a vehicle. The offer may be a new offer or a revision
of a previously rejected offer.
Trigger: Customer decides to make an offer on a vehicle.
Type: External Temporal

Preconditions:
1. Salesperson is authenticated.
2. Pending offers datastore is available and on-line.
3. Vehicle inventory datastore is available and on-line.
4. Rejected offers datastore is available and on-line.

Normal Course: Information for Steps:
1. Salesperson specifies the offer vehicle using the vehicle ID number.
2. The system checks for any pending offers on the vehicle.
3. If there is an offer pending on the vehicle, the system notifies the salesperson and the use

case ends.
4. If there are no pending offers on the vehicle, the system asks if this is a new offer or an

offer revision.
5. If this is an offer revision,

a. The salesperson specifies the ID of the previous offer.
b. The system fills the offer form with the content of the previous offer from the Rejected

Offers datastore.
Otherwise,
a. The system fills the offer form with details on the offer vehicle.

6. Salesperson supplies/modifies additional information for the offer, including customer
information and the specific offer details (Cash plus trade-in value, desired dealer options).

7. The system displays offer summary.
8. The salesperson is asked to obtain customer permission to confirm the offer.
9. If not confirmed, the offer is discarded, otherwise, the confirmed offer is stored as a

Pending Offer
10. A copy of the Pending Offer is printed for the customer.
11. A Pending Offer Notice is sent to the sales Manager for evaluation and approval.

Postconditions:
1. Pending Offer is stored.
2. Sales manager is sent notice of pending offer.

�

FIGURE 4-10
Major Use Cases with Steps Completed

c04UseCaseAnalysis.qxd 9/30/11 10:02 AM Page 164

Use Case Name: Evaluate an offer ID: UC-4 Priority: High
Actor: Sales manager
Description: This use case describes how the sales manager evaluates an offer and accepts it or rejects it with a reason.
Trigger: A Pending offer is created and the sales manager is notified.
Type: External Temporal

Preconditions:
1. Sales manager is authenticated
2. Pending offer is available in the Pending Offers datastore

Normal Course: Information for Steps:
1. The sales Manager retrieves the Pending Offer from the Pending Offer datastore.
2. The Sales Manager uses the Vehicle ID number to retrieve the Vehicle Record on

the vehicle
3. The system prompts the Sales Manager to Accept or Reject the offer.
4. If the offer is rejected,

a. The system prompts the Sales Manager to provide a reason for the rejection.
b. An offer rejection notice including the reason is sent to the salesperson.
c. The Pending Offer is removed from the Pending Offers datastore and stored as a Rejected

Offer in the Rejected Offers datastore accessible only to the logged in salesperson.
5. If the offer is accepted,

a. The system uses information from the Pending Offer to produce a Sales Contract.
b. The Sales Contract is stored in the Pending Sales Contracts datastore.
c. Two copies of the Sales Contract are printed for the Salesperson and customer.
d. The Pending Offer is removed from the Pending Offers datastore and stored in the Accepted

Offers datastore.
e. The customer deposit is recorded in the Deposits datastore
f. Any dealer options specified in the offer are used to prepare a Shop Work Order, which is

stored in the Shop work Orders datastore and sent to the Shop Manager.
Postconditions:

1. Sales Contract is recorded in Pending Sales Contract datastore.
2. Pending Offer is removed from Pending Offers and added to Accepted Offers or to Rejected Offers.
3. Customer deposit amount is recorded for bookkeeper.
4. Work to be done on the sale vehicle is recorded as a show Work Order and Shop Manager is notified.

�

Use Cases 165

Use Case Name: Take delivery ID: UC-5 Priority: High
Actor: Salesperson
Description: This use case describes how the salesperson completes the vehicle sale to the customer.
Trigger: Customer has the final payment for the vehicle.
Type: External Temporal

Preconditions:
1. Salesperson is authenticated.
2. Sales Contract is available in Pending Sales Contract datastore.

Normal Course: Information for Steps:
1. The salesperson retrieves the Sales Contract using the contract number.
2. The system asks the salesperson to confirm that the customer accepts the vehicle and has

provided the required payment (cash plus trade-in).
3. If confirmed,

a. the system stores the Sales contract in the Final Sales Contract datastore.
b. A Final Sales Contract is printed for the customer.
c. Payment is recorded.
Otherwise, the use case ends.

Postconditions:
1. The Sales Contract is recorded in the Final Sales Contract datastore
2. Payment is recorded.

�

FIGURE 4-10 (continued)

c04UseCaseAnalysis.qxd 9/30/11 10:02 AM Page 165

166 Chapter 4 Use Case Analysis

look at the examples in Figure 4-10 that Sarah has opted for a style that is not quite
as formal as the use case in Figure 4-1, but also not quite as casual as the use case
in Figure 4-3. Sarah’s style is suitable for her situation and is sufficient to provide
the detail that her team requires.

Identify Elements within Steps At this point, the steps have been described, but not
the elements that further define and link the steps. In other words, the use case
forms in Figure 4-10 require some final work before they are complete. The last col-
umn (“Information for Steps”) must be completed and arrows may be drawn to
describe inputs and outputs from the steps. See Figure 4-11 for the completed Hol-
iday Travel Vehicles use cases.

The goal at this point is to identify the major inputs and outputs for each step.
One could identify the inputs and outputs in great detail, but this would make it dif-
ficult to list them concisely in the summary area at the bottom of the form. In our
example, we have chosen to refer to the inputs and outputs broadly rather than spec-
ifying great detail. Another solution would be to identify detailed information for
the steps, but to provide only general categories in the summary area of the use case
form. For example, if a step needs the customer name, address, and phone number,
we might note these in the step description but list only “customer information” as
the major input at the top of the form.

The users and analysts now return to the steps in the use case and begin trac-
ing the flow of the steps. Typically, this means asking what inputs (e.g., informa-
tion, forms, reports) are used by each step or what outputs it produces. These are
written in the last column on the use case form, with an arrow pointing into or out
of a step (see Figure 4-11). Sometimes, forms, reports, and information will flow
from one step to the next to the next; these can be shown by arrows pointing from
step to step.

It is not unusual at this point for users to discover that they forgot to list entire
steps during their first time through the use case. These previously omitted steps are
simply added to a revised use case. Our experience has shown that users can forget
to include seldom used activities that occur in special cases (e.g., when data is not
available or when something unexpected occurs), so it is helpful to carefully

Create a set of use cases for the fol-
lowing high-level requirements in a housing system run by
the Campus Housing Service. The Campus Housing Ser-
vice helps students find apartments. Owners of apart-
ments fill in information forms about the rental units they
have available (e.g., location, number of bedrooms,
monthly rent), which are entered into a database. Stu-
dents can search through this database via the Web to
find apartments that meet their needs (e.g., a two-bed-

room apartment for $800 or less per month within 1/2
mile of campus). They then contact the apartment owners
directly to see the apartment and possibly rent it. Apart-
ment owners call the service to delete their listing when
they have rented their apartment(s).

In building the major use cases, follow the four-step
process: Identify the use cases, identify the steps within
them, identify the elements within the steps, and confirm
the use cases.

4-1 CAMPUS HOUSINGY O U R

T U R N

c04UseCaseAnalysis.qxd 9/30/11 10:02 AM Page 166

Use Cases 167

Use Case Name: Record an offer ID: UC-3 Priority: High
Actor: Salesperson
Description: This use case describes how the salesperson records a customer offer on a vehicle. The offer may be a new offer or a revision
of a previously rejected offer.
Trigger: Customer decides to make an offer on a vehicle.
Type: External Temporal

Preconditions:
1. Salesperson is authenticated.
2. Pending offers datastore is available and on-line.
3. Vehicle inventory datastore is available and on-line.
4. Rejected offers datastore is available and on-line.

Normal Course: Information for Steps:
1. Salesperson specifies the offer vehicle using the Vehicle ID number. Vehicle ID
2. The system checks for any pending offers on the vehicle. Existing Pending Offers
3. If there is an offer pending on the vehicle, the system notifies the Offer Pending Notice

salesperson and the use case ends.
4. If there are no pending offers on the vehicle, the system asks if this is

a new offer or an offer revision. Offer Type
5. If this is an offer revision,

a. The salesperson specifies the ID of the previous offer. Offer ID
b. The system fills the offer form with the content of the previous Offer from the Previous offer details

Rejected Offers datastore.
Otherwise,
a. The system fills the offer form with details on the offer vehicle. Vehicle details

6. Salesperson supplies/modifies additional information for the offer, including
customer information and the specific offer details (Cash Plus trade-in Value, Customer details
desired dealer options). Offer details

7. The system displays offer summary. Offer Summary
8. The salesperson is asked to obtain customer permission to confirm the offer. Offer Confirmation
9. If not confirmed, the offer is discarded, otherwise, the confirmed offer is stored as a

Pending Offer. New Pending Offer
10. A Copy of the Pending Offer is printed for the customer. Pending Offer
11. A Pending Offer Notice is sent to the Sales Manager for evaluation Pending Offer Notice

and approval.
Postconditions:

1. Pending Offer is stored.
2. Sales Manager is sent notice of pending offer.

Summary
Inputs Source Outputs Destination

Vehicle ID Salesperson Offer Pending Notice Salesperson
Existing Pending Offers Pending Offers Offer Summary Customer

datastore New Pending Offer Pending Offer
Offer Type Salesperson datastore
Offer ID Salesperson Pending Offer Customer
Previous Offer details Rejected Offers Pending Offer Notice Sales Manager

datastore
Vehicle datastore Vehicle details
Customer details Customer
Offer details Salesperson

�

FIGURE 4-11
Major Use Cases with Information for Steps Completed

c04UseCaseAnalysis.qxd 9/30/11 10:02 AM Page 167

168 Chapter 4 Use Case Analysis

Use Case Name: Evaluate an offer ID: UC-4 Priority: High
Actor: Sales manager
Description: This use case describes how the sales manager evaluates an offer and accepts it or rejects it with a reason.
Trigger: A Pending offer is created and the sales manager is notified.
Type: External Temporal

Preconditions:
1. Sales manager is authenticated.
2. Pending offer is available in the Pending Offers datastore.

Normal Course: Information for Steps:
1. The Sales Manager retrieves the Pending Offer from the Pending Pending offer ID

Offer datastore. Pending offer
2. The sales Manager uses the Vehicle ID number to retrieve the Vehicle Vehicle ID

Record on the vehicle Vehicle details
3. The system prompts the Sales Manager to Accept or Reject the offer. Offer decision
4. If the offer is rejected,

a. The system prompts the Sales Manager to provide a reason for Reason for Rejection
the rejection.

b. An offer rejection notice including the reason is sent to the Offer Rejection Notice
salesperson.

c. The Pending Offer is removed from the Pending Offers
datastore and stored as a Rejected Offer in the Rejected New Rejected Offer
Offers datastore accessible only to the logged in salesperson.

5. If the offer is accepted,
a. The system uses information from the Pending Offer to

produce a Sales Contract. New Sales Contract
b. The Sales Contract is stored in the Pending Sales Contracts

datastore.
c. Two copies of the Sales Contract are printed for the Sales Contract

Salesperson and customer.
d. The Pending Offer is removed from the Pending Offers

datastore and stored in the Accepted Offers datastore. New Accepted Offer
e. The customer deposit is recorded in the Deposits datastore Purchase Deposit
f. Any dealer options specified in the offer are used to prepare a

Shop Work Order, which is stored in the Shop Work Orders Shop Work Order
datastore and sent to the Shop Manager.

Postconditions:
1. Sales Contract is recorded in Pending Sales Contract datastore.
2. Pending Offer is removed from Pending Offers and added to Accepted Offers or to Rejected Offers
3. Customer deposit amount is recorded for bookkeeper.
4. Work to be done on the sale vehicle is recorded as a Show Work Order and Shop Manager is notified.

Summary
Inputs Source Outputs Destination

Pending offer ID Sales Manager Offer Rejection Notice Salesperson
Pending offer Pending Offers New Rejected Offer Rejected Offers

datastore datastore
Vehicle ID Sales Manager New Sales Contract Sales Contract
Vehicle details Vehicle datastore datastore
Offer decision Sales Manager Sales Contract Customer/Salesperson
Reason for Rejection Sales Manager New Accepted Offer Accepted Offers

datastore
Purchase Deposit Deposits datastore
Shop Work Order Shop Work Orders

Datastore
Shop Work Order Notice Shop Manager

�

FIGURE 4-11 (continued)

c04UseCaseAnalysis.qxd 9/30/11 10:02 AM Page 168

Use Cases 169

Use Case Name: Take delivery ID: UC-5 Priority: High
Actor: Salesperson
Description: This use case describes how the salesperson completes the vehicle sale to the customer.
Trigger: Customer has the final payment for the vehicle.
Type: External Temporal

Postconditions:
1. Salesperson is authenticated.
2. Sales Contract is available in Pending Sales Contract datastore.

Normal Course: Information for Steps:
1. The Saleperson retrieves the Sales Contract using the contract number. Sales Contract ID
2. The System asks the salesperson to confirm that the customer accepts Vehicle accepted confirmation

the vehicle and has provided the required payment (cash plus trade-in). Payment submission verification
3. If confirmed,

a. the system stores the Sales Contract in the Final Sales Contract datastore. New Final Sales Contract
b. A Final Sales Contract is printed for the customer. Final Sales Contract
c. Payment is recorded. Final Payment

Otherwise, the use case ends.

Postconditions:
1. The Sales Contract is recorded in the Final Sales Contract datastore.
2. Payment is recorded.

Summary
Inputs Source Outputs Destination

Sales Contract ID Salesperson New Final Sales Final Sales Contract
Vehicle accepted Customer Contract datastore
confirmation Final Sales Contract Customer
Payment submission Salesperson Final Payment Payments datastore
verification

�

FIGURE 4-11 (continued)

challenge the user about each step to make sure that nothing has been omitted.
Remember our process of gradual refinement; it definitely applies to the creation of
the use cases.

The Summary area for inputs and outputs found at the end of the use case
form is completed once the team is satisfied with the steps, inflow, and outflows
listed previously. In this section, all the input flows are listed in the left-most col-
umn and their source is specified in the adjacent column. In the third column, all
the output flows are listed and their destination is specified in the right-most col-
umn. As we have mentioned, this summary area allows the team to easily view
all the inputs that must be included to complete the use case and all the outputs
that will be produced by the use case. This area of the use case form will be espe-
cially useful if the team decides to depict the system with data flow diagrams,
which will be explained in Chapter 5.

Confirm the Use Case The final step is for the users to confirm that the use case is
correct as written. Review the use case with the users to make sure that each step
and each input and output are correct and that the final result of the use case is con-
sistent with the final result in the event-action list. The most powerful approach is
to ask the user to role-play, or execute the use case by using the written steps in the
use case. The analyst will hand the user pieces of paper labeled as the major inputs

c04UseCaseAnalysis.qxd 9/30/11 10:02 AM Page 169

170 Chapter 4 Use Case Analysis

Several years ago, a well-known
national real estate company built a computer-based sys-
tem to help its real estate agents sell houses more quickly.
The system, which worked in many ways like an early
version of realtor.com, enabled its agents to search the
database of houses for sale to find houses matching the
buyer’s criteria using a much easier interface than the tra-
ditional system. The system also enabled the agent to
show the buyer a virtual tour of selected houses listed by
the company itself. It was believed that by more quickly
finding a small set of houses more closely matching the
buyer’s desires, and by providing a virtual tour, the buy-
ers (and the agent) would waste less time looking at
unappealing houses. This would result in happier buyers
and in agents who were able to close sales more quickly,
leading to more sales for the company and higher com-
missions for the agent.

The system was designed with input from agents
from around the country and was launched with great
hoopla. The initial training of agents met with a surge of
interest and satisfaction among the agents, and the pro-
ject team received many congratulations.

Six months later, satisfaction with the system had
dropped dramatically, absenteeism had increased by

300%, and agents were quitting in record numbers;
turnover among agents had risen by 500%, and in exit
interviews, many agents mentioned the system as the pri-
mary reason for leaving. The company responded by
eliminating the system—with great embarrassment.

One of an agent’s key skills was the ability to find
houses that match the buyer’s needs. The system
destroyed the value of this skill by providing a system that
could enable less skilled agents to perform almost as well
as highly skilled ones. Worse still—from the viewpoint of
the agent—the buyer could interact directly with the sys-
tem, thus bypassing the “expertise” of the agent.

QUESTIONS:
1. How were the problems with the system missed?
2. How might these problems have been foreseen and

possibly avoided?
3. In perfect hindsight, given the widespread availability

of such systems on the Internet today, what should the
company have done?

Source: “The Hidden Minefields in Sales Force Automation Tech-
nologies,” Journal of Marketing, July 2002, by C. Speier and V.
Venkatesh.

4-A BUILDING A BAD SYSTEM?
IN ACTION

CONCEPTS

Review the initial Holiday Travel
Vehicle functional requirements 2-3–2-6 in Figure 3-3.
Now, based on your study of UC-4 in Figure 4-11,

revise the list of functional requirements to provide more
clarity and detail for the task of evaluating a customer
offer.

4-2 FUNCTIONAL REQUIREMENTS FOR HTV EVALUATE AN OFFERY O U R

T U R N

to the use case. The user follows the written steps like a recipe to make sure that
those steps and inputs really can produce the outputs and final result defined for the
use case.

Revise Functional Requirements Based on Use Cases We have stressed in our dis-
cussion that developing use cases enables the project team to clarify and outline in
detail the user–system interaction that is needed in the new system. As a result, the

c04UseCaseAnalysis.qxd 9/30/11 10:02 AM Page 170

Use Cases 171

FIGURE 4-12
Initial and Revised Functional
Requirements for Recording a
Customer Offer

Initial Functional Requirements for Creating a Customer Offer (from Figure 3-3)

• The system will enable salespersons to create a customer offer (2.1).

• The system will allow salespeople to know whether an offer is pending on a specific vehicle (2.2).

Revised Functional Requirements for Creating a Customer Offer (based on UC-3,
Figure 4-11)

• The system shall obtain the offer vehicle from the salesperson.

• The system shall search all Pending Offers to determine if the offer vehicle has a Pending Offer.

• The system shall notify the salesperson if a pending offer found for the offer vehicle, and the
process terminates.

• The system shall use the salesperson’s entry of “new offer” or “revised offer” to create a new offer
with vehicle details supplied from the Vehicle datastore or will fill the offer with the previous offer
details obtained from the Rejected Offers datastore.

• The system shall allow the salesperson to complete and/or modify information on the offer.

• The system shall display a complete summary of the offer before it is confirmed by the customer.

• The system allows the offer to be confirmed by the customer or cancelled.

• The system shall store new confirmed offers as a new Pending Offer in the Pending Offers
datastore.

• The system shall enable copies of the Pending Offer to be printed.

• The system shall send a notice of a new Pending Offer to the Sales Manager.

Review the initial Holiday Travel
Vehicle functional requirements 2-7–2-8 in Figure 3-3.
Now, based on your study of UC-5 in Figure 4-11, revise

the list of functional requirements to provide more clarity
and detail for the task of delivering the vehicle to the
customer.

4-3 FUNCTIONAL REQUIREMENTS FOR HTV DELIVER VEHICLEY O U R

T U R N

system to be developed is better understood. The functional requirements in the
requirements definition may be modified to reflect this more detailed understanding
and to provide insight to the development team on some “back-end” processing that
will be needed that may not be obvious from the use cases alone.

In Figure 4-12, we revisit a portion of the Holiday Travel Vehicles functional
requirements. In Figure 3-3, we had listed two requirements dealing with a cus-
tomer offer (2.1 and 2.2), shown at the top of Figure 4-12. Based on UC-3 (shown
in Figure 4-11), the functional requirements for recording an offer can be revised
as shown in the lower portion of Figure 4-12. As you compare the two versions of
functional requirements (initial and following development of the use case), the
value of creating the use case should be apparent. The new version of functional
requirements tells a much more detailed story about this task and will be very help-
ful to the members of the development team.

c04UseCaseAnalysis.qxd 9/30/11 10:02 AM Page 171

172 Chapter 4 Use Case Analysis

Customer searches and browses New entries in Favorites list and/or 1.1, 1.2, 1.3, 1.4,
Web site. interests. 3.1, 3.3

Music is selected for purchase. Purchase and download transaction 2.1, 2.2, 2.3, 2.4
is completed.

Promotions are created. Promotions are created for customers. 3.2, 3.4

Event Response Requirements

FIGURE 4-13
Tune Source Event-Response List

APPLYING THE CONCEPTS AT TUNE SOURCE

Identifying the Major Use Cases

The first step in creating the use cases is to identify the major use cases according to
the requirements definition, which was developed in the last chapter and shown in
Figure 3-13. Take a minute and carefully read the requirements definition. Identify the
major use cases that you think need additional definition before you continue reading.

It is important that you think about the use cases before you read what we
have to say about them. So, if you haven’t tried to do this, take five minutes now
and do it. We’ll wait.

The information in the functional requirements definition sometimes just
flows into the use cases, but it usually requires some thought as to how to structure
the use cases. After you read the requirements definition, you may be tempted to
identify use cases that correspond directly to the requirement categories, such as
(1) search and browse, (2) purchase, and (3) promote. However, creating an event-
response list helps to clarify the number and scope of the use cases. (See Figure 4-13.)

Thinking carefully about these requirements, we can see that there are three
significant triggering events: A customer arrives at the site to search and/or
browse music selections; a customer selects a tune to download and buy; and the
marketing department wishes to create special promotions. Let’s look at each
event in turn.

When a customer arrives at the site, he or she will normally browse a prede-
fined category of music (1.1) or enter a search for a particular title, artist, or genre
of music (1.2). If the customer has visited the site and created entries on a Favorites
list or has purchased any tunes in the past, the display of tunes on the site will be
tailored to the customer’s interests (3.1, 3.3). The customer may select one or more
music samples to which to listen (1.3, 3.1). The customer may add tunes to his
Favorites list at any time (1.4). As you can see, this event encompasses requirements
from both category 1 and category 3.

The second event, a customer triggering the purchase process, is kept sepa-
rate from the search and browse event, although both events involve the customer.
Purchasing involves gathering information about the customer (2.1), the music
selection (2.2), and the method of payment (2.1, 2.3) and verifies the payment infor-
mation (2.4) before the download process is triggered.

Finally, on a periodic basis, customer Favorites lists and purchase records are
reviewed by the marketing department so that promotions and Web specials can be
developed (3.2). Targeted promotions are created for when customers revisit the
site (3.3). Specific e-mails will be directed to customers, offering additional special
promotions (3.4).

c04UseCaseAnalysis.qxd 9/30/11 10:02 AM Page 172

Applying the Concepts at Tune Source 173

The project team felt satisfied that three use cases were sufficient to capture
the major events associated with version 1 of the new system. These use cases were
named search and browse tunes, purchase tunes, and promote tunes. The names were
chosen because they describe how the system handles each of the events. Notice
too that each use case name begins with a verb because the use case describes
the act of doing something.

The project team then began to gather additional information to define each
use case more completely. This was done on the basis of the results of the earlier
analyses described in Chapter 3, as well as through the JAD sessions held with
Carly, members of her marketing staff, plus some store managers and staff who are
familiar with Tune Source’s existing Web-based sales system.

Elaborating on the Use Cases

During the JAD sessions, the team followed the steps of the process we outlined ear-
lier in the chapter. For each use case, the primary actor and trigger were identified
and a brief description was written. The next step was to define the major steps for
each use case. The goal at this point is to describe how the use case operates. The
best way to begin to understand these use cases is to visualize yourself browsing a
sales-oriented Web site, searching for particular items, investigating specific items
further, finally making a decision to buy, and completing the purchase. The tech-
niques of visualizing your interaction with the process and thinking about how other
systems work (informal benchmarking) are important techniques that help analysts
and users understand how processes work and how to write the use cases. Both visu-
alization and informal benchmarking are commonly used in practice. The next step
is to add more detail to the steps by identifying their inputs and outputs. This means
identifying what inputs are needed to complete the step (e.g., information, forms,
reports) and what outputs are produced by each step. Alternative branches in logic
were discussed and the team looked for error conditions that might occur. As the
inputs and outputs were described, they were written in the summary area at the end
of the form. Once all the use cases had been defined, the final step in the JAD ses-
sion was to confirm that they were accurate. The project team had the users role-play
the use cases. A few minor problems were discovered and easily fixed.

Figure 4-14 shows the completed use cases. Refer to these use cases as you
read the remaining material in this chapter. Can you follow the steps? Do they seem
logical? If you find something that you think may be missing, remember that use
cases are created with gradual refinement, and errors and omissions can be cor-
rected as they are discovered. Also, we have purposely tried to avoid getting lost in
the details. Our goal is to include the major activities that are performed, but not
necessarily every tiny detail at this point.

Search and Browse Tunes For the Search and Browse Tunes use case, the primary
trigger is the Tune Shopper’s arrival on the Web site. The actor is specified as “Tune
Shopper.” because this person may not necessarily purchase a tune from Tune
Source. The preconditions for this use case are that the Web site is up and running
and the Tunes database is available. After you connect to the Web site, you may
browse through the categories of selections that are featured on the page. If you are
a first-time visitor, the page displays generic information. However, if you have vis-
ited the site before, any interests that were created on your previous visit will be
used to customize your page and display selections that are tailored to you. In

c04UseCaseAnalysis.qxd 9/30/11 10:02 AM Page 173

174 Chapter 4 Use Case Analysis

Use Case Name: Search and browse tunes ID: UC -1 Priority: High
Actor: Tune Shopper
Description: This use case describes a tune shopper who searches and browses through tunes
Trigger: Tune shopper arrives at Web site to search and browse through tunes
Type: External Temporal

Preconditions:
Web site is available
Tune database is on-line
Normal Course: Information for Steps:
1.0 Search and browse tunes and select tune to purchase

1. System displays default home page or customized page
2. Tune Shopper browses links on page or enters account username and password Username/password
3. Tune Shopper want to create an account: perform Create Account use case
4. Tune Shopper enters search request Search criteria
5. System displays tune(s) matching search request Tunes matching search
6. Tune Shopper selects a tune and wants to hear a sample Tune samples

New Interest
7. Tune Shopper selects a tune to add to Favorites New Favorites
8. Tune Shopper selects a tune to remove from Favorites Modified Favorites
9. Tune Shopper selects a tune to buy by placing it in shopping cart New Shopping Cart Entry
10. Tune Shopper selects a tune to remove from shopping cart Modified Shopping Cart

Alternative courses:
1.1 Tune Shopper is a return visitor (branch at step 1)

1. System displays page customized for the return visitor using Interests from Interests database
prior visits

1.2 Tune Shopper has created an account (branch at step 2) Favorites database
1. System displays welcome message to account holder Targeted Promotions database
2. Page is customized for the account holder using Favorites List and Targeted

Promotions
Postconditions:

1. One or more tunes are added to shopper Interests
2. Account holder favorites list may be modified
3. Shopping cart contents may be modified

Exceptions:
E1: Account is not valid (occurs at step 2)

1. System displays message that username/password is not valid.
2. System asks Tune Shopper to re-enter username/password or contact customer service for help.

E2: Search request returns no results (occurs at step 3)
1. System displays message that no results were found for that search
2. System asks Tune Shopper to try another search

Summary
Inputs Source Outputs Destination

Username/password Tune Shopper New Interest Interests database
Search criteria Tune Shopper New Favorites Favorites database
Tunes matching search Tunes database Modified Favorites Favorites database
Tune samples Tune Samples database New Shopping Cart Entry Shopping Cart database

Modified Shopping Cart Shopping Cart database

�

FIGURE 4-14
Tune Source Use Cases

c04UseCaseAnalysis.qxd 11/3/11 7:48 AM Page 174

Use Case Name: Purchase Tune ID: UC -2 Priority: High
Actor: Tune Buyer
Description: This use case describes the Tune Buyer’s purchase and download of selected tune(s)
Trigger: Tune Shopper has placed one or more tunes in shopping cart and is ready to check-out
Type: External Temporal

Preconditions:
1. One or more tunes are in shopping cart
2. Tune Buyer has specified readiness to check out and buy tune(s) in cart

Normal Course: Information for Steps:
1.0 Tune Buyer confirms intent to buy, supplies payment, and downloads tunes

1. System displays shopping cart contents with prices of tunes included. Shopping cart contents
2. Tune Buyer specifies intention to purchase tunes in cart Purchase authorization
3. System collects payment information or account information Payment information
4. System obtains payment authorization Payment authorization
5. Tune Buyer confirms payment transaction Payment confirmation
6. System processes payment Tune Sales details
7. System confirms payment acceptance Payment acceptance
8. System releases tunes in cart for download
9. Tune Buyer selects download process for each tune; as each tune is successfully

downloaded the system removes it from cart.
Alternative courses:
1.1 Tune buyer has established account (branch at step 3)

1. Tune buyer specifies username and password Username/password
2. System retrieves account information including stored payment information Account database
3. System verifies the buyer’s intention to use stored payment information or Account modification

modify stored payment information
4. Return to Normal Course step 4.

Postconditions:
1. Shopping cart is empty
2. Tune purchase is recorded
3. Tune sales transaction is recorded

Exceptions:
E1: Payment is not authorized (occurs at step 4)

1. System displays message that payment is not accepted.
2. System asks Tune buyer to enter new payment information or exit
3. System terminates use case if tune buyers specifies exit; otherwise return to Normal Course step 4

E2: Tune buyer cancels payment (occurs at step 5)
1. Tune buyer cancels payment transaction
2. System terminates use case

Summary
Inputs Source Outputs Destination

Shopping cart contents Shopping cart database Tune Sale details Tune Sales database
Purchase authorization Tune Buyer Account modification Account database
Payment Information Tune Buyer
Payment authorization Payment Clearinghouse
Payment confirmation Tune Buyer

�

FIGURE 4-14 (continued)

Applying the Concepts at Tune Source 175

c04UseCaseAnalysis.qxd 11/3/11 7:48 AM Page 175

176 Chapter 4 Use Case Analysis

Use Case Name: Promote Tunes ID: UC -3 Priority: High
Actor: Marketing Department Staff
Description: This use case describes how marketing staff periodically creates new targeted promotions
Trigger: Time for marketing department to replace current promotions/specials with new promotions/specials
Type: External Temporal

Preconditions:
1. Marketing staff person is authenticated
2. Promotions database is available and on-line
3. Favorites database is available and on-line
4. Sales database is available and on-line

Normal Course: Information for Steps:
1.0 Prepare promotion or special offer based on analysis of customer activity

1. Marketing staff specifies time period for analyses Time interval for analyses
2. System performs customer activity analysis and sales analysis Favorites activity

Sales activity
3. System accepts promotional details New promotion information
4. Targeted promotions are created New promotions
5. Email messages for sales and promotions are created and sent Email messages

Postconditions:
1. New Promotions are created
2. Email messages are sent to customers

Summary
Inputs Source Outputs Destination

Time interval for analyses Marketing staff New promotions Promotions database
Favorites activity Favorites database Email messages Customers
Sales activity Sales database
New promotion information Marketing staff

�

FIGURE 4-14 (continued)

addition, if you choose to open your account, you will be able to view the Favorites
list you created in your account. The Tune Shopper may request searches for tunes
based on title, artist, or genre. The Tune Shopper may select tunes so that they can
listen to samples, automatically adding those selected tunes to the file that tracks each
customer’s interests. If you like what you hear, but are not ready to buy, you may add
the tune to your Favorites list so that you don’t lose track of it. You can also remove
tunes you had previously added to your Favorites list. If you are ready to buy, you sig-
nal that decision, usually by placing the item in a “shopping cart.” You can continue
to browse and search, adding more tunes to your shopping cart or removing tunes
from the cart, or you may be ready to complete the purchase and “check out.”

One of the challenges in creating this use case is that users do not follow a
particular pattern when browsing a Web site. Although the steps listed under the
Normal Course are numbered, they are not necessarily performed in order. There-
fore, each step is somewhat independent from the other steps.

The postconditions tell us that several things may occur as a result of this use
case: there may be new entries made for shopper interests; there may be modifica-
tions to an account holders Favorites; and there may be items placed in the shop-
per’s shopping cart.

Purchase Tunes For the Purchase Tunes use case, the actor is specified as the Tune
Buyer. This designation is made because the user of the Web site has indicated an

c04UseCaseAnalysis.qxd 11/3/11 7:48 AM Page 176

Key Terms 177

intention to actually purchase the item(s) in the cart. Therefore, a precondition is
that there must be one or more items in the shopping cart. After the user specified
he is ready to purchase, the Tune Buyer must supply payment information. The
Tune Buyer may enter a username and password if he has an account; otherwise,
he may establish an account or just provide purchase information for the current
session only. If the Tune Buyer chooses to create an account, customer details will
be gathered from the customer and a new account record will be created. Payment
information will be gathered from the Tune Buyer and will be stored in the account
(if there is one) or just used for the current session. Once the payment information
is verified, the customer authorizes the transaction, a new purchase record is written
to the sales file, and the tune is released for download by the customer.

Promote Tunes Finally, for the Promote Tunes use case, the marketing staff regu-
larly performs an analysis of the files of recent customer purchases and additions to
the customer Favorites list. On the basis of these analyses, Web promotions are cre-
ated. In addition, e-mails are created to promote sales and specials on the regular
CD sales Web site and in the stores.

SUMMARY

Use Cases
A use case contains all the information needed to build one part of a process model,
expressed in an informal, simple way. A use case has a name, number, importance
level, brief description, primary actor, trigger(s), preconditions, postconditions,
major inputs and outputs, and a list of the major steps required to perform it. Use
cases can be identified by reviewing the functional requirements. An event-response
list also is useful in identifying the significant events that should be described in a
use case. Once the use case is completed, often new and expanded functional
requirements can be derived.

Creating Use Cases
When writing a use case, first identify the triggering event (external or temporal) and
the primary actor. Next, develop a list of the major steps involved in using the input(s)
to produce the needed output(s) and desired response(s) to the event. Now, think more
deeply about each step and identify the specific input(s) and output(s) for every step.
Finally, have the users role-play the use case to verify that it is correct as written.

Actor
Business scenario
Essential use case
Event
Event-driven modeling
External trigger
Fully dressed use case
Happy path

Input
Iteration
Output
Postconditions
Preconditions
Primary actor
Priority
Role-play

Step
Temporal trigger
Trigger
Use case
Use case package
User role
Visualization

KEY TERMS

c04UseCaseAnalysis.qxd 11/3/11 7:48 AM Page 177

178 Chapter 4 Use Case Analysis

1. What is the purpose of developing use cases during
systems analysis?

2. How do use cases relate to the requirements stated
in the requirements definition?

3. Describe the elements of the use case’s basic infor-
mation section.

4. What is the purpose of the inputs and outputs sec-
tion of the use case?

5. What is the purpose of stating the primary actor for
the use case?

6. Why is it important to state the priority level for a
use case?

7. What is the distinction between an external trigger
and a temporal trigger? Give two examples of each.

8. Why do we outline the major steps performed in the
use case?

9. What is the purpose of an event-response list in the
process of developing use cases?

10. Should a use case be prepared for every item on the
event-response list? Why or why not?

11. Describe two ways to handle a situation in which
there are a large number of use cases.

12. What role does iteration play in developing use
cases?

13. Describe the best way to validate the content of the
use cases.

QUESTIONS

A. Create a set of use cases for the process of buying
glasses from the viewpoint of the patient, but do not
bother to identify the steps within each use case.
(Just complete the information at the top of the use
case form.) The first step is to see an eye doctor who
will give you a prescription. Once you have a pre-
scription, you go to a glasses store, where you select
your frames and place the order for your glasses.
Once the glasses have been made, you return to the
store for a fitting and pay for the glasses.

B. Create a set of use cases for the accompanying den-
tist office system, but do not bother to identify the
steps within each use case. (Just complete the infor-
mation at the top of the use case form.) When new
patients are seen for the first time, they complete a
patient information form that asks for their name,
address, phone number, and brief medical history,
which are stored in the patient information file.
When a patient calls to schedule a new appointment
or change an existing appointment, the receptionist
checks the appointment file for an available time.
Once a good time is found for the patient, the
appointment is scheduled. If the patient is a new
patient, an incomplete entry is made in the patient
file; the full information will be collected when
the patient arrives for the appointment. Because
appointments are often made far in advance, the
receptionist usually mails a reminder postcard to
each patient two weeks before the appointment.

C. Complete the use cases for the dentist office system
in exercise B by identifying the steps and the data
flows within the use cases.

D. Create a set of use cases for an online university
registration system. The system should enable the
staff of each academic department to examine the
courses offered by their department, add and
remove courses, and change the information about
them (e.g., the maximum number of students per-
mitted). It should permit students to examine cur-
rently available courses, add and drop courses to
and from their schedules, and examine the courses
for which they are enrolled. Department staff
should be able to print a variety of reports about the
courses and the students enrolled in them. The sys-
tem should ensure that no student takes too many
courses and that students who have any unpaid fees
are not permitted to register. (Assume that a fees
data store is maintained by the university’s financial
office, which the registration system accesses but
does not change).

E. Create a set of use cases for the following system: A
Real Estate, Inc. (AREI), sells houses. People who
want to sell their houses sign a contract with AREI
and provide information on their house. This infor-
mation is kept in a database by AREI, and a subset
of this information is sent to the citywide multiple
listing service used by all real estate agents. AREI
works with two types of potential buyers. Some

EXERCISES

c04UseCaseAnalysis.qxd 9/30/11 10:02 AM Page 178

Exercises 179

buyers have an interest in one specific house. In this
case, AREI prints information from its database,
which the real estate agent uses to help show the
house to the buyer (a process beyond the scope of
the system to be modeled). Other buyers seek
AREI’s advice in finding a house that meets their
needs. In this case, the buyer completes a buyer
information form that is entered into a buyer data-
base, and AREI real estate agents use its information
to search AREI’s database and the multiple listing
service for houses that meet their needs. The results
of these searches are printed and used to help the
real estate agent show houses to the buyer.

F. Create a set of use cases for the following system: A
Video Store (AVS) runs a series of fairly standard
video stores. Before a video can be put on the shelf,
it must be catalogued and entered into the video
database. Every customer must have a valid AVS
customer card in order to rent a video. Customers
rent videos for three days at a time. Every time a
customer rents a video, the system must ensure that
this customer does not have any overdue videos. If
so, the overdue videos must be returned and an over-
due fee paid before the customer can rent more
videos. Likewise, if the customer has returned over-
due videos, but has not paid the overdue fee, the fee
must be paid before new videos can be rented. Every
morning, the store manager prints a report that lists
overdue videos; if a video is two or more days over-
due, the manager calls the customer to remind him
or her to return the video. If a video is returned in
damaged condition, the manager removes it from the
video database and may sometimes charge the cus-
tomer.

G. Create a set of use cases for the following health
club membership system: When members join the
health club, they pay a fee for a certain length of
time. Most memberships are for one year, but mem-
berships as short as two months are available.
Throughout the year, the health club offers a variety
of discounts on its regular membership prices (e.g.,
two memberships for the price of one for Valentine’s
Day). It is common for members to pay different
amounts for the same length of membership. The
club wants to mail out reminder letters to members
asking them to renew their memberships one month
before their memberships expire. Some members
have become angry when asked to renew at a much
higher rate than their original membership contract,
so that the club wants to track the price paid so that

the manager can override the regular prices with
special prices when members are asked to renew.
The system must track these new prices so that
renewals can be processed accurately. One of the
problems in the health club industry is the high
turnover rate of members. While some members
remain active for many years, about half of the
members do not renew their memberships. This is a
major problem because the health club spends a lot
in advertising to attract each new member. The man-
ager wants the system to track each time a member
comes into the club. The system will then identify
the heavy users and generate a report so that the
manager can ask them to renew their memberships
early, perhaps offering them a reduced rate for early
renewal. Likewise, the system should identify mem-
bers who have not visited the club in more than a
month so that the manager can call them and attempt
to reinterest them in the club.

H. Create a set of use cases for the following system:
Picnics R Us (PRU) is a small catering firm with five
employees. During a typical summer weekend, PRU
caters 15 picnics with 20 to 50 people each. The
business has grown rapidly over the past year, and
the owner wants to install a new computer system
for managing the ordering and buying process. PRU
has a set of 10 standard menus. When potential cus-
tomers call, the receptionist describes the menus to
them. If the customer decides to book a picnic, the
receptionist records the customer information (e.g.,
name, address, phone number, etc.) and the infor-
mation about the picnic (e.g., place, date, time,
which one of the standard menus, total price) on a
contract. The customer is then faxed a copy of the
contract and must sign and return it along with a
deposit (often by credit card or check) before the
picnic is officially booked. The remaining money is
collected when the picnic is delivered. Sometimes,
the customer wants something special (e.g., birthday
cake). In this case, the receptionist takes the infor-
mation and gives it to the owner who determines the
cost; the receptionist then calls the customer back
with the price information. Sometimes the customer
accepts the price; other times, the customer requests
some changes, which have to go back to the owner
for a new cost estimate. Each week, the owner looks
through the picnics scheduled for that weekend and
orders the supplies (e.g., plates) and food (e.g.,
bread, chicken) needed to make them. The owner
would like to use the system for marketing as well.

c04UseCaseAnalysis.qxd 9/30/11 10:02 AM Page 179

180 Chapter 4 Use Case Analysis

1. Williams Specialty Company is a small printing and
engraving organization. When Pat Williams, the owner,
brought computers into the business office eight years
ago, the business was very small and very simple. Pat
was able to utilize an inexpensive PC-based accounting
system to handle the basic information processing
needs of the firm. As time has gone on, however, the
business has grown and the work being performed has
become significantly more complex. The simple
accounting software still in use is no longer adequate to
keep track of many of the company’s sophisticated
deals and arrangements with its customers.

Pat has a staff of four people in the business office
who are familiar with the intricacies of the company’s
record-keeping requirements. Pat recently met with
her staff to discuss her plan to hire an IS consulting
firm to evaluate their information system needs and
recommend a strategy for upgrading their computer

system. The staff are excited about the prospect of a
new system, since the current system causes them
much aggravation. No one on the staff has ever done
anything like this before, however, and they are a little
wary of the consultants who will be conducting the
project.

Assume that you are a systems analyst on the con-
sulting team assigned to the Williams Specialty Co.
engagement. At your first meeting with the Williams
staff, you want to be sure that they understand the work
that your team will be performing and how they will
participate in that work.

a. Explain, in clear, nontechnical terms, the goals of
the analysis phase of the project.

b. Explain, in clear, nontechnical terms, how use
cases will be used by the project team. Explain
what these models are, what they represent in the
system, and how they will be used by the team.

MINICASES

It should be able to track how customers learned
about PRU and identify repeat customers so that
PRU can mail special offers to them. The owner also
wants to track the picnics on which PRU sent a con-
tract, but the customer never signed the contract or
actually booked a picnic.

I. Create a set of use cases for the following system:
Of-the-Month Club (OTMC) is an innovative young
firm that sells memberships to people who have an
interest in certain products. People pay membership
fees for one year and each month receive a product
by mail. For example, OTMC has a coffee-of-the-
month club that sends members one pound of spe-
cial coffee each month. OTMC currently has six
memberships (coffee, wine, beer, cigars, flowers,
and computer games), each of which costs a different
amount. Customers usually belong to just one,
but some belong to two or more. When people join
OTMC, the telephone operator records the name,
mailing address, phone number, e-mail address,
credit card information, start date, and membership
service(s) (e.g., coffee). Some customers request a
double or triple membership (e.g., two pounds of
coffee, three cases of beer). The computer game
membership operates a bit differently from the oth-
ers. In this case, the member must also select the
type of game (action, arcade, fantasy/science fiction,
educational, etc.) and age level. OTMC is planning
to greatly expand the number of memberships it

offers (e.g., video games, movies, toys, cheese, fruit,
vegetables), so the system needs to accommodate
this future expansion. OTMC is also planning to
offer three-month and six-month memberships.

J. Create a set of use cases for a university library bor-
rowing system. (Do not worry about catalogue
searching, etc.) The system will record the books
owned by the library and will record who has bor-
rowed what books. Before someone can borrow a
book, he or she must show a valid ID card that is
checked to ensure that it is still valid against the
student database maintained by the registrar’s office
(for student borrowers), the faculty/staff database
maintained by the personnel office (for faculty/staff
borrowers), or against the library’s own guest data-
base (for individuals issued a “guest” card by the
library). The system must also check to ensure that
the borrower does not have any overdue books or
unpaid fines before he or she can borrow another
book. Every Monday, the library prints and mails
postcards to those people with overdue books. If a
book is overdue by more than two weeks, a fine will
be imposed and a librarian will telephone the bor-
rower to remind him or her to return the book(s).
Sometimes books are lost or are returned in dam-
aged condition. The manager must then remove
them from the database and will sometimes impose
a fine on the borrower.

c04UseCaseAnalysis.qxd 9/30/11 10:02 AM Page 180

c04UseCaseAnalysis.qxd 9/30/11 10:02 AM Page 181

This page is intentionally left blank

A N A L Y S I S

T A S K C H E C K L I S T

P L A N N I N G A N A L Y S I S D E S I G N

▼

Use requirements elicitation techniques (interview,

JAD session, questionnaire, document analysis, and

observation).

Apply requirements analysis strategies as needed to

discover underlying requirements.

Develop the requirements definition.

Develop use cases.

Develop data flow diagrams.

Develop entity relationship model.

Normalize entity relationship model.

P L A N N I N G

✔

✔

✔

✔

c05ProcessModeling.qxd 9/28/11 8:31 PM Page 182

I M P L E M E N TAT I O N

process model describes business processes—the activities that people do.
Process models are developed for the as-is system and/or the to-be system. This

chapter describes data flow diagramming, one of the most commonly used process mod-
eling techniques.

OBJECTIVES

■ Explain the rules and style guidelines for data flow diagrams.
■ Describe the process used to create data flow diagrams.
■ Create data flow diagrams.

CHAPTER OUTLINE

C H A P T E R 5

A

PROCESS
MODELING

Introduction
Data Flow Diagrams

Reading Data Flow Diagrams
Elements of Data Flow Diagrams
Using Data Flow Diagrams to Define

Business Processes
Process Descriptions

Creating Data Flow Diagrams
Creating the Context Diagram
Creating Data Flow Diagram

Fragments
Creating the Level 0 Data Flow

Diagram

Creating Level 1 Data Flow
Diagrams (and Below)

Validating Data Flow Diagrams
Applying the Concepts at Tune Source

Creating the Context Diagram
Creating Data Flow Diagram

Fragments
Creating the Level 0 Data Flow

Diagram
Creating Level 1 Data Flow

Diagrams (and Below)
Validating Data Flow Diagrams

Summary

c05ProcessModeling.qxd 9/28/11 8:31 PM Page 183

INTRODUCTION

Chapters 3 and 4 discussed several requirements elicitation activities, such as inter-
viewing and JAD, and how to clarify those requirements by developing more
detailed use cases. In this chapter, we discuss how the requirements definition and
use cases may be further clarified through a process model. You may have heard the
expression “A picture is worth a 1,000 words.” A process model is a graphical way
of representing how a business system should operate. It illustrates the processes or
activities that are performed and how data move among them. A process model can
be used to document the current system (i.e., as-is system) or the new system being
developed (i.e., to-be system), whether computerized or not.

Process models have been a part of structured systems analysis and design
techniques for many years. Today, with use cases gaining favor due to their ability
to clarify user requirements in an understandable way, you may see that organiza-
tions place less emphasis on process modeling than in the past. An organization that
strives to create fully dressed use cases as depicted in Figure 4-1, for example, may
not find that process models add much to their understanding of the system under
development. Other organizations, however, especially those that create more
casual use cases, may find process modeling to be a beneficial part of their analysis
phase deliverables. We find that graphically depicting the system that will be devel-
oped in a set of well-organized diagrams is a very useful approach. Remember
that our goal is to be able to employ an array of tools and techniques that will help
us understand and clarify what the new system must do before the new system is
actually constructed.

There are many different process modeling techniques in use today. In this chap-
ter, we focus on one of the most commonly used techniques:1 data flow diagramming.
Data flow diagramming is a technique that diagrams the business processes and the
data that pass among them. In this chapter, we first describe the basic syntax rules and
illustrate how they can be used to draw simple one-page data flow diagrams (DFDs).
Then we describe how to create more complex multipage diagrams.

Although the name data flow diagram (DFD) implies a focus on data, this is
not the case. The focus is mainly on the processes or activities that are performed.
Data modeling, discussed in the next chapter, presents how the data created and used
by processes are organized. Process modeling—and creating DFDs in particular—is
one of the most important skills needed by systems analysts.

In this chapter, we focus on logical process models, which are models that
describe processes, without suggesting how they are conducted. When reading a
logical process model, you will not be able to tell whether a process is computer-
ized or manual, whether a piece of information is collected by paper form or via
the Web, or whether information is placed in a filing cabinet or a large database.
These physical details are defined during the design phase when these logical
models are refined into physical models, which provide information that is
needed to ultimately build the system. (See Chapter 10.) By focusing on logical
processes first, analysts can focus on how the business should run, without being
distracted by implementation details.

184 Chapter 5 Process Modeling

1 Another commonly used process modeling technique is IDEF0. IDEF0 is used extensively throughout the
U.S. Government. For more information about IDEF0, see FIPS 183: Integration Definition for Function
Modeling (IDEF0), Federal Information Processing Standards Publications, Washington, DC: U.S. Department
of Commerce, 1993.

c05ProcessModeling.qxd 9/28/11 8:31 PM Page 184

In this chapter, we first explain how to read DFDs and describe their basic
syntax. Then we describe the process used to build DFDs that draws information
from the use cases and from additional requirements information gathered from the
users.

DATA FLOW DIAGRAMS

Reading Data Flow Diagrams

Figure 5-1 shows a DFD for the event we introduced in Chapter 4, that of a Lawn
Chemical Applicator (LCA) requesting a lawn chemical. By examining the DFD,
an analyst can understand the process by which LCAs request lawn chemicals. Take
a moment to examine the diagram before reading on. How much do you under-
stand? Before continuing, you may want to review this event’s use case in the
previous chapter (Figure 4-1) and the functional requirements (Figure 4-4).

Most people from Western cultures start reading diagrams from left to right,
top to bottom. So, whenever possible, this is where most analysts try to make the
DFD begin. The first item on the left side of Figure 5-1 is the “Lawn Chemical
Applicator (LCA)” external entity, which is a rectangle that represents individual
employees who must request the chemicals they will use for their lawn care assign-
ments. This symbol has three arrows pointing away from it to rounded rectangular
symbols. These arrows represent data flows and show that the external entity (LCA)
provides three “bundles” of data to processes that use the data. Now look again at
Figure 4-1 and you will see that these same data bundles are listed as Major Inputs
in the use case, with the source listed as the LCA. Also, there are several arrows
arriving at the LCA external entity from the rounded rectangles, representing bun-
dles of data that the processes produce to flow back to the LCA. These data bundles
are listed under Major Outputs in the use case (Figure 4-1), with the destination
listed as the LCA.

Now look at the arrow that flows in to the “Determine Chemical Approval
Status” process from the right side. In order to determine if the chemical requested
is approved for usage, the process has to retrieve some information from storage.
The open-ended rectangle labeled “Lawn Chemical Supply” is called a data store,
and it represents a collection of stored data. The “Determine Chemical Approval
Status” process uses an identifier for the chemical requested to find the requested
chemical and to determine whether it is an approved chemical or a disapproved
chemical. Notice that the “List of approved chemicals” is listed as a Major Input on
the use case (Figure 4-1), with the source listed as the Lawn Chemicals Supply data
store. Now, still referring to Figure 4-1, notice that every Major Input listed in the
use case flows in to a process from an external entity or stored data (noted by the
source). Also notice that every Major Output listed in the use case flows out to a
destination (an external entity or data storage) on the data flow diagram.

Now look more closely at the Major Steps Performed section of the use case.
You can see that a number of steps are listed in the use case. On the data flow dia-
gram, these steps have been organized into five major processes, each performing
one main component of the interactions detailed on the use case. On the DFD
(Figure 5-1), as you follow the arrows starting with “Chemical needed” from the
LCA to the “Determine Chemical Approval Status” process, imagine the LCA
specifying the chemical he needs for a job. The system looks up the chemical and
responds with a message verifying it as an approved chemical or informing the

Data Flow Diagrams 185

c05ProcessModeling.qxd 11/3/11 11:55 AM Page 185

LCA that the chemical cannot be used. For an approved chemical, the system looks
up how much of the chemical is available and informs the LCA. The LCA indicates
the quantity he wants. Now look at the description on the use case (Figure 4-1) for
steps 1-4 and notice how the use case describes those processes in words. Notice
also how the “Information for Steps” section of the use case lists the data elements
that are either used or produced by each step, corresponding to the inflows and out-
flows from the process symbols (2.1, 2.2) on the data flow diagram (Figure 5-1).

186 Chapter 5 Process Modeling

D2 Chemical Requests

New chemical
request

Confirm
Request

2.3

Prepare
Pick-up
Material

2.5

Update
Available
Chemical
Quantity

2.4

Chemical
needed

Unapproved
chemical

Chemical
quantity
available

Chemical
quantity
needed

Confirmation

Request for
confirmation

Chemical
approval

status

Purchasing

Chemical
Supply

Warehouse

Lawn Chemical
Applicator

(LCA)

Determine
Request
Quantity

2.2

Determine
Chemical
Approval
Status

2.1

Approved
chemical Quantity

available Current
reserved
quantity

Updated
reserved
quantity

Chemical
outage

Pick-up
notice

Valid
chemical
quantity

Confirmed chemical
request quantity

Confirmed
chemical
request

Chemical
pick-up

authorization

D1 Lawn Chemicals Supply

FIGURE 5-1
Request a Chemical Level 1 DFD

c05ProcessModeling.qxd 9/28/11 8:31 PM Page 186

Look at the other three process symbols in the DFD and examine the flows
into and out of each process. On the basis of the data flowing in and flowing out,
try to understand what the process is doing. Check your understanding by looking
at the Major Steps Performed and Information for Steps in the use case.

You probably recognized that the “Confirm Request” process (2.3) receives
the LCA’s chemical request confirmation and creates and stores a new Chemical
Request. You can also see that two additional processes are performed by the
system. The quantity of the chemical available is modified by marking the quantity
requested as “reserved” (and no longer available to another LCA). Finally, the pick-
up authorization is provided to the LCA and the Chemical Supply Warehouse is
notified of the approved pick-up. You can see by the flows from process 2.3 to
processes 2.4 and 2.5 that sometimes a process sends a data flow directly to another
process.

The use case in Figure 4-1 and the data flow diagram in Figure 5-1 are pur-
posefully related. A well-constructed use case makes developing a data flow dia-
gram quite straightforward, although the analyst will have to make some decisions
about how much detail to depict in the DFD. The steps outlined in a use case can
be organized into logical processes on a DFD. The Major Inputs and Major Outputs
listed on the use case provide a list of the sources and destinations, respectively, of
the inflows and outflows of the processes. The Information for Steps section shows
the data flowing in or produced by each step of the use case, and these correspond
to the data flows that enter or leave each process on the data flow diagram.

Elements of Data Flow Diagrams

Now that you have had a glimpse of a DFD, we will present the language of DFDs,
which includes a set of symbols, naming conventions, and syntax rules. There are four
symbols in the DFD language (processes, data flows, data stores, and external enti-
ties), each of which is represented by a different graphic symbol. There are two com-
monly used styles of symbols, one set developed by Chris Gane and Trish Sarson and
the other by Tom DeMarco and Ed Yourdon2 (Figure 5-2). Neither is better than the
other; some organizations use the Gane and Sarson style of symbols, and others use
the DeMarco/Yourdon style. We will use the Gane and Sarson style in this book.

Process A process is an activity or a function that is performed for some specific
business reason. Processes can be manual or computerized. Every process should
be named starting with a verb and ending with a noun (e.g., “Determine request
quantity”). Names should be short, yet contain enough information so that the reader
can easily understand exactly what they do. In general, each process performs only
one activity, so most system analysts avoid using the word “and” in process names
because it suggests that the process performs several activities. In addition, every
process must have at least one input data flow and at least one output data flow.

Figure 5-2 shows the basic elements of a process and how they are usually
named in CASE tools. Every process has a unique identification number, a name, and
a description, all of which are noted in the CASE repository. Descriptions clearly and

Data Flow Diagrams 187

2 See Chris Gane and Trish Sarson, Structured Systems Analysis: Tools and Techniques, Englewood Cliffs,
NJ: Prentice Hall, 1979; Tom DeMarco, Structured Analysis and System Specification, Englewood Cliffs,
NJ: Prentice-Hall, 1979; and E. Yourdon and Larry L. Constantine, Structured Design: Fundamentals of a
Discipline of Computer Program and Systems Design, Englewood Cliffs, NJ: Prentice-Hall, 1979.

c05ProcessModeling.qxd 9/28/11 8:31 PM Page 187

precisely describe the steps and details of the processes; ultimately, they are used to
guide the programmers who need to computerize the processes (or the writers of pol-
icy manuals for noncomputerized processes). The process descriptions become more
detailed as information is learned about the process through the analysis phase. Many
process descriptions are written as simple text statements about what happens. More
complex processes use more formal techniques such as structured English, decision
tables, or decision trees, which are discussed in a later section.

Data Flow A data flow is a single piece of data (e.g., quantity available) (some-
times called a data element), or a logical collection of several pieces of information
(e.g., new chemical request). Every data flow should be named with a noun. The
description of a data flow lists exactly what data elements the flow contains. For
example, the pick-up notice data flow can list the LCA name, chemical, and quantity
requested as its data elements.

Data flows are the glue that holds the processes together. One end of every
data flow will always come from or go to a process, with the arrow showing the
direction into or out of the process. Data flows show what inputs go into each
process and what outputs each process produces. Every process must create at least

188 Chapter 5 Process Modeling

FIGURE 5-2
Data Flow Diagram Elements

Data Flow Diagram

Element

Typical Computer-Aided

 Software Engineering

Fields

Gane and

Sarson Symbol

DeMarco and

Yourdon

Symbol

Every process has
 a number
 a name (verb phase)
 a description
 at least one output
 data flow
 at least one input
 data flow

Every data flow has
 a name (a noun)
 a description
 one or more
 connections to a
 process

Every data store has
 a number
 a name (a noun)
 a description
 one or more input
 data flows
 one or more output
 data flows

Every external entity has
 a name (a noun)
 a description

Label (name)
Type (process)
Description
(what is it)
Process number
Process description
(structured English)
Notes

Label (name)
Type (flow)
Description
Alias (another name)
Composition
(description of data
elements)
Notes

Label (name)
Type (store)
Description
Alias (another name)
Composition
(description of data
elements)
Notes

Label (name)
Type (entity)
Description
Alias (another name)
Entity description
Notes

NameD1 D1 Name

NameName

Name

Name Name

Name

1

c05ProcessModeling.qxd 9/28/11 8:31 PM Page 188

one output data flow, because if there is no output, the process does not do anything.
Likewise, each process has at least one input data flow, because it is difficult, if not
impossible, to produce an output with no input.

Data Store A data store is a collection of data that is stored in some way (which
is determined later when creating the physical model). Every data store is named
with a noun and is assigned an identification number and a description. Data stores
form the starting point for the data model (discussed in the next chapter) and are
the principal link between the process model and the data model.

Data flows coming out of a data store indicate that information is retrieved
from the data store. Looking at Figure 5-1, you can see that process 2.1 (Determine
Chemical Approval Status) retrieves the Chemical Approval Status data flow from
the Lawn Chemicals Supply data store. Similarly, Process 2.2 (Determine Request
Quantity) retrieves the Quantity Available data flow from the Lawn Chemicals Supply
data store. Data flows going into a data store indicate that information is added to
the data store. For example, process 2.3 adds a New Chemical Request data flow to
the Chemical Requests data store. Finally, data flows going both into and out of a
data store indicate that information in the data store is changed (e.g., by retrieving
data from a data store, changing it, and storing it back). In Figure 5-1, we can see
that process 2.4 (Update Available Chemical Quantity) retrieves the current
reserved quantity from the Lawn Chemical Supply data store, modifies it, and
writes the updated data back into the data store.

All data stores must have at least one input data flow (or else they never con-
tain any data), unless they are created and maintained by another information sys-
tem or on another page of the DFD. Likewise, they have at least one output data
flow on some page of the DFD. (Why store data if you never use it?) In cases in
which the same process both stores data and retrieves data from a data store, there
is a temptation to draw one data flow with an arrow on both ends. This practice is
incorrect, however. The data flow that stores data and the data flow that retrieves
data should always be shown as two separate data flows.

External Entity An external entity is a person, organization, organization unit, or
system that is external to the system, but interacts with it (e.g., customer, clearing-
house, government organization, accounting system). The external entity typically
corresponds to the primary actor identified in the use case. External entities provide
data to the system or receive data from the system, and serve to establish the sys-
tem boundaries. Every external entity has a name and a description. The key point
to remember about an external entity is that it is external to the system, but may or
may not be part of the organization. People who use the information from the
system to perform other processes or who decide what information goes into the
system are documented as external entities (e.g., managers, staff).

Using Data Flow Diagrams to Define Business Processes

Most business processes are too complex to be explained in one DFD. Most process
models are therefore composed of a set of DFDs. The first DFD provides a summary
of the overall system, with additional DFDs providing more and more detail about each
part of the overall business process. Thus, one important principle in process model-
ing with DFDs is the decomposition of the business process into a hierarchy of DFDs,
with each level down the hierarchy representing less scope but more detail. Figure 5-3
shows how one business process can be decomposed into several levels of DFDs.

Data Flow Diagrams 189

c05ProcessModeling.qxd 11/3/11 11:55 AM Page 189

190 Chapter 5 Process Modeling

Data Store ND1

Data Store ND1

Data Store ND1

N

S

R

G

C

B

HK

J

H

K G

C

Q

M

M

N Y

A

Process M

2.2.3

Process F

2.3

Process E

2.2

Process D

2.1

2.2.2

Process L

2.2.1

Process K

A

X

X

Y

Z

B

Z

M

N

Y

Process V

3

Process U

2

Process T

1

Information
System

0

Level 0 DFD

Level 1 DFD
for Process 2

Level 2 DFD
for Process 2.2

Context
Diagram

Entity BEntity A

Entity BEntity A

FIGURE 5-3
Relationships among Levels of Data Flow Diagrams (DFDs)

c05ProcessModeling.qxd 9/28/11 8:31 PM Page 190

Context Diagram The first DFD in every business process model, whether a manual
system or a computerized system, is the context diagram (see Figure 5-3). As the
name suggests, the context diagram shows the entire system in context with its envi-
ronment. All process models have one context diagram.

The context diagram shows the overall business process as just one process
(i.e., the system itself) and shows the data flows to and from external entities. Data
stores usually are not included on the context diagram, unless they are “owned” by
systems or processes other than the one being documented. For example, an infor-
mation system used by the university library that records who has borrowed books
would likely check the registrar’s student information database to see whether a stu-
dent is currently registered at the university. In this context diagram, the registrar’s
student information data store could be shown on the context diagram because it is
external to the library system, but used by it. Many organizations, however, would
show this as an external entity called “Registrar’s Student Information System,” not
as a data store.

Level 0 Diagram The next DFD is called the level 0 diagram or level 0 DFD. (See
Figure 5-3.) The level 0 diagram shows all the processes at the first level of num-
bering (i.e., processes numbered 1 through 3), the data stores, external entities, and
data flows among them. The purpose of the level 0 DFD is to show all the major
high-level processes of the system and how they are interrelated. All process models
have one and only one level 0 DFD.

Another key principle in creating sets of DFDs is balancing. Balancing means
ensuring that all information presented in a DFD at one level is accurately repre-
sented in the next-level DFD. This doesn’t mean that the information is identical,
but that it is shown appropriately. There is a subtle difference in meaning between
these two words that will become apparent shortly, but for the moment, let’s com-
pare the context diagram with the level 0 DFD in Figure 5-3 to see how the two are
balanced. In this case, we see that the external entities (A, B) are identical between
the two diagrams and that the data flows to and from the external entities in the
context diagram (X, Y, Z) also appear in the level 0 DFD. The level 0 DFD replaces
the context diagram’s single process (always numbered 0) with three processes
(1, 2, 3), adds a data store (D1), and includes two additional data flows that were
not in the context diagram (data flow B from process 1 to process 2; data flow A
from process 2 to process 3).

These three processes and two data flows are contained within process 0.
They were not shown on the context diagram because they are the internal compo-
nents of process 0. The context diagram deliberately hides some of the system’s
complexity in order to make it easier for the reader to understand. Only after the
reader understands the context diagram does the analyst “open up” process 0 to dis-
play its internal operations by decomposing the context diagram into the level 0
DFD, which shows more detail about the processes and data flows inside the
system.

Level 1 Diagrams In the same way that the context diagram deliberately hides
some of the system’s complexity, so, too, does the level 0 DFD. The level 0 DFD
shows only how the major high-level processes in the system interact. Each process
on the level 0 DFD can be decomposed into a more explicit DFD, called a level 1
diagram, or level 1 DFD, which shows how it operates in greater detail. The DFD
illustrated in Figure 5-1 is a level 1 DFD.

Data Flow Diagrams 191

c05ProcessModeling.qxd 9/28/11 8:31 PM Page 191

In general, all process models have as many level 1 diagrams as there are
processes on the level 0 diagram; every process in the level 0 DFD would be decom-
posed into its own level 1 DFD, so the level 0 DFD in Figure 5-3 would have three level
1 DFDs (one for process 1, one for process 2, one for process 3). For simplicity, we
have chosen to show only one level 1 DFD in this figure, the DFD for process 2. The
processes in level 1 DFDs are numbered on the basis of the process being decomposed.
In this example, we are decomposing process 2, so the processes in this level 1 DFD
are numbered 2.1, 2.2, and 2.3.

Processes 2.1, 2.2, and 2.3 are the children of process 2, and process 2 is the
parent of processes 2.1, 2.2, and 2.3. These three children processes wholly and
completely make up process 2. The set of children and the parent are identical; they
are simply different ways of looking at the same thing. When a parent process is
decomposed into children, its children must completely perform all of its functions,
in the same way that cutting up a pie produces a set of slices that wholly and com-
pletely make up the pie. Even though the slices may not be the same size, the set of
slices is identical to the entire pie; nothing is omitted by slicing the pie.

Once again, it is very important to ensure that the level 0 and level 1 DFDs
are balanced. The level 0 DFD shows that process 2 accesses data store D1, has two
input data flows (B, M), and has three output data flows (A, N, and Y). A check of
the level 1 DFD shows the same data store and data flows. Once again, we see that
five new data flows have been added (C, G, H, J, K) at this level. These data flows
are contained within process 2 and therefore are not documented in the level 0
DFD. Only when we decompose or open up process 2 via the level 1 DFD do we
see that they exist.

The level 1 DFD shows more precisely which process uses the input data flow
B (process 2.1) and which produces the output data flows A and Y (process 2.3).
Note, however, that the level 1 DFD does not show where these data flows come
from or go to. To find the source of data flow B, for example, we have to move up
to the level 0 DFD, which shows data flow B coming from external entity B. Like-
wise, if we follow the data flow from A up to the level 0 DFD, we see that it goes
to process 3, but we still do not know exactly which process within process 3 uses
it (e.g., process 3.1, 3.2). To determine the exact source, we would have to examine
the level 1 DFD for process 3.

This example shows one downside to the decomposition of DFDs across mul-
tiple pages. To find the exact source and destination of data flows, one often must
follow the data flow across several DFDs on different pages. Several alternatives to
this approach to decomposing DFDs have been proposed, but none is as commonly
used as the “traditional” approach. The most common alternative is to show the
source and destination of data flows to and from external entities (as well as data
stores) at the lower level DFDs. The fact that most data flows are to or from data
stores and external entities, rather than processes on other DFD pages, can signifi-
cantly simplify the reading of multiple page DFDs. We believe this to be a better
approach, so when we teach our courses, we show external entities on all DFDs,
including level 1 DFDs and below.

Level 2 Diagrams The bottom of Figure 5-3 shows the next level of decomposi-
tion: a level 2 diagram, or level 2 DFD, for process 2.2. This DFD shows that
process 2.2 is decomposed into three processes (2.2.1, 2.2.2, and 2.2.3). The
level 1 diagram for process 2.2 shows interactions with data store D1, which we
see in the level 2 DFD as occurring in process 2.2.3. Likewise, the level 2 DFD

192 Chapter 5 Process Modeling

c05ProcessModeling.qxd 9/28/11 8:31 PM Page 192

for 2.2 shows two input data flows (H, K) and two output data flows (C, G),
which we also see on the level 2 diagram, along with several new data flows (Q, R, S).
The two DFDs are therefore balanced.

It is sometimes difficult to remember which DFD level is which. It may help
to remember that the level numbers refer to the number of decimal points in the
process numbers on the DFD. A level 0 DFD has process numbers with no decimal
points (e.g., 1, 2), whereas a level 1 DFD has process numbers with one decimal
point (e.g., 2.3, 5.1), a level 2 DFD has numbers with two decimal points (e.g.,1.2.5,
3.3.2), and so on.

Alternative Data Flows Suppose that a process produces two different data flows
under different circumstances. For example, a quality-control process could produce
a quality-approved widget or a defective widget, or our search for a chemical could
find it is approved or not approved for use. How do we show these alternative paths
in the DFD? The answer is that we show both data flows and use the process descrip-
tion to explain that they are alternatives. Nothing on the DFD itself shows that the
data flows are mutually exclusive. For example, process 2.1 on the level 1 DFD pro-
duces three output data flows (H, J, K). Without reading the text description of
process 2.1, we do not know whether these are produced simultaneously or whether
they are mutually exclusive.

Process Descriptions

The purpose of the process descriptions is to explain what the process does and pro-
vide additional information that the DFD does not provide. As we move through the
SDLC, we gradually move from the general text descriptions of requirements into
more and more precise descriptions that are eventually translated into very precise
programming languages. In most cases, a process is straightforward enough that the
requirements definition, a use case, and a DFD with a simple text description
together provide sufficient detail to support the activities in the design phase. Some-
times, however, the process is sufficiently complex that it can benefit from a more
detailed process description that explains the logic which occurs inside the process.
Three techniques are commonly used to describe more complex processing logic:
structured English, decision trees, and decision tables. Very complex processes may
use a combination of structured English and either decision trees or decision tables.

Structured English uses short sentences to describe the work that a process
performs. Decision trees display decision logic (IF statements) as a set of nodes
(questions) and branches (answers). Decision tables represent complex policy deci-
sions as rules that link various conditions with actions. Since these techniques are
commonly discussed in programming texts, we will not elaborate on them here.
They are useful to the systems analyst in conveying the proper understanding of
what goes on “inside” a process.

CREATING DATA FLOW DIAGRAMS

Data flow diagrams start with the information in the use cases and the requirements
definition. Although the use cases are created by the users and project team working
together, the DFDs typically are created by the project team and then reviewed by
the users. Generally speaking, the set of DFDs that make up the process model

Creating Data Flow Diagrams 193

c05ProcessModeling.qxd 9/28/11 8:31 PM Page 193

simply integrates the individual use cases (and adds in any processes in the require-
ments definition not selected as use cases). The project team takes the use cases and
rewrites them as DFDs. However, because DFDs have formal rules about symbols
and syntax that use cases do not, the project team sometimes has to revise some of
the information in the use cases to make them conform to the DFD rules. The most
common types of changes are to the names of the use cases that become processes
and the inputs and outputs that become data flows. The second most common type
of change is to combine several small inputs and outputs in the use cases into larger
data flows in the DFDs (e.g., combining three separate inputs, such as “customer
name,” “customer address,” and “customer phone number,” into one data flow, such
as “customer information”).

Project teams usually use process modeling tools or CASE tools to draw
process models. Simple tools such as Visio contain DFD symbol sets and enable
easy creation and modification of diagrams. Other process modeling tools such as
BPWin understand the DFD and can perform simple syntax checking to make sure
that the DFD is at least somewhat correct. A full CASE tool, such as Visible Analyst
Workbench, provides many capabilities in addition to process modeling (e.g., data
modeling as discussed in the next chapter). CASE tools tend to be complex, and
while they are valuable for large and complex projects, they often cost more than
they add for simple projects. Figure 5-4 shows a sample screen from the Visible
Analyst CASE tool.

Building a process model that has many levels of DFDs usually entails sev-
eral steps. Some analysts prefer to begin process modeling by focusing first on the
level 0 diagram. We have found it useful to first build the context diagram showing
all the external entities and the data flows that originate from or terminate in them.
Second, the team creates a DFD fragment for each use case that shows how the use
case exchanges data flows with the external entities and data stores. Third, these
DFD fragments are organized into a level 0 DFD. Fourth, the team develops level 1
DFDs, based on the steps within each use case, to better explain how they operate.
In some cases, these level 1 DFDs are further decomposed into level 2 DFDs, level 3
DFDs, level 4 DFDs, and so on. Fifth, the team validates the set of DFDs to make
sure that they are complete and correct.

In the following sections, process modeling is illustrated with the Holiday
Travel Vehicles information system.

Creating the Context Diagram

The context diagram defines how the business process or computer system interacts
with its environment—primarily the external entities. To create the context dia-
gram, you simply draw one process symbol for the business process or system
being modeled (numbered 0 and named for the process or system). You read
through the use cases and add the inputs and outputs listed on the form, as well as
their sources and destinations. Usually, all the inputs and outputs will come from or
go to external entities such as a person, organization, or other information system.
If any inputs and outputs connect directly to data stores in an external system, it is
best practice to create an external entity which is named for the system that owns
the data store. None of the data stores inside the process/system that are created by
the process or system itself are included in the context diagram, because they are
“inside” the system. Because there are sometimes so many inputs and outputs, we
often combine several small data flows into larger data flows.

194 Chapter 5 Process Modeling

c05ProcessModeling.qxd 9/28/11 8:31 PM Page 194

Figure 5-5 shows the context diagram for the Holiday Travel Vehicles system
focusing on vehicle sales. Take a moment to review this system as described in
Chapter 4 and review the use cases in Figure 4-11. You can see from the Major
Inputs and Outputs sections in the Figure 4-11 use cases that the system has many
interactions with the salesperson external entity. We have simplified these inflows
and outflows to just three primary data flows on the context diagram. If we had
included each small data flow, the context diagram would become too cluttered. The
smaller data flows will become evident as we decompose the context diagram into
more detailed levels. Notice that we have established three external entities to rep-
resent parts of the Holiday Travel Vehicle organization which receive information
from or supply information to this system. Salespeople provide key inputs to the
system, and shop work orders flow to the shop manager. The company owner or
manager provides information to the system.

Creating Data Flow Diagrams 195

FIGURE 5-4
Entering Data Flow Diagram Processes in a Computer-Aided Software Engineering Tool

c05ProcessModeling.qxd 9/28/11 8:31 PM Page 195

Creating Data Flow Diagram Fragments

A DFD fragment is one part of a DFD that eventually will be combined with other
DFD fragments to form a DFD diagram. In this step, each use case is converted into
one DFD fragment. You start by taking each use case and drawing a DFD fragment,
using the information given on the top of the use case: the name, ID number, and
major inputs and outputs. The information about the major steps that make up each
use case is ignored at this point; it will be used in a later step. Figure 5-6 shows a
use case and the DFD fragment that was created from it.

Once again, some subtle, but important changes are often made in converting
the use case into a DFD. The two most common changes are modifications to the
process names and the addition of data flows. There were no formal rules for use
case names, but there are formal rules for naming processes on the DFD. All
process names must be a verb phrase—they must start with a verb and include a
noun. (See Figure 5-2.) Not all of our use case names are structured in this way, so
we sometimes need to change them. It is also important to have a consistent view-
point when naming processes. For example, the DFD in Figure 5-6 is written from
the viewpoint of the dealership, not of the customer. All the process names and
descriptions are written as activities that the staff performs. It is traditional to
design the processes from the viewpoint of the organization running the system, so
this sometimes requires some additional changes in names.

The second common change is the addition of data flows. Use cases are written
to describe how the system and user interact. Typically, they do not describe how the
system obtains data, so the use case often omits data flows read from a data store.
When creating DFD fragments, it is important to make sure that any information
given to the user is obtained from a data store. The easiest way to do this is to first
create the DFD fragment with the major inputs and outputs listed on the use case and
then verify that all outputs have sufficient inputs to create them.

There are no formal rules covering the layout of processes, data flows, data
stores, and external entities within a DFD. Most systems analysts try to put the
process in the middle of the DFD fragment, with the major inputs starting from the

196 Chapter 5 Process Modeling

FIGURE 5-5
Holiday Travel Vehicles Sales System Context Diagram

0

Holiday
Travel

Vehicles Sales
System

Salesperson
Shop

Manager

Owner/
Manager

Customer

Offer details Shop work
order notice

Offer
decision

Offer rejection notice

New sales contract

Pending offer

Pending
offer notice

New sales contract

Customer payments

Final sales contract

c05ProcessModeling.qxd 9/28/11 8:31 PM Page 196

left side or top entering the process and outputs leaving from the right or the bottom.
Data stores are often written below the process.

Take a moment and draw a DFD fragment for the two other use cases shown
in Figure 4-11 (Evaluate Offer and Take Delivery of Vehicle). We have included
possible ways of drawing these fragments in Figure 5-7. (Don’t look until you’ve
attempted the drawings on your own!)

Creating Data Flow Diagrams 197

FIGURE 5-6
Holiday Travel Vehicles Process 3 (Record Offer) DFD Fragment

Use Case Name: Record an offer

Description: This use case describes how the salesperson records a customer offer on a vehicle. The offer
may be a new offer or a revision of a previously rejected offer.

Trigger:

Type: External

 Customer decides to make an offer on a vehicle.

Temporal

ID: UC-3 Priority: High

Actor: Salesperson

Summary
 Inputs

Vehicle ID
Existing Pending Offer

Vehicle datastore
Customer details
Offer details

Offer Type
Offer ID
Previous offer details

Source

Salesperson
Pending Offers
datastore
Salesperson
Salesperson
Rejected Offers
datastore
Vehicle details
Customer
Salesperson

Outputs

Offer Pending Notice
Offer Summary
New Pending Offer

Pending Offer
Pending Offer Notice

Destination

Salesperson
Customer
Pending Offer
datastore
Customer
Owner/Manager

Existing pending
offer

New pending offer

New vehiclesD1

Rejected offersD3

3

Record Offer
Salesperson Offer details

Offer pending notice
Vehicle ID

Customer
Owner/

Manager

Vehicle details

Previous offer
details

Pending offersD2

Pending offer
Pending

offer
notice

Offer confirmation
Customer details

Offer summary

c05ProcessModeling.qxd 11/3/11 11:55 AM Page 197

198 Chapter 5 Process Modeling

Owner/
Manager

Salesperson

Customer

4

Evaluate Offer

Shop Work OrdersD6

New VehiclesD1

Pending OffersD2

DepositsD7

Rejected OffersD3

Accepted OffersD4

Sales ContractsD5

Offer
decision

Pending offer

Pending offer ID

Offer rejection
notice

New sales contract

Deposit

New sales
contract

Shop
work
order
notice

Shop work order

Vehicle details

New sales contract

New accepted offer

Rejected offer

Purchase
deposit

Pending
offer

Shop
Manager

Vehicle ID

(a) Process 4 DFD Fragment

Salesperson

Customer

5

Take Delivery
Of Vehicle

D8 Final Sales Contracts

D9 Payments

D5 Sales Contracts

Sales
contract

Final
payment

Final sales
contract

Final payment

Payment
verification

Sales
contract

Sales
contract ID

Acceptance

Final sales
contract

(b) Process 5 DFD Fragment

FIGURE 5-7
Additional DFD Fragments for Holiday Travel Vehicles

c05ProcessModeling.qxd 9/28/11 8:31 PM Page 198

Creating Data Flow Diagrams 199

Creating the Level 0 Data Flow Diagram

Once you have the set of DFD fragments (one for each of the major use cases), you
combine them into one DFD drawing that becomes the level 0 DFD. As mentioned
earlier, there are no formal layout rules for DFDs. Most systems analysts try to put
the process that is first chronologically in the upper left corner of the diagram and
work their way from top to bottom, left to right (e.g., Figure 5-1). Generally speak-
ing, most analysts try to reduce the number of times that data flow lines cross or to
ensure that when they do cross, they cross at right angles so that there is less con-
fusion. (Many give one line a little “hump” to imply that one data flow jumps over
the other without touching it.) Minimizing the number of data flows that cross is
challenging.

Iteration is the cornerstone of good DFD design. Even experienced analysts
seldom draw a DFD perfectly the first time. In most cases, they draw it once to
understand the pattern of processes, data flows, data stores, and external entities
and then draw it a second time on a fresh sheet of paper (or in a fresh file) to make
it easier to understand and to reduce the number of data flows that cross. Often, a
DFD is drawn many times before it is finished.

Figure 5-8 combines the DFD fragments in Figures 5-6 and 5-7. Take a moment
to examine Figure 5-8 and find the DFD fragments from Figures 5-6 and 5-7 con-
tained within it.

Creating Level 1 Data Flow Diagrams (and Below)

The team now begins to create lower-level DFDs for each process in the level 0
DFD that needs a level 1 DFD. Each one of the use cases is turned into its own
DFD. The process for creating the level 1 DFDs is to take the steps as written on
the use cases and convert them into a DFD in much the same way as for the level 0
DFD. Usually, each major step in the use case becomes a process on the level 1
DFD, with the inputs and outputs becoming the input and output data flows. Once
again, however, sometimes subtle changes are required to go from the informal
descriptions in the use case to the more formal process model, such as adding
input data flows that were not included in the use case. And because the analysts
are now starting to think more deeply about how the processes will be supported
by an information system, they sometimes slightly change the use case steps to
make the process easier to use.

In some approaches to creating DFDs, no source and destination are given
on the level 1 DFD (and lower) for the inputs that come and go between external
entities (or other processes outside of this process). But the source and destina-
tion of data flows for data stores and data flows that go to processes within this
DFD are included (i.e., from one step to another in the same use case, such as
“Confirmed Chemical Request” from process 2.3 to 2.5 in Figure 5-1). This is
because the information is redundant; you can see the destination of data flows
by reading the level 0 DFD.

The problem with these approaches is that in order to really understand the
level 1 DFD, you must refer back to the level 0 DFD. For small systems that only
have one or two level 1 DFDs, this is not a major problem. But for large systems
that have many levels of DFDs, the problem grows; in order to understand the des-
tination of a data flow on a level 3 DFD, you have to read the level 2 DFD, the level 1
DFD, and the level 0 DFD—and if the destination is to another activity, then you
have to trace down in the lower-level DFDs in the other process.

c05ProcessModeling.qxd 9/28/11 8:31 PM Page 199

FI
G

UR
E

5-
8

Ho
lid

ay
 Tr

av
el

Ve
hic

les
 Le

ve
l 0

 D
FD

200

Pe
nd

in
g

O
ffe

rs
D

2

Sa
le

s
C

on
tra

ct
s

D
5

Sh
op

 W
or

k
O

rd
er

s
D

6

R
ej

ec
te

d
O

ffe
rs

D
3

N
ew

 V
eh

ic
le

s
D

1

Ac
ce

pt
ed

 O
ffe

rs
D

4

D
ep

os
its

D
7

3

R
ec

or
d

O
ffe

r

5

Ta
ke

 D
el

iv
er

y
O

f V
eh

ic
le

4

Ev
al

ua
te

 O
ffe

r

Sa
le

sp
er

so
n

C
us

to
m

er

C
us

to
m

er

O
w

ne
r/

M
an

ag
er

Fi
na

l S
al

es
 C

on
tra

ct
s

D
8

Pa
ym

en
ts

D
9

Ve
hi

cl
e

ID

O
ffe

r p
en

di
ng

 n
ot

ic
e

Pe
nd

in
g

of
fe

r

Ve
hi

cl
e

de
ta

ils Pu
rc

ha
se

 d
ep

os
it

N
ew

 a
cc

ep
te

d
of

fe
r

Sh
op

 w
or

k
or

de
r n

ot
ic

e

Sh
op

 w
or

k
or

de
r

Ve
hi

cl
e

ID
O

ffe
r d

ec
is

io
n

D
ep

os
it

N
ew

 s
al

es
 c

on
tra

ct

Fi
na

l s
al

es

co
nt

ra
ct

Fi
na

l
pa

ym
en

t

Fi
na

l
pa

ym
en

t

Fi
na

l s
al

es

co
nt

ra
ct

Sa
le

s
co

nt
ra

ct
 ID

Sa
le

s
co

nt
ra

ct

N
ew

 s
al

es
 c

on
tra

ct

O
ffe

r
re

je
ct

io
n

no
tic

e

Pa
ym

en
t v

er
ifi

ca
tio

n

Ac
ce

pt
an

ce
Sa

le
s

co
nt

ra
ct

Pr
ev

io
us

 o
ffe

r
de

ta
ils

N
ew

pe

nd
in

g
of

fe
r

Pe
nd

in
g

of
fe

r n
ot

ic
e

Pe
nd

in
g

of
fe

r I
D

Ex
is

tin
g

pe
nd

in
g

of
fe

r

R
ej

ec
te

d
of

fe
r

O
ffe

r d
et

ai
ls

O
ffe

r s
um

m
ar

y

C
us

to
m

er
 d

et
ai

ls

Pe
nd

in
g

of
fe

r

N
ew

sa

le
s

co
nt

ra
ct

O
ffe

r c
on

fir
m

at
io

n

Ve
hi

cl
e

de
ta

ils

Sh
op

M

an
ag

er

c05ProcessModeling.qxd 9/28/11 8:31 PM Page 200

We believe that including external entities in level 1 and lower DFDs dra-
matically simplifies the readability of DFDs, with very little downside. In our
work in several dozen projects with the U.S. Department of Defense, several other
federal agencies, and the military of two other countries, we came to understand
the value of this approach and converted the powers that be to our viewpoint.
Because DFDs are not completely standardized, each organization uses them
slightly differently. So, the ultimate decision of whether or not to include exter-
nal entities on level 1 DFDs is yours—or your instructor’s! In this book, we will
include them.

Ideally, we try to keep the data stores in the same general position on the page
in the level 1 DFD as they were in the level 0 DFD, but this is not always possible.
We try to draw input data flows arriving from the left edge of the page and output data
flows leaving from the right edge. For example, see the level 1 DFD in Figure 5-1.

One of the most challenging design questions is when to decompose a level 1
DFD into lower levels. The decomposition of DFDs can be taken to almost any
level, so for example, we could decompose process 1.2 on the level 1 DFD into
processes 1.2.1, 1.2.2, 1.2.3, and so on in the level 2 DFD. This can be repeated to
any level of detail, so one could have level 4 or even level 5 DFDs.

There is no simple answer to the “ideal” level of decomposition, because it
depends on the complexity of the system or business process being modeled. In gen-
eral, you decompose a process into a lower-level DFD whenever that process is suf-
ficiently complex that additional decomposition can help explain the process. Most
experts believe that there should be at least three, and no more than seven to nine,
processes on every DFD, so if you begin to decompose a process and end up with
only two processes on the lower-level DFD, you probably don’t need to decompose
it. There seems little point in decomposing a process and creating another lower-
level DFD for only two processes; you are better off simply showing two processes
on the original higher level DFD. Likewise, a DFD with more than nine processes
becomes difficult for users to read and understand, because it is very complex and
crowded. Some of these processes should be combined and explained on a lower-
level DFD.

One guideline for reaching the ideal level of decomposition is to decompose
until you can provide a detailed description of the process in no more than one page
of process descriptions: structured English, decision trees, or decision tables.
Another helpful rule of thumb is that each lowest level process should be no more
complex than what can be realized in about 25–50 lines of code.

In Figures 5-9, 5-10, and 5-12, we have provided level 1 DFDs for the vehi-
cles sales processes we have focused on for the Holiday Travel Vehicle system. As
we describe each figure, take a moment to back at the Major Steps section of their
respective use cases in Figure 4-11.

Figure 5-9 depicts the level 1 DFD for the process of Recording an Order
(process 3). The salesperson first checks for any existing Pending Offers for the
vehicle (3.1). If a pending offer is found, the salesperson is notified and the process
ends. Otherwise, the salesperson is specified if the offer is a new offer or a revision of
a previous (rejected) offer (3.2). If it is a revised offer, the previous offer is retrieved
from the Rejected Offers data store (3.3). If it is a new offer, information about the
vehicle and the customer is obtained (3.4). The salesperson completes the specific
details of the offer (3.5), and the offer must be confirmed by the customer (3.6).
Once confirmed, the Pending Offer is stored, a copy is given to the customer, and the
Owner/Manager is notified of the new Pending Offer (3.7). As you look at the use
case for this event, you will see that the steps outlined have been captured in these

Creating Data Flow Diagrams 201

c05ProcessModeling.qxd 9/28/11 8:31 PM Page 201

202 Chapter 5 Process Modeling

Pending OffersD2

Rejected OffersD3

New VehiclesD1

3.2

Determine
Offer
Type

3.3

Create
Revised

Offer
3.1

Check
For

Pending
Offers

3.4

Create
New
Offer

3.6

Confirm
Offer

3.7

Create
Pending

Offer

3.5

Finalize
Offer

Salesperson

Customer

Owner/
Manager

Offer details

Previous
offer

details

Offer type
Offer ID

Vehicle ID

Vehicle ID

Vehicle ID

Offer
pending notice

Existing
pending

offer

Customer details

New
pending

offer
Pending offer

Offer
summary

Offer
confirmation

Preliminary
offer

Offer ID

Preliminary
offer

Vehicle details

Complete offer

Confirmed offer Pending
offer

notice

FIGURE 5-9
Holiday Travel Vehicles Process 3 (Record Offer) Level 1 DFD

seven processes in Figure 5-9. Also notice that we have attempted to organize the
use case steps into processes that focus on one primary task.

Figure 5-10 describes the process of Evaluating an Offer. We have taken a
slightly different approach to creating this level 1 DFD. The Owner/Manager is
able to look at the Pending Offer and details about the vehicle and enters his deci-
sion to accept or reject the offer (4.1). For rejected offers, the Owner/Manager
enters the reason for the rejection, the rejected offer is recorded, and the salesper-
son is notified of the offer rejection (4.2). For accepted offers, a variety of tasks are

c05ProcessModeling.qxd 9/28/11 8:31 PM Page 202

Creating Data Flow Diagrams 203

Rejected OffersD3

Accepted OffersD4

Sales ContractsD5

DepositsD7

Shop Work OrdersD6

Customer

Owner/
Manager

Pending
offer ID

Pending
offer to
delete

Pending
offer

Offer
decision

4.1

Offer rejection
reason

Prepare
Offer

Rejection

New sales
contract

New sales
contract

New sales contract

Deposit

Purchase
deposit

Shop
Manager

Shop
work
order
notice

Shop
work order

Process
Accepted

Offers

New accepted
offer

Accepted
offer

details

New rejected
offer

4.2

4.3

Offer rejection
noticeSalesperson

Rejected
offer details

Accept
Offer

Decision

Vehicle ID

Vehicle details

Pending OffersD2

New VehiclesD1

FIGURE 5-10
Holiday Travel Vehicles Process 4 (Evaluate Offer) Level 1 DFD

performed in order to complete the accepted offer (4.3). We have purposely col-
lected these tasks into process 4.3 so that we can demonstrate the process of
“exploding” that process into a level 2 DFD.

Process 4.3 in Figure 5-10 is clearly a process that is performing many tasks.
When a process has numerous inflows and outflows, it is a good candidate for

c05ProcessModeling.qxd 9/28/11 8:31 PM Page 203

decomposition into a lower-level DFD. As we mentioned previously, analysts often
purposely “hide” details on a higher-level diagram to eliminate confusion and use
a lower-level diagram to “reveal” the details. Figure 5-11 contains the level 2 DFD
for process 4.3, Process Accepted Offers. As you can see by studying Figure 5-11,
the parent process has been divided into four subprocesses, each focusing on one
main task. Process 4.3.1 records the new Accepted Offer and provides data to two
other processes. Process 4.3.3 uses the details from the accepted offer regarding
options the customer wants to prepare a Shop Work Order and notify the shop man-
ager. Process 4.3.2 uses the offer details and vehicle details to prepare the final
sales contract. Finally, the customer’s deposit is recorded (4.3.4).

Figure 5-12 depicts the third of our use cases from Figure 4-11 (Take Delivery
of Vehicle). The salesperson obtains the Sales Contract (5.1). The salesperson
verifies receipt of the customer’s final payment, the customer signifies his/her accept-
ance of the vehicle, and the payment is recorded (5.2). Finally, the Final Sales
Contract is recorded and a copy provided to the customer (5.3).

The process model is more likely to be drawn to the lowest level of detail
for a to-be model if a traditional development process is used (i.e., not rapid

204 Chapter 5 Process Modeling

Customer

New sales
contract New

sales
contract

New
sales

contract

Purchase
deposit

Deposit

Shop
Manager

Shop
work
order
notice

Shop work order
Shop work details

New accepted offer

Salesperson

Accepted
offer

details

From Process
4.1

From Process
4.1

Offer
details

4.3.1

Create
Accepted

Offer 4.3.3

Prepare
Shop
Work
Order

4.3.2

Prepare
Sales

Contract

4.3.4

Record
Deposit

Vehicle
details

Customer
details

Shop Work OrdersD6

DepositsD7

Sales ContractsD5

Accepted OffersD4

FIGURE 5-11
Holiday Travel Vehicles Process 4.3 (Process Accepted Offers) Level 2 DFD

c05ProcessModeling.qxd 9/28/11 8:31 PM Page 204

application development [RAD]; see Chapter 2) or if the system will be built by
an external contractor. Without the complete level of detail, it may be hard to
specify in a contract exactly what the system should do. If a RAD approach,
which involves a lot of interaction with the users and, quite often, prototypes, is
being used, we would be less likely to go to as low a level of detail, because the
design will evolve through interaction with the users. In our experience, most sys-
tems go to only level 2 at most.

There is no requirement that all parts of the system must be decomposed to
the same level of DFDs. Some parts of the system may be very complex and
require many levels, whereas other parts of the system may be simpler and require
fewer.

Creating Data Flow Diagrams 205

Customer

Sales
contract

Sales
contract ID

Completed
sales

contract

Sales
contract

Payment
verification

Final sales
contract

Final sales
contract

Final
paymentFinal

payment

Acceptance

Salesperson

5.1

Retrieve
Sales

Contract

5.2

Process
Customer

Acceptance

5.3

Produce
Final Sales

Contract

Sales ContractsD5

PaymentsD9

Final Sales ContractsD8

FIGURE 5-12
Holiday Travel Vehicles Process 5 (Take Delivery of Vehicle) Level 1 DFD

c05ProcessModeling.qxd 9/28/11 8:31 PM Page 205

Validating the Data Flow Diagrams

Once you have created a set of DFDs, it is important to check them for quality.
Figure 5-13 provides a quick checklist for identifying the most common errors. There
are two fundamentally different types of problems that can occur in DFDs: syntax
errors and semantics errors. “Syntax,” refers to the structure of the DFDs and whether
the DFDs follow the rules of the DFD language. Syntax errors can be thought of as
grammatical errors made by the analyst when he or she creates the DFD. “Semantics”
refers to the meaning of the DFDs and whether they accurately describe the business
process being modeled. Semantics errors can be thought of as misunderstandings by
the analyst in collecting, analyzing, and reporting information about the system.

In general, syntax errors are easier to find and fix than are semantics errors,
because there are clear rules that can be used to identify them (e.g., a process must
have a name). Most CASE tools have syntax checkers that will detect errors within
one page of a DFD in much the same way that word processors have spelling check-
ers and grammar checkers. Finding syntax errors that span several pages of a DFD
(e.g., from a level 1 to a level 2 DFD) is slightly more challenging, particularly for
consistent viewpoint, decomposition, and balance. Some CASE tools can detect
balance errors, but that is about all. In most cases, analysts must carefully and
painstakingly review every process, external entity, data flow, and data store on all
DFDs by hand to make sure that they have a consistent viewpoint and that the
decomposition and balance are appropriate.

Each data store is required to have at least one input and one output on some
page of the DFD. In Figure 5-10, data store D1, New Vehicles, has only outputs and
several data stores have only inputs. This situation is not necessarily an error. The
analyst should check elsewhere in the DFDs to find where data is written to data

206 Chapter 5 Process Modeling

Shortly after the Gulf War in 1991
(Desert Storm), the U.S. Department of Defense realized
that there were significant problems in its battlefield logis-
tics systems that provided supplies to the troops at the divi-
sion level and below. During the Gulf War, it had proved
difficult for army and marine units fighting together to
share supplies back and forth because their logistics com-
puter systems would not easily communicate. The goal of
the new system was to combine the army and marine
corps logistics systems into one system to enable units to
share supplies under battlefield conditions.

The army and marines built separate as-is process
models of their existing logistics systems that had 165
processes for the army system and 76 processes for the
marines. Both process models were developed over a 3-
month time period and cost several million dollars to build,
even though they were not intended to be comprehensive.

I helped them develop a model for the new inte-
grated battlefield logistics system that would be used by
both services (i.e., the to-be model). The initial process
model contained 1,500 processes and went down to
level 6 DFDs in many places. It took 3,300 pages to
print. They realized that this model was too large to be
useful. The project leader decided that level 4 DFDs was
as far as the model would go, with additional information
contained in the process descriptions. This reduced the
model to 375 processes (800 pages) and made it far
more useful. Alan Dennis

QUESTIONS:
1. What are the advantages and disadvantages to set-

ting a limit for the maximum depth for a DFD?
2. Is a level 4 DFD an appropriate limit?

5-A U.S. ARMY AND MARINE CORPS BATTLEFIELD LOGISTICS

IN ACTION

CONCEPTS

c05ProcessModeling.qxd 9/28/11 8:31 PM Page 206

store D2 or read from the other data stores. All data stores should have at least one
inflow and one outflow, but the flows may not be on the same diagram, so check
other parts of the system. Another issue that arises is when the data store is utilized
by other systems. In that case, data may be added to or used by a separate system.
This is perfectly fine, but the analyst should investigate to verify that the required
flows in and out of data stores exist somewhere.

In our experience, the most common syntax error that novice analysts make
in creating DFDs is violating the law of conservation of data.3 The first part of the
law states the following:

1. Data at rest stays at rest until moved by a process.

Creating Data Flow Diagrams 207

Within DFD

Process • Every process has a unique name that is an action-oriented verb phrase, a number, and a description.

• Every process has at least one input data flow.

• Every process has at least one output data flow.

• Output data flows usually have different names than input data flows because the process changes the
input into a different output in some way.

• There are between three and seven processes per DFD.

Data Flow • Every data flow has a unique name that is a noun, and a description.

• Every data flow connects to at least one process.

• Data flows only in one direction (no two-headed arrows).

• A minimum number of data flow lines cross.

Data Store • Every data store has a unique name that is a noun, and a description.

• Every data store has at least one input data flow (which means to add new data or change existing
data in the data store) on some page of the DFD.

• Every data store has at least one output data flow (which means to read data from the data store) on
some page of the DFD.

External Entity • Every external entity has a unique name that is a noun, and a description.

• Every external entity has at least one input or output data flow.

Across DFDs

Context diagram • Every set of DFDs must have one context diagram.

Viewpoint • There is a consistent viewpoint for the entire set of DFDs.

Decomposition • Every process is wholly and completely described by the processes on its children DFDs.

Balance • Every data flow, data store, and external entity on a higher level DFD is shown on the lower-level DFD
that decomposes it.

Semantics

Appropriate Representation • User validation

• Role-play processes

Consistent Decomposition • Examine lowest-level DFDs

Consistent Terminology • Examine names carefully

Syntax

FIGURE 5-13
Data Flow Diagram Quality Checklist

3 This law was developed by Prof. Dale Goodhue at the University of Georgia.

c05ProcessModeling.qxd 9/28/11 8:31 PM Page 207

In other words, data cannot move without a process. Data cannot go to or come
from a data store or an external entity without having a process to push it or pull it.

The second part of the law states the following:

2. Processes cannot consume or create data.

In other words, data only enters or leaves the system by way of the external enti-
ties. A process cannot destroy input data; all processes must have outputs. Drawing a
process without an output is sometimes called a “black hole” error. Likewise, a
process cannot create new data; it can transform data from one form to another, but
it cannot produce output data without inputs. Drawing a process without an input is
sometimes called a “miracle” error (because output data miraculously appear). There
is one exception to the part of the law requiring inputs, but it is so rare that most ana-
lysts never encounter it.4 Figure 5-14 shows some common syntax errors.

Looking at Figure 5-14, we will discuss each error in turn. First, we can see
data flow X drawn directly from Entity A to Entity B. Remember that a data flow
must either originate or terminate at a process; therefore, a process is required.
Second, we see data flow Z retrieved from Data Store P and sent to Entity B.
Processes should exist to transform the data in some way, so we usually modify the
data flow names to reflect the changes made in the process. Third, we see that Data
Store P has outputs but has no inputs. This is not necessarily an error, but does
deserve the analyst’s investigation. We should make sure that a process that adds
data to Data Store P exists somewhere in the diagrams of the entire process model.
Fourth, we can see that Process F receives data but has no outputs. This is consid-
ered a black hole since data is received but nothing is produced. Fifth, Process D is
shown producing a data flow but has no inputs. This is termed a miracle process.
Sixth, we see a two-headed arrow depicting Data Flow G between Process E and
Process F. Data flows should not be drawn this way, but should flow only in one
direction. Seventh, Data Store H receives Data Flow H as an input, but has no out-
puts. This issue may not be an error, but should be followed up by the analyst to
ensure that the data that is stored in Data Store H is used some place in the process
model; otherwise, there is no reason to store it. Finally, we see that a process should
be involved between Entity A and Data Store H.

Generally speaking, semantics errors cause the most problems in system
development. Semantics errors are much harder to find and fix because doing so
requires a good understanding of the business process. And even then, what may be
identified as an error may actually be a misunderstanding by the person reviewing
the model. There are three useful checks to help ensure that models are semanti-
cally correct. (See Figure 5-13.)

The first check to ensure that the model is an appropriate representation is to
ask the users to validate the model in a walk-through (i.e., the model is presented
to the users, and they examine it for accuracy). A more powerful technique is for
the users to role-play the process from the DFDs in the same way in which they
role-played the use case. The users pretend to execute the process exactly as it is
described in the DFDs. They start at the first process and attempt to perform it by
using only the inputs specified and producing only the outputs specified. Then they
move to the second process, and so on.

208 Chapter 5 Process Modeling

4 The exception is a temporal process that issues a trigger output based on an internal time clock. Whenever
some predetermined period elapses, the process produces an output. The timekeeping process has no inputs
because the clock is internal to the process.

c05ProcessModeling.qxd 9/28/11 8:31 PM Page 208

One of the most subtle forms of semantics error occurs when a process cre-
ates an output, but has insufficient inputs to create it. For example, in order to cre-
ate water (H2O), we need to have both hydrogen (H) and oxygen (O) present. The
same is true of computer systems, in that the outputs of a process can be only com-
binations and transformations of its inputs. Suppose, for example, that we want to
record an order; we need the customer name and mailing address and the quantities
and prices for the items the customer is ordering. We need information from the
customer data store (e.g., address) and information from the items data store (e.g.,
price). We cannot draw a process that produces an output order data flow without
inputs from these two data stores. Role-playing with strict adherence to the inputs
and outputs in a model is one of the best ways to catch this type of error.

Creating Data Flow Diagrams 209

Data Store PD2

Output has same
name as input

Data flows should not
have two-headed arrows

Data store
has no input

Data Store HD3

Data Store ND1

1

Process U

2

Process V

Entity A Entity B

Data store
has no output

Black hole
has no outputs

Z

Z

X

B

A

N1H

H
G

P

N2

K

Y

No process to
move data flow

Miracle process
has no inputs

3

Process E
6

Process F

4

Process D

No process to
move data flow

1

2

3

4

5

6

7

8

FIGURE 5-14
Some Common Errors

c05ProcessModeling.qxd 9/28/11 8:31 PM Page 209

A second semantics error check is to ensure consistent decomposition,
which can be tested by examining the lowest-level processes in the DFDs. In most
circumstances, all processes should be decomposed to the same level of detail—
which is not the same as saying the same number of levels. For example, suppose
that we were modeling the process of driving to work in the morning. One level of
detail would be to say the following: (1) Enter car; (2) start car; (3) drive away.
Another level of detail would be to say the following: (1) Unlock car; (2) sit in car;
(3) buckle seat belt; and so on. Still another level would be to say the following:
(1) Remove key from pocket; (2) insert key in door lock; (3) turn key; and so on.
None of these is inherently better than another, but barring unusual circumstances,
it is usually best to ensure that all processes at the very bottom of the model provide
the same consistent level of detail.

Likewise, it is important to ensure that the terminology is consistent through-
out the model. The same item may have different names in different parts of the
organization, so one person’s “sales order” may be another person’s “customer order.”
Likewise, the same term may have different meanings; for example, “ship date” may
mean one thing to the sales representative taking the order (e.g., promised date) and
something else to the warehouse (e.g., the actual date shipped). Resolving these dif-
ferences before the model is finalized is important in ensuring that everyone who
reads the model or who uses the information system built from the model has a shared
understanding.

APPLYING THE CONCEPTS AT TUNE SOURCE

Creating the Context Diagram

The project team began by creating the context diagram. They read through the sum-
mary area of the three major use cases in Figure 4-14 to find the major inputs and
outputs.

The team noticed that the majority of data flow interactions are with the cus-
tomers who are using the Web site to browse music selections and make download
purchases. There will be an interaction with the payment clearinghouse entity that
will handle payment verification and processing of purchases. Finally, although it is
not obvious from the use cases, the marketing managers will be using sales infor-
mation from the system to design and implement promotional campaigns. The team
used the major inflows and outflows from the use cases and developed the context
diagram shown in Figure 5-15.

Creating Data Flow Diagram Fragments

The next step was to create one DFD fragment for each use case. This was done by
drawing the process in the middle of the page, making sure that the process num-
ber and name were appropriate, and connecting all the input and output data flows
to it. Unlike the context diagram, the DFD fragment includes data flows to external
entities and to internal data stores.

The completed DFD fragments are shown in Figure 5-16. Before looking at
the figure, take a minute and draw them on your own. There are many good ways
to draw these fragments. In fact, there are many “right” ways to create use cases and
DFDs. Notice that on the DFD fragment for process 3 we have shown a dotted line
inflow labeled “Time to determine promotions” into the process. Recall that we

210 Chapter 5 Process Modeling

c05ProcessModeling.qxd 9/28/11 8:31 PM Page 210

specified that the use case, Promote Tunes, was a temporal use case, triggered when
it was time to update promotions and specials. The dotted line flow into process 3
in Figure 5-16 is sometimes referred to as a control flow and is commonly used to
represent a time-based trigger for an event.

Creating the Level 0 Data Flow Diagram

The next step was to create the level 0 DFD by integrating the DFD fragments,
which proved to be anticlimactic. The team simply took the DFD fragments and
drew them together on one piece of paper. Although it sometimes is challenging to
arrange all the DFD fragments on one piece of paper, it was primarily a mechani-
cal exercise (Figure 5-17). Compare the level 0 diagram with the context diagram
in Figure 5-15. Are the two DFDs balanced? Notice the additional detail contained
in the level 0 diagram.

A careful review of the data stores in Figure 5-17 reveals that every one has
both an inflow and an outflow, with one exception, D1:Available Tunes. D1:Avail-
able Tunes is read by two processes, but is not written to by any process shown.
This violation of DFD syntax needs to be investigated by the team because it may
be a serious oversight. As we will explain later, in this situation we need to create
a process specifically for adding, modifying, and deleting data in D1:Available
Tunes. “Administrative” processes such as this are often overlooked, as we initially
focus on business requirements only, but will need to be added before the system
is complete.

Creating Level 1 Data Flow Diagrams (and Below)

The next step was to create the level 1 DFDs for those processes that could benefit
from them. The analysts started with the first use case (search and browse tunes)
and started to draw a DFD for the individual steps it contained. The steps in the use
case were straightforward, but as is common, the team had to choose names and
numbers for the processes and to add input data flows from data stores not present

Applying the Concepts at Tune Source 211

Customer
Payment

Clearinghouse

Marketing
Managers

0

Tune Source
Digital Music

Download
System

Customer
info

Payment
info

Search request

Tune download
E-mail promotions

Selection
Payment

authorization

Payment

Sales
patterns

Promotion
decisions

FIGURE 5-15
Tune Source Context Diagram

c05ProcessModeling.qxd 9/28/11 8:31 PM Page 211

212 Chapter 5 Process Modeling

FIGURE 5-16
Tune Source DFD
Fragments

Shopping
Cart

D7

(a) Tune Source Process 1 DFD Fragment

Available
Tunes

Requested
tunes D1

1

Search and
Browse
Tunes

Web promotions

Customer
Matching

tunes
Tune

samples
Selection

Search
request

Customer
favorites

New
favorite

New
interest

Tune
to buy

Targeted
PromotionsD3

Customer
FavoritesD2

Customer
InterestsD4

Shopping

Cart
D7

(b) Tune Source Process 2 DFD Fragment

2

Purchase

Tunes

Tune price

Customer

Payment

Clearinghouse
Customer

info

Payment

info

Customer

account

info

Customer

details

Payment

authorization

Customer

info

Payment

Tune to

buy
Available

Tunes
D1

Purchase

info

Tune

download

CustomersD6

SalesD5

(c) Tune Source Process 3 DFD Fragment

3

Promote
Tunes

Marketing
Managers

Customer

Promotion
decisions

Sales
patterns

E-mail
promotions

Customer
interests

Recent
sales

Time to determine
promotions

SalesD5

Customer
InterestsD4

CustomerD6

Targeted
PromotionsD3

New Web site
promotions

Customer
e-mail

c05ProcessModeling.qxd 9/28/11 8:31 PM Page 212

in the use case. The team also discovered the omission of a data flow, customer
interests, from the use case. See Figure 5-18.

The team also developed level 1 diagrams for the other processes, using the
major steps outlined in their respective use cases. Some adjustments were made
from the steps as shown in the use cases, but the team followed the steps fairly
closely. See Figures 5-19 and 5-20, and compare them with their use cases shown
in Figure 4-14.

Applying the Concepts at Tune Source 213

2

Purchase

Tunes

1

Search and

Browse

Tunes

3

Promote

Tunes

SalesD5

Web promotions

Tune

to buy

Purchase

info

Recent

sales

Time to determine

promotions

Customer

Payment

Clearinghouse

Marketing

Managers

Customer

Interests

Customer

interests

New Web site

promotions

D4

CustomersD6

Targeted

Promotions
D3

Customer

Favorites
D2

New

favorite

New

Interest

Customer

favorites

Payment

authorization

Customer

e-mail

Payment

Search

request

Matching

tunes

Tune

sample

Selection

Customer

info
Customer

details

E-mail

promotions

Sales

patterns

Promotion

decisions

Customer

account

info
Customer

info
Payment

info
Tune

download

Shopping

Cart
D7

Tune

to buy

Available

Tunes
D1

Requested

Tunes

Tune Price

FIGURE 5-17
Tune Source Level 0 DFD

c05ProcessModeling.qxd 9/28/11 8:31 PM Page 213

214 Chapter 5 Process Modeling

Draw a context diagram, a level 0 DFD, and a set of level 1 DFDs (where needed) for the cam-
pus housing use cases that you developed for the Your Turn 4-1 box in Chapter 4.

5-1 CAMPUS HOUSINGY O U R

T U R N

FIGURE 5-18
Level 1 DFD for Tune Source Process 1: Search and Browse Tunes

Shopping
CartD7

1.1

Load
Web Site

1.2

Process
Search

Requests

1.3

Process
Tune

Selection

Customer Matching
tunes

Search
requests

Web site
access

Customized
Web content

Web promotions

Customer
favorites

Requested
tunes

Selection

Tune
sample

Tune
sample

New
interest

New
favorite

Targeted
PromotionsD3

Customer
FavoritesD2

Customer
InterestsD4

Available
TunesD1

Tune
to buy

c05ProcessModeling.qxd 9/28/11 8:31 PM Page 214

Applying the Concepts at Tune Source 215

2.1

Create
Customer
Account

2.2

Retrieve
Customer
Account

2.3

Process
Payment

2.4

Confirm
Purchase

Customer

Payment
Clearinghouse

Customer
info

Tune to
buy

Customer
account

info

Customer
infoCustomer

details

Tune
price

Payment
authorization

Payment

Customer
details

Tune
purchase

details

Payment
details

Purchase
confirmation

CustomersD6

2.5

Release
Download

Purchase
info

Tune
purchase

details

Downloaded
tune

SalesD5

Available TunesD1

Shopping CartD7

FIGURE 5-19
Level 1 DFD for Tune Source Process 2: Purchase Tunes

c05ProcessModeling.qxd 9/28/11 8:31 PM Page 215

216 Chapter 5 Process Modeling

FIGURE 5-20
Level 1 DFD for Tune Source Process 3: Promote Tunes

3.1

Evaluate
Sales

Patterns

3.2

Establish
Promotional
Campaigns

3.3

Send
E-mails

Customer
E-mail

promotions

Marketing
Managers

Sales
patterns

Time to determine
promotions

Promotion
decisions

Customer
interests

Recent
sales

Customer
InterestsD4

New Web site
promotions

Targeted
PromotionsD3

Customer
e-mail

Sales
pattern
details

E-mail
campaigns

SalesD5

CustomerD6

As we specified in Figure 5-2, every data store should have one or more input
data flows and one or more output data flows. A careful look at Figure 5-18, how-
ever, reveals that D1: Available Tunes has output data flows, but no input data
flows. This data store is the main repository for the digital music library, so,
clearly, it has a central role in our system. The team will need to be sure to create
an administrative process for maintaining this data store: adding new information
to it, modifying its existing contents, and removing information from it. These
administrative tasks are sometimes omitted from the business-oriented tasks listed
in the use cases, so it is up to the team to ensure that processes are included to add,
modify, and delete the contents of data stores somewhere in the system. Simply
checking the DFD syntax (all data stores must have at least one input data flow and
at least one output data flow) helped discover this omission in the process model.

c05ProcessModeling.qxd 9/28/11 8:31 PM Page 216

Although it would have been possible to decompose several of the processes
on the level 1 DFDs into more detail on a level 2 diagram, the project team decided
that that step was not necessary. Instead, they made sure that the process descrip-
tions they created in the CASE repository for each of the processes was very
detailed. This detail would be critical in developing the data models and designing
the user interface and programs during the design phase.

Validating the Data Flow Diagrams

The final set of DFDs was validated by the project team and then by Carly and her
marketing team in a final JAD meeting. There was general approval of the
customer-facing processes (process 1 and process 2) and considerable discussion of
the specific information that would be required to help the marketing team make its
promotional campaign decisions (process 3). This information was recorded in the
CASE repository so that it could be recalled during the development of the system’s
data model, the subject of our next chapter.

SUMMARY

Data Flow Diagram Syntax
Four symbols are used on data flow diagrams (processes, data flows, data stores,
and external entities). A process is an activity that does something. Each process
has a name (a verb phrase), a description, and a number that shows where it is in
relation to other processes and to its children processes. Every process must have
at least one output and usually has at least one input. A data flow is a piece of data
or an object and has a name (a noun) and a description and either starts or ends
at a process (or both). A data store is a manual or computer file, and it has a num-
ber, a name (a noun), and at least one input data flow and one output data flow
(unless the data store is created by a process external to the data flow diagram
[DFD]). An external entity is a person, organization, or system outside the scope
of the system and has a name (a noun) and a description. Every set of DFDs starts
with a context diagram and a level 0 DFD and has numerous level 1 DFDs, level
2 DFDs, and so on. Every element on the higher-level DFDs (i.e., data flows, data
stores, and external entities) must appear on lower-level DFDs, or else they are
not balanced.

Creating Data Flow Diagrams
The DFDs are created from the use cases. First, the team builds the context dia-
gram that shows all the external entities and the data flows into and out of the
system from them. Second, the team creates DFD fragments for each use case
that show how the use case exchanges data flows with the external entities and
data stores. Third, these DFD fragments are organized into a level 0 DFD.
Fourth, the team develops level 1 DFDs on the basis of the steps within each use
case to better explain how they operate. Fifth, the team validates the set of DFDs
to make sure that they are complete and correct and contain no syntax or seman-
tics errors. Analysts seldom create DFDs perfectly the first time, so iteration is
important in ensuring that both single-page and multipage DFDs are clear and
easy to read.

Summary 217

c05ProcessModeling.qxd 9/28/11 8:31 PM Page 217

218 Chapter 5 Process Modeling

1. What is a process model? What is a data flow dia-
gram? Are the two related? If so, how?

2. Distinguish between logical process models and
physical process models.

3. Define what is meant by a process in a process
model. How should a process be named? What
information about a process should be stored in the
CASE repository?

4. Define what is meant by a data flow in a process
model. How should a data flow be named? What
information about a data flow should be stored in
the CASE repository?

5. Define what is meant by a data store in a process
model. How should a data store be named? What
information about a data store should be stored in
the CASE repository?

6. Define what is meant by an external entity in a
process model. How should an external entity be
named? What information about an external entity
should be stored in the CASE repository?

7. Why is a process model typically composed of a set
of DFDs? What is meant by decomposition of a
business process?

8. Explain the relationship between a DFD context
diagram and the DFD level 0 diagram.

9. Explain the relationship between a DFD level 0
diagram and DFD level 1 diagram(s).

10. Discuss how the analyst knows how to stop decom-
posing the process model into more and more levels
of detail.

11. Suppose that a process on a DFD is numbered
4.3.2. What level diagram contains this process?
What is this process’s parent process?

12. Explain the use of structured English in process
descriptions.

13. Why would one use a decision tree and/or decision
table in a process description?

14. Explain the process of balancing a set of DFDs.
15. How are mutually exclusive data flows (i.e., alter-

native paths through a process) depicted in DFDs?
16. Discuss several ways to verify the correctness of a

process model.
17. Identify three typical syntax errors commonly

found in DFDs.
18. What is meant by a DFD semantic error? Provide

an example.
19. Creating use cases when working with users is a

recent development in systems analysis practice.
Why is the trend today to employ use cases in user
interviews or JAD sessions?

20. How can you make a DFD easier to understand?
(Think first about how to make one difficult to
understand.)

21. Suppose that your goal is to create a set of DFDs.
How would you begin an interview with a knowl-
edgeable user? How would you begin a JAD
session?

QUESTIONS

Action statement
Balancing
Bundle
Case statement
Children
Context diagram
Data flow
Data flow diagram (DFD)
Data store
Decision table
Decision tree

Decomposition
DFD fragment
External entity
For statement
If statement
Iteration
Layout
Level 0 DFD
Level 1 DFD
Level 2 DFD
Logical process model

Parent
Physical model
Process model
Process
Semantics error
Structured English
Syntax error
Viewpoint
While statement

KEY TERMS

c05ProcessModeling.qxd 9/28/11 8:31 PM Page 218

Minicases 219

1. The Hatcher Company is in the process of developing a
new inventory management system. One of the event
handling processes in that system is Receive Supplier
Shipments. The (inexperienced) systems analyst on the
project has spent time in the warehouse observing this
process and developed the following list of activities that
are performed: getting the new order in the warehouse,
unpacking the boxes, making sure that all the ordered
items were actually received, putting the items on the cor-
rect shelves, dealing with the supplier to reconcile any
discrepanices, adjusting the inventory quantities on hand,
and passing along the shipment information to the
accounts payable office. He also created the accompany-
ing Level 1 data flow diagram for this process. Unfortu-
nately, this DFD has numerous syntax and semantic
errors. Identify the errors. Redraw the DFD to more cor-
rectly represent the Receive Supplier Shipments process.

2. Professional and Scientific Staff Management (PSSM) is
a unique type of temporary staffing agency. Many organ-
izations today hire highly skilled technical employees on
a short-term, temporary basis to assist with special pro-
jects or to provide a needed technical skill. PSSM nego-
tiates contracts with its client companies in which it
agrees to provide temporary staff in specific job cate-
gories for a specified cost. For example, PSSM has a con-
tract with an oil and gas exploration company, in which
it agrees to supply geologists with at least a master’s
degree for $5000 per week. PSSM has contracts with a
wide range of companies and can place almost any type
of professional or scientific staff members, from com-
puter programmers to geologists to astrophysicists.

When a PSSM client company determines that it will
need a temporary professional or scientific employee, it
issues a staffing request against the contract it had previ-

ously negotiated with PSSM. When a staffing request is
received by PSSM’s contract manager, the contract num-
ber referenced on the staffing request is entered into the
contract database. Using information from the database,
the contract manager reviews the terms and conditions
of the contract and determines whether the staffing
request is valid. The staffing request is valid if the con-
tract has not expired, the type of professional or scien-
tific employee requested is listed on the original con-
tract, and the requested fee falls within the negotiated
fee range. If the staffing request is not valid, the contract
manager sends the staffing request back to the client
with a letter stating why the staffing request cannot be
filed, and a copy of the letter is filed. If the staffing
request is valid, the contract manager enters the staffing
request into the staffing request database, as an out-
standing staffing request. The staffing request is then
sent to the PSSM placement department.

In the placement department, the type of staff
member, experience, and qualifications requested on
the staffing request are checked against the database of
available professional and scientific staff. If a qualified
individual is found, he or she is marked “reserved” in
the staff database. If a qualified individual cannot be
found in the database or is not immediately available,
the placement department creates a memo that
explains the inability to meet the staffing request and
attaches it to the staffing request. All staffing requests
are then sent to the arrangements department.

In the arrangement department, the prospective
temporary employee is contacted and asked to agree to
the placement. After the placement details have been
worked out and agreed to, the staff member is marked
“placed” in the staff database. A copy of the staffing

MINICASES

A. Draw a level 0 data flow diagram (DFD) for the
process of buying glasses in Exercise A, Chapter 4.

B. Draw a level 0 data flow diagram (DFD) for the den-
tist office system in Exercise B, Chapter 4.

C. Draw a level 0 data flow diagram (DFD) for the uni-
versity system in Exercise D, Chapter 4.

D. Draw a level 0 data flow diagram (DFD) for the real
estate system in Exercise E, Chapter 4.

E. Draw a level 0 data flow diagram (DFD) for the
video store system in Exercise F, Chapter 4.

F. Draw a level 0 data flow diagram (DFD) for the
health club system in Exercise G, Chapter 4.

G. Draw a level 0 data flow diagram (DFD) for the
Picnics R Us system in Exercise H, Chapter 4.

H. Draw a level 0 data flow diagram (DFD) for the
Of-the-Month Club system in Exercise I, Chapter 4.

I. Draw a level 0 data flow diagram (DFD) for the uni-
versity library system in Exercise J, Chapter 4.

EXERCISES

c05ProcessModeling.qxd 9/28/11 8:31 PM Page 219

220 Chapter 5 Process Modeling

request and a bill for the placement fee is sent to the
client. Finally, the staffing request, the “unable to fill”
memo (if any), and a copy of the placement fee bill is
sent to the contract manager. If the staffing request was
filled, the contract manager closes the open staffing
request in the staffing request database. If the staffing
request could not be filled, the client is notified. The
staffing request, placement fee bill, and “unable to fill”
memo are then filed in the contract office.

a. Develop a use case for each of the major processes
just described.

b. Create the context diagram for the system just
described.

c. Create the DFD fragments for each of the four
use cases outlined in part a, and then combine
them into the level 0 DFD.

d. Create a level 1 DFD for the most complicated use
case.

Hatcher Company Inventory
Management System Level 1 DFD

Accounts PayableD4

New
inventory

New
inventory

Inventory
received

Received
shipment

New
inventory

Inventory Discrepancies

Inventory
discrepancies

Inventory
Discrepancies

Notify
Accounts
Payable

5.4

Unpack
Shipment

5.1

Reconcile
Shipment

5.3

Inventory on HandD2

Supplier

Warehouse
Manager

Warehouse

Place Item
on

Warehouse
Shelves

5.2

Shipment

c05ProcessModeling.qxd 9/28/11 8:31 PM Page 220

c05ProcessModeling.qxd 9/28/11 8:31 PM Page 221

This page is intentionally left blank

A N A L Y S I S

T A S K C H E C K L I S T

P L A N N I N G A N A L Y S I S D E S I G N

▼

Use requirements elicitation techniques (interview,

JAD session, questionnaire, document analysis, and

observation).

Apply requirements analysis strategies as needed to

discover underlying requirements.

Develop the requirements definition.

Develop use cases.

Develop data flow diagrams.

Develop entity relationship model

Normalize entity relationship model

✔

P L A N N I N G

✔

✔

✔

✔

c06DataModeling.qxd 9/30/11 11:04 AM Page 222

I M P L E M E N TAT I O N

data model describes the data that flow through the business processes in an
organization. During the analysis phase, the data model presents the logical

organization of data without indicating how the data are stored, created, or manipulated
so that analysts can focus on the business without being distracted by technical details.
Later, during the design phase, the data model is changed to reflect exactly how the data
will be stored in databases and files. This chapter describes entity relationship diagram-
ming, one of the most common data modeling techniques used in industry.

OBJECTIVES

■ Explain the rules and style guidelines for creating entity relationship diagrams.
■ Create an entity relationship diagram.
■ Describe the use of a data dictionary and metadata.
■ Explain how to balance entity relationship diagrams and data flow diagrams.
■ Describe the process of normalization.

CHAPTER OUTLINE

C H A P T E R 6

A

DATA
MODELING

Introduction
The Entity Relationship Diagram

Reading an Entity Relationship
Diagram

Elements of an Entity Relationship
Diagram

The Data Dictionary and Metadata
Creating an Entity Relationship Diagram

Building Entity Relationship
Diagrams

Advanced Syntax
Applying the Concepts at Tune Source

Validating an ERD
Design Guidelines
Normalization
Balancing Entity Relationship

Diagrams with Data Flow Diagrams
Summary
Appendix 6A: Normalizing the Data

Model

c06DataModeling.qxd 9/30/11 11:04 AM Page 223

INTRODUCTION

During the analysis phase, analysts create process models to represent how the
business system will operate. At the same time, analysts need to understand the
information that is used and created by the business system (e.g., customer infor-
mation, order information). In this chapter, we discuss how the data that flow
through the processes are organized and presented.

A data model is a formal way of representing the data that are used and cre-
ated by a business system; it illustrates people, places, or things about which infor-
mation is captured and how they are related to each other. The data model is drawn
by an iterative process in which the model becomes more detailed and less con-
ceptual over time. During analysis, analysts draw a logical data model, which shows
the logical organization of data without indicating how data are stored, created, or
manipulated. Because this model is free of any implementation or technical details,
the analysts can focus more easily on matching the diagram to the real business
requirements of the system.

In the design phase, analysts draw a physical data model to reflect how the
data will physically be stored in databases and files. At this point, the analysts inves-
tigate ways to store the data efficiently and to make the data easy to retrieve. The
physical data model and performance tuning are discussed in Chapter 11.

Project teams usually use CASE tools to draw data models. Some of the CASE
tools are data modeling packages, such as ERwin by Platinum Technology, that help
analysts create and maintain logical and physical data models; they have a wide array
of capabilities to aid modelers, and they can automatically generate many different
kinds of databases from the models that are created. Other CASE tools (e.g., Oracle
Designer) come bundled with database management systems (e.g., Oracle), and they
are particularly good for modeling databases that will be built in their companion
database products. A final option is to use a full-service CASE tool, such as Visible
Analyst Workbench, in which data modeling is one of many capabilities, and the tool
can be used with many different databases. A benefit of the full-service CASE tool is
that it integrates the data model information with other relevant parts of the project.

In this chapter, we focus on creating a logical data model. Although there are
several ways to model data, we will present one of the most commonly used tech-
niques: entity relationship diagramming, a graphic drawing technique developed by
Peter Chen1 that shows all the data components of a business system. We will first
describe how to create an entity relationship diagram (ERD) and discuss some style
guidelines. Then, we will present a technique called normalization that helps ana-
lysts validate the data models that they draw. The chapter ends with a discussion of
how data models balance, or interrelate, with the process models that you learned
about in Chapter 5.

THE ENTITY RELATIONSHIP DIAGRAM

An entity relationship diagram (ERD) is a picture which shows the information that
is created, stored, and used by a business system. An analyst can read an ERD to
discover the individual pieces of information in a system and how they are organized

224 Chapter 6 Data Modeling

1 P. Chen, “The Entity-Relationship Model—Toward a Unified View of Data,” ACM Transactions on Database
Systems, 1976, 1:9–36.

c06DataModeling.qxd 9/30/11 11:04 AM Page 224

and related to each other. On an ERD, similar kinds of information are listed
together and placed inside boxes called entities. Lines are drawn between entities to
represent relationships among the data, and special symbols are added to the dia-
gram to communicate high-level business rules that need to be supported by the
system. The ERD implies no order, although entities that are related to each other
are usually placed close together.

For example, consider the Lawn Chemical Request system that was described
in Chapter 5. Although this system is just a small part of the information system for
a lawn care business, we will use it for our discussion on how to read an entity rela-
tionship diagram. First, go back and look at the sample DFD for the chemical
request process in Figure 5-1. Although we understand how the system works from
studying the data flow diagram, we have very little detailed understanding of the
information itself that flows through the system. What exactly is a “new chemical
request”? What pieces of data are captured in a “chemical pick-up authorization”?

Reading an Entity Relationship Diagram

The analyst can answer these questions and more by using an entity relationship
diagram. We have included a partial ERD for the chemical request scenario in
Figure 6-1. First, we have organized the data into three main categories: Lawn
Chemical Applicator, Chemical Request, and Chemical. The Lawn Chemical
Applicator data describe the employees who apply the lawn chemicals. The
Chemical Request data capture information about every chemical request event,
and the chemical data describe the chemicals used for lawn care.

We can also see the specific facts that describe each of the three categories.
For example, a chemical is described by its ID number, name, description, approval
status, and unit of measure. We can also see what can be used to uniquely identify
a chemical, a chemical request, and an LCA, by looking for the asterisks next to the
data elements. A unique ID has been created to identify every LCA and every
chemical. A chemical request is uniquely identified by a combination of the LCA
ID, the chemical ID, and the request date.

The lines connecting the three categories of information communicate the
relationships that the categories share. By reading the relationship lines, the analyst
understands that an LCA makes chemicals requests and chemical requests involve
chemicals.

The Entity Relationship Diagram 225

FIGURE 6-1
Chemical Request ERD

*LCA_ID
 LCA_Name
 LCA_HireDate
 LCA_Qualification
 LCA_CellPhone

LAWN CHEMICAL
APPLICATOR

CHEMICAL REQUEST

*CHM_ID
 CHM_Name
 CHM_Description
 CHM_ApprovalStatus
 CHM_Unit

CHEMICAL

makes

is made by

involves

involved in

*LCA_ID
*CHM_ID
*RequestDate
 RequestQuantity

c06DataModeling.qxd 9/30/11 11:04 AM Page 225

The ERD also communicates high-level business rules. Business rules are con-
straints or guidelines that are followed during the operation of the system; they are
rules such as “A payment can be cash, check, debit card, credit card, coupon(s), or food
stamps,” “A sale is paid for by one or more payments,” or “A customer may place many
orders.” Over the course of a workday, people are constantly applying business rules
to do their jobs, and they know the rules through training or knowing where to look
them up. If a situation arises where the rules are not known, workers may have to refer
to a policy guide or written procedure to determine the proper business rules.

On a data model, business rules are communicated by the kinds of relation-
ships that the entities share. From the ERD, for example, we know from the “crow’s
foot” placed on the line closest to the Chemical Request that an LCA may make
many Chemical Requests. We can see by the two bars placed on the line closest to
the LCA that a Chemical Request is made by exactly one LCA. Ultimately, the new
system should support the business rules we just described, and it should ensure
that users don’t violate the rules when performing the processes of the system.
Therefore, in our example, the system should not permit a chemical request to be
made that does not involve an LCA. Similarly, the system should not allow a chem-
ical request to involve more than one LCA.

Now that you’ve seen an ERD, let’s step back and learn the ERD basics. In
the following sections, we will first describe the syntax of the ERD, using the dia-
gram in Figure 6-1. Then we will teach you how to create an ERD by using an
example from Tune Source.

Elements of an Entity Relationship Diagram

There are three basic elements in the data modeling language (entities, attributes,
and relationships), each of which is represented by a different graphic symbol.
There are many different sets of symbols that can be used on an ERD. No one set
of symbols dominates industry use, and none is necessarily better than another. We
will use crow’s foot in this book. Figure 6-2 summarizes the three basic elements
of ERDs and the symbols we will use.

Entity The entity is the basic building block for a data model. It is a person, place,
event, or thing about which data is collected—for example, an employee, an order,
or a product. An entity is depicted by a rectangle, and it is described by a singular
noun spelled in capital letters. All entities have a name, a short description that
explains what they are, and an identifier that is the way to locate information in the
entity (which is discussed later). In Figure 6-1, the entities are Lawn Chemical
Applicator, Chemical Request, and Chemical.

Entities represent something for which there exist multiple instances, or
occurrences. For example, John Smith and Susan Jones could be instances of the
customer entity (Figure 6-3). We would expect the customer entity to stand for all
of the people with whom we have done business, and each of them would be an
instance in the customer entity. If there is just one instance, or occurrence, of a per-
son, place, event, or thing, then it should not be included as an entity in the data
model. For example, think a little more broadly about the lawn care business’s
information system. Figure 6-1 focuses on just a small part of that information sys-
tem. We assumed that the company consisted of more than one Lawn Chemical
Applicator, because we included an LCA entity to capture specific facts about each.
If the company was owned and operated by a single person, however, there would

226 Chapter 6 Data Modeling

c06DataModeling.qxd 9/30/11 11:04 AM Page 226

be no need to set up an LCA entity in the overall data model. There is no need to
capture data in the system about something having just a single instance.

Attribute An attribute is some type of information that is captured about an entity.
For example, last name, home address, and e-mail address are all attributes of a cus-
tomer. It is easy to come up with hundreds of attributes for an entity (e.g., a customer
has an eye color, a favorite hobby, a religious affiliation), but only those that actually
will be used by a business process should be included in the model.

Attributes are nouns that are listed within an entity. Usually, some form of
the entity name is appended to the beginning of each attribute to make it clear as

The Entity Relationship Diagram 227

IDEF1X Chen
Crow's

Foot

An ENTITY
 is a person, place, or thing.
 has a singular name
 spelled in all capital letters.
 has an identifier.
 should contain more than
 one instance of data.

An ATTRIBUTE
 is a property of an entity.
 should be used by at least
 one business process.
 is broken down to its most
 useful level of detail.

A RELATIONSHIP
 shows the association
 between two entities.
 has a parent entity and a
 child entity.
 is described with a verb
 phrase.
 has cardinality (1 : 1, 1 : N,
 or M : N).
 has modality (null, not
 null).
 is dependent or
 independent.

Relationship-name Relationship-name

ENTITY-NAME ENTITY-NAME ENTITY-NAME

*Identifier

ENTITY-NAME ENTITY-NAME

Attribute-name
Attribute-name
Attribute-name

Identifier

Attribute-name
Attribute-name
Attribute-name

Attribute-name

Relationship-
name

FIGURE 6-2
Data Modeling Symbol Sets

Customer
John Smith
Susan Jones
Peter Todd
Dale Turner
Pat Turner

Entity Example Instances

FIGURE 6-3
Entities and Instances

c06DataModeling.qxd 9/30/11 11:04 AM Page 227

to what entity it belongs (e.g., CUS_lastname, CUS_address). Without doing this,
you can get confused by multiple entities that have the same attributes—for
example, a customer and an employee both can have an attribute called “last-
name.” CUS_lastname and EMP_lastname are much clearer ways to name attrib-
utes on the data model.

One or more attributes can serve as the identifier—the attribute(s) that can
uniquely identify one instance of an entity—and the attributes that serve as the
identifier are noted by an asterisk next to the attribute name. If there are no cus-
tomers with the same last name, then last name can be used as the identifier of the
customer entity. In this case, if we need to locate John Brown, the name Brown
would be sufficient to identify the one instance of the Brown last name.

Suppose that we add a customer named Sarah Brown. Now we have a prob-
lem: Using the name Brown would not uniquely lead to one instance—it would
lead to two (i.e., John Brown and Sarah Brown). You have three choices at this
point, and all are acceptable solutions. First, you can use a combination of multi-
ple fields to serve as the identifier (last name and first name). This is called a con-
catenated identifier because several fields are combined, or concatenated, to
uniquely identify an instance. Second, you can find a field that is unique for each
instance, like the customer ID number. Third, you can wait to assign an identifier
(like a randomly generated number that the system will create) until the design
phase of the SDLC (Figure 6-4). Many data modelers don’t believe that randomly
generated identifiers belong on a logical data model, because they do not logically
exist in the business process.

Relationship Relationships are associations between entities, and they are shown
by lines that connect the entities together. Every relationship has a parent entity and
a child entity, the parent being the first entity in the relationship, and the child being
the second.

Relationships should be clearly labeled with active verbs so that the connec-
tions between entities can be understood. If one verb is given to each relationship, it
is read in two directions. For example, we could write the verb makes alongside the
relationship for the LCA and Chemical Request entities, and this would be read as
“an LCA makes a chemical request” and “a chemical request is made by an LCA.”
In Figure 6.1, we have included words for both directions of the relationship line; the
top words are read from parent to child, and the bottom words are read from child to
parent. Notice that the LCA entity is the parent entity in the LCA-Chemical Request
relationship. In addition, some CASE tools require that every relationship name be
unique on the ERD, so we select unique descriptive verbs for each relationship.

228 Chapter 6 Data Modeling

CUSTOMER CUSTOMER CUSTOMER

Concatenated
Identifier

Single
Identifier

Identifier to Be
Added Later

*CUS_lastname
*CUS_firstname

*CUS_IDnumber CUS_lastname
CUS_firstnameCUS_lastname

CUS_firstnameFIGURE 6-4
Choices for Identifiers

c06DataModeling.qxd 9/30/11 11:04 AM Page 228

Cardinality Relationships have two properties. First, a relationship has cardinality,
which is the ratio of parent instances to child instances. To determine the cardinality
for a relationship, we ask ourselves: “How many instances of one entity are associated
with an instance of the other?” (Remember that an instance is one occurrence of an
entity, such as LCA John Brown or Chemical Orthene™.) For example, an LCA
makes how many chemical requests? The cardinality for binary relationships (i.e., rela-
tionships between two entities) is 1:1, 1:N, or M:N, and we will discuss each in turn.

The 1:1 (read as “one to one”) relationship means that one instance of the par-
ent entity is associated with one instance of the child entity. There are no examples
of 1:1 relationships in Figure 6-1. So, imagine for a moment that, as a reward, a com-
pany assigns a specific reserved parking place to every employee who is honored as
an “employee of the month.” One reserved parking place is assigned to each honored
employee, and each honored employee is assigned one reserved parking place. If we
were to draw these two entities, we would place a bar next to the Employee entity
and a bar next to the Reserved Parking Place entity. The cardinality is clearly 1:1 in
this case, because each honored employee is assigned exactly one reserved parking
place, and a reserved parking place is assigned to exactly one employee.

More often, relationships are 1:N (read as “one to many”). In this kind of rela-
tionship, a single instance of a parent entity is associated with many instances of a
child entity; however, the child entity instance is related to only one instance of the
parent. For example, an LCA (parent entity) can make many Chemical Requests
(child entity), but a particular Chemical Request is made by only one LCA, suggest-
ing a 1:N relationship between LCA and Chemical Request. A character resembling
a crow’s foot is placed closest to the Chemical Request entity to show the “many” end
of the relationship. The parent entity is always on the “1” side of the relationship;
hence, a bar is placed next to the LCA entity. Can you identify other 1:N relationships
in Figure 6-1? Identify the parent and child entities for each relationship.

A third kind of relationship is the M:N (read as “many to many”) relationship.
In this case, many instances of a parent entity can relate to many instances of a child
entity. There are no M:N relationships shown in Figure 6-1, but take a look at
Figure 6-5. This figure shows an early draft version of the Chemical Request ERD.
In this version, an M:N relationship does exist between LCA and Chemical. As we
can see, one LCA (parent entity) can request many Chemicals (e.g., Orthene™,
Roundup™, and 2, 4-D.), and a Chemical (child entity) can be requested by many
LCAs. M:N relationships are depicted on an ERD by having crow’s feet at both
ends of the relationship line. As we will learn later, there are advantages to elimi-
nating M:N relationships from an ERD, so that is why it was removed from Figure
6-1 by creating the Chemical Request entity between LCA and Chemical. The
process of “resolving” an M:N relationship will be explained later in the chapter.

The Entity Relationship Diagram 229

FIGURE 6-5
M:N Relationship

*LCA_ID
 LCA_Name
 LCA_HireDate
 LCA_Qualification
 LCA_CellPhone

requests

is requested by

LAWN CHEMICAL
APPLICATOR

CHEMICAL

*CHM_ID
 CHM_Name
 CHM_Description
 CHM_ApprovalStatus
 CHM_Unit

c06DataModeling.qxd 11/3/11 12:01 PM Page 229

Modality Second, relationships have a modality of null or not null, which refers to
whether or not an instance of a child entity can exist without a related instance in
the parent entity. Basically, the modality of a relationship indicates whether the
child-entity instance is required to participate in the relationship. It forces you to
ask questions like, Can you have a Chemical Request without a Chemical? and Can
you have a Chemical without a Chemical Request? Modality is depicted by placing
a zero on the relationship line next to the parent entity if nulls are allowed. A bar is
placed on the relationship line next to the parent entity if nulls are not allowed.

In the two questions we just asked, the first answer is no: you need a chemical
to have a chemical request. You can, however, have a chemical without having a
chemical request for that chemical. The modality is “not null,” or “required,” for the
first relationship in Figure 6-1. Notice, however, that a zero has been placed on the
relationship line between Chemical and Chemical Request next to the Chemical
Request entity. This means that chemicals can exist in our system without requiring
that a chemical request exists. Said another way, instances of chemical requests are
optional for a chemical. The modality is “null.”

The Data Dictionary and Metadata

As we described earlier, a CASE tool is used to help build ERDs. Every CASE tool
has something called a data dictionary, which quite literally is where the analyst
goes to define or look up information about the entities, attributes, and relationships
on the ERD. Even Visio 2010, primarily known as a drawing tool, has some ele-
mentary data dictionary capabilities. Figures 6-6, 6-7, and 6-8 illustrate common
data dictionary entries for an entity, an attribute, and a relationship; notice the kinds
of information the data dictionary captures about each element.

The information you see in the data dictionary is called metadata, which,
quite simply, is data about data. Metadata is anything that describes an entity, attrib-
ute, or relationship, such as entity names, attribute descriptions, and relationship

230 Chapter 6 Data Modeling

A wealthy businessman owns a large
number of paintings that he loans to museums all over the
world. He is interested in setting up a system that records
what he loans to whom so that he doesn’t lose track of
his investments. He would like to keep information about
the paintings that he owns as well as the artists who
painted them. He also wants to track the various muse-
ums that reserve his art, along with the actual reserva-
tions. Obviously, artists are associated with paintings,
paintings are associated with reservations, and reserva-
tions are associated with museums.

QUESTIONS:
1. Draw the four entities that belong on this data model.

2. Provide some basic attributes for each entity, and
select an identifier, if possible.

3. Draw the appropriate relationships between the enti-
ties and label them.

4. What is the cardinality for each relationship? Depict
this on your drawing.

5. What is the modality for each relationship? Depict this
on your drawing.

6. List two business rules that are communicated by your
ERD.

6-1 UNDERSTANDING THE ELEMENTS OF AN ERDY O U R

T U R N

c06DataModeling.qxd 9/30/11 11:04 AM Page 230

cardinality, and it is captured to help designers better understand the system that
they are building and to help users better understand the system that they will use.
Figure 6-9 lists typical metadata that are found in the data dictionary. Notice that
the metadata can describe an ERD element (like entity name) and also information
that is helpful to the project team (like the user contact, the analyst contact, and
special notes).

Metadata are stored in the data dictionary so that they can be shared and
accessed by developers and users throughout the SDLC. The data dictionary allows
you to record the standard pieces of information about your elements in one place,
and it makes that information accessible to many parts of a project. For example,
the data attributes in a data model also appear on the process models as elements
of data stores and data flows, and on the user interface as fields on an input screen.

The Entity Relationship Diagram 231

FIGURE 6-6
Data Dictionary Entry for Chemical Entity
(in Visio 2010)

FIGURE 6-7
Data Dictionary Entry for Chemical
Attributes (in Visio 2010)

c06DataModeling.qxd 9/30/11 11:04 AM Page 231

232 Chapter 6 Data Modeling

FIGURE 6-8
Data Dictionary Entry for a
Relationship (in Visio 2010)

Entity Name Item

Definition Represents any item carried in inventory in the supermarket

Special notes Includes produce, bakery, and deli items

User contact Nancy Keller (x6755) heads up the item coding department

Analyst contact John Michaels is the analyst assigned to this entity

Attribute Name Item_UPC

Definition The standard Universal Product Code for the item based on Global Trade Item
Numbers developed by GS1

Alias Item Bar Code

Sample values 036000291452; 034000126453

Acceptable values Any 12-digit set of numerals

Format 12 digit, numerals only

Type Stored as alphanumeric values

Special notes Values with the first digit of 2 are assigned locally, representing items packed in the
store, such as meat, bakery, produce, or deli items. See Nancy Keller for more
information.

Relationship Verb phrase Included in

Parent entity Item

Child entity Sold item

Definition An item is included in zero or more sold items. A sold item includes one and only one item.

Cardinality 1:N

Modality Null

Special notes

ERD Element Kinds of Metadata Example

FIGURE 6-9
Types of Metadata Captured by the Data Dictionary

c06DataModeling.qxd 9/30/11 11:04 AM Page 232

When you make a change in the data dictionary, the change ripples to the relevant
parts of the project that are affected.

When metadata are complete, clear, and shareable, the information can be
used to integrate the different pieces of the analysis phase and ultimately lead to a
much better design. It becomes much more detailed as the project evolves through
the SDLC.

CREATING AN ENTITY RELATIONSHIP DIAGRAM

Drawing an ERD is an iterative process of trial and revision. It usually takes con-
siderable practice. ERDs can become quite complex—in fact, there are systems that
have ERDs containing hundreds or thousands of entities. The basic steps in build-
ing an ERD are these: (1) Identify the entities, (2) add the appropriate attributes to
each entity, and then (3) draw relationships among entities to show how they are
associated with one another. First, we will describe the three steps in creating
ERDs, using the data model example from Figure 6-1. We will then discuss several
advanced concepts of ERD’s. Finally, we will present an ERD for Tune Source.

Building Entity Relationship Diagrams

Step 1: Identify the Entities As we explained, the most popular way to start an
ERD is to first identify the entities for the model, and their attributes. The entities
should represent the major categories of information that you need to store in your
system. If you begin your data model by using a use case, look at the major inputs
to the use case, the major outputs, and the information used for the use case steps.
If the process models (e.g., DFDs) have been prepared, the easiest way to start is
with them: The data stores on the DFDs, the external entities, and the data flows
indicate the kinds of information that are captured and flow through the system.

The Chemical Request plays a key role in our chemical request system exam-
ple, and so is included as a data entity. In addition, the Chemicals themselves will
need to be described with data, and so will also be included as a data entity. Finally,
we will need to capture information about the lawn care applicators (LCAs), since
these individuals are the key actors in the system.

Step 2: Add Attributes and Assign Identifiers The information that describes each
entity becomes its attributes. It is likely that you identified a few attributes if you
read the chemical request system use cases and paid attention to the information
flows on their DFDs. For example, an LCA has a name, and a chemical has a name

Creating an Entity Relationship Diagram 233

Examine the CASE tool that you will
be using for your project, or find a CASE tool on the Web
that you are interested in learning about. What kind of

metadata does its data dictionary capture? Does the
CASE tool integrate data model information with other
parts of a project? How?

6-2 EVALUATE YOUR CASE TOOLY O U R

T U R N

c06DataModeling.qxd 9/30/11 11:04 AM Page 233

and description. Unfortunately, much of the information from the process models
and use cases does not include enough detail to identify the exact attributes that should
exist in each of our entities.

On a real project, there are a number of places you can go to figure out what
attributes belong in your entity. For one, you can check in the CASE tool—often,
an analyst will describe a process model data flow in detail when he or she enters
the data flow into the CASE repository. For example, an analyst may create an entry
for the chemical request information data flow like the one shown in Figure 6-10,
which lists four data elements that make up the chemical request information. The
elements of the data flow should be added to the ERD as attributes in your entities.
A second approach is to check the requirements definition. Often, there is a section
under functional requirements called data requirements. This section describes the
data needs for the system that were identified while requirements were gathered. A
final approach to identifying attributes is to use requirements elicitatior techniques.
The most effective techniques would be interviews (e.g., asking people who create
and use reports about their data needs) or document analysis (e.g., examining
existing forms, reports, or input screens).

Once the attributes are identified, one or more of them will become the
entity’s identifier. The identifier must be an attribute(s) that is able to uniquely iden-
tify a single instance of the entity. Look at Figure 6-1 and notice the identifiers that
were selected for each entity.

Step 3: Identify Relationships The last step in creating ERDs is to determine how
the entities are related to each other. Lines are drawn between entities that have rela-
tionships, each relationship is labeled, and cardinality and modality is assigned. The
easiest approach is to begin with one entity and determine all the entities with
which it shares relationships. In our example in Figure 6-1, we can see that an LCA
makes chemical requests, and a chemical is included in a chemical request.

When you find a relationship to include on the model, you need to determine
its cardinality and modality. For cardinality, ask how many instances of each entity
participate in the relationship. You know that an LCA can make many chemical
requests, but a specific chemical request is made by only one LCA. Therefore, we
place a crow’s foot next to the chemical request entity and a single bar closest to the
LCA entity. This suggests that there is a 1:N relationship in which the LCA is the
parent entity (the “1”) and the chemical request is the child entity (the “many”).

Next, we examine the relationship’s modality. Can an LCA exist without an
associated chemical request? In our example, the answer is “yes,” so the modality
is “null” or not required. A zero is placed next to the crow’s foot near the chemical
request. Now, can a chemical request exist without an associated LCA? This answer
is “no,” so the modality is “not null”: or required, and we place a single bar next to
the LCA entity

The same type of thinking applies to determining the cardinality and modality
of the relationship between chemical and chemical request. A chemical (the parent)
may be included on many chemical requests (the child), so the relationship is 1:N.
A chemical can exist without a chemical request, so the modality is “null”;

234 Chapter 6 Data Modeling

Data flow name: New Chemical Request

Data elements: LCA ID � Chemical ID � Date of Request � Quantity

FIGURE 6-10
Elements of the New Chemical Request
Data Flow

c06DataModeling.qxd 11/3/11 11:58 AM Page 234

however, a chemical request requires the existence of a chemical, so the modality
is “not null.”

Again, remember that data modeling is an iterative process. Often, the
assumptions you make and the decisions you make change as you learn more about
the business requirements and as changes are made to the use cases and process
models. But you have to start somewhere—so do the best you can with the three
steps we just described and keep iterating until you have a model that works. Later
in this chapter, we will show you a few ways to validate the ERDs that you draw.

Advanced Syntax

Now that we have created a data model according to the basic syntax that was
presented earlier, we can move to several advanced concepts. We will explain
three special types of entities and show how they can be used in our Chemical
Request system.

Independent Entity An independent entity is an entity that can exist without the
help of another entity, such as Lawn Chemical Applicator and Chemical. These
entities all have identifiers that were created from their own attributes. Attributes
from other entities were not needed to uniquely identify instances of these entities.
Independent entities are drawn as rectangles with a single border line.

When a relationship includes an independent child entity, it is called a non-
identifying relationship. This name is derived from the fact that parent entity attrib-
utes are not needed as part of the child entity’s identifier.

Dependent Entity There are situations when a child entity does require attributes
from the parent entity to uniquely identify an instance. In these cases, the child
entity is called a dependent entity, and its identifier consists of at least one attribute
from the parent entity.

A good example of a dependent entity is the Chemical Request entity shown
in Figure 6-1. A Chemical Request is made by a specific LCA and includes a
specific chemical. We include the LCA_ID and the Chemical_ID plus the request
date to fully identify each Chemical Request, Chemical Request is considered a
dependent entity and is shown as a rectangle with a double border line.

When relationships have a dependent child entity, they are called identifying
relationships. This name is derived from the fact that parent entity attributes are
needed as part of the child entity’s identifier.

Intersection Entity A third kind of entity is the intersection entity. It exists in order to
capture some information about the relationship between two other entities. Typically,
intersection entities are added to a data model to store information about two entities
sharing an M:N relationship. These entities are also called Associative Entities. Think
back to the M:N relationship between LCA and Chemical shown in Figure 6-5. In
that figure, one instance of an LCA could request many Chemicals, and a Chemical
can be requested by many LCAs. A difficulty arises if we want to capture the date on
which a particular chemical was requested by a specific LCA. We cannot put the date
in the Chemical entity, because the Chemical is requested by many LCAs. We also
cannot put the date in the LCA entity, because there are many Chemicals requested
by the LCA. Therefore, we need another entity that enables us to associate a specific
chemical with a specific LCA on a specific date.

Creating an Entity Relationship Diagram 235

c06DataModeling.qxd 9/30/11 11:04 AM Page 235

The process of adding an intersection entity is called “resolving an M:N rela-
tionship” because it eliminates the M:N relationship and its associated problems
from the data model. There are three steps involved in adding an intersection entity.
Step 1: Remove the M:N relationship line and insert a new entity in between the two
existing ones. Step 2: Add two 1:N relationships to the model. The two original enti-
ties should serve as the parent entities for each 1:N, and the new intersection entity
becomes the child entity in both relationships. Step 3: Name the intersection entity.
Intersection entities are often named by a concatenation of the two entities that cre-
ated it (e.g., Chemical Request), making its meaning clear. Alternatively, the entity
can be given another appropriate name. Figure 6-11 shows the M:N LCA-Chemical
relationship and how it was resolved with the use of an intersection entity.

Are intersection entities dependent or independent? Actually, it depends.
Sometimes an intersection entity has a logical identifier that can uniquely identify
its instances. For example, an intersection entity between a student and a course (a
student may take many courses and a course is taken by many students) may be
called a transcript. If transcripts have unique transcript numbers, then the entity
would be considered independent. In contrast, the Chemical Request intersection
entity in Figure 6-11 requires the identifiers from both LCA and Chemical for an
instance to be uniquely identified. Thus, Chemical Request is a dependent entity.

Applying the Concepts at Tune Source

Let’s go through one more example of creating a data model by using the context
of Tune Source. For now, review the use cases that were presented in Figure 4-14
and the final level 0 process model presented in Figure 5-17.

236 Chapter 6 Data Modeling

FIGURE 6-11
Resolving an M:N Relationship

*LCA_ID
 LCA_Name
 LCA_HireDate
 LCA_Qualification
 LCA_CellPhone

LAWN CHEMICAL
APPLICATOR

*LCA_ID
 LCA_Name
 LCA_HireDate
 LCA_Qualification
 LCA_CellPhone

LAWN CHEMICAL
APPLICATOR

*CHM_ID
 CHM_Name
 CHM_Description
 CHM_ApprovalStatus
 CHM_Unit

requests

is requested by

makes

is made by

CHEMICAL

CHEMICAL REQUEST

*LCA_ID
*CHM_ID
*RequestDate
 RequestQuantity

*CHM_ID
 CHM_Name
 CHM_Description
 CHM_ApprovalStatus
 CHM_Unit

involves

involved in

CHEMICAL

c06DataModeling.qxd 9/30/11 11:04 AM Page 236

Identify the Entities When you examine the Tune Source level 0 DFD, you see that
there are six data stores: customer, sale, available tunes, customer interests, cus-
tomer favorites, and targeted promotions. Each of these unique types of data likely
will be represented by entities on a data model.

As a next step, you should examine the external entities and ask yourself,
“Will the system need to capture information about any of these entities?” You may
be tempted to include marketing managers, but there really is no need to track infor-
mation about these in our system. Later, we may want to track system users, pass-
words, and data access privileges, but this information has to do with the use of the
new system and would not be added until the physical data model is created in the
design phase.

It is good practice to also look at the data flows on your process model and
make sure that all of the information that flows through the system has been covered
by your ERD. It appears that the main entities for Tune Source have been identified
after an examination of the data stores and external entities. See Figure 6-12 for
the beginning of our data model.

Identify the Attributes The next step is to select which attributes should be used
to describe each entity. It is likely that you identified a handful of attributes if you
read the Tune Source use cases and examined the DFDs. For example, an available
tune has an artist, title, genre, and length, and some attributes of customer are name
and contact information, which likely includes address, phone number, and e-mail
address.

The two entities customer favorite and customer interest might seem similar
at first glance, but they are used to capture different types of information about the
customer’s music preferences. A customer favorite is a tune that the customer
specifically adds to his/her Favorites list in order to monitor tunes as the Web site is
searched and browsed. In a sense, it’s like a future shopping list, so we just record
the customer’s ID, the tune’s ID, and the date the tune was added to the list. The cus-
tomer’s Favorites are available each time the customer revisits the site to help in
recalling tunes previously discovered and to (hopefully) purchase them. On the
other hand, the customer interest is created automatically as the customer investi-
gates tunes and listens to samples. Customer interests are used by the marketing
department to help design promotions for the customer that will be tailored to the
types of music the customer has explored. Slightly different attributes are associated
with these two entities because of their different purposes in the system.

Targeted promotions are special offers that will be created for a customer
on the basis of his or her interests and with regard to sales patterns. A promotion
will include a sale price for a specific tune if it is purchased within a specific

Creating an Entity Relationship Diagram 237

AVAILABLE TUNE SALE CUSTOMER INTEREST

CUSTOMER FAVORITE CUSTOMER TARGETED PROMOTIONFIGURE 6-12
Entities for Tune Source ERD

c06DataModeling.qxd 9/30/11 11:04 AM Page 237

time frame. Attributes for the targeted promotions are listed in Figure 6-13.
Finally, we also see that several attributes associated with a tune sale have been
listed in the ERD.

To determine the entity identifiers, we consider the attribute or attributes that will
uniquely identify each entity. We will establish a customer number for each customer
in the system. Each available tune that we have will be assigned a unique tune ID. Each
targeted promotion will be given a unique promotion code, and each sale will be given
a unique sale number. Finally, each customer favorite and each customer interest can
be uniquely identified by the customer number, tune ID, and the date created.

The customer, sale, available tune, and targeted promotion entities are inde-
pendent entities; attributes from other entities are not needed to uniquely identify
instances. The identifiers for customer interests and customer favorites, however, do
rely on attributes from their parent entities: customer and available tune. This is
because a customer favorite (or a customer interest) is uniquely identified by the
customer who created it, the tune involved, and the date it was created. Therefore,
since these two entities draw part of their primary keys from their parent entities,
they are considered dependent entities.

Identify the Relationships The last step in creating ERDs is to determine how
the entities are related to each other. Lines are drawn between entities that have
relationships, and each relationship is labeled and assigned a cardinality and
modality. A shown in Figure 6-14, a customer may make many sales, but a sale
is made by one customer. A sale is not required for a particular customer
instance, but a customer is required for a sale. A customer may be targeted by
many targeted promotions, but a targeted promotion is for one customer. A tar-
geted promotion is not required for a customer, but a customer is required for a
targeted promotion. A customer creates many favorites, but a favorite is created
by only one customer. A favorite is not required for a customer, but a customer
is required for a favorite. An available tune may be included in many customers’
favorites, but a favorite includes only one tune. A favorite is not required for an

238 Chapter 6 Data Modeling

CUSTOMER

*CUS_number
CUS_lastname
CUS_firstname
CUS_address
CUS_city
CUS_state
CUS_zipcode
CUS_phone
CUS_email
CUS_username
CUS_password

AVAILABLE TUNE

* TUN_ID
TUN_title
TUN_artist
TUN_genre
TUN_length
TUN_price
TUN_mp3short
TUN_mp3full

TARGETED PROMOTION

* PRO_code
CUS_number
TUN_ID
PRO_price
PRO_term

SALE

*SAL_number
SAL_date
CUS_username

one or more occurrences of:
 TUN_ID

*TUN_ID
*FAV_dateadded

CUSTOMER FAVORITE

*CUS_number

*TUN_ID
*INT_datecreated

CUSTOMER INTEREST

*CUS_number

FIGURE 6-13
Attributes and Identifiers for Tune Source ERD

c06DataModeling.qxd 9/30/11 11:04 AM Page 238

available tune, but a tune is required for a favorite. (The same relationships apply
to customer–interest–available tune). We can also see that an available tune may
be promoted by many targeted promotions, but a targeted promotion promotes
only one tune. An available tune is not required to have a targeted promotion, but
a targeted promotion must be associated with an available tune. Finally, we see
that customers may place many sales, but a sale is not required for a customer.
A sale belongs to one and only one customer. A sale may include many tunes,
and a tune may be included on many sales. A tune is required on a sale, but a
sale is not required for a tune.

The customer–customer favorite, customer favorite–available tune, customer–
customer interest, and customer interest–available tune relationships are identifying
relationships. All other relationships are nonidentifying relationships.

As a final step in the creation of the Tune Source ERD, we should resolve any
M:N relationships in the data model. A look at Figure 6-14 shows one such rela-
tionship, between sale and available tune. See Your Turn 6-6 and resolve this rela-
tionship on your own.

Creating an Entity Relationship Diagram 239

AVAILABLE TUNE

* TUN_ID
TUN_title
TUN_artist
TUN_genre
TUN_length
TUN_price
TUN_mp3short
TUN_mp3full

CUSTOMER

*CUS_number
CUS_lastname
CUS_firstname
CUS_address
CUS_city
CUS_state
CUS_zipcode
CUS_phone
CUS_e-mail
CUS_username
CUS_password

SALE

*SAL_number
 SAL_date
CUS_username

one or more occurrences of:
 TUN_ID

*TUN_ID
*FAV_dateadded

CUSTOMER FAVORITE

*CUS_number

*TUN_ID
*INT_datecreated

CUSTOMER INTEREST

*CUS_number

is targeted by

targets

adds

is added by

is listed in

lists

involves

is involved in

creates

is created by

is included in

includes

promotes

is promoted by

makes

is made by
TARGETED PROMOTION

* PRO_code
CUS_number
TUN_ID
PRO_price
PRO_term

FIGURE 6-14
Relationships for Tune Source ERD

c06DataModeling.qxd 9/30/11 11:04 AM Page 239

VALIDATING AN ERD

As you probably guessed from the previous section, creating ERDs is pretty tough.
It takes a lot of experience to draw ERDs well, and there are not many black-and-
white rules to help guide you. Luckily, there are some general design guidelines that
you can keep in mind as you build ERDs, and once the ERDs are drawn, you can
use a technique called normalization to validate that your models are well formed.
Another technique is to check your ERD against your process models to make sure
that both models balance each other.

Design Guidelines

Design guidelines are not rules that must be followed; rather, they are “best prac-
tices” that often lead to better quality diagrams. For example, labels and naming
conventions are important for creating clear ERDs. Names should not be ambigu-
ous (e.g., name, number); instead, they should clearly communicate what the model
component represents. These names should be consistent across the model and
reflect the terminology used by the business. If Tune Source refers to people who
order music as customers, the data model should include an entity called customer,
not client or stakeholder.

There are no rules covering the layout of ERD components. They can be
placed anywhere you like on the page, although most systems analysts try to put the

240 Chapter 6 Data Modeling

I have two very different stories
regarding data models. First, when I worked with First
American Corporation, the head of Marketing kept a
data model for the marketing systems hanging on a wall
in her office. I thought this was a little unusual for a high-
level executive, but she explained to me that data was
critical for most of the initiatives that she puts in place.
Before she can approve a marketing campaign or new
strategy, she likes to confirm that the data exists in the sys-
tems and that it’s accessible to her analysts. She has
become very good at understanding ERDs over the years
because they had been such an important communica-
tions tool for her to use with her own people and with IT.

On a very different note, here is a story I received
from a friend of mine who heads up an IT department:

“We were working on a business critical, time
dependent development effort, and VERY senior man-
agement decided that the way to ensure success was to
have the various teams do technical design walkthroughs
to senior management on a weekly basis. My team was
responsible for the data architecture and database
design. How could senior management, none of whom

probably had ever designed an Oracle architecture,
evaluate the soundness of our work?

So, I had my staff prepare the following for the one
(and only) design walkthrough our group was asked to
do. First, we merged several existing data models and
then duplicated each one . . . that is, every entity and
relationship printed twice (imitating, if asked, the redun-
dant architecture). Then we intricately color coded the
model and printed the model out on a plotter and printed
one copy of every inch of model documentation we had.
On the day of the review, I simply wheeled in the docu-
mentation and stretched the plotted model across the
executive boardroom table. ‘Any questions,’ I asked?
‘Very impressive,’ they replied. That was it! My designs
were never questioned again.” Barbara Wixom

QUESTIONS:
1. From these two stories, what do you think is the user’s

role in data modeling?
2. When is it appropriate to involve users in the ERD cre-

ation process?
3. How can users help analysts create better ERDs?

6-A THE USER’S ROLE IN DATA MODELING

IN ACTION

CONCEPTS

c06DataModeling.qxd 9/30/11 11:04 AM Page 240

entities together that are related to each other. If the model becomes too complex or
busy (some companies have hundreds of entities on a data model), the model can
be broken down into subject areas. Each subject area would contain related entities
and relationships, and the analyst can work with one group of entities at a time to
make the modeling process less confusing.

In general, data modeling can be quite tricky, mainly because the data model
is heavily based on interpretation; therefore, when business rules change, the rela-
tionships or other data model components will have to be altered. Assumptions are
an important part of data modeling. It is important that we verify all assumptions
about business rules so that our data model is correct.

Validating an Erd 241

Consider the accompanying system,
which was described in Chapter 4. Use the use cases
and process models that you created in Chapters 4 and 5
to help you answer the questions that follow.

The Campus Housing Service helps students find
apartments. Owners of apartments fill in information
forms about the rental units they have available (e.g.,
location, number of bedrooms, monthly rent). Students
who register with the service can search the rental infor-
mation to find apartments that meet their needs (e.g., a
two-bedroom apartment for $800 or less per month within
1/2 mile of campus). They then contact the apartment

owners directly to see the apartment and, possibly, rent it.
Apartment owners call the service to delete their listing
when they have rented their apartment(s).

QUESTIONS:
1. What entities would you include on a data model?
2. What attributes would you list for each entity? Select

an identifier for each entity, if possible.
3. What relationships exist between the entities that

you identified? Label the relationships appropriately,
and denote the cardinality and modality of each
relationship.

6-3 CAMPUS HOUSING SYSTEMY O U R

T U R N

Locate the independent entities on
Figure 6-14. How do you know which of the entities are
independent? Locate the nonidentifying relationships.

How did you find them? Can you create a rule that
describes the association between independent entities
and nonidentifying relationships?

6-4 INDEPENDENT ENTITIESY O U R

T U R N

Locate the dependent entities on Fig-
ure 6-14. Locate the identifying relationships. How did
you find them? Can you create a rule that describes the

association between dependent entities and identifying
relationships?

6-5 DEPENDENT ENTITIESY O U R

T U R N

c06DataModeling.qxd 9/30/11 11:04 AM Page 241

Therefore, when you model data, don’t panic or become overwhelmed by
details. Rather, add components to the diagram slowly, knowing that they will be
changed and rearranged many times. Make assumptions along the way and then
confirm these assumptions with the business users. Work iteratively and constantly
challenge the data model with business rules and exceptions to see whether the dia-
gram is communicating the business system appropriately. Figure 6-15 summarizes
the guidelines presented in this chapter to help you evaluate your data model.

242 Chapter 6 Data Modeling

*COU_name

COUNTRY

UNIVERSITY

*UNI_name

UNI_datefounded

UNI_enrollment

UNI_firstpresident

UNI_founder

*TEA_IDnumber

TEA_startdate

TEA_name

*name

SUBJECT

area

description

TEACHER
hires

specializes

contains

1. Country has only one
instance (i.e., Mexico). This
entity is not needed.

3. Why are all of these attributes
being captured about the university? Will
it be necessary to store the founder
and first president of each university?
If not, these attributes should be
removed from the ERD.

5. The name attribute really should be
broken down into last name and first
name—otherwise, there would be no way
to manipulate names in the system. For
example, there would be no way to sort
by last name if it were combined with
the first name.

4. The attributes in the subject entity
are poorly labeled. For one, we have no
way of knowing to which entity they
belong if they stood alone—it would
be helpful to begin each attribute with
SUB_. Also, what is “area”? A term like
“department” or “field of research” would
be more descriptive.

6. This model assumes that a teacher
can only work for one university—what
about those with joint appointments? An
assumption should be stated on the
model or in the documentation so that
this business rule can be confirmed.

2. If teachers are called “Professors,”
then the ERD should contain an entity
called “Professor,” to remain consistent.

FIGURE 6-15
Data Modeling Guidelines Summary

Resolve the M:N relationship between
the sale and available tune that is shown in Figure 6-14.
What kinds of information could you capture about this
relationship? What would the new ERD look like? Would
the intersection entity be considered dependent or inde-
pendent?

Can you think of other kinds of M:N relationships
that exist in the real world? How would you resolve these
M:N relationships if you were to include them on an
ERD?

6-6 INTERSECTION ENTITIESY O U R

T U R N

c06DataModeling.qxd 9/30/11 11:04 AM Page 242

Normalization

Once you have created your ERD, there is a technique called normalization that can
help analysts validate the models that they have drawn. It is a process whereby a
series of rules are applied to a logical data model or a file to determine how well
formed it is. Normalization rules help analysts identify entities that are not repre-
sented correctly in a logical data model, or entities that can be broken out from a
file. The result of the normalization process is that the data attributes are arranged
to form stable, yet flexible, relations for the data model. In Appendix 6A, we
describe three normalization rules that are applied regularly in practice.

Balancing Entity Relationship Diagrams
with Data Flow Diagrams

All the analysis activities of the systems analyst are interrelated. For example, the
requirements analysis techniques are used to determine how to draw both the

Validating an Erd 243

A large direct health and insurance
medical provider needed an enterprise information man-
agement (EIM) system to enable enterprisewide informa-
tion management and to support the effective use of data
for critical cross-functional decision making. In addition,
the company needed to resolve issues related to data
redundancy, inconsistency, and unnecessary expendi-
ture. The company faced several information challenges:
The company data resided in multiple locations, the data
were developed for department-specific use, and there
was limited enterprise access. In addition, data definitions

were created by individual departments and were not
standardized, and data were being managed by multiple
departments within the company.

Source: http://www.deloitte.com/dtt/case_study/o,1005,
sid%253D26562%2526cid%253D132760,00.html

QUESTIONS:
1. What solution would you propose for this company?
2. Discuss the role that data modeling would play in a

project to solve this problem.

6-B IMPLEMENTING AN EIM SYSTEM

IN ACTION

CONCEPTS

A charter company owns boats that
are used for charter trips to islands. The company has
created a computer system to track the boats it owns,
including each boat’s ID number, name, and seating
capacity. The company also tracks information about the
various islands, such as their names and populations.
Every time a boat is chartered, it is important to know the
date that the trip is to take place and the number of peo-
ple on the trip. The company also keeps information
about each captain, such as Social Security number,

name, birthdate, and contact information for next of kin.
Boats travel to only one island per visit.

QUESTIONS:
1. Create a data model. Include entities, attributes, iden-

tifiers, and relationships.
2. Which entities are dependent? Which are independent?
3. [Optional] Use the steps of normalization to put your

data model in 3NF. Describe how you know that it is
in 3NF.

6-7 BOAT CHARTER COMPANYY O U R

T U R N

c06DataModeling.qxd 9/30/11 11:04 AM Page 243

process models and data models, and the CASE repository is used to collect infor-
mation that is stored and updated throughout the entire analysis phase. Now we will
see how the process models and data models are interrelated.

Although the process model focuses on the processes of the business sys-
tem, it contains two data components—the data flow (which is composed of
data elements) and the data store. The purposes of these are to illustrate what
data are used and created by the processes and where those data are kept. These
components of the DFD need to balance with the ERD. In other words, the DFD
data components need to correspond with the ERD’s data stores (i.e., entities)
and the data elements that comprise the data flows (i.e., attributes) depicted on
the data model.

Many CASE tools offer the feature of identifying problems with balance
between DFDs and ERDs; however, it is a good idea to understand how to identify
problems on your own. This involves examining the data model you have created
and comparing it with the process models that have been created for the system.
Check your data model and see whether there are any entities you have created that
do not appear as data stores on your process models. If there are, you should add
them to your process models to reflect your decision to store information about that
entity in your system.

Similarly, the bits of information that are contained in the data flows (these are
usually defined in the CASE entry for the data flow) should match up to the attrib-
utes found in entities in the data models. For example, if the customer information
data flow that goes from the customer entity to the purchase tunes process were
defined as having customer name, e-mail address, and home address, then each of
these pieces of information should be recorded as attributes in the customer entity
on the data model. We must verify that all the data items included in the data stores
and data flows in the process model have been included somewhere as an entity
attribute in the data model. We want to ensure that the data model fully incorporates
all the data identified in the process model. If it does not, then the data model is
incomplete. In addition, all the data elements in the data model should appear as a
part of a data store and data flow(s) in the process model. If some data elements have
been omitted from the process model, then we need to investigate whether those data
items are truly needed in the processing of the system. If they are needed, they must
be added to the process model data stores and data flows; otherwise, they should be
deleted from the data model as extraneous data items.

A useful tool to clearly depict the interrelationship between process and data
models is the CRUD matrix. The CRUD (create, read, update, delete) matrix is a
table that depicts how the system’s processes use the data within the system. It is
helpful to develop the CRUD matrix on the basis of the logical process and data
models and then revise it later in the design phase. The matrix also provides impor-
tant information for program specifications, because it shows exactly how data are
created and used by the major processes in the system.

To create a CRUD matrix, a table is drawn listing all the system processes
along the top, and all the data entities (and entity attributes) along the left-hand
side of the table. Then, from the information presented in the process model, the
analyst fills in each cell with a C, R, U, D, (or nothing) to describe the process’s
interaction with each data entity (and its attributes). Figure 6-16 shows a portion
of a data flow diagram and the CRUD matrix that can be derived from it. As you
can see, if a process reads information from a data store, but does not update it,
there should be a data flow coming out of the data store only. When a process

244 Chapter 6 Data Modeling

c06DataModeling.qxd 9/30/11 11:04 AM Page 244

updates a data store in some way, there should be a data flow going from the
process to the data store.

Thinking carefully about the content of the data flows in the process models,
we can identify places where attributes may have been omitted from the data
stores/entities. In addition, we can verify that every attribute is created, read,
updated, and deleted somewhere in the process model. If it is not read by some
process, then the attribute is probably not needed. If it is not created or updated, the
attribute probably needs to be added to a data flow(s) in the process model.

SUMMARY

Basic Entity Relationship Diagram Syntax
The entity relationship diagram (ERD) is the most common technique for draw-
ing a data model, a formal way of representing the data that are used and created
by a business system. There are three basic elements in the data modeling lan-
guage, each of which is represented by a different graphic symbol. The entity is
the basic building block for a data model. It is a person, place, or thing about
which data are collected. An attribute is some type of information that is captured
about an entity.

The attribute that can uniquely identify one instance of an entity is called
the identifier. The third data model component is the relationship, which con-
veys the associations between entities. Relationships have cardinality (the ratio

Summary 245

FIGURE 6-16
Partial Process Model and CRUD Matrix

Process D

Process E

Data Store M

Data Store P

Process C Process D Process E

Data Entity M

Attribute M-1

Attribute M-2

Attribute M-3

Data Entity P

Attribute P-1
Attribute P-2

Attribute P-3

Attribute M-4

CRUD

CRUD

CRUD

CRUD

R R

R

R

R

R

R

C
C

C

External
Entity

X

External
Entity

Y
Process C

c06DataModeling.qxd 9/30/11 11:04 AM Page 245

of parent instances to child instances) and modality (a parent needs to exist if a
child exists). Information about all of the components is captured by metadata
in the data dictionary.

Creating an Entity Relationship Diagram
The basic steps in building an ERD are (1) identify the entities, (2) add the appro-
priate attributes to each entity, and (3) draw relationships among entities to show
how they are associated with one another. There are three special types of entities
that ERDs contain. Most entities are independent, because one (or more) attribute
can be used to uniquely identify an instance. Entities that rely on attributes from
other entities to identify an instance are dependent. An intersection entity is placed
between two entities to capture information about their relationship. In general,
data models are based on interpretation; therefore, it is important to clearly state
assumptions that reflect business rules.

Validating an Entity Relationship Diagram
Normalization, the process whereby a series of rules is applied to the logical data
model to determine how well formed it is, is described in the Chapter 6 Appendix.
A logical data model is in first normal form (1NF) if it does not contain repeating
attributes, which are attributes that capture multiple values for a single instance.
Second normal form (2NF) requires that all entities are in 1NF and contain only
attributes whose values are dependent on the whole identifier (i.e., no partial
dependency). Third normal form (3NF) occurs when a model is in both 1NF and
2NF and none of the resulting attributes is dependent on nonidentifier attributes
(i.e., no transitive dependency). With each violation, additional entities should be
created to remove the repeating attributes or improper dependencies from the
existing entities. Finally, ERDs should be balanced with the data flow diagrams
(DFDs)—which were presented in Chapter 5—by making sure that data model
entities and attributes correspond to data stores and data flows on the process
model. The CRUD matrix is a valuable tool to use when balancing process and
data models.

246 Chapter 6 Data Modeling

1:1 relationship
1:N relationship
Assumption
Attribute
Balance
Business rule
Cardinality
Child entity
Concatenated identifier
CRUD matrix
Data dictionary
Data model
Dependent
Dependent entity

Derived attribute
Entity
Entity relationship diagram (ERD)
First normal form (1NF)
IDEF1X
Identifier
Identifying relationship
Independent entity
Instance
Intersection entity
Logical data model
M:N relationship
Metadata
Modality

Nonidentifying relationship
Normalization
Parent entity
Partial dependency
Physical data model
Relationship
Repeating attributes
Repeating groups
Second normal form (2NF)
Subject area
Third normal form (3NF)
Transcript
Transitive dependency

KEY TERMS

c06DataModeling.qxd 9/30/11 11:04 AM Page 246

Exercises 247

1. Provide three different options that are available for
selecting an identifier for a student entity. What are
the pros and cons of each option?

2. What is the purpose of developing an identifier for
an entity?

3. What type of high-level business rule can be stated
by an ERD? Give two examples.

4. Define what is meant by an entity in a data model.
How should an entity be named? What information
about an entity should be stored in the CASE
repository?

5. Define what is meant by an attribute in a data
model. How should an attribute be named? What
information about an attribute should be stored in
the CASE repository?

6. Define what is meant by a relationship in a data
model. How should a relationship be named? What
information about a relationship should be stored in
the CASE repository?

7. A team of developers is considering including
“warehouse” as an entity in its data model. The
company for whom they are developing the system
has just one warehouse location. Should “ware-
house” be included? Why or why not?

8. What is meant by a concatenated identifier?
9. Describe, in terms a businessperson could under-

stand, what are meant by the cardinality and modal-
ity of a relationship between two entities.

10. What are metadata? Why are they important to sys-
tem developers?

11. What is an independent entity? What is a dependent
entity? How are the two types of entities differenti-
ated on the data model?

12. Explain the distinction between identifying and
nonidentifying relationships.

13. What is the purpose of an intersection entity? How
do you know whether one is needed in an ERD?

14. Describe the three-step process of creating an inter-
section entity.

15. Is an intersection entity dependent or independent?
Explain your answer.

16. What is the purpose of normalization?
17. Describe the analysis that is applied to a data

model in order to place it in first normal form
(1NF).

18. Describe the analysis that is applied to a data
model in order to place it in second normal form
(2NF).

19. Describe the analysis that is applied to a data
model in order to place it in third normal form
(3NF).

20. Describe how the data model and process model
should be balanced against each other.

21. What is a CRUD matrix? How does it relate to
process models and data models?

QUESTIONS

A. Draw data models for the following entities:
• Movie (title, producer, length, director, genre)
• Ticket (price, adult or child, showtime, movie)
• Patron (name, adult or child, age)

B. Draw a data model for the following entities, con-
sidering the entities as representing a system for a
patient billing system and including only the attrib-
utes that would be appropriate for this context:
• Patient (age, name, hobbies, blood type, occupation,

insurance carrier, address, phone)
• Insurance carrier (name, number of patients on

plan, address, contact name, phone)
• Doctor (specialty, provider identification number,

golf handicap, age, phone, name)
C. Draw the relationships that follow. Would the rela-

tionships be identifying or nonidentifying? Why?

• A patient must be assigned to only one doctor, and
a doctor can have many patients.

• An employee has one phone extension, and a
unique phone extension is assigned to an
employee.

• A movie theater shows many different movies, and
the same movie can be shown at different movie
theaters around town.

D. Draw an entity relationship diagram (ERD) for the
following situations:
1. Whenever new patients are seen for the first time,

they complete a patient information form that
asks their name, address, phone number, and
insurance carrier, all of which are stored in the
patient information file. Patients can be signed up
with only one carrier, but they must be signed up

EXERCISES

c06DataModeling.qxd 9/30/11 11:04 AM Page 247

248 Chapter 6 Data Modeling

*CIN_name
 CIN_address
 CIN_phone

CINEMA THEATER SHOWING

*THE_number
 THE_capacity

*SHO_time
 SHO_date
 SHO_attendance

*MOV_ID
 MOV_title
 MOV_director
 MOV_rating

is contained in

offers

is offered in

is shown at

shows

MOVIE

contains

to be seen by the doctor. Each time a patient vis-
its the doctor, an insurance claim is sent to the
carrier for payment. The claim must contain
information about the visit, such as the date, pur-
pose, and cost. It would be possible for a patient
to submit two claims on the same day.

2. The state of Georgia is interested in designing a
database that will track its researchers. Informa-
tion of interest includes researcher name, title,
position; university name, location, enrollment;
and research interests. Each researcher is as-
sociated with only one institution, and each
researcher has several research interests.

3. A department store has a bridal registry. This reg-
istry keeps information about the customer (usu-
ally the bride), the products that the store carries,
and the products for which each customer regis-
ters. Customers typically register for a large
number of products, and many customers register
for the same products.

4. Jim Smith’s dealership sells Fords, Hondas, and
Toyotas. The dealership keeps information about
each car manufacturer with whom it deals so that
employees can get in touch with manufacturers
easily. The dealership also keeps information
about the models of cars that it carries from each
manufacturer. It keeps such information as list
price, the price the dealership paid to obtain the
model, and the model name and series (e.g.,
Honda Civic LX). The dealership also keeps
information about all sales that it has made. (For
instance, employees will record the buyer’s
name, the car the buyer bought, and the amount
the buyer paid for the car.) To allow employees
to contact the buyers in the future, contact infor-
mation is also kept (e.g., address, phone number,
e-mail).

E. Examine the data models that you created for Exer-
cise D. How would the respective models change

(if at all) on the basis of these corresponding new
assumptions?
• Two patients have the same first and last names.
• Researchers can be associated with more than one

institution.
• The store would like to keep track of purchased items.
• Many buyers have purchased multiple cars from

Jim over time because he is such a good dealer.
F. Visit a Web site that allows customers to order a

product over the Web (e.g., Amazon.com). Create a
data model that the site needs to support its business
process. Include entities to show what types of infor-
mation the site needs. Include attributes to represent
the type of information the site uses and creates.
Finally, draw relationships, making assumptions
about how the entities are related.

G. Create metadata entries for the following data model
components and, if possible, input the entries into a
computer-aided software engineering (CASE) tool
of your choosing:
• Entity—product
• Attribute—product number
• Attribute—product type
• Relationship—company makes many products,

and any one product is made by only one company.
H. Describe the assumptions that are implied from the

data model shown at the top of this page.
I. Create a data model for one of the processes in the

end-of-chapter Exercises for Chapter 4. Explain how
you would balance the data model and process model.

J. Apply the steps of normalization to validate the
models you drew in Exercise D.

K. You have been given a file that contains fields relating
to CD information. Using the steps of normalization,
create a logical data model that represents this file in
third normal form. The fields include the following:
• Musical group name
• Musicians in group
• Date group was formed

c06DataModeling.qxd 9/30/11 11:04 AM Page 248

• Group’s agent
• CD title 1
• CD title 2
• CD title 3
• CD 1 length
• CD 2 length
• CD 3 length

The assumptions are as follows:
• Musicians in group contains a list of the members

of the people in the musical group.
• Musical groups can have more than one CD, so

both group name and CD title are needed to
uniquely identify a particular CD.

Minicases 249

1. West Star Marinas is a chain of 12 marinas that offer
lakeside service to boaters; service and repair of boats,
motors, and marine equipment; and sales of boats,
motors, and other marine accessories. The systems
development project team at West Star Marinas has
been hard at work on a project that eventually will link
all the marina’s facilities into one unified, networked
system.

The project team has developed a logical process
model of the current system. This model has been care-
fully checked for syntax errors. Last week, the team
invited a number of system users to role-play the vari-
ous data flow diagrams, and the diagrams were refined
to the users’ satisfaction. Right now, the project man-
ager feels confident that the as-is system has been ade-
quately represented in the process model.

The director of operations for West Star is the
sponsor of this project. He sat in on the role-playing of
the process model and was very pleased by the thor-
ough job the team had done in developing the model.
He made it clear to you, the project manager, that he
was anxious to see your team begin work on the
process model for the to-be system. He was a little
skeptical that it was necessary for your team to spend
any time modeling the current system in the first
place, but grudgingly admitted that the team really
seemed to understand the business after going through
that work.

The methodology that you are following, however,
specifies that the team should now turn its attention to
developing the logical data model for the as-is system.
When you stated this to the project sponsor, he seemed
confused and a little irritated. “You are going to spend
even more time looking at the current system? I
thought you were done with that! Why is this neces-
sary? I want to see some progress on the way things
will work in the future!”
a. What is your response to the director of operations?
b. Why do we perform data modeling?

c. Is there any benefit to developing a data model of
the current system at all?

d. How does the process model help us develop the
data model?

2. The system development team at the Wilcon Com-
pany is working on developing a new customer order
entry system. In the process of designing the new
system, the team has identified the following data
entity attributes:

Inventory Order
Order Number (identifier)
Order Date
Customer Name
Street Address
City
State
Zip
Customer Type
Initials
District Number
Region Number
1 to 22 occurrences of:

Item Name
Quantity Ordered
Item Unit
Quantity Shipped
Item Out
Quantity Received

a. State the rule that is applied to place an entity in first
normal form. Revise this data model so that it is in
first normal form.

b. State the rule that is applied to place an entity into
second normal form. Revise the data model (if nec-
essary) to place it in second normal form.

c. State the rule that is applied to place an entity into
third normal form. Revise the data model to place it
in third normal form.

d. What other guidelines and rules can you follow to
validate that your data model is in good form?

MINICASES

c06DataModeling.qxd 9/30/11 11:04 AM Page 249

250 Chapter 6 Data Modeling

In this Appendix, we describe the rules of normalization
that help analysts improve the quality of the data model.
These rules help identify entities that are not represented
correctly in the logical data model and entities that can
be broken out from a file. The result of the normalization
process is that the data attributes are arranged to form
stable yet flexible relations for the data model. Typically,
three rules of normalization are applied regularly in
practice. (See Figure 6A-1.) We describe these rules and
illustrate them with an example here.

First Normal Form A logical data model is in first nor-
mal form (1NF) if it does not contain attributes that
have repeating values for a single instance of an entity.

Often, this problem is called repeating attributes, or
repeating groups. Every attribute in an entity should
have only one value per instance for the model to “pass”
1NF.

Let’s pretend that the Tune Source project team
was given the layout for the CD purchase file that is
used by the existing CD sales system. The team mem-
bers are anxious to incorporate the data from this file
into their own system, and they decide to put the file
into third normal form to make the information easier to
understand and, ultimately, easier for them to add to the
data model for the new Digital Music Download system.
See Figure 6A-2 for the file layout that the project team
received.

APPENDIX 6A: NORMALIZING THE DATA MODEL

0 Normal Form

Yes: Remove the repeating attributes and repeating
 groups. Create an entity that describes the
 attributes. Usually, you will need to add a rela-
 tionship to connect the old and new entities.

Do any attributes have multiple
values for a single instance of
an entity?

Yes: Remove the partial dependency. Move the
 attributes to an entity in which their values
 are dependent on the entire identifier.
 Usually, you will need to create a new entitiy
 and add a relationship to connect the old and
 new entities.
 No: The data model is in 2NF.

Is the identifier composed of
more than one attribute? If so,
are any attribute values
dependent on just part of the
identifier?

No: The data model is in 1NF.

 1 Normal Form

Yes: Remove the transitive dependency or derived
 attribute. Move the attributes to an entity in
 which their values are dependent on the identifier.
 Usually, you will need to create a new entity and
 add a relationship to connect the old and new
 entities.
No: The data model is in 3NF.

Do any attribute values depend
on an attribute that is not the
entity’s identifier?

 2 Normal Form

 3 Normal Form

FIGURE 6A-1
Normalization Steps

c06DataModeling.qxd 9/30/11 11:04 AM Page 250

Appendix 6A: Normalizing the Data Model 251

If you examine the file carefully, you should
notice that there are two cases in which multiple values
are captured for one or more attributes. The most obvi-
ous example is the multiple occurrences of CDs that are
included in the purchase, a clear violation of 1NF. The
repeated group of attributes about each CD included in
the purchase should be removed by creating a new
entity called CD and placing all of the CD attributes
into it. The relationship between purchase and CD is
M:N, since a purchase can include many CDs and a CD
can be included in many purchases.

The second violation of 1NF may not be as readily
noticed. The music preferences attribute includes the
kinds of music the customer prefers (e.g., classical, rock,
jazz). The fact that the attribute name is plural is a clue
that many different preferences may be captured for each
instance of a sale and that music preferences is a repeat-
ing attribute. This can be resolved by creating a new
entity that contains preference information, and a rela-
tionship is added between CD purchase and preference.
The new relationship is M:N, because a CD purchase can
be associated with many music preferences and a music
preference can be found on many CD purchases. See
Figure 6A-3a for the current data model in 1NF.

Since we normally resolve M:N relationships as
the ERD develops, we have done so now in Figure 6A-3b.

Note that a new intersection entity was inserted between
CD Purchase and Preference to associate an instance of
CD Purchase with specific instances of preference.
Also, the intersection entity Purchased CD was inserted
between CD Purchase and CD. This intersection entity
associates a CD purchase instance with specific CD
instances. The attribute ship date was moved to Pur-
chased CD because the various CDs in a purchase may
ship at different dates; therefore, this attribute
describes a specific purchased CD, not the entire CD
purchase.

Second Normal Form Second normal form (2NF)
requires first that the data model is in 1NF and second that
the data model leads to entities containing attributes that
are dependent on the whole identifier. This means that the
value of all attributes that serve as identifier can determine
the value for all of the other attributes for an instance in an
entity. Sometimes, nonidentifier attributes are dependent
on only part of the identifier (i.e., partial dependency), and
these attributes belong in another entity.

Figure 6A-4 shows the CD purchase data model
placed in 2NF. Notice that originally, the CD purchase
entity had three attributes that were used as identi-
fiers: purchase date, customer last name, and cus-
tomer first name. The problem was that some of the

FIGURE 6A-2
Initial CD Sales System File

*Purchase date

CD Purchase

*Customer last name
*Customer first name
Phone
Address
E-mail
Birthdate
Music preferences
One or more occurrences of:
 CD UPC
 Title
 Artist
 Label
 Category
 Price
Total due
Sale authorization
Ship date
Payment number
Payment type
Payment account number
Payment authorization
Payment amount

c06DataModeling.qxd 11/3/11 11:58 AM Page 251

252 Chapter 6 Data Modeling

includes

lists

*Customer last name

*Customer first name

Phone

Address

E-mail

Birthdate

Total due

Sale authorization

Ship date

Payment number

Payment type

Payment account number

Payment authorization

Payment amount

*Purchase date

CD PURCHASE

*CD_UPC

CD

CD_title

CD_artist

CD_label

CD_category

CD_price

includes

PREFERENCE

*PRE_type

FIGURE 6A-3a
First Normal Form

includes

lists

*Customer last name

*Customer first name

Phone

Address

E-mail

Birthdate

Total due

Sale authorization

Payment number

Payment type

Payment account number

Payment authorization

Payment amount

*Purchase date

CD PURCHASE

*Purchase date

PURCHASED CD

*Customer last name

*Customer first name

*CD_UPC

Ship date

includes

PREFERRED MUSIC

*Purchase date
*Customer last name
*Customer first name
*PRE_type

includes

listed

*CD_UPC

CD

CD_title

CD_artist

CD_label

CD_category

CD_price

involves

PREFERENCE

*PRE_type

FIGURE 6A-3b
First Normal Form with M:N Relationships Resolved

attributes were dependent on the customer last name
and first name, but had no dependency on purchase
date. These attributes were those that describe a cus-
tomer: phone, address, e-mail, and birth date. To
resolve this problem, a new entity called customer
was created, and the customer attributes were moved

into the new entity. A 1:N relationship exists between
customer and CD purchase because a customer can
purchase many CDs, but a CD purchase is associated
with only one customer.

Remember that the customer last name and first
name are still used in the CD Purchase entity—we know

c06DataModeling.qxd 9/30/11 11:04 AM Page 252

Appendix 6A: Normalizing the Data Model 253

this because of the identifying 1:N relationship between
customer and CD purchase. The identifying relationship
implies that the customer identifier (i.e., last name and first
name) are used in CD Purchase as a part of its identifier.

Notice that we moved the relationship with Pre-
ferred Music to the new Customer entity. Logically, a
preference should be associated with a customer, not a
particular CD purchase.

Third Normal Form Third normal form (3NF) occurs
when a model is in both 1NF and 2NF and when, in the
resulting entities, none of the attributes is dependent on
a nonidentifier attribute (i.e., transitive dependency). A
violation of 3NF can be found in the CD Purchase entity
in Figure 6A-4.

The problem with the CD Purchase entity is that
there are attributes in the entity that depend on the pay-
ment number, not the CD purchase date and customer
first and last names. The payment type, account number,
authorization, and amount depend on the payment num-
ber, a nonidentifying attribute. Therefore, we create a
separate payment entity and move the payment attrib-
utes to it. The 1:1 relationship assumes that there is one

payment for every CD purchase, and every CD purchase
has one payment. Also, a payment is required for every
CD purchase, and every CD purchase requires a pay-
ment.

Third normal form also addresses issues of
derived, or calculated, attributes. By definition, derived
attributes can be calculated from other attributes and do
not need to be stored in the data model. As an example,
a person’s age would not be stored as an attribute if
birthdate were stored, because, by knowing the birthdate
and current date, we can always calculate the age. You
might legitimately question whether total due should be
stored as an attribute of CD purchase, since its value can
be calculated by summing the prices of all the CDs
included in the purchase. Like much of data modeling,
there is no hard-and-fast rule about this. Many times,
values such as total due are included to serve as a con-
trol value. In order to verify that no purchased CDs are
omitted from the entire purchase, the total due is stored
as an attribute of CD purchase, and the sum of the indi-
vidual CD prices is also computed to ensure that they
match. We will leave the total due in the data model and
show the final ERD in 3NF in Figure 6A-5.

*CUS_lastname

*CUS_firstname

Total due

Sale authorization

Payment number

Payment type

Payment account number

Payment authorization

Payment amount

*Purchase date

CD PURCHASE

*Purchase date

PURCHASED CD

*CUS_lastname

*CUS_firstname

*CD_UPC

Ship date

CUSTOMER

*CUS_lastname
*CUS_firstname
CUS_phone
CUS_address
CUS_e-mail
CUS_birthdate

specifies

makes

*CD_UPC

CD

CD_title

CD_artist

CD_label

CD_category

CD_price

involves

includes

PREFERENCE

*PRE_type

lists

includes

PREFERRED MUSIC

*CUS_lastname
*CUS_firstname
*PRE_type

FIGURE 6A-4
Second Normal Form

c06DataModeling.qxd 9/30/11 11:04 AM Page 253

254 Chapter 6 Data Modeling

*CUS_lastname

*CUS_firstname

Total due

Sale authorization

*Purchase date

CD PURCHASE

Purchase date

CUS_lastname

CUS_firstname

PMT_type

PMT_account number

PMT_authorization

PMT_amount

*PMT_number

PAYMENT

*Purchase date

PURCHASED CD

*CUS_lastname

*CUS_firstname

*CD_UPC

PCD_Shipdate

CUSTOMER

*CUS_lastname
*CUS_firstname
CUS_phone
CUS_address
CUS_e-mail
CUS_birthdate

specifies

makes

*CD_UPC

CD

CD_title

CD_artist

CD_label

CD_category

CD_price

includes

PREFERENCE

*PRE_type

lists

includes
pays

involves

PREFERRED MUSIC

*CUS_lastname
*CUS_firstname
*PRE_type

FIGURE 6A-5
Third Normal Form

Pretend that you have been asked to
build a system that tracks student involvement in activities
around campus. You have been given a file with infor-
mation that needs to be imported into the system, and the
file contains the following fields:

■ Student Social Security number (identifier)
■ Activity 1 code (identifier)
■ Activity 1 description
■ Activity 1 start date
■ Activity 1 years with activity
■ Activity 2 code
■ Activity 2 description
■ Activity 2 start date

■ Activity 3 code
■ Activity 3 description
■ Activity 3 start date
■ Activity 3 years with activity
■ Student last name
■ Student first name
■ Student birthdate
■ Student age
■ Student advisor name
■ Student advisor phone

Normalize the file. Show how the logical data
model would change as you move from 1NF to 2NF to
3NF.

6A-1 NORMALIZING A STUDENT ACTIVITY FILEY O U R

T U R N

c06DataModeling.qxd 9/30/11 11:04 AM Page 254

c06DataModeling.qxd 9/30/11 11:04 AM Page 255

This page is intentionally left blank

PA
RT

 F
O

U
R:

 I
M

PL
EM

EN
TA

TI
O

N
PA

RT
 T

H
RE

E:
 D

ES
IG

N
PA

RT
 T

W
O

:
AN

AL
YS

IS
PA

RT
 O

N
E:

 P
LA

N
N

IN
G

Initial System
Request

CHAPTER

1

Use Cases

Process
Models

Alternative Matrix
Fig 7-5, 7-6 Architecture

Design

Interface Design
Fig 9-18, 9-20

Hardware/Software
Specification

Fig 8-12

Physical Process
Model

Fig 10-2

Physical Data
Model

Fig 11-11

Program Design
Fig 10-13

Database & File
Specification

Fig 11-22

Data
Model

Requirements
Definition

Feasibility
Study

CHAPTER

1

Project
Plan

CHAPTER

2

Completed
Programs

Test Plan

Documentation

Training Plan

Problem Report CHAPTER

13

CHAPTER

13

Change Request CHAPTER

13

Migration Plan

Change
Management Plan

Support
Plan

CHAPTER
13

PROJECT PLAN

SYSTEM PROPOSAL

SYSTEM SPECIFICATION

INSTALLED SYSTEM
CHAPTER
13

CHAPTER
13

CHAPTER
12

CHAPTER
12

CHAPTER
11

CHAPTER
10

CHAPTER
10

CHAPTER
9

CHAPTER
8

CHAPTER
7

CHAPTER
3

CHAPTER
5 CHAPTER

4

CHAPTER
6

CHAPTER
11

CHAPTER
12

CHAPTER
8

c07MovingIntoDesign.qxd 9/28/11 9:38 PM Page 256

User Interface
Design

Architecture
Design

Program
Design

Moving into
Design

Architecture
Design

Hardw
are/

Softw
are

Specification

Design
Plan

Alternative
M

atrix

Physical
Process
M

odel

Data Storage
Design

Interface
Design

Program

Design

CHAPTER

8

CHAPTER

9

CHAPTER

10

CHAPTER

7

The design phase
decides how the system will operate.

This collection of deliverables
is the system specification

that is handed to the programming team
for implementation.

At the end of the design phase,
the feasibility analysis and project plan

are reexamined and revised,
and another decision is made by the project

sponsor and approval committee
about whether to terminate the project

or continue.

P A R T T H R E E
DESIGN
PHASE

DESIGN
PHASE

Data Storage
Design

CHAPTER

11 Physical Data
M

odel

c07MovingIntoDesign.qxd 12/5/11 2:28 PM Page 257

D E S I G N

T A S K C H E C K L I S T

P L A N N I N G A N A L Y S I S D E S I G N

▼

Select Design Strategy

Design Architecture

Select Hardware and Software

Develop Use Scenarios

Design Interface Structure

Develop Interface Standards

Design Interface Prototype

Evaluate User Interface

Design User Interface

Develop Physical Data Flow Diagrams

Develop Program Structure Charts

Develop Program Specifications

Select Data Storage Format

Develop Physical Entity Relationship Diagrams

Denormalize Entity Relationship Diagram

Performance Tune Data Storage

Size Data Storage

A N A L Y S I S

P L A N N I N G

c07MovingIntoDesign.qxd 12/5/11 2:28 PM Page 258

I M P L E M E N TAT I O N

he design phase of the SDLC uses the requirements that were gathered during
analysis to create a blueprint for the future system. A successful design builds on

what was learned in earlier phases and leads to a smooth implementation by creating a
clear, accurate plan of what needs to be done. This chapter describes the initial transi-
tion from analysis to design and presents three ways to accomplish the design for the new
system.

OBJECTIVES

■ Explain the initial transition from analysis to design.
■ Create a system specification.
■ Describe three ways to acquire a system: custom, packaged, and outsourced

alternatives.
■ Create an alternative matrix.

CHAPTER OUTLINE

C H A P T E R 7

T

MOVING INTO
DESIGN

Introduction
Transition from Requirements to Design
System Acquisition Strategies

Custom Development
Packaged Software
Outsourcing

Influences on the Acquisition Strategy
Business Need
In-House Experience

Project Skills
Project Management
Time Frame

Selecting an Acquisition Strategy
Alternative Matrix
Applying the Concepts at Tune Source

Summary

c07MovingIntoDesign.qxd 9/28/11 9:38 PM Page 259

INTRODUCTION

The design phase decides how the new system will operate. Many activities will be
involved as the development team develops the system requirements. This chapter
provides an outline of those design phase activities, which culminates in the cre-
ation of the system specification. We also describe three alternative strategies for
acquiring the system that are available to the development team.

TRANSITION FROM REQUIREMENTS TO DESIGN

The purpose of the analysis phase is to figure out what the business needs. The
purpose of the design phase is to decide how to build it. System design is the deter-
mination of the overall system architecture—consisting of a set of physical
processing components, hardware, software, people, and the communication
among them—that will satisfy the system’s essential requirements.1

During the initial part of design, the project team converts the business
requirements for the system into system requirements that describe the technical
details for building the system. Unlike business requirements, which are listed
in the requirements definition and communicated through use cases and logical
process and data models, system requirements are communicated through a
collection of design documents and physical process and data models. Together,
the design documents and physical models make up the blueprint for the new
system.

We should note here that our focus is on the design of the technical system
blueprint that will satisfy the system’s requirements. An important element of the
final, complete information system, however, will be redesigned work flows and
procedures that users will follow when using the new system. Business analysts
often turn their attention to the design of these components at this stage of the proj-
ect, while systems analysts focus on more technical design elements. Ultimately,
the redesigned business processes and procedures will be communicated in user
documentation and training materials, which we discuss in Chapter 12.

The design phase has a number of activities that lead to the system blue-
print. (See Figure 7-1.) An important initial part of the design phase is the exam-
ination of several system acquisition strategies to decide which will be used to
meet the requirements of the system. Systems can be built from scratch, pur-
chased and customized, or outsourced to others, and the project team needs to
investigate the viability of each alternative. The decision to make, to buy, or to
outsource influences the design tasks that are performed throughout the rest of
the phase.

The project team carefully considers the nonfunctional business requirements
that were identified during analysis. The nonfunctional business requirements influ-
ence the system requirements that drive the design of the system’s architecture. Major
considerations of the “how” of a system are operational, performance, security, cul-
tural, and political in nature. For example, the project team needs to plan for the new
system’s performance: how fast the system will operate, what its capacity should be,
and its availability and reliability. The team needs to create a secure system by spec-
ifying access restrictions and by identifying the need for encryption, authentication,

260 Chapter 7 Moving into Design

1 Ken Shumate and Marilyn Keller, Software Specification and Design, New York: John Wiley & Sons, 1992.

c07MovingIntoDesign.qxd 11/3/11 12:03 PM Page 260

✓ Determine preferred system acquisition strategy (make, buy, or outsource). – Alternative matrix 7

✓ Design the architecture for the system. – Architecture design 8

✓ Make hardware and software selections. – Hardware and software specification

✓ Design system navigation, inputs, and outputs. – Interface design 9

✓ Convert logical process model to physical process model. – Physical process model 10

✓ Update CASE repository with additional system details. – Updated CASE repository

✓ Design the programs that will perform the system processes. – Program design specifications

✓ Convert logical data model to physical data model. – Physical data model 11

✓ Update CASE repository with additional system details. – Updated CASE repository

✓ Revise CRUD matrix. – CRUD matrix

✓ Design the way in which data will be stored. – Data storage design

✓ Compile final system specification. – System specification: all of the above 7
deliverables combined and presented to
approval committee

Activities in the Design Phase Deliverables Chapter

FIGURE 7-1
Activities of the Design Phase

and virus control. The nonfunctional requirements are converted into system require-
ments that are described in the architecture design document (Chapter 8).

At the same time, architecture decisions are made regarding the hardware
and software that will be purchased to support the new system (Chapter 8). These
decisions are documented in the hardware and software specification, which is a
document that describes what hardware and software are needed to support the
new application. The actual acquisition of hardware and software is sometimes the
responsibility of the purchasing department or the area in the organization that
handles capital procurement; however, the project team uses the hardware and
software specification to communicate the hardware and software needs to the
appropriate people.

The user’s interactions with the system also must be designed. The system
inputs and outputs will be designed along with a plan or roadmap of the way the
system’s features will be navigated. Chapter 9 describes these activities in detail,
along with techniques, such as storyboarding and prototyping, that help the project
team design a system that meets the needs of its users and is satisfying to use.
Design decisions made regarding the interface are communicated through the
design document called the interface design.

The processes described in the logical process model provide the foundation
for the system’s functionality. Chapter 10 describes how these logical DFDs are
converted into physical DFDs that document physical design decisions about how
the system will be built. CASE repository entries are updated to reflect specific
technology decisions as they are made. Program specifications are prepared to pro-
vide the final design details and ensure that programmers have sufficient informa-
tion to build the right system efficiently. The program design document contains all
of the information about new system’s programs.

Transition from Requirements to Design 261

c07MovingIntoDesign.qxd 9/28/11 9:38 PM Page 261

The data component of the system, described in the logical data model, also
must be designed prior to implementation. Chapter 11 discusses the development
of the physical data model, updates to the CASE repository, and describes how the
CRUD matrix should be updated to verify the consistency between the process and
data models. Design decisions regarding data storage are written up in the data storage
design document.

Although a textbook such as this must present information sequentially, the
many activities of the design phase are highly interrelated. As with the steps in the
analysis phase, analysts often go back and forth between them. For example, pro-
totyping in the interface design step often uncovers additional information that is
needed in the system, leading to a revision of the physical DFDs or ERDs. Alter-
natively, a system that is being designed for an organization with centralized sys-
tems may require substantial hardware and software investments if the project team
decides to change to a system in which all the processing is distributed.

At the end of the design phase, the project team creates the final deliver-
able for the phase called the system specification. This document contains all of
the design documents just described: physical process models, physical data
model, architecture design, hardware and software specification, interface
design, data storage design, and program design. Collectively, the system speci-
fication conveys exactly what system the project team will implement during the
implementation phase of the SDLC. See Figure 7-2 for an outline of the system
specification content.

SYSTEM ACQUISITION STRATEGIES

In our chapters devoted to the analysis phase of the SDLC, we have carefully
avoided committing ourselves to a specific way of obtaining the new system. We
have stressed that the team should focus on determining the system’s logical
requirements during the analysis phase, and postpone the issue of how the system
should be acquired until the design phase.

262 Chapter 7 Moving into Design

■ Recommended System Acquisition Strategy

■ System Acquisition Weighted Alternative Matrix

■ Architecture Design

■ Hardware and Software Specification

■ Interface Design

■ Physical Process Model

■ Program Design Specifications

■ Physical Data Model

■ Data Storage Design

■ Updated CRUD Matrix

■ Updated CASE Repository Entries

FIGURE 7-2
System Specification Outline

c07MovingIntoDesign.qxd 9/28/11 9:38 PM Page 262

Until now, we have implicitly assumed that the system will be designed,
developed, and implemented by the project team. This is not an entirely realistic
assumption. In many projects, the team may recognize that some parts or even all
of the new system’s software will be acquired from some outside provider. Some
organizations have established acquisition policies strongly favoring purchased
software. We explain in this chapter that there are many good reasons supporting
this decision. Does this mean that all of the work described in Chapters 3 through 6
can be skipped? Our position on this issue is that the work performed in the analysis
phase is still essential to the project’s success, especially the tools and techniques
that are used to determine, define, and clarify the business and user requirements.
It is essential to know what we need before seeking a product that provides the
best fit. Otherwise, we run the risk of letting a software vendor tell us what
we need and we obtain software that does not fulfill our real business and user
requirements.

There are, however, actually three primary ways to approach the creation of a
new system: (1) develop a custom application in-house; (2) buy a packaged system
and (possibly) customize it; and (3) rely on an external vendor, developer, or service
provider to build or provide the system. Each of these choices has its strengths and
weaknesses, and each is more appropriate in different situations. There may be
obvious characteristics of the project that suggest the preferred acquisition strategy.
The following sections describe each acquisition choice in turn, and then we pres-
ent criteria you can use to select one of the three approaches for your project.

System Acquisition Strategies 263

In Chapters 2 and 3, we discussed
several classic mistakes and how to avoid them. Here,
we summarize four classic mistakes in the design phase
and discuss how to avoid them:
1. Reducing design time: If time is short, there is a temp-

tation to reduce the time spent in such “unproductive”
activities as design so that the team can jump into
“productive” programming. This results in missing
important details that have to be investigated later at
a much higher time cost (usually, at least 10 times
longer).
Solution: If time pressure is intense, use rapid applica-
tion development (RAD) techniques and timeboxing to
eliminate functionality or move it into future versions.

2. Feature creep: Even if you are successful at avoiding
scope creep, about 25% of system requirements will
still change. Changes—big and small—can signifi-
cantly increase time and cost.
Solution: Ensure that all changes are vital and that the
users are aware of the impact on cost and time. Try
to move proposed changes into future versions.

3. Silver bullet syndrome: Analysts sometimes believe the
marketing claims that some design tools solve all
problems and magically reduce time and costs. No
one tool or technique can eliminate overall time or
costs by more than 25% (although some can reduce
individual steps by this much).
Solution: If a design tool has claims that appear too
good to be true, just say no.

4. Switching tools in midproject: Sometimes, analysts
switch to what appears to be a better tool during
design in the hopes of saving time or costs. Usually,
any benefits are outweighed by the need to learn the
new tool. This also applies to even “minor” upgrades
to current tools.
Solution: Don’t switch or upgrade unless there is a
compelling need for specific features in the new tool,
and then explicitly increase the schedule to include
learning time.

Source: Adapted from Professional Software Development, Red-
mond, WA: Microsoft Press, 2003, by Steve McConnell.

7-1 AVOIDING CLASSIC DESIGN MISTAKES

T I P

PRACTICAL

c07MovingIntoDesign.qxd 9/28/11 9:38 PM Page 263

264 Chapter 7 Moving into Design

Custom Development

Many project teams assume that custom development, or building a new system
from scratch, is the best way to create a system. For one, teams have complete con-
trol over the way the system looks and functions. Let’s consider the purchasing
process for Tune Source. If the company wants a Web-based feature that links
tightly with its existing CD sales system, the project may involve a complex, highly
specialized program. Alternatively, Tune Source might have a technical environ-
ment in which all information systems are built from standard technology and inter-
face designs so that they are consistent and easier to update and support. In both
cases, it could be very effective to create a new system from scratch that meets
these highly specialized requirements.

In some situations, the challenges being addressed with the new system are so
significant and demanding that serious systems engineering is required to solve
them. In these cases, the developers really cannot find a packaged solution that is
capable of meeting the project requirements, and a custom development project is
the only real viable choice. (See Concepts in Action 7-A.)

Custom development also allows developers to be flexible and creative in the
way they solve business problems. Tune Source may envision the Web interface that
takes customer digital music purchases as an important strategic enabler. The com-
pany may want to use the information from the system to better understand its cus-
tomers who buy digital music over the Web, and it may want the flexibility to evolve
the system to incorporate technology such as data-mining software and geographic
information systems to perform marketing research. A custom application would be
easier to change to include components that take advantage of current technologies
that can support such strategic efforts.

Building a system in-house also builds technical skills and functional knowl-
edge within the company. As developers work with business users, their understand-
ing of the business grows and they become better able to align information systems
with strategies and needs. These same developers climb the technology learning curve
so that future projects applying similar technology become much easier.

Custom application development, however, requires a dedicated effort that
includes long hours and hard work. Many companies have a development staff that
is already overcommitted. Facing huge backlogs of systems requests, the staff just
does not have time for another project. Also, a variety of skills—technical, inter-
personal, functional, project management, modeling—all have to be in place for the

A consultant I know led a very large
project revising the financial systems of a major global
financial services company. The company had a success-
ful, well-defined program of software standards in place.
Therefore, initially, the project team attempted to employ

software from one of the major ERP software vendors in
the project. After experiencing dismal (and unacceptable)
processing speed during tests of the ERP software, the
CIO and team concluded, “Out of the Box is out of the
question.” Roberta Roth

7-A OUT OF THE BOX . . . ?
IN ACTION

CONCEPTS

c07MovingIntoDesign.qxd 9/28/11 9:38 PM Page 264

project to move ahead smoothly. IS professionals, especially highly skilled individ-
uals, are quite difficult to hire and retain.

The risks associated with building a system from the ground up can be quite
high, and there is no guarantee that the project will succeed. Developers could be
pulled away to work on other projects, technical obstacles could cause unexpected
delays, and the business users could become impatient with a growing timeline.

Packaged Software

Many business needs are not unique, and because it makes little sense to reinvent the
wheel, many organizations buy packaged software that has already been written,
rather than developing their own custom solution. In fact, there are thousands of
commercially available software programs that have already been written to serve a
multitude of purposes. Think about your own need for a word processor—did you
ever consider writing your own word processing software? That would be very silly,
considering the number of good software packages available for a relatively inex-
pensive cost.

Similarly, most companies have needs, such as payroll or accounts receivable,
that can be met quite well by packaged software. It can be much more efficient to
buy programs that have already been created, tested, and proven, and a packaged
system can be bought and installed quickly compared with a custom system. Plus,
packaged systems incorporate the expertise and experience of the vendor who cre-
ated the software.

Let’s think about the needs that Tune Source will have in its Digital Music
Download system. One requirement is to have a simple, fast, and flexible process
in place to deliver the purchased tunes over the Internet to the purchaser. Server-
side download management software programs are available that are designed to
optimize the delivery of file downloads. Some of these products are available for
free, and in some products, these tools are incorporated into a overall shopping-cart
capability as well. Tune Source will certainly need to consider this type of option
as it considers alternatives for the Digital Music Download system.

System Acquisition Strategies 265

Bonhams 1793 Ltd. is a London-
based auctioneering house, ranked number three glob-
ally behind Christie’s International PLC and Sotheby’s.
After embarking on a series of acquisitions in 2000, the
firm recognized the need to standardize its IT system. The
requirements that Bonhams 1793 faced included ERP
functions, customer relationship management, and auc-
tion catalog production, among others. Rather than fol-
low the lead of its larger competitors and acquire a soft-
ware package from SAP AG or Siebel Systems Inc.,
Bonhams 1793 instead developed a system from scratch.
By carefully planning the system architecture, selecting

powerful and integrated development tools, employing
open source software when possible, and empowering
its in-house developers, Bonhams 1793 developed a cus-
tom system rapidly and at lower cost than it could have
by using a packaged solution. Bonhams 1793 avoided
purchasing an expensive package and then spending a
significant amount to tailor and implement it. The result is
a successful custom system that provides exactly the func-
tions that Bonhams 1793 sought.

Source: Anthes, Gary, “Best in Class 2007, Bonhams 1793,”
Computerworld, August 14, 2007.

7-B BUCKING CONVENTIONAL WISDOM WITH CUSTOM DEVELOPMENT

IN ACTION

CONCEPTS

c07MovingIntoDesign.qxd 9/28/11 9:38 PM Page 265

Packaged software can range from small single-function tools, such as the
server-side download manager, to huge all-encompassing systems, such as
enterprise resource planning (ERP) applications that are installed to automate
an entire business. Implementing ERP systems is a popular practice in which
large organizations spend millions of dollars installing packages by such com-
panies as SAP, Oracle, and Infor and then change their businesses accordingly.
Installing ERP software is much more difficult than installing small application
packages, because benefits can be harder to realize and problems are much more
serious.

One problem is that companies utilizing packaged systems must accept the
functionality that is provided by the system, and rarely is there a perfect fit. If the
packaged system is large in scope, its implementation could mean a substantial
change in the way the company does business. Letting technology drive the busi-
ness can be a dangerous way to go.

Most packaged applications allow for some customization or for the manipu-
lation of system parameters to change the way certain features work. For example,
the package might have a way to accept information about your company or the
company logo that would then appear on input screens. An accounting software
package could offer a choice of various ways to handle cash flow or inventory con-
trol so that it could support the accounting practices in different organizations. If
the amount of customization is not enough and the software package has a few fea-
tures that don’t quite work the way the company needs them to work, the project
team can create a workaround. A workaround is a custom-built add-on program that
interfaces with the packaged application to handle special needs. It can be a nice
way to create needed functionality that does not exist in the software package. How-
ever, workarounds should be a last resort, for several reasons. First, workarounds
are not supported by the vendor who supplied the packaged software, so when
upgrades are made to the main system, they may make the workaround ineffective.
Also, if problems arise, vendors have a tendency to blame the workaround as the
culprit and refuse to provide support.

Although choosing a packaged software system is simpler than going with
custom development, it also can benefit from following a formal methodology, just
as if you were building a custom application. The search for a software package
should be based on the detailed requirements identified during analysis.

Systems integration refers to the process of building new systems by combin-
ing packaged software, existing legacy systems, and new software written to inte-
grate these. Many consulting firms specialize in systems integration, so it is not
uncommon for companies to select the packaged software option and then out-
source the integration of a variety of packages to a consulting firm. (Outsourcing is
discussed in the next section.)

The key challenge in systems integration is finding ways to integrate the data
produced by the different packages and legacy systems. Integration often hinges
on taking data produced by one package or system and reformatting it for use in
another package or system. The project team starts by examining the data pro-
duced by and needed by the different packages and systems and identifying the
transformations that must occur to move the data from one to the other. In many
cases, this involves fooling the different packages or systems into thinking that the
data were produced by an existing program module that the package or system
expects to produce the data, rather than by the new package or system that is being
integrated.

266 Chapter 7 Moving into Design

c07MovingIntoDesign.qxd 9/28/11 9:38 PM Page 266

System Acquisition Strategies 267

Welch Foods, Inc. recognized that
the new ERP system being implemented did not have the
same reporting capabilities as the systems that were
being replaced. Key transportation operations and cost
data was going to be lost. Welch’s turned to a Software
as a Service (SaaS) business intelligence solution to
ensure continued access to old and new data. The SaaS
solution was ideal because the company could not real-
istically manage another project or add an additional

burden on its employees at the time, especially in light of
the ERP implementation. The SaaS solution provided a
variety of business intelligence reporting capabilities to
Welch’s, enabling cost savings and overall transportation
operational efficiencies.

Source: Christina Torode, “SaaS BI helps boost Welch's effi-
ciency, data retention,” SearchCIO.com, January 13, 2010.

7-C FINDING JUST THE RIGHT BLEND

IN ACTION

CONCEPTS

For example, Tune Source might want to integrate its new Digital Music
Download system with its existing Web-based CD sales system. The CD sales sys-
tem enables customers to purchase CDs over the Web, and it interfaces with Tune
Source’s accounting and inventory management systems. The new Digital Music
Download system will not require integration with the inventory management sys-
tem, but it will need to interface with the accounting system and perhaps could
share customer data with the CD sales system. The Digital Music Download proj-
ect team will need to consider these areas of system integration as it evaluates its
development options.

Outsourcing

The acquisition choice that requires the least in-house resources is outsourcing,
which means hiring an external vendor, developer, or service provider to create or
supply the system. Outsourcing has become quite popular in recent years, with both
U.S. and non-U.S. (offshore) service providers available.

The term outsourcing has come to include a variety of ways to obtain IT serv-
ices and products. Outsourcing firms called application service providers (ASPs) supply
software applications and/or software-related services over wide area networks
or the Internet. In this approach to obtaining software, the ASP hosts and manages a
software application, and owns, operates, and maintains the servers that run the appli-
cation. The ASP also employs the people needed to maintain the application.

Organizations wishing to use a software application contract with the ASP,
who makes it available to the customer via a wide area network or the Internet, either
installed on client computers or through a browser. The customer is billed by the
ASP for the application either on a per-use basis or on a monthly or annual fee basis.

Software as a Service (SaaS) is a popular term that is essentially an extension
of the ASP model. This term is commonly used to describe situations in which SaaS
vendors develop and manage their own software rather than managing and hosting
a third-party independent software vendor’s software (the more traditional ASP
model). Software vendor Salesforce.com was an early provider of a SaaS version of
its customer relationship management (CRM) software and helped to popularize
this approach to providing software solutions that are web-based and require only a
browser to use.

c07MovingIntoDesign.qxd 9/28/11 9:38 PM Page 267

There is an array of application service providers. Some deliver high-end
business applications that can serve the entire enterprise. Some are focused more
on serving a small- to medium-sized business clientele. Some ASPs specialize in
specific business needs (such as CRM, for example), while some specialize in spe-
cific industries (e.g., healthcare).

Obtaining access to a software package through an application service provider
has many advantages. There is a low cost of entry and, in most cases, an extremely
short setup time. The pay-as-you-go model is often significantly less expensive for all
but the most frequent users of the service. Investments in IT staff can be reduced, and
investments in specialized IT infrastructure often can be avoided.

Outsourcing firms are also available that will develop a custom system on
behalf of the customer. There can be great benefit to having others develop your
system. They may be more experienced in the technology or have more resources,
such as experienced programmers. Many companies embark on outsourcing deals
to reduce costs, whereas others see it as an opportunity to add value to the business.
For example, instead of creating a program that handles the purchasing process or
buying a preexisting package, Tune Source may decide to let a Web service provider
provide commercial services for them.

For whatever reason, outsourcing can be a good alternative for a new system;
however, it does not come without costs. If you decide to leave the creation of a new
system in the hands of someone else, you could compromise confidential informa-
tion or lose control over future development. In-house professionals are not bene-
fiting from the skills that could be learned from the project; instead, the expertise is

268 Chapter 7 Moving into Design

I worked with a large financial insti-
tution in the southeast that suffered serious financial
losses several years ago. A new chief executive officer
was brought in to change the strategy of the organization
to being more customer-focused. The new direction was
quite innovative, and it was determined that custom sys-
tems, including a data warehouse, would have to be built
to support the new strategic efforts. The problem was that
the company did not have the in-house skills for these
kinds of custom projects.

The company now has one of the most successful
data warehouse implementations because of its willing-
ness to use outside skills and its focus on project man-
agement. To supplement skills within the company, eight
sets of external consultants, including hardware vendors,
system integrators, and business strategists, were hired to
take part and transfer critical skills to internal employees.
An in-house project manager coordinated the data ware-
house implementation full time, and her primary goals
were to clearly set expectations, define responsibilities,

and communicate the interdependencies that existed
among the team members.

This company showed that successful custom
development can be achieved even when the company
may not start off with the right skills in-house. However,
this kind of project is not easy to pull off—it takes a tal-
ented project manager to keep the project moving along
and to transition the skills to the right people over time.
Barbara Wixom

QUESTIONS:
1. What are the risks in building a custom system with-

out having the right technical skills available within
the organization?

2. Why did the company select a project manager from
within the organization?

3. Would it have been better to hire an external profes-
sional project manager to coordinate the project?
Why or why not?

7-D BUILDING A CUSTOM SYSTEM—WITH SOME HELP

IN ACTION

CONCEPTS

c07MovingIntoDesign.qxd 9/28/11 9:38 PM Page 268

transferred to the outside organization. Ultimately, important skills can walk right
out the door at the end of the contract.

Most risks can be addressed if you decide to outsource, but two are particu-
larly important. First, assess the requirements for the project thoroughly—you
should never outsource what you don’t understand. If you have conducted rigorous
planning and analysis, then you should be well aware of your needs. Second, care-
fully choose a vendor, developer, or service with a proven track record with the type
of system and technology that your system needs.

There are three primary types of contracts that can be drawn to control the
outsourcing deal. A time and arrangements deal is very flexible because you agree
to pay for whatever time and expenses are needed to get the job done. Of course,
this agreement could result in a large bill that exceeds initial estimates. This
arrangement works best when you and the outsourcer are unclear about what it is
going to take to finish the job.

You will pay no more than expected with a fixed-price contract because if the
outsourcer exceeds the agreed-on price, he or she will have to absorb the costs. Out-
sourcers are very careful about clearly defining requirements up front, and there is
little flexibility for change.

The type of contract gaining in popularity is the value-added contract, whereby
the outsourcer reaps some percentage of the completed system’s benefits. You have
very little risk in this case, but expect to share the wealth once the system is in place.

Creating fair contracts is an art because you need to carefully balance flexi-
bility with clearly defined terms. Needs often change over time, so you don’t want
the contract to be so specific and rigid that alterations can’t be made. Think about
how quickly technology like the World Wide Web changes. It is difficult to foresee
how a project may evolve over a long period. Short-term contracts leave room for
reassessment if needs change or if relationships are not working out the way both
parties expected. In all cases, the relationship with the outsourcer should be viewed
as a partnership in which both parties benefit and communicate openly.

Managing the outsourcing relationship is a full-time job. Thus, someone
needs to be assigned full time to manage the outsourcer, and the level of that per-
son should be appropriate for the size of the job. (A multimillion-dollar outsourc-
ing engagement should be handled by a high-level executive.) Throughout the rela-
tionship, progress should be tracked and measured against predetermined goals. If
you do embark on an outsourcing design strategy, be sure to get more information.
Many books have been written that provide much more detailed information on the
topic.2 Figure 7-3 summarizes some guidelines for outsourcing.

System Acquisition Strategies 269

2 For more information on outsourcing, we recommend M. Lacity and J. Rottman, Offshore Outsourcing of
IT Work: Client and Supplier Perspectives, Palgrave Macmillan, 2008.

• Keep the lines of communication open between you and your outsourcer.
• Define and stabilize requirements before signing a contract.
• View the outsourcing relationship as a partnership.
• Select the vendor, developer, or service provider carefully.
• Assign a person to manage the relationship.
• Don’t outsource what you don’t understand.
• Emphasize flexible requirements, long-term relationships, and short-term contracts.FIGURE 7-3

Outsourcing Guidelines

c07MovingIntoDesign.qxd 9/28/11 9:38 PM Page 269

INFLUENCES ON THE ACQUISITION STRATEGY

Each of the system acquisition strategies just discussed has its strengths and weak-
nesses, and no one strategy is inherently better than the others. Thus, it is important
to understand the strengths and weaknesses of each strategy and when to use each.
Figure 7-4 summarizes the project characteristics that influence the choice of acqui-
sition strategy.

Business Need

If the business need for the system is common and technical solutions already exist
in the marketplace that can fulfill the system requirements, it is usually appropriate
to select a packaged software solution. Packaged systems are good alternatives for
common business needs. The widespread availability and usefulness of packaged
software has caused many larger companies to develop a recommended list of pack-
aged solutions for use throughout the organization. By limiting the selection of
software packages from the list of standard options, the organization is able to
ensure consistency across the organizational units, streamline decision making, and
ultimately reduce costs.

Packaged software is not suitable for every situation, however. A custom solu-
tion should be explored when the business need is unique, when there are especially
difficult or demanding requirements that cannot be addressed successfully with a
package, or when the organization is unable to change enough to adapt to the way
of doing business that is embodied in a software package.

Outsourcing can be used to assist a company with custom development proj-
ects and to acquire software packages. The specialization and expertise of an out-
sourcing firm can be very valuable. Because outsourcing brings an outside third
party into the development process, it is usually used in situations where the busi-
ness need is not a critical element of company strategy. If the business need is central
to the company strategy, then it is usually better for the company to retain exclusive
control over the project if possible.

270 Chapter 7 Moving into Design

Business need The business need is unique. The business need is common. The business need is not core to the business.

In-house experience In-house functional and In-house functional experience In-house functional or technical experience
technical experience exists. exists. does not exist.

Project skills There is a desire to build The skills are not strategic. The decision to outsource is a strategic
in-house skills. decision.

Project management The project has a highly skilled The project has a project The project has a highly skilled project
project manager and a manager who can coordinate manager at the level of the organization
proven methodology. vendor’s efforts. that matches the scope of the outsourcing

deal.

Time frame The time frame is flexible. The time frame is short. The time frame is short or flexible.

When to Use When to Use a When to Use
Custom Development Packaged System Outsourcing

FIGURE 7-4
Selecting a System Acquisition Strategy

c07MovingIntoDesign.qxd 9/28/11 9:38 PM Page 270

Many organizations are using or are considering using offshore outsourcing as
a way of “exporting” IT-related work to countries that have lower labor costs. Two-
thirds of companies on the InformationWeek 500 list of business technology inno-
vators say they engage in offshore IT outsourcing. Good quality IT skills are available
in a number of countries, but companies considering this option in order to save
money need to carefully manage the risks of this way of obtaining IT services.3

In-House Experience

If in-house experience exists for all the functional and technical needs of the sys-
tem, it will be easier to build a custom application than if these skills do not exist.
A packaged system may be a better alternative for companies that do not have the
technical skills to build the desired system. For example, a project team that does
not have Web commerce technology skills may want to acquire a Web commerce
package that can be installed without many changes. Outsourcing is a good way to
bring in outside experience that is missing in-house so that skilled people are in
charge of building the system.

Project Skills

The skills that are applied during projects are either technical (e.g., Java, Structured
Query Language [SQL]) or functional (e.g., electronic commerce), and different
design alternatives are more viable, depending on how important the skills are to
the company’s strategy. For example, if certain functional and technical expertise
that relates to Internet sales applications and Web commerce application develop-
ment is important to the organization because the company expects the Internet to

Influences on the Acquisition Strategy 271

Value-added contracts can be quite
rare—and very dramatic. They exist when a vendor is
paid a percentage of revenue generated by the new sys-
tem, which reduces the up-front fee, sometimes to zero.
The landmark deal of this type was signed several years
ago by the City of Chicago and EDS (a large consulting
and systems integration firm), which agreed to reengi-
neer the process by which the city collects the fines on
3.6 million parking tickets per year. At the time, because
of clogged courts and administrative problems, the city
collected on only about 25% of all tickets issued. It had
a $60 million backlog of uncollected tickets.

Dallas-based EDS invested an estimated $25 mil-
lion in consulting and new systems in exchange for the
right to up to 26% of the uncollected fines, a base pro-

cessing fee for new tickets, and software rights. To date,
EDS has taken in well over $50 million on the deal, ana-
lysts say. The deal has come under some fire from various
quarters as an example of an organization giving away
too much in a risk/reward–sharing deal. City officials,
however, counter that the city has pulled in about $45
million in previously uncollected fines and has improved
its collection rate to 65% with little up-front investment.

QUESTION:
Do you think the city of Chicago got a good deal from

this arrangement? Why or why not?

Source: “Outsourcing? Go out on a Limb Together,” Datamation,
February 1, 1999, 41(2): 58–61, by Jeff Moad.

7-E ELECTRONIC DATA SYSTEM’S VALUE-ADDED CONTRACT

IN ACTION

CONCEPTS

3 Weier, Mary Hayes, “The Second Decade of Offshore Outsourcing: Where We’re Headed,” Information-
Week, Nov. 3, 2007.

c07MovingIntoDesign.qxd 9/28/11 9:38 PM Page 271

272 Chapter 7 Moving into Design

play an important role in sales over time, then it makes sense for the company to
develop Web commerce applications in-house, using company employees so that
the skills can be developed and improved. On the other hand, some skills, such as
network security, may be either beyond the technical expertise of employees or not
of interest to the company’s strategists—it is just an operational issue that needs to
be handled. In this case, packaged systems or outsourcing should be considered so
that internal employees can focus on other business-critical applications and skills.

Project Management

Custom applications require excellent project management and a proven methodology.
There are so many things that can push a project off track, such as funding obstacles,
staffing holdups, and overly demanding business users. Therefore, the project team
should choose to develop a custom application only if it is certain that the underlying
coordination and control mechanisms will be in place. Packaged and outsourcing
alternatives also must be managed; however, they are more shielded from internal
obstacles because the external parties have their own objectives and priorities (e.g., it
may be easier for an outside contractor to say no to a user than for a person within the
company to do so). The latter alternatives typically have their own methodologies,
which can benefit companies that do not have an appropriate methodology to use.

Time Frame

When time is a factor, the project team should probably start looking for a system
that is already built and tested. In this way, the company will have a good idea of
how long the package will take to put in place and what the final result will contain.
Of course, this assumes that the package can be installed as-is and does not need
many workarounds to integrate it into the existing business processes and technical
environment. The time frame for custom applications is hard to pin down, espe-
cially when you consider how many projects end up missing important deadlines.
If you must choose the custom development alternative and the time frame is very
short, consider using techniques like timeboxing to manage this problem. The time
to produce a system through outsourcing really depends on the system and the out-
sourcer’s resources. If a service provider has services in place that can be used to
support the company’s needs, then a business need could be met quickly. Other-
wise, an outsourcing solution could take as long as a custom development initiative.

SELECTING AN ACQUISITION STRATEGY

Once the project team has a good understanding of how well each acquisition strat-
egy fits with the project’s needs, it must begin to understand exactly how to imple-
ment these strategies. For example, what tools and technology would be used if a
custom alternative were selected? What vendors make packaged systems that
address the project needs? What service providers would be able to build this system
if the application were outsourced? This information can be obtained by talking to
people working in the IS Department and getting recommendations from business
users by contacting other companies with similar needs and investigating the types
of systems that they have put in place. Vendors and consultants are usually willing
to provide information about various tools and solutions in the form of brochures,
product demonstrations, and information seminars.

c07MovingIntoDesign.qxd 9/28/11 9:38 PM Page 272

Project teams employ several approaches to gather additional information that
is needed. One helpful tool is the request for proposal (RFP), a document that solic-
its a formal proposal from a potential vendor, developer, or service provider. RFPs
describe in detail the system or service that is needed, and vendors respond by
describing in detail how they could supply those needs.

Although there is no standard way of writing an RFP, it should include certain
key facts that the vendor requires, such as a detailed description of needs, any spe-
cial technical needs or circumstances, evaluation criteria, procedures to follow, and
timetable. In a large project, the RFP can be hundreds of pages long, since it is
essential that all required project details are included.

The RFP is not just a way to gather information. Rather, it results in a vendor
proposal that is a binding offer to accomplish the tasks described in the RFP. The
vendor proposal includes a schedule and a price for which the work is to be per-
formed. Once the winning vendor proposal is chosen, a contract for the work is
entered into.

For smaller projects with smaller budgets, the request for information (RFI)
may be sufficient. An RFI is a shorter, less detailed request that is sent to potential
vendors to obtain general information about their products and services. Some-
times, the RFI is used to determine which vendors have the capability to perform a
service. It is often then followed up with an RFP to the qualified vendors.

When a list of equipment is so complete that the vendor need only provide a
price, without any analysis or description of what is needed, the request for quote
(RFQ) may be used. For example, if 20 long-range RFID tag readers are needed
from the manufacturer on a certain date at a certain location, the RFQ can be used.
If an item is described, but a specific manufacturer’s product is not named, then
extensive testing will be required to verify fulfillment of the specifications.

After evaluating the acquisition strategy options and seeking additional infor-
mation, the design team will likely have several viable choices to use to obtain the
system. For example, the project team may find three vendors who make packaged
systems that could meet the project’s needs; or the team may be debating over
whether to develop a system by using Visual Basic as a development tool and the
database management system from Sybase; or the team may think it worthwhile to
outsource the development effort to a consulting firm like Accenture or American
Management Systems. Each alternative will have pros and cons associated with it
that must be considered, and only one solution can be selected in the end.

Selecting an Acquisition Strategy 273

Suppose that your university were interested in creating a new course registration system that
could support Web-based registration.

QUESTION:
What should the university consider when determining whether to invest in a custom, packaged, or outsourced system

solution?

7-1 SELECT A DESIGN STRATEGYY O U R

T U R N

c07MovingIntoDesign.qxd 9/28/11 9:38 PM Page 273

274 Chapter 7 Moving into Design

Alternative Matrix

An alternative matrix can be used to organize the pros and cons of the design alter-
natives so that the best solution will be chosen in the end. (See Figure 7-5.) This
matrix is created by the same steps as the feasibility analysis, which was presented
in Chapter 1. The only difference is that the alternative matrix combines several fea-
sibility analyses into one matrix so that the alternatives can be easily compared. The
alternative matrix is a grid that contains the technical, economical, and organiza-
tional feasibilities for each system candidate, pros and cons associated with adopt-
ing each solution, and other information that is helpful when making comparisons.
Sometimes, weights are provided for different parts of the matrix to show when
some criteria are more important to the final decision.

To create the alternative matrix, draw a grid with the alternatives across the
top and different criteria (e.g., feasibilities, pros, cons, and other miscellaneous cri-
teria) along the side. Next, fill in the grid with detailed descriptions about each
alternative. This becomes a useful document for discussion because it clearly pre-
sents the alternatives being reviewed and comparable characteristics for each one.

Sometimes, weights and scores are added to the alternative matrix to create a
weighted alternative matrix that communicates the project’s most important criteria
and the alternatives that best address them. A scorecard is built by adding a column
labeled “weight” that includes a number depicting how much each criterion matters
to the final decision. Typically, analysts take 100 points and spread them out
across the criteria appropriately. If five criteria were used and all mattered equally,
each criterion would receive a weight of 20. However, if cost were the most impor-
tant criterion for choosing an alternative, it may receive 60 points, and the other
four criteria may get only 10 points each.

Then, the analysts add to the matrix a column called “Score” that communi-
cates how well each alternative meets the criteria. Usually, number ranges like 1 to 5

Criterion 1

Criterion 2

Criterion 4

Criterion 5

Criterion 3

Criterion 6

Criterion 7
Criterion 8

20

10

25

10

10

10

10
5

100

* This denotes how well the alternative meets the criteria. 1 = poor fit; 5 = perfect fit.

350

5

3

3

3

2

5

3
3

100

30

75

30

20

50

30
15

270

60

30

75

10

10

50

30
5

360

60

50

125

50

30

30

10
5

3

3

3

1

Supporting

Information

Supporting

Information

Supporting

Information

1

5

3
1

3

5

5

5

3

3

1
1

Technical
Issues:

Economic
Issues:

Organizational
Issues

TOTAL

Alternative

1: Custom

Application

Using VB.NET

Evaluation

Criteria

Relative

Importance

(Weight)

Score

(1–5)*

Alternative

2: Custom

Application

Using Java

Weighted

Score

Score

(1–5)*

Score

(1–5)*

Alternative

3: Packaged

Software

Product ABC

Weighted

Score

Weighted

Score

FIGURE 7-5
Sample Alternative Matrix Using Weights

c07MovingIntoDesign.qxd 9/28/11 9:38 PM Page 274

or 1 to 10 are used to rate the appropriateness of the alternatives by the criteria. So,
for the cost criterion, the least expensive alternative may receive a 5 on a 1-to-5 scale,
whereas a costly alternative would receive a 1. Weighted scores are computed with
each criterion’s weight multiplied by the score it was given for each alternative.
Then, the weighted scores are totaled for each alternative. The highest weighted
score achieves the best match for our criteria. When numbers are used in the alter-
native matrix, project teams can make decisions quantitatively and on the basis of
hard numbers.

It should be pointed out, however, that the score assigned to the criteria for
each alternative is nothing more than a subjective assignment. Consequently, it is
entirely possible for an analyst to skew the analysis according to his or her own
biases. In other words, the weighted alternative matrix can be made to support
whichever alternative you prefer and yet retains the appearance of an objective,
rational analysis. To avoid the problem of a biased analysis, each analyst on the
team could develop ratings independently; then, the ratings could be compared and
discrepancies resolved in an open team discussion.

The final step, of course, is to decide which solution to design and implement.
The approval committee should make the decision after the issues involved with the
different alternatives are well understood. Remember that the line between the
analysis and design is quite fuzzy. Sometimes alternatives are described and selected
at the end of analysis, and sometimes this is done at the beginning of design. The
bottom line is that at some point before moving into the heart of the design phase,
the project team and the approval committee must understand all of the feasible
ways in which the system can be created, and they must select the way that makes
the most sense for the organization. The acquisition strategy selection that is made
will then drive many of the remaining activities in the design phase.

Applying the Concepts at Tune Source

Jason Wells, senior systems analyst and project manager for Tune Source’s Digital
Music Download system, had three different approaches that he could take with the
new system: He could develop the entire system, using development resources from
Tune Source; he could buy a packaged software program (or a set of different pack-
ages and integrate them); or he could hire a consulting firm or service provider to
create the system. Immediately, Jason ruled out the third option. Building Internet
applications, especially e-commerce systems, was becoming increasingly important
to the Tune Source business strategy. By outsourcing the Internet system, Tune
Source would not develop Internet application development skills and business
skills within the organization.

Selecting an Acquisition Strategy 275

Pretend that you have been assigned
the task of selecting a CASE tool for your class to use for
a semester project. Using the Web or other reference
resources, select three CASE tools (e.g., Visible Analyst
Workbench, Oracle Designer). Create a weighted alter-

native matrix that can be used to compare the three soft-
ware products in the way in which a selection decision
can be made. Have a classmate select the “right” tools,
according to the information in your matrix.

Y O U R

T U R N

7-2 WEIGHTED ALTERNATIVE MATRIX

c07MovingIntoDesign.qxd 9/28/11 9:38 PM Page 275

Instead, Jason decided that a custom development project using the company’s
standard Web development tools would be the best choice for Tune Source. In this
way, the company would be developing critical technical and business skills in-house,
and the project team would be able to have a high level of flexibility and control over
the final product. Also, Jason wanted the new music download system to interface
with the existing Internet-based CD sales system, and there was a chance that a pack-
aged solution would not integrate as well into the Tune Source environment. Finally,
Jason knew that additional features were planned for subsequent versions of this
system, so he knew that having control over each version was important.

There was one part of the project that might be handled by packaged soft-
ware: the purchasing portion of the application. Jason realized that a multitude of
programs have been written and are available (at low prices) to handle customer
transactions over the Web. These programs, called shopping-cart programs, usually
allow customers to select items for an order form, input basic information, and
finalize the purchase transaction. Jason believed that the project team should at least
consider some of these packaged alternatives so that less time had to be spent writ-
ing a program that handled basic Web tasks and more time could be devoted to
innovative marketing ideas and custom interfaces with the CD sales system.

To help better understand some of the shopping cart programs that were avail-
able in the market and how their adoption could benefit the project, Jason created a
weighted alternative matrix that compared three different shopping-cart programs
against one another (Figure 7-6). Although all three alternatives had positive points,

276 Chapter 7 Moving into Design

Technical Issues:
Develops desirable 15 Developed in C; 1 15 Developed in C 3 45 Developed in Java; 5 75

in-house skills little interest in and Java; would would like to
developing C like to develop develop in-house
skills in-house in-house Java skills Java skills

Integration with 15 Orders sent as 3 45 Flexible export 4 60 Orders saved to a 5 75
existing systems e-mail files features for passing number of file

order information formats
to other systems

Experience with 10 None 1 10 Tom in IS Support has 5 50 None 1 10
product had limited, but

positive experience
with this program.

Economic Issues:
Cost 25 $150 initial 5 125 $700 initial charge; 4 100 $200 per year fee 3 75

charge no yearly fees

Organizational Issues
Demonstrated product 15 Program used by 5 75 Program used by 5 75 Brand-new product; 2 30

in market other retail other retail music few companies
music companies companies have experience.

Customizable interface 20 No 1 20 Yes, easy to do 5 100 Yes, but not easy 3 60

TOTAL 100 290 430 325

* This denotes how well the alternative meets the criteria. 1 = poor fit; 5 = perfect fit.

Relative Alt 1:
Evaluation Importance Shop Score Wtd Alt 2: Score Wtd Alt 3: Score Wtd

Criteria (Weight) With Me (1–5)* Score WebShop (1–5)* Score Shop-N-Go (1–5)* Score

FIGURE 7-6
Alternative Matrix for Shopping Cart Program

c07MovingIntoDesign.qxd 9/28/11 9:38 PM Page 276

Summary 277

Jason saw alternative 2 (WebShop) as the best alternative for handling the shopping
cart functionality for the new music download system. WebShop was written in
Java, the tool that Tune Source selected as its standard Web development language;
the expense was reasonable, with no hidden or recurring costs; and there was an in-
house person who had some positive experience with the program. Jason made a
note to look into acquiring WebShop as the shopping-cart program for the Digital
Music Download system.

SUMMARY

Transition from Requirements to Design
The design phase is the phase of the SDLC in which the blueprint for the new
system is developed, and it contains many steps that guide the project team
through planning exactly how the system needs to be constructed. The require-
ments that were identified in the analysis phase serve as the primary inputs for
design activities. The main deliverable from the design phase is the system spec-
ification, which includes the physical process and data models, architecture
design, hardware and software specifications, interface design, data storage
design, and program design.

System Acquisition Strategies
During the design phase, the project team also needs to consider three approaches
to creating the new system, including developing a custom application in-house;
buying a packaged system and customizing it; and relying on an external vendor,
developer, or system provider to build and/or support the system. Custom devel-
opment allows developers to be flexible and creative in the way they solve busi-
ness problems, and it builds technical and functional knowledge within the
organization. Many companies have a development staff that is already over-
committed to filling huge backloads of systems requests, however, and they just
don’t have time to devote to a project for which a system is built from scratch.
It can be much more efficient to buy programs that have been created, tested, and
proven; and a packaged system can be bought and installed in a relatively short
period of time, when compared with a custom solution. Workarounds can be
used to meet the needs that are not addressed by the packaged application. The
third design strategy is to outsource the project and pay an external vendor,
developer, or service provider to create the system. It can be a good alternative
for how to approach the new system; however, it does not come without costs. If
a company does decide to leave the creation of a new system in the hands of
someone else, the organization could compromise confidential information or
lose control over future development.

Influences on Acquisition Strategy
Each of the acquisition strategies just discussed has its strengths and weaknesses,
and no one strategy is inherently better than the others. Thus, it is important to con-
sider such issues as the uniqueness of business need for the system, the amount of
in-house experience that is available to build the system, and the importance of the
project skills to the company. Also, the existence of good project management and
the amount of time available to develop the application play a role in the selection
process.

c07MovingIntoDesign.qxd 9/28/11 9:38 PM Page 277

278 Chapter 7 Moving into Design

Alternative matrix
Application service provider (ASP)
Custom development
Design phase
Enterprise resource planning (ERP)
Fixed-price contract
Outsourcing

Packaged software
Request for information (RFI)
Request for proposal (RFP)
Request for quote (RFQ)
Software as a Service (SaaS)
System requirement
System specification

Systems integration
Time and arrangements deal
Value-added contract
Weighted alternative matrix
Workaround

KEY TERMS

1. Summarize the distinctions between the analysis
phase and the design phase of the SDLC.

2. Describe the primary activities of the design phase
of the SDLC.

3. List and describe the contents of the system speci-
fication.

4. Describe the three primary strategies that are avail-
able to obtain a new system.

5. What circumstances favor the custom design strategy?
6. What circumstances favor the use of packaged

software?
7. What circumstances favor using outsourcing to

obtain the new system?
8. What are some problems associated with using

packaged software? How can these problems be
minimized?

9. What is meant by customizing a software package?
10. What is meant by creating a workaround for a

software package? What are the disadvantages of
workarounds (if any)?

11. What is involved with systems integration? When is
it necessary?

12. Describe the role of application service providers
(ASPs) in obtaining new systems. What are their
advantages and disadvantages?

13. Distinguish between a traditional ASP and a
provider of software as a service. What are the pros
and CMS of each solution approach?

14. Explain the distinctions between time and arrange-
ments, fixed-price, and value-added outsourcing
contracts. What are the pros and cons of each?

15. What is the purpose of a request for proposal
(RFP)? How does it differ from the RFI?

16. What information is typically conveyed in an RFP?
17. What is the purpose of the weighted alternative

matrix? Describe its typical content.
18. Should the analysis phase be eliminated or reduced

when we intend to use a software package instead
of custom development or outsourcing?

QUESTIONS

A. Assume that you are developing a new system for a
local real estate agency. The agency wants to keep a
database of its own property listings and also wants to
have access to the citywide multiple listings service
used by all real estate agents. Which design strategy

would you recommend for the construction of this
system? Why?

B. Assume that you are developing a new system for a
multistate chain of video stores. Each store will run
a fairly standardized set of video store processes

EXERCISES

Selecting an Acquisition Strategy
Ultimately, the decision must be made regarding the specific acquisition strategy for
the system. An alternative matrix can help the design team make this decision by
presenting feasibility information for several candidate solutions in a way in which
they can be compared easily. The request for proposal, request for information, and
request for quote are ways to gather accurate details regarding the alternatives. At
this point, the team decides exactly who will perform each part of the design phase
and what packages will be used.

c07MovingIntoDesign.qxd 9/28/11 9:38 PM Page 278

Minicases 279

1. Susan, president of MOTO, Inc., a human resources
management firm, is reflecting on the client manage-
ment software system her organization purchased
four years ago. At that time, the firm had just gone
through a major growth spurt, and the mixture of
automated and manual procedures that had been used
to manage client accounts became unwieldy. Susan
and Nancy, her IS department head, researched and
selected the package that is currently used. Susan had
heard about the software at a professional conference
she attended, and at least initially, it worked fairly
well for the firm. Some of their procedures had to
change to fit the package, but they expected that and
were prepared for it.

Since that time, MOTO, Inc. has continued to grow,
not only through an expansion of the client base, but
through the acquisition of several smaller employment-
related businesses. MOTO, Inc. is a much different
business than it was four years ago. Along with
expanding to offer more diversified human resource
management services, the firm’s support staff has also
expanded. Susan and Nancy are particularly proud of
the IS department they have built up over the years.
Using strong ties with a local university, an attractive
compensation package, and a good working environ-
ment, the IS department is well staffed with competent,
innovative people, plus a steady stream of college

interns keeps the department fresh and lively. One of
the IS teams pioneered the use of the Internet to offer
MOTO’s services to a whole new market segment, an
experiment that has proven very successful.

It seems clear that a major change is needed in the
client management software, and Susan has already
begun to plan financially to undertake such a project.
This software is a central part of MOTO’s operations,
and Susan wants to be sure that a quality system is
obtained this time. She knows that the vendor of their
current system has made some revisions and additions
to its product line. There are also a number of other
software vendors who offer products that may be
suitable. Some of these vendors did not exist when the
purchase was made four years ago. Susan is also con-
sidering Nancy’s suggestion that the IS department
develop a custom software application.

a. Outline the issues that Susan should consider
which would support the development of a cus-
tom software application in-house.

b. Outline the issues that Susan should consider
which would support the purchase of a software
package.

c. Within the context of a systems development
project, when should the decision of “make-
versus-buy” be made? How should Susan proceed?
Explain your answer.

MINICASES

(cataloging video inventory, customer registration,
video rentals, video returns, overdue fees, etc.). In
addition, each store’s system will be networked to
the corporate offices for sales and expense reporting.
Which design strategy would you recommend for
the construction of this system? Why?

C. Assume that you are part of a development team that
is working on a new warehouse management
system. You have the task of investigating software
packages that are available through application
service providers. Using the World Wide Web, iden-
tify at least two potential sources of such software.
What are the pros and cons of this approach to
obtaining a software package?

D. Assume that you are leading a project that will
implement a new course registration system for your
university. You are thinking about using either a
packaged course registration application or out-
sourcing the job to an external consultant. Create a
request for proposal (RFP) to which interested ven-
dors and consultants could respond.

E. Assume that you and your friends are starting a small
business painting houses in the summertime. You
need to buy a software package that handles the
financial transactions of the business. Create an alter-
native matrix that compares three packaged systems
(e.g., Quicken, Microsoft Money, QuickBooks).
Which alternative appears to be the best choice?

c07MovingIntoDesign.qxd 9/28/11 9:38 PM Page 279

D E S I G N

T A S K C H E C K L I S T

P L A N N I N G A N A L Y S I S D E S I G N

▼

Select Design Strategy

Design Architecture

Select Hardware and Software

Develop Use Scenarios

Design Interface Structure

Develop Interface Standards

Design Interface Prototype

Evaluate User Interface

Design User Interface

Develop Physical Data Flow Diagrams

Develop Program Structure Charts

Develop Program Specifications

Select Data Storage Format

Develop Physical Entity Relationship Diagram

Denormalize Entity Relationship Diagram

Performance Tune Data Storage

Size Data Storage

A N A L Y S I S

P L A N N I N G

✔

c08ArchitectureDesign.qxd 12/5/11 2:29 PM Page 280

I M P L E M E N TAT I O N

n important component of the design phase is the architecture design, which
describes the system’s hardware, software, and network environment. The archi-

tecture design flows primarily from the nonfunctional requirements, such as operational,
performance, security, cultural, and political requirements. The deliverables from architec-
ture design include the architecture design and the hardware and software specification.

OBJECTIVES

■ Describe the fundamental components of an information system.
■ Describe server-based, client-based, and client–server architectures.
■ Describe newer architectural options, such as cloud computing.
■ Explain how operational, performance, security, cultural, and political require-

ments affect the architecture design.
■ Create an architectural design.
■ Create a hardware and software specification.

C H A P T E R 8

A

ARCHITECTURE
DESIGN

CHAPTER OUTINE

Introduction
Elements of an Architecture Design

Architectural Components
Client–Server Architectures
Client–Server Tiers
Less Common Architectures
Advances in Architecture

Configurations
Comparing Architecture Options

Creating an Architecture Design
Operational Requirements

Performance Requirements
Security Requirements
Cultural and Political Requirements
Designing the Architecture

Hardware and Software Specification
Applying the Concepts at Tune Source

Creating an Architecture Design
Hardware and Software Specification

Summary

c08ArchitectureDesign.qxd 11/3/11 12:07 PM Page 281

INTRODUCTION

Today, most information systems are spread across two or more computers. A Web-
based system, for example, can run in the browser on your desktop computer, but
will interact with the Web server (and possibly other computers) over the Internet.
A system that operates completely inside a company’s network may have a Visual
Basic program installed on your computer, but interact with a database server else-
where on the company network. An important step of the design phase is the
creation of the architecture design, the plan for how the information system com-
ponents will be distributed across multiple computers and what hardware, operat-
ing system software, and application software will be used on each computer
(e.g., Windows or Linux operating system software).

Designing the system architecture can be quite difficult; therefore, many organ-
izations use the skills of experienced, expert system architects (consultants or
employees) who specialize in the task.1 In this chapter, we will examine the key fac-
tors in architecture design. It is important to remember that it takes lots of experience
to do it well. The nonfunctional requirements developed early in the analysis phase
(see Chapter 3) play a key role in architecture design. These requirements are reex-
amined and refined into more detailed requirements that influence the system’s archi-
tecture. In this chapter, we first explain how the designers think about application
architectures and describe the most common architecture used today, the client–server
architecture. We briefly discuss several less common architectures: server-based and
client-based. We also discuss new developments in system architecture, such as cloud
computing and virtualization. Then we examine how the very general nonfunctional
requirements from the analysis phase are refined into more specific requirements, and
the implications that they have for architecture design. Finally, we consider how the
requirements and architecture design can be used to develop the hardware and soft-
ware specifications that define exactly what hardware and other software (e.g., data-
base systems) are needed to support the information system being developed.

ELEMENTS OF AN ARCHITECTURE DESIGN

The objective of architecture design is to determine how the software components of
the information system will be assigned to the hardware devices of the system. In
this section, we first discuss the major functions of the software to understand how
the software can be divided into different parts. Then we briefly discuss the major
types of hardware onto which the software can be placed. Although there are numer-
ous ways in which the software components can be placed on the hardware compo-
nents, the most common architecture is the client–server architecture, so we focus
on it here.

Architectural Components

The major architectural components of any system are the software and the
hardware. The major software components of the system being developed have
to be identified and then allocated to the various hardware components on which
the system will operate. Each of these components can be combined in a variety
of different ways.

282 Chapter 8 Architecture Design

1 For more information on architecture design, see the Zachman Institute at www.zifa.com.

c08ArchitectureDesign.qxd 10/3/11 8:35 AM Page 282

All software systems can be divided into four basic functions. The first is
data storage. Most information systems require data to be stored and retrieved,
whether a small file, such as a list of lawn chemicals that are no longer author-
ized for residential applications, or a large database that stores an organization’s
human resources records. These are the data entities documented in ERDs. The
second function is the data access logic: the processing required to access data,
often meaning database queries in Structured Query Language (SQL). The third
function is the application logic: the logic documented in the DFDs, use cases,
and functional requirements. The fourth function is the presentation logic: the
display of information to the user and the acceptance of the user’s commands
(the user interface). These four functions (data storage, data access logic, appli-
cation logic, and presentation logic) are the basic building blocks of any infor-
mation system.

The three primary hardware components of a system are client computers,
servers, and the network that connects them. Client computers are the input–output
devices employed by the user and are usually desktop or laptop computers, but can
also be handheld devices, smartphones, special-purpose terminals, and so on.
Servers typically are larger multi-user computers used to store software and data
that can be accessed by anyone who has permission. The network that connects the
computers can vary in speed from slow cell phones or modem connections that
must be dialed, to medium-speed always-on frame relay networks, to fast always-on
broadband connections such as cable modem, DSL, or T1 circuits, to high-speed
always-on Ethernet, T3, or ATM circuits.2

Client–Server Architectures

Most organizations today are utilizing or moving to client–server architectures,
which attempt to balance the processing between client devices and one or more
server devices. In these architectures, the client is responsible for the presenta-
tion logic, whereas the server is responsible for the data access logic and data
storage. The application logic may reside on the client, reside on the server, or
be split between both (Figure 8-1). If the client shown in Figure 8-1 contained
all or most of the application logic, it is called a thick or fat client. Currently,

Elements of an Architecture Design 283

2 For more information on networks, see Jerry FitzGerald and Alan Dennis, Business Data Communications
and Networking, 10th Ed., New York: John Wiley & Sons, 2009.

FIGURE 8-1
Two-Tiered Client–Server Architecture

Server
Handles data access logic

Handles data storage

Client devices
Handle presentation logic
Handle application logic

c08ArchitectureDesign.qxd 11/3/11 1:29 PM Page 283

284 Chapter 8 Architecture Design

thin clients, containing just a small portion of the application logic, are popular
because of lower overhead and easier maintenance. For example, many Web-
based systems are designed with the Web browser performing presentation and
only minimal application logic using such programming languages as
JavaScript, while the server side has most of the application logic, all of the data
access logic, and all of the data storage.

Client–server architectures have four important benefits. First and fore-
most, they are scalable. That means it is easy to increase or decrease the storage
and processing capabilities of the servers. If one server becomes overloaded, you
simply add another server so that many servers are used to perform the applica-
tion logic, data access logic, or data storage. The cost to upgrade is gradual, and
you can upgrade in small increments.

Second, client–server architectures can support many different types of
clients and servers. It is possible to connect computers that use different operat-
ing systems so that you are not locked into one vendor. Users can choose which
type of computer they prefer (e.g., combining both Windows computers and
Apple Macintoshes on the same network). Middleware is a type of system soft-
ware designed to translate between different vendors’ software. Middleware is
installed on both the client computer and the server computer. The client soft-
ware communicates with the middleware, which can reformat the message into
a standard language that can be understood by the middleware, which assists the
server software.

Third, for thin client–server architectures that use Internet standards, it is
simple to clearly separate the presentation logic, the application logic, and the
data access logic and design each to be somewhat independent. For example, the
presentation logic can be designed in HTML or XML to specify how the page
will appear on the screen (e.g., the colors, fonts, order of items, specific words
used, command buttons, type of selection lists, and so on; see Chapter 9). Simple
program statements are used to link parts of the interface to specific application
logic modules that perform various functions. These HTML or XML files
defining the interface can be changed without affecting the application logic.
Likewise, it is possible to change the application logic without changing the
presentation logic or the data, which are stored in databases and accessed by
SQL commands.

Finally, if a server fails in a client–server architecture, only the applications
requiring that server will fail. The failed server can be swapped out and replaced
and the applications can then be restored.

Client–server architectures also have some critical limitations, the most
important of which is their complexity. All applications in client–server com-
puting have two parts, the software on the client side and the software on the
server side. Writing this software is more complicated than writing the tradi-
tional all-in-one software used in server-based architectures (discussed in a later
section). Updating the overall system with a new version of the software is more
complicated, too. With client–server architectures, you must update all clients
and all servers and you must ensure that the updates are applied on all devices.

Client–Server Tiers

There are many ways in which the application logic can be partitioned between the
client and the server. The arrangement in Figure 8-1 is a common configuration.

c08ArchitectureDesign.qxd 10/3/11 8:35 AM Page 284

Database server
Handles database-related tasks

Application server
Handles business logic

Client devices
Handle presentation logic

In this case, the server is responsible for the data and the client is responsible for
the application and presentation. This is called a two-tiered architecture because
it uses only two sets of computers—clients and servers.

A three-tiered architecture uses three sets of computers, as shown in
Figure 8-2. In this case, the software on the client computer is responsible for pres-
entation logic, an application server(s) is responsible for the application logic, and
a separate database server(s) is responsible for the data access logic and data stor-
age. Typically, the user interface runs on a desktop PC or workstation and uses a
standard graphical user interface. The application logic may consist of one or more
separate modules running on a workstation or application server. Finally, a rela-
tional DBMS running on a database server contains the data access logic and data
storage. The middle tier may be divided into tiers itself, resulting in an overall
architecture called an “n-tier architecture”.

An n-tiered architecture distributes the work of the application (the middle
tier) among multiple layers of more specialized server computers. This type of
architecture is common in today’s Web-based e-commerce systems. See Figure 8-3.
The browser software on client computers makes HTTP requests to view pages
from the Web server(s), and the Web server(s) enable the user to view merchandise
for sale by responding with HTML documents. As the user shops, components on
the application server(s) are called as needed to allow the user to put items in a
shopping cart; determine item pricing and availability; compute purchase costs,
sales tax, and shipping costs; authorize payments, etc. These elements of business
logic, or detailed processing, are stored on the application server(s) and are acces-
sible to any application. For example, the cash register application that needs item
price look-ups could use the same price determination business logic that is used
by the e-commerce Web site. The modular business logic can be used by multiple,
independent applications that need that particular business logic. The database
server(s) manage the data components of the system. Each of these four compo-
nents is separate, which makes it easy to spread the different components on dif-
ferent servers and to partition the application logic on a Web-oriented server and a
business-oriented server.

The primary advantage of an n-tiered client–server architecture compared
with a two-tiered architecture (or a three-tiered with a two-tiered) is that it separates
out the processing that occurs to better balance the load on the different servers; it
is more scalable. In Figure 8-3, we have three separate server types, a configuration
that provides more power than if we had used a two-tiered architecture with only
one server. If we discover that the application server is too heavily loaded, we can
simply replace it with a more powerful server or just put in several more application

Elements of an Architecture Design 285

FIGURE 8-2
Three-Tiered Client–Server Architecture

c08ArchitectureDesign.qxd 10/3/11 8:35 AM Page 285

servers to share the load. Conversely, if we discover that the database server is
underused, we could store data from another application on it.

There are two primary disadvantages to an n-tiered architecture compared
with a two-tiered architecture (or a three-tiered with a two-tiered). First, the con-
figuration puts a greater load on the network. If you compare Figures 8-1, 8-2, and
8-3, you will see that the n-tiered model requires more communication among the
servers; it generates more network traffic, so you need a higher-capacity network.
Second, it is much more difficult to program and test software in n-tiered architectures
than in two-tiered architectures, because more devices have to communicate
properly to complete a user’s transaction.

Less Common Architectures

The client–server architecture has become the predominant architecture in use today.
Two other architectures are less commonly found, but still used in certain situations.

Server-Based Architectures The very first computing architectures were server-
based, with the server (usually, a central mainframe computer) performing all
four application functions. The clients (usually, terminals) enabled users to send
and receive messages to and from the server computer. The clients merely cap-
tured keystrokes and sent them to the server for processing, and accepted instruc-
tions from the server on what to display (Figure 8-4).

286 Chapter 8 Architecture Design

Server computer
Handles presentation logic,

application logic,
data access logic, and

data storage

Terminal

FIGURE 8-4
Server-Based Architecture

FIGURE 8-3
n-Tiered Client–Server Architecture

Web server
Handles Web-related business

logic

Application server
Handles other business logic

Database server
Handles database-related tasks

Client devices
Handle presentation logic

c08ArchitectureDesign.qxd 10/3/11 8:35 AM Page 286

This very simple architecture often works very well. Application software is
developed and stored on the server, and all data are on the same computer. There is one
point of control because all messages flow through the one central server. Software
development and software administration are simplified because a single computer
hosts the entire system (operating system and application software).

The server-based architecture was the first architecture used in information
systems, but did not remain the only option as hardware and software evolved. The
fundamental problem with early server-based systems was that the server processed
all the work in the system. As the demands for more and more applications and the
number of users grew, server computers became overloaded and unable to quickly
process all the users’ demands. Response time became slower, and IS managers
were required to spend increasingly more money to upgrade the server computer.
In the early days, upgrading to a larger server computer (usually a mainframe)
required a substantial financial commitment. Increased capacity came only in large,
expensive chunks.

Today, the server-based architecture remains a viable architecture choice.
Zero client, or ultrathin client, is a server-based computing model that is often used
today in a virtual desktop infrastructure (VDI). A typical zero client device is a
small box that connects a keyboard, mouse, monitor, and Ethernet connection to a
remote server. The server hosts everything: the client’s operating system and all
software applications. The server can be accessed wirelessly or with cable.

Zero client computing has a number of benefits. Power usage can be signifi-
cantly reduced compared to fat client configurations. This benefit is increasing in
importance as more companies are investigating green computing. The devices
used are much less expensive than PCs or even thin client devices. Since there is no
software at the client device, there is no vulnerability to malware. The zero client
computing model provides an efficient and secure way to deliver applications to end
users. Administration is easy and multiple virtual PCs can be run on server class
hardware in VDI environments, significantly reducing the number of physical PCs
that must be acquired and maintained. In addition, the server-based zero-client
model limits the non-business use of the client computer (e.g., no Facebook; no
Farmville, etc.).

Client-Based Architectures With client-based architectures, the clients are micro-
computers on a local area network, and the server is a server computer on the
same network. The application software on the client computers is responsible for
the presentation logic, the application logic, and the data access logic; the server
simply provides storage for the data (Figure 8-5).

Elements of an Architecture Design 287

Server computer
Handles data

storage

Client computer
Handles presentation logic,

application logic, and
data access logicFIGURE 8-5

Client-Based Architecture

c08ArchitectureDesign.qxd 10/3/11 8:35 AM Page 287

This simple architecture often works very well in situations with low numbers
of users or limited data access requirements. The fundamental problem in the
client-based architecture is that all data on the server must travel to the client for
processing. For example, suppose that the user wishes to display a list of all
employees with company life insurance. All the data in the employee database must
travel from the server, where the database is stored, over the network to the client,
which then executes the query to find each record that matches the data requested
by the user. In the other computing models we have discussed, the data access logic
would be executed on the server and only the results of the query transmitted to
the client. In the client-based computing model, the data access logic is executed on
the client system. Therefore, the entire database must be transmitted to the client
before processing can take place. This can overload both the network and the power
of the client computers.

Advances in Architecture Configurations

Advances in hardware, software, and networking have given rise to a number of
new architecture options. A detailed discussion of all of these options is beyond the
scope of this book. Two advances that are currently getting a lot of attention,
virtualization and cloud computing, will be described here briefly.

Virtualization This term, in the computing domain, refers to the creation of a vir-
tual device or resource, such as a server or storage device. You may be familiar
with this concept if you have partitioned your computer’s hard drive into more
than one separate hard drive. While you only have one physical hard drive in your
system, you treat each partitioned, “virtual” drive as if it is a distinct physical
hard drive. Today, this term has become a common buzz word, as we hear about
server virtualization, storage virtualization, network virtualization, and other
variations of virtualization.

Server virtualization involves partitioning a physical server into smaller virtual
servers. Software is used to divide the physical server into multiple virtual environ-
ments, called virtual or private servers. This capability overcomes the primary lim-
itation of the older style server-based architectures that were based on single, large,
expensive, monolithic computers. Today, a physical server device can be used to
provide many virtual servers that are independent of each other, but co-reside on
the same physical server. Each virtual server runs an operating system and can be
rebooted independently of the other virtual servers. Less hardware is required to
provide a set of virtual servers as compared to equivalent physical servers, so costs
are reduced. This arrangement can also optimize the utilization of the physical
server, saving on operational costs.

A recent Gartner survey3 of mid-sized businesses found that over 75% of
midsized businesses intend to make widespread use of server virtualization by
2012. These organizations indicate they are aggressively seeking ways to lower
costs, improve utilization, and increase availability, and have found server virtual-
ization to be an important contributor to those goals.

288 Chapter 8 Architecture Design

3 http://docs.media.bitpipe.com/io_25x/io_25324/item_407011/SMB_Gartner_Paper%20PDF_User%20
Survey%20Analysis%20Next%20Steps%20for%20Server%20Virtualization%20in%20the%20Midmarket.
pdf; accessed 5.12.2011.

c08ArchitectureDesign.qxd 10/3/11 8:35 AM Page 288

Storage virtualization involves combining multiple network storage devices
into what appears to be single storage unit. A storage area network (SAN) uses
storage virtualization to create a high-speed subnetwork of shared storage devices.
In this environment, tasks such as backup, archiving, and recovery are easier
and faster.

Cloud Computing It is no longer necessary for organizations to own, manage,
and administer their own computing infrastructure. We are in the midst of the
rise of cloud computing, wherein everything, from computing power to comput-
ing infrastructure, applications, business processes to personal collaboration—
can be delivered as a service wherever and whenever needed. The “cloud” in
cloud computing can be defined as the set of hardware, networks, storage, serv-
ices, and interfaces that combine to deliver aspects of computing as a service.
Cloud services include the delivery of software, infrastructure, and storage over
the Internet (either as separate components or a complete platform) based on
user demand.

Cloud computing can be implemented in three ways: private cloud, public
cloud, and hybrid clouds. With public clouds, services are provided “as a service”
over the Internet with little or no control over the underlying technology infra-
structure. Private clouds offer activities and functions “as a service,” but are
deployed over a company intranet or hosted data center. Hybrid clouds combine the
power of both public and private clouds. In this scenario, activities and tasks
are allocated to private or public clouds as required.

At this time, cloud computing is in its early stages of development. Propo-
nents of cloud computing point to a number of advantages of the cloud computing
model. First, when utilizing the cloud, the resources allocated can be increased or
decreased based upon demand. This capability, termed elasticity, makes the cloud
scalable—the cloud can scale up for periods of peak demand and scale down for
times of less demand. Applications in the cloud can scale up as users are added and
when the application’s requirements change. Second, cloud customers can obtain
cloud resources in a straightforward fashion. Arrangements are made with the cloud
service provider for a certain amount of computing, storage, software, process, or
other resources. After using these resources, they can be released if no longer
required. Third, cloud services typically have standardized APIs (application pro-
gram interfaces). This means that the services have standardized the way that
programs or data sources communicate with each other. This capability lets the cus-
tomer more easily create linkages between cloud services. Finally, the cloud com-
puting model enables customers to be billed for resources as they are used. Usage
of the cloud is measured and customers pay only for resources used—much like
your use of electricity in your apartment. This feature makes cloud computing very
attractive from a financial perspective.

Cloud computing suppliers utilize virtualization as a key enabling technology.
For cloud computing customers, however, the point is to outsource IT technology,
applications, and skills with a pay per usage model. The concept of cloud comput-
ing has captured the attention and imagination of organizations of all sizes.
Through the cloud computing model, the power of virtualization is converted into
measurable business value.

Although the benefits of the cloud computing model are many (scalability,
cost reduction, device independence, performance, and more), it is still in its
infancy and companies are still learning how best to utilize it. Recently, Amazon,

Elements of an Architecture Design 289

c08ArchitectureDesign.qxd 11/3/11 12:08 PM Page 289

290 Chapter 8 Architecture Design

one of the prominent suppliers of cloud computing, experienced a catastrophic
failure that affected hundreds of organizations that use Amazon’s cloud services
to run their businesses.4 Therefore, organizations should be prepared to carefully
structure their cloud computing arrangements and include redundancy in their
applications so that the negative consequences of a catastrophic failure are
minimized.

Comparing Architecture Options

Most systems are built to use the existing infrastructure in the organization, so often
the current infrastructure restricts the choice of architecture. For example, if the
new system will be built for a mainframe-centric organization, server-based archi-
tecture may be the best option. Other factors like corporate standards, existing
licensing agreements, and product/vendor relationships also can mandate the project
team’s architecture choice. Many organizations now have a variety of infrastructures
in use, however, or are actively looking for pilot projects to test new architectures and
infrastructures, enabling the project team to select an architecture on the basis of
other important factors.

Each of the architectures just discussed has its strengths and weaknesses.
Client–server architectures are strongly favored on the basis of the cost of infrastruc-
ture (the hardware, software, and networks that will support the application system).
The client–server architecture is highly scalable because servers can be added to (or
removed from) the infrastructure when processing needs change. The GUI develop-
ment tools used to create applications for client–server architectures can be intuitive
and easy to use. The development of applications for these architectures can be fast
and painless. Keep in mind, however, that client–server architectures do involve the
added complexity of several layers of hardware (e.g., database servers, Web servers,
client workstations) that must communicate effectively with each other. Project teams
often underestimate the difficulty associated with creating secure, efficient
client–server applications.

CREATING AN ARCHITECTURE DESIGN

The architecture design specifies the overall architecture and the placement of soft-
ware and hardware that will be used. Architecture design is very complex process
that is often left to experienced architecture designers and consultants, but we will
give a sense of the process here.

Each of the computing architectures discussed earlier has its strengths and weak-
nesses. Most organizations are moving to client–server architectures for cost and scal-
ability reasons, so, in the event that there is no reason other than cost, client–server is
generally used today.

Creating an architecture design begins with the nonfunctional require-
ments. The first step is to refine the nonfunctional requirements into more
detailed requirements that are then employed to help select the architecture to be
used (server-based, client-based, or client–server) and the software components to
be placed on each device. In a client–server architecture, one also has to decide

4http://www.cnn.com/2011/TECH/web/04/22/amazon.cloud.mashable/index.html?hpt=Sbin;accessed
6/12/2011.

c08ArchitectureDesign.qxd 10/3/11 8:35 AM Page 290

whether to use a two-tier, three-tier, or n-tier architecture. Then the nonfunctional
requirements and the architecture design are used to develop the hardware and soft-
ware specification.

There are four primary types of nonfunctional requirements that can be
important in designing the architecture: operational requirements, performance
requirements, security requirements, and cultural and political requirements.
We describe each in turn and then explain how they may affect the architecture
design.

Operational Requirements

Operational requirements specify the operating environment(s) in which the system
must perform and how those may change over time. This usually refers to operat-
ing systems, system software, and information systems with which the system must
interact, but will on occasion also include the physical environment if the environ-
ment is important to the application (e.g., in a noisy factory floor where no audible
alerts can be heard). Figure 8-6 summarizes four key operational requirement areas
and provides some examples of each.

Technical Environment Requirements Technical environment requirements specify
the type of hardware and software on which the system will work. These require-
ments usually focus on the operating system software (e.g., Windows, Linux), database

Creating an Architecture Design 291

Technical Environment Special hardware, software, and network • The system will work over the Web
Requirements requirements imposed by business requirements environment with Internet Explorer.

• All office locations will have an always-on net-
work connection to enable real-time database
updates.

• A version of the system will be provided for cus-
tomers connecting over the Internet via a small-
screen smartphone.

System Integration The extent to which the system will • The system must be able to import and export
Requirements operate with other systems Excel spreadsheets.

• The system will read and write to the main
inventory database in the inventory system.

Portability Requirements The extent to which the system will need • The system must be able to work with different
to operate in other environments operating systems (i.e., Linux; Windows 7).

• The system may need to operate with handheld
devices such as an iPad.

Maintainability Expected business changes to which the • The system will be able to support more than
Requirements system should be able to adapt one manufacturing plant upon six months

advance notice.

• New versions of the system will be released
every six months.

Type of Requirement Definition Examples

FIGURE 8-6
Operational Requirements

c08ArchitectureDesign.qxd 10/3/11 8:35 AM Page 291

system software (e.g., Oracle), and other system software (e.g., Internet Explorer).
Occasionally, there may be specific hardware requirements that impose important
limitations on the system, such as the need to operate on a smartphone with a very
small display.

System Integration Requirements System integration requirements are those that
require the system to operate with other information systems, either inside or out-
side the company. These typically specify interfaces through which data will be
exchanged with other systems.

Portability Requirements Information systems never remain constant. Business
needs and operating technologies change, so the information systems that support
them and run on them must change, too. Portability requirements define how the
technical operating environments may evolve over time and how the system must
respond (e.g., the system may currently run on Windows Vista, but in the future may
have to run on Windows 7 and Linux). Portability requirements also refer
to potential changes in business requirements that will drive technical-environment
changes. For example, many organizations today are working to ensure their applica-
tions are optimized for devices such as the iPad in response to user demand.

Maintainability Requirements Maintainability requirements specify the business
requirement changes that can be anticipated. Not all changes are predictable, but
some are. For example, suppose that a small company has only one manufacturing
plant, but is anticipating the construction of a second plant in the next five years. All
information systems must be written to make it easy to track each plant separately,
whether for personnel, budgeting, or inventory management. The maintainability
requirement attempts to anticipate future requirements so that the systems designed
today will be easy to maintain if and when those future requirements appear. Main-
tainability requirements may also define the update cycle for the system, such as the
frequency with which new versions will be released.

Performance Requirements

Performance requirements focus on performance issues such as response time,
capacity, and reliability. As analysts define the performance requirements for the
system, the testability of those requirements is a key issue. Each requirement must
be measurable so that a benchmark comparison can be made. Only in that way can
the achievement of a performance requirement be verified. In fact, many systems
analysts write a test specification containing a well-defined test for each requirement,
at the same time that they create the requirements. Such attention to testability pre-
vents the creation of a poor performance requirement, such as “The system must have
a response time fast enough to allow staff to effectively accomplish their work.”
Figure 8-7 summarizes three key performance requirement areas and provides
some examples.

Speed Requirements Speed requirements are exactly what they say: how fast the
system must operate. First and foremost, this is the response time of the system:
How long does it take the system to respond to a user request? While everyone
would prefer low response times with the system responding immediately to each
user request, this is not practical. We could design such a system, but it would be

292 Chapter 8 Architecture Design

c08ArchitectureDesign.qxd 10/3/11 8:35 AM Page 292

expensive. Most users understand that certain parts of a system will respond
quickly, while others are slower. Those actions that are performed locally on the
user’s computer must be almost immediate (e.g., typing, dragging and dropping),
while others that require communicating across a network can have higher response
times (e.g., a Web request). In general, response times less than 7 seconds are con-
sidered acceptable when they require communication over a network.

The second aspect of speed requirements is how long it takes transactions in
one part of the system to be reflected in other parts. For example, how soon after
an order is placed will the items it contains be shown as no longer available for
sale to someone else? If the inventory is not updated immediately, then someone
else could place an order for the same item, only to find out later that it is out of
stock. Or, how soon after an order is placed is it sent to the warehouse to be picked
from inventory and shipped? In this case, some time delay might have little
impact.

Capacity Requirements Capacity requirements attempt to predict how many users
the system will have to support, both in total and simultaneously. Capacity require-
ments are important in understanding the size of the databases, the processing
power needed, and so on. The most important requirement is usually the peak num-
ber of simultaneous users, because this has a direct impact on the processing power
of the computer(s) needed to support the system.

It is often easier to predict the number of users for internal systems designed
to support an organization’s own employees than it is to predict the number of users
for customer-facing systems, especially those on the Web. How does weather.com
estimate the peak number of users who will simultaneously seek weather informa-
tion? This is as much an art as a science, so the team often provides a range of esti-
mates, with wider ranges used to signal a less accurate estimate.

Speed Requirements The time within which the system must • Response time must be 4 seconds or less for any
perform its functions transaction over the network.

• The inventory database must be updated in real time.

• Orders will be transmitted to the factory floor every
3 minutes.

Capacity Requirements The total and peak number of users • There will be a maximum of 2000 simultaneous users
and the volume of data expected at peak use times.

• A typical transaction will require the transmission of
300 K of data.

• The system will store data on approximately 50,000
customers for a total of about 2 GB of data.

Availability and Reliability The extent to which the system will be • The system should be available 24/7, with the
Requirements available to the users and the exception of scheduled maintenance.

permissible failure rate due to errors • Scheduled maintenance shall not exceed one 6-hour
period each month.

• The system will have 99% uptime performance.

Type of Requirement Definition Examples

FIGURE 8-7
Performance Requirements

Creating an Architecture Design 293

c08ArchitectureDesign.qxd 10/3/11 8:35 AM Page 293

Availability and Reliability Requirements Availability and reliability requirements
focus on the extent to which users can assume that the system will be available for
them to use. While some systems are intended to be used just during the 40-hour
work week, other systems are designed to be used by people around the world. For
such systems, project team members need to consider how the application can be
operated, supported, and maintained 24/7 (i.e., 24 hours a day, 7 days a week). This
24�7 requirement means that users may need help or may have questions at any time
and a support desk available 8 hours a day will not be sufficient. It is also impor-
tant to consider what reliability is needed in the system. A system that requires high
reliability (e.g., a medical device or telephone switch) needs far greater planning
and testing than one that does not have such high reliability needs (e.g., personnel
system, Web catalog).

It is more difficult to predict the peaks and valleys in usage of a system with
a global audience. Typically, applications are backed up on weekends or late
evenings when users are no longer accessing the system. Such maintenance activi-
ties will have to be rethought with global initiatives. The development of Web inter-
faces in particular has escalated the need for 24/7 support; by default, the Web can
be accessed by anyone at any time. For example, the developers of a Web applica-
tion for U.S. outdoor gear and clothing retailer Orvis were surprised when the first
order after going live came from Japan.

Security Requirements

Security is the ability to protect the information system from disruption and data
loss, whether caused by an intentional act (e.g., a hacker or a terrorist attack) or a
random event (e.g., disk failure, tornado).5 Security is primarily the responsibility
of the operations group—the staff responsible for installing and operating security
controls such as firewalls, intrusion detection systems, and routine backup and
recovery operations. Nonetheless, developers of new systems must ensure that the

294 Chapter 8 Architecture Design

A global financial services com-
pany’s new financial system (multi-hundred million dollar
program) posed a major challenge in terms of processing
performance. Tests of an ERP package resulted in dismal
and unacceptable processing performance. (See Con-
cepts in Action 7-A.) The project team determined that
custom development was required for a system capable
of providing acceptable performance, given the huge
transaction volume associated with this system. “Modern”
programming languages involve so much resource over-
head in the systems developed with them that they were

incapable of adequate processing speed. Ultimately, the
project team settled on implementation with COBOL and
assembly language, with the bulk of the processing being
done on IBM z-series mainframe computers. These
languages enabled the developers to work much closer
to the machine, and they were able to develop systems
capable of processing the huge transaction volume very
rapidly. Transaction throughput rates for the package
were in the range of 50,000 per hour. Throughput for the
custom solution came out in the range of 2 million per
minute. Roberta Roth

8-A WHEN PERFORMANCE COUNTS

IN ACTION

CONCEPTS

5 For more information, see Brett C. Tjaden, Fundamentals of Secure Computer Systems, Wilsonville, OR:
Franklin, Beedle, and Associates, 2004.

c08ArchitectureDesign.qxd 11/3/11 1:58 PM Page 294

system’s security requirements produce reasonable precautions to prevent prob-
lems; system developers are responsible for ensuring security within the informa-
tion systems themselves.

System developers must know the security standards that are applicable to
their organizations. Some industries are subject to various restrictions imposed by
law. For example, the Sarbanes–Oxley Act is well known for the responsibilities it
places on publicly traded companies to protect their financial systems from fraud
and abuse. The Health Insurance Portability and Accountability Act (HIPAA)
applies to health-care providers, health insurers, and health information data
processors, while the financial industry must conform to the requirements of the
Graham–Leach–Bliley (GLB) Act. There are also voluntary security standards that
companies may choose to benchmark against, such as the standards adopted by the
International Standards Organization (ISO). ISO 17799 is a generally accepted
standard for information security, and organizations can become ISO 17799 com-
pliant by engaging an accredited outside auditor to examine their security practices
and operations. Retailers will focus on complying with the Payment Card Industry
Data Security Standards (PCI DSS), which were established by the major credit
card companies to ensure the privacy of stored customer information.

Security is an ever-increasing problem in today’s Internet-enabled world. His-
torically, the greatest security threat has come from inside the organization itself.
Ever since the early 1980s when the FBI first began keeping computer crime sta-
tistics and security firms began conducting surveys of computer crime, organiza-
tional employees have perpetrated the majority of computer crimes.

External threats became a more significant problem in the early 2000’s. Today,
surveys show that internal security threats are a bigger problem than external
threats. Many organizations are struggling with liability concerns following the
theft of confidential records, making hundreds or thousands of employees and cus-
tomers vulnerable to identity theft.

Developing security requirements usually starts with some assessment of the
value of the system and its data. This helps pinpoint extremely important systems

Creating an Architecture Design 295

At the end of 1997, Oxford Health
Plans posted a $120 million loss to its books. The com-
pany’s unexpected growth was its undoing because the
system, which was originally planned to support the com-
pany’s 217,000 members, had to meet the needs of a
membership that exceeded 1.5 million.

System users found that processing a new-member
sign-up took 15 minutes instead of the proposed 6 sec-
onds. Also, the computer problems left Oxford unable to
send out bills to many of its customer accounts and ren-
dered it unable to track payments to hundreds of doctors
and hospitals. In less than a year, uncollected payments
from customers tripled to more than $400 million, and

the payments owed to caregivers amounted to more than
$650 million. Mistakes in infrastructure planning can cost
far more than the cost of hardware, software, and net-
work equipment alone.

Source: “Management: How New Technology was Oxford’s
Nemesis,” The Wall Street Journal, December 11, 1997, page
A.1, by Ron Winslow and George Anders.

QUESTION:
If you had been in charge of the Oxford project, what

things would you have considered when planning the
system capacity?

8-B THE IMPORTANCE OF CAPACITY PLANNING

IN ACTION

CONCEPTS

c08ArchitectureDesign.qxd 10/3/11 8:35 AM Page 295

so that the operations staff are aware of the risks. Security within systems usually
focuses on specifying who can access what data, identifying the need for encryp-
tion and authentication, and ensuring that the application prevents the spread of
viruses. (See Figure 8-8.)

Adding security requirements to the system obviously adds cost. How much
should be spent to ensure security in a system? A good rule of thumb is to estimate
the amount of the expected loss and then estimate the probability of that loss occur-
ring. Multiplying these values provides an estimate of how much to spend on secu-
rity measures. So, a $100,000,000 expected loss with a 10% probability means that
$100 million � 10%, or up to $10 million, should be spent on security.

System Value The most important computer asset in any organization is not the
equipment; it is the organization’s data. For example, suppose that someone
destroyed a mainframe computer worth $10 million. The mainframe could be
replaced simply by buying a new one. It would be expensive, but the problem would
be solved in a few weeks. Now suppose that someone destroyed all the student
records at your university so that no one knew what courses anyone had taken or
their grades. The cost of this destruction would far exceed the cost of replacing a
$10 million computer. The lawsuits alone would easily exceed $10 million, and the
cost of staff to find and reenter paper records would be enormous and certainly
would take more than a few weeks.

In some cases, the information system itself has value that far exceeds the
cost of the equipment as well. For example, for an Internet bank that has no brick-
and-mortar branches, the Web site is a mission critical system. If the Web site
crashes, the bank cannot conduct business with its customers. A mission critical
application is an information system that is literally critical to the survival of the
organization. It is an application that cannot be permitted to fail, and if it does fail,
the operations staff drops everything else to fix it. Mission critical applications are
usually clearly identified so that their importance is not overlooked.

296 Chapter 8 Architecture Design

System Value Estimates Estimated business value of the system and • The system is not mission critical, but a system outage
its data is estimated to cost $150,000 per hour in lost revenue.

• A complete loss of all system data is estimated to cost
$20 million.

Access Control Limitations on who can access what data • Only department managers will be able to change
Requirements inventory items within their own department.

• Customer Service personnel will be able to read and
create items in the customer file, but cannot change or
delete items.

Encryption and Defines what data will be encrypted • Data will be encrypted from the user’s computer to the
Authentication where and whether authentication will Web site to provide secure ordering.
Requirements be needed for user access • Users logging in from outside the office will be

required to authenticate.

Virus Control Controls the spread of viruses • All uploaded files will be checked for viruses before
Requirements being saved in the system.

Type of Requirement Definition Examples

FIGURE 8-8
Security Requirements

c08ArchitectureDesign.qxd 10/3/11 8:35 AM Page 296

Even temporary disruptions in service can have significant costs. The cost of
disruptions to a company’s primary Web site or to the LANs and backbones that
support telephone sales operations often measures in the millions of dollars.
Amazon.com, for example, has average revenues of more than $1.8 million per
hour, so if its Web site was unavailable for an hour or two, it would cost them
millions of dollars in lost revenue if customers took their business elsewhere.
Companies that do less e-business or telephone sales have lower costs, but recent
surveys suggest that losses of $100,000 to $200,000 per hour are not uncommon for
major customer-facing information systems.

Access Control Requirements Some of the data stored in the system need to be kept
confidential; some data need special controls on who is allowed to change or delete
them. Personnel records, for example, should be readable only by the personnel
department and the employee’s supervisor; changes should be permitted to be made
only by the personnel department. Access control requirements state who can
access what data and what type of access is permitted—whether the individual can
create, read, update, and/or delete the data. The requirements reduce the chance that
an authorized user of the system can perform unauthorized actions.

Encryption and Authentication Requirements One of the best ways to prevent unau-
thorized access to data is encryption, which is a means of disguising information by
the use of mathematical algorithms (or formulas). Encryption can be used to
protect data stored in databases or data that are in transit over a network from a

Quinnipiac University is a four-year
university in Hamden, Connecticut, with about 7400 stu-
dents. The IT staff has to support academic functions—
but, since the university has residence halls, the IT staff
has to be an “Internet service provider” (ISP) for students
as well. The IT staff can shape much of the academic
usage of the Internet, but students living in residence halls
can cause havoc. Students (and faculty) inadvertently
open the campus to all kind of attacks from viruses, mal-
ware, worms, spybots, and other intruders, as they
access various Web sites. A particularly trying time is
after the semester break in late January when students
return to campus and plug in their laptops that have been
corrupted with other viruses from home networks. These
viruses try to infect the entire campus.

Quinnipiac University installed an intrusion pre-
vention system (IPS) by Tipping Point Technology in
August 2006. On a daily basis, this IPS detects and
drops thousands of destructive messages and packets.
But the real proof was in late January 2007 when students
returned to campus from semester break. In the previous

year, the viruses and spyware virtually took the campus
network down for three days. But in January 2007, there
were no outages and the network remained strong and
functioning at full speed. Brian Kelly, Information Security
Officer at Quinnipiac University, said, “Without the IPS
solution, this campus would have struggled under this
barrage of malicious packets and may have shut down.
With the IPS system, we were able to function at full
speed without any problems.”

QUESTIONS:
1. What is the value of the network on a college cam-

pus? Consider students, faculty, and staff perspectives
in your answer.

2. What might be some of the tangible and intangible
costs of having the Internet down for three days on a
busy college campus?

3. What benefits would an intruction prevention system
offer to the end users on campus (e.g., faculty, staff,
and students)?

8-C SECURING THE ENVIRONMENT

IN ACTION

CONCEPTS

Creating an Architecture Design 297

c08ArchitectureDesign.qxd 10/3/11 8:35 AM Page 297

database to a computer. There are two fundamentally different types of encryption:
symmetric and asymmetric. A symmetric encryption algorithm (such as Data
Encryption Standard [DES] or Advanced Encryption Standard [AES]) is one in
which the key used to encrypt a message is the same as the one used to decrypt it.
With symmetric encryption, it is essential to protect the key, and a separate key
must be used for each person or organization with whom the system shares infor-
mation (or else everyone can read all the data).

In an asymmetric encryption algorithm (such as public key encryption), the key
used to encrypt data (called the public key) is different from the one used to decrypt
it (called the private key). Even if everyone knows the public key, once the data are
encrypted, they cannot be decrypted without the private key. Public key encryption
greatly reduces the key management problem. Each user has a public key that is used
to encrypt incoming messages. These public keys are widely publicized (e.g., listed
in a telephone book-style directory)—that’s why they’re called “public” keys. The
private key, in contrast, is kept secret (that’s why it’s called a “private” key).

Public key encryption also permits authentication (or digital signatures).
When one user sends a message to another, it is difficult to legally prove who actu-
ally sent the message. Legal proof is important in many communications, such as
bank transfers and buy/sell orders in currency and stock trading, which normally
require legal signatures. Public key encryption algorithms are invertible, meaning
that text encrypted with either key can be decrypted by the other. Normally, we
encrypt with the public key and decrypt with the private key. However, it is possi-
ble to do the inverse: encrypt with the private key and decrypt with the public key.
Since the private key is secret, only the real user could use it to encrypt a message.
Thus, a digital signature or authentication sequence is used as a legal signature on
many financial transactions. This signature is usually the name of the signing party
plus other unique information from the message (e.g., date, time, or dollar amount).
This signature and the other information are encrypted by the sender using the pri-
vate key. The receiver uses the sender’s public key to decrypt the signature block
and compares the result with the name and other key contents in the rest of the mes-
sage to ensure a match.

298 Chapter 8 Architecture Design

Lithonia Lighting, located just outside
of Atlanta, Georgia, is the world’s largest manufacturer
of light fixtures, with more than $1 billion in annual sales.
One afternoon, the power transformer at its corporate
headquarters exploded, leaving the entire office com-
plex, including the corporate data center, without power.
The data center’s backup power system immediately took
over and kept critical parts of the data center opera-
tional. However, it was insufficient to power all systems,
so the system supporting sales for all of Lithonia Lighting’s
North American agents, dealers, and distributors had to
be turned off.

The transformer was quickly replaced and power
was restored. However, the 3-hour shutdown of the sales
system cost $1 million in potential sales lost. Unfortu-
nately, it is not uncommon for the cost of a disruption to
be hundreds or thousands of times the cost of the failed
components.

QUESTION:
What would you recommend to avoid similar losses in

the future?

8-D POWER OUTAGE COSTS A MILLION DOLLARS

IN ACTION

CONCEPTS

c08ArchitectureDesign.qxd 10/3/11 8:35 AM Page 298

Creating an Architecture Design 299

The only problem with this approach lies in ensuring that the person or organ-
ization who sent the document with the correct private key is actually the person or
organization they claim to be. Anyone can post a public key on the Internet, so there
is no way of knowing for sure who they actually are. For example, it would be pos-
sible for persons other than “Organization A” in this example to claim to be Orga-
nization A when in fact they are an imposter.

This is where the Internet’s public key infrastructure (PKI) becomes impor-
tant.6 The PKI is a set of hardware, software, organizations, and policies designed
to make public key encryption work on the Internet. PKI begins with a certificate
authority (CA), which is a trusted organization that can vouch for the authenticity
of the person or organization using authentication (e.g., VeriSign). A person want-
ing to use a CA registers with the CA and must provide some proof of identity.
There are several levels of certification, ranging from a simple confirmation from
valid e-mail address to a complete police-style background check with an in-person
interview. The CA issues a digital certificate that is the requestor’s public key
encrypted, using the CA’s private key as proof of identify. This certificate is then
attached to the user’s e-mail or Web transactions, in addition to the authentication
information. The receiver then verifies the certificate by decrypting it with the CA’s
public key—and must also contact the CA to ensure that the user’s certificate has
not been revoked by the CA.

The encryption and authentication requirements state what encryption and
authentication requirements are needed for what data. For example, will sensitive
data such as customer credit card numbers be stored in the database in encrypted
form, or will encryption be used to take orders over the Internet from the company’s
Web site? Will users be required to use a digital certificate in addition to a standard
password?

Virus Control Requirements The single most common security problem comes
from viruses. Recent studies have shown that over 50% of organizations suffer a
virus infection each year. Viruses cause unwanted events—some harmless (such as
nuisance messages), some serious (such as the destruction of data). Any time a sys-
tem permits data to be imported or uploaded from a user’s computer, there is the
potential for a virus infection. Many systems require that all information systems
permitting the import or upload of user files check those files for viruses before
they are stored in the system.

Cultural and Political Requirements

Cultural and political requirements are specific to the countries in which the system
will be used. In today’s global business environment, organizations are expanding
their systems to reach users around the world. Although this can make great business
sense, its impact on application development should not be underestimated. Yet
another important part of the design of the system’s architecture is understanding the
global cultural and political requirements for the system; see Figure 8-9.

Multilingual Requirements The first and most obvious difference between applica-
tions used in one region and those designed for global use is language. Global
applications often have multilingual requirements, which means that they have to

6 For more on the PKI, http://csrc.nist.gov/groups/ST/crypto_apps_infra/pki/index.html.

c08ArchitectureDesign.qxd 10/3/11 8:35 AM Page 299

Multilingual Requirements The language in which the system will need • The system will operate in English, French, and
to operate Spanish.

Customization Specification of what aspects of the system • Country managers will be able to define new
Requirements can be changed by local users fields in the product database in order to capture

country-specific information.

• Country managers will be able to change the for-
mat of the telephone-number field in the customer
database.

Making Unstated Norms Explicitly stating assumptions that differ from • All date fields will be explicitly identified as using
Explicit country to country the month-day-year format.

• All weight fields will be explicitly identified as
being stated in kilograms.

Legal Requirements The laws and regulations that impose • Personal information about customers cannot be
requirements on the system transferred out of European Union countries into

the United States.

• It is against U.S. federal law to divulge informa-
tion on who rented what videotape, so access to
a customer’s rental history is permitted only to
regional managers.

Type of Requirement Definition Examples

FIGURE 8-9
Cultural and Political Requirements

support users who speak different languages and write with non-English letters
(e.g., those with accents, Cyrillic, Japanese). Even systems used exclusively in the
United States, for example, may be used in regions with high populations of
non–English-speaking immigrants. One of the most challenging aspects in designing
multilingual systems is getting a good translation of the original-language messages
into a new language. Words often have similar meanings, but can convey subtly
different ideas when they are translated, so it is important to use translators skilled in
translating technical words.

The other challenge often is screen space. In general, English-language
content usually takes 20%–30% fewer letters than the French or Spanish counter-
part. Designing global systems requires allocating more screen space to content
than might be used in the English-language version.

Some systems are designed to handle multiple languages on the fly so that
users in different countries can use different languages concurrently; that is, the
same system supports several different languages simultaneously (a concurrent
multilingual system). Other systems contain separate parts that are written in each
language and must be reinstalled before a specific language can be used; that is,
each language is provided by a different version of the system so that any one
installation will use only one language (i.e., a discrete multilingual system). Either
approach can be effective, but this functionality must be designed into the system
well in advance of implementation.

Customization Requirements For global applications, the project team will need to
give some thought to customization requirements: How much of the application
will be controlled by a central group and how much of the application will be man-
aged locally? For example, some companies allow subsidiaries in some countries to

300 Chapter 8 Architecture Design

c08ArchitectureDesign.qxd 10/3/11 8:35 AM Page 300

Creating an Architecture Design 301

I’ve had the opportunity to develop
two multilingual systems. The first was a special-purpose
decision support system to help schedule orders in paper
mills called BCW-Trim. The system was installed by sev-
eral dozen paper mills in Canada and the United States,
and it was designed to work in either English or French.
All messages were stored in separate files (one set Eng-
lish, one set French), with the program written to use vari-
ables initialized either to the English or French text. The
appropriate language files were included when the sys-
tem was compiled to produce either the French or English
version.

The second program was a groupware system
called GroupSystems, for which I designed several mod-
ules. The system has been translated into dozens of dif-
ferent languages, including French, Spanish, Portuguese,

German, Finnish, and Croatian. This system enables the
user to switch between languages at will by storing mes-
sages in simple text files. This design is far more flexible
because each individual installation can revise the mes-
sages at will. Without this approach, it is unlikely that
there would have been sufficient demand to warrant the
development of versions to support less commonly used
languages (e.g., Croatian). Alan Dennis

QUESTIONS:
1. How would you decide how much to support users

who speak languages other than English?
2. Would you create multilingual capabilities for any

application that would be available to non-English
speaking people? Think about Web sites that exist
today.

8-E DEVELOPING MULTILINGUAL SYSTEMS

IN ACTION

CONCEPTS

customize the application by omitting or adding certain features. This decision has
trade-offs between flexibility and control because customization often makes it
more difficult for the project team to create and maintain the application. It also
means that training can differ between different parts of the organization, and cus-
tomization can create problems when staff move from one location to another.

Unstated Norms Many countries have unstated norms that are not shared interna-
tionally. It is important for the application designer to make these assumptions
explicit, because they can lead to confusion otherwise. In the United States, the
unstated norm for entering a date is the date format MM/DD/YY; however, in
Canada and most European countries, the unstated norm is DD/MM/YY. When you
are designing global systems, it is critical to recognize these unstated norms and
make them explicit so that users in different countries do not become confused.
Currency is the other item sometimes overlooked in system design; global applica-
tion systems must specify the currency in which information is being entered and
reported.

Legal Requirements Legal requirements are imposed by laws and government reg-
ulations. System developers sometimes forget to think about legal regulations, but
unfortunately, ignorance of the law is no defense. For example, in 1997, a French
court convicted the Georgia Institute of Technology of violating French language
law. Georgia Tech operated a small campus in France that offered summer programs
for American students. The information on the campus Web server was primarily in
English because classes are conducted in English, which violated the law requiring
French to be the predominant language on all Internet servers in France. By for-
mally considering legal regulations, analysts can ensure that they are less likely to
be overlooked.

c08ArchitectureDesign.qxd 10/3/11 8:35 AM Page 301

302 Chapter 8 Architecture Design

FIGURE 8-10
Nonfunctional Requirements and Their
Implications for Architecture Design

Requirements

Operational Requirements

System Integration Requirements

Portability Requirements

Maintainability Requirements

Speed Requirements

Capacity Requirements

Availability/Reliability Requirements

High System Value

Access Control Requirements

Encryption/Authentication Requirements

Virus Control Requirements

Multilingual Requirements

Customization Requirements

Making Unstated Norms Explicit

Legal Requirements

Performance Requirements

Security Requirements

Cultural/Political Requirements

Server-

Based

Client-

Based

Thin

Client-

Server

Thick

Client-

Server

Designing the Architecture

In many cases, the technical environment requirements as driven by the business
requirements may simply define the application architecture. In this case, the choice
is simple: Business requirements dominate other considerations. For example, the
business requirements may specify that the system needs to work over the Web,
using the customer’s Web browser. In this case, the application architecture must be
thin client–server. Such business requirements most likely occur in systems
designed to support external customers. Internal systems may also impose business
requirements, but usually they are not as restrictive.

In the event that the technical environment requirements do not require the
choice of a specific architecture, then the other nonfunctional requirements become
important. Even in cases when the business requirements drive the architecture, it
is still important to work through and refine the remaining nonfunctional require-
ments, because they are important in later stages of the design and implementation
phases. Figure 8-10 summarizes the relationship between requirements and recom-
mended architectures.

c08ArchitectureDesign.qxd 10/3/11 8:35 AM Page 302

Creating an Architecture Design 303

Operational Requirements System integration requirements may lead to one archi-
tecture over another, depending upon the architecture and design of the system(s)
with which the system needs to integrate. For example, if the system must integrate
with a desktop system (e.g., Excel), then this may suggest a thin or thick
client–server architecture, while if it must integrate with a server-based system,
then a server-based architecture may be indicated. Systems that have extensive
portability requirements tend to be best suited for a thin client–server architecture
because it is simpler to write for Web-based standards (e.g., HTML, XML) that
extend the reach of the system to other platforms than to write and rewrite exten-
sive presentation logic for different platforms in the server-based, client-based, or
thick client–server architectures. Systems with extensive maintainability require-
ments may not be well suited to client-based or thick client–server architectures
because of the need to reinstall software on the desktops.

Performance Requirements Generally speaking, information systems that have
high performance requirements are best suited to client–server architectures.
Client–server architectures are more scalable, which means that they respond bet-
ter to changing capacity needs and thus enable the organization to better tune the
hardware to the speed requirements of the system. Client–server architectures that
have multiple servers in each tier should be more reliable and have greater avail-
ability, because if any one server crashes, requests are simply passed to other
servers and users may not even notice (although response time may be worse). In
practice, however, reliability and availability depend greatly on the hardware and
operating system, and Windows-based computers tend to have lower reliability and
availability than Linux or mainframe computers.

Security Requirements Generally speaking, server-based architectures tend to be
more secure because all software is in one location and because mainframe operat-
ing systems are more secure than microcomputer operating systems. For this rea-
son, high-value systems are more likely to be found on mainframe computers, even
if the mainframe is used as a server in a client–server architecture. In today’s Internet-
dominated world, authentication and encryption tools for Internet-based
client–server architectures are more advanced than those for mainframe-based
server-based architectures. Viruses are potential problems in all architectures
because they spread easily on desktop computers. The server-based zero client
computing model eliminates software on the client device, however, thereby pro-
viding an environment that is protected from malware.

Cultural and Political Requirements As the cultural and political requirements
become more important, the ability to separate the presentation logic from the
application logic and the data becomes important. Such separation makes it easier
to develop the presentation logic in different languages while keeping the applica-
tion logic and data the same. It also makes it easier to customize the presentation
logic for different users and to change it to better meet cultural norms. To the extent
that the presentation logic provides access to the application and data, it also makes
it easier to implement different versions that enable or disable different features
required by laws and regulations in different countries. This separation is the easiest
in thin client–server architectures, so systems with many cultural and political
requirements often use thin client–server architectures. As with system integration
requirements, the impact of legal requirements depends upon the specific nature of
the requirements, but in general, client-based systems tend to be less flexible.

c08ArchitectureDesign.qxd 10/3/11 8:35 AM Page 303

HARDWARE AND SOFTWARE SPECIFICATION

The design phase is also the time to begin selecting and acquiring the hardware
and software that will be needed for the future system. In many cases, the new sys-
tem will simply run on the existing equipment in the organization. Other times,
however, new hardware and software (usually, for servers) must be purchased. The
hardware and software specification is a document that describes what hardware
and software are needed to support the application. There are several steps
involved in creating the document. Figure 8-11 shows a sample hardware and soft-
ware specification.

First, you will need to define the software that will run on each component.
This usually starts with the operating system (e.g., Windows, Linux) and includes
any special purpose software on the client and servers (e.g., Oracle database). Here,
you should consider any additional costs such as technical training, maintenance,
extended warranties, and licensing agreements (e.g., a site license for a software
package). Again, the needs that you list are influenced by decisions that are made
in the other design phase activities.

Next, you must create a list of the hardware needed to support the future sys-
tem. In general, the list can include such things as database servers, network
servers, peripheral devices (e.g., printers, scanners), backup devices, storage com-
ponents, and any other hardware component needed to support an application. At
this time, you also should note the quantity of each item that will be needed.

Finally, you need to describe, in as much detail as possible, the minimum
requirements for each piece of hardware. Many organizations have standard lists of
approved hardware and software that must be used, so, in many cases, this step sim-
ply involves selecting items from the lists. Other times, however, the team is oper-
ating in new territory and is not constrained by the need to select from an approved
list. In these cases, the project team must convey such requirements as the amount
of processing capacity, the amount of storage space, and any special features that
should be included.

304 Chapter 8 Architecture Design

Operating System • Windows • Linux • Linux • Linux

• Mozilla

Special Software • Real Audio • Apache • Java • Oracle

• Adobe Acrobat Reader

Hardware • 250-GB disk drive • 500-GB disk drive • 160-GB disk drive • 1-TB disk drive

• Intel®-CoreTM i3-2100 • Dual-core Xeon • Quad-core Xeon • RAID
dual core processor

• 19-inch LCD Monitor • Quad core Xeon

Network • Always-on Broadband, • Dual 100 Mbps • Dual 100 Mbps Ethernet • Dual 100 Mbps Ethernet
preferred Ethernet

• Dial-up at 56 Kbps, possible
with some performance loss

Standard Standard Standard Standard
Client Web Server Application Server Database Server

FIGURE 8-11
Sample Hardware and Software Specification

c08ArchitectureDesign.qxd 10/3/11 8:35 AM Page 304

Hardware and Software Specification 305

This step will become easier for you with experience; however, there are some
hints that can help you describe hardware needs (see Figure 8-12). For example,
consider the hardware standards within the organization or those recommended by
vendors. Talk with experienced system developers or other companies with similar
systems. Finally, think about the factors that affect hardware performance, such as
the response-time expectations of the users, data volumes, software memory
requirements, the number of users accessing the system, the number of external
connections, and growth projections.

Think about the course registration
system in your university. First, develop a set of nonfunc-
tional requirements as if the system were to be developed
today. Consider the operational requirements, perform-

ance requirements, security requirements, and cultural
and political requirements. Then create an architecture
design to satisfy these requirements.

8-1 UNIVERSITY COURSE REGISTRATION SYSTEMY O U R

T U R N

Many multinational organizations pro-
vide global Web-based e-learning courses to their employ-
ees. First, develop a set of nonfunctional requirements for
such a system. Consider the operational requirements,

performance requirements, security requirements, and
cultural and political requirements. Then create an archi-
tecture design to satisfy these requirements.

8-2 GLOBAL E-LEARNING SYSTEMY O U R

T U R N

1. Functions and Features What specific functions and features are needed (e.g., size of moni-
tor, software features)?

2. Performance How fast do the hardware and software operate (e.g., processor, number of
database writes per second)?

3. Legacy Databases and Systems How well do the hardware and software interact with
legacy systems (e.g., can it write to this database)?

4. Hardware and OS Strategy What are the future migration plans (e.g., the goal is to have all
of one vendor’s equipment)?

5. Cost of Ownership What are the costs beyond purchase (e.g., incremental license costs,
annual maintenance, training costs, salary costs)?

6. Political Preferences People are creatures of habit and are resistant to change, so changes
should be minimized.

7. Vendor Performance Some vendors have reputations or future prospects that are different from
those of a specific hardware or software system that they currently sell.

FIGURE 8-12
Factors in Hardware and Software Selection

c08ArchitectureDesign.qxd 10/3/11 8:35 AM Page 305

After preparing the hardware and software specification, the project team
works with the purchasing department to acquire the hardware and software. The
project team prepares an RFP based on legal and organizational policies provided
by the purchasing department, which then issues the RFP. The project team then
selects the most desirable vendor for the hardware and software on the basis of the
proposals received, perhaps using a weighted alternative matrix. On a large pro-
ject, this evaluation may take months and involves extensive testing and bench-
marking of the projects offered by the vendors. The purchasing department is
actively involved in the vendor selection, again ensuring that organizational poli-
cies are followed. Finally, the purchasing department negotiates final terms with
the vendor, issues a contract, and accepts delivery of the items, subject to approval
of the project team.

APPLYING THE CONCEPTS AT TUNE SOURCE

Creating an Architecture Design

Jason Wells, senior systems analyst and project manager for Tune Source’s Digital
Music Download system, realized that the hardware, software, and networks that
would support the new application would need to be integrated into the current
infrastructure at Tune Source. He began using the high-level nonfunctional require-
ments developed in the analysis phase (see Figure 3-13 in Chapter 3) and conducted
a JAD session and a series of interviews with managers in the marketing depart-
ment and three store managers in order to refine the nonfunctional requirements
into more detail. Figure 8-13 shows some of the results. The clear business need for
a Web-based architecture required a thin client–server architecture.

Tune Source had a formal architecture group responsible for managing its
architecture and its hardware and software infrastructure. Therefore, Jason set up a
meeting with the project team and the architecture group. During the meeting, he
confirmed that Tune Source was still moving toward a target client–server architecture,

306 Chapter 8 Architecture Design

Develop a hardware and software specification for the university course registration system
described in “Your Turn 8-1.”

8-3 UNIVERSITY COURSE REGISTRATION SYSTEMY O U R

T U R N

Develop a hardware and software specification for the global e-learning system described in
“Your Turn 8-2.”

8-4 GLOBAL E-LEARNING SYSTEMY O U R

T U R N

c08ArchitectureDesign.qxd 10/3/11 8:35 AM Page 306

Applying the Concepts at Tune Source 307

1. Operational Requirements

Technical Environment 1.1 The system will work over the Web environment with Mozilla and Real Audio.

1.2 Customers will need only Mozilla and RA on their desktops.

System Integration 1.3 The Internet system will read information from the main music information database,
which contains basic information about tunes (e.g., title, artist, ID number, price). The
Internet system will not write information to the main music information database.

1.4 The Internet system will read and write to the main customer database.

Portability 1.5 The system will need to remain current with evolving Web standards, especially
those pertaining to music formats.

Maintainability 1.6 No special maintainability requirements are anticipated.

2. Performance Requirements

Speed 2.1 Response times must be less than 7 seconds.

2.2 Download speeds must be maintained above the industry norm.

2.3 Customers must be able to specify the type of Internet connection used for the
download.

Capacity 2.4 There will be a maximum of 100 simultaneous users at peak use times.

2.5 The system will support streaming audio to up to 50 simultaneous users.

Availability and Reliability 2.6 The system should be available 24/7.

2.7 The system shall have 99% uptime performance.

3. Security Requirements

System Value 3.1 No special system value requirements are anticipated.

Access Control 3.2 Customers can access their accounts with username and password.

Encryption/Authentication 3.3 Customer payment information must be transmitted securely.

Virus Control 3.4 Downloads must be verified as virus free.

4. Cultural and Political Requirements

Multilingual 4.1 No special multilingual requirements are anticipated.

Customization 4.2 No special customization requirements are anticipated.

Unstated Norms 4.3 No special unstated norms requirements are anticipated.

Legal 4.4 No special legal requirements are anticipated.

FIGURE 8-13
Selected Nonfunctional Requirements for Tune Source

although the central mainframe still existed as the primary server for many server-
based applications. At this time, the Tune Source architecture group had decided to
wait to consider cloud computing until that approach became more mature.

They discussed the Digital Music Download system and decided that it
should be built according to a three-tier thin client–server architecture. Everyone
believed that it was hard to know at this point exactly how much traffic this Web site
would get and how much power the system would require, but a client–server archi-
tecture would allow Tune Source to easily scale up the system as needed. Customers
would use their personal computers running a Web browser as the client. A data-
base server would store the system’s databases, whereas an application server
would have Web server software and the application software to run the system.

A second two-tier client–server system would enable staff in the marketing
department to develop promotional campaign material. This system would have an
application for the microcomputers of the staff working in the Internet sales group

c08ArchitectureDesign.qxd 10/3/11 8:35 AM Page 307

that would communicate directly with the database server. The database server
would have a separate program to enable it to exchange data with Tune Source’s
Web server and e-mail server.

Given that the Web interface could reach a geographically dispersed group,
the project team realized that it needed to plan for 24/7 system support. Jason met
with the Tune Source systems operations group and discussed how they might be
able to support the system outside of standard working hours.

Hardware and Software Specification

The architecture group and the Internet project team decided that the only compo-
nents that needed to be acquired for the project were a database server, a Web
server, and five new client computers for the marketing group who will create the
promotional campaigns. They developed a hardware and software specification for
these components, prepared an RFP, and worked with the purchasing department to
acquire the hardware and software.

SUMMARY

Application Architectures
All software systems can be divided into four basic functions: data storage, data
access logic (e.g., SQL), application logic (which is the logic that is documented in
the DFDs, use cases, and functional requirements), and the presentation logic (the
user interface). There are three fundamental computing architectures that place
these functions on different computers. In server-based architectures, the server
performs all the functions. In client-based architectures, the client computers are
responsible for presentation logic, application logic, and data access logic, with
data stored on a file server. In client–server architectures, the client is responsible
for the presentation logic and the server is responsible for the data access logic and
data storage. In thin client–server architectures, the server performs the application
logic, while in thick client–server architectures, the application logic is shared
between the servers and clients. In a two-tiered client–server architecture, there are
two groups of computers: one client and a set of servers. In a three-tiered
client–server architecture, there are three groups of computers: a client, a set of
application servers, and a set of database servers.

Virtualization and cloud computing are two technological advances that are
reshaping the array of architectural options.

Architecture Design
Creating architecture designs begins with the nonfunctional requirements. Opera-
tional requirements specify the operating environment(s) in which the system must
perform and how those may change over time (i.e., technical environment, system
integration, portability, and maintainability). Performance requirements focus on
performance issues such as system speed, capacity, and availability and reliability.
Security requirements attempt to protect the information system from disruption
and data loss (e.g., system value, access control, encryption and authentication, and
virus control). Cultural and political requirements are those that are specific to the
countries in which the system will be used (e.g., multilingual, customization,
unstated norms, and legal).

308 Chapter 8 Architecture Design

c08ArchitectureDesign.qxd 10/3/11 8:35 AM Page 308

Questions 309

Hardware and Software Specification
The hardware and software specification is a document that describes what hard-
ware and software are needed to support the application. When a specification doc-
ument is created, the hardware needed to support the future system is listed and
then described in as much detail as possible. Next, the software to run on each hard-
ware component is written down, along with any additional associated costs, such
as technical training, maintenance, extended warranties, and licensing agreements.
The project team will work in conjunction with the purchasing department to
acquire the hardware and software.

24/7
Access control requirements
Application logic
Application program interface

(API)
Architectural component
Architecture design
Asymmetric encryption algorithm
Authentication
Availability and reliability

requirements
Capacity requirements
Certificate authority (CA)
Client-based architecture
Client computer
Client–server architecture
Cloud computing
Concurrent multilingual system
Cultural and political requirements
Customization requirements
Data access logic
Data storage
Discrete multilingual system
Elasticity
Encryption

Encryption and authentication
requirements

Fat client
Functions
Graphical user interface (GUI)
Hardware and software

specification
Invertible
Legal requirements
Mainframe
Maintainability requirements
Microcomputer
Middleware
Minicomputer
Mission critical system
Multilingual requirements
Network
n-tiered architecture
Operational requirements
Performance requirements
Portability requirements
Presentation logic
Private key
Public key
Public key encryption

Response time
Scalable
Security requirements
Server
Server-based architecture
Server virtualization
Speed requirements
Storage area network (SAN)
Storage virtualization
Symmetric encryption algorithm
System integration requirements
System value
Technical environment

requirements
Terminal
Thick client
Thin client
Three-tiered architecture
Two-tiered architecture
Ultra thin client
Unstated norms
Virtualization
Virus
Virus control requirements
Zero client

KEY TERMS

1. List and describe the four primary functional com-
ponents of a software application.

2. List and describe the three primary hardware com-
ponents of a system.

3. Explain the client–server architecture.
4. Explain the server-based architecture.
5. Explain the client-based architecture.

6. Distinguish between the two-tier, three-tier, and
n-tier client–server architectures.

7. Compare and contrast the server-based, client-
based, and client–server architectures.

8. What is meant by the term scalable? What is its
importance in architecture selection?

9. Explain the term Virtualization.

QUESTIONS

c08ArchitectureDesign.qxd 10/3/11 8:35 AM Page 309

310 Chapter 8 Architecture Design

10. Describe cloud computing and how it is impacting
architecture choices.

11. Describe the types of operational requirements and
how they may influence architecture design.

12. Describe the types of performance requirements
and how they may influence architecture design.

13. Describe the types of security requirements and
how they may influence architecture design.

14. What is meant by system value? Explain how various
systems can have a different value to the organization.

15. Explain the difference between a symmetric encryp-
tion algorithm and an asymmetric encryption
algorithm.

16. What is meant by authentication? What is its role in
securing transactions?

17. Describe the usefulness of the Internet’s public key
infrastructure (PKI).

18. Describe the types of cultural and political require-
ments and how they may influence architecture design.

19. Explain the difference between concurrent multilin-
gual systems and discrete multilingual systems.

20. Why is it useful to define the nonfunctional require-
ments in more detail even if the technical environ-
ment requirements dictate a specific architecture?

21. What is the purpose of the hardware and software
specification?

22. What do you think are three common mistakes that
novice analysts make in developing the architecture
design and hardware/software specification?

23. Are some nonfunctional requirements more impor-
tant than others in influencing the architecture
design and hardware/software specification?

24. What do you think are the most important security
issues for a system?

A. Using the Web (or past issues of computer industry
magazines, such as Computerworld), locate a sys-
tem that runs in a server-based environment. On the
basis of your reading, why do you think the com-
pany chose that computing environment?

B. Using the Web (or past issues of computer industry
magazines, such as Computerworld), locate a sys-
tem that runs in a client–server environment. On the
basis of your reading, why do you think the com-
pany chose that computing environment?

C. Using the Web, investigate the term, virtual desktop
infrastructure (VDI). Write a short memo explaining
the concept to your boss.

D. You have been selected to find the best client–server
computing architecture for a Web-based order entry
system that is being developed for L.L. Bean. Write
a short memo that describes to the project manager
your reason for selecting an n-tiered architecture
over a two-tiered architecture. In the memo, give
some idea of the different components of the archi-
tecture that you would include.

E. Think about the system that your university cur-
rently uses for career services and pretend that you
are in charge of replacing the system with a new
one. Describe how you would decide on the com-
puting architecture for the new system, using the

criteria presented in this chapter. What information
will you need to find out before you can make an
educated comparison of the alternatives?

F. Locate a consumer products company on the Web
and read its company description (so that you get a
good understanding of the geographic locations of
the company). Pretend that the company is about to
create a new application to support retail sales over
the Web. Create an architecture design that depicts
the locations that would include components that
support this application.

G. Pretend that your mother is a real estate agent and
that she has decided to automate her daily tasks by
using a laptop computer. Consider her potential
hardware and software needs and create a hard-
ware and software specification that describes
them. The specification should be developed to
help your mother buy her hardware and software
on her own.

H. Pretend that the admissions office in your university
has a Web-based application so that students can
apply for admission online. Recently, there has been
a push to admit more international students into the
university. What do you recommend that the appli-
cation include to ensure that it supports this global
requirement?

EXERCISES

c08ArchitectureDesign.qxd 10/3/11 8:35 AM Page 310

Minicases 311

1. The system development project team at Birdie Masters
golf schools has been working on defining the archi-
tecture design for a new system. The major focus of the
project is a networked school location operations sys-
tem allowing each school location to easily record and
retrieve all school location transaction data. Another
system element is the use of the Internet to enable cur-
rent and prospective students to view class offerings at
any of the Birdie Masters’ locations, schedule lessons
and enroll in classes at any Birdie Masters’ location,
and maintain a student progress profile—a confidential
analysis of the student’s golf skill development.

The project team has been considering the globaliza-
tion issues that should be factored into the architecture
design. The school’s plan for expansion into the golf-
crazed Japanese market is moving ahead. The first Japan-
ese school location is tentatively planned to open about
six months after the target completion date for the system
project. Therefore, it is important that issues related to the
international location be addressed now during design.

Prepare a set of nonfunctional requirements, including
operational requirements, performance requirements,
security requirements, and cultural and political require-
ments. Much information is incomplete, but do your best.

2. Jerry is the project manager for a team developing a
retail store management system for a chain of sporting
goods stores. Company headquarters is in Las Vegas,
and the chain has 27 locations throughout Nevada,

Utah, and Arizona. Several cities have multiple stores.
Stores will be linked to one of three regional servers,
and the regional servers will be linked to corporate
headquarters in Las Vegas. The regional servers also
link to each other. Each retail store will be outfitted with
similar configurations of two PC-based point-of-sale
terminals networked to a local file server. Jerry has
been given the task of developing the architecture
design and hardware and software specification for a
network model that will document the geographic
structure of this system. He has not faced a system of
this scope before and is a little unsure of how to begin.
What advice would you give?

3. Java Masters is an employment exchange agency that
has offices in Northern California. Java Masters oper-
ates as a broker that links its client companies with
independent software experts (commonly called con-
tractors) with advanced Java and Web-development
skills for short-term contracts. They are developing a
Web-based system that will enable client companies to
list job needs and search the database of independent
contractors. The independent contractors also can post
résumés and availabilities, and search the database of
available jobs. Both contractors and companies pay fees
to join the service. Some contractors and companies
prefer to remain anonymous until they meet face-to-
face. Develop the nonfunctional requirements and
architecture design for the system.

MINICASES

c08ArchitectureDesign.qxd 10/3/11 8:35 AM Page 311

D E S I G N

T A S K C H E C K L I S T

P L A N N I N G A N A L Y S I S D E S I G N

▼

Select Design Strategy

Design Architecture

Select Hardware and Software

Develop Use Scenarios

Design Interface Structure

Develop Interface Standards

Design Interface Prototype

Evaluate User Interface

Design User Interface

Develop Physical Data Flow Diagrams

Develop Program Structure Charts

Develop Program Specifications

Select Data Storage Format

Develop Physical Entity Relationship Diagram

Denormalize Entity Relationship Diagram

Performance Tune Data Storage

Size Data Storage

A N A L Y S I S

P L A N N I N G

✔

✔

✔

c09UserInterfaceDesign.qxd 12/5/11 2:30 PM Page 312

I M P L E M E N TAT I O N

user interface is the part of the system with which the users interact. It includes the
screen displays that provide navigation through the system, the screens and forms

that capture data, and the reports that the system produces (whether on paper, on the
Web, or via some other media). This chapter introduces the basic principles and processes
of interface design and discusses how to design the interface structure and standards.

OBJECTIVES

■ Describe several fundamental user interface design principles.
■ Explain the process of user interface design.
■ Discuss how to design the user interface structure.
■ Explain how to design the user interface standards.
■ Be able to design a user interface.

CHAPTER OUTLINE

C H A P T E R 9

A

USER INTERFACE
DESIGN

Introduction
Principles for User Interface Design

Layout
Content Awareness
Aesthetics
User Experience
Consistency
Minimize User Effort

User Interface Design Process
Use Scenario Development
Interface Structure Design
Interface Standards Design
Interface Design Prototyping
Interface Evaluation

Navigation Design
Basic Principles
Types of Navigation Controls
Messages

Input Design
Basic Principles
Types of Inputs
Input Validation

Output Design
Basic Principles
Types of Outputs
Media

Applying the Concepts at Tune Source
Use Scenario Development
Interface Structure Design
Interface Standards Design
Interface Template Design
Design Prototyping
Interface Evaluation

Summary

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 313

INTRODUCTION

Interface design is the process of defining how the system will interact with external
entities (e.g., customers, suppliers, other systems). In this chapter, we focus on the
design of user interfaces, but it is also important to remember that sometimes there
are system interfaces that exchange information with other systems. System inter-
faces are typically designed as part of a systems integration effort. They are defined
in general terms as part of the physical data flow diagrams (DFDs) and in the non-
functional requirements (operational requirements), and are designed in detail dur-
ing program design (see Chapter 10) and data storage design (see Chapter 11).

The user interface design defines the way in which the users will interact with
the system and the nature of the inputs and outputs that the system accepts and pro-
duces. The user interface includes three fundamental parts. The first is the naviga-
tion mechanism, the way in which the user gives instructions to the system and tells
it what to do (e.g., buttons, menus). The second is the input mechanism, the way in
which the system captures information (e.g., forms for adding new customers). The
third is the output mechanism, the way in which the system provides information to
the user or to other systems (e.g., reports, Web pages). Each of these is conceptually
different, but all are closely intertwined: All computer displays contain navigation
mechanisms, and most contain input and output mechanisms. Therefore, navigation
design, input design, and output design are tightly coupled.

The study of human-computer interaction (HCI) focuses on improving the
interactions between users and computers by making computers more usable and
receptive to the user’s needs. Some organizations employ professional HCI design-
ers, who specialize in applying design processes to the creation of graphical user
interfaces and Web interfaces.

This chapter first introduces several fundamental user interface design princi-
ples. Second, it provides an overview of the user interface design process. It then
provides an overview of the navigation, input, and output components that are used
in interface design. This chapter focuses on the design of Web-based interfaces and
graphical user interfaces (GUI) that use windows, menus, icons, and a mouse (e.g.,
Windows, Macintosh).1 Although text-based interfaces are still commonly used on
mainframes and UNIX systems, GUIs are probably the most common type of inter-
faces that you will use, with the possible exception of printed reports.2

PRINCIPLES FOR USER INTERFACE DESIGN

In many ways, user interface design is an art. The goal is to make the interface
pleasing to the eye and simple to use, while minimizing the effort users expend to
accomplish their work. The system is never an end in itself; it is merely a means to
accomplish the business of the organization.

314 Chapter 9 User Interface Design

1 Many people attribute the origin of GUI interfaces to Apple or Microsoft. Some people know that Microsoft
copied from Apple, which in turn “borrowed” the whole idea from a system developed at the Xerox Palo Alto
Research Center (PARC) in the 1970s. Very few know that the Xerox system was based on one developed by
Doug Englebart that was first demonstrated at the Western Computer Conference in 1968. Around the same
time, Doug also invented the mouse, desktop videoconferencing, groupware, and a host of other things we
now take for granted. Doug is a legend in the computer science community and has won too many awards to
count, but is relatively unknown by the general public.
2 A good book on GUI design is Susan Fowler, GUI Design Handbook, New York: McGraw-Hill, 1998.

c09UserInterfaceDesign.qxd 11/3/11 12:05 PM Page 314

We have found that the greatest problem facing experienced designers is
using space effectively. Simply put, there is more information to present than room
to present it. Analysts must balance the need for simplicity and pleasant appearance
against the need to present the information across multiple pages or screens, which
decreases simplicity. In this section, we discuss some fundamental interface design
principles, which are common for navigation design, input design, and output
design3 (Figure 9-1).

Layout

The first principle of user interface design deals with the layout of the screen, form,
or report. Layout refers to organizing areas of the screen or document for different
purposes and using those areas consistently throughout the user interface. Most
software designed for personal computers follows the standard Windows or Macin-
tosh approach for screen layout. This approach divides the screen into three main
areas: The top area provides the user with ways to navigate through the system; the
middle (and largest) area is for display of the user’s work; and the bottom area con-
tains status information about what the user is doing.

In many cases (particularly on the Web), multiple layout areas are used.
Figure 9-2 shows a screen with five navigation areas, each of which is organized to
provide different functions and navigation within different parts of the system.

Principles for User Interface Design 315

3 Good books on the design of interfaces include Susan Weinschenk, Pamela Jamar, and Sarah Yeo, GUI
Design Essentials, New York: John Wiley & Sons, 1997; Jenifer Tidwell, Designing Interfaces, O’Reilly
Media, 2005; Alan Cooper, Robert Reimann, and David Cronin, About Face 3.0: The Essentials of Interac-
tion Design, New York: Wiley, 2007.

Layout The interface should be a series of areas on the screen that are used
consistently for different purposes—for example, a top area for commands
and navigation, a middle area for information to be input or output, and a
bottom area for status information.

Content awareness Users should always be aware of where they are in the system and what
information is being displayed.

Aesthetics Interfaces should be functional and inviting to users through careful use of
white space, colors, and fonts. There is often a trade-off between including
enough white space to make the interface look pleasing and losing so
much space that important information does not fit on the screen.

User experience Although ease of use and ease of learning often lead to similar design
decisions, there is sometimes a trade-off between the two. Novice users or
infrequent users of software will prefer ease of learning, whereas frequent
users will prefer ease of use.

Consistency Consistency in interface design enables users to predict what will happen
before they perform a function. It is one of the most important elements in
ease of learning, ease of use, and aesthetics.

Minimize user effort The interface should be simple to use. Most designers plan on having no
more than three mouse clicks from the starting menu until users perform work.

Principle Description

FIGURE 9-1
Principles of User Interface Design

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 315

316 Chapter 9 User Interface Design

System
Navigation

Site
Navigation

Page
Navigation

Status bar

FIGURE 9-2
Web Page Layout with Multiple Navigation Areas

The top area provides the standard web browser navigation and command controls
that change the contents of the entire system. The navigation area on the left edge
maneuvers between sections and changes all content to its right. The other two sec-
tion navigation areas at the top and bottom of the page provide other ways to navi-
gate between sections. The content in the middle of the page displays the results
(i.e., software review articles) and provides additional navigation within the page
about these reviews.

This use of multiple layout areas for navigation also applies to inputs and out-
puts. Data areas on reports and forms are often subdivided into subareas, each of
which is used for different types of information. These areas are almost always rec-
tangular in shape, although sometimes space constraints will require odd shapes.
Nonetheless, the margins on the edges of the screen should be consistent. Each of

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 316

the areas within the report or form is designed to hold different information. For
example, on an order form (or order report), one part may be used for customer
information (e.g., name, address), one part for information about the order in gen-
eral (e.g., date, payment information), and one part for the order details (e.g., how
many units of which items at what price each). Each area is self-contained so that
information in one area does not run into another.

The areas and information within areas should have a natural intuitive flow to
minimize users’ movement from one area to the next. People in Western nations
(e.g., Europe, North America) tend to read top to bottom, left to right, so that related
information should be placed so that it is used in this order (e.g., address lines,
followed by city, state/province, and then ZIP code/postal code.) Sometimes, the
sequence is in chronological order, or from the general to the specific, or from most
frequently to least frequently used. In any event, before the areas are placed on a
form or report, the analyst should have a clear understanding of what arrangement
makes the most sense for how the form or report will be used. The flow between
sections should also be consistent, whether horizontal or vertical (Figure 9-3).
Ideally, the areas will remain consistent in size, shape, and placement for the forms
used to enter information (whether on paper or on a screen) and the reports used to
present it.

Content Awareness

Content awareness refers to the ability of an interface to make the user aware of the
information it contains with the least amount of effort by the user. All parts of the
interface, whether navigation, input, or output, should provide as much content
awareness as possible, but it is particularly important for forms or reports that are
used quickly or irregularly (e.g., a Web site).

Content awareness applies to the interface in general. All interfaces should
have titles (on the screen frame, for example). Menus should show where the user is
and, if possible, where the user came from to get there. For example, in Figure 9-2, the
top line in the center site navigation bar shows that the user is in the Small Business
Computing Channel section of the winplanet.com site.

Content awareness also applies to the area within forms and reports. All areas
should be clear and well defined (with titles if space permits) to reduce the chances
that users become confused about the information in any area. Then users can
quickly locate the part of the form or report that is likely to contain the information
they need. Sometimes the areas are marked by lines, colors, or headings (e.g., the
site navigation links on the left side in Figure 9-2); in other cases, the areas are only
implied (e.g., the page links in the center of Figure 9-2).

Content awareness also applies to the fields within each area. Fields are the
individual elements of data that are input or output. The field labels that identify the
fields on the interface should be short and specific—objectives that often conflict.
There should be no uncertainty about the format of information within fields,
whether for entry or display. For example, a date of 10/5/12 means different things,
depending on whether you are in the United States (October 5, 2012) or in Canada
(May 10, 2012). Any fields for which there is the possibility of uncertainty or mul-
tiple interpretations should provide explicit explanations.

Content awareness also applies to the information that a form or report con-
tains. In general, all forms and reports should contain a preparation date (i.e., the
date printed or the date data were completed) so that the age of the information is

Principles for User Interface Design 317

c09UserInterfaceDesign.qxd 11/3/11 12:05 PM Page 317

318 Chapter 9 User Interface Design

(b) Vertical Flow

(a) Horizontal Flow

FIGURE 9-3
Interface Flow between Sections

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 318

obvious. Likewise, all printed forms and software should provide version numbers
so that users, analysts, and programmers can identify outdated materials.

Figure 9-4, a form from the University of Georgia, illustrates the logical group-
ing of fields into areas with an explicit box (top left), as well as an implied area with
no box (lower left). The address fields within the address area follow a clear, natural
order. Field labels are short where possible (see the top left), but long where more
information is needed to prevent misinterpretation (see the bottom left).

Aesthetics

Aesthetics refers to designing interfaces that are pleasing to the eye. Interfaces do
not have to be works of art, but they do need to be functional and inviting to use. In
most cases, “less is more,” meaning that a simple, minimalist design is the best.

Space usually is at a premium on forms and reports, and often there is the
temptation to squeeze as much information as possible onto a page or a screen.
Unfortunately, this can make a form or report so unpleasant that users do not want
to complete it. In general, all forms and reports need at least a minimum amount of
white space that is intentionally left blank.

What was your first reaction when you looked at Figure 9-4? This is the most
unpleasant form at the University of Georgia, according to staff members. Its den-
sity is too high; it has too much information packed into too small a space with too
little white space. Although it may be efficient in saving paper by being one page
instead of two, it is not effective for many users.

In general, novice or infrequent users of an interface, whether on a screen or
on paper, prefer interfaces with low density, often one with a density of less than
50% (i.e., less than 50% of the interface occupied by information). More experi-
enced users prefer higher densities, sometimes approaching 90% occupied, because
they know where information is located and high densities reduce the amount of
physical movement through the interface. We suspect that the form in Figure 9-4
was designed for the experienced staff in the personnel office, who use it daily,
rather than for the clerical staff in academic departments, who have less personnel
experience and use the form only a few times a year.

The design of text is equally important. In general, there should be one font
for the entire form or report and no more than two sizes of that font on the form
or report. A larger font size may be used for titles, section headings, etc., and a
smaller font for the report or form content. If the form or report will be printed,
the smaller font should be at least 8 points in size. A minimum of 10 points is pre-
ferred if the users will be older people. For forms or reports displayed on the
screen, consider a minimum of a 12-point font size if the display monitor is set for
a high screen resolution. Italics and underlining should be avoided because they
make text harder to read.

Serif fonts (i.e., those having letters with serifs, or “tails,” such as Times
Roman or the font you are reading right now) are the most readable for printed
reports, particularly for small letters. Sans serif fonts (i.e., those without serifs, such
as Tahoma or Arial or the ones used for the chapter titles in this book) are the most
readable for computer screens and are often used for headings in printed reports.
Never use all capital letters, except possibly for titles—all-capitals text “shouts”
and is harder to read.

Color and patterns should be used carefully and sparingly and only when they
serve a purpose. (About 10% of men are color blind, so the improper use of color

Principles for User Interface Design 319

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 319

FI
G

UR
E

9-
4

Fo
rm

 Ex
am

ple

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 320

can impair their ability to read information.) A quick trip around the Web will
demonstrate the problems caused by indiscriminate use of colors and patterns.
Remember, the goal is pleasant readability, not art; colors and patterns should be
used to strengthen the message, not overwhelm it. Color is best used to separate and
categorize items, such as showing the difference between headings and regular text,
or to highlight important information. Therefore, colors with high contrast should
be used (e.g., black and white). In general, black text on a white background is the
most readable, with blue on red the least readable. (Most experts agree that back-
ground patterns on Web pages should be avoided.) Color has been shown to affect
emotion, with red provoking intense emotion (e.g., anger) and blue provoking low-
ered emotions (e.g., drowsiness).

User Experience

User experience refers to designing the user interface with the users’ level of
computer experience in mind. A computer system will be used by people with
experience and by people with no experience; the user interface should be
designed for both types. Novice users usually are most concerned with ease of
learning—how quickly and easily they can learn to use the system. Expert users
are typically more concerned with ease of use—how quickly and easily they can
complete a task with the system once they have learned how to use it. Often, these
two objectives are complementary and lead to similar design decisions, but some-
times, there are trade-offs. Novices, for example, often prefer menus that show all
available system functions, because these promote ease of learning. Experts, on
the other hand, sometimes prefer fewer menus that are organized around the most
commonly used functions.

Systems that will end up being used by many people on a daily basis are more
likely to have a majority of expert users (e.g., order entry systems). Although inter-
faces should try to balance ease of use and ease of learning, these types of systems
should put more emphasis on ease of use rather than on ease of learning. Users
should be able to access the commonly employed functions quickly, with few key-
strokes or a small number of menu selections.

In many other systems (e.g., decision support systems), most people will
remain occasional users for the lifetime of the system. In this case, greater empha-
sis may be placed on ease of learning rather than on ease of use.

Although ease of use and ease of learning often go hand in hand, sometimes
they don’t. Research shows that expert and novice users have different require-
ments and behavior patterns in some cases. For example, novices virtually never
look at the bottom area of a screen that presents status information, but experts
refer to the status bar when they need information. Most systems should be
designed to support frequent users, except for systems that are to be used infre-
quently or those for which many new users or occasional users are expected (e.g.,
the Web). Likewise, systems that contain functionality that is used only occasion-
ally must contain a highly intuitive interface, or an interface that contains explicit
guidance regarding its use.

The balance between quick access to commonly used and well-known func-
tions and guidance through new and less-well-known functions is challenging to the
interface designer, and this balance often requires elegant solutions. Microsoft
Office, for example, addresses this issue through the use of the “show me” func-
tions that demonstrate the menus and buttons for specific functions. These features

Principles for User Interface Design 321

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 321

9-1 WEB PAGE CRITIQUE

322 Chapter 9 User Interface Design

Visit the Web home page for your university and navigate through several of its Web pages. Eval-
uate the extent to which they meet the six design principles.

Y O U R

T U R N

4 John Satzinger and Lorne Olfman, “User Interface Consistency Across End-User Application: The Effects
of Mental Models,” Journal of Management Information Systems, Spring 1998, 14(4): 167–193.

remain in the background until they are needed by novice users (or even experi-
enced users when they use an unfamiliar part of the system).

Consistency

Consistency in design is probably the single most important factor in making a sys-
tem simple to use, because it enables users to predict what will happen. When inter-
faces are consistent, users can interact with one part of the system and then know
how to interact with the rest—aside, of course, from elements unique to those parts.
Consistency usually refers to the interface within one computer system, so that all
parts of the same system work in the same way. Ideally, however, the system also
should be consistent with other computer systems in the organization and with
whatever commercial software is used (e.g., Windows). For example, many users
are familiar with the Web, so the use of Web-like interfaces can reduce the amount
of learning required by the user. In this way, the user can reuse Web knowledge,
thus significantly reducing the learning curve for a new system.

Consistency occurs at many different levels. Consistency in the navigation
controls conveys how actions in the system should be performed. For example,
using the same icon or command to change an item clearly communicates how
changes are made throughout the system. Consistency in terminology is also
important. This refers to using the same words for elements on forms and reports
(e.g., not “customer” in one place and “client” in another). We also believe that
consistency in report and form design is important, although one study suggests
that being too consistent can cause problems.4 When reports and forms are very
similar except for minor changes in titles, users sometimes mistakenly use the
wrong report or form and either enter incorrect data or misinterpret its informa-
tion. The implication for design is to make the reports and forms similar, but give
them some distinctive elements (e.g., color, size of titles) that enable users to
immediately detect differences.

Minimize User Effort

Finally, interfaces should be designed to minimize the amount of effort needed to
accomplish tasks. This means using the fewest possible mouse clicks or keystrokes
to move from one part of the system to another. Most interface designers follow the
three-clicks rule: Users should be able to go from the start or main menu of a sys-
tem to the information or action they want in no more than three mouse clicks or
three keystrokes.

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 322

User Interface Design Process 323

5 One of the best books on user interface design is Ben Schneiderman, Designing the User Interface: Strate-
gies for Effective Human-Computer Interaction, 3d ed., Reading, MA: Addison-Wesley, 1998.

FIGURE 9-5
User Interface Design Process

Interface
standards

design

Interface
design

prototyping

Interface
evaluation

Interface
structure
design

Use scenario
development

USER INTERFACE DESIGN PROCESS

User interface design5 is a five-step process that is iterative—analysts often move
back and forth between steps rather than proceed sequentially from step 1 to step
5 (Figure 9-5). First, the analysts examine the DFDs and use cases developed in
the analysis phase (see Chapters 4 and 5) and interview users to develop use sce-
narios that describe users’ commonly employed patterns of actions so that the
interface can enable users to quickly and smoothly perform these scenarios. Sec-
ond, the analysts develop the interface structure diagram (ISD) that defines the
basic structure of the interface. This diagram (or set of diagrams) shows all the
interfaces (e.g., screens, forms, and reports) in the system and how they are con-
nected. Third, the analysts design interface standards, which are the basic design
elements on which interfaces in the system are based. Fourth, the analysts create
an interface design prototype for each of the individual interfaces in the system,
such as navigation controls, input screens, output screens, forms (including
preprinted paper forms), and reports. Finally, the individual interfaces are sub-
jected to interface evaluation to determine whether they are satisfactory and how
they can be improved.

Interface evaluations almost always identify improvements, so the interface
design process is repeated in a cyclical process until no new improvements are
identified. In practice, most analysts interact closely with the users during the inter-
face design process, so that users have many chances to see the interface as it
evolves rather than waiting for one overall interface evaluation at the end of the
interface design process. It is better for all concerned (both analysts and users) if

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 323

changes are identified sooner rather than later. For example, if the interface struc-
ture or standards need improvement, it is better to identify changes before most of
the screens that use the standards have been designed.

Use Scenario Development

A use scenario is an outline of the steps that the users perform to accomplish
some part of their work. A use scenario is one commonly used path through a use
case. Recall that use cases and data flow diagrams may include multiple ways in
which the response to the event can be completed. For example, think back to the
Search and Browse Tunes use case from Figure 4-14 in Chapter 4 that was mod-
eled in a level 1 DFD shown in Figure 5-18 in Chapter 5. This figure shows
process 1.2 (Process Search Requests) as being distinct from process 1.3 (Process
Tune Selection). We model the two processes separately and write the programs
separately because they are separate processes within process 1 (Search and
Browse Tunes).

The DFD was designed to model all possible uses of the system—that is, its
complete functionality or all possible paths through the use case. But use scenarios
are just one path through the use case. In one use scenario, for example, a user will
browse through many tunes, much like someone browsing through a real music
store looking for interesting music. He or she will search for a tune, listen to a sam-
ple, perhaps add it to the shopping cart, browse for more, and so on. Eventually, the
user will want to purchase the download(s), perhaps removing some selections from
the shopping cart beforehand.

In another use scenario, a user will want to buy one specific tune. He or she
will go directly to the tune, price it, and buy it immediately, much like someone run-
ning into a store, making a beeline for the one item he or she wants, and immedi-
ately paying and leaving the store. This user will enter the tune information in the
search portion of the system, look at the resulting cost information, and immedi-
ately buy the download or leave. Anything that slows him or her down will risk
losing the sale. For this use scenario, we need to ensure that the path through the
DFD as presented by the interface is short and simple, with very few menus and
mouse clicks.

Use scenarios are presented in a simple narrative description that is tied to the
DFD. Figure 9-6 shows the two use scenarios just described. The key point in using
use scenarios for interface design is not to document all possible use scenarios
within a use case, because then you end up just repeating the DFD in a different
form. The goal is to describe the handful of most commonly occurring use scenar-
ios so that the interface can be designed to enable the most common uses to be per-
formed simply and easily.

324 Chapter 9 User Interface Design

Visit the Web site for your university and navigate through several of its Web pages. Develop two
use scenarios for it.

9-2 USE SCENARIO DEVELOPMENT FOR THE WEBY O U R

T U R N

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 324

Interface Structure Design

The interface structure design defines the basic components of the interface and
how they work together to provide functionality to users. An interface structure dia-
gram (ISD) is used to show how all the screens, forms, and reports used by the sys-
tem are related and how the user moves from one to another. Most systems have
several ISDs, one for each major part of the system.

An ISD is somewhat similar to a DFD in that it uses boxes and lines to show
structure. However, unlike DFDs, there are no commonly used rules or standards
for their development. With one approach, each interface element (e.g., screen,
form, report) on an ISD is drawn as a box and is given a unique number (at the top)
and a unique name (in the middle). The numbers usually follow a tree-type struc-
ture, although this is not always done. Unlike the DFDs, however, the numbers do
not mean that all the screens belong to “parents” higher in the tree; instead, they
usually imply relationships between a menu and a submenu. The lines denote the
ability to navigate from one menu to another.

Each box on the ISD also shows (at the bottom) the DFD process that is sup-
ported by the interface (Figure 9-7). Sometimes, there is more than one interface
for a given process (e.g., in Figure 9-7, interfaces 1.1 through 1.3 support process
1.1.1); in other cases, there is only one interface for each process (e.g., interfaces
3.1 through 3.3 support processes 1.1.3.1 through 1.1.3.3).

User Interface Design Process 325

Use Scenario: The Browsing Shopper
User is not sure what they want to buy and
will browse through several tunes.

1. User may search for a specific artist or
 browse through a music category (1.2).
2. User will likely read the basic information
 for several tunes, as well as the
 marketing material for some. He or she
 will likely listen to music samples and
 browse related tunes (1.3).
3. User will put the tune in the shopping cart
 (1.3) and will continue browsing (1.2).
4. Eventually, the user will want to purchase
 the download, but will probably want to
 look through the shopping cart, possibly
 discarding some tunes first (1.3).

Use Scenario: The Hurry-up Shopper
User knows exactly what he or she wants
and wants it quickly.

1. User will search for a specific artist or
 tune (1.2).
2. User will look at the price and enough
 other information to confirm that the tune
 is the desired tune (1.3).
3. User will want to buy the download
 (process 2) or move on to other Web
 sites.

The numbers in parentheses refer
to process numbers in the DFD.

FIGURE 9-6
Two Use Scenarios for the Search and
Browse Tunes Use Case

Pretend that you have been charged with the task of redesigning the interface for the ATM at your
local bank. Develop two use scenarios for it.

9-3 USE SCENARIO DEVELOPMENT FOR AN AUTOMATED TELLER MACHINEY O U R

T U R N

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 325

FIGURE 9-7
Example Interface Structure Diagram

1.1

Form A

1.1.1

1

Menu A

1.1.1

3

Menu C

1.1.3

2

Menu B

1.1.2

3.1

Form X

1.1.3.1

1.2

Form B

1.1.1

3.2

Report Y

1.1.3.2

2.2

Report L

1.1.2

1.3

Report F

1.1.1

3.3

Report Z

1.1.3.3

2.3

Report K

1.1.2

0

Main Menu

1.1

2.1

Form J

1.1.2

326 Chapter 9 User Interface Design

Each interface is linked to other interfaces by lines that show how users can
transition from one interface to the next. In most cases, the interfaces form a
hierarchy, or a tree; but sometimes, an interface is linked to one outside of the
hierarchy, as shown by the link from Form J to Form B (e.g., the ability to update
customer information, such as address, while entering a new order).

The basic structure of the interface follows the basic structure of the busi-
ness process itself as defined in the process model. The analyst starts with the
DFD and develops the fundamental flow of control of the system as it moves from
process to process. There are usually several major parts to an information

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 326

9-4 INTERFACE STRUCTURE DESIGN

system, each of them distinct, in the same way that there are several high-level
processes in a DFD. In general—but not always—there is one ISD for each
process on the level 0 DFD.

The analyst then examines the use scenarios to see how well the ISD supports
them. Quite often, the use scenarios identify paths through the ISD that are more
complicated than they should be. The analyst then reworks the ISD to simplify the
ability of the interface to support the use scenarios, sometimes by making major
changes to the menu structure, sometimes by adding shortcuts.

Interface Standards Design

The interface standards are the basic design elements that are common across the
individual screens, forms, and reports within the system. Depending on the applica-
tion, there may be several sets of interface standards for different parts of the system
(e.g., one for Web screens, one for paper reports, one for input forms). For example,
the part of the system used by data-entry operators may mirror other data-entry appli-
cations in the company, whereas a Web interface for displaying information from the
same system may adhere to some standardized Web format. Likewise, each individ-
ual interface may not contain all the elements in the standards (e.g., a report screen
may not have an “edit” capability), and they may contain additional characteristics
beyond the standard ones, but the standards serve as the touchstone which ensures
that the interfaces are consistent across the system.

Interface Metaphor First of all, the analysts must develop the fundamental inter-
face metaphor(s) that defines how the interface will work. An interface metaphor is
a concept from the real world that is used as a model for the computer system. The
metaphor helps the user to understand the system and enables the user to predict
what features the interface might provide, even without actually using the system.
Sometimes systems have one metaphor, whereas in other cases there are several
metaphors in different parts of the system.

In many cases, the metaphor is explicit. Quicken, for example, uses a check-
book metaphor for its interface, even to the point of having the users type informa-
tion into an on-screen form that looks like a real check register. In other cases, the
metaphor is implicit, or unstated, but it is there nonetheless. Many Windows systems
use the paper form or table as a metaphor.

In some cases, the metaphor is so obvious that it requires no thought. The Tune
Source Digital Music Download system, for example, will use the retail music store
as the metaphor (e.g., shopping cart). In other cases, a metaphor is hard to identify.
In general, it is better not to force a metaphor that really doesn’t fit a system, because
an ill-fitting metaphor will confuse users by promoting incorrect assumptions.

Interface Templates The interface template defines the general appearance of all
screens in the information system and the paper-based forms and reports that are

User Interface Design Process 327

Pretend that you have been charged with the task of redesigning the interface for the ATM at your
local bank. Design an ISD that shows how a user would navigate among the screens.

Y O U R

T U R N

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 327

9-5 INTERFACE STANDARDS DEVELOPMENT

328 Chapter 9 User Interface Design

Pretend that you have been charged with the task of redesigning the interface for the ATM at your
local bank. Develop an interface standard that includes metaphors, objects, actions, icons, and a template.

Y O U R

T U R N

used. The template design, for example, specifies the basic layout of the screens
(e.g., where the navigation area[s], status area, and form/report area[s] will be
placed) and the color scheme(s) that will be applied. It defines whether windows will
replace one another on the screen or will cascade on top of each other. The template
defines a standard placement and order for common interface actions (e.g., “File,
Edit, View” rather than “File, View, Edit”). In short, the template draws together the
other major interface design elements: metaphors, objects, actions, and icons.

Interface Objects The template specifies the names that the interface will use for the
major interface objects, the fundamental building blocks of the system such as the enti-
ties and data stores. In many cases, the object names are straightforward, such as call-
ing the shopping cart the “shopping cart.” In other cases, it is not simple. For example,
Tune Source has chosen to call its digital music downloads “tunes.” Some people may
refer to individual music selections as “tracks” or “cuts.” Obviously, the object names
should be easily understood and should help promote the interface metaphor.

In general, in cases of disagreements between the users and the analysts over
names, whether for objects or actions (discussed later), the users should win. A
more understandable name always beats a more precise or more accurate name.

Interface Actions The template also specifies the navigation and command language
style (e.g., menus) and grammar (e.g., object–action order; see “Navigation Design”
later in this chapter). The template gives names to the most commonly used interface
actions in the navigation design (e.g., “buy” versus “purchase,” or “exit” versus
“quit”).

Interface Icons The interface objects and actions, and also their status (e.g.,
deleted, error), may be represented by interface icons. Icons are pictures that will
appear on command buttons as well as in reports and forms to highlight important
information. Icon design is very challenging because it means developing a simple
picture less than half the size of a postage stamp that needs to convey an often-com-
plex meaning. The simplest and best approach is to adopt icons developed by oth-
ers (e.g., a blank page to indicate “create a new file,” a diskette to indicate “save”).
This has the advantage of quick icon development, and the icons may already be
well understood by users because users have seen them in other software.

Commands are actions that are especially difficult to represent with icons
because they are in motion, not static. Many icons have become well known from
widespread use, but icons are not as well understood as it was at first believed that they
would be. The use of icons can sometimes cause more confusion than insight. (For
example, did you know that a picture of a sweeping paintbrush in Microsoft Word
means “format painter”?) Icon meanings become clearer with use, but because they
are often cryptic, many applications now provide text tool tips that appear when the
pointer hovers over an icon. This feature explains the purpose of the icon in words.

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 328

Interface Design Prototyping

An interface design prototype is a mock-up or a simulation of a computer screen,
form, or report. A prototype is prepared for each interface in the system to show the
users and the programmers how the system will perform. In the “old days,” an inter-
face design prototype was usually specified on a paper form that showed what
would be displayed on each part of the screen. Paper forms are still used today, but
more and more interface design prototypes are being built with computer tools
instead of on paper. The three most common approaches to interface design proto-
typing are storyboards, HTML prototypes, and language prototypes.

Storyboard At its simplest, an interface design prototype is a paper-based story-
board. The storyboard shows hand-drawn pictures of what the screens will look like
and how they will flow from one screen to another, in the same way that a storyboard
for a cartoon shows how the action will flow from one scene to the next (Fig. 9-8).
Storyboards are the simplest technique because all they require is paper (often on a
flip chart) and a pen—and someone with some artistic ability.

User Interface Design Process 329

(Click on a client for more information)
Adams, Clare
Adams, John
Baker, Robin

Client List

Add Client
Find Client
List Clients

Add a Client

First name: Last Name:
Address:

City:

State: Zip Code:

Client Menu

First Name: Last Name:
Address:

City:

State: Zip Code:

Find a Client

(Type in information to search on)

First Name: Pat SmithLast Name:
Address: 1234 Anywhere St.

Apt 56

City: Somethingville

State: CA 90211Zip code:

Client Information

FIGURE 9-8
An Example Storyboard

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 329

HTML Prototype One of the most common types of interface design prototypes
used today is the HTML prototype. As the name suggests, an HTML prototype is
built with the use of Web pages created in HTML (hypertext mark-up language). The
designer uses HTML to create a series of Web pages that show the fundamental parts
of the system. The users can interact with the pages by clicking on buttons and enter-
ing pretend data into forms (but because there is no system behind the pages, the
data are never processed). The pages are linked together so that, as the user clicks on
buttons, the requested part of the system appears. HTML prototypes are superior to
storyboards in that they enable users to interact with the system and gain a better
sense of how to navigate among the different screens. However, HTML has limita-
tions—the screens shown in HTML will never appear exactly like the real screens in
the system (unless, of course, the real system will be a Web system in HTML).

Language Prototype A language prototype is an interface design prototype built
in the actual language or by the actual tool that will be used to build the system.
Language prototypes are designed in the same ways as HTML prototypes. (They
enable the user to move from screen to screen, but they perform no real process-
ing). For example, in Visual Basic, it is possible to create and view screens with-
out actually attaching program code to the screens. See Figure 9-9 for a sample
Visual Basic Language prototype. Language prototypes take longer to develop

330 Chapter 9 User Interface Design

FIGURE 9-9
Sample Language Prototype—Part A

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 330

User Interface Design Process 331

FIGURE 9-9
Sample Language Prototype—Part B

FIGURE 9-9
Sample Language Prototype—Part C

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 331

than do storyboards or HTML prototypes, but they have the distinct advantage of
showing exactly what the screens will look like. The user does not have to guess
about the shape or position of the elements on the screen.

Selecting the Appropriate Techniques Projects often use a combination of different
interface design prototyping techniques for different parts of the system. Story-
boarding is the fastest and least expensive, but provides the least amount of detail.
Language prototyping is the slowest, most expensive, and most detailed approach.
HTML prototyping falls between the two extremes. Therefore, storyboarding is
used for parts of the system in which the interface is well understood and when
more expensive prototypes are thought to be unnecessary. HTML prototypes and
language prototypes are used for parts of the system that are critical, yet not well
understood.

Interface Evaluation

The objective of interface evaluation is to understand how to improve the interface
design. Interface design is subjective; there are no formulas that guarantee a great
user interface. Most interface designers intentionally or unintentionally design an
interface that meets their personal preferences, which may or may not match the
preferences of the users. The key message, therefore, is to have as many people as
possible evaluate the interface—and the more users, the better. Most experts rec-
ommend involving at least 10 potential users in the evaluation process.

Many organizations save interface evaluation for the very last step in the
SDLC before the system is installed. Ideally, however, interface evaluation
should be performed while the system is being designed—before it is built—so
that any major design problems can be identified and corrected before the time
and cost of programming have been spent on a weak design. It is not uncommon
for the system to undergo one or two major changes after the users see the first
interface design prototype, because they identify problems that are overlooked
by the project team.

332 Chapter 9 User Interface Design

I was involved in the development of
several decision support systems (DSS) while working as
a consultant. On one project, a future user was frustrated
because he could not imagine what a DSS looked like
and how one would be used. He was a key user, but the
project team had a difficult time involving him in the proj-
ect because of his frustration. The team used SQL Win-
dows (one of the most popular development tools at the
time) to create a language prototype that demonstrated
the future systems appearance, proposed menu system,
and screens (with fields, but no processing).

The team was amazed at the user’s response to the
prototype. He appreciated being given a context with

which to visualize the DSS, and he soon began to rec-
ommend improvements to the design and flow of the sys-
tem, and to identify some important information that was
overlooked during the analysis phase. Ultimately, the user
became one of the strongest supporters of the system,
and the project team felt sure that the prototype led to a
much better product in the end. Barbara Wixom

QUESTIONS:
1. Why do you think the team chose to use a language

prototype rather than a storyboard or HTML proto-
type?

2. What trade-offs were involved in the decision?

9-A INTERFACE DESIGN PROTOTYPES FOR A DSS APPLICATION

IN ACTION

CONCEPTS

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 332

As with interface design prototyping, interface evaluation can take many dif-
ferent forms, each with different costs and different levels of detail. Four common
approaches are heuristic evaluation, walk-through evaluation, interactive evaluation,
and formal usability testing. As with interface design prototyping, the different parts
of a system can be evaluated by different techniques.

Heuristic Evaluation A heuristic evaluation examines the interface by comparing it
to a set of heuristics, or principles, for interface design. The project team develops a
checklist of interface design principles—from the list at the start of this chapter, for
example, as well as the lists of principles in the navigation, input, and output design
sections. At least three members of the project team then individually work through
the interface design prototype, examining each interface to ensure that it satisfies
each design principle on the formal checklist. After each member has gone through
the prototype separately, they all meet as a team to discuss their evaluation and
identify specific improvements that are required. Because this technique does not
involve the users, it is considered the weakest type of evaluation.

Walk-through Evaluation An interface design walk-through evaluation is a meet-
ing conducted with the users who will ultimately have to operate the system. The
project team presents the prototype to the users and walks them through the var-
ious parts of the interface. The project team shows the storyboard or actually
demonstrates the HTML or language prototype and explains how the interface
will be used. The users identify improvements to each of the interfaces that are
presented.

Interactive Evaluation With an interactive evaluation, the users themselves actually
work with the HTML or language prototype in one-on-one sessions with members
of the project team. (An interactive evaluation cannot be used with a storyboard.)
As the user works with the prototype (often by going through the use scenarios or
just navigating at will through the system), he or she tells the project team mem-
bers what he or she likes and doesn’t like and what additional information or func-
tionality is needed. As the user interacts with the prototype, team members record
the situation when the user appears to be unsure of what to do, makes mistakes,
or misinterprets the meaning of an interface component. If the pattern of uncer-
tainty, mistakes, or misinterpretations recurs across several evaluation sessions with
several users, it is a clear indication that those parts of the interface need
improvement.

Formal Usability Testing Formal usability testing is commonly done with commer-
cial software products and products developed by large organizations that will be
widely used through the organization. As the name suggests, it a very formal—
almost scientific—process that can be used only with language prototypes (and sys-
tems that have been completely built and are awaiting installation or shipping).6 As
with interactive evaluation, usability testing is done in one-on-one sessions in
which a user works directly with the software. However, it is typically done in a
special lab equipped with video cameras and special software that records each
and every keystroke and mouse operation so that they can be replayed to help in
understanding exactly what the user did.

User Interface Design Process 333

6 A good source for usability testing is Jakob Nielsen and Robert Mack, eds. Usability Inspection Methods,
New York: John Wiley & Sons, 1994. See also www.useit.com/papers.

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 333

334 Chapter 9 User Interface Design

Pretend that you have been charged with the task of redesigning the interface for the ATM at your
local bank. What type of prototyping and interface evaluation approach would you recommend?

9-6 PROTOTYPING AND EVALUATIONY O U R

T U R N

The user is given a specific set of tasks to accomplish (usually the use sce-
narios), and after some initial instructions the project teams member(s) are not per-
mitted to interact with the user to provide assistance. The user must work with the
software without help, which can be hard on the user if he or she becomes confused
with the system. It is critical that users understand that the goal is to test the inter-
face, not their abilities, and if they are unable to complete the task, the interface—
not the user—has failed the test. Several performance measures are used, such as
time to complete the task, error rate, and user satisfaction.

Formal usability testing is very expensive. Each one-user session (which
typically lasts one to two hours) can take one to two days to analyze due to the
volume of detail collected in the computer logs and videotapes. Most usability
testing involves 5 to 10 users. Fewer than 5 users makes the results depend too
much on the specific individual users who participated, but more than 10 users is
often too expensive to justify (unless you work for a large commercial software
developer).

NAVIGATION DESIGN

The navigation component of the interface enables the user to enter commands to
navigate through the system and perform actions to enter and review information
it contains. The navigation component also presents messages to the user about the
success or failure of his or her actions. The goal of the navigation system is to
make the system as simple as possible to use. A good navigation component is one
that the user never really notices. It simply functions the way the user expects, and
thus the user gives it little thought.

Basic Principles

One of the hardest things about using a computer system is learning how to manip-
ulate the navigation controls to make the system do what you want. Analysts usu-
ally must assume that users have not read the manual, have not attended training,
and do not have external help readily at hand. All controls should be clear and
understandable and placed in an intuitive location on the screen. Ideally, the con-
trols should anticipate what the user will do and simplify his or her efforts. For
example, many set-up programs are designed so that, for a typical installation, the
user can simply keep pressing the “Next” button.

Prevent Mistakes The first principle of designing navigation controls is to prevent
the user from making mistakes. A mistake costs time and creates frustration. Worse
still, a series of mistakes can cause the user to discard the system. Mistakes can be

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 334

reduced by labeling commands and actions appropriately and by limiting choices.
Too many choices can confuse the user, particularly when they are similar and hard
to describe in the short space available on the screen. When there are many similar
choices on a menu, consider creating a second level of menu or a series of options
for basic commands.

Never display a command that cannot be used. For example, many Windows
applications gray-out commands that cannot be used; they are displayed on pull-
down menus in a very light-colored font, but they cannot be selected. This shows
that they are available, but that they cannot be used in the current context. It also
keeps all menu items in the same place.

When the user is about to perform a critical function that is difficult or impos-
sible to undo (e.g., deleting a file), it is important to confirm the action with the user
(and make sure the selection was not made by mistake). This is usually done by hav-
ing the user respond to a confirmation message that explains what the user has
requested and asks the user to confirm that this action is correct.

Simplify Recovery from Mistakes No matter what the system designer does, users
will make mistakes. The system should make it as easy as possible to correct these
errors. Ideally, the system will have an “Undo” button that makes mistakes easy to
override; however, writing the software for such buttons can be very complicated.

Use Consistent Grammar Order One of the most fundamental decisions is the
grammar order. Most commands require the user to specify an object (e.g., file,
record, word) and the action to be performed on that object (e.g., copy, delete). The
interface can require the user to first choose the object and then the action (an
object–action order) or first choose the action and then the object (an action–object
order). Most Windows applications use an object–action grammar order (e.g., think
about copying a block of text in your word processor).

The grammar order should be consistent throughout the system, both at the
data element level and at the overall menu level. Experts debate about the advan-
tages of one approach over the other, but because most users are familiar with the
object–action order, most systems today are designed with that approach.

Types of Navigation Controls

There are two traditional hardware devices that can be used to control the user inter-
face: the keyboard and a pointing device, such as a mouse, trackball, or touch
screen. In recent years, voice recognition systems have made an appearance, but
they are not yet common. There are three basic software approaches for defining
user commands: languages, menus, and direct manipulation.

Languages With a command language, the user enters commands in a special lan-
guage developed for the computer system (e.g., UNIX and SQL both use command
languages). Command languages sometimes provide greater flexibility than do
other approaches, because the user can combine language elements in ways not pre-
determined by developers. However, they put a greater burden on users because
users must learn syntax and type commands rather than select from a well-defined,
limited number of choices. Systems today use command languages sparingly,
except in cases in which there are an extremely large number of command combi-
nations, making it impractical to try to build all combinations into a menu (e.g.,
SQL queries for databases).

Navigation Design 335

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 335

336 Chapter 9 User Interface Design

7 Kent L. Norman, The Psychology of Menu Selection, Norwood, NJ: Ablex Publishing, 1991.

Design a navigation system for a form into which users must enter information about customers,
products, and orders. For all three information categories, users will want to change, delete, find one specific record,
and list all records.

9-7 DESIGN A NAVIGATION SYSTEMY O U R

T U R N

Natural language interfaces are designed to understand the user’s own lan-
guage (e.g., English, French, Spanish). These interfaces attempt to interpret what
the user means, and often they present back to the user a list of interpretations from
which to choose. Many “help” systems today enable the user to ask free-form ques-
tions to get help.

Menus The most common type of navigation system today is the menu. A menu
presents the user with a list of choices, each of which can be selected. Menus are
easier to learn than languages because the user sees an organized, but limited, set of
choices. Clicking on an item with a pointing device or pressing a key that matches
the menu choice (e.g., a function key) takes very little effort. Therefore, menus are
usually preferred to languages.

Menus should be designed with care, because the submenus behind a main
menu are hidden from users until they click on the menu item. It is better to make
menus broad and shallow (i.e., with each menu containing many items and each
item containing only one or two layers of menus) rather than narrow and deep (i.e.,
with each menu containing only a few items, but each item leading to three or more
layers of menus). A broad and shallow menu presents the user with the most infor-
mation initially, so that he or she can see many options, and requires only a few
mouse clicks or keystrokes to perform an action. A narrow and deep menu makes
users hunt and seek for items hidden behind menu items and requires many more
clicks or keystrokes to perform an action.

Research suggests that in an ideal world, any one menu should contain no
more than eight items and it should take no more than two mouse clicks or key-
strokes from any menu to perform an action (or three from the main menu that
starts a system).7 However, analysts sometimes must break this guideline in the
design of complex systems. In this case, menu items are often grouped together and
separated by a horizontal line (Fig. 9-10). Often, menu items have hot keys that
enable experienced users to quickly invoke a command with keystrokes in lieu of a
menu choice (e.g., Control-F in Word invokes the Find command, whereas Alt-F
opens the File menu).

Menus should put together similar categories of items so that the user can
intuitively guess what each menu contains. Most designers recommend grouping
menu items by interface objects (e.g., Customers, Purchase Orders, Inventory)
rather than by interaction actions (e.g., New, Update, Format), so that all actions
pertaining to one object are in one menu, all actions for another object are in a dif-
ferent menu, and so on. However, this is highly dependent on the specific interface.
As Figure 9-10 shows, Microsoft Visual Studio groups menu items by interface

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 336

objects (e.g., File, Project, Window) and by interface actions (e.g., Edit, View,
Build) on the same menu. Some of the more common types of menus include
menu bars, drop-down menus, pop-up menus, tab menus, tool bars, and image
maps. (See Figures 9-10 and 9-11.)

Direct Manipulation With direct manipulation, the user enters commands by work-
ing directly with interface objects. For example, users can change the size of objects
in Microsoft PowerPoint by clicking on objects and moving the sides, or they can
move files in Windows Explorer by dragging the file names from one folder to
another. Direct manipulation can be simple, but it suffers from two problems. First,

Navigation Design 337

Menu
Bar

Popup
Menu Tabbed

Menu

Icon
Tool
Bar

FIGURE 9-10
Common Types of Menus—Part A

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 337

users familiar with language- or menu-based interfaces don’t always expect it. Sec-
ond, not all commands are intuitive. (For example, how do you copy [not move]
files in Windows Explorer?)

Messages

Messages are the way in which the system responds to a user and informs him or
her of the status of the interaction. There are many different types of messages, such
as error messages, confirmation messages, acknowledgment messages, delay mes-
sages, and help messages (Figure 9-12). In general, messages should be clear, con-
cise, and complete, which are sometimes conflicting objectives. All messages
should be grammatically correct and free of jargon and abbreviations (unless they

338 Chapter 9 User Interface Design

FIGURE 9-10
Common Types of Menus—Part B

Drop-
down
Menu

Menu
Group
Separator

Cascading
Menu

Greyed-
out
Menu
Options

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 338

Navigation Design 339

Menu Bar Main menu for system • Use the same organization as the operating system and other
List of commands at the top of the packages (e.g., File, Edit, View).

screen. Always on screen. • Menu items are always one word, never two.
• Menu items lead to other menus, rather than performing action.
• Never allow users to select actions they can’t perform.

(Instead, use grayed-out items).

Drop-down Menu Second-level menu, often from • Menu items are often multiple words.
Menu that drops down immediately menu bar • Avoid abbreviations.

below another menu. Disappears • Menu items perform action or lead to another cascading
after one use. drop-down menu, pop-up menu, or tab menu.

Hyperlink Menu Main menu for Web-based • Most users are familiar with hyperlink menus on the left edge
A set of items arranged as a menu, system of the screen, although they can be placed along any edge.

usually along one edge of the • Menu items are usually only one or two words.
screen.

Embedded Hyperlinks As a link to ancillary, optional • Used sparingly to provide additional information, because they
A set of items embedded and information can complicate navigation.

underlined in text. • Usually open a new window that is closed once the action is
complete so that the user can return to the original use scenario.

Pop-up Menu As a shortcut to commands for • Often (not always) invoked by a right click in Windows-based
Menu that pops up and floats over experienced users systems.

the screen. Disappears after one • Menu choices vary depending on pointer position.
use. • Often overlooked by novice users, so usually should duplicate

functionality provided in other menus.

Tab Menu When user needs to change • Menu items should be short to fit on the tab label.
Multipage menu with one tab for several settings or perform • Avoid more than one row of tabs because clicking on a tab

each page that pops up and several related commands to open it can change the order of the tabs, and in virtually no
floats over the screen. Remains other case does selecting from a menu rearrange the menu
on screen until closed. itself.

Tool Bar As a shortcut to commands for • All buttons on the same tool bar should be the same size.
Menu of buttons (often with icons) experienced users • If the labels vary dramatically in size, then use two

that remains on the screen until different sizes (small and large).
closed. • Buttons with icons should have a tool tip—an area that dis-

plays a text phrase explaining the button when the user
pauses the pointer over it.

Image Map Only when the graphical • Image should convey meaning to show which parts perform
Graphical image in which certain image adds meaning to the an action when clicked.

areas are linked to actions or menu • Tool tips can be helpful.
other menus.

Type of Menu When to Use Notes

FIGURE 9-11
Types of Menus

are users’ jargon and abbreviations). Avoid negatives, because they can be confus-
ing (e.g., replace “Are you sure you do not want to continue?” with “Do you want
to quit?”). Likewise, avoid humor, because it wears off quickly after the same mes-
sage appears dozens of times.

Messages should require the user to acknowledge them (by clicking, for
example), rather than being displayed for a few seconds and then disappearing. The
exceptions are messages that inform the user of delays in processing, which should
disappear once the delay has passed. In general, messages are text, but sometimes
standard icons are used. For example, Windows 7 displays a revolving circle when
the system is busy.

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 339

Type of Messages When to Use Notes

Error message
Informs the user that he or she
has attempted to do something
to which the system cannot
respond.

When user does something that
is not permitted or not possible

Always explain the reason and suggest corrective action.
Traditionally, error messages have been accompanied by a

beep, but many applications now omit it or permit users to
remove it.

Confirmation message
Asks the user to confirm that he
or she really wants to perform
the action selected.

When user selects a potentially
dangerous choice, such as
deleting a file

Always explain the cause and suggest possible action.
Often include several choices other than “OK” and “cancel.”

Acknowledgment message
Informs the user that the system
has accomplished what it was
asked to do.

Seldom or never; users quickly
become annoyed with all the
unnecessary mouse clicks

Acknowledgment messages are typically included because
novice users often like to be reassured that an action has
taken place.

The best approach is to provide acknowledgment information
without a separate message on which the user must click. For
example, if the user is viewing items in a list and adds one,
then the updated list on the screen showing the added item is
sufficient acknowledgment.

Delay message
Informs the user that the com-
puter system is working properly.

When an activity takes more than
seven seconds

This message should permit the user to cancel the operation in
case he or she does not want to wait for its completion.

The message should provide some indication of how long the
delay may last.

Help message
Provides additional information
about the system and its com-
ponents.

In all systems Help information is organized by table of contents and/or key-
word search.

Context-sensitive help provides information that is dependent on
what the user was doing when help was requested.

Help messages and online documentation are discussed in
Chapter 12.

FIGURE 9-12
Types of Messages

340 Chapter 9 User Interface Design

All messages should be carefully crafted, but error messages and help mes-
sages require particular care. Messages (and especially error messages) should
always explain the problem in polite, succinct terms (e.g., what the user did incor-
rectly) and explain corrective action as clearly and as explicitly as possible so that
the user knows exactly what needs to be done. In the case of complicated errors, the
error message should display what the user entered, suggest probable causes for the
error, and propose possible user responses. When in doubt, provide either more
information than the user needs or the ability to get additional information. Error
messages should provide a message number. Message numbers are not intended for
users, but their presence makes it simpler for those staffing help desks and customer
support lines to identify problems and help users, because many messages use similar
wording.

INPUT DESIGN

Input mechanisms facilitate the entry of data into the computer system, whether
highly structured data, such as order information (e.g., item numbers, quantities,
costs), or unstructured information (e.g., comments). Input design means designing
the screens used to enter the information, as well as any forms on which users write
or type information (e.g., time cards, expense claims).

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 340

Basic Principles

The goal of input design is to capture accurate information for the system simply
and easily. The fundamental principles for input design reflect the nature of the
inputs (whether batch or online) and ways to simplify their collection.

Use Online and Batch Processing Appropriately There are two general approaches
for entering inputs into a computer system: online processing and batch processing.
With online processing (sometimes called transaction processing), each input item
(e.g., a customer order, a purchase order) is entered into the system individually,
usually at the same time as the event or transaction prompting the input. For exam-
ple, when you borrow a book from the library, buy an item at the store, or make an
airline reservation, the computer system that supports each process uses online pro-
cessing to immediately record the transaction in the appropriate database(s). Online
processing is most commonly used when it is important to have real-time informa-
tion about the business process. For example, when you reserve an airline seat, the
seat is no longer available for someone else to use, so that piece of information
must be recorded immediately.

With batch processing, all the inputs collected over some period are gathered
together and entered into the system at one time in a batch. Some business processes
naturally generate information in batches. For example, most hourly payrolls are
done by batch processing because time cards are gathered together in batches and
processed at once. Batch processing also is used for transaction processing systems
that do not require real-time information. For example, most stores send sales infor-
mation to district offices so that new replacement inventory can be ordered. This
information could be sent in real time as it is captured in the store, so that the dis-
trict offices are aware within a second or two that a product is sold. If stores do not
need up-to-the-second real-time data, they will collect sales data throughout the day
and transmit the data every evening in a batch to the district office. This batching
simplifies the data communications process and often cuts communications costs. It
does mean, however, that inventories are not accurate in real time, but rather are
accurate only at the end of the day after the batch has been processed.

Capture Data at the Source Perhaps the most important principle of input design is
to capture the data in an electronic format at the original source or as close to the orig-
inal source as possible. In the early days of computing, computer systems replaced
traditional manual systems that were based on paper forms. As these business
processes were automated, many of the original paper forms remained, either because
no one thought to replace them or because it was too expensive to do so. Instead, the
business process continued to contain manual forms that were taken to the computer
center in batches to be typed into the computer system by a data-entry operator.

Many business processes still operate this way today. For example, many
organizations have expense claim forms that are completed by hand and submitted
to an accounting department, which approves them and enters them into the system
in batches. There are three problems with this approach. First, it is expensive because
it duplicates work. (The form is filled out twice, once by hand and once by key-
board.) Second, it increases processing time because the paper forms must be phys-
ically moved through the process. Third, it increases the cost and the probability of
error, because it separates the entry from the processing of information; someone
may misread the handwriting on the input form, data could be entered incorrectly, or
the original input may contain an error that invalidates the information.

Input Design 341

c09UserInterfaceDesign.qxd 11/3/11 12:05 PM Page 341

Most transaction processing systems today are designed to capture data at
its source. Source data automation refers to using special hardware devices to
automatically capture data without requiring anyone to type it. Stores commonly
use bar code readers that automatically scan products and enter data directly into
the computer system. No intermediate formats, such as paper forms, are used.
Similar technologies include optical character recognition, which can read
printed numbers and text (e.g., on checks); magnetic stripe readers, which can
read information encoded on a stripe of magnetic material similar to a diskette
(e.g., credit cards); and smart cards that contain microprocessors, memory chips,
and batteries (much like credit card-size calculators). A recent development is the
RFID (radio frequency identification) tag, combining a microprocessor chip with
an antenna to broadcast its information to electronic readers. Information can be
read from or written to the RFID tag. As well as reducing the time and cost of
data entry, these systems reduce errors because they are far less likely to capture
data incorrectly. Today, portable computers and scanners allow data to be
captured at the source even in mobile settings (e.g., air courier deliveries, use of
rental cars).

A lot of information, however, cannot be collected by these automatic sys-
tems. Today, with the widespread use of the Web, much data is captured directly
from the customer. Consequently, the forms for capturing information on-screen
should provide a logical flow and should allow the user to easily complete the forms
and check their entries before submitting them. Since data entered by the user is
prone to inaccuracies, validation checks (see Figure 9-15) should be used whenever
possible.

Minimize Keystrokes Another important principle is to minimize keystrokes. Key-
strokes cost time and money, whether they are performed by a customer, user, or
trained data-entry operator. The system should never ask for information that can
be obtained in another way (e.g., by retrieving it from a database or by performing
a calculation). Likewise, a system should not require a user to type information that
can be selected from a list; selecting reduces errors and speeds entry.

In many cases, data have values that often recur. These frequent values should
be used as the default value for the data so that the user can simply accept the value
and not have to retype it time and time again. Examples of default values are the
current date, the area code held by the majority of a company’s customers, and a
billing address that is based on the customer’s residence. Most systems permit
changes to default values to handle data entry exceptions as they occur.

342 Chapter 9 User Interface Design

Pretend that you are designing the
new interface for a career services system at your uni-
versity that accepts student résumés and presents them in
a standard format to recruiters. Describe how you could

incorporate the basic principles of input design into your
interface design. Remember to include the use of online
versus batch data input, the capture of information, and
plans to minimize keystrokes.

9-8 CAREER SERVICESY O U R

T U R N

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 342

Types of Inputs

Each data item that has to be input is linked to a field, on the form into which its
value is typed. Each field also has a field label, which is the text beside, above, or
below the field, that tells the user what type of information belongs in the field.
Often, the field label is similar to the name of the data element, but the two do not
have to have identical wording. In some cases, a field will display a template over
the entry box to show the user exactly how data should be typed. There are many
different types of inputs, in the same way that there are many different types of
fields. (See Fig. 9-13.)

Text As the name suggests, a text box is used to enter text. Text boxes can be
defined to have a fixed length or can be scrollable and accept a virtually unlimited
amount of text. In either case, boxes can contain single or multiple lines of textual
information. Never use a text box if you can use a selection box.

Text boxes should have field labels placed to the left of the entry area, with
their size clearly delimited by a box (or a set of underlines in a non-GUI interface).
If there are multiple text boxes, their field labels and the left edges of their entry
boxes should be aligned. Text boxes should permit standard GUI functions such as
cut, copy, and paste.

Input Design 343

Police officers in San Jose, Califor-
nia, experienced a number of problems with a new
mobile dispatch system that included a Windows-based
touch-screen computer in every patrol car. Routine tasks
were difficult to perform, and the essential call for assis-
tance was considered needlessly complicated.

The new system, costing $4.7 million, was an off-the-
shelf system purchased from Intergraph Corp. It replaced a
14-year-old text-based system that was custom developed.
Initially, the system was unstable, periodically crashing a
day or two after installation and down for the next several
days.

At the request of the San Jose police union, a user-
interface design consulting firm was brought in to evaluate
the new system. A number of errors were discovered in the
system, including inaccurate map information, screens clut-
tered with unnecessary information, difficult-to-read on-
screen type, and difficult-to-perform basic tasks, such as
license plate checks. In addition, the police officers them-
selves were not consulted about the design of the interface.
Many users felt that the Windows desktop GUI with its
complex hierarchical menu structure was not suitable for
in-vehicle use. While driving, officers found that the

repeated taps on the screen required to complete tasks
were very distracting, and one officer crashed his vehicle
into a parked car because of the distraction of working
with the system.

Further complicating the transition to the new sys-
tem was the bare-bones training program. Just three
hours of training were given on a desktop system, using
track pads on the keyboards, not the 12-inch touch
screen that would be found in the patrol cars.

After the rocky start, the software vendor worked
closely with the city of San Jose to fix bugs and smooth
out work flows. It seems clear, however, that the rollout
could have been much easier if the officers and dis-
patchers had been involved in planning the system in the
first place.

Source: “Wanted by the Police: A Good Interface,” The New
York Times, November 11, 2004, by Katie Hafner.

QUESTION:
If you were involved in the acquisition of a new system for

the police force in your community, what steps could
you take to ensure the success of the project?

9-B PUBLIC SAFETY DEPENDS ON A GOOD USER INTERFACE

IN ACTION

CONCEPTS

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 343

Numbers A number box is used to enter numbers. Some software can automati-
cally format numbers as they are entered, so that 3452478 becomes $34,524.78.
Dates are a special form of numbers that sometimes have their own type of number
box. Never use a number box if you can use a selection box.

Selection Box A selection box enables the user to select a value from a predefined
list. The items in the list should be arranged in some meaningful order, such as
alphabetical for long lists, or in order of most frequently used. The default selection
value should be chosen with care. A selection box can be initialized as “unselected”
or, better still, start with the most commonly used item already selected.

There are six commonly used types of selection boxes: check boxes, radio
buttons, on-screen list boxes, drop-down list boxes, combo boxes, and scroll bars
(Figs. 9-13, 9-14). The choice among the types of text selection boxes generally
comes down to one of screen space and the number of choices the user can select.
If screen space is limited and only one item can be selected, then a drop-down list
box is the best choice, because not all list items need to be displayed on the screen.
If screen space is limited, but the user can select multiple items, an on-screen list
box that displays only a few items can be used. Check boxes (for multiple selections)
and radio buttons (for single selections) both require all list items to be displayed
at all times, thus requiring more screen space, but since they display all choices,
they are often simpler for novice users.

344 Chapter 9 User Interface Design

FIGURE 9-13
User Input Options

Radio
Buttons

Check
Boxes

Drop-down
List Box

On-screen
List Box

Scroll Bar

Text Box

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 344

Input Validation

All data entered into the system must be validated in order to ensure accuracy. Input
validation (also called edit checks) can take many forms. Ideally, to prevent invalid
information from entering the system, computer systems should not accept data
that fail any important validation check. However, this can be very difficult, and
invalid data often slip by data-entry operators and the users providing the informa-
tion. It is up the system to identify invalid data and either make changes or notify
someone who can resolve the information problem.

There are six different types of validation checks: completeness check, format
check, range check, check digit check, consistency check, and database check. (See
Figure 9-15.) Every system should use at least one validation check on all entered
data and, ideally, will perform all appropriate checks where possible.

Input Design 345

Type of Box When to Use Notes

Check box
Presents a complete list of
choices, each with a square
box in front.

When several items can be
selected from a list of items

Check boxes are not mutually exclusive.
Do not use negatives for box labels.
Check-box labels should be placed in some logical order, such

as that defined by the business process, or failing that,
alphabetically or most commonly used first.

Use no more than 10 check boxes for any particular set of
options. If you need more boxes, group them into
subcategories.

Radio button
Presents a complete list of
mutually exclusive choices,
each with a circle in front.

When only one item can be
selected from a set of mutually
exclusive items

Use no more than six radio buttons in any one list; if you need
more, use a drop-down list box.

If there are only two options, one check box is usually
preferred to two radio buttons, unless the options are not
clear.

Avoid placing radio buttons close to check boxes to prevent
confusion between different selection lists.

On-screen list box
Presents a list of choices in a
box.

Seldom or never—only if there is
insufficient room for check
boxes or radio buttons

This box can permit only one item to be selected (in which
case it is an ugly version of radio buttons).

This box can also permit many items to be selected (in which
case it is an ugly version of check boxes), but users often fail
to realize that they can choose multiple items.

This box permits the list of items to be scrolled, thus reducing
the amount of screen space needed.

Drop-down list box
Displays selected item in one-
line box that opens to reveal list
of choices.

When there is insufficient room to
display all choices

This box acts like radio buttons, but is more compact.
This box hides choices from users until it is opened, which

can decrease ease of use; conversely, because it shelters
novice users from seldom-used choices, it can improve ease
of use.

This box simplifies design if the number of choices is unclear,
because it takes only one line when closed.

Combo box
A special type of drop-down list
box that permits user to type as
well as scroll the list.

Shortcut for experienced users This box acts like a drop-down list, but is faster for experienced
users when the list of items is long.

Scroll Bar (Vertical or horizontal)
Graphic scale with a sliding
pointer to select a number.

When entering an approximate
numeric value from a large
continuous scale

The slider makes it difficult for the user to select a precise
number.

Some sliders also include a number box to enable the user to
enter a specific number.

FIGURE 9-14
Types of Selection Boxes

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 345

346 Chapter 9 User Interface Design

Consider a Web form that a student
would use to input student information and rèsumè infor-
mation into a career services application at your univer-
sity. Sketch out how this form would look and identify the

fields that the form would include. What types of validity
checks would you use to make sure that the correct infor-
mation is entered into the system?

9-9 CAREER SERVICESY O U R

T U R N

Type of Validation When to Use Notes

Completeness check
Ensures that all required data
have been entered.

When several fields must be
entered before the form can be
processed

If required information is missing, the form is returned unprocessed
to the user.

Format check
Ensures that data are of the
right type (e.g., numeric) and in
the right format (e.g., month,
day, year).

When fields are numeric or con-
tain coded data

Ideally, numeric fields should not permit users to type text data,
but if this is not possible, the entered data must be checked
to ensure that it is numeric.

Some fields use special codes or formats (e.g., license plates
with three letters and three numbers) that must be checked.

Range check
Ensures that numeric data are
within correct minimum and
maximum values.

With all numeric data, if possible A range check permits only numbers between correct values.
Such a system can also be used to screen data for “reason-

ableness”—e.g., rejecting birthdates prior to 1890 because
people do not live to be a great deal over 100 years old
(most likely, 1990 was intended).

Check digit check
Check digits are added to
numeric codes.

When numeric codes are used Check digits are numbers added to a code as a way of
enabling the system to quickly validate correctness. For exam-
ple, U.S. Social Security Numbers and Canadian Social
Insurance Numbers assign only eight of the nine digits in the
number. The ninth number—the check digit—is calculated by
a mathematical formula from the first eight numbers.

When the identification number is typed into a computer sys-
tem, the system uses the formula and compares the result with
the check digit. If the numbers don’t match, then an error has
occurred.

Consistency checks
Ensure that combinations of
data are valid.

When data are related Data fields are often related. For example, someone’s birth
year should precede the year in which he or she was
married.

Although it is impossible for the system to know which data are
incorrect, it can report the error to the user for correction.

Database checks
Compare data against a data-
base (or file) to ensure that they
are correct.

When data are available to be
checked

Data are compared against information in a database (or file)
to ensure that they are correct. For example, before an
identification number is accepted, the database is queried to
ensure that the number is valid.

Because database checks are more “expensive” than the other
types of checks (they require the system to do more work),
most systems perform the other checks first and perform data-
base checks only after the data have passed the previous
checks.

FIGURE 9-15
Types of Input Validation

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 346

OUTPUT DESIGN

Outputs are the reports that the system produces, whether on the screen, on paper,
or in other media, such as the Web. Outputs are perhaps the most visible part of any
system, because a primary reason for using an information system is to access the
information that it produces.

Basic Principles

The goal of the output mechanism is to present information to users so that they can
accurately understand it with the least effort. The fundamental principles for output
design reflect how the outputs are used and ways to make it simpler for users to
understand them.

Understand Report Usage The first principle in designing reports is to understand
how they are used. Reports can be used for many different purposes. In some
cases—but not very often—reports are read cover to cover because all information
is needed. In most cases, reports are used to identify specific items or are used as
references to find information, so the order in which items are sorted on the report
or grouped within categories is critical. This is particularly important for the design
of electronic or Web-based reports. Web reports that are intended to be read end to
end should be presented in one long scrollable page, whereas reports that are pri-
marily used to find specific information should be broken into multiple pages, each
with a separate link. Page numbers and the date on which the report was prepared
also are important for reference reports.

The frequency of the report may also play an important role in its design and
distribution. Real-time reports provide data that are accurate to the second or
minute at which they were produced (e.g., stock market quotes). Batch reports are
those that report historical information that may be months, days, or hours old, and
they often provide additional information beyond the reported information (e.g.,
totals, summaries, historical averages).

There are no inherent advantages to real-time reports over batch reports. The
only advantages lie in the time value of the information. If the information in a
report is time critical (e.g., stock prices, air traffic control information), then real-
time reports have value. This is particularly important because real-time reports
often are expensive to produce; unless they offer some clear business value, they
may not be worth the extra cost.

Manage Information Load Most managers get too much information, not too little
(i.e., the information load confronting the manager is too great). The goal of a well-
designed report is to provide all the information needed to support the task for which
it was designed. This does not mean that the report should provide all the informa-
tion available on the subject—just what the users decide they need to perform their
jobs. In some cases, this may result in the production of several different reports on
the same topics for the same users, because they are used in different ways. This is
not bad design.

For users in Westernized countries, the most important information generally
should be presented first, in the top left corner of the screen or paper report. Informa-
tion should be provided in a format that is usable without modification. The user
should not need to re-sort the report’s information, highlight critical information to find
it more easily amid a mass of data, or perform additional mathematical calculations.

Output Design 347

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 347

Minimize Bias No analyst sets out to design a biased report. The problem with
bias is that it can be very subtle; analysts can introduce it unintentionally. Bias can
be introduced by the way in which lists of data are sorted, because entries that
appear first in a list may receive more attention than those appearing later in the
list. Data often are sorted in alphabetic order, making those entries starting with
the letter A more prominent. Data can be sorted in chronological order (or reverse
chronological order), placing more emphasis on older (or most recent) entries.
Data may be sorted by numeric value, placing more emphasis on higher or lower
values. For example, consider a monthly sales report by state. Should the report be
listed in alphabetic order by state name, in descending order by the amount sold,
or in some other order (e.g., geographic region)? There are no easy answers to this,
except to say that the order of presentation should match the way in which the
information is used.

Graphic displays and reports can present particularly challenging design
issues.8 The scale on the axes in graphs is particularly subject to bias. For most
types of graphs, the scale should always begin at zero; otherwise, comparisons
among values can be misleading. For example, in Fig. 9-16, have sales increased by
very much since 2006? The numbers in both charts are the same, but the visual
images the two present are quite different. A glance at Fig. 9-16a would suggest
only minor changes, whereas a glance at Fig. 9-16b might suggest that there have
been some significant increases. In fact, sales have increased by a total of 15% over
five years, or 3% per year. Fig. 9-16a presents the most accurate picture; Fig. 9-16b
is biased because the scale starts very close to the lowest value in the graph and
misleads the eye into inferring that there have been major changes (i.e., more than
doubling from “two lines” in 2006 to “five lines” in 2011). Fig. 9-16b is the default
graph produced by Microsoft Excel, so be aware of how easy it is to unintention-
ally introduce bias in graphs.

Types of Outputs

There are many different types of reports, such as detail reports, summary reports,
exception reports, turnaround documents, and graphs (Fig. 9-17). Classifying
reports is challenging because many reports have characteristics of several different
types. For example, some detail reports also produce summary totals, making them
summary reports.

348 Chapter 9 User Interface Design

8 Some of the best books on the design of charts and graphical displays are by Edward R. Tufte, The Visual
Display of Quantitative Information (2001), Envisioning Information (1990), and Visual Explanations (1997),
Cheshire, CT: Graphics Press. Another good book is by William Cleveland, Visualizing Data, Summit, NJ:
Hobart Press, 1993.

Read through recent copies of a newspaper or popular press magazine such as Time,
Newsweek, or BusinessWeek and find four graphs. How many are biased and how many are unbiased?

9-10 FINDING BIASY O U R

T U R N

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 348

Media

There are many different types of media used to produce reports. The two dominant
media today are paper and electronic. Paper is the more traditional medium and is
relatively permanent, easy to use, and accessible in most situations. It also is highly
portable, at least for short reports.

Paper also has several rather significant drawbacks. It is inflexible. Once the
report is printed, it cannot be sorted or reformatted to present a different view of the
information. Likewise, if the information on the report changes, the entire report must
be reprinted. Paper reports are expensive, are hard to duplicate, and require consider-
able supplies (paper, ink) and storage space. Paper reports are also hard to quickly move
long distances (e.g., from a head office in Toronto to a regional office in Bermuda).

Many organizations are therefore moving to electronic production of reports,
whereby reports are “printed,” but stored in electronic format on file servers or Web
servers so that users can easily access them. Often, the reports are available in more

FIGURE 9-16
Bias in Graphs: (a) Unbiased Graph with Scale Starting at 0; (b) Biased Graph with Scale Starting at 90.

140

120

100

80

60

40

20

0

Unbiased Graph with Scale Starting at 0

(a)

(b)

Biased Graph with Scale Starting at 90

120

115

110

105

100

95

90
2006 2007 20092008 2010 2011

2006 2007 20092008 2010 2011

Output Design 349

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 349

350 Chapter 9 User Interface Design

I helped a university department
develop a small decision support system to analyze and
rank students who applied to a specialized program.
Some of the information was numeric and could easily be
processed directly by the system (e.g., grade point aver-
age, standardized test scores). Other information
required the faculty to make subjective judgments among
the students (e.g., extracurricular activities, work experi-
ence). The users entered their evaluations of the subjec-
tive information via several data analysis screens in
which the students were listed in alphabetical order.

In order to make the system “easier to use,” the
reports listing the results of the analysis were also pre-
sented in alphabetical order by student name, rather than

in order from the highest ranked student to the lowest
ranked student. In a series of tests prior to installation, the
users selected the wrong students to admit in 20 percent
of the cases. They assumed, wrongly, that the students
listed first were the highest ranked students and simply
selected the first students on the list for admission. Neither
the title on the report, nor the fact that all the students’
names were in alphabetical order made them realize that
they had read the report incorrectly. Alan Dennis

QUESTION:
What concerns could this problem raise about the rest of

the system?

9-C SELECTING THE WRONG STUDENTS

IN ACTION

CONCEPTS

Type of Reports When to Use Notes

Detail report
Lists detailed information about
all the items requested.

When user needs full information
about the items

This report is usually produced only in response to a query
about items matching some criteria.

This report is usually read cover to cover to aid understanding
of one or more items in depth.

Summary report
Lists summary information about
all items.

When user needs brief informa-
tion on many items

This report is usually produced only in response to a query
about items matching some criteria, but it can be a complete
database.

This report is usually read for the purpose of comparing several
items with each other.

The order in which items are sorted is important.

Turnaround document
Outputs that “turn around” and
become inputs.

When a user (often a customer)
needs to return an output to be
processed

Turnaround documents are a special type of report that are
both outputs and inputs. For example, most bills sent to con-
sumers (e.g., credit card bills) provide information about the
total amount owed and also contain a form that consumers fill
in and return with payment.

Graphs
Charts used in addition to and
instead of tables of numbers.

When users need to compare
data among several items

Well-done graphs help users compare two or more items or
understand how one has changed over time.

Graphs are poor at helping users recognize precise numeric
values and should be replaced by or combined with tables
when precision is important.

Bar charts tend to be better than tables of numbers or other
types of charts when it comes to comparing values between
items. (But avoid three-dimensional charts that make compar-
isons difficult.)

Line charts make it easier to compare values over time,
whereas scatter charts make it easier to find clusters or
unusual data.

Pie charts show proportions or the relative shares of a whole.

FIGURE 9-17
Types of Reports

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 350

Applying the Concepts at Tune Source 351

One of the Fortune 500 firms with
which I have worked had an 18-story office building for its
world headquarters. It devoted two full floors of this build-
ing to nothing more than storing “current” paper reports (a
separate warehouse was maintained outside the city for
“archived” reports such as tax documents). Imagine the
annual cost of office space in the headquarters building
tied up in these paper reports. Now imagine how a staff
member would gain access to the reports, and you can
quickly understand the driving force behind electronic

reports, even if most users end up printing them. Within
one year of switching to electronic reports (for as many
reports as practical) the paper report storage area was
reduced to one small storage room.

Alan Dennis

QUESTION:
What types of reports are most suited to electronic for-

mat? What types of reports are less suited to electronic
reports?

9-D CUTTING PAPER TO SAVE MONEY

IN ACTION

CONCEPTS

predesigned formats than are their paper-based counterparts, because the cost of
producing and storing different formats is minimal. Electronic reports also can be
produced on demand as needed, and they enable the user to search more easily for
certain words. Furthermore, electronic reports can provide a means to support ad
hoc reports when users customize the contents of the report at the time the report
is generated. Some users may still print the electronic report on their own printers.
The reduced cost of electronic delivery over distance and improved user access to
the reports usually offsets the cost of local printing.

APPLYING THE CONCEPTS AT TUNE SOURCE

In the Tune Source case, there are three different user interfaces to be designed:
Process 1: Search and Browse Tunes; Process 2: Purchase Tunes; and Process 3:
Promote Tunes. (See Fig. 5-17 in Chapter 5.) In this section, we focus only on
Process 1, the Web portion used by customers to find tunes of interest.

Use Scenario Development

The first step in the interface design process was to develop the key use scenarios for
the Digital Music Download system. Jason Wells, senior systems analyst at Tune
Source and project manager for the Digital Music Download system, began by exam-
ining the DFD and thinking about the types of users and how they would interact with
the system. As discussed previously, Jason identified two use scenarios: the browsing
shopper and the hurry-up shopper. (See Fig. 9-6.) Jason also thought of several other
use scenarios for the Web site in general, but he omitted them because they were not
common. Likewise, he thought of several use scenarios that did not lead to sales (e.g.,
fans looking for information about their favorite artists and music), and he omitted
them as well, as they were not important in the design of the Web site.

Interface Structure Design

Next, Jason created an ISD for the Web system. He began with the DFDs to ensure
that all functionality defined for the system was included in the ISD. Fig. 9-18 shows

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 351

FIGURE 9-18
Tune Source ISD

1.3

Search
by Composer

1.2

4.1

Show
Liner Notes

1.3

4.4

Add to
Shopping Cart

1.3

4.2

Listen to
Sample

1.3

1.2

Search
by Artist

1.2

1.4

View
Favorites

1.2

1.1

Search
by Tune

1.2

2.1

List
by Genre

1.2

1

Search
for Tune

1.2

2

Browse By
Genre

1.2

0

Main Menu
(system home

page)

3

Web
Promotions

1.1

4.3

Add to
Favorites

1.3

4

Show Info
for One Tune

1.3
3.3

List Web
Specials

1.1

3.2

List New
Tunes

1.1

3.1

List Most
Popular

1.1

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 352

the ISD for the Web portion of process 1. In practice, some of the processes on the
level 1 DFD for this part of the system (Fig. 5-18) might be decomposed into sev-
eral level 2 DFDs. However, to keep things simple, in this chapter we show an ISD
that links to the level 1 DFD in Fig. 5-18, rather than attempting to create more
DFDs and link the ISD to them.

The Initial Interface Structure Design The Digital Music Download system will have
a main menu or home page (interface number 0) that will enable the user to initiate a
search (1), which would allow the user to enter search criteria to produce a list of tunes
based on tune (1.1), artist (1.2), or composer (1.3), or to view the user’s Favorites List
(1.4). The home page would also have a browse feature (2) that would enable the user
to select a music genre and produce a list of tunes within that genre (2.1). The home
page would also have links to Web promotions (3) that would lead to lists of most
popular tunes (3.1), newly added tunes (3.2), or Web special promotions (3.3).

Each of these lists of tunes would enable the user to click on a specific tune
title and view detailed information about it (4), and listen to music samples. Jason
decided to provide the additional marketing materials (e.g., reviews) on a separate
page (4.1), rather than including them on the main entry for each tune, to prevent
overcrowding and long time delays on the Web. Both the tune page (4) and addi-
tional material page (4.1) would let the user listen to a sample (4.2) and then put the
tune on the user’s Favorites List (4.3) and add to it the shopping cart (4.4). The user
could then return to the home page (0) to enter a new search.

Reviewing the Interface Structure Design Jason then examined the use scenarios to
see how well the ISD enabled different types of users to work through the system.
He started with the “browsing shopper” scenario and followed it through the ISD,
imagining what would appear on each screen and pretending to navigate through
the system. He found that the ISD worked well.

Jason next explored the “hurry-up shopper” scenario. In this case, the ISD did
not work as well. Moving from the home page to the search page to the list of
matching tunes to the tune info page with price and other information takes three
mouse clicks. This falls within the three-clicks rule, but for someone in a hurry, this
may be too many. Jason decided to add a “quick search” option to the home page
(interface 0) that would enable the user to enter one search criterion (e.g., search-
ing by just artist name or title, rather than doing a more detailed search, as would
be possible on the search page) that, with one click, would take the user to the one
tune that matched the criterion (interface 4) or to a list of tunes if there were more
than one (interfaces 1.1, 1.2, 1.3). This would enable an impatient user to get to the
tune of interest in one or two clicks.

Interface Standards Design

Once the ISD was complete, Jason moved on to develop the interface standards for
the system. The interface metaphor was straightforward: a Tune Source retail music
store. The key interface objects and actions were equally straightforward, as was the
use of the Tune Source logo icon (Fig. 9-19).

Interface Template Design

For the interface template, Jason decided on a simple, clean design that had the
Tune Source logo in the upper left corner. The template had a navigation menu

Applying the Concepts at Tune Source 353

c09UserInterfaceDesign.qxd 11/3/11 12:06 PM Page 353

across the top for navigation within the entire Web site (e.g., overall Web site home
page, store locations) and one menu down the side of the page for navigation within
the Digital Music Download system. The left-edge menu contained the links to the
three top-level screens (interfaces 1, 2 and 3 in Fig. 9-18), as well as the “quick
search” option. The center area of the screen is used for displaying forms and
reports when the appropriate link is clicked. See Fig. 9-20. At this point, Jason
decided to seek some quick feedback on the interface structure and standards
before investing time in prototyping the interface designs. Therefore, he met with
Carly Edwards, the project sponsor, to discuss the emerging design. Making
changes at this point would be much simpler than waiting until after doing the pro-
totype. Carly had a few suggestions, so, after the meeting, Jason made the changes
and moved into the design prototyping step.

Design Prototyping

Jason decided to use Visio to create prototypes of the system. The Digital Music
Download system was new territory for Tune Source and a strategic investment in
a new business model, so it was important to make sure that no key issues were
overlooked. The prototypes would provide the most detailed information and could
be developed rapidly. Once satisfied with the layout, Jason planned to create HTML
prototypes that could be used to test the interface interactively.

Jason began designing the prototype, starting with the home screen, and grad-
ually worked his way through all the screens. The process was very iterative, and he

354 Chapter 9 User Interface Design

Interface Metaphor: A Tune Source Music Store.

Interface Objects

• Tune: All items, whether single track or longer composition, unless it is important to distinguish
among them.

• Artist: Person or group who records the tune.

• Title: Title or name of tune.

• Composer: Person or group who wrote the music for the tune (primarily used for classical music).

• Music Genre: Type of music. Current categories include Rock, Jazz, Classical, Country,
Alternative, Soundtracks, Rap, Folk, Gospel.

• Tune List: List of tune(s) that match the specified criteria.

• Favorites List: A place for the customer to store tunes of interest.

• Shopping Cart: Place to store tunes until they are purchased.

Interface Actions

• Search for: Display a tune list that matches specified criteria.

• Browse: Display a tune list sorted in order by some criteria.

• Buy: Buy permission to download tune(s).

• Download: Transfer file touser’s computer after purchase.

Interface Icons

• Tune Source Logo will be used on all screens.

FIGURE 9-19
Tune Source Interface Standards

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 354

made many changes to the screens as he worked. Once he had an initial prototype
designed, he posted it on Tune Source’s internal intranet and solicited comments
from several friends with lots of Web experience. He revised it according to the
comments he received. Fig. 9-21 presents some screens from the prototype.

Interface Evaluation

The next step was interface evaluation. Jason decided on a two-phase evaluation.
The first evaluation was to be an interactive one conducted by Carly Edwards, her
marketing managers, selected staff members, and selected store managers. They
worked hands-on with the prototype and identified several ways to improve it. Jason
modified the HTML prototype to reflect the changes suggested by the group and
asked Carly to review it again.

Applying the Concepts at Tune Source 355

FIGURE 9-20
Tune Source User Interface Template

Tune Source Digital Music DownloadsTune Source Digital Music Downloads

Sign in to your account New? Register here

Tune Source
Your Source for Your Music

Featured Artist:

Display Area

Featured Album
Covers

or
Artist Photos

Genres:

Specials:

Home

Search Text Search in Go

Getting
Started

Download
FAQs

Buy
CDs

Tune Source
Stores

About
Tune Source

Quick Links

View Your
Favorites

View Your
Cart

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 355

FIGURE 9-21
Sample interfaces from the Tune Source
design prototype:
(a) list by artist (interface 1.2)
(b) information for one tune (interface 4)

Tune Source Digital Music DownloadsTune Source Digital Music Downloads

Sign in to your account New? Register here

Tune Source
Your Source for Your Music

Featured Artist:

Song Title Artist Album Time Price

1. Don’t Know Why

 2. Come Away With Me

Etc.

Genres:

Specials:

Home

Norah Jones Artist Name Go

Buy!

Buy!

Getting
Started

Download
FAQs

Buy
CDs

Tune Source
Stores

About
Tune Source

Quick Links

View Your
Favorites

View Your
Cart

Norah Jones

Norah Jones

Come Away With Me

Come Away With Me

3:06

3:18

$0.88

$0.88

Tune Source Digital Music DownloadsTune Source Digital Music Downloads

Sign in to your account New? Register here

Tune Source
Your Source for Your Music

Featured Artist:

Song Title

Composer

Artist

Release Date Formate(s) Size

Album Time Price

1. Don’t Know Why

Genres:

Specials:

Home

Norah Jones Artist Name Go

Add to Favorites Add to Cart Buy Now!

Getting
Started

Download
FAQs

Buy
CDs

Tune Source
Stores

About
Tune Source

Quick Links

View Your
Favorites

View Your
Cart

Norah Jones

Feb, 26, 2002 MP3, WMA 3.6 MBNorah Jones

Listen:

Come Away With Me 3:06 $0.88

(a)

(b)

356

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 356

The second evaluation was again interactive, this time performed by a series
of two focus groups of potential customers, one with little Internet experience, the
other with extensive Internet experience. Once again, several minor changes were
identified. Jason again modified the HTML prototype and asked Carly to review it
once more. When she was satisfied, the interface design was complete.

SUMMARY

User Interface Design Principles
The first element of the user interface design is the layout of the screen, form, or report,
which is usually depicted by rectangular shapes with a top area for navigation, a cen-
tral area for inputs and outputs, and a status line at the bottom. The design should help
the user be aware of content and context, both between different parts of the system as
they navigate through it and within any one form or report. All interfaces should be
aesthetically pleasing (not necessarily works of art) and need to include significant
white space, use colors carefully, and be consistent with fonts. Most interfaces should
be designed to support both novice or first-time users as well as experienced users.
Consistency in design (both within the system and across other systems used by the
users) is important for the navigation controls, terminology, and layout of forms and
reports. Finally, all interfaces should attempt to minimize user effort, for example, by
requiring no more than three clicks from the main menu to perform an action.

The User Interface Design Process
First, analysts develop use scenarios describing commonly used patterns of actions
that the users will perform. Second, they design the interface structure via an ISD
based on the DFD. The ISD is then tested with the use scenarios to ensure that it
enables users to quickly and smoothly perform these scenarios. Third, analysts define
the interface standards in terms of interface metaphor(s), objects, actions, and icons.
These elements are drawn together by the design of a basic interface template for
each major section of the system. Fourth, the designs of the individual interfaces are
prototyped, either through a simple storyboard, an HTML prototype, or a prototype
in the development language of the system itself (e.g., Visual Basic). Finally,
interface evaluation is conducted by heuristic evaluation, walk-through evaluation,
interactive evaluation, or formal usability testing. This evaluation almost always
identifies improvements, so the interfaces are redesigned and evaluated further.

Navigation Design
The fundamental goal of the navigation design is to make the system as simple to use
as possible by preventing the user from making mistakes, simplifying the recovery
from mistakes, and using a consistent grammer order (usually object–action order).
Command languages, natural languages, and direct manipulation are used in naviga-
tion, but the most common approach is menus, (menu bar, drop-down menu, hyper-
link menu, embedded hyperlinks, pop-up menu, tab menu, buttons and toolbars, and
image maps). Error messages, confirmation messages, acknowledgment messages,
delay messages, and help messages are common types of messages.

Input Design
The goal of input design is to simply and easily capture accurate information for the
system, typically by using online or batch processing, capturing data at the source,

Summary 357

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 357

and minimizing keystrokes. Input design includes both the design of input screens
and all preprinted forms that are used to collect data before they are entered into the
information system. There are many types of inputs, such as text fields, number
fields, check boxes, radio buttons, on-screen list boxes, drop-down list boxes, and
sliders. Most inputs are validated by some combination of completeness checks,
format checks, range checks, check digits, consistency checks, and database checks.

Output Design
The goal of output design is to present information to users so that they can accu-
rately understand it with the least effort, usually by understanding how reports will
be used and designing them to minimize information overload and bias. Output
design means designing both screens and reports in other media, such as paper and
the Web. There are many types of reports, including detail reports, summary
reports, exception reports, turnaround documents, and graphs.

358 Chapter 9 User Interface Design

Acknowledgment message
Action–object order
Aesthetics
Bar code reader
Batch processing
Batch report
Bias
Button
Check box
Check digit check
Combo box
Command language
Completeness check
Confirmation message
Consistency
Consistency check
Content awareness
Context-sensitive help
Database check
Data-entry operator
Default value
Delay message
Density
Detail report
Direct manipulation
Drop-down list box
Drop-down menu
Ease of learning
Ease of use
Edit check
Error message
Exception report
Field
Field label

Form
Format check
Grammar order
Graph
Graphical user interface (GUI)
Help message
Heuristic evaluation
Hot key
HTML prototype
Human-computer interaction (HCI)
Image map
Information load
Input mechanism
Interactive evaluation
Interface action
Interface design prototype
Interface evaluation
Interface icon
Interface metaphor
Interface object
Interface standards
Interface structure design
Interface structure diagram (ISD)
Interface template
Language prototype
Layout
Magnetic stripe readers
Menu
Menu bar
Natural language
Navigation mechanism
Number box
Object-action order
Online processing

On-screen list box
Optical character recognition
Output mechanism
Pop-up menu
Radio button
Range check
Real-time information
Real-time report
Report
RFID tag
Screen
Selection box
Slider
Smart card
Source data automation
Storyboard
Summary report
System interface
Tab menu
Text box
Three-clicks rule
Toolbar
Tool tip
Transaction processing
Turnaround document
Usability testing
Use scenario
User experience
User interface
Validation
Walk-through evaluation
Web page
White space

KEY TERMS

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 358

Exercises 359

1. Explain three important user interface design
principles.

2. What are three fundamental parts of most user
interfaces?

3. Why is content awareness important?
4. What is white space, and why is it important?
5. Under what circumstances should densities be low?

high?
6. How can a system be designed to be used by both

experienced and first-time users?
7. Why is consistency in design important? Why can

too much consistency cause problems?
8. How can different parts of the interface be consistent?
9. Describe the basic process of user interface design.

10. What are use scenarios, and why are they important?
11. What is an interface structure diagram (ISD), and

why is it used?
12. Why are interface standards important?
13. Explain the purpose and contents of interface meta-

phors, interface objects, interface actions, interface
icons, and interface templates.

14. Why do we prototype the user interface design?
15. Compare and contrast the three types of interface

design prototypes.
16. Why is it important to perform an interface evalua-

tion before the system is built?
17. Compare and contrast the four types of interface

evaluation.
18. Under what conditions is heuristic evaluation

justified?
19. What type of interface evaluation did you perform

in the “Your Turn 9.1”?
20. Describe three basic principles of navigation

design.
21. How can you prevent mistakes?
22. Explain the differences between object–action

order and action–object order.

23. Describe four types of navigation controls.
24. Why are menus the most commonly used naviga-

tion control?
25. Compare and contrast four types of menus.
26. Under what circumstances would you use a drop-

down menu versus a tab menu?
27. Describe five types of messages.
28. What are the key factors in designing an error

message?
29. What is context-sensitive help? Does your word

processor have context-sensitive help?
30. Explain three principles in the design of inputs.
31. Compare and contrast batch processing and online

processing. Describe one application that would use
batch processing and one that would use online
processing.

32. Why is capturing data at the source important?
33. Describe four devices that can be used for source

data automation.
34. Describe five types of inputs.
35. Compare and contrast check boxes and radio but-

tons. When would you use one versus the other?
36. Compare and contrast on-screen list boxes and drop-

down list boxes. When would you use one versus the
other?

37. Why is input validation important?
38. Describe five types of input validation methods.
39. Explain three principles in the design of outputs.
40. Describe five types of outputs.
41. When would you use electronic reports rather than

paper reports, and vice versa?
42. What do you think are three common mistakes that

novice analysts make in interface design?
43. How would you improve the form in Fig. 9-4?

QUESTIONS

A. Develop two use scenarios for a Web site that sells
some retail products (e.g., books, music, clothes).

B. Draw an ISD for a Web site that sells some retail
products (e.g., books, music, clothes).

C. Describe the primary components of the interface
standards for a Web site that sells some retail products
(metaphors, objects, actions, icons, and templates).

D. Develop two use scenarios for the DFD in exercise C
in Chapter 5.

E. Draw an ISD for the DFD in exercise C in Chapter 5.
F. Develop the interface standards (omitting the interface

template) for the DFD in exercise C in Chapter 5.
G. Develop two use scenarios for the DFD in exercise E

in Chapter 5.

EXERCISES

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 359

360 Chapter 9 User Interface Design

H. Develop the interface standards (omitting the inter-
face template) for the DFD in exercise E in Chapter 5.

I. Design an interface template for Exercise E.
J. Draw an ISD for the DFD in Exercise E in Chapter 5.
K. Design a storyboard for Exercise E in Chapter 5.
L. Develop an HTML, prototype for Exercise E in this

chapter.
M. Develop an HTML prototype for Exercise F in this

chapter.
N. Develop the interface standards (omitting the inter-

face template) for the DFD in Exercise I in Chapter 5.
O. Draw an ISD for the DFD in Exercise I in Chapter 5.
P. Design a storyboard for Exercise I in Chapter 5.

Q. Develop two use scenarios for the DFD in Exercise
I in Chapter 5.

R. Ask Jeeves (http://www.askjeeves.com) is an Inter-
net search engine that uses natural language. Exper-
iment with it and compare it with search engines that
use key words.

S. Draw an ISD for “Your Turn 9.7,” using the opposite
grammar order from your original design. (If you
didn’t do the “Your Turn” exercise, draw two ISDs,
one in each grammar order.) Which is “best”? Why?

T. In “Your Turn 9.7” you probably used menus.
Design the navigation system again, using a com-
mand language.

1. Tots to Teens is a catalog retailer specializing in chil-
dren’s clothing. A project has been underway to develop
a new order-entry system for the company’s catalog
clerks. The old system had a character-based user inter-
face that corresponded to the system’s COBOL under-
pinnings. The new system will feature a graphical user
interface more in keeping with up-to-date PC products in
use today. The company hopes that this new user inter-
face will help reduce the turnover they have experienced
with their order-entry clerks. Many newly hired order
entry staff found the old system very difficult to learn and
were overwhelmed by the numerous mysterious codes
that had to be used to communicate with the system.

A user interface walk-through evaluation was sched-
uled for today to give the users a first look at the new
system’s interface. The project team was careful to
invite several key users from the order-entry depart-
ment. In particular, Norma was included because of her
years of experience with the order-entry-system. Norma
was known to be an informal leader in the department;
her opinion influenced many of her associates. Norma
had let it be known that she was less than thrilled with
the ideas she had heard for the new system. Due to her
experience and good memory, Norma worked very
effectively with the character-based system and was
able to breeze through even the most convoluted trans-
actions with ease. Norma had trouble suppressing a
sneer when she heard talk of such things as “icons” and
“buttons” in the new user interface.

Cindy was also invited to the walk-through because
of her influence in the order-entry department. Cindy
has been with the department for just one year, but she
quickly became known because of her successful

organization of a sick-child day-care service for the chil-
dren of the department workers. Sick children are the
number-one cause of absenteeism in the department, and
many of the workers could not afford to miss workdays.
Never one to keep quiet when a situation needed improve-
ment, Cindy has been a vocal supporter of the new system.
a. Drawing upon the design principles presented in the

text, describe the features of the user interface that will
be most important to experienced users like Norma.

b. Drawing upon the design principles presented in the
text, describe the features of the user interface that
will be most important to novice users like Cindy.

2. The members of a systems development project team
have gone out for lunch together, and as often happens,
the conversation has turned to work. The team has been
working on the development of the user interface design,
and so far, work has been progressing smoothly. The
team should be completing work on the interface proto-
types early next week. A combination of storyboards and
language prototypes has been used in this project. The
storyboards depict the overall structure and flow of the
system, but the team developed language prototypes of
the actual screens because they felt that seeing the actual
screens would be valuable for the users.

Chris (the youngest member of the project team): I
read an article last night about a really cool way to
evaluate a user interface design. It’s called usability
testing, and it’s done by all the major software vendors.
I think we should use it to evaluate our interface design.

Heather (system analyst): I’ve heard of that, too, but
isn’t it really expensive?

Mark (project manager): I’m afraid it is expensive, and
I’m not sure we can justify the expense for this project.

MINICASES

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 360

Minicases 361

Chris: But we really need to know that the interface
works. I thought this usability testing technique would
help us prove we have a good design.

Amy (systems analyst): It would, Chris, but there are
other ways, too. I assumed we’d do a thorough walk-
through with our users and present the interface to them
at a meeting. We can project each interface screen so
that the users can see it and give us their reaction. This
is probably the most efficient way to get the users’
response to our work.

Heather: That’s true, but I’d sure like to see the users
sit down and work with the system. I’ve always learned
a lot by watching what they do, seeing where they get
confused, and hearing their comments and feedback.

Ryan (systems analyst): It seems to me that we’ve put
so much work into this interface design that all we
really need to do is review it ourselves. Let’s just make
a list of the design principles we’re most concerned
about and check it ourselves to make sure we’ve fol-
lowed them consistently. If we have, we should be fine.

We want to get moving on the implementation, you
know.

Mark: These are all good ideas. It seems like we’ve
all got a different view of how to evaluate the interface
design. Let’s try and sort out the technique that is best
for our project.

Develop a set of guidelines that can help a project
team like the one discussed here select the most appro-
priate interface evaluation technique for their project.

3. The menu structure for Holiday Travel Vehicle’s exist-
ing character-based system is shown here. Develop and
prototype a new interface design for the system’s func-
tions, using a graphical user interface. Assume that the
new system will need to include the same functions as
those shown in the menus provided. Include any mes-
sages that will be produced as a user interacts with your
interface (error, confirmation, status, etc.). Also, pre-
pare a written summary that describes how your inter-
face implements the principles of good interface design
as presented in the textbook.

Holiday Travel Vehicles

Main Menu

1 Sales Invoice
2 Vehicle Inventory
3 Reports
4 Sales Staff

Type number of menu selection here:____

Holiday Travel Vehicles

Sales Invoice Menu

1 Create Sales Invoice
2 Change Sales Invoice
3 Cancel Sales Invoice

Type number of menu selection here:____

Holiday Travel Vehicles

Vehicle Inventory Menu

1 Create Vehicle Inventory Record
2 Change Vehicle Inventory Record
3 Delete Vehicle Inventory Record

Type number of menu selection here:____

Holiday Travel Vehicles

Reports Menu

1 Commission Report
2 RV Sales by Make Report
3 Trailer Sales by Make Report
4 Dealer Options Report

Type number of menu selection here:____

Holiday Travel Vehicles

Sales Staff Maintenance Menu

1 Add Salesperson Record
2 Change Salesperson Record
3 Delete Salesperson Record

Type number of menu selection here:____

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 361

362 Chapter 9 User Interface Design

4. One aspect of the new system under development at
Holiday Travel Vehicles will be the direct entry of the
sales invoice into the computer system by the salesper-
son as the purchase transaction is being completed. In
the current system, the salesperson fills out the paper
form shown here.

Design and prototype an input screen that will permit
the salesperson to enter all the necessary information for
the sales invoice. The following information may be
helpful in your design process: Assume that Holiday
Travel Vehicles sells recreational vehicles and trailers
from four different manufacturers. Each manufacture has
a fixed number of names and models of RVs and trailers.
For the purposes of your prototype, use this format:

Also, assume that there are 10 different dealer
options which could be installed on a vehicle at the cus-
tomer’s request. The company currently has 10 sales-
people on staff.

Mfg-A Name-1 Model-X
Mfg-A Name-1 Model-Y
Mfg-A Name-1 Model-Z
Mfg-B Name-1 Model-X
Mfg-B Name-1 Model-Y
Mfg-B Name-2 Model-X
Mfg-B Name-2 Model-Y
Mfg-B Name-2 Model-Z

Mfg-C Name-1 Model-X
Mfg-C Name-1 Model-Y
Mfg-C Name-1 Model-Z
Mfg-C Name-2 Model-X
Mfg-C Name-3 Model-X
Mfg-D Name-1 Model-X
Mfg-D Name-2 Model-X
Mfg-D Name-2 Model-Y

Holiday Travel Vehicles

Sales Invoice Invoice #: ____________
Invoice Date: __________

Customer Name: ______________________________________
Address: ______________________________________

City: ______________________________________
State: ______________________________________

Zip: ______________________________________
Phone: ______________________________________

New RV/TRAILER
(Circle one) Name: ______________________________________

Model: ______________________________________
Serial #:________________________ Year: _________

Manufacturer: ______________________________________

Trade-in RV/TRAILER
(Circle one) Name: ______________________________________

Model: ______________________________________
Year: ______________________________________

Manufacturer: ______________________________________

Options: Code Description Price

Vehicle Base Cost: ________________
Trade-in Allowance: ________________ (Salesperson Name)

Total Options: ________________
Tax: ________________

License Fee: ________________
Final Cost: ________________ (Customer Signature)

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 362

c09UserInterfaceDesign.qxd 10/3/11 8:53 AM Page 363

This page is intentionally left blank

D E S I G N

T A S K C H E C K L I S T

P L A N N I N G A N A L Y S I S D E S I G N

▼

Select Design Strategy

Design Architecture

Select Hardware and Software

Develop Use Scenarios

Design Interface Structure

Develop Interface Standards

Design Interface Prototype

Evaluate User Interface

Design User Interface

Develop Physical Data Flow Diagrams

Develop Program Structure Charts

Develop Program Specifications

Select Data Storage Format

Develop Physical Entity Relationship Diagram

Denormalize Entity Relationship Diagram

Performance Tune Data Storage

Size Data Storage

A N A L Y S I S

P L A N N I N G

✔

✔

✔

✔

✔

✔

✔

✔

✔

c10ProgramDesign.qxd 12/5/11 2:32 PM Page 364

I M P L E M E N TAT I O N

nother important activity of the design phase is designing the programs that will
perform the system’s application logic. Programs can be quite complex, so ana-

lysts must create instructions and guidelines for programmers that clearly describe what
the program must do. This chapter describes the activities that are performed when the
program design is developed. First, the process of revising logical data flow diagrams into
physical data flow diagrams is outlined. Then, two techniques typically used together for
describing programs are presented. The structure chart depicts a program at a high level
in graphic form. The program specification contains a set of written instructions in more
detail. Together, these techniques communicate how the application logic for the system
needs to be developed.

OBJECTIVES

■ Be able to revise logical DFDs into physical DFDs.
■ Be able to create a structure chart.
■ Be able to write a program specification.
■ Be able to write instructions using pseudocode.
■ Become familiar with event-driven programming.

CHAPTER OUTLINE

C H A P T E R 1 0

A

PROGRAM
DESIGN

Introduction
Moving from Logical to Physical Process

Models
The Physical Data Flow Diagram
Applying the Concepts at Tune Source

Designing Programs
Structure Chart

Syntax
Building the Structure Chart

Applying the Concepts at Tune Source
Design Guidelines

Program Specification
Syntax
Applying the Concepts at Tune Source

Summary

c10ProgramDesign.qxd 8/26/11 6:10 PM Page 365

INTRODUCTION

The application logic for a system will be expressed in programs that will be writ-
ten during construction of the new system. Program design is the part of the design
phase of the SDLC during which analysts determine what programs will be written,
create instructions for the programmers about how the code should be written, and
identify how the pieces of code will fit together to form a program.

Some people may think that program design is becoming less important, as
project teams rely increasingly on packaged software or libraries of preprogrammed
code to build systems. Program design techniques are still very important, however,
for two reasons. First, even preexisting code needs to be understood, organized, and
pieced together. Second, it is still common for the project team to have to write
some (if not all) code and produce original programs that support the application
logic of the system.

As analysts turn their attention to the programs that will need to be created for
the new system, several things must be done. First, various implementation decisions
will be made about the new system, such as what programming language(s) will be
used. The data flow diagrams created during analysis are modified to show these
implementation decisions, resulting in a set of physical data flow diagrams. The ana-
lysts then determine how the processes of the system will be organized, using a
structure chart to depict their decisions. Finally, detailed instructions called program
specifications are developed so that during construction, the programmers know
exactly what they should be creating. These activities are the subject of this chapter.

MOVING FROM LOGICAL TO
PHYSICAL PROCESS MODELS

During analysis, the systems analysts identified the processes and data flows that are
needed to support the functional requirements of the new system. These processes
and data flows are contained on the logical data flow diagrams for the to-be system.
As we discussed in Chapter 5, the analysts avoid making implementation decisions
during analysis, focusing first on the business requirements of the system. The logi-
cal DFDs do not contain any indication of how the system will actually be imple-
mented when the information system is built; they simply state what the new system
will do. In this way, developers do not get distracted by technical details and are not
biased by technical limitations in the initial stages of system development. Business
users better understand diagrams that show the “business view” of the system.

During design, physical process models are created to show implementation
details and explain how the final system will work. These details can include refer-
ences to actual technology, the format of information moving through processes,
and the human interaction that is involved. In some cases, most often when pack-
ages are used, the use cases may need to be revised as well. These to-be models
describe characteristics of the system that will be created, communicating the “sys-
tems view” of the new system.

The Physical Data Flow Diagram

The physical DFD contains the same components as the logical DFD (e.g., data
stores, data flows), and the same rules apply (e.g., balancing, decomposition). The

366 Chapter 10 Program Design

c10ProgramDesign.qxd 8/26/11 6:10 PM Page 366

basic difference between the two models is that a physical DFD contains additional
details that describe how the system will be built. There are five steps to perform to
make the transition to the physical DFD (Figure 10-1).

Step 1: Add Implementation References The first step in creating a physical DFD
is to begin with the existing logical DFD and add references to the ways in which
the data stores, data flows, and processes will be implemented. Data stores on
physical DFDs will refer to files and/or database tables; processes, to programs
or human actions; and data flows, to the physical media for the data, such as
paper reports, bar code scanning, input screens, or computer reports. The names
for the various components on the physical DFD should contain references to
these implementation details. By definition, external entities on the DFD are out-
side of the scope of the system and therefore remain unchanged in the physical
diagram.

Figure 10-2 shows the physical DFD that was drawn to depict the physical
details for the original logical DFD from Figure 5-18. Notice how the logical data
store called Available Tunes that will store data in the Available Tunes table of a
mySQL database has been renamed “mySQL: Available Tunes Table” and the logi-
cal data flow Requested Tunes now includes “mySQL: Requested Tunes Record” to
show that this information will be in the form of a record from the Available Tunes
table. Can you identify other changes that were made to the physical model to com-
municate how other components will be implemented?

Step 2: Draw a Human-Machine Boundary The second step is to add a human–machine
boundary. Physical DFDs differentiate human and computer interaction by a
human-machine boundary, a line drawn on the model to separate human action
from automated processes. For example, the search and browse tunes processes
(i.e., processes 1.1–1.3) require the customer to interact with the Web by using an
interface driven by system programs and processes. The physical model, therefore,
contains a line separating the customer from the rest of the process to show exactly
what is done by a person as opposed to a “machine.” (See Figure 10-2.)

Moving from Logical to Physical Process Models 367

Add implementation references. Using the existing logical DFD, add the way in which the
data stores, data flows, and processes will be
implemented to each component.

Draw a human–machine boundary. Draw a line to separate the automated parts of the system
from the manual parts.

Add system-related data stores, Add system-related data stores, data flows, and processes
data flows, and processes. to the model (components that have little to do with the

business process).
Update the data elements in the Update the data flows to include system-related data

data flows. elements.
Update the metadata in the Update the metadata in the CASE repository to include

CASE repository. physical characteristics.

CASE = computer-aided software engineering; DFD = data flow diagram.

Step Explanation

FIGURE 10-1
Steps to Create the Physical Data
Flow Diagram

c10ProgramDesign.qxd 8/26/11 6:10 PM Page 367

Every part of every process in the system may not be automated, so it is up to
the project team to determine where to draw a human-machine boundary and how
large to draw it. The project team will need to weigh the following criteria when
drawing the boundary: cost, efficiency, and integrity. First, a piece of the system
should be automated only if the cost of computerizing it is less than doing it man-
ually. Next, the system should be more efficient with the mode that is selected. For
example, if the project team must decide whether to store a paper copy of a docu-
ment or to save an electronic file of information in a central file server, the team
likely will find the latter option to be more efficient in terms of improving the users’
ability to access and update the information.

Finally, the team should consider the integrity of the information that is han-
dled by the system. It may be cheaper for a clerk to record orders by phone and
deliver the order forms to the distribution area; however, errors could be made when
the clerk takes the order, and a form could be misplaced en route to distribution.
Instead, the project team may be more comfortable with an automated process that
accepts a customer’s order from the customer directly, using a Web form that is then
directly transmitted to the distribution system.

368 Chapter 10 Program Design

FIGURE 10-2
Physical DFD for Tune Source Process 1: Search and Browse Tunes (the How)

MySQL: Shopping
Cart TableD7

Web Site
Access URL

HTML: Customized
Web Content

Matching
Tunes Report

Selection
Form

.mp3/.wmv file:
Tune Sample

.mp3/.wmv file:
Tune Sample

Process
Search

Requests

HTML/PHP

1.2

Process
Tune

Selection

HTML/PHP

1.3

Customer

Search Request
Input Form

MySQL Record:
Web Promotions

ASCII Record:
Tune to Buy

Step 2

Step 3

Load
Web Site

HTML/PHP

1.1
MySQL: Targeted
Promotions TableD3

MySQL Record:
New Interest

MySQL record:
New Favorite

MySQL Record:
Tune to Buy

MySQL: Customer
Interest TableD4

ASCII: Tune to
Buy History FileD8

MySQL Record:
Customer
Favorites

MySQL: Customer
Favorites TableD2

MySQL Record:
Requested

Tunes

MySQL: Available
Tunes TableD1

c10ProgramDesign.qxd 8/26/11 6:10 PM Page 368

Step 3: Add System-Related Data Stores, Data Flows, and Processes In step 3, you
will add to the DFD additional processes, stores, or flows that are specific to the
implementation of the system and have little (or nothing) to do with the business
process itself. These additions can be due to technical limitations or to the need for
audits, controls, or exception handling. Technical limitations occur when technology
cannot support the way in which the system is modeled logically. For example,
suppose that a data store exists on the logical DFD to hold customer information,
but the database technology that will be used to build the system cannot handle the
large volume of customers in one table. A physical DFD may need to have two data
stores—one for current customers and one for old customers—so that the technology
will work properly.

Audits, controls, or exception handling refers to putting checks and balances
in place in the system in case something goes wrong. For instance, on rare occasions,
customers might call and cancel an order that they placed. Instead of just having the
system get rid of the information about that order, a process may be included for
control purposes that records the deleted orders along with reasons for the cancel-
lations. Or, consider the search and browse processes that we have been working
with. Suppose that the project team is worried about the transfer of purchase
records to the purchase tunes process. As a precaution, the team can place a data
store on the physical DFD that captures information about each batch of records
that is sent to the purchase tunes process. In this way, if problems were to occur,
there would be a history of transactions that could be examined or used for backup
purposes. (See Figure 10-2.)

Step 4: Update the Data Elements in the Data Flows The fourth step is to update
the elements in the data flows. The data flows will appear to be identical in both the
logical and physical DFDs, but the physical data flows may contain additional
system-related data elements, for reasons similar to those described in the previous
section. For example, most systems add system-related data elements to data flows
that capture when changes were made to information (e.g., a last_update data
element) and who made the change (e.g., an updated_by data element). Another
physical data element is a system-generated number used to uniquely identify each
record in a database. During step 4, the physical data elements are added to the
metadata descriptions of the data flows in the CASE repository.

Step 5: Update the Metadata in the Computer-Aided Software Engineering Repository
Finally, the project team needs to make sure that the information about the DFD
components in the CASE repository is updated with implementation-specific infor-
mation. This information can include when batch processes will be run and how
often, names of the actual tables or files that are represented by data flows, and the
sizes and projected growth rates of the data stores.

Applying the Concepts at Tune Source

To better understand physical DFDs, we will now use an example based on the
Tune Source promote tunes process. Figure 10-3 shows the logical DFD. We will
perform each step to create the physical model, using the logical model as our
starting point. Before we begin, see if you can identify how the data stores, data
flows, and processes will need to change to reflect physical characteristics of the
proposed system.

Moving from Logical to Physical Process Models 369

c10ProgramDesign.qxd 8/26/11 6:10 PM Page 369

First, we need to identify how the data flows, data stores, and processes will
be implemented and add the implementation references on the DFD. From the orig-
inal business requirements, we know that the marketing managers will receive
reports on customer interests and tune sales via the Web. The marketing managers
will submit information on promotions that will be displayed on the Web site. The
marketing managers will also submit promotions that will be sent to customers via
e-mail. On the physical DFD, each of the data flows is altered by renaming it appro-
priately, as shown in Figure 10-4.

370 Chapter 10 Program Design

FIGURE 10-3
Logical Model of the Promote Tunes Process

3

Promote
Tunes

Marketing
Manager

Customer

Promotion
Decisions

Sales
Patterns

E-mail
Promotions

Customer
Interests

Recent
Sales

Time to Determine
Promotions

SalesD5

Customer
InterestsD4

CustomerD6

Targeted
PromotionsD3

New Web Site
Promotions

Customer
E-mail

3

Promote
Tunes

Visual Basic

Marketing
Managers

Customer

Promotion
Decisions
Input Form

Sales
Patterns
Report

HTML: E-mail
Promotion
Messages

Access Record:
E-mail Message

MySQL Record:
Customer
Interests

MySQL Record:
Recent Sales

Time to Determine
Promotions

MySQL:
Sales Table

D5

MySQL: Customer
Interest TableD4

MySQL:
Customer Table

D6

Access: E-mail
Promotions Table

D9

MySQL: Targeted
Promotions TableD3

MySQL Record:
New Web Site

Promotions

MySQL Field:
Customer

E-mail

FIGURE 10-4
Physical Model for Promote Tunes Process

c10ProgramDesign.qxd 8/26/11 6:10 PM Page 370

Let us assume that the data stores (i.e., customer interests, sales, targeted pro-
motions, and customer) will refer to tables called customer interests, sales, targeted
promotions, and customers, respectively, that are contained in a MySQL database;
therefore, all four stores are updated with this information to indicate their physi-
cal qualities. Also, the promote tunes process will be written in Visual Basic (VB),
and this information is added to the process model.

As a second step, a dotted line is drawn to represent the human-machine
boundary and to communicate how much (and what parts) of the process is auto-
mated, and next we add system-related components to the model. Let us assume
that a separate Access database is going to be maintained that includes records on
e-mail promotion messages sent to customers. This database may be used by the
marketing managers to analyze the effectiveness of their e-mail promotional cam-
paigns. So, we add a data store to the diagram to reflect this decision. See Fig-
ure 10-4 for these changes.

Completion of the last two steps, 4 and 5, will not be apparent on the physical
DFD. In step 4, we will add system-related data elements to the data flow entries in
the CASE repository. For example, we will create a system-related data element
called date-added and add it to the data flow that goes from process 3 to the targeted
promotions data store. This field will capture the time a piece of promotional material
was inserted in the system.

Step 5 requires that we add implementation-specific information in the meta-
data in the CASE repository. This can include such information as the actual field
types and sizes of the data elements that will be stored in the tables, or the expected
response time for a report to be created for the marketing manager.

DESIGNING PROGRAMS

It can be tempting to jump right into the implementation phase by coding without
much thought or planning, but this can lead to disastrous results, such as inefficient
programs, code that does not work with other code, and a system that doesn’t do
what it’s supposed to do. Instead, analysts should first take time in the design phase
to create a maintainable system. In other words, analysts should create a design that
is modular and flexible. To do this, analysts can design programs in a top-down
modular approach, using a variety of program design techniques.

Think about giving someone directions to your house (Figure 10-5). Before
getting to the details, such as naming streets and identifying landmarks, it is best to
first orient the person to your general location (e.g., the state you live in, the part of
town). As he or she becomes comfortable with where to go at a high level, you can
become more detailed in your instructions. This top-down approach helps orient the
other person and conveys the big picture of where you live, making the detailed
directions much easier to understand.

Also, directions can be communicated in modules:

First, drive from your house to the highway.
Then, drive from the highway to the appropriate exit.
Next, locate my neighborhood.
Finally, drive to my house.

Each line, or module, can change without affecting the rest of the directions.
For example, if one friend is traveling to your house from the north and another is

Designing Programs 371

c10ProgramDesign.qxd 8/26/11 6:10 PM Page 371

traveling from the south, it is likely that the last two modules of directions (i.e., to
the neighborhood and to the house) will not change even though the first two mod-
ules will differ for each friend. The modular approach makes the directions much
easier to develop and change.

Good program design is similar to the top-down modular approach that we
described. First, analysts create a high-level diagram that shows the various
components of a program, how the components should be organized, and how the
components interrelate. This diagram, known as the structure chart, illustrates the
organization and interactions of the different pieces of code within the program to
the analysts and programmers so that the program can be developed by many
programmers working independently. The diagram can be used when the project
team plans to write code from scratch or when existing pieces of code will be
assembled to build the system. The physical process models just described provide
a good starting point for understanding what this structure chart needs to include.

Once the overall program is defined at a high level, with a structure chart,
program specifications are written to describe exactly what needs to be included
in each program module. The specifications include basic module information
(e.g., a name, calculations that need to be performed, and the target programming
language), special instructions for the programmer, and pseudocode. Pseudocode is

372 Chapter 10 Program Design

FIGURE 10-5
Using a Top-Down Modular Approach

M
aple R

d.

E
lm

 S
t.

Oak St.

80

1

3

2

4

91

80

First, understand the
general context.

Second, break the context
into logical pieces.

Finally, add detail
to each piece.

Virginia

c10ProgramDesign.qxd 8/26/11 6:10 PM Page 372

a technique similar to structured English that is used to communicate what needs to
be written, using programming structures and a generic language that is not pro-
gram language specific. Program specifications leave the implementation details to
the programmers, but they communicate the basic logic and programming struc-
tures to help reduce logical and syntactical errors during the implementation phase.
Some RAD approaches deemphasize program specifications.

You will notice that the design techniques that are described here are based on
information and techniques from earlier phases of the SDLC. For example, the com-
ponents of the structure chart typically mirror the processes found on the data flow
diagrams, and the process descriptions suggest the ways in which structure chart
components should interrelate. Data models are used to explain the data that pass
throughout the diagram. Also, analysts use the techniques and information to
develop the program specifications, especially when writing pseudocode. Often during
design, the analysts detect problems or inconsistencies with the analysis deliverables,
and they must fine-tune or clarify previous work as they move forward.

In recent years, programmers have increasingly moved away from procedural
programming languages and have migrated to event-driven programming. Pro-
gramming languages such as Visual Basic are popular due to the fact that they com-
bine features of procedural, event-driven, and object-oriented programming. Appli-
cations written in Visual Basic, for example, are “naturally” modularized because
code procedures are written to prescribe the processing to perform when an event
(e.g., a mouse click on a button object) occurs. These event procedures can be fur-
ther decomposed to gain the advantages of modular design: code that is easier to
understand, is reusable, has less redundancy, and is easier to maintain.

Therefore, the value of the modular design approaches we describe here has
not truly diminished. The point is that planning before doing almost always
improves the ultimate process when it comes to programming, and analysts should
never begin writing code without having a complete understanding of what the code
must do. Unfortunately, our experiences suggest that many project teams are much
too quick at jumping into writing program code without first organizing and defining
the basic program modules and how they interact.

At the end of program design, the project team compiles the program design
document, which includes all of the structure charts and program specifications that
will be used to implement the system. The program design is used by programmers

Designing Programs 373

The rapid development face-off was
a competition between rapid application development
(RAD) teams from the leading consulting firms in the
United States. The goal was to see which team could
develop a specific system in the least amount of time.
Most teams used a very short program design step and
quickly began programming.

The Ernst & Young (E&Y) team members used a dif-
ferent approach. They spent much more time in the program

design step to ensure that the system was well designed
before they moved into programming. At first, the E&Y team
fell behind while its competitors jumped ahead. But E&Y
ended up winning because the team spent much less time
programming by following its well-designed blueprint.

QUESTION:
What are several reasons why planning ahead may

have helped E&Y win?

10-A WINNING BY DESIGN

IN ACTION

CONCEPTS

c10ProgramDesign.qxd 8/26/11 6:10 PM Page 373

to write code. We first describe the structure chart, a helpful tool that illustrates the
overall organization of a program. Then we present the program specification,
which contains detailed information about each module of code. Much of the infor-
mation here is based on a classic book written by Meiler Page-Jones,1 which we
highly recommend that you read if you are interested in additional information on
modular program design.

STRUCTURE CHART

The structure chart is an important technique that helps the analyst design the pro-
gram for the new system. The structure chart shows all the components of code that
must be included in a program at a high level, arranged in a hierarchical format that
implies sequence (in what order components are invoked), selection (under what
condition a module is invoked), and iteration (how often a component is repeated).
The components are usually read from top to bottom, left to right, and they are
numbered by a hierarchical numbering scheme in which lower levels have an addi-
tional level of numbering (e.g., the third level of modules would be numbered 1.1.1,
1.1.2, 1.1.3…).

Structure charts historically have been used to create transaction-based main-
frame applications, which have many lines of code that must be carefully moni-
tored. They help analysts create programs that are easy to understand and maintain,
because the use of self-contained modules keeps changes from rippling throughout
the programs. We believe that structure charts can be helpful in the building of
many types of systems because they emphasize structure and reusability, charac-
teristics of any good program.

Suppose that an academic system needs a program that will print a listing of
students along with their grade point averages (GPAs), both for the current semes-
ter and overall. First, the program must retrieve the student grade records; then it
must calculate the current and cumulative GPAs; finally, the grade list can be
printed. The structure chart shown in Figure 10-6 communicates the basic compo-
nents of this program and shows the interrelatedness of the modules. For example,
by looking at this structure chart, a programmer can tell that there are four main
code modules involved in creating a student grade listing: getting the student grade
records, calculating current GPA, calculating cumulative GPA, and printing the list-
ing. Also, there are various pieces of information that are either required by each
module or created by it (e.g., the grade record, the cumulative GPA). The sections
that follow use this example to describe each component of the structure chart.

Syntax

Module A structure chart is composed of modules (lines of program code that per-
form a single function) that work together to form a program (Figure 10-7). The
modules are depicted by a rectangle and connected by lines, which represent the
passing of control. A control module is a higher-level component that contains the
logic for performing other modules, and the components that it calls and controls
are considered subordinate modules. For example, in Figure 10-6, module 1.0 is the
control module that directs modules 1.1 through 1.4 as its subordinates.

374 Chapter 10 Program Design

1Meiler Page-Jones, The Practical Guide to Structured Systems Design, New York: Yourdon Press, 1980.

c10ProgramDesign.qxd 8/26/11 6:10 PM Page 374

At times, modules are reused. These modules, called library modules, have
vertical lines on both sides of the rectangle to communicate that they will appear
several times on the structure chart (see Figure 10-7). The library module in Fig-
ure 10-6 is module 1.1, get student grade record, and this module is a generic module
that will be depicted several times in other parts of the diagram. Library modules
are highly encouraged because their reusability can save programmers from rewrit-
ing the same piece of code over and over again.

The lines that connect the modules communicate the passing of control. In
Figure 10-6, the control is linear, whereby all of the modules are performed in order
from top to bottom, left to right. There are two symbols that describe special types
of control that can appear on the structure chart. The curved arrow, or loop, indi-
cates that the execution of some or all subordinate modules is repeated, and a con-
ditional line (depicted by a diamond) denotes that execution of one or more of the
subordinate modules occurs in some cases but not in others. (See Figure 10-7.)

Look at the structure chart in Figure 10-8 and see how the loops and condi-
tional line affect the meaning of the diagram. First, the loop through the lines to
modules 1.1, 1.2, and 1.3 means that, before the next two modules are invoked, the
first three modules will be repeated until their functionality is completed (i.e., all of
the student grades will be read and the two GPAs will be calculated before moving
to the print modules). Second, the lines connected by the conditional line convey
that both the dean’s list report and grade listing are not printed each time this pro-
gram is run, but instead are performed upon the basis of some condition. Therefore,
there are times when one or both of the print modules may not be invoked.

Another new symbol found on the structure chart in Figure 10-8 is the con-
nector. (See Figure 10-7.) Structure charts can become quite unwieldy, especially
when they depict a large or complex program. A circle is used to connect parts of
the structure chart when there are space constraints and a diagram needs to be con-
tinued on another part of the page (i.e., an on-page connector), and a hexagon is
used to continue the diagram on another page entirely (i.e., an off-page connector).

Structure Chart 375

FIGURE 10-6
Structure Chart Example (GPA � grade
point average)

1.1
GET STUDENT

GRADE
RECORD

1.2
CALCULATE
CURRENT

GPA

1.3
CALCULATE
CUMULATIVE

GPA

1.4
PRINT
GRADE
LISTING

Grade
Record

End
of file

Student
Grade
Record

Student
SSN

Student
Name

Cumulative
GPA

Current
GPA

Current
GPA

1.0
CREATE

STUDENT
GRADE LISTING

Cumulative
GPA

Grade
Record

c10ProgramDesign.qxd 8/26/11 6:10 PM Page 375

376 Chapter 10 Program Design

Structure Chart Element Purpose Symbol

Every module:
 Has a number.
 Has a namec.
 Is a control module if it calls
 other modules below it.
 Is a subordinate module if it
 is controlled by a module at a
 higher level.

•
•
•

•

•
•
•

•
•

•
•
•

•

•

•
•
•

•
•
•

•

•

•
•

•
•
•

Every library module has:
 A number.
 A name.
 Multiple instances within a
 diagram.

A loop:
 Is drawn with a curved
 arrow.
 Is placed around lines of one
 or more modules that are
 repeated.

A conditional line:
 Is drawn with a diamond.
 includes modules that are
 invoked on the basis of some
 condition.

A data couple:
 Contains an arrow.
 Contains an empty circle.
 Names the type of data
 that are being passed.
 Can be passed up or down.
 Has a direction that is
 denoted by the arrow.

A control couple:
 Contains an arrow.
 Contains a filled-in circle.
 Names the message or flag
 that is being passed.
 Should be passed up, not
 down.
 Has a direction that is
 denoted by the arrow.

Denotes a logical piece of
the program

Denotes a logical piece of
the program that is repeated
within the structure chart

Communicates that a
module(s) is repeated

Communicates that
subordinate modules are
invoked by the control
module based on some
condition

Communicates that a
message or a system flag is
being passed from one
module to another

An off-page connector:
 Is denoted by the hexagon.
 Has a title.
 Is used when the diagram is
 too large to fit everything on
 the same page.

Identifies when parts of the
diagram are continued
on another page of the
structure chart

An on-page connector:
 Is denoted by the circle.
 Has a title.
 Is used when the diagram is
 too large to fit everything in
 the same spot on a page.

Identifies when parts of the
diagram are continued
somewhere else on the same
page of the structure chart

Communicates that data
are being passed from one
module to another

end of
file

grade
record

1.2
CALCULATE

CURRENT GPA

1.1
GET STUDENT

GRADE
RECORD

PRINT
GRADE
LISTING

PRINT
GRADE
LISTING

FIGURE 10-7
Structure Chart Elements

c10ProgramDesign.qxd 8/26/11 6:10 PM Page 376

In Figure 10-8, notice that modules 1.4 and 1.5 are depicted on another page of the
diagram.

Couples Couples, shown by arrows, are drawn on the structure chart to show that
information is passed between modules, with the arrowhead indicating which way
the information is being sent. (See Figure 10-7.) Data couples, shown by arrows
with empty circles, are used to represent the passing of pieces of data or data struc-
tures to other modules. For example, in Figure 10-8, a student grade record must be
sent to module 1.2 for the GPA to be calculated, so a data couple is used to show
the grade data structure being passed along.

Control couples, drawn with the use of arrows with filled-in circles, are used
to pass parameters or system-related messages back and forth among modules. If
some type of parameter needed to be passed (e.g., the customer is a new customer;
the end of a file has been reached), a control couple (also called a flag) would be
used. In Figure 10-8, module 1.1 sends an end-of-file parameter when the program
reaches the end of the student grade file.

In general, control flags should be passed from subordinates to control mod-
ules, but not the other way around. Control flags are passed so that the control mod-
ules can make decisions about how the program will operate (e.g., module 1.1
passes the end-of-file marker to indicate that all records have been processed). Pass-
ing a control flag from higher to lower modules suggests that a lower-level module
has control over the higher-level module.

The presence of couples signals that modules on the structure chart depend
on each other in some way. A general rule is to be very conservative when apply-
ing couples to your diagram. In a later section, we will discuss style guidelines for
couples to help you determine “good” from “bad” coupling situations.

Building the Structure Chart

Now that you understand the individual components of the structure chart, the next
step is to learn how to put them together to form an effective design for the new

Structure Chart 377

1.4
PRINT
GRADE
LISTING

1.5
PRINT

DEAN’S
LIST

1.1
GET STUDENT

GRADE
RECORD

1.2
CALCULATE
CURRENT

GPA

1.3
CALCULATE
CUMULATIVE

GPA

Grade
Record

End
of file

Student
Grade
Record Current

GPA

Cumulative
GPA

Grade
Record

1.0
CREATE

STUDENT
GRADE LISTING

FIGURE 10-8
Revised Structure Chart Example

c10ProgramDesign.qxd 8/26/11 6:10 PM Page 377

system. Many times, process models are used as the starting point for structure
charts. There are three basic kinds of processes on a process model: afferent, cen-
tral, and efferent. Afferent processes are processes that provide inputs into the
system, central processes perform critical functions in the operation of the sys-
tem, and efferent processes deal with system outputs. Identify these three kinds
of processes in Figure 10-9.

Each process of a DFD tends to represent one module on the structure chart,
and if leveled DFDs are used, then each DFD level tends to correspond to a differ-
ent level of the structure chart hierarchy (e.g., the process on the context-level DFD
would correspond to the top module on the structure chart).

The difficulty comes when determining how the components on the structure
chart should be organized. As we mentioned earlier, the structure chart communi-
cates sequence, selection, and iteration, but none of these concepts is depicted
explicitly in the process models. It is up to the analyst to make assumptions from

378 Chapter 10 Program Design

Transform Structure

Transaction structure

Transform Structures:
- Many afferent processes
- Few efferent processes
- Lower levels of the structure chart
- Concerned with using inputs to create
 a new output

Transaction Structures:
- Few afferent processes
- Many efferent processes
- Higher levels of the structure chart
- Concerned with coordinating the production
 of outputs

Afferent processes Central processes Efferent processes

FIGURE 10-9
Transform and Transaction Structures

c10ProgramDesign.qxd 8/26/11 6:10 PM Page 378

Structure Chart 379

1.1
MAINTAIN
STUDENT

GRADE

1.2
MAINTAIN
STUDENT

1.3
GENERATE
INDIVIDUAL

GRADE REPORT

1.4
PRINT

STUDENT
GRADE LISTING

1.0
STUDENT

GRADE SYSTEM

FIGURE 10-10
Transaction Structure

the DFDs and read the process model descriptions to really understand how the
structure chart should be drawn.

Transaction Structure Luckily, there are two basic arrangements, or structures, for
combining structure chart modules. The first arrangement is used when each module
performs one of a group of individual transactions. This transaction structure
contains a control module that calls subordinate modules, each of which handles
a particular transaction. Pretend that Figure 10-10 illustrates the highest level of a
student grade system. Module 1 is the control module that accepts a user’s selec-
tion for what activity needs to be performed (e.g., maintain grade), and depending
on the choice, one of the subordinate modules (1.1 through 1.4) is invoked. Trans-
action structures often occur where the actual system contains menus or sub-
menus, and they are usually found higher up in the levels of a structure chart.

If the project team has used leveled DFDs to illustrate the processes for the
system, the high levels of the DFD usually represent activities that belong in a
transaction structure. In the current example, student grade system could corre-
spond to the single process on the context-level DFD, and the four modules (1.1
through 1.4) would be the four processes on the level 0 diagram. If a leveled DFD
approach is not used, then it may be a bit more difficult to differentiate a control
module from its subordinates by using the process model. One hint is to look for
points on the DFD in which a single data flow enters a process that produces mul-
tiple data flows as output—this usually indicates a transaction structure. See
Figure 10-9 for an example of a process model that has transaction structure; notice
how it contains many efferent processes and few afferent processes.

Transform Structure A second type of module structure, called a transform struc-
ture, has a control module that calls several subordinate modules in sequence, after
which something “happens.” These modules are related because together they form
a process that transforms some input into an output. Often, each module accepts an
input from the module preceding it, works on the input, then passes it to the next
module for more processing. For example, Figure 10-8 shows a control module that
calls five subordinates. The control module describes what the subordinates will do

c10ProgramDesign.qxd 8/26/11 6:10 PM Page 379

(e.g., create student grade listing), and the subordinates are invoked from left to right
and transform the student grade records into two types of listings for student grades.

In a leveled DFD, the lowest levels usually represent transform structures. If
a leveled DFD approach is not used, then you should look for the processes on the
DFD for which an input is changed into an output of a different form. In this situ-
ation, the process in which the change is made likely will become a control mod-
ule. All the processes leading up to the control module are subordinates that are
performed first by the control module, followed by the processes that come after
the control module. See Figure 10-9 for an example of transform structure; notice
how there are many afferent processes and few efferent processes.

Applying the Concepts at Tune Source

Now that you are familiar with the basic components of the structure chart, the best
way to learn how to build the diagram is to walk through an example that shows
how to create one. Creating a structure chart is usually a four-step process. First, the
analyst identifies the top-level modules and then decomposes them into lower levels.
(This process is similar in some ways to identifying high-level processes in a DFD
and then decomposing them into lower-level processes.) Second, the analyst adds
the control connections among modules, such as loops and conditional lines that
show when modules call subordinates. Third, he or she adds couples, the informa-
tion that modules pass among themselves. Finally, the analyst reviews the structure
chart and revises it again and again until it is complete.

The goal for this example is to create a structure chart that contains the mod-
ules of code that need to be programmed and shows how they need to be organized.
The physical process model can be used as its starting point. Although it may nei-
ther map exactly into the future program nor contain enough levels of detail, the
DFD will form a good rough-draft structure chart that can then be changed and
improved. The requirements definition and use cases will provide additional detail.
Let’s walk through a structure chart example for Tune Source.

Step 1: Identify Modules and Levels First, identify the modules that belong on the
diagram by converting the DFD processes into structure chart modules. Modules
should perform only one function, so if, for some reason, a process contains more
than one function, it should be broken into more than one module.

The various levels of the DFD generally translate into different levels of the
structure chart. Look back at the DFDs that we created for Tune Source in Chapter 5
(Figures 5-15 through 5-20). The context-level DFD (the overall system) is placed at
the top of the structure chart in Figure 10-11 to represent the overall control module
of the system that manages the highest level of system functions. Then, the level 0
DFD processes are placed below it as subordinates. You should recognize that this
particular structure of modules is a transaction structure, because the subordinates
represent different functions that can be called by the control module.

This pattern continues through all the DFD levels. For example, the level 1
DFD that we created for the search and browse tunes process is placed below the
search and browse tunes process control module. The subordinate modules are load
Web site, process search requests, and process tune selection, the three processes
from the search and browse tunes process level 1 DFD. Note that this structure of
modules is a transform structure because the subordinate modules are carried out
in a sequence to perform the process that is represented by the control module,
search and browse tunes (Figure 10-11).

380 Chapter 10 Program Design

c10ProgramDesign.qxd 8/26/11 6:10 PM Page 380

F
ro

m
 U

se
 C

as
es

 a
nd

R

eq
ui

re
m

en
ts

 D
ef

in
iti

on

F
ro

m
 L

ev
el

 1

D
F

D
 D

ia
gr

am
s

F
ro

m
 L

ev
el

 0

D
F

D
 D

ia
gr

am

F
ro

m
 C

on
te

xt
 D

ia
gr

am

1.
2

P
ur

ch
as

e
T

un
es

1.
0

D
ig

ita
l M

us
ic

D

ow
nl

oa
d

S
ys

te
m

1.
2.

3.
4

G
et

 P
ay

m
en

t
A

ut
ho

riz
at

io
n

1.
2.

3.
1

G
at

he
r

P
ur

ch
as

ed
 T

un
es

1.
2.

3
P

ro
ce

ss

P
ay

m
en

t

1.
2.

1
C

re
at

e
C

us
to

m
er

A

cc
ou

nt

1.
2.

5
R

el
ea

se

D
ow

nl
oa

d

1.
2.

4
C

on
fir

m

P
ur

ch
as

e

1.
1

S
ea

rc
h

an
d

B
ro

w
se

 T
un

es

1.
1.

3.
1

Li
st

en
 to

T

un
e

S
am

pl
e

1.
1.

1
Lo

ad
 W

eb

S
ite

1.
3

P
ro

m
ot

e
T

un
es

1.
3.

1
E

va
lu

at
e

S
al

es
 P

at
te

rn
s

1.
2.

2
R

et
rie

ve
 C

us
to

m
er

A

cc
ou

nt

1.
1.

2
P

ro
ce

ss
 S

ea
rc

h
R

eq
ue

st
s

1.
1.

3
P

ro
ce

ss
 T

un
e

S
el

ec
tio

n

1.
3.

2
E

st
ab

lis
h

P
ro

m
ot

io
na

l
C

am
pa

ig
ns

1.
3.

3
S

en
d

E
-m

ai
ls

1.
2.

3.
3

A
cc

ep
t

P
ay

m
en

t I
nf

o

1.
2.

3.
2

C
om

pu
te

A

m
ou

nt
 D

ue

1.
1.

3.
3

S
el

ec
t T

un
e

to
 B

uy

1.
1.

3.
2

A
dd

 T
un

e
to

 F
av

or
ite

s

FI
G

UR
E

10
-1

1
St

ep
 1

: I
de

nti
fy

Mo
du

les
 an

d L
ev

els
 fo

r t
he

 S
tru

ctu
re

Ch
art

381

c10ProgramDesign.qxd 8/26/11 6:10 PM Page 381

Likely, you will need to include additional levels of detail to the structure
chart, until modules have enough detail so that they each perform only one func-
tion. Additional detail for the structure can be found within the use cases (Chapter 4)
and requirements definition (Chapter 3) for the system. For example, if you read the
use case for the search and browse tunes process in Figure 4-14, notice that step 3
includes listening to a sample, adding the tune to the Favorites list, and selecting the
tune to buy. Modules have been added to the last row of Figure 10-11 to reflect our
detailed understanding of these processes.

Finally, you must determine whether any modules on the diagram are reusable;
if they are, they should be represented as library modules. In this particular portion of
the structure chart, Jason has marked two modules as library modules, with vertical
lines on the sides. He believes that these modules currently exist in the CD sales
system and can be reused in this system.

Step 2: Identify Special Connections The next step is to add loops and conditional
lines to represent modules that are repeated or optional. For example, a customer of
the Digital Music Download system can search for multiple tunes. Thus in Fig-
ure 10-12, we place a curved arrow around the line under the search and browse tunes
process to show that modules 1.1.1 through 1.1.3 can be repeated several times. Can
you think of other modules on the structure chart that will be iterated? According to
Figure 10-12, one module under the process payment process also can happen sev-
eral times before the system will accept payment information from the customer.

A diamond is placed below a control module that directs subordinates, which
may or may not be performed. For example, customers may choose to listen to a
tune sample, add it to the Favorites list, or buy it—they do not necessarily use all
three alternatives. So a diamond is added below the process tune selection module
to communicate this to the programmer. What other part of the structure chart
contains subordinates that are invoked conditionally?

Step 3: Add Couples Next, we must identify the information that has to pass among
the modules. This information can be data attributes (denoted by an arrow with an
empty circle) or special control parameters (denoted by an arrow with a filled-in
circle). The arrowheads on the arrows indicate which way information is passed
along.The DFD data flows provide us with some guidance about the couples to add,
because the information that flows in and out of the DFD processes likely will also
flow in and out of the corresponding structure chart modules.

We will illustrate the addition of couples to our structure chart by focusing
just on the purchase tunes module and its subordinate modules. The DFD in Fig-
ure 5-19 shows that a new customer can provide customer information or can access
existing customer information by signing in to his or her account. Therefore, one
module on our structure chart (1.2.1) returns customer details for new customers,
and one module (1.2.2) returns customer details for customers having existing
accounts. The driver module (1.2 Purchase Tunes) calls the correct subordinate,
depending on the existence of a customer account for the customer. The driver mod-
ule then calls the process payment module (1.2.3). This module repeatedly calls its
subordinate module, gather purchased tunes (1.2.3.1), to find all tunes the customer
wants to purchase. These are then passed to the compute amount due module
(1.2.3.2), which returns that result. Library module accept payment info (1.2.3.3)
returns the customer’s payment information, which is then used by the get payment
authorization library module (1.2.3.4). A control couple is returned by that module,

382 Chapter 10 Program Design

c10ProgramDesign.qxd 8/26/11 6:10 PM Page 382

F
ro

m
 U

se
 C

as
es

 a
nd

R

eq
ui

re
m

en
ts

 D
ef

in
iti

on

F
ro

m
 L

ev
el

 1

D
F

D
 D

ia
gr

am
s

F
ro

m
 L

ev
el

 0

D
F

D
 D

ia
gr

am

F
ro

m
 C

on
te

xt
 D

ia
gr

am

1.
2

P
ur

ch
as

e
T

un
es

1.
0

D
ig

ita
l M

us
ic

D

ow
nl

oa
d

S
ys

te
m

1.
2.

3.
4

G
et

 P
ay

m
en

t
A

ut
ho

riz
at

io
n

1.
2.

3.
2

C
om

pu
te

A

m
ou

nt
 D

ue

1.
2.

3.
1

G
at

he
r

P
ur

ch
as

ed
 T

un
es

1.
2.

2
R

et
rie

ve
 C

us
to

m
er

A

cc
ou

nt

1.
2.

3
P

ro
ce

ss

P
ay

m
en

t

1.
2.

1
C

re
at

e
C

us
to

m
er

A

cc
ou

nt

1.
2.

5
R

el
ea

se

D
ow

nl
oa

d

1.
2.

4
C

on
fir

m

P
ur

ch
as

e

1.
3

P
ro

m
ot

e
T

un
es

1.
3.

1
E

va
lu

at
e

S
al

es
 P

at
te

rn
s

1.
1

S
ea

rc
h

an
d

B
ro

w
se

 T
un

es

1.
1.

3.
1

Li
st

en
 to

T

un
e

S
am

pl
e

1.
1.

1
Lo

ad
 W

eb

S
ite

1.
2.

3.
3

A
cc

ep
t

P
ay

m
en

t I
nf

o

1.
1.

3.
3

S
el

ec
t T

un
e

to
 B

uy

1.
1.

3.
2

A
dd

 T
un

e
to

 F
av

or
ite

s

1.
1.

2
P

ro
ce

ss
 S

ea
rc

h
R

eq
ue

st
s

1.
1.

3
P

ro
ce

ss
 T

un
e

S
el

ec
tio

n

1.
3.

2
E

st
ab

lis
h

P
ro

m
ot

io
na

l
C

am
pa

ig
ns

1.
3.

3
S

en
d

E
-m

ai
ls

FI
G

UR
E

10
-1

2
St

ep
 2

: A
dd

 S
pe

cia
l C

on
ne

cti
on

s t
o t

he
 S

tru
ctu

re
Ch

art

383

c10ProgramDesign.qxd 8/26/11 6:10 PM Page 383

Using the structure chart in Fig-
ure 10-13 as a starting point, add modules that correspond
to other parts of the Digital Music Download system. Use
the data flow diagrams in Chapter 5 and the use case in
Chapter 4 to help you.

QUESTION:
Do the modules that you added have a transform struc-

ture or a transaction structure—or both? Add any spe-
cial connections to the chart as appropriate. Add nec-
essary data and control couples.

10-1 STRUCTURE CHARTY O U R

T U R N

384 Chapter 10 Program Design

indicating the result of the authorization step. The process payment module (1.2.3)
returns the authorized payment data couple to its parent module, purchase tunes
(1.2). The purchase tunes module calls the confirm purchase module (1.2.4) to
obtain the customer’s purchase confirmation, shown as a control couple. Finally,
information about the purchased tune(s) is passed to the release download module
(1.2.5) to complete the customer’s purchase.

Revise Structure Chart By now we have created the initial version of the structure
chart based on the DFDs, use cases, and requirements definition, but rarely is a
structure chart completed in one attempt. There are many gray areas and decisions
that need to be confirmed by other information gleaned during analysis. There are
several tools that can help when we are fine-tuning the structure chart. First, we can
look at the process descriptions in the CASE repository to see whether there are any
details of the processes that haven’t yet been captured on the diagram. The process
descriptions may uncover couples that were overlooked or explain more about how
modules should be broken down. Second, we can examine the data model to confirm
that the right records and specific fields have been passed using the data couples.
This exercise also will confirm that data being passed are actually being captured by
the system.

As with most diagrams about which you have learned, the structure chart will
evolve and contain more detail as new information is uncovered over the course of
the project. Structure charts are not easy. The example that we have presented is
much more straightforward than charts found in the real world. The following sec-
tion explains some guidelines and good practices that you should apply to the chart
as you work to improve it:

Design Guidelines

As you construct a structure chart, there are several guidelines that you can use to
improve its quality. High-quality structure charts result in programs that are modu-
lar, reusable, and easy to implement. Measures of good design include cohesion,
coupling, and appropriate levels of fan-in and/or fan-out.

Build Modules with High Cohesion Cohesion refers to how well the lines of code
within each structure chart module relate to each other. Ideally, a module should
perform only one task, making it highly cohesive. Cohesive modules are easy to
understand and build because their code performs one function, and they are built

c10ProgramDesign.qxd 8/26/11 6:10 PM Page 384

FIGURE 10-13
Step 3: Add Couples to the Structure Chart

1.2
Purchase

Tunes

1.2.1
Create

Customer
Account

1.2.3.1
Gather

Purchased
Tunes

1.2.3.2
Compute

Amount Due

1.2.3.3
Accept

Payment Info

1.2.3.4
Get Payment
Authorization

1.2.2
Retrieve

Customer
Account

New
Customer

Details

Existing
Customer

Details

Purchased
Tunes

Payment
Details

Purchased
Tunes Amount

Due

Payment
Details

1.2.3
Process
Payment

1.2.4
Confirm

Purchase

1.2.5
Release

Download

Authorized
Payment

Confirmed
Purchase

Purchased
Tune(s)

Payment
Authorization

Structure Chart 385

to perform that function very efficiently. The more tasks that a module has to per-
form, the more complex the logic in the code must be to implement the tasks cor-
rectly. Typically, you can detect modules that are not cohesive from titles that have
an and in them, signaling that the module performs multiple tasks.

Look back at the example in Figure 10.6. Currently, each module has good
cohesion. Imagine, however, that module 1.3 actually said calculate current and
cumulative GPA and that module 1.4 was print grade listing and dean’s list. The and
in both cases would signal a problem. These modules would not be considered
cohesive, because they each perform two different tasks, limiting the flexibility of
the modules and making the modules much more difficult to build and understand.
If the program had to calculate only the current GPA while the module performed
both functions, it would require much more complex logic in the code to make that
happen.

Another signal of poor cohesion is the presence of control flags that are
passed down to subordinate modules; their presence suggests that the subordinate
has multiple functions from which one is chosen. Placing this kind of power in a
subordinate module is not advisable, because it requires complex logic within the
module to determine what functions to perform. In the previous example, if our
subordinate module were print grade listing and dean’s list, then a control flag
would need to be sent to the subordinate module so that it could determine which

c10ProgramDesign.qxd 8/26/11 6:10 PM Page 385

report (or both) to print; the subordinate would have to make decisions regarding
how to perform its functions.

There are various types of cohesion, some of which are better than others. For
example, functional cohesion occurs when all elements of the module contribute to
performing a single task, and this form of cohesion is highly desirable. By contrast,
temporal cohesion takes place when functions within a module may not have much
in common other than being invoked at the same time, and coincidental cohesion
occurs when there is no apparent relationship among a module’s functions (defi-
nitely something to avoid). Figure 10-14 lists seven types of cohesion, along with
examples of each type. If you have difficulty differentiating different types of cohe-
sion, use the decision tree in Figure 10-15 for guidance.

Factoring is the process of separating out a function from one module into a
module of its own. If you find that a module is not cohesive or that it displays char-
acteristics of a “bad” form of cohesion, you can apply factoring to create a better
structure. For example, a more cohesive design for the print grade listing and
dean’s list example would be to factor out print dean’s list and print grade listing
into two separate modules. A control flag is not needed for this approach because
subordinate modules would not have to make any kind of decision; each would per-
form one task—to print a report.

Build Loosely Coupled Modules Coupling involves how closely modules are inter-
related, and the second guideline for good structure chart design states that mod-
ules should be loosely coupled. In this way, modules are independent from each
other, which keeps code changes from rippling throughout the program. The numbers
and kinds of couples on the structure chart reveal the presence of coupling between
modules. Basically, the fewer the arrows on the diagrams, the easier it will be to
make future alterations to the program.

Notice the coupling in the structure chart in Figure 10-8. The data couples
(e.g., grade record) denote data that are passed among modules, and the control
couple (e.g., end of file) shows that a message is being sent. Although the modules
are communicating with one another, notice that the communication is quite limited
(only one data couple passed in and out of the module) and there are no superfluous
couples (data that are passed for no reason).

There are five types of coupling, each falling on different parts of a good-to-
bad continuum. Data coupling occurs when modules pass parameters or specific
pieces of data to each other, and this is a form of coupling that you want to see on
your structure chart. A bad coupling type is content coupling, whereby one module
actually refers to the inside of another module. Figure 10-16 presents the types of
coupling and examples of each type.

Create High Fan-In Fan-in describes the number of control modules that commu-
nicate with a subordinate; a module with high fan-in has many different control
modules that call it. This is a very good situation because high fan-in indicates that
a module is reused in many places on the structure chart, which suggests that the
module contains well-written generic code. (Fan-in also occurs when library mod-
ules are used.) Structures with high fan-in improve the reusability of modules and
make it easier for programmers to recode when changes are made or mistakes are
uncovered, because a change can be made in one place. Figures 10-17a and 10-17b
show two different approaches for representing the functionality of reading an
employee record. Example a is better.

386 Chapter 10 Program Design

c10ProgramDesign.qxd 8/26/11 6:10 PM Page 386

Structure Chart 387

Type Definition Example

Functional Module performs one problem-
related task.

The module calculates current GPA
only.

Calculate
Current GPA

Sequential Output from one task is used by
the next.

Two tasks are performed, and the
formatted GPA from the first task is
the input for the second task.

Format and
Validate

Current GPA

Communicational Elements contribute to activities
that use the same inputs or out-
puts.

Two tasks are performed because
they both use the student grade
record as input.

Calculate
Current and
Cumulative

GPA

Procedural Elements are performed in
sequence but do not share data.

The module includes the following:
housekeeping, produce report.

Print Grade
Listing

Temporal Activities are related in time.

Although the tasks occur at the
same time, each task is unrelated.

Initialize
Program
Variables

Logical List of activities; which one to per-
form is chosen outside of module.

This module will open a checking
account, open a savings account,
or calculate a loan, depending
on the message that is sent by its
control module.

Perform
Customer

Transaction

Coincidental No apparent relationship.

This module performs different func-
tions that have nothing to do with
each other: update customer
record, calculate loan payment,
print exception report, analyze
competitor pricing structure.

Perform
Activities

Good

Bad

FIGURE 10-14
Types of Cohesion (GPA = grade-point
average)

c10ProgramDesign.qxd 8/26/11 6:10 PM Page 387

Avoid High Fan-Out Although we desire a subordinate to have multiple control
modules, we want to avoid a large number of subordinates associated with a sin-
gle control. Think of the management concept “span of control,” which states that
there is a limit to the number of employees that a boss can effectively manage.
This concept applies to structure charts as well, in that a control module will
become much less effective when given large numbers of modules to control. The
general rule of thumb is to limit a control module’s subordinates to approximately
seven. One exception to this is a control module within a transaction structure. If
a control module coordinates the invocation of subordinates, each of which per-
forms unique functions, then it usually can handle whatever number of transac-
tions exist. Figures 10-17c and 10-17d show high and low fan-out situations,
respectively.

Assess the Chart for Quality Finally, we have compiled a checklist (Figure 10-18)
that may help you assess the quality of your structure chart. In addition, you should
be aware that some CASE tools will critique the quality of your structure chart by
using predetermined heuristics. Visible Analyst Workbench, for example, checks to
make sure that all modules are labeled and connected and that data couples are
labeled. It then reviews the connections between modules for correctness of con-
nection, complexity of interface, and completeness of design. The analyzer gives
warnings for low fan-in and high fan-out situations.

388 Chapter 10 Program Design

FIGURE 10-15
Cohesion Decision Tree (Adapted from Page-Jones, 1980)

Does the module
do one thing?

Yes: Functional
cohesion

Data: Is sequence
important?

Yes: Sequential
cohesion

No:
Communicational
cohesion

Yes: Procedural
cohesion

No: Temporal
cohesion

Yes: Logical
cohesion

No: Coincidental
cohesion

No: How are the
tasks related?

Flow of control:
Is sequence
important?

Neither: Are the
tasks related to
the same general
category?

c10ProgramDesign.qxd 8/26/11 6:10 PM Page 388

Type Definition Example

DataGood

Stamp

Modules pass fields of data
or messages.

Modules pass record
structures.

All couples that are passed
are used by the receiving module.

Update Student
Record

Calculate
Current GPA

Student ID
Current
GPA

Current
GPA

Update Student
Record

Calculate
Current GPA

Student
Record

Not all of the student record is
used by the receiving module;
only the student ID field is.

Update Student
Record

Calculate Current
or Cumulative GPA

Student ID

Current or
Cumulative
Flag

Current or
Cumulative
GPA

Control Module passes a piece of
information that intends to
control logic.

The receiving module has to
determine which GPA to
calculate.

Common Modules refer to the same
global data area.

Typically, common coupling
cannot be shown on the
structure chart; it occurs when
modules access the same data
areas, and errors made in those
areas can ripple through all the
modules that use the data.

Content Module refers to the inside
of another module.

Module A: Update Student

If student = new
Then go to Module B

Module B: Create Student

At all costs, avoid modules
referring to each other in this
way.Bad

FIGURE 10-16
Types of Coupling (GPA = grade-point
average)

c10ProgramDesign.qxd 8/26/11 6:10 PM Page 389

FIGURE 10-17
Examples of Fan-In and Fan-Out: (a) High Fan-In; (b) Low Fan-In; (c) High Fan-Out; (d) Low Fan-Out (IRA � individual retirement account)

1.4.1
Record in

Payroll
File

1.4.2
Print

Payroll
Report

1.2.1
Calculate
Employee

Salary

1.2.2
Calculate
Employee
Benefits

1.2.3
Calculate

IRA
Contribution

1.2.4
Calculate

Social
Security

1.1.2
Read

Employee
Record

1.3
Calculate
Employee
Benefits

1.2
Calculate
Employee

Salary

1.1
Read

Employee
Record

1.4
Calculate

IRA
Contribution

1.5
Calculate

Social
Security

1.6
Print

Paycheck

1.7
Update
Payroll

File

1.8
Print

Payroll
Report

1
Pay

Employee

1.1
Read

Employee
Record

1.2
Calculate

Salary

1.3
Print

Paycheck

1.4
Update
Payroll

1.1.1
Read

Employee
Record

1.2.1
Read

Employee
Record

1.3.1
Read

Employee
Record

1.1
Calculate
Employee

Salary

1.2
Print

Employee
Roster

1.3
Calculate
Benefits

1.1
Calculate
Employee

Salary

1.2
Print

Employee
Roster

1.3
Calculate
Benefits

1
Pay

Employee

(c)

(d)

(a) (b)

c10ProgramDesign.qxd 8/26/11 6:10 PM Page 390

PROGRAM SPECIFICATION

Once the analyst has communicated the big picture of how the program should be
put together, he or she must describe the individual modules in enough detail so that
programmers can take over and begin writing code. Modules on the structure chart
are described by the use of program specifications, written documents that include
explicit instructions on how to program pieces of code. Typically, project team
members write one program specification for each module on the structure chart
and then pass them along to programmers, who write the code during the
implementation phase of the project. Specifications must be very clear and easy to
understand, or else programmers will be slowed down trying to decipher vague or
incomplete instructions.

Also, program specifications can pinpoint design problems that exist in the
structure chart. At a high level, the structure chart may make sense, but when the
analyst actually begins writing the detail behind the modules, he or she may find
better ways for arranging the modules or may uncover missing or unnecessary
couples.

Syntax

There is no formal syntax for a program specification, so every organization uses
its own format, often a form like the one in Figure 10-19. Most program specifica-
tion forms contain four components that convey the information that programmers
will need to write the appropriate code.

Program Information The top of the form in Figure 10-19 contains basic program
information, such as the name of the module, its purpose, the deadline, the pro-
grammer, and the target programming language. This information is used to help
manage the programming effort.

Events The second section of the form is used to list the events that trigger the
functionality in the program. An event is a thing that happens or takes place. Click-
ing the mouse generates a mouse event; pressing a key generates a keystroke
event—in fact, almost everything the user does causes an event to occur.

Program Specification 391

✔ Library modules have been created whenever possible.

✔ The diagram has a high fan-in structure.

✔ Control modules have no more than seven subordinates.

✔ Each module performs only one function (high cohesion).

✔ Modules sparingly share information (loose coupling).

✔ Data couples that are passed are actually used by the accepting module.

✔ Control couples are passed from “low to high.”

✔ Each module has a reasonable amount of code associated with it.FIGURE 10-18
Checklist for Structure Chart Quality

c10ProgramDesign.qxd 8/26/11 6:10 PM Page 391

392 Chapter 10 Program Design

FIGURE 10-19
Program Specification Form

Module

C PowerScript

Input Name Type Used by Notes

Output Name Type Used by Notes

HTML/PHP Visual Basic

Program Specification 1.1 for ABC System

Name:

Purpose:

Progammer:

Date due:

Events

Pseudocode

Other

c10ProgramDesign.qxd 8/26/11 6:10 PM Page 392

In the past, programmers used procedural programming languages (e.g.,
COBOL, C) containing instructions that were implemented in a predefined order,
as determined by the computer system, and users were not allowed to deviate from
the order. With structured programming, the event portion of the program specifi-
cation is irrelevant. However, many programs today are event-driven (e.g., Visual
Basic.Net, C��), and event-driven programs include procedures that are executed
in response to an event initiated by the user, system, or program code. After initial-
ization, the program waits for some kind of event to happen, and when it does, the
program carries out the appropriate task, then waits once again.

We have found that many programmers still use program specifications when
programming in event-driven languages, and they include the event section on the
form to capture when the program will be invoked. Other programmers have switched
to other design tools that capture event-driven programming instructions. One such
tool, the behavioral state machine diagram, is described in detail in Chapter 14.

Inputs and Outputs The next parts of the program specification describe the inputs
and outputs to the program, which are identified by the data couples and control
couples found on the structure chart. Programmers must understand what informa-
tion is being passed and why, because that information ultimately will translate into
variables and data structures within the actual program.

Pseudocode Pseudocode is a detailed outline of the lines of code that need to be
written, and it is presented in the next section of the form. If you remember, when
we had to describe the processes on the DFDs, we used a technique called struc-
tured English, a language with syntax based on English and structured program-
ming. These DFD descriptions in structured English are now used as the primary
input to produce pseudocode.

Pseudocode is a language that contains logical structures, including sequen-
tial statements, conditional statements, and iteration. It differs from structured Eng-
lish in that pseudocode contains details that are programming specific, such as
initialization instructions or linking, and it also is more extensive so that a pro-
grammer can write the module by mirroring the pseudocode instructions. In
general, pseudocode is much more like real code, and its audience is the program-
mer as opposed to the analyst. Its format is not as important as the information it
conveys. Figure 10-20 shows a short example of pseudocode for a module that is
responsible for calculating a discount on a purchase transaction.

Writing good pseudocode can be difficult—imagine creating instructions that
someone else can follow without having to ask for clarification or making a wrong

Program Specification 393

Calculate_discount_amount (total_price, discount_amount)
If total_price < 50 THEN

discount_amount � 0
ELSE
If total_price < 500 THEN

discount_amount � total_price *.10
ELSE

discount_amount � total_price *.20
END IF

ENDFIGURE 10-20
Pseudocode

c10ProgramDesign.qxd 8/26/11 6:10 PM Page 393

assumption. For example, have you ever given a friend directions to your house, but
your friend ended up getting lost? To you, the directions might have been very clear,
but that is because of your personal assumptions. To you, the instruction “take the
first left turn” may really mean “take a left turn at the first stoplight.” Someone
else’s interpretation might be “take a left turn at the first road, with or without a
light.” (Barbara has a very bad sense of direction and has been known to make a
first left turn into a driveway!)

Therefore, when writing pseudocode, pay special attention to detail and
readability.

The last section of the program specification provides space for other infor-
mation that must be communicated to the programmer, such as calculations, special
business rules, calls to subroutines or libraries, and other relevant issues. This also
can point out changes or improvements that will be made to the structure chart on
the basis of problems that the analyst detected during the specification process.

Some project teams do not create program specifications by using forms, but
instead input the specification information directly into a CASE tool. In these cases,
the information is added to the description for the appropriate module on the struc-
ture chart (or to its corresponding process on the DFD). Figure 10-21 illustrates
how the CASE repository can be used to capture program design information.

Applying the Concepts at Tune Source

Refer to the structure chart in Figure 10-12 for the following example. Although not
shown on the structure chart, there are subordinate modules associated with the
process search request module (1.1.2) that perform searches for tunes by artist, by
title, by genre, etc. Each module on the diagram should have an associated program
specification, but for now let’s create one for module 1.1.2.2, find tunes by title.

The first part of the form (Figure 10-22) contains basic information about the
specification, such as its name and purpose. Because an event-driven programming
language will be used, we list the events that will trigger the program to run (i.e., a
mouse click, a menu selection).

The inputs and outputs for the program correspond to the two couples on the
structure chart: title that is sent to module 1.1.2.2 and tune that is passed by the
module. We added these to the input and output sections of the form, respectively.

Next, we used the structured English description for the module that is found
in the process description to develop the pseudocode that will communicate the
code that should be written for the program. However, as we wrote the pseudocode
and examined the process description, we discovered a problem—the structure

394 Chapter 10 Program Design

Create a program specification for module 1.2.3.2, compute amount due, on the structure chart
shown in Figure 10-13.

QUESTION:
On the basis of your specification, are there any changes to the structure chart that you would recommend?

10-2 PROGRAM SPECIFICATIONY O U R

T U R N

c10ProgramDesign.qxd 8/26/11 6:10 PM Page 394

Program Specification 395

FIGURE 10-21
Process Description—Analysis and Design

Analysis Phase
Process Specification
with structured English
process description

Design Phase Process
Specification:

Structured English has
been changed to
pseudocode.

•

Relevant specification
information like
inputs, outputs, and
business rules have
been added to the
Notes section.

•

c10ProgramDesign.qxd 8/26/11 6:10 PM Page 395

396 Chapter 10 Program Design

FIGURE 10-22
Program Specification for Find Tune by Title

Module

C HTML/PHP

Input Name: Type: Provided by: Notes:

Output Name: Type: Used by Notes:

Visual Basic Javascript

Program Specification 1.1.2.2 for Digital Music Download System

Name:

Purpose:

Progammer:

Date due:

Find_tune_by_Title

Display basic tune information, using a title input by the user

John Smith

April 26, 2009

search by title push-button is clicked

search by title hyperlink is selected

Tune title String (50) Program 1.1.2

Tune ID

Not_found

(Find_tune module)

not_found =True

 For all tune titles in Available Tunes table

 If user title matches tune title, save tune ID

 not-found = False

 End If

End For

Return

Business rule: If no matching tunes are found, the “Artist of the week” will appear to the user.

Note: A control couple containing a not _found flag should be included from 1.1.2.2 to 1.1.2 to

instruct 1.1.2 to display a not found message to the user and the Artist of the week.

String (10)

Logical

Program 1.1.2

Program 1.1.2 Used to communicate

when tune is not found

Events

Pseudocode

Other

c10ProgramDesign.qxd 8/26/11 6:10 PM Page 396

chart does not appear to handle the situation in which a user’s search request can-
not be located by the system. Although the pseudocode includes a “not found” con-
dition, there is no mechanism for the program to pass this result back to its calling
program. At this point, we made a note in the last section of the program specifica-
tion to add a control couple to the structure chart that passes a “not found” flag, and
a second output was added to the current specification form.

Finally, we added a business rule to the specification to explain to the pro-
grammer what will happen when a tune is not found; however, the functionality of
this rule will be handled elsewhere in the program. The program specification is
now ready for the implementation phase, when the form will be passed off to a pro-
grammer who will develop the code that meets its requirements.

SUMMARY

Moving from Logical to Physical Process Models
As the application logic of the information system is designed, the implementation
decisions describing how the system will work are made. Physical data flow dia-
grams show these implementation details, including data stores that refer to files
and database tables, programs or human actions that perform processes, and the
physical transfer media for the data flows. The automated parts of the system are
distinguished from the manual parts by the human-machine boundary.

Structure Chart
The structure chart shows all the functional components that must be included in
the program at a high level, arranged in a hierarchical format that implies order and
control. Lines that connect modules can contain a loop, which signifies that the sub-
ordinate module is repeated before other modules to its right are invoked. A dia-
mond is placed over subordinate modules that are invoked conditionally. An arrow
with a filled circle represents a control couple or flag, which passes system mes-
sages from one module to another. The data couple, an arrow with an empty circle,
denotes the passing of records or fields.

Modules can be organized into one of two types of structures. The transaction
structure contains a control module which calls subordinates that perform inde-
pendent tasks. By contrast, transform structures convert some input into an output
through a series of subordinate modules, and the control module describes the
transformation that takes place.

Building Structure Charts
Creating a structure chart is usually a four-step process. First, the analyst identifies
the top-level modules and then decomposes them into lower levels. Second, the ana-
lyst adds the control connections among modules, such as loops and conditional
lines that show when modules call subordinates. Third, the analyst adds couples, the
information that modules pass among themselves. Finally, the analyst reviews the
structure chart and revises it again and again until it is complete.

Structure Chart Design Guidelines
There are several design guidelines that you should follow when designing struc-
ture charts. First, build modules with high cohesion so that each module performs
only one function. There are seven kinds of cohesion, ranging from good to bad, and
the instances of bad cohesion should be removed from the structure chart. Second,

Summary 397

c10ProgramDesign.qxd 8/26/11 6:10 PM Page 397

modules should not be interdependent, but rather should be loosely coupled, using
good types of coupling. There are five kinds of coupling, ranging from good to bad;
as with cohesion, bad instances should be avoided. Finally, structure charts should
display high fan-in and low fan-out, which means that modules should have many
control modules but limited subordinates.

Program Specification
Program specifications provide more detailed instructions to the programmers
about how to code the modules. The program specification contains several com-
ponents that communicate basic module information (e.g., a name, calculations that
must be performed, and the target programming language), inputs and outputs,
special instructions for the programmer, and pseudocode.

Pseudocode
Pseudocode is a technique similar to structured English that communicates the code
written with the use of programming structures and a generic language that is not
program language specific. Pseudocode is much more like real code than is struc-
tured English, and its audience is the programmer as opposed to the analyst. Many
programs today are event driven, meaning that their instructions are not necessarily
invoked in a predefined order, as determined by the computer system. Instead, users
control the order of modules through the way that they interact with the system.
When event-driven programming is used, program specifications should include a
section that describes the types of events that invoke the code.

398 Chapter 10 Program Design

Afferent process
Central process
Cohesion
Coincidental cohesion
Common coupling
Communicational cohesion
Conditional line
Connector
Content coupling
Control couple
Control coupling
Control module
Couple
Coupling
Data couple
Data coupling

Efferent processes
Event
Event driven
Factoring
Fan-in
Fan-out
Flag
Functional cohesion
Human-machine boundary
Iteration
Library module
Logical cohesion
Loop
Module
Off-page connector
On-page connector

Physical data flow diagram
Physical process model
Procedural cohesion
Program design
Program specification
Pseudocode
Selection
Sequence
Sequential cohesion
Stamp coupling
Structure chart
Subordinate module
Temporal cohesion
Top-down modular approach
Transaction structure
Transform structure

KEY TERMS

1. What is the purpose of creating a logical process
model and then a physical process model?

2. What information is found on the physical DFD
that is not included on the logical DFD?

3. What are some of the system-related data ele-
ments and data stores that may be needed on the

physical DFD that were not a part of the logical
DFD?

4. What is a human-machine boundary?
5. Why is using a top-down modular approach useful

in program design?

QUESTIONS

c10ProgramDesign.qxd 8/26/11 6:10 PM Page 398

Exercises 399

6. Describe the primary deliverable produced during pro-
gram design. What does it include and how is it used?

7. What is the purpose of the structure chart in pro-
gram design?

8. Where does the analyst find the information needed
to create a structure chart?

9. Distinguish between a control module, subordinate
module, and library module on a structure chart. Can
a particular module be all three? Why or why not?

10. What does a data couple depict on a structure chart?
A control couple?

11. It is preferable for a control couple to flow in one
particular direction on the structure chart. Which
direction is preferred, and why?

12. What is the difference between a transaction struc-
ture and a transform structure? Can a module be a
part of both types of structures? Why or why not?

13. What is meant by the characteristic of module cohe-
sion? What is its role in structure chart quality?

14. List the seven types of cohesion. Why do the vari-
ous types of cohesion range from good to bad? Give
an example of good coupling and an example of
bad coupling.

15. What is meant by the characteristic of module cou-
pling? What is its role in structure chart quality?

16. List the seven types of coupling. Why do the vari-
ous types of coupling range from good to bad? Give
an example of good coupling and an example of
bad coupling.

17. What is meant by the characteristics of fan-in and
fan-out? What are their roles in structure chart quality?

18. List and discuss three ways to ensure the overall
quality of a structure chart.

19. Describe the purpose of program specifications.
20. What is the difference between structured program-

ming and event-driven programming?
21. Is program design more or less important when

using event-driven languages such as Visual Basic?

A. Draw a physical level 0 data flow diagram (DFD) for
the following dentist office system, and compare it
with the logical model that you created in Chapter 5:
Whenever new patients are seen for the first time,
they complete a patient information form that asks
their name, address, phone number, and brief medical
history, all of which are stored in the patient informa-
tion file. When a patient calls to schedule a new
appointment or change an existing appointment, the
receptionist checks the appointment file for an avail-
able time. Once a good time is found for the patient,
the appointment is scheduled. If the patient is a new
patient, an incomplete entry is made in the patient
file; the full information will be collected when the
patient arrives for the appointment. Because appoint-
ments are often made so far in advance, the recep-
tionist usually mails a reminder postcard to each
patient two weeks before his or her appointment.

B. Create a physical level 0 DFD for the following, and
compare it with the logical model that you created in
Chapter 5: A Real Estate Inc. (AREI) sells houses.
People who want to sell their houses sign a contract
with AREI and provide information on the house.
This information is kept in a database by AREI, and
a subset of this information is sent to the citywide
multiple listing service used by all real estate agents.
AREI works with two types of potential buyers.
Some buyers have an interest in one specific house.

In this case, AREI prints information from its data-
base, which the real estate agent uses to help show
the house to the buyer (a process beyond the scope
of the system to be modeled). Other buyers seek
AREI’s advice in finding a house that meets their
needs. In this case, buyers complete a buyer infor-
mation form. Information from it is entered into a
buyer database, and AREI real estate agents use its
information to search AREI’s database and the mul-
tiple listing service for houses that meet their needs.
The results of these searches are printed and used to
help the real estate agents show houses to the buyers.

C. Draw a physical level 0 DFD for the following sys-
tem and compare it with the logical model that you
created in Chapter 5. A Video Store (AVS) runs a
series of fairly standard video stores. Before a video
can be put on the shelf, it must be catalogued and
entered into the video database. To rent a video,
every customer must have a valid AVS customer
card. Customers rent videos for three days at a time.
Every time a customer rents a video, the system must
ensure that he or she does not have any overdue
videos. If so, the overdue videos must be returned
and the customer must pay a fine before renting more
videos. Likewise, if the customer has returned over-
due videos, but has not paid the fine, the fine must be
paid before new videos can be rented. Every morning,
the store manager prints a report that lists overdue

EXERCISES

c10ProgramDesign.qxd 8/26/11 6:10 PM Page 399

400 Chapter 10 Program Design

videos; if a video is two or more days overdue, the
manager calls the customer to remind him or her to
return the video. If a video is returned in damaged
condition, the manager removes it from the video
database and sometimes charges the customer.

D. What symbols would you use to depict the following
situations on a structure chart?
• A function occurs multiple times before the next

module is invoked.
• A function is continued on the bottom of the page

of the structure chart.

• A customer record is passed from one part of the
program to another.

• The program will print a record either on screen or
on a printer, depending on the user’s preference.

• A customer’s ID is passed from one part of the
program to another.

• A function cannot fit on the current page of the
structure chart.

E. Describe the differences in the meanings between
the two structure charts shown. How have the sym-
bols changed the meanings?

Find Book
by Author

Print
Detail

Print
Header

Print
Footer

Books by
Author

Author

Book

Find Book
by Author

Print
Detail

Print
Header

Print
Footer

Books by
Author

Author

Book

Out
of stock

(a) (b)

F. Create a structure chart based on the data flow dia-
grams (DFDs) that you created for the following
exercises in Chapter 5:
• Question D
• Question E
• Question F

• Question G
• Question H

G. Critique the structure chart shown, which depicts a
guest making a hotel reservation. Describe the chart
in terms of fan-in, fan-out, coupling, and cohesion.
Redraw the chart to improve the design.

1.1
LOCATE

AVAILABLE
ROOM

1.3
EDIT NEW

GUEST
INFORMATION

1.2
READ

GUEST
RECORD

1.4
EDIT 0LD
GUEST

INFORMATION

1.5
ASSIGN

ROOM AND
PREFERENCE

INFO

1.6
WRITE

UPDATED
CUSTOMER

RECORD

1.7
WRITE NEW

RESERVATION

1.8
PRINT

RESERVATION
CONFIRMATION

1
RESERVE

ROOM

Date
Guest
ID Guest

Record Guest
Record Preference

Record
Reservation
Record

Updated
Customer
Record Updated

Reservation
Record

Hotel
Full

c10ProgramDesign.qxd 8/26/11 6:10 PM Page 400

Exercises 401

I. Identify the kinds of cohesion that are represented in
the following situations:
• accept customer address
• print mailing label record
• print customer address listing
• print marketing address report
• accept customer address
• validate zip code and state
• format customer address
• print customer address
• accept customer address
• print mailing label record

• accept customer address
• print mailing label record or
• print customer address listing or
• print marketing address report or
• validate customer address
• print mailing label record
• check customer balance
• print marketing address report
• record customer preference information

J. Identify whether the following structures are trans-
action or transform and explain the reasoning
behind your answers.2

H. Identify the kinds of coupling that are represented in
the following situations:

2 The structure charts based on a library system are adapted from an
example provided with the Visible Analyst Workbench software.

Customer
Record

PRINT
MAILING

LIST

Customer
Record,
Order
Record

PRINT
MAILING

LIST

Customer
Address
Record

PRINT
MAILING

LIST

Customer
Name,
Address,
City, State,
ZIP

PRINT
MAILING

LIST

(a) (b) (c) (d)

1.2
Add

Books
Lib

1.3
Remove
Books

Lib

1.6
Check

Out
Books

1.7
Return
Books

Lib

1.4
CNTRL
Menu

Lib

1.5
Report
Menu

Lib

1
Library Main

Menu

(a)

c10ProgramDesign.qxd 8/26/11 6:10 PM Page 401

402 Chapter 10 Program Design

Display Add
Books
Screen

Find
Book

Find
Author

Save
Author

Save
Copy

Save
BookCNum

Book

Name Author
Info

(b)

Book

Book

Get
Book
Info

AddBooks
New

Author
Info

Delete
User

Save
User

Display
User
Main

Screen

Find
User

Display
AddUser
Screen

Add
User

Modify
Borrow
Limit

Remove
User

Display
Control
Menu

Screen

Control
_Menu

AddUser

User ID
User

User User

User

User ID

(c)

c10ProgramDesign.qxd 8/26/11 6:10 PM Page 402

Minicases 403

K. Create a program specification for module 1.1.3.1
on the structure chart in Figure 10-12.

L. Create a program specification for module 1.2.3.4
on the structure chart in Figure 10-12.

M. Create pseudocode for the program specification
that you wrote in Exercise K.

N. Create pseudocode for the program specification
that you wrote in Exercise L.

O. Create pseudocode that explains how to start the
computer at your computer lab and open a file in the
word processor. Exchange your pseudocode with a
classmate and follow the instructions exactly as they
appear. Discuss the results with your classmate. At
what points were each set of instructions vague or
unclear? How would you improve the pseudocode
that you created originally?

1. In the new system for Holiday Travel Vehicles, the sys-
tem users follow a two-stage process to record complete
information on all of the vehicles sold. When an RV or
trailer first arrives at the company from the manufac-
turer, a clerk from the inventory department creates a
new vehicle record for it in the computer system. The
data entered at this time include basic descriptive infor-
mation on the vehicle such as manufacturer, name,
model, year, base cost, and freight charges. When the
vehicle is sold, the new vehicle record is updated to
reflect the final terms of the sale and the dealer-installed
options added to the vehicle. This information is
entered into the system at the time of sale when the
salesperson completes the sales invoice.

When it is time for the clerk to finalize the new vehi-
cle record, the clerk will select a menu option from the
system, which is called “Finalize New Vehicle Record.”
The tasks involved in this process are described next.

When the user selects the “Finalize New Vehicle
Record” from the system menu, the user is immediately

prompted for the serial number of the new vehicle. This
serial number is used to retrieve the new vehicle record
for the vehicle from system storage. If a record cannot be
found, the serial number is probably invalid. The vehicle
serial number is then used to retrieve the option records
that describe the dealer-installed options that were added
to the vehicle at the customer’s request. There may be zero
or more options. The cost of the option specified on the
option record(s) is totaled. Then, the dealer cost is calcu-
lated, using the vehicle’s base cost, freight charge, and
total option cost. The completed new vehicle record is
passed back to the calling module.

a. Develop a structure chart for this segment of the
Holiday Travel Vehicles system.

b. What type of structure chart have you drawn, a
transaction structure or a transform structure?
Why?

2. Develop a program specification for Module 4.2.5 (Cal-
culate Dealer Cost) in minicase 1.

MINICASES

c10ProgramDesign.qxd 8/26/11 6:10 PM Page 403

D E S I G N

T A S K C H E C K L I S T

P L A N N I N G A N A L Y S I S D E S I G N

▼

Select Design Strategy

Design Architecture

Select Hardware and Software

Develop Use Scenarios

Design Interface Structure

Develop Interface Standards

Design Interface Prototype

Evaluate User Interface

Design User Interface

Develop Physical Data Flow Diagrams

Develop Program Structure Charts

Develop Program Specifications

Select Data Storage Format

Develop Physical Entity Relationship Diagram

Denormalize Entity Relationship Diagram

Performance Tune Data Storage

Size Data Storage

A N A L Y S I S

P L A N N I N G

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

c11DataStorageDesign.qxd 12/5/11 2:32 PM Page 404

I M P L E M E N TAT I O N

nother important activity of the design phase is designing the data storage com-
ponent of the system. This chapter describes the activities that are performed

when developing the data storage design. First, the different ways in which data can be
stored are described. Several important characteristics that should be considered when
selecting the data storage format are discussed. The process of revising the logical data
model into the physical data model is then outlined. Because one of the most popular data
storage formats today is the relational database, optimization of relational databases
from both storage and access perspectives is also included.

OBJECTIVES

■ Become familiar with several file and database formats.
■ Describe several goals of data storage.
■ Be able to revise a logical ERD into a physical ERD.
■ Be able to optimize a relational database for data storage and data access.
■ Become familiar with indexes.
■ Be able to estimate the size of a database.

CHAPTER OUTLINE

C H A P T E R 1 1

A

DATA STORAGE
DESIGN

Introduction
Data Storage Formats

Files
Databases
Selecting a Storage Format
Applying the Concepts at Tune Source

Moving from Logical to Physical Data
Models
The Physical Entity Relationship

Diagram

Revisiting the CRUD Matrix
Applying the Concepts at Tune Source

Optimizing Data Storage
Optimizing Storage Efficiency
Optimizing Access Speed
Estimating Storage Size
Applying the Concepts at Tune Source

Summary

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 405

INTRODUCTION

As explained in Chapter 8, the work done by any application program can be
divided into four general functions: data storage, data access logic, application
logic, and presentation logic. The data storage function is concerned with how data
is stored and handled by the programs that run the system.

Applications are of little use without the data that they support. How useful is
a multimedia application that can’t support images or sound? Why would users log
into a system to find information if it took them less time to locate the information
manually? It is essential to ensure that data storage is designed so that inefficient
systems, long response times, and difficult-to-access information (several hall-
marks of failed systems) are avoided.

As analysts turn their attention to the data storage that will be needed for the
new system, several things must be done. First, the data storage format for the new
system must be selected. This chapter describes a variety of data storage formats
and explains how to select the appropriate one for your application. There are two
basic types of data storage formats for application systems: files and databases.
There are multiple types of each storage format; for example, databases can be
object-oriented, relational, multidimensional, and so on. Each type has certain char-
acteristics that make it preferable for certain situations.

Following the selection of the data storage format, the data model created dur-
ing analysis is modified to reflect this implementation decision. The logical data
model will be converted into a physical data model. CASE repository information
is expanded to include much more detailed information about specific implementa-
tion details. The analysts will also want to ensure that the DFDs and ERDs balance
properly, so the CRUD matrix will be revised as necessary.

Finally, the selected data storage format must be designed to optimize its pro-
cessing efficiency. One of the leading complaints by end users is that the final sys-
tem is too slow. To avoid such complaints, project team members must allow time
during the design phase to carefully make sure that the file or database performs as
fast as possible. At the same time, the team must keep hardware costs down by
minimizing the storage space that the application will require. The goals of maximiz-
ing access to data and minimizing the amount of space taken to store data can conflict,
so designing data storage efficiency usually requires trade-offs. The team must
carefully review the availability, reliability, and security nonfunctional require-
ments to identify issues that produce trade-offs in performance, cost, and storage
space.

DATA STORAGE FORMATS

There are two main types of data storage formats: files and databases. Files are elec-
tronic lists of data that have been optimized to perform a particular transaction. For
example, Figure 11-1 shows a patient appointment file with information about
patient’s appointments, in the form in which it is used, so that the information can
be accessed and processed quickly by the system.

A database is a collection of groupings of information that are related to each
other in some way (e.g., through common fields). Logical groupings of information
could include such categories as customer data, information about an order, and
product information. A database management system (DBMS) is software that creates

406 Chapter 11 Data Storage Design

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 406

and manipulates these databases (Figure 11-2). End-user DBMSs such as Microsoft
Access support small-scale databases that are used to enhance personal productiv-
ity, and enterprise DBMSs, such as DB2, Jasmine, SQL Server, and Oracle, can
manage huge volumes of data and support applications that run an entire company.
An end-user DBMS is significantly less expensive and easier for novice users to use
than its enterprise counterpart, but it does not have the features or capabilities that
are necessary to support mission-critical or large-scale systems. Open-source
DBMS’s are also popular, such as MySQL.

The next section describes several different kinds of files and databases that
can be used to handle a system’s data storage requirements.

Files

A data file contains an electronic list of information that is formatted for a partic-
ular transaction, and the information is changed and manipulated by programs that
are written for those purposes. Files created by older, legacy systems are frequently
in a proprietary format, while newer systems use a standard format such as CSV
(comma separated value) or tab-delimited. Typically, files are organized sequen-
tially, and new records are added to the file’s end. These records can be associated
with other records by a pointer, which is information about the location of the
related record. A pointer is placed at the end of each record, and it “points” to the next
record in a series or set. Sometimes files are called linked lists because of the way
the records are linked together by the pointers. There are several types of files that

Data Storage Formats 407

FIGURE 11-1
Appointment File

Appointment
Date

First
Name

Last
Name

Phone
Number

Appointment
Time

11/23/2012

11/23/2012

11/23/2012

11/23/2012

11/23/2012

11/23/2012

11/23/2012

11/23/2012

11/23/2012

11/23/2012

11/23/2012

11/23/2012

11/24/2012

11/24/2012

11/24/2012

11/24/2012

11/24/2012

11/24/2012

2:30

2:30

2:45

3:00

3:00

3:30

3:45

3:30

4:00

4:00

4:30

4:30

8:30

8:30

8:30

8:45

8:45

9:30

Duration Reason

.25 hour

1 hour

.25 hour

1 hour

.5 hour

.5 hour

.75 hour

.25 hour

1 hour

.5 hour

1 hour

.5 hour

.25 hour

1 hour

.25 hour

.5 hour

1 hour

.5 hour

Patient
ID

758843

136136

544822

345344

236454

887777

951657

966233

223238

365548

398633

222577

858756

232158

244875

655683

447521

554263

Patrick

Adelaide

Chris

Felicia

Thomas

Ryan

Mike

Peter

Ellen

Jerry

Susan

Elizabeth

Elias

Andy

Rick

Eric

Jane

Trey

Dennis

Kin

Pullig

Marston

Bateman

Nelson

Morris

Todd

Whitener

Starsia

Perry

Gray

Awad

Ruppel

Grenci

Meier

Pace

Maxham

548-9456

548-7887

525-5464

548-9333

667-8955

525-4772

663-8944

667-2325

525-8874

548-9887

525-6632

667-8400

663-6364

525-9888

548-2114

667-0254

548-0025

663-8547

Doctor
ID

V524625587

T445756225

V524625587

B544742245

V524625587

V524625587

T445756225

T445756225

B544742245

V524625587

V524625587

T445756225

T445756225

V524625587

B544742245

T445756225

B544742245

V524625587

Doctor
Last

Name

Vroman

Tantalo

Vroman

Brousseau

Vroman

Vroman

Tantalo

Tantalo

Brousseau

Vroman

Vroman

Tantalo

Tantalo

Vroman

Brousseau

Tantalo

Brousseau

Vroman

Flu

Physical

Shot

Physical

Migraine

Muscular

Muscular

Shot

Physical

Flu

Minor surg

Migraine

Shot

Minor surg

Flu

Muscular

Physical

Flu

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 407

408 Chapter 11 Data Storage Design

Appointment
Date

Appointment
Time

11/23/2012

11/23/2012

11/23/2012

11/23/2012

11/23/2012

11/23/2012

11/23/2012

11/23/2012

11/23/2012

11/23/2012

11/23/2012

11/23/2012

11/24/2012

11/24/2012

11/24/2012

11/24/2012

11/24/2012

11/24/2012

2:30

2:30

2:45

3:00

3:00

3:30

3:45

3:30

4:00

4:00

4:30

4:30

8:30

8:30

8:30

8:45

8:45

9:30

Duration Reason

.5 hour

1 hour

.25 hour

1 hour

.5 hour

.5 hour

.75 hour

.25 hour

1 hour

.5 hour

1 hour

.5 hour

.25 hour

1 hour

.25 hour

.5 hour

1 hour

.5 hour

Patient
ID

758843

136136

544822

345344

236454

887777

951657

966233

223238

365548

398633

222577

858756

232158

244875

655683

447521

554263

Doctor
ID

V524625587

T445756225

V524625587

B544742245

V524625587

V524625587

T445756225

T445756225

B544742245

V524625587

V524625587

T445756225

T445756225

V524625587

B544742245

T445756225

B544742245

V524625587

Flu

Physical

Shot

Physical

Migraine

Muscular

Muscular

Shot

Physical

Flu

Minor surg

Migraine

Shot

Minor surg

Flu

Muscular

Physical

Flu

Patient
ID

136136

222577

223238

232158

236454

244875

365548

345344

398633

447521

544822

554263

655683

758843

858756

887777

951657

966233

First
Name

Last
Name

Phone
Number

Adelaide

Tables related by patient ID Tables related by doctor ID

Elizabeth

Ellen

Andy

Thomas

Rick

Jerry

Felicia

Susan

Jane

Chris

Trey

Eric

Patrick

Elias

Ryan

Mike

Peter

Kin

Gray

Whitener

Ruppel

Bateman

Grenci

Starsia

Marston

Perry

Pace

Pullig

Maxham

Meier

Dennis

Awad

Nelson

Morris

Todd

 667-8400

548-7887

525-8874

667-8955

548-9887

548-9333

525-6632

548-0025

525-5464

663-8547

667-0254

548-9456

525-9888

663-6364

548-2114

525-4772

663-8944

667-2325

Doctor
ID

Last
Name

T445756225

B544742245

V524625587

Tantalo

Brousseau

Vroman

FIGURE 11-2
Appointment Database

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 408

differ in the way they are used to support an application: master files, look-up files,
transaction files, audit files, and history files.

Master files store core information that is important to the business and, more
specifically, to the application, such as order information or customer mailing infor-
mation. They usually are kept for long periods, and new records are appended to the
end of the file as new orders or new customers are captured by the system. If
changes need to be made to existing records, programs must be written to update
the old information.

Look-up files contain static values, such as a list of valid codes or the names
of the U.S. states. Typically, the list is used for validation. For example, if a cus-
tomer’s mailing address is entered into a master file, the state name is validated
against a look-up file that contains U.S. states to make sure that the value was
entered correctly.

A transaction file holds information that can be used to update a master file.
The transaction file can be destroyed after changes are added, or the file may be
saved in case the transactions need to be accessed again in the future. Customer
address changes, for one, would be stored in a transaction file until a program is run
that updates the customer address master file with the new information.

For control purposes, a company might need to store information about how
data changes over time. For example, as human resources clerks change employee
salaries in a human resources system, the system should record the person who
made the changes to the salary amount, the date, and the actual change that was
made. An audit file records “before” and “after” images of data as the data are
altered, so that an audit can be performed if the integrity of the data is questioned.

Sometimes files become so large that they are unwieldy, and much of the
information in the file is no longer used. The history file (or archive file) stores past
transactions (e.g., old customers, past orders) that are no longer needed by system
users. Typically, the file is stored off-line, yet it can be accessed on an as-needed
basis. Other files, such as master files, can then be streamlined to include only
active or very recent information.

Databases

There are many different types of databases that exist on the market today. In this
section, we provide a brief description of four databases with which you may come
into contact: legacy, relational, object, and multidimensional. You will likely
encounter a variety of ways to classify databases in your studies, but in this book
we classify databases in terms of how they store and manipulate data.

Legacy Databases The name legacy database is given to those databases which
are based on older, sometimes outdated technology that is seldom used to develop
new applications; however, you may come across them when maintaining or
migrating from systems that already exist within your organization. Two exam-
ples of legacy databases include hierarchical databases and network databases.
Hierarchical databases (e.g., IDMS) use hierarchies, or inverted trees, to repre-
sent relationships (similar to the one-to-many [1:M] relationships described in
Chapter 6). The record at the top of the tree has zero or more child records, which
in turn can serve as parents for other records (Figure 11-3). Hierarchical data-
bases are known for rapid search capabilities and were used in the early systems
in the airline industry.

Data Storage Formats 409

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 409

410 Chapter 11 Data Storage Design

Pretend that you are building a
Web-based system for the admissions office at your uni-
versity. The system will be used to accept electronic appli-
cations from students. All the data for the system will be
stored in a variety of files.

QUESTION:
Give an example using the preceding system for each of

the following file types: master, look-up, transaction,
audit, and history. What kind of information would
each file contain and how would the file be used?

11-1 STUDENT ADMISSIONS SYSTEMY O U R

T U R N

Product Product

1035 Black ...

1556 Fracken ...
235 11/23/11 ...

236 11/23/11 ...
243 11/26/11 ...

234 11/23/11 ...
242 11/26/11 ...

260 11/30/11 ...
275 12/7/11 ...

237 11/23/11 ...
245 11/26/11 ...

233 11/23/11 ...
244 11/26/11 ...
262 11/30/11 ...

2274 Goodin ...

4254 Bailey ...

9500 Chin ...

233 11/23/11 ...

234 11/23/11 ...

444 Wine Gift Pack

222 Bottle Opener

222 Bottle Opener
555 Cheese Tray

333 Jams & Jellies
222 Bottle Opener

555 Cheese Tray
222 Bottle Opener

111 Wine Guide

235 11/23/11 ...

236 11/23/11 ...

237 11/23/11 ...

444 Wine Gift Pack

333 Jams & Jellies
222 Bottle Opener
555 Cheese Tray

242 11/26/11 ...

243 11/26/11 ...

CustomerParents:

Children:

Order

OrderOrderOrder

Notice how Order serves as a child to Customer and a parent to Product.

Sample Records:

Customer as parent

Order as parent

FIGURE 11-3
Hierarchical Database

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 410

Hierarchical databases cannot efficiently represent many-to-many (M:N) rela-
tionships or nonhierarchical associations—a major drawback—so network databases
were developed to address this limitation (and others) of hierarchical technology.
Network databases (e.g., IDMS/R, DBMS 10) are collections of records that are
related to each other through pointers. Basically, a record is a member in one or
more sets, and the pointers link the members in a set together (Figure 11-4).

Both kinds of legacy systems can handle data quite efficiently, but they
require a great deal of programming effort. The application system software needs
to contain code that manipulates the database pointers; in other words, the applica-
tion program must understand how the database is built and be written to follow the
structure of the database. When the database structure is changed, the application
program must be rewritten to change the way it works, which makes the application
using the databases difficult to build and maintain. The code required to maintain
the pointers can be quite error prone, especially if bidirectional pointers were used.
Years ago, when hardware was expensive and programmer time was cheap, hierar-
chical and network databases were good solutions for large systems; however, as
hardware costs dropped and people costs skyrocketed, these solutions became much
less cost effective.

Relational Databases The relational database is the most popular kind of database
for application development today. Although it is less “machine efficient” than its
legacy counterparts, it is much easier to work with from a development perspective.
A relational database is based on collections of tables, each of which has a primary
key—a field(s) whose value is different for every row of the table. The tables are
related to each other by the placement of the primary key from one table into the
related table as a foreign key (Figure 11-5).

Most relational database management systems (RDBMSs) support referential
integrity, or the idea of ensuring that values linking the tables together through the

Data Storage Formats 411

Orders

Customers

Black

Set

Members

Pointer

235

Fracken

236 243 244 262237 275 234 242

245 260

Goodin Bailey Chin

233

FIGURE 11-4
Network Database

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 411

primary and foreign keys are valid and correctly synchronized. For example, if an
order-entry clerk using the tables in Figure 11-5 attempted to add order 254 for
customer number 1111, he or she would have made a mistake because no customer
exists in the Customer table with that number. If the RDBMS supported referential
integrity, it would check the customer numbers in the Customer table, discover that
the number 1111 is invalid, and return an error to the entry clerk. The clerk would
then go back to the original order form and recheck the customer information. Can
you imagine the problems that would occur if the RDBMS let the entry clerk add

412 Chapter 11 Data Storage Design

4254
9500
1556
2487
2243
1035
1123
9501
4453
9505
2282
5927
2241
2242
2274
9507
2264

Baily
Chin
Fracken
Hancock
Harris
Black
Williams
Kaplan
Min
Marvin
Lau
Lee
Jones
DeBerry
Goodin
Nelson
White

Ryan
April
Chris
Bill
Linda
John
Mary
Bruce
Julie
Sandra
Mark
Diane
Chris
Ann
Dan
Dave
Anthony

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

11/23/11
11/23/11
11/23/11
11/23/11
11/23/11
11/23/11
11/23/11
11/23/11
11/24/11
11/24/11
11/24/11
11/24/11
11/24/11
11/24/11
11/24/11
11/24/11
11/24/11
11/24/11
11/24/11
11/24/11

$30.00 MC
$20.00 VISA
$20.00 VISA
$60.00 AMEX
$50.00 MC
$50.00 AMEX
$20.00 VISA
$40.00 MC
$30.00 VISA
$30.00 VISA
$20.00 VISA
$20.00 AMEX
$60.00 MC
$50.00 VISA
$50.00 AMEX
$50.00 AMEX
$20.00 MC
$10.00 MC
$60.00 MC
$40.00 AMEX

4254
9500
1556
2487
2243
1035
1556
1123
9501
4453
9505
2282
5927
2241
4254
2242
2274
9507
2487
2264

Mastercard
VISA
American Express

MC
VISA
AMEX

Order Number Date Cust ID Amount Payment Type

Payment Type Description

Payment Type is a
foreign key in Order.

Cust ID is a foreign key in Order.

Cust ID Last Name First Name

Customer Order

Payment Type

Payment Type is
the primary key of the
Payment Type table.

Referential integrity:
 • All Payment Type values
 in Order must exist first
 in the Payment Type table.
 • All Cust ID values in
 Order must exist first
 in the Customer table.

Cust ID is the primary
key of Customer

FIGURE 11-5
Relational Database

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 412

the order with the wrong information? There would be no way to track down the
name of the customer for order 254.

Tables have a set number of columns and a variable number of rows that contain
occurrences of data. Structured Query Language (SQL) is the standard language for
accessing the data in the tables, and it operates on complete tables, as opposed to
the individual records in the tables. Thus, a query written in SQL is applied to all
the records in a table all at once, which is different from a lot of programming
languages that manipulate data record by record. When queries must include infor-
mation from more than one table, the tables first are joined together on the basis of
their primary key and foreign key relationships and treated as if they were one large
table. Examples of RDBMS software are Microsoft Access, Oracle, DB2, Sybase,
Informix, Microsoft SQL Server, and MySQL.

Object Databases The next type of database is the object database, or object-
oriented database. (See Chapter 14 for more information on object-oriented
approaches.) The basic premise of object orientiation is that all things should be
treated as objects that have both data (attributes) and processes (behaviors). An
object changes or accesses its own attributes only through its behaviors. Objects
may communicate with each other for information or certain actions. Changes to
one object have no effect on other objects because the attributes and behaviors are
self-contained, or encapsulated, within each one. This encapsulation allows objects
to be reused to build many different systems, because they can be inserted and
removed from applications with few ripple effects. For example, a customer object
could be defined one time as having attributes (e.g., customer number, customer
name) and behaviors (e.g., inserting a customer, deleting a customer), and then this
customer object could be used to build any system that involves a customer.

In object databases, the combination of data and processes is represented by
object classes, which are the major categories of objects in the system, and a class
can contain a variety of subclasses, or special cases of that class. For example, a person
class can have subclasses of employee and customer because employee and customer
are special cases of person. An instance of data in object databases is referred to as
an instantiation (e.g., John Smith is an instantiation of the customer object), and the
relationships among classes are maintained by pointers (Figure 11-6).

Object-oriented database management systems (OODBMSs) are mainly used
to support multimedia applications or systems that involve complex data (e.g.,
graphics, video, and sound). Telecommunications, financial services, health care,
and transportation have been the most receptive to object databases. They are
becoming a popular technology for supporting electronic commerce, online cata-
logs, and large Web multimedia applications.

Although pure OODBMSs like Jasmine exist, most organizations invest in
hybrid OODBMS technology, which includes databases with both object and rela-
tional features. For instance, Oracle, a leader in the relational database market,
incorporates object functionality and capabilities into its relational product.

Although the market for OODBMSs is expected to grow, the market for the
technology is dwarfed by that for its relational and object-relational database coun-
terparts ($13.8 billion).1 For one, there are many more experienced developers and
tools in the relational database arena. Also, relational users find that OODBMS
technology comes with a very steep learning curve.

Data Storage Formats 413

1 Barbara Darrow, “Linux, SQL Server Drive Database Market: Report,” ChannelWeb, May 24, 2006.

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 413

414 Chapter 11 Data Storage Design

FIGURE 11-6
Object Database

Person Class Order Class

Customer
Class

Objects are linked by pointersObject Class

Object Subclass

Instantiation of the Customer Class

Smith4254

Cust ID Last Name

John

First Name

Multidimensional Databases A multidimensional database is a type of relational
database that is used extensively in data warehousing. Data warehousing is the
practice of taking data from a company’s transaction processing systems, trans-
forming the data (e.g., cleaning them up, totaling them, aggregating them), and then
storing the data for use in a data warehouse (i.e., a large database) that supports
decision support systems (DSS). A data warehouse itself usually relies on relational
technology as its storage format; however, companies can create data marts, which
are smaller databases based on data warehouse data. Typically, a data mart receives
downloads of data from the data warehouse regularly, and it supports DSS for a spe-
cific department or functional area of the company. For example, the marketing
department may have a data mart that supports its campaign management DSS.
Data marts are usually created with multidimensional databases.

In most cases, DSS is designed not to search for a particular record (e.g.,
“What did John Smith order on July 5, 2011?”), but rather to display information
that is aggregated (e.g., totaled or averaged) across many records (e.g., “What was
the average sales by quarter for product A?”) Thus, data marts that support a DSS
require that data be stored in a format in which they can be easily aggregated and
manipulated across a variety of dimensions (e.g., time, product, region, sales rep).
Unfortunately, legacy, object, and relational databases are designed and optimized
to provide access to individual records, not to store data to support aggregations of
data on multiple dimensions.

When data are first loaded into a multidimensional database, the database
precalculates the data across multiple dimensions and stores the answers, using
arrays or some other technique. Although the initial loading of the data can be
quite slow because of all the calculations that must take place, data access is
extremely fast because the “answers” already exist in the arrays. For example, the
cube in Figure 11-7 represents a multidimensional database containing data that

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 414

have been organized by customer, payment type, and order date. Precalculated
quantitative information (e.g., totals, averages) is stored at the intersection of the
dimensions (in each block), and the DSS directly accesses those blocks. Because
blocks contain precalculated information, there is much less processing that needs
to occur to provide the DSS with aggregated results.

Selecting a Storage Format

Each of the file and database data storage formats has its strengths and weaknesses,
and no one format is inherently better than the others. In fact, sometimes, a project
team will choose multiple data storage formats (e.g., a relational database for one
data store, a file for another, and a multidimensional database for a third). Thus, it
is important to understand the strengths and weaknesses of each format and when
to use each one. Figure 11-8 summarizes the characteristics of each and the char-
acteristics that can help identify when each type of storage is most appropriate.

Data Types The first issue is the type of data that will need to be stored in the sys-
tem. Most applications need to store simple data types, such as text, dates, and
numbers, and all DBMSs are equipped to handle this kind of data. The best choice
for simple data storage, however, usually is the relational database because the tech-
nology has matured over time and has continuously improved to handle simple data
very effectively.

Increasingly, applications are incorporating complex data, such as video,
images, or audio, and object databases are best able to handle data of this type.
Complex data are stored as objects that can be manipulated much faster than with
other storage formats. Other applications require aggregated data (i.e., information
that has been summed, averaged, or combined in some way). Multidimensional
databases are specially designed to store data so that they can be “sliced and diced”

Data Storage Formats 415

FIGURE 11-7
Multidimensional Database

Pay
m

en
t T

yp
e

O
rd

er
 D

at
e

Last quarter, how many customers
placed more than one order, using an

American Express card?

x

Customer

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 415

and examined across important business dimensions. If the system is being built for
analytical decision support, then this option likely will be most appropriate.

Type of Application System There are many different kinds of application systems
that can be developed. Transaction processing systems are designed to accept and
process many simultaneous requests (e.g., order entry, distribution, payroll). In
transaction processing systems, the data are continuously updated by a large num-
ber of users, and the queries that are asked of the systems typically are predefined
or targeted at a small subset of records (e.g., “List the orders that were back-ordered
today”; “What products did customer #1234 order on May 12, 2011?”).

Another set of application systems comprises those designed to support deci-
sion making, such as business intelligence management information systems
(MISs), executive information systems (EISs), and expert systems (ESs). These
decision support systems (DSS) are built to support decision makers who need to
examine large amounts of read-only historical data. The questions that they ask
often are ad hoc, and they include hundreds or thousands of records at a time (e.g.,
“List all customers in the west region who purchased a product costing more than
$500 at least three times”; “What products had increased sales in the summer
months but have not been classified as summer merchandise?”).

Transaction processing and DSSs thus have very different data storage
needs. Transaction processing systems need data storage formats that are tuned for
a lot of data updates and fast retrieval of predefined, specific questions. Files, rela-
tional databases, and object databases can all support these kinds of requirements.

416 Chapter 11 Data Storage Design

Multi-
Legacy Relational Object-Oriented dimensional

Files DBMS DBMS DBMS DBMS

Major strengths Files can be
designed for fast
performance;
good for short-term
data storage.

Very mature products Leader in the data-
base market; can
handle diverse
data needs

Able to handle com-
plex data

Configured to
answer decision
support questions
quickly

Major weaknesses Redundant data;
data must be
updated, using
programs.

Not able to store
data as efficiently;
limited future

Cannot handle
complex data

Technology is still
maturing; skills are
hard to find.

Highly specialized
use; skills are hard
to find

Data types
supported

Simple Not recommended
for new systems

Simple Complex (e.g.,
video, audio,
images)

Aggregated

Types of application
systems supported

Transaction
processing

Not recommended
for new systems

Transaction
processing and
decision making

Transaction
processing

Decision making

Existing data formats Organization
dependent

Organization
dependent

Organization
dependent

Organization
dependent

Organization
dependent

Future needs Limited future
prospects

Poor future prospects Good future
prospects

Uncertain future
prospects

Uncertain future
prospects

DBMS = database management system.

FIGURE 11-8
Comparison of Data Storage Formats

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 416

By contrast, systems to support decision making are usually only reading data
(not updating it), often in ad hoc ways. The best choices for these systems usu-
ally are relational databases and multidimensional databases because these for-
mats can be configured specially for needs that may be unclear and less apt to
change the data.

Existing Storage Formats The data storage format should be selected primarily on
the basis of the kind of data and application system being developed. Project teams
should also consider the existing data storage formats in the organization when
making design decisions. In this way, they can better understand the technical skills
that already exist and how steep the learning curve will be when the data storage
format is adopted. For example, a company that is familiar with relational databases
will have little problem adopting a relational database for the project, whereas an
object database may require substantial developer training. In the latter situation,
the project team may have to plan for more time to integrate the object database
with the company’s relational systems.

Future Needs The project team should be aware of current trends and technologies
that are being used by other organizations. A large number of installations of a type
of data storage format suggests that the selection of that format is “safe,” in that
needed skills and products are available. For example, it would probably be easier
and less expensive to find relational database expertise when implementing a sys-
tem than to find help with a multidimensional data storage format. Legacy database
skills, too, would likely be difficult to find.

Applying the Concepts at Tune Source

The Tune Source Digital Music Download system needs to effectively present tune
information to users and capture purchase data. Jason Wells, senior systems analyst
and project manager for the Digital Music Download system, recognized that these
goals were dependent on a good design of the data storage component for the new
application.

The project team met to discuss two issues that would drive the data storage
format selection: what kind of data would be in the system and how that data would
be used by the application system. Using a white board, they listed the ideas pre-
sented in Figure 11-9. The project team agreed that the bulk of the data in the sys-
tem would be text and numbers describing customers and purchases that are
exchanged with Web users. A relational database would be able to handle the data
effectively, and the technology would be well received because of its current use at
Tune Source.

The team recognized, however, that relational technology may not be
optimized to handle complex data such as the images, sound clips, and video clips
associated with the application. Jason asked Kenji, a project team member, to
investigate relational databases that offered object add-on products. It might be pos-
sible to invest in a relational database foundation and use its object functionality to
handle the complex data.

The team noted that one transaction file must be designed to handle the inter-
face with the Web shopping cart program. The team must design the file that stores
temporary, purchase information on the Web server as customers navigate through
the Web site.

Data Storage Formats 417

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 417

Of course, Jason realized that other data needs would arise over time, but
he felt confident that the major data issues were identified (e.g., the ability to handle
complex data) and that the data storage design would be selected on the basis of the
proper storage technologies.

MOVING FROM LOGICAL TO PHYSICAL DATA MODELS

During analysis, the analysts defined the data required by the application by creat-
ing logical entity relationship diagrams (ERDs). These logical models depict the
“business view” of the data, but omit any implementation details. Now, having
determined the data storage format, physical data models are created to show
implementation details and to explain more about the “how” of the final system.
These to-be models describe characteristics of the system that will be created, com-
municating the “systems view” of the new system.

The Physical Entity Relationship Diagram

Like the DFD, the ERD contains the same components for both the logical and
physical models, including entities, relationships, and attributes. The difference lies
in the fact that physical ERDs contain references to exactly how data will be stored
in a file or database table and that much more metadata is added to the CASE repos-
itory to describe the data model components. The transition from the logical to
physical data model is fairly straightforward; see the steps in Figure 11-10.

Step 1: Change Entities to Tables or Files The first step is to change all the entities
in the logical ERD to reflect the files or tables that will be used to store the data.

418 Chapter 11 Data Storage Design

Data Type Use Suggested Format

Customer information

Sales information

Tune information

Interests/Favorites Simple (mostly text)

Targeted promotion

information

Temporary

information

Simple (mostly text)

Simple (text and numbers)

Both simple and complex

(the system will contain

audio clips, video,

etc.)

Simple text, formatted

specifically for populating the

Web site with customized content

The system will

likely need to hold

information for temporary

periods (e.g., the shopping cart

will store purchase information

before the purchase is

actually completed)

Transactions

Transactions

Transactions

Transactions

Transactions

Transactions

Relational

Relational

Relational ?

Relational

Relational

Transaction file

FIGURE 11-9
Types of Data in the Digital Music
Download System

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 418

Usually, project teams adhere to strict naming conventions for such things as
tables, files, and fields, so the physical ERD would use the names that the real
components will have when implemented. Metadata for the tables and files, like
the expected size of the table, are added to the CASE repository. See Figure 11-11
for a physical ERD from the Lawn Chemical Request system that was described
in Chapters 5 and 6.

Step 2: Change Attributes to Fields Second, change the attributes to fields, which
are columns in files or tables, and add information like the field’s length, data type,
default value, and valid value to the CASE repository. There are a number of dif-
ferent data types that fields can have, such as number, decimal, longint, character,
and variable character. The analyst inputs the data type along with the size of the
field into the CASE tool so that the system can be designed for the right kind of
information. A default value specifies what should be placed in a column if no value
is explicitly supplied when a record is inserted into the table. A valid value is a fixed
list of valid values for a particular column, or an expression to define some form of
data validation code for a column or table. Figure 11-12 shows a variety of metadata
describing the cust_id field in an Oracle Customer table.

Inputting complete information regarding the tables and columns into the CASE
repository is very important. Many CASE tools will actually generate code to build
tables and create files for the new system according to the information they contain for
the physical models. By taking time to describe the physical data model in detail, the
analyst can save a lot of time when the system is ready to be implemented.

Step 3: Add Primary Keys As a third step, the attributes that served as identifiers
on the logical ERD are converted into primary keys, which are fields that contain a

Moving from Logical to Physical Data Models 419

Change entities to tables or files. Beginning with the logical entity relationship diagram,
change the entities to tables or files and update the
metadata.

Change attributes to fields. Convert the attributes to fields and update the metadata.
Add primary keys. Assign primary keys to all entities.
Add foreign keys. Add foreign keys to represent the relationships among

entities.
Add system-related components. Add system-related tables and fields.

Step Explanation

FIGURE 11-10
Steps to Moving from Logical to Physical
Entity Relationship Diagram

*LCA_ID: VARCHAR(4)
LCA_Name: VARCHAR(20)
LCA_HireDate: DATETIME
LCA_Qualification: VARCHAR(30)
LCA_CellPhone: VARCHAR(10)

Lawn Chemical Applicator

*LCA_ID: VARCHAR(4) (FK)
*CHM_ID: VARCHAR(10) (FK)
*RequestDate: DATETIME
RequestQuantity: INTEGER

Chemical Request

*CHM_ID: VARCHAR(10)
CHM_Name: VARCHAR(25)
CHM_Description: VARCHAR(30)
CHM_ApprovalStatus: BOOLEAN
CHM_Unit: VARCHAR(10)

Chemical

makes

is made by

involves

involved in

FIGURE 11-11
Lawn Chemical Request System Physical ERD

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 419

unique value for each record in the file or table. For instance, Social Security Number
would serve as a good primary key for a customer table if every customer record in
the table will contain a unique value in the Social Security Number field. A unique
identifier is mandatory for every table placed on the physical ERD; therefore, primary
key fields must be created for entities that did not have identifiers previously. For
example, if we did not choose an identifier for the customer entity on the logical
ERD, we would now create a system-generated field (e.g., cust_id) that could serve
as the primary key for the customer table. This field would have no meaning or purpose
other than ensuring that each record has a field that contains a unique value.

Step 4: Add Foreign Keys The relationships on the logical ERD show that pairs
of entities are associated with each other, and in step 4, the analyst specifies how

Naming conventions
for fields: 4 digits of
table name followed
by the field name.

The key signifies
that cust_id is a
primary key.

The analyst
can develop
a validation
rule to be
applied to
this field.

Notice that this will
be implemented
in Oracle.

No null, or blank,
values will be accepted
into the cust_id field.

CHAR stands
for “character”
data type; the
10 stands for
the number of
characters.

The analyst
can specify
a default
value that
appears for
this field.

FIGURE 11-12
Metadata for a cust_id Field

420 Chapter 11 Data Storage Design

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 420

Moving from Logical to Physical Data Models 421

the associations are going to be maintained from a technical standpoint. In a rela-
tional database, for example, an association between two tables is maintained by a
technique referred to as a foreign key. A foreign key is the primary key field(s)
from one table that is repeated in another table to provide a common field between
the two tables. The common field contains values that match a record in one table
to a record in the other. For example, if we were to create two tables called Cus-
tomer and Order that were related to each other, we could include the primary key
field from Customer (cust_id) in the Order table as well. In this way, if we want to
find out customer information (e.g., name, address, phone number) when looking
at someone’s order, we can use the value for cust_id that appears in the Order table
to go back to the Customer table to locate the appropriate information.

Thus, on the physical ERD, the primary key fields in the parent tables (the “1”
end of the relationship) are copied and placed as fields in the child tables (the
“many” end of the relationship) and designated as foreign keys. The fields will con-
tain values that are common between the two tables. Many times, the CASE tools
that are used to draw ERDs will “migrate” foreign keys to the appropriate tables on
the model automatically, and the database technology will ensure that the values in
the two fields match appropriately, helping to ensure referential integrity.

Step 5: Add System-Related Components As the fifth and final step, components
are added to the physical ERD to reflect special implementation needs, including
components that were included on the DFD. We have mentioned balance between
DFDs and ERDs in earlier chapters, and this balance must be maintained in the
physical models as well. Therefore, implementation-specific data stores and data
elements from the physical DFD should be included on the ERD as tables and
fields. For example, in Figure 10-2 we added the Tune to buy history data store to
the physical DFD to serve as a “backup” for tunes that are sent to the purchase tunes
process. Now we will need to add a tune to buy batch history file to the physical
ERD model along with its fields and relationships.

Revisiting the CRUD Matrix

As discussed in Chapter 6, it is important to verify that the system’s DFD and ERD
models are balanced. In other words, we must ensure that data needed in the sys-
tems processes are stored and that all stored data are used by at least one process.
The CRUD matrix was introduced in Chapter 6 as a tool showing how data are used
by processes in the system.

Often the CRUD matrix is created during analysis on the basis of the logical
process and data models. In design, as these models are converted to physical mod-
els, changes in the form of new processes, new data stores, and new data elements
may occur. The CRUD matrix should be revised at this point to include the new com-
ponents and ensure that balance is maintained between the physical ERD and DFDs.

If the CRUD matrix was not developed during analysis, it should be devel-
oped now prior to implementation. The matrix shows exactly how data are used and
created by the major processes in the system, so it serves as a very useful compo-
nent of the system design materials.

Applying the Concepts at Tune Source

Let us now apply some of the concepts that you have learned by creating a physical
ERD, using the logical ERD that was created in Chapter 6.

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 421

When we use the logical model as a starting point, the first step is to rename the
entities to match with the tables or files that will be used by the system (Figure 11-13).
Outwardly, the data model does not look very different after this step, but notice that
several entities have been renamed to be consistent with Tune Source’s table naming
standards. At this time, we will need to include metadata for the tables, such as their
estimated size.

Next, the attributes for the entities become fields with such characteristics as
data type, length, and valid values, and this is recorded in the CASE repository. For
example, CUS_state in the CUSTOMER table will be a text field with a size of two

422 Chapter 11 Data Storage Design

FIGURE 11-13
Tune Source Physical ERD

TUNES

*TUN_ID: VARCHAR(8)
TUN_title: VARCHAR(30)
TUN_artist: VARCHAR(25)
TUN_genre: VARCHAR(20)
TUN_length: TIME
TUN_price: DECIMAL(5,2)
TUN_mp3short: OBJECT
TUN_mp3full: OBJECT

CUSTOMER

*CUS_number: VARCHAR(8)
CUS_lastname: VARCHAR(25)
CUS_firstname: VARCHAR(30)
CUS_address: VARCHAR(100)
CUS_city: VARCHAR(30)
CUS_state: CHAR(2)
CUS_zipcode: VARCHAR(9)
CUS_phone: VARCHAR(10)
CUS_email: VARCHAR(50)
CUS_username: VARCHAR(30)
CUS_password: VARCHAR(30)

TUNESALES

*SAL_number: VARCHAR(8)
 SAL_date: DATETIME
CUS_username: VARCHAR(30) FK
 TUN_ID: VARCHAR(8) FK

*TUN_ID: VARCHAR(8) FK
*FAV_dateadded: DATETIME

CUSFAVS

*CUS_number: VARCHAR(8) FK
*TUN_ID: VARCHAR(8) FK
*INT_datecreated: DATETIME

CUSINTS

*CUS_number: VARCHAR(8) FK

targets

is targeted by

creates

is created by

specifies

is specified in

purchases

is purchased in

lists

is listed by

includes

is included in

promotes

is promoted by

makes

is made by

PROMOTIONS

*PRO_code: VARCHAR(8)
CUS_number: VARCHAR(8) FK
TUN_ID: VARCHAR(8) FK
PRO_price: DECIMAL(5,2)
PRO_term: NUMBER(3)

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 422

Moving from Logical to Physical Data Models 423

characters, and valid values are the 50 two-letter state abbreviations. If most cus-
tomers at Tune Source live in the state of California, then it may be worthwhile to
make CA the default value for this field. However, since this is an Internet-based
system, this assumption may not be valid. Figure 11-14 is an example of the CASE
repository entry for the CUS_state field.

Step 3 suggests that we change the identifiers in the logical ERD to become
primary keys, and entities without identifiers need to have a primary key created.
At this time, we also can decide to use a system-generated primary key if it is more
efficient than using logical attributes from the logical model.

The relationships on the logical ERD indicate where foreign key fields need
to be placed. For example, CUS_number is placed as a field in TUNESALES to
serve as the link between two entities, and TUNESALES gets the extra field
because it is the child table (it exists at the “many” end of the relationship). Simi-
larly, TUN_ID is placed in the TUNESALES table.

Finally, system-related components are included within the model. For exam-
ple, fields that will capture when a record was last inserted or updated were added
to many of the tables.

The project team also updated the CRUD matrix for the system. Figure 11-15
shows the CRUD matrix that was created for the Tune Source search and browse
tunes process. Look at the original process models, and notice how the first process
is merely reading information from data stores. This is illustrated on the CRUD
matrix by an “R” placed in the relevant intersections of the matrix. Can you tell how
data are used by the remaining processes?

FIGURE 11-14
Computer-Aided Software Engineering Repository Entry for cus_state Field

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 423

OPTIMIZING DATA STORAGE

The selected data storage format is now optimized for processing efficiency. The
optimization methods will vary with the format that you select; however, the basic
concepts will remain the same. Once you understand how to optimize a particular
type of data storage, you will have some idea as to how to approach the optimiza-
tion of other formats. This section focuses on the optimization of the most popular
data storage format: relational databases.

There are two primary dimensions in which to optimize a relational data-
base: for storage efficiency and for speed of access. Unfortunately, these two
goals often conflict because the best design for access speed may take up a great
deal of storage space as compared with other less speedy designs. This section
describes how to use normalization (Chapter 6) to optimize data storage for stor-
age efficiency. The next section presents design techniques, such as denormal-
ization and indexing, that will quicken the performance of the system. Ultimately,
the project team will go through a series of trade-offs until the ideal balance
between both optimization dimensions is reached. Finally, the project team must
estimate the size of the data storage needed to ensure that there is enough capacity
on the server(s).

424 Chapter 11 Data Storage Design

1.1 Load Web

Site

1.2 Process

Search Requests

1.3 Process

Tune Selection

PROMOTIONS

R

R

R

R

PRO_code

CUS_number

R

R

R

R

C

C

C

C

C

C

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

TUN_ID

PRO_price

PRO_term

CUS_number

CUSFAVS

TUN_ID

FAV_dateadded

TUNES

TUN_ID

TUN_title

TUN_artist

TUN_genre

TUN_length

TUN_price

TUN_mp3short

TUN_mp3full

CUSINTS

INT_datecreated

TUN_ID

CUS_numberFIGURE 11-15
CRUD Matrix for Search and Browse
Tunes Process

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 424

Optimizing Storage Efficiency

The most efficient tables in a relational database in terms of storage space have no
redundant data and very few null values, because the presence of these suggest that
space is being wasted (and more data to store means higher data storage hardware
costs). For example, notice that the sample order table in Figure 11-16 repeats cus-
tomer information, such as name and state, each time a customer places an order,
and it contains many null values in the last four columns. These null values occur
whenever a customer places an order for less than three items (the maximum num-
ber on an order).

In addition to wasting space, redundancy and null values also allow more
room for error and increase the likelihood that problems will arise with the integrity
of the data. What if customer 1135 moves from Maryland to Georgia? In the case
of Figure 11-16, a program must be written to ensure that all instances of that cus-
tomer are updated to show “GA” as the new state of residence. If some of the
instances are overlooked, then the table will contain an update anomaly whereby
some of the records contain the correctly updated value for state and other records
contain the old information.

Optimizing Data Storage 425

In Chapter 6, you were asked to cre-
ate a logical entity relationship diagram (ERD) for a char-
ter company that owns boats that are used to charter trips
to the islands (“Your Turn 6-8”). The company has created
a computer system to track the boats it owns, including
each boat’s ID number, name, and seating capacity. The
company also tracks information about the various
islands, such as name and population. Every time a boat
is chartered, it is important to know the data about the

trip that takes place and the number of people on the trip.
The company also keeps information about each captain,
such as Social Security Number, name, birthdate, and
how to contact next of kin. Boats travel to only one island
per visit.

Create a physical ERD for this situation. Compare
the diagram that you drew to the logical diagram that
you created in Chapter 6.

11-2 ISLAND CHARTERSY O U R

T U R N

A major public university graduates
approximately 10,000 students per year, and its devel-
opment office has decided to build a Web-based system
that solicits and tracks donations from the university’s
large alumni body. Ultimately, the development officers
hope to use the information in the system to better under-
stand the alumni giving patterns so that they can improve
giving rates.

QUESTION:
1. What kind of system is this?
2. Does it have characteristics of more than one?
3. What different kinds of data will this system use?
4. On the basis of your answers, what kind of data stor-

age format(s) do you recommend for this system?

11-3 DONATION TRACKING SYSTEMY O U R

T U R N

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 425

426 Chapter 11 Data Storage Design

Null values threaten data integrity because they are difficult to interpret. A
blank value in the customer order table’s product fields could mean that (1) the cus-
tomer did not want more than one or two products on his or her order, (2) the oper-
ator forgot to enter in all three products on the order, or (3) the customer canceled
part of the order and the products were deleted by the operator. It is impossible to
be sure of the actual meaning of the null values.

For both of these reasons—wasted storage space and data integrity threats—
project teams should remove redundancy and null values from data storage design.
During the design phase, the logical data model is used to examine the data storage
design and optimize it for storage efficiency. If you follow the modeling instruc-
tions and guidelines that were presented in Chapter 6, you will have little trouble
creating a design that is highly optimized in this way, because a well-formed logi-
cal data model does not contain redundancy or many null values.

Sometimes, however, a project team starts with a logical model that was
poorly constructed or with a model that was created for files or a nonrelational type

1135
1135
1135
1123
1123
1123
1123
2242
2242
2242
2242
2242
2242
2242
2242
4254
4254
4254
9500
9500
9500
9500

555 Cheese Tray
444 Wine Gift Pack
222 Bottle Opener
444 Wine Gift Pack
222 Bottle Opener
222 Bottle Opener
555 Cheese Tray
555 Cheese Tray
111 Wine Guide
444 Wine Gift Pack
222 Bottle Opener
222 Bottle Opener
222 Bottle Opener
222 Bottle Opener
333 Jams & Jellies
555 Cheese Tray
333 Jams & Jellies
222 Bottle Opener
222 Bottle Opener
333 Jams & Jellies
222 Bottle Opener
111 Wine Guide

444 Wine Gift Pack

444 Wine Gift Pack
444 Wine Gift Pack

333 Jams & Jellies

111 Wine Guide

$50.00
$40.00
$20.00
$40.00
$20.00
$20.00
$50.00
$50.00
$50.00
$40.00
$20.00
$20.00
$60.00
$60.00
$30.00
$50.00
$30.00
$60.00
$20.00
$30.00
$20.00
$10.00

Product Product Desc Product Product Desc Product Product Desc

239
260
273
241
262
287
290
234
237
238
245
250
252
253
297
243
246
248
235
242
244
251

11/23/11
11/24/11
11/27/11
11/23/11
11/24/11
11/27/11
11/30/11
11/23/11
 11/7/11
11/10/11
11/11/11
11/18/11
11/22/11
11/23/11
11/24/11
11/11/11
11/18/11
11/22/11
11/17/11
11/23/11
11/24/11
11/27/11

Order Number Date Cust ID Last Name First Name State Amount

 0.05
 0.05
 0.05
 0.08
 0.08
 0.08
 0.08
0.065
0.065
0.065
0.065
0.065
0.065
0.065
0.065
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05

Tax Rate

Redundant data Null cells

CUSTOMER ORDER

Order Number

Date
Cust ID
Last Name
First Name
State
Amount
Tax Rate
Product 1
Product Description 1
Product 2
Product Description 2
Product 3
Product Description 3

Black
Black
Black
Williams
Williams
Williams
Williams
DeBerry
DeBerry
DeBerry
DeBerry
DeBerry
DeBerry
DeBerry
DeBerry
Bailey
Bailey
Bailey
Chin
Chin
Chin
Chin

John
John
John
Mary
Mary
Mary
Mary
Ann
Ann
Ann
Ann
Ann
Ann
Ann
Ann
Ryan
Ryan
Ryan
April
April
April
April

MD
MD
MD
CA
CA
CA
CA
DC
DC
DC
DC
DC
DC
DC
DC
MD
MD
MD
KS
KS
KS
KS

FIGURE 11-16
Optimizing Data Storage

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 426

of data storage format. In these cases, the project team should follow the steps of
the normalization process described in Chapter 6 (see Figure 6A-1). Normalization
is the best way to optimize data storage for efficiency.

Optimizing Access Speed

After you have optimized your data model design for data storage efficiency, the end
result is data that are spread out across a number of tables. When data from multiple
tables must be accessed or queried, the tables first must be joined together. For exam-
ple, in Figure 11-2, before the office manager can print out a list of appointments with
patient and doctor names on it, the patient and doctor tables need to be joined with the
appointment table on the basis of the patient ID and doctor ID fields. Only then can
appointment, patient, and doctor information be included in the query’s output. Joins
can take a lot of time, especially if the tables are large or if many tables are involved.

Consider an order system that stores information about 10,000 different prod-
ucts, 25,000 customers, and 100,000 orders, each order containing three products,
on average. If an analyst wanted to investigate whether there were regional differ-
ences in buying preferences, he or she would need to combine all of the tables to
be able to look at products that have been ordered, while knowing the location of
the customers placing the orders. A query of this information would result in a huge
table with 300,000 rows (i.e., the number of products that have been ordered) and
many columns representing columns from all three tables combined.

There are several techniques that the project team can use to try to speed up
access to the data: denormalization, clustering, indexing, and estimating the size of
the data for hardware planning purposes.

Denormalization After the logical data model is optimized in terms of data storage,
the project team may decide to denormalize, or add redundancy back into the
design that is depicted in the physical data model. Denormalization reduces the
number of joins that must be performed in a query, thus speeding up data access.
Figure 11-17 shows a denormalized physical data model for customer orders.

Optimizing Data Storage 427

*ORD_number: CHAR(18)

ORDER

CUS_id: CHAR(9)(FK)
ORD_date: DATE
ORD_amount: NUM(6,2)
CUS_firstname: VARCHAR(15)
CUS_lastname: VARCHAR(20)

*CUS_id: CHAR(9)

CUSTOMER

places/
is placed by

Customer name will be stored
in both tables.

CUS_lastname: VARCHAR(20)

CUS_firstname: VARCHAR(15)

CUS_address: VARCHAR(50)

CUS_city: VARCHAR(25)

CUS_state: CHAR(2)

CUS_zipcode: VARCHAR(9)

CUS_phone: VARCHAR(10)

FIGURE 11-17
Denormalized Data Model

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 427

428 Chapter 11 Data Storage Design

The customer name was added back into the Order table because the project team
learned during the analysis phase that queries about orders usually require the cus-
tomer’s name. Instead of joining the Order table repeatedly to the Customer table,
the system now needs to access only the Order table because it contains all the rel-
evant information.

Of course, denormalization should be applied sparingly, for the reasons
described in the previous section, but it is ideal in situations in which information
is queried frequently yet updated rarely. There are four cases in which you may rely
on denormalization to reduce joins and improve performance (see Figure 11-18).
First, denormalization can be applied in the case of look-up tables, which are tables
that contain descriptions of values (e.g., a table of product descriptions, a table of
payment types). Because descriptions of codes rarely change, it may be more effi-
cient to include the description along with its respective code in the main table, to
eliminate the need to join the look-up table each time a query is performed.

Second, 1:1 relationships are good candidates for denormalization. Although
logically, two entities should be separated, from a practical standpoint the informa-
tion from both entities may be regularly accessed together. Think about an order and
its shipping information. Logically, it may make sense to separate the attributes
related to shipping into a separate entity, but as a result, the queries regarding ship-
ping likely will always need a join to the Order table. If the project team finds that
certain shipping information, such as state and shipping method, are needed when
orders are accessed, they may decide to combine the entities or include some ship-
ping attributes in the order entity.

Third, at times it will be more efficient to include a parent entity’s attributes in
its child entity on the physical data model. For example, consider a customer table and
an order table that share a 1:N relationship, with customer as the parent and order as
the child. If queries regarding orders continuously require customer information, the
most popular customer fields can be placed in order to reduce the required joins to the
customer table, as was done with customer name in Figure 11-18.

Finally, denormalization is applied when a popular data modeling technique
called star schema design is used.2 Learning how to model with star schema is
beyond the scope of this book, but there are a number of Web resources and books
available that are listed on the textbook Web site. Basically, star schema is a way to
model data whereby the data are denormalized to speed up data access for DSS. It
uses two kinds of tables—fact tables and dimension tables—to store numerical,
additive, and descriptive data, respectively. Star schema modeling is the way in

2 A good book on star schema design is that by Claudia Imhoff, Nicholas Galemmo, and Jonathan Geiger,
Mastering Data Warehouse Design: Relational and Dimensional Techniques, John Wiley & Sons, 2003.

Consider the logical data model
that you created in Chapter 6 for “Your Turn 6-7.”
Examine the model and describe possible opportunities
for denormalization.

QUESTION:
How would you denormalize the physical data model,

and what are the benefits of your changes?

11-4 DENORMALIZING A STUDENT ACTIVITY FILEY O U R

T U R N

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 428

FIGURE 11-18
Reasons to Denormalize

*ORD_number: CHAR(18)

ORDER

ORD_date: DATE

ORD_amount: NUM(6,2)

PAY_type: CHAR(2)(FK)

PAY_description: VARCHAR(15)

*PAY_type: CHAR(2)

PAYMENT_TYPE

PAY_description: VARCHAR(15)

is paid by

pays

Include a

codeʼs

description in

the table using

that code if the

description is

often used.

Look-up

Table

Combine tables

if they are

related 1:1 and

if they usually

are accessed

together.

1:1

Relationships

Reason Description Example

*ORD_number: CHAR(18)

ORDER
SHIPMENT

ORD_date: DATE

ORD_amount: NUM(6,2)

SHI_state: CHAR(2)

SHI_method: CHAR(4)

ORD_num: CHAR(18) (FK)

*SHI_id: CHAR(9)

is sent by

sends
SHI_address: VARCHAR(50)

SHI_city: VARCHAR(25)

SHI_state: CHAR(2)

SHI_zip: VARCHAR(9)

SHI_method: CHAR(4)

Place fields

from the parent

(1) table into

the child (N)

table if the

parent fields are

used frequently

with child

information.

1:N

Relationships

*CUS_id: CHAR(9)

CUSTOMER

CUS_firstname: VARCHAR(15)

CUS_lastname: VARCHAR(20)

CUS_address: VARCHAR(50)

CUS_city: VARCHAR(25)

CUS_state: CHAR(2)

CUS_zipcode: VARCHAR(9)

CUS_phone: VARCHAR(10)

*CUS_id: CHAR(9)

CUS_firstname: VARCHAR(15)

CUS_lastname: VARCHAR(20)

CUS_address: VARCHAR(50)

CUS_city: VARCHAR(25)

CUS_state: CHAR(2)

CUS_zipcode: VARCHAR(9)

CUS_phone: VARCHAR(10)

CUS_gender: CHAR(1)

CUS_birthdate: DATE

*ORD_number: CHAR(18)

ORDER

CUS_id: CHAR(9)(FK)

ORD_date: DATE

ORD_amount: NUM(6,2)

CUS_firstname: VARCHAR(15)

CUS_lastname: VARCHAR(20)

places

is placed by

Data marts

often are

modeled with

star schema

design, which

uses

denormalization

to maximaze

DSS query

performance.

Star Schema

Design
CUSTOMER

*TIM_date: DATE

TIM_dayofweek: NUM(1)

TIM_weeknumber: NUM(2)

TIM_monthnumber: NUM(2)

TIM_quarter: NUM(1)

TIM_fiscalyear: NUM(4)

TIM_holidayflag: CHAR(1)

TIME

*FACT_id: CHAR(8)

FACT_orderamount: NUM(6,2)

FACT_ordercost: NUM(6,2)

CUS_id: CHAR(9)(FK)

TIM_date: DATE (FK)

ORD_number: CHAR(18)

*ORD_number: CHAR(18)

ORD_paytype: CHAR(2)

ORD_shipstate: CHAR(2)

ORD_shipmethod: VARCHAR(8)

FACT

dimension_1 dimension_3

dimension_2

ORDER

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 429

which relational databases can be designed to emulate a multidimensional database.
See Figure 11-18 for an example of a star schema design of a customer order data-
base. The fact table contains order amount and cost (i.e., additive data), and the
other tables contain information describing different dimensions of an order: the
customer, the order itself, and time.

Clustering Speed of access also is influenced by the way in which the data are
retrieved. Think about going shopping in a grocery store. If you have a list of items
to buy, but you are unfamiliar with the store’s layout, then you need to walk down
every aisle to make sure that you don’t miss anything from your list. Likewise, if
records are arranged on a hard disk in no particular order (or in an order that is
unrelated to your data needs), then any query of the records results in a table scan
in which the DBMS has to access every row in the table before retrieving the result
set. Table scans are the most inefficient of data retrieval methods.

One way to improve access speed is to reduce the number of times that the
storage medium must be accessed during a transaction. This can be accomplished
by clustering records together physically so that like records are stored close
together. With intrafile clustering, similar records in the table are stored together in
some way, such as in order by primary key or, in the case of a grocery store, by item
type. Thus, whenever a query looks for records, it can go directly to the right spot
on the hard disk (or other storage medium) because it knows in what order the
records are stored, just as we can walk directly to the bread aisle in the store to pick
up a loaf of bread. Interfile clustering combines records from more than one table
that typically are retrieved together. For example, if customer information is usually
accessed with the related order information, then the records from the two tables
may be physically stored in a way that preserves the customer order relationship.
Returning to the grocery store scenario, an interfile cluster would be similar to stor-
ing peanut butter, jelly, and bread next to each other in the same aisle because they
are usually purchased together, not because they are similar types of items. Of
course, each table can have only one clustering strategy because the records can be
arranged physically in only one way.

A Virginia-based mail-order company
sends out approximately 25 million catalogs each year,
using a customer table with 10 million names. Although
the primary key of the customer table is customer identifi-
cation number, the table also contains an index of cus-
tomer last names. Most people who call to place orders
remember their last name, but not their customer identifi-
cation number, so this index is used frequently.

An employee of the company explained that
indexes are critical to reasonable response times. A fairly
complicated query was written to locate customers by the

state in which they lived, and it took over three weeks to
return an answer. A customer state index was created,
and that same query provided a response in 20 minutes;
that’s 1512 times faster!

QUESTION:
As an analyst, how can you make sure that the proper

indexes have been put in place so that users are not
waiting for weeks to receive the answers to their
questions?

11-A MAIL-ORDER INDEX

IN ACTION

CONCEPTS

430 Chapter 11 Data Storage Design

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 430

Optimizing Data Storage 431

Indexing A time saver that you are familiar with is an index located in the back of
a textbook, which points you directly to the page or pages that contain your topic
of interest. Think of how long it would take to find all of the times that relational
database appears in this textbook if you didn’t have the index to rely on. An index
in data storage is like an index in the back of a textbook; it is a minitable that con-
tains values from one or more columns in a table and the location of the values
within the table. Instead of paging through the entire textbook, you can move
directly to the right pages and get the information you need. Indexes are one of the
most important ways to improve database performance. Whenever you have per-
formance problems, the first place to look is an index.

A query can use an index to find the locations of only those records that are
included in the query answer, and a table can have an unlimited number of indexes.
Figure 11-19 shows an index that orders records by payment type. A query that
searches for all of the customers who used American Express can use this index to
find the locations of the records that contain American Express as the payment type
without having to scan the entire order table.

Project teams can make indexes perform even faster by placing them into the
main memory of the data storage hardware. Retrieving information from memory
is much faster than from another storage medium like a hard disk—think about how
much faster it is to retrieve a phone number that you have memorized versus one
that you need to look up in a phone book. Similarly, when a database has an index
in memory, it can locate records very, very quickly.

Of course, indexes require overhead in that they take up space on the storage
medium. Also, they need to be updated as records in tables are inserted, deleted, or
changed. Thus, although indexes lead to faster access to the data, they slow down
the update process. In general, you should create indexes sparingly for transaction
systems or systems that require a lot of updates, but apply indexes generously when
designing systems for decision support (Figure 11-20).

Usually, CASE tools allow you to define indexes and clustering strategies
within the design of the physical data model. Figure 11-21 shows the index
screen in one CASE tool (ERwin) for the order table. In this example, three

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

11/23/11
11/23/11
11/23/11
11/23/11
11/23/11
11/23/11
11/23/11
11/23/11
11/24/11
11/24/11
11/24/11
11/24/11
11/24/11
11/24/11
11/24/11
11/24/11
11/24/11
11/24/11
11/24/11
11/24/11

$30.00 MC
$20.00 VISA
$20.00 VISA
$60.00 AMEX
$50.00 MC
$50.00 AMEX
$20.00 VISA
$40.00 MC
$30.00 VISA
$30.00 VISA
$20.00 VISA
$20.00 AMEX
$60.00 MC
$50.00 VISA
$50.00 AMEX
$50.00 AMEX
$20.00 VISA
$10.00 VISA
$60.00 VISA
$40.00 AMEX

AMEX
AMEX
AMEX
AMEX
AMEX
AMEX
MC
MC
MC
MC
MC
MC
MC
VISA
VISA
VISA
VISA
VISA
VISA
VISA

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

4254
9500
1556
2487
2243
1035
1556
1123
9501
4453
9505
2282
5927
2241
4254
2242
2274
9507
2487
2264

Order Number

ORDER TABLE

Date Cust ID Amount Payment TypePayment Type

PAYMENT TYPE INDEX

Pointer

FIGURE 11-19
Payment Type Index

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 431

432 Chapter 11 Data Storage Design

• Use indexes sparingly for transaction systems.
• Use many indexes to improve response times in decision support systems.
• For each table, create a unique index that is based on the primary key.
• For each table, create an index that is based on the foreign key to improve the

performance of joins.
• Create an index for fields that are used frequently for grouping, sorting, or criteria.FIGURE 11-20

Guidelines for Creating Indexes

FIGURE 11-21
Indexes in ERwin

indexes have been designed for the table, and during the implementation phase,
the CASE tool will generate the code that is necessary to construct these indexes
in the DBMS.

Estimating Storage Size

Even if you have denormalized your physical data model, clustered records, and
created indexes appropriately, the system will perform poorly if the database server
cannot handle its volume of data. Therefore, one last way to plan for good per-
formance is to apply volumetrics, which means estimating the amount of data that

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 432

Optimizing Data Storage 433

the hardware will need to support. You can incorporate your estimates into the data-
base server hardware specification to make sure that the database hardware is suf-
ficient for the project’s needs. The size of the database will be determined by the
amount of raw data in the tables and the overhead requirements of the DBMS. To
estimate size, you will need to have a good understanding of the initial size of your
data as well as its expected growth rate over time.

Raw data refers to all the data that are stored within the tables of the database,
and it is calculated via a bottom-up approach. First, write down the estimated aver-
age width for each column (field) in the table and sum the values, yielding a total
record size (Figure 11-22). For example, if a variable-width last name column is
assigned a width of 20 characters, you can enter 13 as the average character width
of the column. In Figure 11-22, the estimated record size is 49.

Next, calculate the overhead for the table as a percentage of each record. Over-
head includes the room needed by the DBMS to support such functions as adminis-
trative actions and indexes, and it should be assigned on the basis of past experience,
recommendations from technology vendors, or parameters that are built into soft-
ware written to calculate volumetrics. For example, your DBMS vendor may rec-
ommend that you allocate 30% of the records’ raw data size for overhead storage
space, creating a total record size of 63.7 characters in the Figure 11-22 example.

Finally, record the number of initial records that will be loaded into the
table, as well as the expected growth per month. This information should have
been collected during the analysis phase as a nonfunctional data requirement. As
shown in Figure 11-22, the initial space required by the first table is 3,185,000
characters, and future sizes can be projected on the basis of the growth figure.
These steps are repeated for every table in order to get a total size for the entire
database.

Many CASE tools will provide you with database size information on the
basis of how you set up the physical data model, and they will calculate volumet-
rics estimates automatically. Figure 11-23 shows a volumetrics screen for ERwin.

Ultimately, the size of the database needs to be shared with the design team
so that the proper technology can be put in place to support the system’s data, and

Order number 8
Date 7
Cust ID 4
Last name 13
First name 9
State 2
Amount 4
Tax rate 2
Record size 49
Overhead 30%
Total record size 63.7

Initial table size 50,000
Initial table volume 3,185,000

Growth rate/month 1000
Table volume @ 3 years 5,478,200

Field Average Size (Characters)

FIGURE 11-22
Calculating Volumetrics

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 433

FIGURE 11-23
Volumetrics Screen in ERwin: (a) Information about Columns and Rows Is Entered into the ERwin; (b) Report Is Generated on the
Basis of the Information.

(a)

(b)

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 434

potential performance problems can be addressed long before they affect the suc-
cess of the system.

Applying the Concepts at Tune Source

Now that the team members had a good idea of the type of data storage formats that
would be used, they were ready to optimize the data for performance efficiency.
Kenji was the analyst in charge of the logical data model, and Jason wanted to be
sure that the data model was optimized for storage efficiency before the team dis-
cussed access speed issues.

Kenji assured Jason that the current data model was in third normal form. He
was confident of this because the project team followed the data modeling guide-
lines that led to a well-formed logical model. Of course, a week or so earlier, he did
apply the three rules of normalization to the data model as a check to make sure that
no design errors were overlooked.

Kenji then asked about the file formats for the transaction file identified in the
earlier meeting. Jason suggested that he normalize the files to better understand the
various tables that would be involved in the import procedure.

The last step of data storage design was to optimize the design for data
access speed. Jason met with the analysts on the data storage design team and
talked about the techniques that were available to speed up access to data in the
system. Together, the team listed all the data that would be supported by the Dig-
ital Music Download system and discussed how all the data would be used. They
developed the strategy laid out in Figure 11-24 to identify the specific techniques
to put in place.

Ultimately, clustering strategies, indexes, and denormalization decisions were
applied to the physical data model, and a volumetrics report was run from the
CASE tool to estimate the initial and projected sizes of the database. The report
suggested that an initial data storage capacity of about 5 gigabytes would be needed
for the expected one-year life of the first version of the system. Additional storage
capacity would be needed as the number of available tunes increases and for future
versions of the system.

Suggestions to Improve
Target Comments Data Access Speed

All tables Basic table manipulation Investigate whether records should
be clustered physically by primary
key.

Create indexes for primary keys.
Create indexes for foreign key fields.

All tables Sorts and grouping Create indexes for fields that are
frequently sorted or grouped.

Tune information Users will need to search Tune
information by title, artist, and
genre.

Create indexes for Tune title, artist,
and genre.

Entire physical model Investigate denormalization
opportunities for all fields that
are not updated very often.

Investigate 1:1 relationships.
Investigate look-up tables.
Investigate 1:M relationships.

FIGURE 11-24
Digital Music Download System
Performance

Optimizing Data Storage 435

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 435

Jason gave the estimates to the analyst in charge of managing the server hard-
ware acquisition so that the person could ensure that the technology could handle
the expected volume of data for the Digital Music Download system. The estimates
would also go to the DBMS vendor during the implementation of the software so
that the DBMS could be configured properly.

SUMMARY

File Data Storage Formats
There are two basic types of data storage formats: files and databases. Files are
electronic lists of data that have been optimized to perform a particular transaction,
and there are five different types: master, look-up, transaction, audit, and history.
Master files typically are kept for long periods because they store important busi-
ness information, such as order information or customer mailing information.
Look-up files contain static values that are used to validate fields in the master files,
and transaction files temporarily hold information that will be used for a master file
update. An audit file records “before” and “after” images of data as they are altered
so that an audit can be performed if the integrity of the data is questioned. Finally,
the history file stores past transactions (e.g., old customers, past orders) that are no
longer needed by the system.

Database Data Storage Formats
A database is a collection of groupings of information that are related to each other
in some way, and a DBMS (database management system) is software that creates
and manipulates these databases. There are four types of databases that are likely to
be encountered during a project: legacy, relational, object, and multidimensional.
The legacy databases (e.g., hierarchical databases and network databases) use older,
sometimes outdated technology and are rarely used to develop new applications.
The relational database is the most popular kind of database for application devel-
opment today, and it is based on collections of tables that are related to each other
through common fields known as foreign keys. Object databases contain data and
processes that are represented by object classes, and relationships between object
classes are shown by encapsulating one object class within another and are mainly
used in multimedia applications (e.g., graphics, video, and sound). One of the
newest members in the database arena is the multidimensional database, which has
become popular with the increase in data warehousing. It stores precalculated quanti-
tative information (e.g., totals, averages) at the intersection of dimensions (e.g., time,
salesperson, product) to support applications that require data to be sliced and diced.

Selecting a Data Storage Format
The application’s data should drive the storage format decision. Relational data-
bases support simple data types very effectively, whereas object databases are best
for complex data. Multidimensional databases are tuned to store aggregated, quan-
titative information. The type of system also should be considered when choosing
among data storage formats. Relational databases have matured to support transac-
tional systems, whereas multidimensional databases have been designed to perform
best in decision support environments. Although less critical to the format selection
decision, the project team needs to consider the kind of technology that exists
within the organization and the kind of technology likely to be used in the future.

436 Chapter 11 Data Storage Design

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 436

Key Terms 437

Physical Entity Relationship Diagrams
One important aspect of design is the movement from logical to physical entity
relationship diagrams. Physical ERDs contain references to how data will be stored
in a file or database table, and metadata are included to describe the data model
components. The model reflects design decisions that will affect the physical imple-
mentation of the system.

The CRUD matrix should be modified to show exactly how data in the phys-
ical data model are created and used in the physical process model. The CRUD
matrix helps ensure balance between the physical process and data models prior to
implementation.

Optimizing Data Storage
There are two primary dimensions in which to optimize a relational database: for
storage efficiency and for speed of access. The most efficient relational database
tables in terms of data storage are those that have no redundant data and very few
null values. Normalization is the process whereby a series of rules are applied to
the logical data model to determine how well optimized it is for storage efficiency.

Once you have optimized your logical data design for storage efficiency, the
data may be spread out across a number of tables. To improve speed, the project
team may decide to denormalize—or add redundancy back into—the design that is
depicted in the physical data model. Denormalization reduces the number of joins
that must be performed in a query, thus speeding up data access. Denormalization
is best in situations in which data are accessed frequently and updated rarely. There
are three modeling situations that are good candidates for denormalization: look-up
tables, entities that share one-to-one (1:1) relationships, and entities that share one-
to-many (1:M) relationships. In all three cases, attributes from one entity are moved
or repeated in another entity to reduce the joins that must occur during data access.

Clustering occurs when similar records are stored close together on the stor-
age medium to speed up data retrieval. In intrafile clustering, similar records in the
table are stored together in some way, such as in sequence. Interfile clustering com-
bines records from more than one table that typically are retrieved together. Indexes
also can be created to improve the access speed of a system. An index is a minitable
that contains values from one or more columns in a table and information about
where the values can be found. Instead of performing a table scan, which is the
most inefficient way to retrieve data from a table, an index points directly to the
records that match the requirements of a query.

Finally, the speed of the system can be improved if the right hardware is pur-
chased to support its data. Analysts can use volumetrics to estimate the current and
future size of data in the database and then share these numbers with the people
who are responsible for buying and configuring the database hardware.

Aggregated
Audit file
Clustering
Data mart
Data warehousing
Database

Database management system
(DBMS)

Decision support system (DSS)
Default value
Denormalization
Encapsulation

End-user DBMS
Enterprise DBMS
Executive information system (EIS)
Expert system (ES)
File
Foreign key

KEY TERMS

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 437

438 Chapter 11 Data Storage Design

Hierarchical database
History file
Hybrid object-oriented DBMS
Index
Instantiation
Interfile cluster
Intrafile cluster
Legacy database
Linked list
Logical entity relationship diagram
Look-up file
Look-up table
Management information system

(MIS)

Master file
Member
Multidimensional database
Network database
Normalization
Object class
Object database
Object-oriented DBMS
Overhead
Physical data model
Physical entity relationship

diagram
Pointer
Primary key

Raw data
Referential integrity
Relational database
Set
Star schema design
Structured Query Language

(SQL)
Subclass
Table scan
Transaction file
Transaction processing system
Valid value
Volumetrics

1. Describe the two steps to data storage design.
2. How are a file and a database different from each

other?
3. What is the difference between an end-user data-

base and an enterprise database? Provide an exam-
ple of each one.

4. Name five types of files, and describe the primary
purpose of each type.

5. Name two types of legacy databases and the main
problems associated with each type.

6. What is the most popular kind of database today?
Provide three examples of products that are based
on this technology.

7. What is referential integrity, and how is it imple-
mented in a relational database?

8. What is the biggest strength of the object database?
Describe two of its weaknesses.

9. How does the multidimensional database store data?
10. What are the two most important factors in deter-

mining the type of data storage format that should
be adopted for a system? Why are these factors so
important?

11. Why should you consider the storage formats that
already exist in an organization when deciding on a
storage format for a new system?

12. What are the differences between the logical and
physical ERDS?

13. Describe the metadata associated with the physical
ERD.

14. Describe the purpose of the primary and foreign keys.
15. Name three ways that null values in a database can

be interpreted. Why is this problematic?
16. What are the two dimensions in which to optimize

a relational database?
17. What is the purpose of normalization?
18. Describe three situations that can be good candi-

dates for denormalization.
19. Describe several techniques that can improve per-

formance of a database.
20. What is the difference between interfile and intrafile

clustering? Why are they used?
21. What is an index, and how can it improve the per-

formance of a system?
22. Describe what should be considered when estimat-

ing the size of a database.
23. Why is it important to understand the initial and pro-

jected size of a database during the design phase?
24. What are the key issues in deciding between using

perfectly normalized databases and denormalized
databases?

QUESTIONS

A. Using the Web or other resources, identify a product
that can be classified as an end-user database and a
product that can be classified as an enterprise data-
base. How are the products described and marketed?

What kinds of applications and users do they sup-
port? In what kinds of situations would an organiza-
tion choose to implement an end-user database over
an enterprise database?

EXERCISES

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 438

Exercises 439

B. Visit a commercial Web site (e.g., CDnow, Amazon.
com). If files were being used to store the data sup-
porting the application, what types of files would be
needed? What data would they contain?

C. Using the Web, review one of the products listed at
the end of this exercise. What are the main features
and functions of the software? In what companies
has the database management system (DBMS) been
implemented, and for what purposes? According to
the information that you found, what are three
strengths and weaknesses of the product?

• Relational DBMS
• Object DBMS
• Multidimensional DBMS

D. You have been given a file that contains fields relat-
ing to CD information. Using the steps of normal-
ization, create a logical data model that represents
this file in third normal form. The fields include the
following:

• Musical group name
• Musicians in group
• Date group was formed
• Group’s agent
• CD title 1
• CD title 2
• CD title 3
• CD 1 length
• CD 2 length
• CD 3 length

The assumptions are as follows:

• Musicians in group contains a list of the members
in the musical group.

• Musical groups can have more than one CD, so
both group name and CD title are needed to
uniquely identify a particular CD.

E. Jim Smith’s dealership sells Fords, Hondas, and
Toyotas. The dealership keeps information about each
car manufacturer with whom it deals so that employ-
ees can get in touch with manufacturers easily. The
dealership staff also keeps information about the
models of cars that the dealership carries from each
manufacturer. They keep such information as list
price, the price the dealership paid to obtain the
model, and the model name and series (e.g., Honda
Civic LX). They also keep information about all
sales that they have made. (For instance, they will
record the buyer’s name, the car he or she bought,

and the amount he or she paid for the car.) So that
staff can contact the buyers in the future, contact
information is also kept (e.g., address, phone num-
ber). Create a logical data model. (You may have
done this already in Chapter 7.) Apply the rules of
normalization to the model to check the model for
processing efficiency.

F. Describe how you would denormalize the model that
you created in question E. Draw the new physical
model on the basis of your suggested changes. How
would performance be affected by your suggestions?

G. Examine the physical data model that you created in
question F. Develop a clustering and indexing strat-
egy for this model. Describe how your strategy will
improve the performance of the database.

H. Investigate the volumetric interface with the computer-
aided software engineering (CASE) tool that you are
using for class. What information do you as an ana-
lyst need to input into the tool? How are size esti-
mates calculated? If your CASE tool does not accept
volumetric information, how can you calculate the
size of the database?

I. Calculate the size of the database that you created in
question F. Provide size estimates for the initial size
of the database as well as for the database in one
year’s time. Assume that the dealership sells 10
models of cars from each manufacturer to approxi-
mately 20,000 customers a year. The system will be
set up initially with one year’s worth of data.

J. How would the following ERD be changed to incor-
porate the design decision listed next?

• The analyst wants to keep track of the user ID of
anyone who changes a grade for a course.

• A data store is added on the physical DFD so that
information regarding the current semester’s
courses can be stored temporarily during the
add/drop period before the courses become a part
of the student’s permanent record.

• The system would like to archive alumni into a
table, once they graduate, so that only active stu-
dents are stored in the student table.

K. Draw a physical process model (just the processes
and data stores) for the following CRUD matrix:

Register Schedule Create Create
Student Student Student Transcript Bill
Student Data Store CRUD R R R
Course Data Store CRUD R
Billing Data Store CRUD CRUD
Grade Data Store CRUD

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 439

440 Chapter 11 Data Storage Design

1. In the new system under development for Holiday
Travel Vehicles, seven tables will be implemented in
the new relational database. These tables are New
Vehicle, Trade-in Vehicle, Sales Invoice, Customer,
Salesperson, Installed Option, and Option. The
expected average record size for these tables and the
initial record count per table are given next.

Average Initial Table
Table Name Record Size Size (records)
New Vehicle 65 characters 10,000
Trade-in Vehicle 48 characters 7,500
Sales Invoice 76 characters 16,000
Customer 61 characters 13,000
Salesperson 34 characters 100
Installed Option 16 characters 25,000
Option 28 characters 500

Perform a volumetrics analysis for the Holiday Travel
Vehicles system. Assume that the DBMS that will be used
to implement the system requires 35% overhead to be fac-
tored into the estimates. Also, assume a growth rate for
the company of 10% per year. The systems development
team wants to ensure that adequate hardware is obtained
for the next three years.

MINICASES

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 440

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 441

This page is intentionally left blank

PA
RT

 F
O

U
R:

 I
M

PL
EM

EN
TA

TI
O

N
PA

RT
 T

H
RE

E:
 D

ES
IG

N
PA

RT
 T

W
O

:
AN

AL
YS

IS
PA

RT
 O

N
E:

 P
LA

N
N

IN
G

Initial System
Request

CHAPTER

1

Use Cases

Process
Models

Alternative Matrix

Architecture
Design

Interface Design

Hardware/Software
Specification

Physical Process
Model

Physical Data
Model

Program Design

Database & File
Specification

Data
Model

Requirements
Definition

Feasibility
Study

CHAPTER

1

Project
Plan

CHAPTER

2

Completed
Programs

Test Plan
Fig 12-10

Documentation
Fig 12-12

Training Plan

Problem Report
Fig 13-9

CHAPTER

13

CHAPTER

13

Change Request
Fig 13-10

CHAPTER

13

Migration Plan
Fig 13-2

Change
Management Plan

Support
Plan

CHAPTER
13

PROJECT PLAN

SYSTEM PROPOSAL

SYSTEM SPECIFICATION

INSTALLED SYSTEM
CHAPTER
13

CHAPTER
13

CHAPTER
12

CHAPTER
12

CHAPTER
11

CHAPTER
10

CHAPTER
10

CHAPTER
9

CHAPTER
8

CHAPTER
8

CHAPTER
7

CHAPTER
3

CHAPTER
5 CHAPTER

4

CHAPTER
6

CHAPTER
11

CHAPTER
12

c12MovingIntoImplementation.qxd 10/4/11 1:13 PM Page 442

Transition to
the New System

Moving into
Implementation

Change
M

anagem
ent

Plan

Training
Plan

Program
s

Docum
entation

M
igration
Plan

Support
Plan

Problem

Report
Change
Request

Project
Assessm

ent

CHAPTER

13

CHAPTER

12

The final phase in the SDLC
is the implementation phase,

during which the system is actually built
(or purchased, in the case

of a packaged software design).

At the end of implementation,
the final system is put into operation

and supported and maintained.

P A R T F O U R
IMPLEMENTATION

PHASE
IMPLEMENTATION

PHASE

Test Plan

c12MovingIntoImplementation.qxd 12/5/11 2:34 PM Page 443

D E S I G N

IMPLEMENTATION

T A S K C H E C K L I S T

P L A N N I N G A N A L Y S I S D E S I G N

Program System
Test Software
Test Performance
Select System Conversion Strategy
Train Users
Select Support
Maintain System
Assess Project
Conduct Post-Implementation Audit

A N A L Y S I S

P L A N N I N G

c12MovingIntoImplementation.qxd 10/4/11 1:13 PM Page 444

I M P L E M E N TAT I O N

s the design phase is completed, the systems analyst begins to focus on the tasks
associated with building the system, ensuring that it performs as designed and

developing documentation for the system. Programmers will carry out the time-consuming
and costly task of writing programs, while the systems analyst prepares plans for a vari-
ety of tests that will verify that the system performs as expected. Several different types of
documentation will also be designed and written during this part of the systems develop-
ment life cycle.

OBJECTIVES

■ Be familiar with the system construction process.
■ Explain different types of tests and when to use them.
■ Describe how to develop user documentation.

CHAPTER OUTLINE

C H A P T E R 1 2

A

MOVING INTO
IMPLEMENTATION

Introduction
Managing the Programming Process

Assigning Programming Tasks
Coordinating Activities
Managing the Schedule

Testing
Test Planning
Unit Tests
Integration Tests
System Tests
Acceptance Tests

Developing Documentation
Types of Documentation
Designing Documentation Structure
Writing Documentation Topics
Identifying Navigation Terms

Applying the Concepts at Tune Source
Managing Programming
Testing
Developing User Documentation

Summary

c12MovingIntoImplementation.qxd 10/4/11 1:13 PM Page 445

INTRODUCTION

As the implementation phase begins, foremost on people’s minds is construction of
the new system. A major component of building the system is writing programs. In
fact, some people mistakenly believe that programming is the focal point of systems
development. We hope you agree that doing a good, thorough job on the analysis and
design phases is essential to a smooth and successful implementation phase.

The implementation phase consists of developing and testing the system’s soft-
ware, documentation, and new operating procedures. These topics are presented in this
chapter. Chapter 13 discusses additional issues that are essential to a successful system
implementation, including installation of the new system, selection of the most suit-
able conversion approach, preparing the organization and the users to adapt to the new
system, and ensuring that the system is supported after it is put into production.

Developing the system’s software (writing programs) can be the largest single
component of any systems development project in terms of both time and cost. It is
generally also the best understood component and may offer the fewest problems of
all the aspects of the SDLC. Since the systems analyst is usually not actually doing
the programming (programmers are), in this chapter we concentrate our attention
on managing the programming process.

While programmers are transforming program specifications into working
program code, the systems analysts will be designing a variety of tests that will be
performed on the new system. As the programs are finalized, the systems analysts
may conduct these tests to verify that the system actually does what it was designed
to do. Testing may be a major element of the implementation phase for the systems
analysts. (In some organizations, testing is performed by specialized quality assur-
ance personnel.)

During this phase, it is also the responsibility of the systems analysts to final-
ize the system documentation and develop the user documentation. The final section
of this chapter discusses the various types of documentation that must be prepared.

MANAGING THE PROGRAMMING PROCESS

The programming process is quite well understood and generally flows smoothly.
When system development projects fail, it is usually not because the programmers
were unable to write the programs. Flaws in analysis, design, or project manage-
ment are the leading contributors to project failure. In order to ensure that the
process of programming is conducted successfully, we discuss several tasks that the
project manager must do to manage the programming effort: assigning program-
ming tasks, coordinating the activities, and managing the programming schedule.1

Assigning Programming Tasks

During project planning (Chapter 2), the project manager identified the program-
ming support required for constructing the system in terms of the numbers and skill
levels of programmers. Now the project manager must assign program modules to
the programming staff. As discussed in Chapter 10, each programming module
should be as separate and distinct as possible from the other modules. The project

446 Chapter 12 Moving Into Implementation

1 One of the best books on managing programming (even though it was first written in 1975) is that by
Frederick P. Brooks Jr. The Mythical Man-Month, 20th anniversary ed., Reading, MA: Addison-Wesley, 1995.

c12MovingIntoImplementation.qxd 10/4/11 1:13 PM Page 446

manager first groups together modules that are related. These groups of modules are
then assigned to programmers on the basis of their experience and skill level. Expe-
rienced, skilled programmers will be assigned the most complex modules, while
novice programmers will be given less complex ones.

It is quite likely that there will be a mismatch between the available program-
ming skills and the programming skills that are needed to complete the program-
ming. Consequently, the project manager must take steps at this time to ensure that
skill deficiencies are eliminated through additional training or through mentoring
arrangements with more experienced, skilled programmers. When the required
skills are not readily available, the project manager must recognize the need for
additional time in the project schedule.

While it will be tempting to speed up the programming process by adding more
programming staff to the project, an ironic fact of system development is that the more
programmers who are involved, the longer the project will take. As the size of the pro-
gramming team increases, the need for coordination increases exponentially, and the
more coordination that is required, the less time programmers can spend actually writ-
ing programs. The best size is the smallest feasible programming team. When projects
are so complex that they require a large team, the best strategy is to try to break the
project into a series of smaller parts that can function as independently as possible.

Coordinating Activities

Coordination can be done through both high-tech and low-tech means. The simplest
approach is to have a weekly project meeting to discuss any changes to the system
that have arisen during the past week—or just any issues that have come up. Regular
meetings, even if they are brief, encourage the widespread communication and
discussion of issues before they become problems.

Managing the Programming Process 447

My first programming job in 1977
was to convert a set of application systems from one ver-
sion of COBOL to another version of COBOL for the gov-
ernment of Prince Edward Island. The testing approach
was to first run a set of test data through the old system
and then run it through the new system to ensure that the
results from the two matched. If they matched, then the
last three months of production data were run through
both to ensure they, too, matched.

Things went well until I began to convert the gas tax
system that kept records on everyone authorized to pur-
chase gasoline without paying tax. The test data ran fine,
but the results using the production data were peculiar. The
old and new systems matched, but rather than listing sev-
eral thousand records, the report listed only 50. I checked
the production data file and found it listed only 50 records,
not the thousands that were supposed to be there.

The system worked by copying the existing gas tax
records file into a new file and making changes in the
new file. The old file was then copied to tape backup.
There was a bug in the program such that if there were
no changes to the file, a new file was created, but no
records were copied into it.

I checked the tape backups and found one with the
full set of data that was scheduled to be overwritten three
days after I discovered the problem. The government was
only three days away from losing all gas tax records.

Alan Dennis

QUESTION:
What might have happened if this bug hadn’t been

caught and all gas tax records were lost?

12-A THE COST OF A BUG

IN ACTION

CONCEPTS

c12MovingIntoImplementation.qxd 10/4/11 1:13 PM Page 447

Another important way to improve coordination is to create and follow stan-
dards that can range from formal rules for naming files to forms that must be com-
pleted when goals are reached to programming guidelines. (See Chapter 2.) When
a team forms standards and then follows them, the project can be completed faster
because task coordination is less complex.

The project manager must put mechanisms in place to keep the programming
effort well organized. Many project teams set up three “areas” in which program-
mers can work: a development area, a testing area, and a production area. These
areas can be different directories on a server hard disk, different servers, or differ-
ent physical locations, but the point is that files, data, and programs are separated
on the basis of their status of completion. At first, programmers access and build
files within the development area. Then they copy them to the testing area when
they are “finished.” If a program does not pass a test, it is sent back to development.
Once all the programs are tested and ready to support the new system, they are
copied into the production area—the location where the final system will reside.

Keeping files and programs in different places according to completion status
helps manage change control, the action of coordinating a program as it changes
through construction. Another change control technique is keeping track of what
programs are being changed by whom, through the use of a program log. The log is
merely a form on which programmers sign out programs to write, and sign in the
programs when they are completed. Both the programming areas and program log
help the analysts understand exactly who has worked on what and the program’s sta-
tus. Without these techniques, files can be put into production without the proper
testing, two programmers can start working on the same program at the same time,
files can be overlooked, and so on. Code management systems are available that
facilitate the “checkout” of programs and maintain various versions of a module.

Many CASE tools are set up to track the status of programs and help manage
programmers as they work. In most cases, maintaining coordination is not concep-
tually complex. It just requires a lot of attention and discipline to track small details.

Managing the Schedule

The time estimates that were produced during the initial planning phase and refined
during the analysis and design phases must almost always be refined as the project
progresses during construction, because it is virtually impossible to develop an
exact assessment of the project’s schedule. As we discussed in Chapter 2, a well-
done set of time estimates will usually have a 10% margin of error by the time
implementation is reached. It is critical that the time estimates be revised as the
construction step proceeds. If a program module takes longer to develop than
expected, then the prudent response is to move the expected completion date later
by the same amount of time.

One of the most common causes for schedule problems is scope creep. Scope
creep occurs when new requirements are added to the project after the system
design has been finalized. Scope creep can be very expensive because changes
made late in the SDLC can require much of the completed system design (and even
programs already written) to be redone. Any proposed change during construction
will require the approval of the project manager and should be addressed only after
a quick cost–benefit analysis has been done.

Another common cause is the unnoticed day-by-day slippages in the schedule.
One module is a day late here; another one, a day late there. Pretty soon these minor

448 Chapter 12 Moving Into Implementation

c12MovingIntoImplementation.qxd 10/4/11 1:13 PM Page 448

Testing 449

In previous chapters, we discussed
classic mistakes and how to avoid them. Here, we sum-
marize four classic mistakes in the implementation phase:

1. Research-oriented development: Using state-of-the-art tech-
nology requires research-oriented development that
explores the new technology, because “bleeding-
edge” tools and techniques are not well understood,
are not well documented, and do not function exactly
as promised.
Solution: If you use state-of-the-art technology, you
should significantly increase the project’s time and
cost estimates even if (some experts would say espe-
cially if) such technologies claim to reduce time and
effort.

2. Using low-cost personnel: You get what you pay for. The
lowest-cost consultant or staff member is significantly
less productive than the best staff. Several studies
have shown that the best programmers produce soft-
ware six to eight times faster than the least productive
(yet cost only 50% to 100% more).
Solution: If cost is a critical issue, assign the best, most
expensive personnel; never assign entry-level person-
nel in an attempt to save costs.

3. Lack of code control: On large projects, programmers
must coordinate changes to the program source code
(so that two programmers don’t try to change the
same program at the same time and one doesn’t over-
write the other’s changes). Although manual proce-
dures appear to work (e.g., sending e-mail notes to
others when you work on a program to tell them not
to work on that program), mistakes are inevitable.
Solution: Use a source code library that requires pro-
grammers to check out programs and prohibits others
from working on them at the same time.

4. Inadequate testing: The number-one reason for project
failure during implementation is ad hoc testing—in
which programmers and analysts test the system with-
out formal test plans.
Solution: Always allocate sufficient time in the project
plan for formal testing.

Source: Adapted from Rapid Development, Redmond, WA:
Microsoft Press, 1996, pp. 29–50, by Steve McConnell.

12-1 AVOIDING CLASSIC IMPLEMENTATION MISTAKES

T I P

PRACTICAL

delays add up, and the project is noticeably behind schedule. Once again, the key
to managing the programming effort is to watch these minor slippages carefully and
update the schedule accordingly. It is especially critical to monitor slippage of all
tasks on the critical path, since falling behind on these tasks will affect the final
completion date for the project.

Typically, a project manager will create a risk assessment that tracks potential
risks, along with an evaluation of their likelihood and potential impact. As pro-
gramming progresses, the list of risks will change as some items are removed and
others surface. The best project managers, however, work hard to keep risks from
having an impact on the schedule and costs associated with the project.

TESTING

Writing programs is a fun, creative activity. Novice programmers tend to get caught
up in the development of the programs themselves and are often much less
enchanted with the tasks of testing and documenting their work. Testing and docu-
mentation aren’t fun; consequently, they receive less attention than writing the
programs.

c12MovingIntoImplementation.qxd 10/4/11 1:13 PM Page 449

Programming and testing are very similar to writing and editing, however. No
professional writer (or serious student writing an important term paper) would stop
after writing the first draft. Rereading, editing, and revising the initial draft into a
good paper is the hallmark of good writing. Likewise, thorough testing is the hall-
mark of professional software developers. Most professional organizations devote
more time and money to testing (and to revision and retesting) than to writing the
programs in the first place.

The attention paid to testing is justified by the high costs associated with
downtime and failures caused by software bugs.2 Software bugs are estimated to
cost the U.S. economy $59.5 billion annually.3 One serious bug that causes an hour
of downtime can cost more than one year’s salary of a programmer—and how
often are bugs found and fixed in an hour? Testing is therefore a form of insurance.
Organizations are willing to spend a lot of time and money to prevent the possi-
bility of major failures after the system is installed. Figure 12-1 lists some esti-
mated income losses for several industries that cannot function without their com-
puter systems.

A program is not considered finished until it has passed its testing. For this
reason, programming and testing are tightly coupled. Testing is frequently the pri-
mary focus of the systems analysts as the system is being constructed. The analysts
must resist the temptation to rush into testing as soon as the very first program mod-
ule is complete, however. Spontaneously testing different events and possibilities
without spending time to develop a comprehensive test plan is dangerous, because
important tests may be overlooked. If an error does occur, it may be difficult to
reproduce the exact sequence of events that cause it. Instead, testing must be per-
formed and documented systematically so that the project team always knows what
has and has not been tested.

450 Chapter 12 Moving Into Implementation

2 When I was an undergraduate, I had the opportunity to hear Admiral Grace Hopper tell how the term bug
was introduced. She was working on one of the early U.S. Navy computers when suddenly it failed. The com-
puter would not restart properly, so she began to search for failed vacuum tubes. She found a moth inside one
tube and recorded in the log book that a bug had caused the computer to crash. From then on, every computer
crash was jokingly blamed on a bug (as opposed to programmer error), and eventually the term bug entered
the general language of computing.
3 See “Software Errors Cost U.S. Economy $59.5 Billion Annually,” NIST Report 2002–10, www.nist.gov/
public_affairs/releases/no2-10.htm.

FIGURE 12-1
Estimated Lost Income Resulting from
One Hour of System Downtime, By
Industry

Brokerage Service $6.4 million

Energy 2.8 million

Telecom 2.0 million

Manufacturing 1.6 million

Retail 1.1 million

Health Care 636,000

Media 90,000

“Assessing the Financial Impact of Downtime,” Vision Solu-
tions, 2008, www.visionsolutions.com

c12MovingIntoImplementation.qxd 10/4/11 1:13 PM Page 450

The sections that follow describe a number of different types of tests that must
be performed prior to installing the new system. Each type of test checks different fea-
tures and/or scope of the system, until ultimately it is tested for acceptance by the users.

Test Planning

Testing starts with the tester’s developing a test plan that defines a series of tests
that will be conducted.4 Figure 12-2 shows a typical test plan form. A test plan often
has 20 to 30 pages, with a separate page for each individual test in the plan. Each
individual test has a specific objective, describes a set of very specific test cases to
examine, and defines the expected results and the actual results observed. The test
objective is taken directly from the program specification or from the program
source code. For example, suppose that the program specification stated that the
order quantity must be between 10 and 100 cases. The tester would develop a series
of test cases to ensure that the quantity is validated before the system accepts it.

It is impossible to test every possible combination of input and situation; there are
simply too many possible combinations. In this example of an order quantity that must
be between 10 and 100 cases, the test requires a minimum of 3 test cases: one with a
valid value (e.g., 15), one with an invalid value too low (e.g., 7), and one with an invalid
value too high (e.g., 110). Most tests would also include a test case with a non-numeric
value to ensure that the data types were checked (e.g., ABCD). A really good test would
include a test case with nonsensical, but potentially valid, data (e.g., 21.4).

In some cases, test cases cannot be conducted by entering data values, but
must instead be handled by selecting certain combinations of commands or menu
choices. The script area on the test plan is used to describe the sequence of key-
strokes or mouse clicks and movements for this type of test.

Not all program modules are likely to be finished at the same time, so the pro-
grammer usually writes stubs for the unfinished modules to enable the modules
around them to be tested. A stub is a placeholder for a module that usually displays
a simple test message on the screen or returns some hardcoded value5 when it is
selected. For example, consider an application system that provides the five stan-
dard functions discussed in Chapter 5 for some data objects such as customers,
vehicles, or employees: creating, changing, deleting, finding, and printing (whether
on the screen or on a printer). Each of these functions could be a separate module
that needs to be tested, and in fact, printing might be two separate modules, one for
an on-screen list and one for the printer (Figure 12-3).

Suppose that the main menu module in Figure 12-3 was complete. It would be
impossible to test it properly without the other modules, because the function of the
main menu is to navigate to the other modules. In this case, a stub would be written for
each of the other modules. These stubs would simply display a message on the screen
when they were activated (e.g., “Delete item module reached”). In this way, the main
menu module could pass module testing before the other modules were completed.

There are four general stages of tests: unit tests, integration tests, system tests,
and acceptance tests. Although each application system is different, most errors are
found during integration and system testing (Figure 12-4).

Testing 451

4 For more information on testing, see William Perry, Effective Methods for Software Testing, “3d” ed. 2006.
5 The word hardcoded means “written into the program.” For example, suppose that you were writing a unit to
calculate the net present value of a loan. The stub might be written to always display (or return to the calling
module) a value of 100 regardless of the input values. In this case, we would say that the 100 was hardcoded.

c12MovingIntoImplementation.qxd 10/4/11 1:13 PM Page 451

452 Chapter 12 Moving Into Implementation

Program ID: Version number:

Tester: Date designed: Date conducted:

Results: Passed Open items:

Test ID: Requirement addressed:

Objective:

Test cases

Interface ID

Script

Expected results/notes

Actual results/notes

1.

2.

3.

4.

5.

6.

Data Field Value Entered

Test Plan Page of

FIGURE 12-2
Test Plan

c12MovingIntoImplementation.qxd 10/4/11 1:13 PM Page 452

Create
New Item

Change
Item

Print
Item

Find
Item

Delete
Item

Main Menu

On-screen List

FIGURE 12-3
Testing Separate Modules

N
um

be
r

of
 E

rr
or

s
D

et
ec

te
d

Unit
Test

Integration
Test

System
Test

Testing Stage

Acceptance
Test (Alpha)

Acceptance
Test (Beta)

FIGURE 12-4
Error Discovery Rates for Different
Stages of Tests

Testing 453

c12MovingIntoImplementation.qxd 10/4/11 1:13 PM Page 453

Unit Tests

Unit tests focus on one unit—a program or a program module that performs a spe-
cific function that can be tested. The purpose of a unit test is to ensure that the mod-
ule or program performs its function as defined in the program specification. Unit
testing is performed after the programmer has developed and tested the code and
believes it to be error free. These tests are based strictly on the program specifica-
tion and may discover errors resulting from the programmer’s misinterpretation of
the specifications. Unit tests are often conducted by the systems analyst or, some-
times, by the programmer who developed the unit.

There are two approaches to unit testing: black-box and white-box (Figure 12-5).
Black-box testing is the most commonly used. In this case, the test plan is devel-
oped directly from the program specification: Each item in the program specifica-
tion becomes a test, and several test cases are developed for it. White-box testing is
reserved for special circumstances in which the tester wants to review the actual
program code, usually when complexity is high.

Integration Tests

Integration tests assess whether a set of modules or programs that must work
together do so without error. They ensure that the interfaces and linkages between
different parts of the system work properly. At this point, the modules have
passed their individual unit tests, so the focus now is on the flow of control
among modules and on the data exchanged among them. Integration testing fol-
lows the same general procedures as unit testing: the tester develops a test plan
that has a series of tests. Integration testing is often done by a set of programmers
and/or systems analysts.

There are four approaches to integration testing: user interface testing, use
scenario testing, data flow testing, and system interface testing. (See Figure 12-5.)
Most projects use all four approaches.

System Tests

System tests are usually conducted by the systems analysts to ensure that all
modules and programs work together without error. System testing is similar to
integration testing, but is much broader in scope. Whereas integration testing
focuses on whether the modules work together without error, system tests exam-
ine how well the system meets business requirements and its usability, security,
and performance under heavy load (see Figure 12-5). It also tests the system’s
documentation.

454 Chapter 12 Moving Into Implementation

Pretend that you are a project manager for a bank developing software for automated teller
machines (ATMs). Develop a unit test plan for the user interface component of the ATM.

12-1 TEST PLANNING FOR AN AUTOMATED TELLER MACHINEY O U R

T U R N

c12MovingIntoImplementation.qxd 10/4/11 1:13 PM Page 454

Stage Types of Tests Test Plan Source When to Use Notes

Unit Testing Black-box testing:
treats program as
black box.

Program specifications For normal unit
testing

The tester focuses on whether the unit meets the
requirements stated in the program specifica-
tions.

White-box testing:
looks inside the pro-
gram to test its
major elements.

Program source code When complexity
is high

By looking inside the unit to review the code
itself, the tester may discover errors or assump-
tions not immediately obvious to someone treat-
ing the unit as a black box.

Integration
Testing

User interface testing:
The tester tests each
interface function.

Interface design For normal inte-
gration testing

Testing is done by moving through each and
every menu item in the interface either in a top-
down or bottom-up manner.

Use scenario testing:
The tester tests each
use scenario.

Use scenario When the user
interface is
important

Testing is done by moving through each use
scenario to ensure that it works correctly.

Use scenario testing is usually combined with user
interface testing because it does not test all
interfaces.

Data flow testing:
Tests each process
in a step-by-step
fashion.

Physical DFDs When the system
performs data
processing

The entire system begins as a set of stubs. Each
unit is added in turn, and the results of the unit
are compared with the correct result from the
test data; when a unit passes, the next unit is
added and the test is rerun.

System interface
testing: tests the
exchange of data
with other systems.

Physical DFDs When the system
exchanges data

Because data transfers between systems are often
automated and not monitored directly by the
users, it is critical to design tests to ensure that
they are being done correctly.

System Testing Requirements testing:
tests whether origi-
nal business require-
ments are met.

System design, unit
tests, and integration
tests

For normal system
testing

This test ensures that changes made as a result of
integration testing did not create new errors.

Testers often pretend to be uninformed users
and perform improper actions to ensure that
the system is immune to invalid actions (e.g.,
adding blank records).

Usability testing: tests
how convenient the
system is to use.

Interface design and
use scenarios

When user
interface is
important

This test is often done by analysts with experience
in how users think and in good interface design.

This test sometimes uses the formal usability test-
ing procedures discussed in Chapter 9.

Security testing: tests
disaster recovery
and unauthorized
access.

Infrastructure design When the system
is important

Security testing is a complex task, usually done by
an infrastructure analyst assigned to the project.

In extreme cases, a professional firm may be hired.

Performance testing:
examines the ability
to perform under
high loads.

System proposal and
infrastructure design

When the system
is important

High volumes of transactions are generated and
given to the system.

This test is often done by the use of special-
purpose testing software.

Documentation test-
ing: tests the accu-
racy of the docu-
mentation.

Help system,
procedures, tutorials

For normal
system testing

Analysts spot-check or check every item on
every page in all documentation to ensure
that the documentation items and examples
work properly.

Acceptance
Testing

Alpha testing: con-
ducted by users to
ensure that they
accept the system.

System tests For normal
acceptance
testing

Alpha tests often repeat previous tests, but are
conducted by users themselves to ensure that
they accept the system.

Beta testing: uses real
data, not test data.

No plan When the system
is important

Users closely monitor the system for errors or use-
ful improvements.

DFD = data flow diagram.

FIGURE 12-5
Types of Tests

455

c12MovingIntoImplementation.qxd 10/4/11 1:13 PM Page 455

Acceptance Tests

Acceptance tests are done primarily by the users with support from the project
team. The goal is to confirm that the system is complete, meets the business needs
that prompted the system to be developed, and is acceptable to the users. Accep-
tance testing is done in two stages: alpha testing, in which users test the system
using made-up data, and beta testing, in which users begin to use the system with
real data and carefully monitor the system for errors. (See Figure 12-5.)

The users’ perceptions of the new system will be significantly influenced by
their experiences during acceptance testing. Since first impressions are sometimes
difficult to change, analysts should strive to ensure that acceptance testing is
conducted only following rigorous (and successful) system testing. In addition,
listening to and responding to user feedback will be essential in shaping a positive
reaction to and acceptance of the new system by the users.

DEVELOPING DOCUMENTATION

There are two fundamentally different types of documentation. System documenta-
tion is intended to help programmers and systems analysts understand the applica-
tion software and enable them to build it or maintain it after the system is installed.
System documentation is a by-product of the systems analysis and design process
and is created as the project unfolds. Each step and phase produces documents that
are essential in understanding how the system is built or is to be built, and these
documents are stored in the project binder(s).

User documentation (such as user manuals, training manuals, and online
help systems) is designed to help the user operate the system. Although most
project teams expect users to have received training and to have read the user
manuals before operating the system, unfortunately, this is not always the case. It
is more common today—especially in the case of commercial software packages

456 Chapter 12 Moving Into Implementation

A consulting project involved a credit
card “bottom feeder” (let’s call it Credit Wonder). This
company bought credit card accounts that were written
off as uncollectable debts by major banks. Credit Won-
der would buy the write-off accounts for 1 or 2 percent of
their value and then would call the owners of the written-
off accounts and “offer a deal” to the credit card account
holders.

Credit Wonder wanted a database for these
accounts. Legally, it did own them and so could contact
the people who had owed the money—but as prescribed
in credit law. For example, Credit Wonder could call only
during certain hours and no more than once a week, and
they had to speak to the actual account holder. Any

amount collected over the 1 to 2 percent of the original
debt would be considered a gain. In its database, Credit
Wonder wanted a history of what settlement was offered,
the date the account holder was contacted, and addi-
tional notes.

QUESTIONS:
1. How might a systems analyst manage such a system

project?
2. Who would the systems analyst need to interview to

get the system requirements?
3. How would a database analyst help in structuring the

database requirements?

12-B MANAGING A DATABASE PROJECT

IN ACTION

CONCEPTS

c12MovingIntoImplementation.qxd 10/4/11 1:13 PM Page 456

for microcomputers—for users to begin using the software without training or
reading the user manuals. In this section, we focus on user documentation.6

User documentation is often left until the end of the project, which is a dan-
gerous strategy. Developing good documentation takes longer than many people
expect, because it requires much more than simply writing a few pages. Producing
documentation requires designing the documents (whether paper or online), writ-
ing the text, editing them, and testing them. For good-quality documentation, this
process usually takes about 3 hours per page (single-spaced) for paper-based doc-
umentation or 2 hours per screen for online documentation. Thus, a “simple” set of
documentation such as a 10-page user manual and a set of 20 help screens takes 70
hours. Of course, lower-quality documentation can be produced faster.

The time required to develop and test user documentation should be built into
the project plan. Most organizations plan for documentation development to start once
the interface design and program specifications are complete. The initial draft of doc-
umentation is usually scheduled for completion immediately after the unit tests are
complete. This reduces—but doesn’t eliminate—the chance that the documentation
will need to be changed because of software changes, and it still leaves enough time
for the documentation to be tested and revised before the acceptance tests are started.

Although paper-based manuals are still important, online documentation is
becoming the predominant form. Paper-based documentation is simpler to use
because it is more familiar to users, especially novices who have less computer
experience; online documentation requires the users to learn one more set of
commands. Paper-based documentation also is easier to flip through to gain a
general understanding of its organization and topics and can be used far away
from the computer itself.

There are four key strengths of online documentation, however, which all but
guarantee its position as the dominant form for the foreseeable future. First, search-
ing for information is often simpler (provided that the help search index is well
designed). The user can type in a variety of keywords to view information almost
instantaneously, rather than having to search through the index or table of contents
in a paper document. Second, the same information can be presented several times
in many different formats, so that the user can find and read the information in the
most informative way. (Such redundancy is possible in paper documentation, but
the cost and intimidating size of the resulting manual make it impractical.) Third,
online documentation enables the user to interact with the documentation in many
new ways that are not possible with static paper documentation. For example, it is
possible to use links or “tool tips” (i.e., pop-up text; see Chapter 9) to explain
unfamiliar terms, and programmers can write “show me” routines that demonstrate
on the screen exactly what buttons to click and what text to type. Finally, online
documentation is significantly less expensive to distribute and keep up to date than
paper documentation.

Types of Documentation

There are three fundamentally different types of user documentation: reference
documents, procedures manuals, and tutorials. Reference documents (also called
the help system) are designed to be used when the user needs to learn how to

Developing Documentation 457

6 For more information on developing documentation, see Thomas T. Barker, Writing Software Documenta-
tion, Boston: Allyn & Bacon, 1998.

c12MovingIntoImplementation.qxd 10/4/11 1:13 PM Page 457

perform a specific function (e.g., updating a field, adding a new record). Typically,
people read reference information only after they have tried and failed to perform
the function. Writing reference documents requires special care because users are
often impatient or frustrated when they begin to read them.

Procedures manuals describe how to perform business tasks (e.g., printing a
monthly report, taking a customer order). Each item in the procedures manual typ-
ically guides the user through a task that requires several functions or steps in the
system. Therefore, each entry is typically much longer than an entry in a reference
document.

Tutorials teach people how to use major components of the system (e.g., an
introduction to the basic operations of the system). Each entry in the tutorial is typ-
ically longer still than the entries in procedures manuals, and the entries are usually
designed to be read in sequence, whereas entries in reference documents and pro-
cedures manuals are designed to be read individually.

Regardless of the type of user documentation, the overall process for devel-
oping it is similar to the process of developing interfaces (see Chapter 9). The
developer first designs the general structure for the documentation and then develops
the individual components within it.

Designing Documentation Structure

In this section, we focus on the development of online documentation because we
believe that it is the most common form of user documentation. The general struc-
ture used in most online documentation, whether reference documents, procedures
manuals, or tutorials, is to develop a set of documentation navigation controls that
lead the user to documentation topics. The documentation topics are the material
that users want to read, whereas the navigation controls are the way in which users
locate and access a specific topic.

Designing the structure of the documentation begins by identifying the dif-
ferent types of topics and navigation controls that must be included. Figure 12-6
shows a commonly used structure for online reference documents (i.e., the help sys-
tem). The documentation topics generally come from three sources. The first and
most obvious source of topics is the set of commands and menus in the user
interface. This set of topics is very useful if the user wants to understand how a
particular command or menu is used.

However, users often don’t know what commands to look for or where they
are in the system’s menu structure. Instead, users have tasks they want to perform,
and rather than thinking in terms of commands, they think in terms of their busi-
ness tasks. Therefore, the second and often more useful set of topics focuses on how
to perform certain tasks, usually those in the use scenarios from the user interface
design. (See Chapter 9.) These topics walk the user through the set of steps (often
involving several keystrokes or mouse clicks) needed to perform some task.

The third set of topics are definitions of important terms. These terms are usu-
ally the entities and data elements in the system, but sometimes they also include
commands.

There are five general types of navigation controls for topics, but not all sys-
tems use all five types. (See Figure 12-6.) The first is the table of contents that
organizes the information in a logical form, as though the users were to read the ref-
erence documentation from start to finish. The second, the index, provides access
into the topics via important keywords, in the same way that the index at the back

458 Chapter 12 Moving Into Implementation

c12MovingIntoImplementation.qxd 10/4/11 1:13 PM Page 458

of a book helps you to find topics. Third, text search provides the ability to search
through the topics either for any text the user types or for words that match a devel-
oper-specified set of words that is much larger than the list of words in the index.
Unlike the index, text search typically provides no organization to the words (other
than alphabetic). Fourth, some systems provide the ability to use an intelligent
agent to help in the search. The fifth and final navigation control to topics are the
Web-like links between topics that enable the user to click and move among topics.

Developing Documentation 459

Topics

Tasks

Commands

Definitions

Links

Navigation Controls

Contents

Introduction
Basic Features
 Finding Albums

Index

Finding
 Finding Albums
 Finding Artists
 Finding Tunes

Text Search

Albums
Announcements
Articles
Artists

Agent Search

Enter a question

Full
Search

Music
Category

Credit
Card

Move…

Copy…

Delete…

How to…

How to…

How to…

FIGURE 12-6
Organizing Online Reference Documents

c12MovingIntoImplementation.qxd 10/4/11 1:13 PM Page 459

Procedure manuals and tutorials are similar, but often simpler in structure.
When the new system significantly changes the way things are done, these
resources are very important. Topics for procedures manuals usually come from the
use scenarios developed during interface design and from other basic tasks the
users must perform. Topics for tutorials are usually organized around major sec-
tions of the system and the level of experience of the user. Most tutorials start with
basic, most commonly used commands and then move into more complex and less
frequently used commands.

Writing Documentation Topics

The general format for topics is fairly similar across application systems and
operating systems (Figure 12-7). Topics typically start with very clear titles,
followed by some introductory text that defines the topic, and then provide
detailed, step-by-step instructions on how to perform what is being described
(where appropriate). Many topics include screen images to help the user find
items on the screen; some also have “show me” examples in which the series of
keystrokes and/or mouse movements and clicks needed to perform the function

460 Chapter 12 Moving Into Implementation

FIGURE 12-7
A Help Topic in Microsoft Windows

Search
results

Links to
help topics

Natural language
text search

Extended
Search on
Web

Expanded
Search
Resources

c12MovingIntoImplementation.qxd 10/4/11 1:13 PM Page 460

Developing Documentation 461

7 One of the best books to explain the art of writing is that by William Strunk, Jr., and E. B. White, Elements
of Style, 3d ed., Needham Heights, MA: Allyn & Bacon, 1995.

Pretend that you are a project manager for a bank, developing software for automated teller
machines. Develop an online help system.

12-2 DOCUMENTATION FOR AN AUTOMATED TELLERY O U R

T U R N

are demonstrated to the user. Most also include navigation controls to enable
movement among topics, usually at the top of the window, plus links to other
topics. Some also have links to related topics that include options or other com-
mands and tasks the user may want to perform in concert with the topic being
read.

Writing the topic content can be challenging. It requires a good under-
standing of the users (or, more accurately, the range of users) and a knowledge
of what skills the users currently have and can be expected to import from other
systems and tools they are using or have used (including the system the new
system is replacing). Topics should always be written from the viewpoint of the
user and describe what the user wants to accomplish, not what the system can
do. Figure 12-8 provides some general guidelines to improve the quality of doc-
umentation text.7

Identifying Navigation Terms

As you write the documentation topics, you also begin to identify the terms that
will be used to help users find topics. The table of contents is usually the most
straightforward, because it is developed from the logical structure of the docu-
mentation topics, whether reference topics, procedure topics, or tutorial topics.
The items for the index and search engine require more care because they are
developed from the major parts of the system and the users’ business functions.
Every time you write a topic, you must also list the terms that will be used to find
the topic. Terms for the index and search engine can come from four distinct
sources.

The first source for index terms is the set of the commands in the user inter-
face, such as open file, modify customer, and print open orders. All commands con-
tain two parts (action and object). It is important to develop the index for both parts
because users could search for information by using either part. A user looking for
more information about saving files, for example, might search by using the term
save or the term files.

The second source is the set of major concepts in the system, which are
often the entities, data stores, and data elements in the data flow diagrams. In the
case of Tune Source, for example, this might include music genre, artist, and
tune.

A third source is the set of business tasks the user performs, such as ordering
replacement units or making an appointment. Often these will be contained in the

c12MovingIntoImplementation.qxd 10/4/11 1:13 PM Page 461

462 Chapter 12 Moving Into Implementation

Guideline Before the Guideline After the Guideline

Use the active voice: The active voice cre-
ates more active and readable text by put-
ting the subject at the start of the sentence,
the verb in the middle, and the object at
the end.

Finding tunes is done by using the tune title,
the artist’s name, or a genre of music.

Find a tune by the tune title, the artist’s
name, or a music genre.

Use e-prime style: E-prime style creates
more active writing by omitting all forms of
the verb to be.

The text you want to copy must be selected
before you click on the copy button.

Select the text you want to copy before you
click on the copy button.

Use consistent terms: Always use the same
term to refer to the same items, rather than
switching among synonyms (e.g., change,
modify, update).

Select the text you want to copy. Pressing
the copy button will copy the marked text
to the new location.

Select the text you want to copy. Press the
copy button to copy the selected text.
Press the paste button to place the text into
the new location.

Use simple language: Always use the sim-
plest language possible to accurately con-
vey the meaning. This does not mean that
you should “dumb down” the text, but that
you should avoid artificially inflating its
complexity. Avoid separating subjects and
verbs and try to use the fewest words pos-
sible. (When you encounter a complex
piece of text, try eliminating words; you
may be surprised at how few words are
really needed to convey meaning.)

The Georgia Statewide Academic and
Medical System (GSAMS) is a coopera-
tive and collaborative distance learning
network in the state of Georgia. The
organization in Atlanta that administers
and manages the technical and overall
operations of the currently more than 300
interactive audio and video teleconferenc-
ing classrooms throughout the Georgia
system is the Department of Administrative
Service (DOAS). (56 words)

The Department of Administrative Service
(DOAS) in Atlanta manages the Georgia
Statewide Academic and Medical System
(GSAMS), a distance learning network
with more than 300 teleconferencing
classrooms throughout Georgia. (29
words)

Use friendly language: Too often, documen-
tation is cold and sterile because it is writ-
ten in a very formal manner. Remember,
you are writing for a person, not a com-
puter.

Blank disks have been provided to you by the
operations department. It is suggested that
you make backup copies of all essential
data to ensure that your data are not lost.

Make a backup copy of all data that is
important to you. If you need more
diskettes, contact the operations
department.

Use parallel grammatical structures: Paral-
lel grammatical structures indicate the simi-
larity among items in lists and help the
reader understand content.

Opening files

Saving a document

How to delete files

Opening a file

Saving a file

Deleting a file

Use steps correctly: Novices often inter-
sperse actions and the results of actions
when describing a step-by-step process.
Steps are always actions.

1. Press the customer button.

2. The customer dialogue box will appear.

3. Type the customer ID and press the
submit button and the customer record
will appear.

1. Press the customer button.

2. Type the customer ID in the customer dia-
logue box when it appears.

3. Press the submit button to view the cus-
tomer record for this customer.

Use short paragraphs: Readers of documen-
tation usually quickly scan text to find the
information they need, so the text in the
middle of long paragraphs is often over-
looked. Use numerous separate paragraphs
to help readers find information more quickly.

Source: Adapted from Writing Software Documentation, Boston: Aliyn & Bacon, 1998, by T. T. Barker.

FIGURE 12-8
Guidelines for Crafting Documentation Topics

c12MovingIntoImplementation.qxd 10/4/11 1:13 PM Page 462

command set, but sometimes they require several commands and use terms that do
not always appear in the system. A good source for these terms is the use scenarios
developed by interface design. (See Chapter 9.)

A fourth, often controversial, source is the set of synonyms for the three sets
of items mentioned previously. Users sometimes don’t think in terms of the nicely
defined terms used by the system. They may try to find information on how to stop
or quit rather than exit, or on how to erase rather than delete. Including synonyms
in the index increases the complexity and size of the documentation system but can
greatly improve the value of the system to the users.

APPLYING THE CONCEPTS AT TUNE SOURCE

Managing Programming

Three programmers were assigned by Tune Source to develop the three major parts
of the Digital Music Download system. The first was the Web interface, both the
client side (browser) and the server side. The second, the purchase transaction sys-
tem, was client–server based. The third was the sales analysis and promotions por-
tion of the system. Programming went smoothly and, despite a few minor problems,
according to plan.

Testing

While the programmers were working, Jason—senior systems analyst and project
manager for Tune Source’s Digital Music Download system—began developing the
test plans and user documentation. The test plans for the three components were
similar, but slightly more intensive for the Web interface component (Figure 12-9).
Unit testing by black-box testing from program specifications was planned for
all components. Figure 12-10 shows part of one unit test for the Web interface
component.

Integration testing for the Web interface and system management compo-
nents would encompass all user interface and use scenario tests to ensure that the

Applying the Concepts at Tune Source 463

Systems integration across platforms
and companies grows more complex with time. In a case
study from Florida in 2008, an electrical company real-
time system detected a minor problem in the power grid
and shut down the entire system, plunging over two million
people into the dark. The system experts placed the blame
on a substation software system that detected the minor
fluctuation, but had the ability to immediately shut the
entire system down. Although there may be times when
such a rapid response is vital (such as the nuclear disasters

in Chernobyl Ukraine and Three Mile Island), this was a
case where such a response was not warranted.

QUESTIONS:
1. Since software controls substation operations, how

might a systems analyst approach this problem as a
systems project?

2. Are there special considerations that a systems ana-
lyst needs to think about when dealing with real-time
systems?

12-C SYSTEMS FOR COMPLEX ELECTRICAL SYSTEMS

IN ACTION

CONCEPTS

c12MovingIntoImplementation.qxd 10/4/11 1:13 PM Page 463

interface worked properly. The system interface component would undergo sys-
tem interface tests to ensure that the system performed calculations properly and
was capable of exchanging data with external systems used for credit card
authorization.

Systems tests are by definition tests of the entire system—all components
together. However, not all parts of the system would receive the same level of
testing. Requirements tests would be conducted on all parts of the system to
ensure that all requirements were met. Security was a critical issue, so the secu-
rity of all aspects of the system would be tested. Security tests would be devel-
oped by Tune Source’s infrastructure team, and once the system passed those
tests, an external security consulting firm would be hired to attempt to break into
the system.

Performance was an important issue for the parts of the system used by the
customer (the Web interface and the system interfaces for payment processing), but
not as important for the promotions component that would be used by staff, not cus-
tomers. The customer-facing components would undergo rigorous performance
testing to see how many transactions (whether searching or purchasing a download)
they could handle before they were unable to provide a response time of 2 seconds
or less. Jason also ensured that the architecture design included an upgrade plan so
that, as demand on the system increased, there was a clear plan for when and how
to increase the processing capability of the system.

Finally, formal usability tests would be conducted on the Web interface
portion of the system, with six potential users (both novice and expert Internet
users).

Acceptance tests would be conducted in two stages, alpha and beta. Alpha
tests would be done during the training of Tune Source’s store staff in the use of the
in-store kiosks. Carly would work together with Jason to develop a series of tests
and training exercises to train staff on how to use the system. They would then load
the real music data into the system. These same staff and other Tune Source staff
members would also pretend to be customers and test the Web interface.

Beta testing would begin by “going live” with the in-store kiosks. In-store
shoppers would be offered a free download in return for evaluating the system.
Then, the Web site would go live, but announced only to Tune Source employees.
As an incentive to try the Web site, employees would be offered five free down-
loads from the Web site. The site would also have a prominent button on every
screen that would enable employees to e-mail comments to the project team, and
the announcement would encourage employees to report problems, suggestions,

464 Chapter 12 Moving Into Implementation

FIGURE 12-9
Tune Source’s Test Plan

Unit tests Black-box tests Black-box tests Black-box tests

Integration tests User interface tests; User interface tests; System interface tests
use scenario tests use scenario tests

System tests Requirements tests; Requirements tests; Requirements tests;
security tests; security tests security tests;
performance tests; performance tests
usability tests

Acceptance tests Alpha test; beta test Alpha test; beta test Alpha test; beta test

Test Stage Web Interface System Management System Interfaces

c12MovingIntoImplementation.qxd 10/4/11 1:13 PM Page 464

Applying the Concepts at Tune Source 465

Program ID: Version Number:

Page: of

Interface ID Data Field Value Entered

Test ID:

Test Cases

Script

Expected Results/Notes

Actual Results/Notes

Objective:

ORD56 3

Test Plan 12 32

Smith Date Designed: 9/9 Date Conducted: 9/9

Results: Passed

Tester:

12

Ensure that the information entered by customer on the purchase tunes form
is valid.

Requirement Addressed: Verify purchase information

1) REQ56-3.5 Zip code Blank

REQ56-3.5 Zip code 9021

REQ56-3.5 Zip code 90210

REQ56-3.5 Zip code C1A 2C6

2)

3)

4)

5)

6)

Test 3 accepted. Tests 1, 2, and 4 were rejected with correct error message.

Test 3 is a valid zip code. All others should be rejected.

Open Items

FIGURE 12-10
Tune Source Unit Test Plan Example

c12MovingIntoImplementation.qxd 10/4/11 1:13 PM Page 465

and compliments to the project team. After one month, assuming that all went
well, the beta test would be completed and the site would be linked to the main
Web site and advertised to the general public.

Developing User Documentation

There were three types of documentation (reference documents, procedures
manuals, and tutorials) that could be produced for the Web interface and the
promotion component. Since the number of Tune Source staff using the promo-
tion component would be small, Jason decided to produce only the reference
documentation (an online help system). He believed that an intensive training
program and a one-month beta-test period would be sufficient without tutorials
and formal procedure manuals. Likewise, he felt that the process of purchasing
tunes and the user interface itself were simple enough not to require a tutorial on
the Web—a help system would be sufficient, and a procedure manual didn’t
make sense.

Jason decided that the reference documents for both the Web interface and
promotion components would contain help topics for user tasks, commands, and
definitions. He also decided that the documentation component would contain four
types of navigation controls: a table of contents, an index, a finder, and links to
definitions. He did not think that the system was complex enough to benefit from
a search agent.

After these decisions were made, Jason assigned the development of the ref-
erence documents to a technical writer assigned to the project team. Figure 12-11
shows examples of the topics the writer developed. The tasks and commands were
taken directly from the interface design. The list of definitions was put together,
once the tasks and commands were developed, on the basis of the writer’s experi-
ence in understanding what terms might be confusing to the user.

Once the topic list was developed, the technical writer then began writing the
topics themselves and the navigation controls to access. Figure 12-12 shows an
example of one topic taken from the task list: how to place a request. This topic
presents a brief description of what it is and then leads the user through the step-
by-step process needed to complete the task. The topic also lists the navigation con-
trols that will be used to find the topic, in terms of the table of contents entries,
index entries, and search entries. It also lists what words in the topic itself will have
links to other topics (e.g., shopping cart).

466 Chapter 12 Moving Into Implementation

Find tune. Find Tune

Add a tune to my shopping cart. Browse Artist

Add a favorite. Quick search Genre

Checkout. Full search Special deals

What’s in my shopping cart? Cart

Shopping cart

Tasks Commands Terms

FIGURE 12-11
Sample Help Topics for Tune Source

c12MovingIntoImplementation.qxd 10/4/11 1:13 PM Page 466

SUMMARY

Managing Programming
Programming is done by programmers, so systems analysts have other responsibili-
ties during this stage. The project manager, however, is usually very busy. The first
step is to assign tasks to the programmers—ideally, the fewest possible to complete
the project, because coordination problems increase as the size of the programming
team increases. Coordination can be improved by having regular meetings, ensur-
ing that standards are followed, implementing change control, and using computer-
aided software engineering (CASE) tools effectively. One of the key functions of
the project manager is to manage the schedule and adjust it for delays. Two com-
mon causes of delays are scope creep and minor slippages that go unnoticed.

Testing
Tests must be carefully planned because the cost of fixing one major bug after the sys-
tem is installed can easily exceed the annual salary of a programmer. A test plan con-
tains several tests that examine different aspects of the system. A test, in turn, specifies
several test cases that will be examined by the testers. A unit test examines a module
or program within the system; test cases come from the program specifications or the
program code itself. An integration test examines how well several modules work
together; test cases come from the interface design, use scenarios, and the physical data
flow diagrams (DFDs). A system test examines the system as a whole and is broader
than the unit and integration tests; test cases come from the system design, the infra-
structure design, the unit tests, and the integration. Acceptance testing is done by the
users to determine whether the system is acceptable to them; it draws on the system
test plans (alpha testing) and the real work the users perform (beta testing).

Summary 467

Help Topic Navigation Controls

Table of Contents list:
 How to Buy a Tune

Index list:
 Finding Tunes
 Listening to Samples
 Purchasing a Tune

Search find by:
 Checkout
 Delete Items
 Favorites
 Listen
 Paying
 Purchase Tune
 Shopping Cart

Links:
 Shopping Cart

Purchase Tunes

How to Place a Request

There are four steps when you are ready to check-
out and download the tunes you have selected
(the items in your shopping cart):

1. Move to the Purchase Tunes Page.

Click on the button to move to the
purchase tunes page.

2. Make sure you are buying what you want.

The purchase tunes screen displays all the items in
your shopping cart. Read through the list to make
sure these are what you want, because once you
submit your purchase you cannot change it.

You can delete a tune by

FIGURE 12-12
Example Documentation Topic for Tune Source

c12MovingIntoImplementation.qxd 10/4/11 1:13 PM Page 467

Documentation
Documentation, both user documentation and system documentation, is moving
away from paper-based documents to online documentation. There are three types
of user documentation: Reference documents are designed to be used when the user
needs to learn how to perform a specific function (e.g., an online help system);
procedures manuals describe how to perform business tasks; and tutorials teach
people how to use the system. Documentation navigation controls (e.g., a table of
contents, index, a “find” function, intelligent agents, or links between pages) enable
users to find documentation topics (e.g., how to perform a function, how to use an
interface command, an explanation of a term).

468 Chapter 12 Moving Into Implementation

Acceptance test
Alpha test
Beta test
Black-box testing
Change control
Construction
Data flow testing
Documentation navigation control
Documentation testing
Documentation topic
Hardcoded

Integration test
Performance testing
Procedures manual
Program log
Reference document
Requirements testing
Scope creep
Security testing
Stub
System documentation
System interface testing

System test
Test case
Test plan
Tutorial
Unit test
Usability testing
Use scenario testing
User documentation
User interface testing
White-box testing

KEY TERMS

1. Discuss the issues the project manager must con-
sider when assigning programming tasks to the
programmers.

2. If the project manager feels that programming is
falling behind schedule, should more programmers
be assigned to the project? Why or why not?

3. Describe the typical way that project managers
organize the programmers’ work storage areas. Why
is this approach useful?

4. What is meant by change control? How is it helpful
to the programming effort?

5. Discuss why testing is so essential to the develop-
ment of the new system.

6. Explain how a test case relates to a test plan.
7. What is the primary goal of unit testing?
8. How are test cases developed for unit tests?
9. What is the primary goal of integration testing?

10. Describe the four approaches to integration testing.
11. How are the test cases developed for integration tests?
12. Compare and contrast black-box testing and white-

box testing.
13. Compare and contrast system testing and accept-

ance testing.

14. Describe the five approaches to systems testing.
15. Discuss the role users play in testing.
16. What is the difference between alpha testing and

beta testing?
17. Explain the difference between user documentation

and system documentation.
18. What are the reasons underlying the popularity of

online documentation?
19. Are there any limitations to online documentation?

Explain.
20. Distinguish between these types of user documen-

tation: reference documents, procedures manuals,
and tutorials.

21. Describe the five types of documentation navigation
controls.

22. What are the commonly used sources of documen-
tation topics? Which is the most important? Why?

23. What are the commonly used sources of documen-
tation navigation controls? Which is the most
important? Why?

24. What do you think are three common mistakes
made by novice systems analysts during program-
ming and testing?

QUESTIONS

c12MovingIntoImplementation.qxd 10/4/11 1:13 PM Page 468

Minicases 469

1. A new systems development project is Pete’s first expe-
rience as a project manager, and he has led his team
successfully to the programming phase of the project.
The project has not always gone smoothly, and Pete has
made a few mistakes, but he is generally pleased with
the progress of his team and the quality of the system
being developed. Now that programming has begun,
Pete has been hoping for a little break in the hectic pace
of his workday.

Prior to beginning programming. Pete recognized that
the time estimates made earlier in the project were too
optimistic. However, he was firmly committed to meeting
the project deadline because of his desire for his first proj-
ect to be a success. In anticipation of this time-pressure
problem, Pete arranged with the human resources depart-
ment to bring in two new college graduates and two col-
lege interns to beef up the programming staff. Pete would
have liked to find some staff with more experience, but the
budget was too tight and he was committed to keeping the
project budget under control.

Pete made his programming assignments, and work
on the programs began about two weeks ago. Now, Pete
has started to hear some rumbles from the programming
team leaders that may signal trouble. It seems that the
programmers have reported several instances where
they wrote programs, only to be unable to find them
when they went to test them. Also, several programmers
have opened programs that they had written, only to

find that someone had changed portions of their pro-
grams without their knowledge.
a. Is the programming phase of a project a time for the

project manager to relax? Why or why not?
b. What problems can you identify in this situation?
c. What advice do you have for the project manager?
d. How likely does it seem that Pete will achieve his

desired goals of being on time and within budget if
nothing is done?

2. The systems analysts are developing the test plan for
the user interface for the Holiday Travel Vehicles sys-
tem. As the salespeople are entering a sales invoice into
the system, they will be able to either enter an option
code into a text box or select an option code from a
drop-down list. A combo box was used to implement
this, since it was felt that the salespeople would quickly
become familiar with the most common option codes
and would prefer entering them directly to speed up the
entry process.

It is now time to develop the test for validating the
option code field during data entry. If the customer did
not request any dealer-installed options for the vehicle,
the salesperson should enter “none”; the field should
not be blank. The valid option codes are four-character
alphabetic codes and should be matched against a list of
valid codes.

Prepare a test plan for the test of the option code field
during data entry.

25. What do you think are three common mistakes
made by novice systems analysts in preparing user
documentation?

26. In our experience, documentation is left to the very
end of most projects. Why do you think this hap-
pens? How could it be avoided?

27. In our experience, few organizations perform as
thorough testing as they should. Why do you think
this happens? How could it be avoided?

28. Create several guidelines for developing good doc-
umentation. Hint: Think about behaviors that might
lead to developing poor documentation.

MINICASES

A. Develop a unit test plan for the calculator program
in Windows (or a similar program for the Mac or
UNIX).

B. Develop a unit test plan for a Web site that enables
you to perform some function (e.g., make travel
reservations, order books).

C. If the registration system at your university does not
have a good online help system, develop one for one
screen of the user interface.

D. Examine and prepare a report on the online help sys-
tem for the calculator program in Windows (or a
similar program for the Mac or Unix). (You may be
surprised at the amount of help that is available for
such a simple program).

E. Compare and contrast the online help resources at
two different Web sites that enable you to perform
the same function (e.g., make travel reservations,
order books).

EXERCISES

c12MovingIntoImplementation.qxd 10/4/11 1:13 PM Page 469

D E S I G N

IMPLEMENTATION

T A S K C H E C K L I S T

P L A N N I N G A N A L Y S I S D E S I G N

Program System
Test Software
Test Performance
Select System Conversion Strategy
Train Users
Select Support
Maintain System
Assess Project
Conduct Post-Implementation Audit

A N A L Y S I S

P L A N N I N G

✔✔

✔✔

✔

c13TransitionInToTheNewSystem.qxd 10/4/11 5:42 AM Page 470

I M P L E M E N TAT I O N

▼

his chapter examines the activities needed to install the information system and suc-
cessfully convert the organization to using it. It also discusses postimplementation

activities, such as system support, system maintenance, and project assessment. Installing
the system and making it available for use from a technical perspective is relatively straight-
forward. However, the training and organizational issues surrounding the installation are
more complex and challenging because they focus on people, not computers.

OBJECTIVES

■ Explain the system installation process.
■ Describe the elements of a migration plan.
■ Explain different types of conversion strategies and when to use them.
■ Describe several techniques for managing change.
■ Outline postinstallation processes.

CHAPTER OUTLINE

C H A P T E R 1 3

T

TRANSITION TO
THE NEW SYSTEM

Introduction
Making the Transition to the New

System
The Migration Plan

Selecting the Conversion Strategy
Preparing a Business Contingency

Plan
Preparing the Technology
Preparing People for the New System
Understanding Resistance to Change
Revising Management Policies
Assessing Costs and Benefits

Motivating Adoption
Enabling Adoption: Training

Postimplementation Activities
System Support
System Maintenance
Project Assessment

Applying the Concepts at Tune Source
Implementation Process
Preparing the People
Postimplementation Activities

Summary

c13TransitionInToTheNewSystem.qxd 10/4/11 5:42 AM Page 471

INTRODUCTION

It must be remembered that there is nothing more difficult to plan, more doubtful of suc-
cess, nor more dangerous to manage than the creation of a new system. For the initiator
has the animosity of all who would profit by the preservation of the old institution and

merely lukewarm defenders in those who would gain by the new.
—Machiavelli, The Prince, 1513

Although written nearly 500 years ago, Machiavelli’s comments are still true
today. Managing the change to a new system—whether or not it is computerized—
is one of the most difficult tasks in any organization. There are business issues,
technical issues, and people issues that must be addressed in order to prepare for
and successfully adapt to the change. Because of these challenges, planning for the
transition from old to new systems begins while the programmers are still develop-
ing the software. Leaving this planning to the last minute is a recipe for failure.

This chapter discusses the transition from the as-is system to the to-be system
and ways to successfully manage this process. The migration plan encompasses
activities that will be performed to prepare for the technical and business transition,
and to prepare the people for the transition. We also present several important sup-
port and follow-up activities that should be performed following the installation of
the new system.

MAKING THE TRANSITION TO THE NEW SYSTEM

In many ways, using a computer system or set of work processes is much like driv-
ing on a dirt road. Over time with repeated use, the road begins to develop ruts in
the most commonly used parts of the road. Although these ruts show where to drive,
they make change difficult. As people use a computer system or set of work
processes, those system/work processes begin to become habits or norms; people
learn them and become comfortable with them. These system or work processes
then begin to limit people’s activities and make it difficult for them to change
because they begin to see their jobs in terms of these processes rather than in terms
of the final business goal of serving customers.

One of the earliest models for managing organizational change was developed
by Kurt Lewin.1 Lewin argued that change is a three-step process: unfreeze, move,
refreeze (Figure 13-1). First, the project team must unfreeze the existing habits and
norms (the as-is system) so that change is possible. Most of the SDLC to this point
has laid the groundwork for unfreezing. Users are aware of the new system being
developed, some have participated in an analysis of the current system (and so
are aware of its problems), and some have helped design the new system (and so
have some sense of the potential benefits of the new system). These activities have
helped to unfreeze the current habits and norms.

The second step of Lewin’s three-step model is to move, or transition, from
the old system to the new. The migration plan incorporates many issues that must
be addressed to facilitate this transition. First, the conversion strategy needs to be

472 Chapter 13 Transition to the New System

1 Kurt Lewin, “Frontiers in Group Dynamics,” Human Relations, 1947, 1:5–41; and Kurt Lewin, “Group
Decision and Social Change” in E. E. Maccoby, T. M. Newcomb, and E. L. Hartley, eds., Readings in Social
Psychology, New York: Holt, Rinehart & Winston, 1958, pp. 197–211.

c13TransitionInToTheNewSystem.qxd 10/4/11 5:42 AM Page 472

selected, determining the style of the switch from the old to the new system, what
parts of the organization will be converted when, and how much of the system is
converted at a time. Plans to handle potential business disruption due to technical
problems during conversion should be outlined in the business contingency plan.
Arrangements for the hardware and software installation should be completed, and
decisions about how the data will be converted into the new system will be made.
The final major segment of the migration plan involves helping the people who are
affected by the new system understand the change and motivating them to adopt the
new system. The next section of this chapter discusses these aspects of the migra-
tion plan.

Lewin’s third step is to refreeze the new system as the habitual way of per-
forming the work processes—ensuring that the new system successfully becomes
the standard way of performing the business functions it supports. This refreezing
process is a key goal of the postimplementation activities discussed in the final
section of this chapter. By providing ongoing support for the new system and
immediately beginning to identify improvements for the next version of the sys-
tem, the organization helps solidify the new system as the new habitual way of
doing business. Postimplementation activities include system support, which
means providing help desk and telephone support for users with problems; system
maintenance, which means fixing bugs and improving the system after it has been
installed; and project assessment, which is the process of evaluating the project to
identify what went well and what could be improved for the next system develop-
ment project.

THE MIGRATION PLAN

The transition from the old business processes and computer programs to the new
business processes and computer programs will be facilitated by ensuring that a
number of business, technical, and people issues are addressed. The decisions, plans,
and procedures that will guide the transition are outlined in the migration plan. (See
Figure 13-2.) The migration plan specifies what activities will be performed when
and by whom as the transition is made from the old to the new system.

In order to ensure that business is ready to make the transition, the project
team must determine the best conversion strategy to use as the new system is intro-
duced to the organization. Also, plans should be made to ensure that the business

The Migration Plan 473

As-is
system

To-be
system

Unfreeze
Analysis and

design

Move
Refreeze

Support and

maintenance

Transition

Migration plan:

• Technical conversion

• Change managementFIGURE 13-1
Implementing Change

c13TransitionInToTheNewSystem.qxd 10/4/11 5:42 AM Page 473

can continue its operations even in the event of technical glitches in the new sys-
tem. These plans are termed business contingency plans.

Technical readiness is achieved by arranging for and installing any needed
hardware and software, and converting data as needed for the new system. These
arrangements, while essential, are usually the least difficult of all the issues dealt
with in the migration plan.

Ensuring that the people who will be affected by the new system are ready and
able to use it is the most complex element of the migration plan. Managing the “peo-
ple” side of change requires the team to understand the potential for resistance to the
new system, develop organizational support and encouragement for the change, and
prepare the users through appropriate training activities.

Selecting the Conversion Strategy

The process by which the new system is introduced into the organization is called
the conversion strategy. Those implementing this strategy must consider three dif-
ferent aspects of introducing the system: how abruptly the change is made (the con-
version style), the organizational span of the introduction (conversion locations),
and the extent of the system that is introduced (conversion modules). The choices
made in these three dimensions will affect the cost, time, and risk associated with
the transition, as explained in the sections that follow. (See Figure 13-3.)

Conversion Style The switch from the old system to the new system can be made
abruptly or gradually. An abrupt change is called direct conversion, and, as the
name implies, involves the instant replacement of the old system with the new system.
In essence, the old system is turned off and the new is turned on, often coinciding
with a fiscal-year change or other calendar event.

Direct conversion is simple and straightforward, but also risky. Any problems
with the new system that have not been detected during testing may seriously
disrupt the organization’s ability to function.

A more gradual introduction is made with parallel conversion, in which both
the old and the new systems are used simultaneously for a period of time. The two
systems are operated side by side, and users must work with both the old and new
systems. For example, if a new accounting system is introduced with a parallel con-
version style, data must be entered into both systems. Output from both systems is
carefully compared to ensure that the new system is performing correctly. After
some period (often one to two months) of parallel operation and intense comparison
between the two systems, use of the old system is discontinued.

474 Chapter 13 Transition to the New System

FIGURE 13-2
Elements of a Migration Plan

Migration Plan

Preparing the Business Preparing the Technology

Select a conversion
strategy.

Prepare a business
contingency plan.

Install hardware. Revise management
policies.

Preparing the People

Assess costs and
benefits.

Motivate adoption.

Conduct training.

Install software.

Convert data.

c13TransitionInToTheNewSystem.qxd 10/4/11 5:42 AM Page 474

Parallel conversion reduces risk by providing the organization with a fallback
position if major problems are encountered with the new system. It adds expense,
however, as users are required to do their job tasks twice: once with each system
that performs the same function.

Conversion Locations The new system can be introduced to different parts of the
organization at different times, or it can be introduced throughout the organization
at the same time. A pilot conversion selects one or more locations (or units or work
groups within a location) to be converted first as a part of a pilot test. If the con-
version at the pilot location is successful, then the system is installed at the remain-
ing locations.

Pilot conversion has the advantage of limiting the effect of the new system
to just the pilot location. In essence, an additional level of testing is provided
before the new system is introduced organizationwide. This type of conversion can
be done only in organizations that can tolerate different locations using different
systems and business processes for a certain length of time. It also obviously
requires a considerable time before the system is installed at all organizational
locations.

In some situations, it is preferable to introduce the system to different loca-
tions, in phases. With phased conversion, a first set of locations is converted, then
a second set, then a third set, and so on, until all locations are converted. Sometimes
there is a deliberate delay between the phases, so that any problems with the system
are detected before too much of the organization is affected. In other circumstances,
the project team may begin a new phase immediately following the completion of
the previous phase.

The Migration Plan 475

FIGURE 13-3
Conversion Strategies

Conversion

Strategy

Modules

• Whole-system
• Module by module

• Pilot
 • Phased
 • Simultaneous

 • Direct
 • Parallel

Style Locations

c13TransitionInToTheNewSystem.qxd 10/4/11 5:42 AM Page 475

Phased conversion has the same advantages and disadvantages as pilot con-
version. It also involves a smaller set of people to perform the actual conversion
(and any associated training) than if all locations were converted at once.

It may be necessary to convert all locations at the same time, suggesting the
need for simultaneous conversion. The new system is installed at all locations at
once, thus eliminating the problem of having different organizational units using
different systems and processes. The drawback of this option is that there must be
sufficient staff to perform the conversion and train the users at all locations simul-
taneously.

Conversion Modules Although we typically expect that systems are installed in
their entirety, this is not always the case. It may be desirable to decide how much of
the new system will be introduced into the organization at a time. When the mod-
ules within the system are separate and distinct, organizations may convert to the
new system one module at a time, using modular conversion. Modular conversion
requires special care in developing the system (and usually adds extra cost),
because each module must be written to work with both the old and the new sys-
tems. When modules are tightly integrated, this is very challenging and is therefore
seldom done. When the software is written with loose association between mod-
ules, however, it becomes easier.

Modular conversion reduces the amount of training needed for people to
begin using the new system, since users need to be trained only for the new mod-
ule being implemented. Modular conversion does require significant time to intro-
duce each module of the system in sequence.

Whole-system conversion, installing the entire system at one time, is most
common. This approach is simple and straightforward and is required if the system
consists of tightly integrated modules. If the system is large and/or extremely com-
plex, however (e.g., an enterprise resource planning system such as SAP or Oracle),
the whole system may prove too difficult for users to learn in one conversion step.

Evaluating the Strategy Choices Each of the segments in Figure 13-3 are inde-
pendent, so a conversion strategy can be developed by combining any of the options
just discussed.

476 Chapter 13 Transition to the New System

When the European Union decided
to introduce the euro, the European Central Bank had to
develop a new computer system (called Target) to pro-
vide a currency settlement system for use by investment
banks and brokerages. Prior to the introduction of the
euro, settlement was performed between the central
banks of the countries involved. After the introduction, the
Target system, which consists of 15 national banking sys-
tems, would settle trades and perform currency conver-
sions for cross-border payments for stocks and bonds.

Source: “Debut of Euro Nearly Flawless,” Computerworld, 33(2)
p. 16, January 11, 1999, by Thomas Hoffman.

QUESTION:
Implementing Target was a major undertaking for a num-

ber of reasons. If you were an analyst on the project,
what kinds of issues would you have to address to
make sure the conversion happened successfully?

13-A CONVERTING TO THE EURO (PART 1)
IN ACTION

CONCEPTS

c13TransitionInToTheNewSystem.qxd 10/4/11 5:42 AM Page 476

For example, one commonly used approach is to begin with a pilot conver-
sion of the whole system, using parallel conversion in a handful of test locations.
Once the system has passed the pilot test at these locations, it is then installed in
the remaining locations by phased conversion with direct cutover. There are three
important factors to consider in selecting a conversion strategy: risk, cost, and the
time required (Figure 13-4).

Risk The introduction of the new system exposes the organization to risk asso-
ciated with problems and errors that may impede business operations. After the
system has passed a rigorous battery of unit, integration, system, and acceptance
testing, it should be bug free—maybe. Because humans make mistakes, undis-
covered bugs may exist. Depending on the choices made, the conversion process
provides one last step in which bugs can be detected and fixed before the system
is in widespread use.

The parallel conversion strategy is less risky than direct conversion because
of the security of continuing to operate the old system. If bugs are encountered, the
new system can be shut down and fixed while the old system continues to function.
Converting a pilot location is less risky than phased conversion or simultaneous
conversion because the effects of bugs are limited to the pilot location. Those
involved, knowing the installation is a pilot test, expect to encounter bugs. Finally,
converting by modules is less risky than simultaneous conversion. The number of
bugs encountered at any one time should be fewer when a few modules at a time
are converted, making it easier to deal with problems as they occur. If numerous
bugs are experienced together during simultaneous conversion, the total effect may
be more disruptive than if the bugs were encountered gradually.

The significance of the risk factor in selecting a conversion strategy depends
on the system being implemented. The team must weigh the probability of unde-
tected bugs remaining in the system against the potential consequences of those
undetected bugs. If the system has undergone extensive methodical testing, includ-
ing alpha and beta testing, then the probability of undetected bugs is lower than if
testing were less rigorous. There remains the chance, however, that mistakes were
made in analysis and that the new system may not properly fulfill the business
requirements.

Assessing the consequences (or cost) of a bug is challenging. Most analysts
and senior managers are capable of making a reasonable guess at the relative signif-
icance of a bug, however. For example, it is obvious that the importance of negative
consequences of a bug in an automated stock market trading system or a medical

The Migration Plan 477

Risk High Low Low Medium High High Medium
Cost Low High Medium Medium High Medium High
Time Short Long Medium Long Short Short Long

Conversion Style Conversion Location Conversion Modules

Direct Parallel Pilot Phased Simultaneous Whole-System Modular
Characteristic Conversion Conversion Conversion Conversion Conversion Conversion Conversion

FIGURE 13-4
Characteristics of Conversion Strategies

c13TransitionInToTheNewSystem.qxd 10/4/11 5:42 AM Page 477

life-support system is much greater than in a computer game or word processing
program. (Recall Figure 12-1.) Therefore, risk is likely to be a very important factor
in the selection of a conversion strategy if the system has had limited testing and/or
if the significance of bugs is high. If the system has been thoroughly tested and/or
the cost of bugs is not too high, then risk becomes less important to the conversion
strategy decision.

Cost The various conversion strategies have different costs. These costs can
include salaries for people who work with the system (e.g., users, trainers, system
administrators, external consultants), travel expenses, operation expenses, commu-
nication costs, and hardware leases. Parallel conversion is more expensive than
direct cutover because it requires that two systems (the old and the new) be operated
at the same time. Employees must now perform twice the usual work and also
cross-check the results of the two systems.

Pilot conversion and phased conversion have somewhat similar costs. Simul-
taneous conversion has higher costs because more staff are required to support all
the locations as they simultaneously switch from the old to the new system.
Modular conversion is more expensive than whole system conversion because it
requires more programming. The old system must be updated to work with selected
modules in the new system, and modules in the new system must be programmed
to work with selected modules in both the old and new systems.

Time The final factor is the amount of time required to convert between the old
and the new system. Direct conversion is the fastest because it is immediate. Paral-
lel conversion takes longer because the full advantages of the new system do not
become available until the old system is turned off. Simultaneous conversion is
fastest because all locations are converted at the same time. Phased conversion gen-
erally takes longer than pilot conversion because usually (but not always), once the
pilot test is complete, all remaining locations are simultaneously converted. Phased
conversion proceeds in waves, often requiring several months before all locations
are converted. Likewise, modular conversion takes longer than whole-system con-
version because the modules are introduced one after another.

Preparing a Business Contingency Plan

It is tempting to believe that doing careful and thorough work in analysis and design
and managing the IT project correctly will produce a successful system implemen-
tation. It is common for the team to view their prospects for success with optimism.
With new systems, however, it may be more appropriate to always expect the worst.

478 Chapter 13 Transition to the New System

Suppose that you are leading the con-
version from one word processor to another at your uni-
versity. Develop a conversion strategy. You have also been
asked to develop a conversion strategy for the university’s

new Web-based course registration system. How would
the second conversion strategy be similar to or different
from the one you developed for the word processor?

13-1 DEVELOPING A CONVERSION STRATEGYY O U R

T U R N

c13TransitionInToTheNewSystem.qxd 10/4/11 5:42 AM Page 478

Keeping small technology glitches in the new system from turning into major busi-
ness disasters is known as business contingency planning. Contingency plans help
the business withstand relatively small problems with the new system so that major
business disruptions are prevented.

Some might say that business disasters are prevented with good project
management and migration planning; therefore, developing contingency plans to
cope with disasters is unnecessary. Large projects spanning multiple business
processes and involving huge amounts of code, however, provide numerous com-
binations of relatively small technical problems that together can have devastating
consequences. Enterprise resource planning software projects are good examples.
In 2004, Hewlett-Packard experienced an estimated $160 million financial
impact when a $30-million SAP project in the Industry Standard Server division
experienced relatively minor programming problems. In 2001, Nike experienced
small IT problems in an SAP installation that cost the company $100 million in

The Migration Plan 479

Throughout the 1960s, 1970s, and
1980s, the U.S. Army automated its installations (“army
bases,” in civilian terms). Automation was usually a local
effort at each of the more than 100 bases. Although
some bases had developed software together (or bor-
rowed software developed at other bases), each base
often had software that performed different functions or
performed the same function in different ways. In 1989,
the army decided to standardize the software so that the
same software would be used everywhere. This would
greatly reduce software maintenance and also reduce
training when soldiers were transferred between bases.

The software took four years to develop. The sys-
tem was quite complex, and the project manager was
concerned that there was a high risk that not all require-
ments of all installations had been properly captured.
Cost and time were less important, since the project had
already run four years and cost $100 million.

Therefore, the project manager chose a modular
pilot conversion using parallel conversion. The manager
selected seven installations, each representing a differ-
ent type of army installation (e.g., training base, arse-
nal, depot) and began the conversion. All went well, but
several new features were identified that had been over-
looked during the analysis, design, and construction.
These were added and the pilot testing resumed. Finally,
the system was installed in the rest of the army installa-
tions using a phased direct conversion of the whole sys-
tem. Alan Dennis

QUESTION:
1. Do you think the conversion strategy was appropriate?
2. Regardless of whether you agree, what other conver-

sion strategy could have been used?

13-B U.S. ARMY INSTALLATION SUPPORT

IN ACTION

CONCEPTS

■ Develop the combination of conversion strategy dimen-
sions that produces the least risk; the most risk.

■ Develop the combination of conversion strategy
dimensions that produces the least cost; the most cost.

■ Develop the combination of conversion strategy dimen-
sions that requires the least time; the most time.

Now, compare these strategies. Do you see any
relationships? Based on your analysis, what advice might
you give a team selecting a conversion strategy?

13-2 COMPARING CONVERSION STRATEGIESY O U R

T U R N

c13TransitionInToTheNewSystem.qxd 10/4/11 5:42 AM Page 479

lost revenue.2 It may be less risky to plan for how to cope with system failure
(contingency plan) than to try to prevent failure purely through project manage-
ment techniques.

Choosing parallel conversion is one approach to contingency planning. Oper-
ating the old and new systems together for a time ensures that a fallback system is
available if problems occur with the new system. Parallel conversion is not always
feasible, however. Consequently, the worst-case outcome—no system at all—should
be imagined and planned for, potentially going back to simple manual procedures.

One of the limitations of problem prevention through perfect project manage-
ment techniques is the constant pressure of budget constraints and limited time that
most projects face. With no budget or time pressure, it might be possible to prevent
problems from occurring, but this is rarely the situation. Therefore, during the devel-
opment of the migration plan, the project team should devote some attention to iden-
tifying the worst-case scenarios for the project, understanding the total business
impact of those worst-case scenarios, and developing procedures and work-arounds
that will enable the business to withstand those events. Since the contingency plan
focuses on keeping the business up and running in the event of IT problems, it will
be important to involve key business managers and users in the plan development.

Preparing the Technology

There are three major steps involved in preparing the technical aspects of the new
system for operations: install the hardware, install the software, and convert the
data. (See Figure 13-2.) Although it may be possible to do some of these steps in
parallel, they usually must be performed sequentially at any one location.

The first step is to buy and install any needed hardware. In many cases, no
new hardware is needed, but sometimes the project requires new servers, client
computers, printers, and networking equipment. The new hardware requirements
should have been defined in the hardware and software specifications during design
(see Chapter 8) and used to acquire the needed resources. It is now critical to work
closely with vendors who are supplying needed hardware and software to ensure
that the deliveries are coordinated with the conversion schedule so that the equip-
ment is available when it is needed. Nothing can stop a conversion plan in its tracks
as easily as the failure of a vendor to deliver needed equipment.

Once the hardware is installed, tested, and certified as being operational, the
second step is to install the software. This includes the to-be system under devel-
opment, and sometimes, additional software that must be installed to make the sys-
tem operational. For example, the Tune Source Digital Music Download system
needs Web server software. At this point, the system is usually tested again to
ensure that it operates as planned.

The third step is to convert the data from the as-is system to the to-be system.
Data conversion is usually the most technically complicated step in the migration
plan. Often, separate programs must be written to convert the data from the as-is
system to the new formats required in the to-be system and store it in the to-be sys-
tem files and databases. This process is often complicated by the fact that the files
and databases in the to-be system do not exactly match the files and databases in
the as-is system (e.g., the to-be system may use several tables in a database to store
customer data that was contained in one file in the as-is system). Formal test plans
are always required for data conversion efforts. (See Chapter 12.)

480 Chapter 13 Transition to the New System

2 Christopher Koch, “When Bad Things Happen to Good Projects,” CIO Magazine, December 1, 2004.

c13TransitionInToTheNewSystem.qxd 10/4/11 5:42 AM Page 480

Preparing People for the New System

In the context of a systems development project, people who will use the new sys-
tem need help to adopt and adapt to the new system. The process of helping them
adjust to the new system and its new work processes without undue stress is called
change management.3 There are three key roles in any major organizational change.
The first is the sponsor of the change—the person who wants the change. This per-
son is the business sponsor who first initiated the request for the new system. (See
Chapter 1.) Usually the sponsor is a senior manager of the part of the organization
that must adopt and use the new system. It is critical that the sponsor be active in
the change management process, because a change that is clearly being driven by
the sponsor, not by the project team or the IS organization, has greater legitimacy
in the eyes of the users. The sponsor has direct management authority over those
who will adopt the system.

The second role is that of the change agent—the person(s) leading the change
effort. The change agent, charged with actually planning and implementing the
change, is usually someone outside of the business unit adopting the system and
therefore has no direct management authority over the potential adopters. Because
the change agent is an outsider from a different organizational culture, he or she has
less credibility than do the sponsor and other members of the business unit. After
all, once the system has been installed, the change agent usually leaves and thus has
no ongoing impact.

The third role is that of potential adopter, or target of the change—the people
who actually must change. These are the people for whom the new system is
designed and who will ultimately choose to use or not use the system.

In the early days of computing, many project teams simply assumed that their
job ended when the old system was converted to the new system at a technical level.
The philosophy was “build it and they will come.” Unfortunately, that happens only
in the movies. Resistance to change is common in most organizations. Therefore,
the change management plan is an important part of the overall migration plan that
glues together the key steps in the change management process. Successful change
requires that people want to adopt the change and are able to adopt the change. The
change management plan has four basic steps: revising management policies,
assessing the cost and benefit models of potential adopters, motivating adoption,
and enabling people to adopt through training. (See Figure 13-2.) Before we can
discuss the change management plan, however, we must first understand why
people resist change.

Understanding Resistance to Change

People resist change—even change for the better—for very rational reasons.4 What
is good for the organization is not necessarily good for the people who work there.
For example, consider an order-processing clerk who used to receive orders to be
shipped on paper shipping documents, but now uses a computer to receive the same
information. Rather than typing shipping labels with a typewriter, the clerk now

The Migration Plan 481

3 Many books have been written on change management. Some of our favorites are the following: Patrick
Connor and Linda Lake, Managing Organizational Change, 2d ed., Westport, CT: Praeger, 1994; Douglas
Smith, Taking Charge of Change, Reading, MA: Addison-Wesley, 1996; and Daryl Conner, Managing at the
Speed of Change, New York: Villard Books, 1992.
4 This section benefited from conversations with Dr. Robert Briggs, research scientist at the Center for the
Management of Information at the University of Arizona.

c13TransitionInToTheNewSystem.qxd 10/4/11 5:42 AM Page 481

clicks on the print button on the computer and the label is produced automatically.
The clerk can now ship many more orders each day, which is a clear benefit to the
organization. The clerk, however, probably doesn’t really care how many packages
are shipped. His or her pay doesn’t change; it’s just a question of whether the clerk
prefers a computer or typewriter. Learning to use the new system and work
processes—even if the change is minor—requires more effort than continuing to
use the existing, well-understood system and work processes.

So why do people accept change? Simply put, every change has a set of costs
and benefits associated with it. If the benefits of accepting the change outweigh the
costs of the change, then people change. And sometimes the benefit of change is
avoidance of the pain that you would experience if you did not adopt the change
(e.g., if you don’t change, you are fired, so one of the benefits of adopting the
change is that you still have a job).

In general, when people are presented with an opportunity for change, they per-
form a cost–benefit analysis (sometimes consciously, sometimes subconsciously) and
decide the extent to which they will embrace and adopt the change. They identify the
costs of and benefits from the system and decide whether the change is worthwhile.
However, it is not that simple, because most costs and benefits are not certain. There is
some uncertainty as to whether a certain benefit or cost will actually occur; so both the
costs of and benefits from the new system will need to be weighted by the degree of
certainty associated with them (Figure 13-5). Unfortunately, most humans tend to
overestimate the probability of costs and underestimate the probability of benefits.

There are also costs and benefits associated with the actual transition process
itself. For example, suppose that you found a nicer house or apartment than your
current one. Even if you liked it better, you might decide not to move, simply
because the cost of moving outweighed the benefits of the new house or apartment
itself. Likewise, adopting a new computer system might require you to learn new
skills, which could be seen as a cost by some people, but as a benefit by others who
perceive that those skills may somehow provide other benefits beyond the use of the
system itself. Once again, any costs and benefits from the transition process must
be weighted by the certainty with which they will occur. (See Figure 13-5.)

Taken together, these two sets of costs and benefits (and their relative cer-
tainties) affect the acceptance of change or resistance to change that project teams
encounter when installing new systems in organizations. The first step in change

482 Chapter 13 Transition to the New System

As-Is
System

Restraining

Factors

Enabling

Factors

Costs of
transition

X
Certainty of

costs
occurring

Benefits of
transition

X
Certainty of

benefits
occurring

To-Be
System

Transition

Restraining

Factors

Enabling

Factors

Costs of
to-be system

X
Certainty of

costs
occurring

Benefits of
to-be system

X
Certainty of

benefits
occurringFIGURE 13-5

The Costs and Benefits of Change

c13TransitionInToTheNewSystem.qxd 10/4/11 5:42 AM Page 482

management is to understand the factors that inhibit change—the factors that affect
the perception of costs and benefits and certainty that they will be generated by the
new system. It is critical to understand that the “real” costs and benefits are far less
important than the perceived costs and benefits. People act on what they believe to
be true, not on what is true. Thus, any understanding of how to motivate change
must be developed from the viewpoint of the people expected to change, not from
the viewpoint of those leading the change.

Revising Management Policies

The first major step in the change management plan is to change the management
policies that were designed for the as-is system to new management policies
designed to support the to-be system. Management policies provide goals, define
how work processes should be performed, and determine how organizational mem-
bers are rewarded. No computer system will be successfully adopted unless man-
agement policies support its adoption. Many new computer systems bring changes
to business processes; they enable new ways of working. Unless the policies that
provide the rules and rewards for those processes are revised to reflect the new
opportunities that the system permits, potential adopters cannot easily use it.

Management has three basic tools for structuring work processes in organi-
zations.5 The first is the standard operating procedures (SOPs) that become the
habitual routines for how work is performed. The SOPs are both formal and infor-
mal. Formal SOPs define proper behavior. Informal SOPs are the norms that have
developed over time for how processes are actually performed. Management must
ensure that the formal SOPs are revised to match the to-be system. The informal
SOPs will then evolve to refine and fill in details absent in the formal SOPs.

The second aspect of management policy is defining how people assign mean-
ing to events. What does it mean to “be successful” or “do good work”? Policies help
people understand meaning by defining measurements and rewards. Measurements
explicitly define meaning because they provide clear and concrete evidence about
what is important to the organization. Rewards reinforce measurements because
“what gets measured gets done” (an overused, but accurate, saying). Measurements
must be carefully designed to motivate desired behavior. The IBM credit example
(“Your Turn 3-3” in Chapter 3) illustrates the problem when flawed measurements
drive improper behavior. (When the credit analysts became too busy to handle credit
requests, they would “find” nonexistent errors so that they could return the requests
unprocessed.)

A third aspect of management policy is resource allocation. Managers can
have a clear and immediate impact on behavior by allocating resources. They can
redirect funds and staff from one project to another, create an infrastructure that sup-
ports the new system, and invest in training programs. Each of these activities has
both a direct and a symbolic effect. The direct effect comes from the actual reallo-
cation of resources. The symbolic effect shows that management is serious about its
intentions. There is less uncertainty about management’s long-term commitment to
a new system when potential adopters see resources being committed to support it.

The Migration Plan 483

5 This section builds on the work of Anthony Giddons, The Constitution of Society: Outline of the Theory of
Structure, Berkeley: University of California Press, 1984. A good summary of Giddons’ theory that has been
revised and adapted for use in understanding information systems is an article by Wanda Orlikowski and Dan
Robey, “Information Technology and the Structuring of Organizations,” Information Systems Research, 1991,
2(2):143–169.

c13TransitionInToTheNewSystem.qxd 10/4/11 5:42 AM Page 483

Assessing Costs and Benefits

The next step in developing a change management plan is to develop two clear and
concise lists of costs and benefits provided by the new system (and the transition to
it), compared with the as-is system. The first list is developed from the perspective
of the organization, which should flow easily from the business case developed dur-
ing the feasibility study and refined over the life of the project. (See Chapter 1.)
This set of organizational costs and benefits should be distributed widely so that
everyone expected to adopt the new system clearly understands why the new sys-
tem is valuable to the organization.

The second list of costs and benefits is developed from the viewpoints of the
different potential adopters expected to change, or stakeholders in the change. For
example, one set of potential adopters may be the front-line employees, another
may be the first-line supervisors, and yet another might be middle management.
Each of these potential adopters or stakeholders may have a different set of costs
and benefits associated with the change—costs and benefits that can differ widely
from those of the organization. In some situations, unions may be key stakeholders
that can make or break successful change.

Many systems analysts naturally assume that front-line employees are the
ones whose set of costs and benefits are the most likely to diverge from those of the
organization and thus are the ones who most resist change. However, these employ-
ees usually bear the brunt of problems with the current system. When problems
occur, they often experience them firsthand. Middle managers and first-line super-
visors are the most likely to have a divergent set of costs and benefits; therefore,
they resist change because new computer systems often change how much power
those individuals have. For example, a new computer system may improve the orga-
nization’s control over a work process (a benefit to the organization), but reduce the
decision-making power of middle management (a clear cost to middle managers).

An analysis of the costs and benefits for each set of potential adopters or
stakeholders will help pinpoint those who will likely support the change and those
who may resist the change. The challenge at this point is to try to change the bal-
ance of the costs and benefits for those expected to resist the change so that they
support it (or at least do not actively resist it).

This analysis may uncover some serious problems that have the potential to
block the successful adoption of the system. It may be necessary to reexamine the
management policies and make significant changes to ensure that the balance of
costs and benefits is such that important potential adopters are motivated to adopt
the system.

Figure 13-6 summarizes some of the factors that are important to successful
change. The first and most important is a compelling personal reason to change. All
change is made by individuals, not organizations. If there are compelling reasons

484 Chapter 13 Transition to the New System

Identify and explain three standard operating procedures for the course in which you are using
this book. Discuss whether they are formal or informal.

13-3 STANDARD OPERATING PROCEDURESY O U R

T U R N

c13TransitionInToTheNewSystem.qxd 10/4/11 5:42 AM Page 484

for the key groups of individual stakeholders to want the change, then the change
is more likely to be successful. Factors such as increased salary, reduced unpleas-
antness, and—depending on the individuals—opportunities for promotion and
personal development can be important motivators. If the change makes current
skills less valuable, however, individuals may resist the change because they have

The Migration Plan 485

Factor Examples Effects Actions to Take

Benefits of to-be
system

Compelling per-
sonal reason(s) for
change

Increased pay, fewer
unpleasant aspects,
opportunity for promo-
tion, most existing skills
remain valuable

If the new system provides clear
personal benefits to those who
must adopt it, they are more
likely to embrace the change.

Perform a cost–benefit analysis
from the viewpoint of the
stakeholders, make changes
where needed, and actively
promote the benefits.

FIGURE 13-6
Major Factors in Successful Change

Certainty of
benefits

Compelling
organizational
reason(s) for
change

Risk of bankruptcy,
acquisition,
government regulation

If adopters do not understand
why the organization is
implementing the change, they
are less certain that the change
will occur.

Perform a cost–benefit analysis
from the viewpoint of the
organization and launch a
vigorous information
campaign to explain the
results to everyone.

Demonstrated top
management
support

Active involvement,
frequent mentions in
speeches

If top management is not seen to
actively support the change,
there is less certainty that the
change will occur.

Encourage top management to
participate in the information
campaign.

Committed and
involved business
sponsor

Active involvement,
frequent visits to users
and project team,
championing

If the business sponsor (the
functional manager who
initiated the project) is not seen
to actively support the change,
there is less certainty that the
change will occur.

Encourage the business
sponsor to participate in the
information campaign and
play an active role in the
change management plan.

Credible top
management and
business sponsor

Management and
sponsor who do what
they say instead of
being members of the
“management fad of
the month” club

If the business sponsor and top
management have credibility in
the eyes of the adopters, the
certainty of the claimed benefits
is higher.

Ensure that the business
sponsor and/or top
management has credibility
so that such involvement will
help; if there is no credibility,
involvement will have little
effect.

Costs of
transition

Low personal costs
of change

Few new skills needed The cost of the change is not
borne equally by all
stakeholders; the costs are likely
to be higher for some.

Perform a cost–benefit analysis
from the viewpoint of the
stakeholders, make changes
where needed, and actively
promote the low costs.

Certainty of
costs

Clear plan for
change

Clear dates and
instructions for change,
clear expectations

If there is a clear migration plan,
it will likely lower the perceived
costs of transition.

Publicize the migration plan.

Credible change
agent

Previous experience with
change, does what he
or she promises to do

If the change agent has
credibility in the eyes of the
adopters, the certainty of the
claimed costs is higher.

If the change agent is not
credible, then change will
be difficult.

Clear mandate for
change agent
from sponsor

Open support for
change agent when
disagreements occur

If the change agent has a clear
mandate from the business
sponsor, the certainty of the
claimed costs is higher.

The business sponsor must
actively demonstrate support
for the change agent.

c13TransitionInToTheNewSystem.qxd 10/4/11 5:42 AM Page 485

invested a lot of time and energy in acquiring those skills and anything that
diminishes those skills may be perceived as diminishing the individual (because
important skills bring respect and power).

There must also be a compelling reason for the organization to need the
change; otherwise, individuals become skeptical in regard to whether the change is
important and are less certain that it will in fact occur. Probably the hardest organ-
ization to change is an organization that has been successful, because individuals
come to believe that what worked in the past will continue to work. By contrast, in
an organization that is on the brink of bankruptcy, it is easier to convince individuals
that change is needed. Commitment and support from credible business sponsors
and top management are also important in increasing the certainty that the change
will occur.

The likelihood of successful change is increased when the cost of the transi-
tion to individuals who must change is low. The need for significantly different new
skills or disruptions in operations and work habits may create resistance. A clear
migration plan developed by a credible change agent who has support from the
business sponsor is an important factor in increasing the certainty about the costs
of the transition process.

Motivating Adoption

The single most important factor in motivating a change is providing clear and
convincing evidence of the need for change. Simply put, everyone who is
expected to adopt the change must be convinced that the benefits from the to-be
system outweigh the costs of changing.

486 Chapter 13 Transition to the New System

Shamrock Foods is a major food dis-
tributor centered in Tralee, Ireland. Originally a dairy
cooperative, Shamrock branched into various food com-
ponents (dried milk, cheese solids, flavorings [or flavour-
ings, as the Irish would spell it]) and has had substantial
growth in the past 10 years, most of which came by way
of acquisition of existing companies or facilities. For
example, Iowa Soybean in the United States is now a
subsidiary of Shamrock Foods, as is a large dairy coop-
erative in Wisconsin.

Shamrock has processing facilities in over 12 coun-
tries and distribution and sales in over 30 countries. With
the rapid growth by acquisition, the company has gen-
erally adopted a “hands-off” policy keeping the systems
separated and not integrated into a unified ERP system.
Thus, each acquired company is still largely autonomous,
although it reports to Shamrock Foods and is managed
by Shamrock Foods.

This separation concept has been a problem for
Conor Lynch, CFO of Shamrock Foods. The board of

directors would like some aggregated data for direction
and analysis of acquired businesses. Conor has the
reports from the various subsidiaries, but has to have his
staff convert the figures reported in them to a consistent
basis (generally, either Euros or American dollars).

QUESTIONS:
1. When should a multinational/multisite business con-

solidate data systems?
2. There are costs associated with consolidating data

systems that have a variety of hardware and software
systems. For example, the various acquired compa-
nies already had their own functioning accounting
systems. What justification should Conor use to push
for a consolidated, unified ERP system?

3. At times, Conor has to deal with incomplete and incom-
patible data. For instance, inventory systems might be
FIFO for some of the subsidiaries and LIFO for other
subsidiaries. How might a CFO with multinational inter-
ests deal with incomplete and incompatible data?

13-C MANAGING GLOBAL PROJECTS

IN ACTION

CONCEPTS

c13TransitionInToTheNewSystem.qxd 10/4/11 5:42 AM Page 486

There are two basic strategies to motivating adoption: informational and
political. Both strategies are often used simultaneously. With an informational strat-
egy, the goal is to convince potential adopters that the change is for the better. This
strategy works when the cost–benefit set of the target adopters has more benefits
than costs. In other words, there really are clear reasons for the potential adopters
to welcome the change.

Using this approach, the project team provides clear and convincing evidence
of the costs and benefits of moving to the to-be system. The project team writes
memos and develops presentations that outline the costs and benefits of adopting
the system from the perspective of the organization and from the perspective of the
target group of potential adopters. This information is disseminated widely
throughout the target group, much like an advertising or public relations campaign.
It must emphasize the benefits as well as increase the certainty in the minds of
potential adopters that these benefits will actually be achieved. In our experience, it
is always easier to sell painkillers than vitamins; that is, it is easier to convince
potential adopters that a new system will remove a major problem (or other source
of pain) than that it will provide new benefits (e.g., increase sales). Therefore, infor-
mational campaigns are more likely to be successful if they stress the reduction or
elimination of problems, rather than focus on the provision of new opportunities.

The other strategy to motivate change is a political strategy. With a political
strategy, organizational power, not information, is used to motivate change. This
approach is often used when the cost–benefit set of the target adopters has more
costs than benefits. In other words, although the change may benefit the organiza-
tion, there are no reasons for the potential adopters to welcome the change.

The political strategy is usually beyond the control of the project team. It
requires someone in the organization who holds legitimate power over the target
group to influence the group to adopt the change. This may be done in a coercive
manner (e.g., “adopt the system or you’re fired”) or in a negotiated manner, in
which the target group gains benefits in other ways that are linked to the adoption
of the system (e.g., linking system adoption to increased training opportunities).
Management policies can play a key role in a political strategy by linking salary to
certain behaviors desired with the new system.

In general, for any change that has true organizational benefits, about 20% to
30% of potential adopters will be ready adopters. They recognize the benefits,
quickly adopt the system, and become proponents of the system. Another 20% to
30% are resistant adopters. They simply refuse to accept the change, and they fight
against it, either because the new system has more costs than benefits for them per-
sonally or because they place such a high cost on the transition process itself that
no amount of benefits from the new system can outweigh the change costs. The
remaining 40% to 60% are reluctant adopters. They tend to be apathetic and will

The Migration Plan 487

How would you motivate adoption if you were the developer of a new executive information system
designed to provide your organization’s top executives with key performance measures and economic trend information?

13-4 OVERCOMING RESISTANCE TO A NEW EXECUTIVE INFORMATION SYSTEMY O U R

T U R N

c13TransitionInToTheNewSystem.qxd 10/4/11 5:42 AM Page 487

go with the flow to either support or resist the system, depending on how the project
evolves and how their coworkers react to the system. Figure 13-7 illustrates the
actors who are involved in the change management process.

The goal of change management is to actively support and encourage the
ready adopters and help them win over the reluctant adopters. There is usually lit-
tle that can be done about the resistant adopters because their set of costs and ben-
efits may be divergent from those of the organization. Unless there are simple
steps that can be taken to rebalance their costs and benefits or the organization
chooses to adopt a strong political strategy, it is often best to ignore this small
minority of resistant adopters and focus on the larger majority of ready and reluc-
tant adopters.

Enabling Adoption: Training

Potential adopters may want to adopt the change, but unless they are capable of
adopting it, they won’t. Adoption is enabled by providing employees the skills
needed to adopt the change through careful training. Training is probably the
most self-evident part of any change management initiative. How can an organ-
ization expect its staff members to adopt a new system if they are not trained?
We have found that training is one of the most commonly overlooked parts of
the process, however. Many organizations and project managers simply expect
potential adopters to find the system easy to learn. Since the system is presumed
to be so simple, it is taken for granted that potential adopters should be able to
learn with little effort. Unfortunately, this is usually an overly optimistic
assumption.

Every new system requires new skills, either because the basic work
processes have changed (sometimes radically in the case of business process
reengineering [BPR]; see Chapter 3) or because the computer system used to sup-
port the processes is different. The more radical the changes to the business
processes, the more important it is to ensure that the organization has the new
skills required to operate the new business processes and supporting information
system. In general, there are three ways to get these new skills. One is to hire new
employees who have the needed skills that the existing staff does not. Another is
to outsource the processes to an organization that has the skills that the existing
staff does not. Both of these approaches are controversial and are usually consid-
ered only in the case of BPR when the new skills needed are likely to be the most
different from the set of skills of the current staff. In most cases, organizations
choose the third alternative: training existing staff in the new business processes
and the to-be system. Every training plan must consider what to train and how to
deliver the training.

488 Chapter 13 Transition to the New System

The sponsor wants The change agent leads Potential adopters are the people
the change to occur. the change effort. who must change.

20%–30% are ready adopters.

20%–30% are resistant adopters.

40%–60% are reluctant adopters.

FIGURE 13-7
Actors in the Change Management
Process

Sponsor Change Agent Potential Adopters

c13TransitionInToTheNewSystem.qxd 10/4/11 5:42 AM Page 488

The Migration Plan 489

Suppose that you are leading the conversion from one word processor to another in your organ-
ization. Develop an outline of topics that would be included in the training. Develop a plan for training delivery.

13-5 DEVELOPING A TRAINING PLANY O U R

T U R N

What to Train What training should you provide to the system users? It’s obvious:
how to use the system. The training should cover all the capabilities of the new sys-
tem, so that users understand what each module does, right?

Wrong. Training for business systems should focus on helping the users to
accomplish their jobs, not on how to use the system. The system is simply a
means to an end, not the end in itself. This focus on performing the job (i.e., the
business processes), not using the system, has two important implications. First,
the training must focus on those activities around the system, as well as on the
system itself. The training must help the users understand how the computer fits
into the bigger picture of their jobs. The use of the system must be put in the
context of the manual and computerized business processes, and it must also
cover the new management policies that were implemented along with the new
computer system.

Second, the training should focus on what the user needs to do, not on what
the system can do. This is a subtle—but very important—distinction. Most systems
will provide far more capabilities than the users will need to use (e.g., when was the
last time you wrote a macro in Microsoft Word?). Rather than attempting to teach
the users all the features of the system, training should instead focus on the much
smaller set of activities that users perform on a regular basis and ensure that users are
truly expert in those. When the focus is on the 20% of functions that the users will
use 80% of the time (instead of attempting to cover all functions), users become
confident about their ability to use the system. Training should mention the other
little-used functions, but only so that users are aware of their existence and know
how to learn about them when their use becomes necessary.

One source of guidance for designing training materials is the use cases and
use scenarios. The use cases and use scenarios outline the common activities that
users perform and thus can be helpful in understanding the business processes and
system functions that are likely to be most important to the users.

How to Train There are many ways to deliver training. The most commonly used
approach is classroom training. This has the advantage of training many users at
one time with only one instructor and creates a shared experience among the
users.

It is also possible to provide one-on-one training in which one trainer works
closely with one user at a time. This is obviously more expensive, but the trainer
can design the training program to meet the needs of individual users and can bet-
ter ensure that the users really do understand the material. This approach is typically
used only when the users are very important or when there are very few users.

Another approach that is becoming more common is to use some form of
computer-based training (CBT), in which the training program is delivered via

c13TransitionInToTheNewSystem.qxd 10/4/11 5:42 AM Page 489

computer, either on DVD or over the Web. CBT programs can include text slides,
audio, and even video and animation. CBT is typically more costly to develop, but
is cheaper to deliver because no instructor is needed to actually provide the training.

Figure 13-8 summarizes four important factors to consider in selecting a
training method. CBT is typically more expensive to develop than one-on-one or
classroom training, but it is less expensive to deliver. One-on-one training has the
most impact on the user because it can be customized to the user’s precise needs,
knowledge, and abilities, whereas CBT has the least impact. However, CBT has the
greatest reach—the ability to train the most users over the widest distance in the
shortest time—because it is so much simpler to distribute, compared with class-
room and one-on-one training, since no instructors are needed.

Figure 13-8 suggests a clear pattern for most organizations. If there are only
a few users to train, one-on-one training is the most effective. If there are many
users to train, many organizations turn to CBT. We believe that the use of CBT will
increase in the future. Quite often, large organizations use a combination of all
three methods. Regardless of which approach is used, it is important to leave the
users with a set of easily accessible materials that can be referred to long after the
training has ended (usually a quick reference guide and a set of manuals, whether
on paper or in electronic form).

490 Chapter 13 Transition to the New System

Cost to develop Low–medium Medium High
Cost to deliver High Medium Low
Impact High Medium–high Low–medium
Reach Low Medium High

One-on-One Classroom Computer-Based
Training Training Training

FIGURE 13-8
Selecting a Training Method

As a great analyst, you’ve planned,
analyzed, and designed a good solution. Now you need
to implement it. As part of implementation, do you think
that training is just a wasted expense?

Stress is common in a help-desk call center. Users
of computing services call to get access to locked
accounts, get help when technology isn’t working as
planned, and frequently can become very upset. Employ-
ees of the help-desk call center can get stressed out, and
this can result in a greater number of sick days, less pro-
ductivity, and higher turnover. Max Productivity Incorpo-
rated (MPI) is a training company that works with people
in high-stress jobs. MPI’s training program helps employees

learn how to relax, how to “shake off” tough users, and
how to create “win–win” scenarios. MPI claims to be
able to reduce employee turnover by 50 percent,
increase productivity by 20 percent, and reduce stress,
anger, and depression by 75 percent.

QUESTIONS:
1. How would you challenge MPI to verify its claims

regarding reducing turnover, increasing productivity,
and decreasing stress and anger?

2. How would you conduct a “cost–benefit” analysis
aimed at deciding whether to hire MPI to do ongoing
training for your help-desk call center employees?

13-D FINISHING THE PROCESS

IN ACTION

CONCEPTS

c13TransitionInToTheNewSystem.qxd 10/4/11 5:42 AM Page 490

POSTIMPLEMENTATION ACTIVITIES

The goal of postimplementation activities is to institutionalize the use of the new
system—that is, to make it the normal, accepted, routine way of performing the
business processes. The postimplementation activities attempt to refreeze the
organization after the successful transition to the new system. Although the work of
the project team naturally winds down after implementation, the business sponsor
and, sometimes, the project manager are actively involved in refreezing. These
two—and, ideally, many other stakeholders—actively promote the new system and
monitor its adoption and usage. They usually provide a steady flow of information
about the system and encourage users to contact them to discuss issues.

In this section, we examine three key postimplementation activities; support
(providing assistance in the use of the system), maintenance (continuing to refine
and improve the system), and project assessment (analyzing the project to under-
stand what activities were done well—and should be repeated—and what activities
need improvement in future projects).

System Support

Once the project team has installed the system and performed the change manage-
ment activities, the system is officially turned over to the operations group. This
group is responsible for the operation of the system, whereas the project team is
responsible for the development of the system. Members of the operations group
usually are closely involved in the installation activities because they are the ones
who must ensure that the system actually works. After the system is installed, the
project team leaves but the operations group remains.

Providing system support means helping the users to use the system. Usu-
ally, this means providing answers to questions and helping users understand how
to perform a certain function; this type of support can be thought of as on-demand
training.

Online support is the most common form of on-demand training. This
includes the documentation and help screens built into the system, as well as sepa-
rate Web sites that provide answers to frequently asked questions (FA Q s) that enable
users to find answers without contacting a person. Obviously, the goal of most sys-
tems is to provide sufficiently good online support so that the user doesn’t need to
contact a person, because providing online support is much less expensive than is
providing a person to answer questions.

Most organizations provide a help desk that provides a place for a user to talk
with a person who can answer questions (usually over the phone, but sometimes in
person). The help desk supports all systems, not just one specific system, so it
receives calls about a wide variety of software and hardware. The help desk is oper-
ated by level 1 support staff who have very broad computer skills and are able to
respond to a wide range of requests, from network problems and hardware prob-
lems to problems with commercial software and with the business application soft-
ware developed in house.

The goal of most help desks is to have the level 1 support staff resolve 80%
of the help requests they receive on the first call. If the issue cannot be resolved by
level 1 support staff, a problem report (Figure 13-9) is completed (often using a
special computer system designed to track problem reports) and passed to a level 2
support staff member.

Postimplementation Activities 491

c13TransitionInToTheNewSystem.qxd 10/4/11 5:42 AM Page 491

The level 2 support staff members are people who know the application sys-
tem well and can provide expert advice. For a new system, they are usually selected
during the implementation phase and become familiar with the system as it is being
tested. Sometimes, the level 2 support staff members participate in training during
the change management process to become more knowledgeable with the system,
the new business processes, and the users themselves.

The level 2 support staff works with users to resolve problems. Most prob-
lems are successfully resolved by the level 2 staff. In the first few months after the
system is installed, however, the problem may turn out to be a bug in the software
that must be fixed. In this case, the problem report becomes a change request that
is passed to the system maintenance group. (See the next section.)

System Maintenance

System maintenance is the process of refining the system to make sure it continues
to meet business needs. Over a system’s lifetime, more money and effort are devoted
to system maintenance than to the initial development of the system, simply because
a system continues to change and evolve as it is used. Most beginning systems

492 Chapter 13 Transition to the New System

• Time and date of the report
• Name, e-mail address, and telephone number of the

support person taking the report
• Name, e-mail address, and telephone number of the

person who reported the problem
• Software and/or hardware causing the problem
• Location of the problem
• Description of the problem
• Action taken
• Disposition (problem fixed or forwarded to system

maintenance)FIGURE 13-9
Elements of a Problem Report

When the European Union decided
to introduce the euro, the European Central Bank had to
develop a new computer system (called Target) to pro-
vide a currency settlement system for use by investment
banks and brokerages. The euro opened at an exchange
rate of U.S. $1.167. However, a rumor that the Target
system malfunctioned sent the value of the euro plunging
two days later.

That evening, it was determined that the malfunc-
tion was not due to system problems. Instead, operators
at some German banks had misunderstood how to use
the system and had entered incorrect data. Once the

problems were identified and the operators quickly
retrained, the Target system continued to operate and the
euro quickly regained its lost value.

Source: “Debut of Euro Nearly Flawless,” Computerworld,
January 11, 1999, 33(2), p. 16, by Thomas Hoffman.

QUESTION:
Target could be considered a high-risk system because of

its effects on the European economy. What kinds of
system support activities could be put in place to miti-
gate problems with Target?

13-E CONVERTING TO THE EURO (PART 2)
IN ACTION

CONCEPTS

c13TransitionInToTheNewSystem.qxd 10/4/11 5:42 AM Page 492

analysts and programmers work first on maintenance projects; usually only after
they have gained some experience are they assigned to new development projects.

Every system is “owned” by a project manager in the IS group (Figure 13-10).
This individual is responsible for coordinating the systems maintenance effort for
that system. Whenever a potential change to the system is identified, a change
request is prepared and forwarded to the project manager. The change request is a
“smaller” version of the system request discussed in Chapters 1 and 2. It describes
the change requested and explains why the change is important.

Changes can be small or large. Change requests that are likely to require a
significant effort are typically handled in the same manner as system requests:
They follow the same process as the project described in this book, starting with
project initiation in Chapter 1 and following through installation in this chapter.

Postimplementation Activities 493

2. Change Request

with feasibility,

costs, and benefits

3. Priority

4. Change Request

5. Design

6. Changed

System

1. Potential

Change

Analyst

Users

Change Committee

Programmer

Project
Manager

Problem Reports

Results: Passed Open items:

Test ID: Requirement addressed:

Objective:

Test cases

Interface ID

Script

Expected results notes

Actual results notes

1.

2.

3.

4.

5.

6.

Data Field Value Entered

Problem Reports

ORD56-3.5ORD56-3.5 ZIP code/postal codeZIP code/postal code blankblank

ORD56-3.5ORD56-3.5 ZIP code/postal codeZIP code/postal code 90219021

ORD56-3.5ORD56-3.5 ZIP code/postal codeZIP code/postal code 9021090210

ORD56-3.5ORD56-3.5 ZIP code/postal codeZIP code/postal code C1A58C1A58

ORD56-3.5ORD56-3.5 ZIP code/postal codeZIP code/postal code CAA 2C6CAA 2C6

ORD56-3.5ORD56-3.5

Test 3 and 6 are valid U.S. and Canadian codes that match tested city. All others should be rejected.Test 3 and 6 are valid U.S. and Canadian codes that match tested city. All others should be rejected.

Test 3 and 6 accepted. Tests 1, 2, 4, and 5 were rejected with correst message.Test 3 and 6 accepted. Tests 1, 2, 4, and 5 were rejected with correst message.

ZIP code/postal codeZIP code/postal code C1A 2C6C1A 2C6

1212 Verify ordering informationVerify ordering information

Ensure that the information entered by the customer on the place-order form is validEnsure that the information entered by the customer on the place-order form is valid

Changes to Other Systems

Results: Passed Open items:

Test ID: Requirement addressed:

Objective:

Test cases

Interface ID

Script

Expected results notes

Actual results notes

1.

2.

3.

4.

5.

6.

Data Field Value Entered

Change Request

ORD56-3.5ORD56-3.5 ZIP code/postal codeZIP code/postal code blankblank

ORD56-3.5ORD56-3.5 ZIP code/postal codeZIP code/postal code 90219021

ORD56-3.5ORD56-3.5 ZIP code/postal codeZIP code/postal code 9021090210

ORD56-3.5ORD56-3.5 ZIP code/postal codeZIP code/postal code C1A58C1A58

ORD56-3.5ORD56-3.5 ZIP code/postal codeZIP code/postal code CAA 2C6CAA 2C6

ORD56-3.5ORD56-3.5

Test 3 and 6 are valid U.S. and Canadian codes that match tested city. All others should be rejected.Test 3 and 6 are valid U.S. and Canadian codes that match tested city. All others should be rejected.

Test 3 and 6 accepted. Tests 1, 2, 4, and 5 were rejected with correst message.Test 3 and 6 accepted. Tests 1, 2, 4, and 5 were rejected with correst message.

ZIP code/postal codeZIP code/postal code C1A 2C6C1A 2C6

1212 Verify ordering informationVerify ordering information

Ensure that the information entered by the customer on the place-order form is validEnsure that the information entered by the customer on the place-order form is valid

Software or Network Changes

FIGURE 13-10
Processing a Change Request

c13TransitionInToTheNewSystem.qxd 10/4/11 5:42 AM Page 493

Minor changes typically follow a “smaller” version of this same process. There is
an initial assessment of feasibility and of costs and benefits, and the change request
is prioritized. Then a systems analyst (or a programmer/analyst) performs the analy-
sis, which may include interviewing users, and prepares an initial design before
programming begins. The new (or revised) program is then extensively tested
before it is put into production.

Change requests typically come from five sources. The most common source
is problem reports from the operations group that identify bugs in the system that
must be fixed. These are usually given immediate priority because a bug can cause
significant problems. Even a minor bug can cause major problems by upsetting
users and reducing their acceptance of and confidence in the system.

The second most common source of change requests is enhancements to the
system from users. As users work with the system, they often identify minor
changes in the design that can make the system easier to use or identify additional
functions that are needed. These enhancements are important in satisfying the users
and are often key in ensuring that the system changes as the business requirements
change. Enhancements are often given second priority after bug fixes.

A third source of change requests is other system development projects. For
example, as part of Tune Source’s Digital Music Download project, Tune Source
likely had to make some minor changes to its existing Web-based CD sales system
to ensure that the two systems would work together. These changes, required by the

494 Chapter 13 Transition to the New System

The awful truth is that every operat-
ing system and application system is defective. System
complexity, the competitive pressure to hurry applications
to market, and simple incompetence contribute to the
problem.

Will software ever be bug free? Not likely. Microsoft
Windows Group General Manager Chris Jones believes
that bigger programs breed more bugs. Each revision is
usually bigger and more complex than its predecessor,
which means that there will always be new places for
bugs to hide. Former Microsoft product manager Richard
Freedman agrees that the potential for defects increases
as software becomes more complex, but he believes that
users ultimately win more than they lose. “I’d say the fea-
tures have gotten exponentially better, and the product
quality has degraded a fractional amount.”

Still, the majority of users who responded to our
survey said they’d buy a software program with fewer
features if it were bug free. This sentiment runs counter to
what most software developers believe. “People buy fea-
tures, plain and simple,” explains Freedman. “There
have been attempts to release stripped-down word
processors and spreadsheets, and they don’t sell.” Freed-

man says a trend toward smaller, less-bug-prone software
with fewer features will “never happen.”

Eventually, the software ships and the bug reports
start rolling in. What happens next is what separates the
companies you want to patronize from the slackers.
While almost every vendor provides bug fixes eventually,
some companies do a better job of it than others. Some
observers view Microsoft’s market dominance as a road-
block to bug-free software. Todd Paglia, an attorney with
the Washington, D.C.-based Consumer Project on Tech-
nology, says, “If actual competition for operating systems
existed and we had greater competition for some of the
software that runs on the Microsoft operating system, we
would have higher quality than we have now.”

Source: “Software Bugs Run Rampant,” PC World, January
1999 17(1): p. 46, by Scott Spanbauer.

QUESTION:
If commercial systems contain the amount of bugs that

this article suggests, what are the implications for sys-
tems developed in house? Would in-house systems be
more likely to have a lower or higher quality than com-
mercial systems? Explain.

13-F SOFTWARE BUGS

IN ACTION

CONCEPTS

c13TransitionInToTheNewSystem.qxd 10/4/11 5:42 AM Page 494

need to integrate two systems, are generally rare, but are becoming more common
as system integration efforts become more common.

A fourth source of change requests is those that occur when underlying soft-
ware or networks change. For example, a new version of Windows often will
require an application to change the way it interacts with Windows or enable appli-
cation systems to take advantage of new features that improve efficiency. While
users may never see these changes (because most changes are inside the system and
do not affect its user interface or functionality), these changes can be among the
most challenging to implement because analysts and programmers must learn about
the new system characteristics, understand how application systems use (or can
use) those characteristics, and then make the needed programming changes.

The fifth source of change requests is senior management. These change
requests are often driven by major changes in the organization’s strategy (e.g., the
Tune Source Digital Music Download project) or operations. These significant
change requests are typically treated as separate projects, but the project manager
responsible for the initial system is often placed in charge of the new project.

Project Assessment

The goal of project assessment is to understand what was successful about the sys-
tem and the project activities (and therefore should be continued in the next system
or project) and what needs to be improved. Project assessment is not routine in most
organizations, except for military organizations, which are accustomed to prepar-
ing after-action reports. Nonetheless, assessment can be an important component in
organizational learning because it helps organizations and people understand how
to improve their work. It is particularly important for junior staff members because
it helps promote faster learning. There are two primary parts to project assessment—
project team review and system review.

Project Team Review Project team review focuses on the way the project team
carried out its activities. Each project member prepares a short two- to three-page
document that reports on and analyzes his or her performance. The focus is on
performance improvement, not penalties for mistakes made. By explicitly identify-
ing mistakes and understanding their causes, project team members will, it is
hoped, be better prepared for the next time they encounter a similar situation—and
less likely to repeat the same mistakes. Likewise, by identifying excellent performance,
team members will be able to understand why their actions worked well and how to
repeat them in future projects.

The documents prepared by each team member are assessed by the project
manager, who meets with the team members to help them understand how to
improve their performance. The project manager then prepares a summary docu-
ment that outlines the key learnings from the project. This summary identifies what
actions should be taken in future projects to improve performance, but is not
intended to identify team members who made mistakes. The summary is widely cir-
culated among all project managers to help them understand how to manage their
projects better. Often, it is also circulated among regular staff members who did not
work on the project so that they, too, can learn from projects outside their scope.

System Review The focus of the system review is understanding the extent to
which the proposed costs and benefits from the new system that were identified during

Postimplementation Activities 495

c13TransitionInToTheNewSystem.qxd 10/4/11 5:42 AM Page 495

How do you avoid bugs in the com-
mercial software you buy? Here are six tips:

1. Know your software: Find out if the few programs you
use day in and day out have known bugs and
patches, and track the Web sites that offer the latest
information on them.

2. Back up your data: This dictum should be tattooed on
every monitor. Stop reading right now and copy the
data you can’t afford to lose onto a CD, second hard
disk, or Web server. We’ll wait.

3. Don’t upgrade—yet: It’s tempting to upgrade to the latest
and greatest version of your favorite software, but
why chance it? Wait a few months, check out other
users’ experiences with the upgrade on Usenet news-
groups or the vendor’s own discussion forum, and
then go for it. But only if you must.

4. Upgrade slowly: If you decide to upgrade, allow yourself
at least a month to test the upgrade on a separate sys-
tem before you install it on all the computers in your
home or office.

5. Forget the betas: Installing beta software on your pri-
mary computer is a game of Russian roulette. If you
really have to play with beta software, get a second
computer.

6. Complain: The more you complain about bugs and
demand remedies, the more costly it is for vendors to
ship buggy products. It’s like voting—the more people
participate, the better are the results.

Source: “Software Bugs Run Rampant,” PC World, January,
1999, 17(1): p. 46, Scott Spanbauer.

13-1 BEATING BUGGY SOFTWARE

T I P

PRACTICAL

496 Chapter 13 Transition to the New System

project initiation were actually recognized from the implemented system. Project
team review is usually conducted immediately after the system is installed, while
key events are still fresh in team members’ minds, but system review is often under-
taken several months after the system is installed, because it often takes a while
before the system can be properly assessed.

System review starts with the system request and feasibility analysis prepared
at the start of the project. The detailed analyses prepared for the expected business
value (both tangible and intangible), as well as the economic feasibility analysis, are
reexamined, and a new analysis is prepared after the system has been installed. The
objective is to compare the anticipated business value against the actual realized
business value from the system. This helps the organization assess whether the sys-
tem actually provided the value it was planned to provide. Whether or not the sys-
tem provides the expected value, future projects can benefit from an improved
understanding of the true costs and benefits.

A formal system review also has important behavioral implications for project
initiation. Since everyone involved with the project knows that all statements about
business value and the financial estimates prepared during project initiation will be
evaluated at the end of the project, they have an incentive to be conservative in their
assessments. No one wants to be the project sponsor or project manager for a proj-
ect that goes radically over budget or fails to deliver promised benefits.

APPLYING THE CONCEPTS AT TUNE SOURCE

Installation of the Digital Music Download system at Tune Source was somewhat
simpler than the installation of most systems because the system was new; there
was no as-is system. Most changes would be felt by the staff in the stores who might
need to assist customers using the in-store kiosks to buy music downloads. Jason
did not expect any major problems in this area.

c13TransitionInToTheNewSystem.qxd 10/4/11 5:42 AM Page 496

Implementation Process

The team was faced with the problem of installing the in-store kiosks and training
the staff in all 50 of Tune Source’s stores. Because the new in-store kiosks were
new and not changing any old functions, it was less important to make sure that
the conversion was completely synchronized across all stores. Because the risk
associated with the system was low, and because both cost and time were
somewhat important, Jason chose to use direct conversion with a whole-system
conversion, but with a pilot phase first. You will recall from the last chapter that
the system was beta tested with employees. Jason chose to use the beta test as the
pilot conversion.

The in-store kiosks were installed in the 18 stores in a greater Los Angeles
area for the beta test. The manager and the employees in each of these 18 stores
were trained in the use of the new in-store kiosks.

Conversion during the pilot phase went smoothly. First, the new hardware was
purchased and installed. Then the software was installed on the Web server of the
company intranet. Data were loaded into the MySQL database by several tempo-
rary employees contracted for the job. Since this system contains new data, there
was no data conversion to manage.

At the end of the beta test and pilot conversion phase, the kiosks were then
installed in the remaining 32 stores in the Tune Source chain and their staffs were
trained. Once the in-store kiosks were operating smoothly, the system was ready for
general use by the public on the Internet.

Preparing the People

There were few change management issues because there were few existing staff
members who had to change. New staff were hired, most by internal transfer from
other groups within Tune Source. The most likely stakeholders to be concerned by
the change would be managers and employees in the traditional retail stores who
might see the Digital Music Download system as a threat to their stores. Jason
therefore developed an information campaign (distributed through the employee
newsletter and internal Web site) that discussed the reasons for the change and
explained that the Digital Music Download system should be seen as a complement
to the existing stores, not as a competitor. The system was instead targeted at Web-
based competitors such as Amazon.com.

The new management policies were developed, along with a training plan that
encompassed both the manual work procedures and computerized procedures.
Jason decided to use classroom training for the marketing personnel who would be
using the promotion system component, because there was a small number of them
and it was simpler and more cost effective to train them all together in one class-
room session.

Postimplementation Activities

Support of the system was turned over to the Tune Source operations group, who
had hired four additional support staff members with expertise in networking and
Web-based systems. System maintenance began almost immediately, with Jason
designated as the project manager responsible for maintenance of this version of the
system plus the development of the next version. Jason began planning to develop
the next version of the system.

Applying the Concepts at Tune Source 497

c13TransitionInToTheNewSystem.qxd 10/4/11 5:42 AM Page 497

Project team review uncovered several key learnings, mostly involving Web-
based programming and the difficulties in optimizing searches and providing fast,
flawless file transfer protocols. The project was delivered on budget, with the
exception that more was spent on programming than was anticipated.

A preliminary system review was conducted after two months of operations.
Thanks to an advertising campaign, sales via the Internet system were $120,000 for
the first month and $162,000 for the second, showing a gradual increase. (Remem-
ber that the goal for the first year of operations was $2.6 million.) Operating
expenses averaged $47,000 per month, a bit higher than the projected average,
owing to startup costs. Nonetheless, Carly Edwards, vice president of marketing
and the project sponsor, was quite pleased. She approved the feasibility study for
the follow-on project to develop the second version of the Internet system, and
Jason began the SDLC all over again.

SUMMARY

Making the Transition to the New System
Transitioning to the new system is facilitated by following Lewin’s three-step
model of organizational change: Unfreeze, move, and refreeze. Activities during
systems analysis and design will help unfreeze attachment to the existing system.
The migration plan guides the movement from the as-is system to the to-be system.
The support and maintenance provided for the new system helps to refreeze the new
system into everyday use in the organization.

The Migration Plan
The migration plan encompasses a number of elements that will guide the transition
from the old to the new system. The organization’s readiness can be developed by
the conversion strategy that is selected and business contingency planning. The tech-
nology is prepared through installation of the hardware and software and conversion
of the data. The people are prepared to accept and use the new system through many
channels, including management policies, adoption motivation techniques, and
training. Understanding the sources of resistance to change and the costs and bene-
fits that the users perceive will help analysts develop a successful migration plan.

Postimplementation Activities
System support is performed by the operations group, which provides online and
help-desk support to the users. System support has both a level 1 support staff,
which answers the phone and handles most of the questions, and level 2 support
staff, which follows up on challenging problems and sometimes generates change
requests for bug fixes. System maintenance responds to change requests (from the
system support staff, users, other development project teams, and senior manage-
ment) to fix bugs and improve the business value of the system. The goal of project
assessment is to understand what was successful about the system and the project
activities (and therefore should be continued in the next system or project) and what
needs to be improved. Project team review focuses on the way in which the project
team carried out its activities and usually results in documentation of key lessons
learned. System review focuses on understanding the extent to which the proposed
costs and benefits from the new system that were identified during project initiation
were actually recognized from the implemented system.

498 Chapter 13 Transition to the New System

c13TransitionInToTheNewSystem.qxd 10/4/11 5:42 AM Page 498

Questions 499

Business contingency plan
Change agent
Change management
Change request
Classroom training
Computer-based training (CBT)
Conversion
Conversion location
Conversion modules
Conversion strategy
Conversion style
Direct conversion
Frequently asked questions (FAQs)
Help desk
Informational strategy
Installation
Institutionalization
Level 1 support

Level 2 support
Management policies
Measurements
Migration plan
Modular conversion
On-demand training
One-on-one training
Online support
Operations group
Parallel conversion
Phased conversion
Pilot conversion
Political strategy
Postimplementation
Potential adopter
Problem report
Project assessment
Project team review

Ready adopters
Refreeze
Reluctant adopters
Resistant adopters
Resource allocation
Rewards
Simultaneous conversion
Sponsor
Standard operating procedures

(SOPs)
System maintenance
System request
System review
System support
Training
Transition
Unfreeze
Whole-system conversion

KEY TERMS

1. What are the three basic steps in managing organi-
zational change?

2. What are the major components of a migration plan?
3. Compare and contrast direct conversion and paral-

lel conversion.
4. Compare and contrast pilot conversion, phased con-

version, and simultaneous conversion.
5. Compare and contrast modular conversion and

whole-system conversion.
6. Explain the trade-offs among selecting between the

types of conversion in Questions 3, 4, and 5.
7. What are the three key roles in any change man-

agement initiative?
8. Why do people resist change? Explain the basic

model for understanding why people accept or
resist change.

9. What are the three major elements of management
policies that must be considered when implement-
ing a new system?

10. Compare and contrast an information change man-
agement strategy with a political change manage-
ment strategy. Is one better than the other?

11. Explain the three categories of adopters you are
likely to encounter in any change management
initiative.

12. How should you decide what items to include in
your training plan?

13. Compare and contrast three basic approaches to
training.

14. What is the role of the operations group in the sys-
tems development life cycle (SDLC)?

15. Compare and contrast two major ways to provide
system support.

16. How is a problem report different from a change
request?

17. What are the major sources of change requests?
18. Why is project assessment important?
19. How is project team review different from system

review?
20. What do you think are three common mistakes that

novice analysts make in migrating from the as-is to
the to-be system?

21. Some experts argue that change management is
more important than any other part of the SDLC.
Do you agree or not? Explain.

22. In our experience, change management planning
often receives less attention than conversion plan-
ning. Why do you think this happens?

QUESTIONS

c13TransitionInToTheNewSystem.qxd 10/4/11 5:42 AM Page 499

500 Chapter 13 Transition to the New System

A. Suppose that you are installing a new accounting
package in your small business. What conversion
strategy would you use? Develop a conversion plan
(i.e., technical aspects only).

B. Suppose that you are installing a new room reserva-
tion system for your university that tracks which
courses are assigned to which rooms. Assume that all
the rooms in each building are “owned” by one col-
lege or department and only one person in that college
or department has permission to assign them. What
conversion strategy would you use? Develop a con-
version plan (i.e., technical aspects only).

C. Suppose you are installing a new payroll system in a
very large multinational corporation. What conver-
sion strategy would you use? Develop a conversion
plan (i.e., technical aspects only).

D. Consider a major change you have experienced in
your life (e.g., taking a new job, starting a new
school). Prepare a cost–benefit analysis of the
change in terms of both the change and the transi-
tion to the change.

E. Suppose that you are the project manager for a new
library system for your university. The system will
improve the way in which students, faculty, and staff
can search for books by enabling them to search over
the Web, rather than using only the current text-
based system available on the computer terminals in
the library. Prepare a cost–benefit analysis of the
change in terms of both the change and the transi-
tion to the change for the major stakeholders.

F. Prepare a plan to motivate the adoption of the sys-
tem described in Exercise E.

G. Prepare a training plan that includes both what you
would train and how the training would be delivered
for the system described in Exercise E.

H. Suppose that you are leading the installation of a
new decision support system to help admissions
officers manage the admissions process at your uni-
versity. Develop a change management plan (i.e.,
organizational aspects only).

I. Suppose that you are the project leader for the devel-
opment of a new Web-based course registration sys-
tem for your university that replaces an old system
in which students had to go to the coliseum at cer-
tain times and stand in line to get permission slips
for each course they wanted to take. Develop a
migration plan (including both technical conversion
and change management).

J. Suppose that you are the project leader for the devel-
opment of a new airline reservation system that will
be used by the airline’s in-house reservation agents.
The system will replace the current command-
driven system designed in the 1970s that uses termi-
nals. The new system uses PCs with a Web-based
interface. Develop a migration plan (including both
conversion and change management) for your tele-
phone operators.

K. Suppose that you are the project leader for the sce-
nario described in Exercise J. Develop a migration
plan (including both conversion and change man-
agement) for the independent travel agencies who
use your system.

EXERCISES

1. Nancy is the IS department head at MOTO Inc., a
human resources management firm. The IS staff at
MOTO Inc. completed work on a new client manage-
ment software system about a month ago. Nancy was
impressed with the performance of her staff on this
project because the firm had not previously undertaken
a project of this scale in house. One of Nancy’s weekly
tasks is to evaluate and prioritize the change requests
that have come in for the various applications used by
the firm.

Right now, Nancy has on her desk five change
requests for the client system. One request is from a

system user who would like some formatting changes
made to a daily report produced by the system. Another
request is from a user who would like the sequence of
menu options changed on one of the system menus to
more closely reflect the frequency of use for those
options. A third request came in from the billing depart-
ment. This department performs billing through the use
of a billing software package. A major upgrade of this
software is being planned, and the interface between the
client system and the billing system will need to be
changed to accommodate the new software’s data struc-
tures. The fourth request seems to be a system bug that

MINICASES

c13TransitionInToTheNewSystem.qxd 10/4/11 5:42 AM Page 500

Minicases 501

occurs whenever a client cancels a contract (a rare
occurrence, fortunately). The last request came from
Susan, the company president. This request confirms the
rumor that MOTO Inc. is about to acquire another new
business. The new business specializes in the temporary
placement of skilled professional and scientific
employees, and represents a new business area for
MOTO Inc. The client management software system
will need to be modified to incorporate the special client
arrangements that are associated with the acquired firm.

How do you recommend that Nancy prioritize these
change requests for the client/management system?

2. Sky View Aerial Photography offers a wide range of
aerial photographic, video, and infrared imaging serv-
ices. The company has grown from its early days of
snapping pictures of client houses to its current status
as a full-service aerial image specialist. Sky View now
maintains numerous contracts with various governmen-
tal agencies for aerial mapping and surveying work.
Sky View has its offices at the airport where its fleet of
specially equipped aircraft are hangared. Sky View con-
tracts with several freelance pilots and photographers
for some of its aerial work and also employs several
full-time pilots and photographers.

The owners of Sky View Aerial Photography
recently contracted with a systems development con-
sulting firm to develop a new information system for

the business. As the number of contracts, aircraft
flights, pilots, and photographers increased, the com-
pany experienced difficulty keeping accurate records of
its business activity and the utilization of its fleet of air-
craft. The new system will require all pilots and pho-
tographers to swipe an ID badge through a reader at the
beginning and conclusion of each photo flight, along
with recording information about the aircraft used and
the client served on that flight. These records would be
reconciled against the actual aircraft utilization logs
maintained and recorded by the hangar personnel.

The office staff was eagerly awaiting the installation
of the new system. Their general attitude was that the
system would reduce the number of problems and
errors that they encountered and would make their work
easier. The pilots, photographers, and hangar staff were
less enthusiastic, being unaccustomed to having their
activities monitored in this way.

a. Discuss the factors that may inhibit the accept-
ance of this new system by the pilots, photogra-
phers, and hangar staff.

b. Discuss how an informational strategy could be
used to motivate adoption of the new system at
Sky View Aerial Photography.

c. Discuss how a political strategy could be used to
motivate adoption of the new system at Sky View
Aerial Photography.

c13TransitionInToTheNewSystem.qxd 10/4/11 5:42 AM Page 501

PA
RT

 F
O

U
R:

 I
M

PL
EM

EN
TA

TI
O

N
PA

RT
 T

H
RE

E:
 D

ES
IG

N
PA

RT
 T

W
O

:
AN

AL
YS

IS
PA

RT
 O

N
E:

 P
LA

N
N

IN
G

Initial System
Request
Fig 1-5

CHAPTER

1

Use Cases
Fig 4-1, 4-14

Process Models
Fig 5-5, 5-6, 5-9,

5-15, 5-17

Alternative Matrix
Fig 7-5, 7-6 Architecture

Design

Interface Design
Fig 9-18, 9-20

Hardware/Software
Specification

Fig 8-11

Physical Process
Model

Fig 10-2

Physical Data
Model

Fig 11-11

Program Design
Fig 10-13

Database & File
Specification

Fig 11-22

Data
Model

Fig 6-1, 6-15

Requirements
Definition

Fig 3-3, 3-13

Feasibility
Study

Fig 1-15

CHAPTER

1

Project
Plan

Fig 2-23, 2-24

CHAPTER

2

Completed
Programs

Test Plan
Fig 12-10

Documentation
Fig 12-12

Training Plan

Problem Report
Fig 13-9

CHAPTER

13

CHAPTER

13

Change Request
Fig 13-10

CHAPTER

13

Migration Plan
Fig 13-2

Change
Management Plan

Support
Plan

CHAPTER
13

PROJECT PLAN

SYSTEM PROPOSAL

SYSTEM SPECIFICATION

INSTALLED SYSTEM
CHAPTER
13

CHAPTER
13

CHAPTER
12

CHAPTER
12

CHAPTER
11

CHAPTER
10

CHAPTER
10

CHAPTER
9

CHAPTER
8

CHAPTER
8

CHAPTER
7

CHAPTER
3

CHAPTER
5 CHAPTER

4

CHAPTER
6

CHAPTER
11

CHAPTER
12

c14TheMovementToObjects.qxd 10/5/11 10:39 AM Page 502

he field of systems analysis and design now incorporates object-oriented concepts
and techniques, by which a system is viewed as a collection of self-contained

objects that include both data and processes. Objects can be built as individual pieces
and then put together to form a system, leading to modular, reusable project components.
In 1997, the Unified Modeling Language (UML) was accepted as the standard language
for object development. This chapter describes the four most effective UML models: the use
case diagram, class diagram, sequence diagram, and behavioral state machine diagram.

OBJECTIVES

■ Explain the basic concepts of the object approach and UML.
■ Be able to create a use case diagram.
■ Be able to create a class diagram.
■ Be able to create a sequence diagram.
■ Be able to create a behavioral state machine diagram.

CHAPTER OUTLINE

C H A P T E R 1 4

T

THE MOVEMENT
TO OBJECTS

Introduction
Basic Characteristics of Object-Oriented

Systems
Classes and Objects
Methods and Messages
Encapsulation and Information Hiding
Inheritance
Polymorphism and Dynamic Binding

Object-Oriented Systems Analysis and
Design
Use Case Driven
Architecture Centric
Iterative and Incremental
Benefits of Object-Oriented Systems

Analysis and Design
Unified Modeling Language Version 2.0

The Rational Unified Process (RUP)

Four Fundamental UML Diagrams
Use Case Diagram

Elements of a Use Case Diagram
Creating a Use Case Diagram

Class Diagram
Elements of a Class Diagram
Simplifying Class Diagrams
Creating a Class Diagram

Sequence Diagram
Elements of a Sequence Diagram
Creating a Sequence Diagram

Behavioral State Machine Diagram
Elements of a Behavioral State

Machine Diagram
Creating a Behavioral State Machine

Diagram
Summary

c14TheMovementToObjects.qxd 10/5/11 10:39 AM Page 503

INTRODUCTION

By this point, we have presented the important skills that you will need for a real-
world systems development project. You can be certain that all projects move
through the four phases of planning, analysis, design, and implementation; all proj-
ects require you to gather requirements, model the business needs, and create blue-
prints for how the system should be built; and all projects require an understanding
of organizational behavior concepts like change management and team building.
This is true for large and small projects; custom built and packaged; local and
global.

These underlying skills remain largely unchanged over time, but the actual
techniques and approaches that analysts and developers use do change—often
dramatically—over time. As we implied in Chapter 1, the field of systems
analysis and design still has a lot of room for improvement: Projects still run
over budget, users often cannot get applications when they need them, and some
systems still fail to meet important user needs. Thus, the state of the systems
analysis and design field is one of constant transition and continuous improve-
ment. Analysts and developers learn from past mistakes and successes and
evolve their practices to incorporate new techniques and new approaches that
work better.

Today, an exciting enhancement to systems analysis and design is the
application of the object-oriented approach. The object-oriented approach views
a system as a collection of self-contained objects, including both data and
processes. As you know, traditional systems analysis and design methodologies
are either data-centric or process-centric. (See Chapter 1.) Until the mid-1980s,
developers had to keep the data and processes separate in order to build systems
that could run on the mainframe computers of that era. Due to the increase in
processor power and the decrease in processor cost, object-oriented approaches
became feasible. Consequently, developers focused on building systems more
efficiently by enabling the analyst to work with a system’s data and processes
simultaneously as objects. These objects can be built as individual pieces and
then put together to form a system. The beauty of objects is that they can be
reused over and over in many different systems and changed without affecting
other system components.

Although some people feel that the move to objects will radically change the
field of systems analysis and design and the SDLC, we see the incorporation of
objects as an evolving process in which object-oriented techniques are gradually
integrated into the mainstream SDLC. Therefore, it is important for you as an ana-
lyst to understand what object orientation is and why it is causing such a stir in the
industry, as well as to become familiar with some popular object-oriented tech-
niques that you may need to use on projects.

One of the major hurdles of learning object-oriented approaches to develop-
ing information systems is the volume of new terminology. In this chapter, we will
provide an overview to the basic characteristics of an object-oriented system, intro-
duce basic object-oriented systems analysis and design and the Unified Process,
and provide an overview of the Unified Modeling Language (UML Version 2.0). We
will then explain how to draw four of the fundamental diagrams in the UML: the
use case diagram, the class diagram, the sequence diagram, and the behavioral state
machine diagram.

504 Chapter 14 The Movement to Objects

c14TheMovementToObjects.qxd 10/5/11 10:39 AM Page 504

BASIC CHARACTERISTICS OF
OBJECT-ORIENTED SYSTEMS

Object-oriented systems focus on capturing the structure and behavior of informa-
tion systems in little modules that encompass both data and processes. These little
modules are known as objects. In this section of the chapter, we describe the basic
characteristics of object-oriented systems.

Classes and Objects

A class is the general template we use to define and create specific instances, or
objects. Every object is associated with a class. For example, all of the objects that
capture information about patients could fall into a class called Patient, because
there are attributes (e.g., names, addresses, and birth dates) and methods (e.g.,
insert new instances, maintain information, and delete entries) that all patients
share. (See Figure 14-1.)

An object is an instantiation of a class. In other words, an object is a person,
place, event, or thing about which we want to capture information. If we were build-
ing a sales system for an RV dealer, classes might include vehicle, customer, and
offer. The specific customers like Jim Maloney, Mary Wilson, and Theresa Marks
are considered instances, or objects, of the customer class.

Each object has attributes that describe information about the object, such as a
customer’s name, address, e-mail, and phone number. The state of an object is defined
by the value of its attributes and its relationships with other objects at a particular
point in time. For example, a vehicle might have a state of “new” or “pre-owned.”

Basic Characteristics of Object-Oriented Systems 505

– Name
– Address
– E-mail
– Phone Number

+ Insert ()
+ Delete ()

Customer

– Vehicle number
– Make
– Model
– Year

+ Insert ()
+ Delete ()

Vehicle

Classes

PATIENTaCustomer : Customer

Vehicle number: 913AC947FXMMYX317
Make: Winnebago
Model: Outlook
Year: 2008

aVehicle : Vehicle

Objects

An instance of the Vehicle class

An instance of the Customer class

 Name = Theresa Marks
 Address = 50 Winds Way, Ocean City, NJ 09009
 E-mail: TMarks@xyz.net
 Phone Number = (804) 555-7889

Instantiation

FIGURE 14-1
Classes and Objects

c14TheMovementToObjects.qxd 10/5/11 10:39 AM Page 505

One of the more confusing aspects of object-oriented systems development is
the fact that in most object-oriented programming languages, both classes and
instances of classes can have attributes and methods. Class attributes and methods
tend to be used to model attributes (or methods) that deal with issues related to all
instances of the class. For example, to create a new customer object, a message is
sent to the customer class to create a new instance of itself. However, from a sys-
tems analysis and design point of view, we will focus primarily on attributes and
methods of objects, and not of classes.

Methods and Messages

Methods implement an object’s behavior. A method is nothing more than an action
that an object can perform. Methods are very much like a function or procedure in
a traditional programming language such as C, COBOL, or Pascal. Messages are
information sent to objects to trigger methods. A message is essentially a function
or procedure call from one object to another object. For example, if a customer is
new to the organization, the system will send an insert message to the customer
object. The customer object will receive a message (instruction) and do what it
needs to do to insert the new customer into the system (execute its method). (See
Figure 14-2.)

Encapsulation and Information Hiding

The ideas of encapsulation and information hiding are interrelated in object-
oriented systems. Neither of the concepts is new, however. Encapsulation is simply
the combining of process and data into a single entity. Object-oriented approaches
combine process and data into holistic entities (objects).

Information hiding was first promoted in structured systems development.
The principle of information hiding suggests that only the information required
to use a software module be published to the user of the module. Typically, this
implies that the information required to be passed to the module and the infor-
mation returned from the module are published. Exactly how the module imple-
ments the required functionality is not relevant. We really do not care how the

506 Chapter 14 The Movement to Objects

+Insert ()
+Delete ()

Customer

–Name
–Address
–E-mail
–Phone number

Insert new instance.

A message is sent to the application. The object’s insert method
will respond to the message
and insert a new customer
instance.

FIGURE 14-2
Messages and Methods

c14TheMovementToObjects.qxd 10/5/11 10:39 AM Page 506

object performs its functions, so long as the functions occur. In object-oriented
systems, combining encapsulation with the information hiding principle sug-
gests that the information hiding principle be applied to objects instead of
merely applying it to functions or processes. As such, objects are treated like
black boxes.

The fact that we can use an object by calling methods is the key to reusabil-
ity, because it shields the internal workings of the object from changes in the out-
side system and it keeps the system from being affected when changes are made to
an object. In Figure 14-2, notice how a message (insert new customer) is sent to an
object, yet the internal algorithms needed to respond to the message are hidden
from other parts of the system. The only information that an object needs to know
is the set of operations, or methods, that other objects can perform and what mes-
sages need to be sent to trigger them.

Inheritance

Inheritance, as an information systems development characteristic, was proposed in
data modeling in the late 1970s and early 1980s. The data modeling literature sug-
gests using inheritance to identify higher level, or more general, classes of objects.
Common sets of attributes and methods can be organized into superclasses. Typically,
classes are arranged in a hierarchy whereby the superclasses, or general classes, are
at the top, and the subclasses, or specific classes, are at the bottom. In Figure 14-3,

Basic Characteristics of Object-Oriented Systems 507

FIGURE 14-3
Class Hierarchy

Concrete class

Shop

mechanic

Concrete class
Customer

Abstract class
Person

Abstract class

Employee

Sales-

person

c14TheMovementToObjects.qxd 10/5/11 10:39 AM Page 507

508 Chapter 14 The Movement to Objects

–Last name
–First name
–Address
–Home phone
–Hire date
–Pay grade

+Update address()
+Update pay grade()

Employee

–Last name
–First name
–Address
–Home phone
–Last contact date

+Update address()
+Update last contact date()

Customer

–Last name
–First name
–Address
–Home phone

+Update address()

Person

–Hire date
–Pay grade

With InheritanceWithout Inheritance

+Update pay grade()

Employee

–Last contact date

+Update last contact date()

Customer

person is a superclass to the classes employee and customer. Employee, in turn,
is a superclass to salesperson and shop mechanic. Notice how a class (e.g.,
employee) can serve as a superclass and a subclass concurrently. The relationship
between the class and its superclass is known as the A-Kind-Of (AKO) relation-
ship. For example, in Figure 14-3, a salesperson is A-Kind-Of employee, which
is A-Kind-Of person.

Subclasses inherit the attributes and methods from the superclass above
them. That is, each subclass contains attributes and methods from its parent
superclass. For example, Figure 14-3 shows that both employee and customer
are subclasses of person and therefore will inherit the attributes and methods of
the person class. Inheritance makes it simpler to define classes. Instead of
repeating the attributes and methods in the employee and customer classes sep-
arately, the attributes and methods that are common to both are placed in the
person class and inherited by those classes below it. Notice how much more effi-
cient hierarchies of object classes are than are the same objects without a hier-
archy, in Figure 14-4.

Most classes throughout a hierarchy will lead to instances; any class that
has instances is called a concrete class. For example, if Mary Wilson and Jim
Maloney were instances of the customer class, customer would be considered a
concrete class. Some classes do not produce instances, because they are used
merely as templates for other, more specific classes (especially those classes
located high up in a hierarchy). They are abstract classes. Person would be an
example of an abstract class. Instead of creating objects from person, we would
create instances representing the more specific classes of employee and customer,
both types of person. (See Figure 14-3.) What kind of class is the salesperson
class? Why?

FIGURE 14-4
Inheritance

c14TheMovementToObjects.qxd 10/5/11 10:39 AM Page 508

Polymorphism and Dynamic Binding

Polymorphism means that the same message can be interpreted differently by dif-
ferent classes of objects. For example, inserting a patient means something differ-
ent than inserting an appointment. As such, different pieces of information need to
be collected and stored. Luckily, we do not have to be concerned with how some-
thing is done when using objects. We can simply send a message to an object, and
that object will be responsible for interpreting the message appropriately. For exam-
ple, if we sent the message “Draw yourself ” to a square object, a circle object, and
a triangle object, the results would be very different, even though the message is the
same. Notice in Figure 14-5 how each object responds appropriately (and differ-
ently), even though the message is identical.

Polymorphism is made possible through dynamic binding. Dynamic, or late,
binding is a technique that delays identifying the type of object until run-time. As
such, the specific method that is actually called is not chosen by the object-oriented
system until the system is running. This is in contrast to static binding. In a stati-
cally bound system, the type of object would be determined at compile time. There-
fore, the developer would have to choose which method should be called, instead of

Basic Characteristics of Object-Oriented Systems 509

+Insert ()
+Delete ()

Customer

–Name
–Address
–E-mail
–Phone number

Insert new instance.

1. An insert message is sent
to the customer object.

2. The object’s method
responds to the message.

3. The application responds appropriately.

50 Virginia Lane, Athens, GA 30605

Mwilson@ABC.net

804-555-9090

Wilson, Mary

Home Address:

E-mail:

Daytime Phone:

Last Name, First Name:

Please input the following information for the new customer:

New Customer

+Insert ()
+Delete ()

Vehicle

–Vehicle number
–Make
–Model
–Year

Insert new instance.

1. An insert message is sent
to the vehicle object.

2. The object’s method
responds to the message.

3. The application responds appropriately.

Winnebago

Outlook

2008

913AC947FXMMYX317

Select Make:

Model:

Year:

Vehicle Identification Number:

Please input the following information for the new vehicle:

New Vehicle

FIGURE 14-5
Polymorphism and Encapsulation

c14TheMovementToObjects.qxd 10/5/11 10:39 AM Page 509

allowing the system to do it. This is why in most traditional programming languages
you find complicated decision logic based on the different types of objects in a sys-
tem. For example, in a traditional programming language, instead of sending the
message “Draw yourself ” to the different types of graphical objects mentioned ear-
lier, you would have to write decision logic by using a case statement or a set of
“if ” statements to determine what kind of graphical object you wanted to draw, and
you would have to name each draw function differently (e.g., draw-square, draw-
circle, or draw-triangle). This obviously makes the system much more complicated
and more difficult to understand.

OBJECT-ORIENTED SYSTEMS ANALYSIS AND DESIGN

Object-oriented approaches to developing information systems, technically
speaking, can use any of the traditional methodologies presented in Chapter 2
(waterfall development, parallel development, V-model, iterative development,
system prototyping, and throwaway prototyping). The object-oriented approaches
are most associated with an iterative development RAD methodology, however.
The primary difference between a traditional approach like structured design and
an object-oriented approach is how a problem is decomposed. In traditional
approaches, the problem decomposition is either process-centric or data-centric.
When modeling real-world systems is involved, however, processes and data are
so closely related that it is difficult to pick one or the other as the primary focus.
Based on this lack of congruence with the real world, new object-oriented
methodologies have emerged that use the RAD-based sequence of SDLC phases,
but attempt to balance the emphasis between process and data. This is done by
focusing the decomposition of problems on objects that contain both data and
processes.

Until 1995, object concepts were popular, but implemented in many dif-
ferent ways to different developers. Each developer had his or her own method-
ology and notation (e.g., Booch, Coad, Moses, OMT, OOSE, and SOMA1).
Then, in 1995, Rational Software brought three industry leaders together to cre-
ate a single approach to object-oriented systems development. Grady Booch,
Ivar Jacobson, and James Rumbaugh worked with others to create a standard set
of diagramming techniques known as the Unified Modeling Language (UML).2

The current version of UML, Version 2.0, will be described briefly in a later
section. According to its creators, any object-oriented approach to developing
information systems must be (1) use case driven, (2) architecture centric, and
(3) iterative and incremental.

510 Chapter 14 The Movement to Objects

1 See Grady Booch, Object-Oriented Analysis and Design with Applications, 2d ed., Redwood City, CA:
Benjamin/Cummings, 1994; Peter Coad and Edward Yourdon, Object-Oriented Analysis, 2d ed., Englewood
Cliffs, NJ: Yourdon Press, 1991; Brian Henderson-Sellers and Julian Edwards, Book Two of Object-Oriented
Knowledge: The Working Object, Sydney, Australia: Prentice Hall, 1994; James Rumbaugh, Michael Blaha,
William Premerlani, Frederick Eddy, and William Lorensen, Object-Oriented Modeling and Design, Engle-
wood Cliffs, NJ: Prentice Hall, 1991; Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar Over-
gaard, Object-Oriented Software Engineering: A Use Case Approach, Wokingham, England: Addison-Wesley,
1992; Ian Graham, Migrating to Object Technology, Wokingham, England: Addison-Wesley, 1994.
2 Grady Booch, Ivar Jacobson, and James Rumbaugh, The Unified Modeling Language User Guide, Reading,
MA: Addison-Wesley, 1999. For a complete description of all UML diagramming techniques, see http://
www-306.ibm.com/software/rational/uml/.

c14TheMovementToObjects.qxd 10/5/11 10:39 AM Page 510

Use Case Driven

Use case driven means that use cases are the primary modeling tool employed to
define the behavior of the system. A use case describes how the user interacts with
the system to perform some activity, such as placing an order, making a reservation,
or searching for information. The use cases are used to identify and to communicate
the requirements for the system to the programmers who must write the system.

Use cases are inherently simple because they focus on only one activity at a
time. In contrast, the process models we have learned about in this book are far
more complex because they require the developers to create models of the entire
system. In traditional process models, each business activity is decomposed into a
set of subprocesses, which are further decomposed into more subprocesses, and so
on. In contrast, use cases focus on only one activity at a time, so developing mod-
els is much simpler.

As we have seen, traditional systems development can utilize the use case (see
Chapter 4), but they emphasize the decomposition of the complete business process
into subprocesses and sub-subprocesses. Object-oriented approaches stress focus-
ing on just one use case activity at a time and distributing that use case over a set
of communicating and collaborating objects. This single focus helps make analysis
and design simpler.

Architecture Centric

Any modern approach to systems analysis and design should be architecture cen-
tric. Architecture centric means that the underlying architecture of the evolving
system drives the specification, construction, and documentation of the system.
There are three separate, but interrelated, architectural views of a system: func-
tional, static, and dynamic. The functional view describes the external behavior of
the system from the perspective of the user. On the surface, this view is closely
related to process-modeling approaches in structured analysis and design. There
are important differences between them, however. The static view describes the
structure of the system in terms of attributes, methods, classes, relationships, and
messages. This view is very similar to data-modeling approaches in structured
analysis and design. The dynamic view describes the internal behavior of the sys-
tem in terms of messages passed between objects and state changes within an
object. This view in many ways combines the process and data-modeling
approaches, because the execution of a method can cause state changes in the
receiving object.

Iterative and Incremental

Object-oriented approaches emphasize iterative and incremental development
that undergoes continuous testing throughout the life of the project. Each itera-
tion of the system brings the system closer and closer to the final needs of the
users.

Benefits of Object-Oriented Systems Analysis and Design

So far, we have described several major concepts that permeate any object-oriented
approach to systems development, but you may be wondering how these concepts
affect the performance of a project team. The answer is simple. Concepts like

Object-Oriented Systems Analysis and Design 511

c14TheMovementToObjects.qxd 10/5/11 10:39 AM Page 511

polymorphism, encapsulation, and inheritance taken together allow analysts to
break a complex system into smaller, more manageable components, to work on
the components individually, and to more easily piece the components back
together to form a system. This modularity makes system development easier to
grasp, easier to share among members of a project team, and easier to communi-
cate to users who are needed throughout the SDLC to provide requirements and
confirm how well the system meets the requirements.

By modularizing system development, the project team is actually creating
reusable pieces that can be plugged into other systems efforts, or used as starting
points for other projects. Ultimately, this can save time, because new projects do not
have to start from scratch and learning curves are not as steep.

Finally, many people argue that “object think” is a much more realistic way
to think about the real world. Users typically do not think in terms of data or
process; instead, they see their business as a collection of logical units that contain
both—so communicating in terms of objects improves the interaction between the
user and the analyst or developer. Figure 14-6 summarizes the major concepts of
the object approach and how each contributes to the benefits that have just been
described.

Classes, objects, methods, • A more realistic way for people think • Better communication between user and analyst or
and messages about their business developer

• Highly cohesive units that contain both • Reusable objects
data and processes • Benefits from having a highly cohesive system (See

cohesion in Chapter 10)

Encapsulation and information • Loosely coupled units • Reusable objects
hiding • Fewer ripple effects from changes within an object or

in the system itself
• Benefits from having a loosely coupled system design

(See coupling in Chapter 10)

Inheritance • Allows us to use classes as standard • Less redundancy
templates from which other classes • Faster creation of new classes
can be built • Standards and consistency within and across develop-

ment efforts
• Ease in supporting exceptions

Polymorphism • Minimal messaging that is interpreted • Simpler programming of events
by objects themselves • Ease in replacing or changing objects in a system

• Fewer ripple effects from changes within an object or
in the system itself

Use case driven • Allows users and analysts to focus on • Better understanding and gathering of user needs
how a user will interact with the system • Better communication between user and analyst
to perform a single activity

Architecture centric and • Viewing the evolving system from • Better understanding and modeling of user needs
functional, static, and multiple points of view • More complete depiction of information system
dynamic views

Iterative and incremental • Continuous testing and refinement of • Meeting real needs of users
development the evolving system • Higher quality systems

Concept Supports Leads to

FIGURE 14-6
Benefits of the Object Approach

512 Chapter 14 The Movement to Objects

c14TheMovementToObjects.qxd 10/5/11 10:39 AM Page 512

UNIFIED MODELING LANGUAGE, VERSION 2.0

The objective of the Unified Modeling Language is to provide a common vocabu-
lary of object-based terms and diagramming techniques that is rich enough to
model any systems development project from analysis to design. The current ver-
sion of UML, version 2.0, was accepted by the Object Management Group (OMG)
in 2003. This version of UML defines a set of 14 diagramming techniques for
modeling a system. Figure 14-7 provides an overview of these diagrams.

The diagrams are broken into two major groupings: one for modeling the
structure of a system and one for modeling behavior. Structure diagrams are used
for representing the data and static relationships that are in an information system.
Behavior diagrams provide the analyst with a way to depict the dynamic relation-
ships among the instances or objects that represent the business information sys-
tem. They also allow the modeling of dynamic behavior of individual objects
throughout their lifetime. The behavior diagrams support the analyst in modeling
the functional requirements of an evolving information system.

Unified Modeling Language, Version 2.0 513

Structure Diagrams

Class Illustrate the relationships between classes modeled in the system. Analysis, Design

Object Illustrate the relationships between objects modeled in the system.

Function when actual instances of the classes will better communicate the model. Analysis, Design

Package Group other UML elements together to form higher level constructs. Analysis, Design,
Implementation

Deployment Show the physical architecture of the system. Can also be used to show software Physical Design,
components being deployed onto the physical architecture. Implementation

Component Illustrate the physical relationships among the software components. Physical Design,
Implementation

Composite Structure Illustrate the internal structure of a class—i.e., the relationships among the parts of a class. Analysis, Design

Behavioral Diagrams

Activity Illustrate business work flows independent of classes, the flow of activities in a use case, Analysis, Design
or detailed design of a method.

Sequence Model the behavior of objects within a use case. Focuses on the time-based ordering Analysis, Design
of an activity.

Communication Model the behavior of objects within a use case. Focuses on the communication Analysis, Design
among a set of collaborating objects of an activity.

Interaction Overview Illustrate an overview of the flow of control of a process. Analysis, Design

Timing Illustrate the interaction that takes place among a set of objects and the state changes Analysis, Design
that they go through along a time axis.

Behavioral State Machine Examine the behavior of one class. Analysis, Design

Protocol State Machine Illustrate the dependencies among the different interfaces of a class. Analysis, Design

Use Case Capture business requirements for the system and to illustrate the interaction between Analysis
the system and its environment.

Diagram Name Used to Primary Phase

FIGURE 14-7
UML 2.0 Diagram Summary

c14TheMovementToObjects.qxd 10/5/11 10:39 AM Page 513

Depending on where in the development process the system is, different dia-
grams play a more important role. In some cases, the same diagramming technique
is used throughout the development process. In that case, the diagrams start off as
very conceptual and abstract. As the system is developed, the diagrams evolve to
include details that ultimately lead to code generation and development. In other
words, the diagrams move from documenting the requirements to laying out the
design. Overall, the consistent notation, integration among the diagramming tech-
niques, and the application of the diagrams across the entire development process
make the UML a powerful and flexible language for analysts and developers.

Note that UML is not a methodology; it does not formally mandate how to
apply the diagramming techniques. Many organizations are experimenting with
UML and trying to understand how to incorporate its techniques into their systems
analysis and design methodologies. In many cases, the UML diagrams simply
replace the older structured techniques (e.g., class diagrams replace ERD dia-
grams). The basic SDLC stays the same, but one step is performed by a different
diagramming technique. Methodologies that are suited to the object-oriented
approach are available, however, such as the rational unified process (RUP).

The Rational Unified Process (RUP)

Rational Software Corporation has created a methodology called the rational uni-
fied process (RUP) that defines how to apply UML. RUP is a rapid application
development approach to building systems that is similar to the iterative develop-
ment approach or extreme programming described in Chapter 2. (See Figure 14-8
and Figure 2-5.) The first step of the methodology is building use cases for the sys-
tem, which identify and communicate the high-level business requirements for the
system. This step drives the rest of the SDLC. Next, analysts draw analysis dia-
grams, later building on the analysis efforts through design and development. The
UML diagrams start off conceptual and abstract, and then include details that ulti-
mately will lead to code generation and development. The diagrams move from
showing the what to showing the how.

RUP emphasizes iterative, incremental development and prototyping that
undergo continuous testing throughout the life of the project. In Figure 14-8, each
iteration of the system brings the system closer and closer to the real needs of the
users. The 14 UML diagrams are drawn and changed throughout the process.

Four Fundamental UML Diagrams

One could spend an entire book explaining how to use UML to develop systems,3

but we don’t have that much space here. Fortunately, four UML diagramming tech-
niques have come to dominate object-oriented projects: use case diagrams, class
diagrams, sequence diagrams, and behavioral state machine diagrams. The other
diagramming techniques are useful for their particular purposes, but these four
techniques form the core of UML as used in practice today and will be the focus of
this chapter.

The four diagramming techniques are integrated and used together to replace
DFDs and ERDs in the traditional SDLC. (See Figure 14-9.) The use case diagram

514 Chapter 14 The Movement to Objects

3 In fact, we have: See Alan Dennis, Barbara Haley Wixom, David Tegarden, Systems Analysis & Design: An
Object-Oriented Approach with UML, Version 2.0, 4th ed. New York: John Wiley & Sons, 2012.

c14TheMovementToObjects.qxd 10/5/11 10:39 AM Page 514

is typically used to summarize the set of use cases for a logical part of the system (or
the whole system). Then class diagrams, sequence diagrams, and behavioral state
machine diagrams are used to further define the evolving system from various per-
spectives. The use case diagram is always created first, but the order in which the
other diagrams are created depends upon the project and the personal preferences of
the analysts. Most analysts start either with the class diagrams (showing what objects
contain and how they are related, much like ERDs) or the sequence diagrams (show-
ing how objects dynamically interact, much like DFDs), but in practice, the process
is iterative. Developing sequence diagrams often leads to changes in the class dia-
grams and vice versa, so analysts often move back and forth between the two, refin-
ing each in turn as they define the system. Generally speaking, behavioral state
machine diagrams are developed later, after the class diagrams have been refined. In
this chapter, we will start with the use case diagram, move to the class diagrams, and
finish up with the sequence diagrams and behavioral state machine diagrams.

Unified Modeling Language, Version 2.0 515

Iteration

1

Planning

Use Cases

Analysis

Implementation

Design

Analysis

Implementation

Design

Analysis

Implementation

Design

Iteration

2

Iteration

3

FIGURE 14-8
An Adaptation of the Unified Process Phased Development Methodology

c14TheMovementToObjects.qxd 10/5/11 10:39 AM Page 515

A Sequence Diagram is created for every use case.

A Class Diagram is created for the system.

A Behavioral State Machine Diagram is created for every complex class on the Class Diagram.

The Use Case is the foundation of UML, and

the Use Case Diagram contains the use cases.

Management

*

*

**

**

Customer

Vehicle Sales System

Make
offer

Salesperson

Accept/
reject
offer

Record
sales

contracts

1

1

–lastname
–firstname
–address
–homephone
–birthdate
–/age

Person

–number
–make
–model
–year
–engine
–exterior trim
–interior trim
–dealer cost
–MSRP
–date acquired

Vehicle

–number
–date

Order
–name
–address
–contact name
–contact phone

Manufacturer

–number
–date
–time
–dealer option
–price
–trade-in value

+change status()

becom
es

Offer

–e-mail address
+make offer()
+accept terms()
+reject terms()
+provide trade-in()

CustomerEmployee

Shop Mechanic

Customer Service Team

–date hired

–hourly rate

Sold Vehicle

–delivery date

+terminate() lists

Salesperson

Pending Sale

–promised date
–deposit amount

1
1 1

0..1

0..*

0..*

1..*1

1

0..1
0..1

0..1

1

1 1..*

0..1

0..1

0..1

0..* 1

lis
ts

becomes

makes

trades in

receives

requests

writes

purchases

has–commission rate

+write offer()
+calculate last offer()

+change status()

aSalesperson:Salesperson

Vehicles:List

MakeOffer()

Record Vehicle()

Recent Dealer Options

Offer Price

[a Trade-in Exists] Determine Trade-in Value()

CreateOffer()

DealerOptions:List

aCustomer:Customer

Trade-inValue:List

anOffer:Offer

Arriving

Arrives at
dealership Written

Pending
Decision

[Decision
= approved]

[Decision
= approved]

[Decision
= rejected]

Under
negotiation

Closed
[>2 days]

FIGURE 14-9
The Integration of Four Unified Modeling Language (UML) Diagrams

c14TheMovementToObjects.qxd 10/5/11 10:39 AM Page 516

Use Case Diagram 517

Management

*

*

**

**

Customer

Vehicle Sales System

Make
offer

Salesperson

Accept/
reject
offer

Record
sales

contractsFIGURE 14-10
Use Case Diagram for Vehicle Sales
System

USE CASE DIAGRAM

Use cases are the primary drivers for all of the UML diagramming techniques. The
use case communicates at a high level what the system needs to do, and each of the
UML diagramming techniques build upon this by presenting the functionality in
different ways, each view having a different purpose (as described in Figure 14-7).
In the early stages of analysis, the analyst first identifies one use case for each major
part of the system and creates accompanying documentation, the use case report, to
describe each function in detail. A use case may represent several “paths” that a
user can take while interacting with the system; each path is referred to as a sce-
nario. Use cases and use case diagrams support the functional view just described.
You may want to take a moment and review Chapter 4 on use cases before contin-
uing with the rest of this chapter.

For now, we will learn how the use case is the building block for the use case
diagram, which summarizes all of the use cases (for the part of the system being
modeled) together in one picture. An analyst can use the use case diagram to better
understand the functionality of the system at a very high level. Typically, the use
case diagram is drawn early on in the SDLC, when the analyst is gathering and
defining requirements for the system, because it provides a simple, straightforward
way of communicating to the users exactly what the system will do (i.e., at the same
point of the SDLC as we would create a DFD).

This section will first describe the syntax for the use case diagram and then
demonstrate how to build one, using an example from Tune Source.

Elements of a Use Case Diagram

A use case diagram illustrates in a very simple way the main functions of the system
and the different kinds of users who will interact with it. For example, Figure 14-10
presents a use case diagram for the Holiday Travel Vehicles sales system. We can see
from the diagram that customers, salespersons, and management personnel will use
the Sales System to make offers, accept/reject offers, and record sales contracts,
respectively.

c14TheMovementToObjects.qxd 10/5/11 10:39 AM Page 517

Actor The labeled stick figures on the diagram represent actors. (See Figure 14-11.)
An actor is similar to an external entity found in DFDs—it is a person or another
system that interacts with and derives value from the system. An actor is not a spe-
cific user, but a role that a user can play while interacting with the system. Actors
are external to the system and initiate a use case. If we were modeling a doctor’s
office appointment system, a data-entry clerk (or a nurse entering patient informa-
tion) would not be considered an actor, because he or she would fall within the
scope of the system itself. (This is the same rule for DFD external entities.) The dia-
gram in Figure 14-10 shows that three actors will interact with the appointment sys-
tem (a customer, a salesperson, and management).

Sometimes an actor plays a specialized role of a more general type of actor.
For example, there may be times when a new customer interacts with the system in
a way that is somewhat different from a returning customer. In this case, a special-
ized actor (i.e., new customer) can be placed on the model, shown by a line with a
hollow triangle at the end of the more general superclass of actor (i.e., customer).
The specialized actor will inherit the behavior of the superclass and extend it in
some way. (See Figure 14-12). Can you think of some ways in which a new cus-
tomer may behave differently than an existing customer?

Association Relationship Use cases are connected to actors through association
relationships. These show with which use cases the actors interact. (See Figure 14-11.)
A line drawn from an actor to a use case depicts an association. The association
typically represents two-way communication between the use case and the actor.
The “*” shown at either end of the association represents multiplicity; in Figure 14-10,
we see that a customer instance can execute the make offer use case as many times

518 Chapter 14 The Movement to Objects

Term and Definition Symbol

An actor
 Is a person or system that derives benefit
 from and is external to the system.
 Is labeled with its role.
 Can be associated with other actors by a
 specialization/superclass association,
 denoted by an arrow with a hollow arrowhead.
 Is placed outside the system boundary.

A use case
 Represents a major piece of system
 functionality.
 Can extend another use case.
 Can use another use case.
 Is placed inside the system boundary.
 Is labeled with a descriptive verb–noun
 phrase.

A system boundary
 Includes the name of the system inside or on top.
 Represents the scope of the system.

An association relationship
 Links an actor with the use case(s) with
 which it interacts.

Actor role name

System name

* *

Use case
name

FIGURE 14-11
Syntax for Use Case Diagram

c14TheMovementToObjects.qxd 10/5/11 10:39 AM Page 518

as they wish, and it is possible for the make offer use case to be executed by many
customers.

Use Case A use case, depicted by an oval, is a major process that the system will
perform that benefits an actor(s) in some way (see Figure 14-11), and it is labeled
by a descriptive verb phrase (much like a DFD process). We can tell from Figure
14-12 that the system has three primary use cases: make offer, accept/reject offer,
and record sales contract.

There are times when one use case will either use the functionality or extend
the functionality of another use case on the diagram, and these are shown by
includes or extends relationships. It may be easier to understand these relationships
with the help of examples. Let’s assume that every time customers make an offer,
they are asked to confirm their contact and basic customer information to ensure
that the system always contains the most up-to-date information on its customers.
Therefore, we may want to include a use case called update customer information
that extends the make offer use case to include the functionality just described.
Notice how a dotted-line arrow in Figure 14-13, between “update customer infor-
mation” and “make offer,” denotes the extends relationship.

Similarly, there are times when a single use case contains common functions
that are used by other use cases. For example, suppose that there is a use case called
manage offers that performs some routine tasks needed to maintain the dealership’s
offers, and the two use cases record sales contract and accept/reject offer both per-
form the routine tasks. Figure 14-13 shows how we can design the system so that
manage offers is a shared use case that is used by others. A dotted-line arrow again
is used to denote the includes relationship.

System Boundary The use cases are enclosed within a system boundary, which is
a box that represents the system and clearly delineates what parts of the diagram
are external or internal to it. (See Figure 14-11.) The name of the system can appear
either inside or on top of the box.

Use Case Diagram 519

FIGURE 14-12
Use Case Diagram with Specialized Actor

Management

*

*

*

**

*

Customer

New
Customer

Vehicle Sales System

Make
offer

Salesperson

Accept/
reject
offer

Record
sales

contract

c14TheMovementToObjects.qxd 10/5/11 10:39 AM Page 519

520 Chapter 14 The Movement to Objects

Management

Existing
Customer

New
Customer

Customer

Vehicle Sales System

Make
offer

Update
customer

information

Make
customer offer

Make payment
arrangements

Create new
customer

Salesperson

Accept/
reject
offer

Record
sales contract

Manage
offers

<< Includes >>

<< Includes >>

<< Includes >><< extends >>

<< extends >>

Make new
customer offer

* *

*

*

* *

*

*

FIGURE 14-13
Extends and Includes Associations

Creating a Use Case Diagram

Let’s demonstrate how to draw a use case diagram by using the Tune Source Digi-
tal Music Download system. You should note that the use case diagram communi-
cates information that is similar to information found in DFD context and level 0
diagrams. In fact, you may want to compare the use case diagram that we are about
to draw with the diagrams that were created in Chapter 5.

Identify Use Cases Before a use case diagram can be created, it is helpful to go
through the process of identifying the use cases that correspond to the system’s
major functionality and putting together the use case documentation for each of
them. The way to create use cases was explained in Chapter 4, and we refer you to
that chapter now if you would like to refresh your memory. If you recall, we found
that the Tune Source Digital Music Download system needs to support the three use
cases: Search and Browse Tunes, Purchase Tunes, and Promote Tunes. Please refer
back to Figure 4-14 before proceeding.

c14TheMovementToObjects.qxd 10/5/11 10:39 AM Page 520

Class Diagram 521

Draw the System Boundary First, place a box on the use case diagram to represent
the system, and place the system’s name either inside or on top of the box. This will
form the border of the system, separating use cases (i.e., the system’s functionality)
from actors (i.e., the roles of the external users).

Place the Use Cases on the Diagram The next step is to add the use cases inside the
system boundary. There should be no more than six to eight use cases on the model,
so if you identify more than eight, you should group together the use cases into
packages (i.e., logical groups of use cases) to make the diagrams easier to read and
keep the models at a reasonable level of complexity.

At this point, special use case relationships (includes or extends) should be
added to the model. These are identified by looking for use cases that may include
common functionality that other use cases require (i.e., includes relationships) or
use cases that add additional functionality to others (i.e., extends relationships). The
current model does not include examples of these relationships.

Identify the Actors Once the use cases are placed on the diagram, you will need to
identify the actors. We recommend that you look at the sources and destinations to
major inputs and outputs that you identified in the use cases. Although some
sources and destinations refer to internal system components (e.g., Targeted Pro-
motions database, Available Tunes database), others refer to actors (e.g., Customer,
Marketing Manager). Look at the use cases in Figure 4-14 and see whether you can
identify the actors that belong on the use case diagram. At this point, there are no
specialized actors that need to be included.

Add Association Relationships The last step is to draw lines connecting the actors
with the use cases with which they interact. No order is implied by the diagram, and
the items you have added along the way do not have to be placed in a particular
order; therefore, you may want to rearrange the symbols a bit to minimize the num-
ber of lines that cross so that the diagram is less confusing. Figure 14-14 is the use
case diagram that we have created.

CLASS DIAGRAM

The next major diagramming technique is the class diagram. The class diagram is
a static model that supports the static view of the evolving system. It shows the
classes and the relationships among the classes that remain constant in the system

The use case diagram for the Digital
Music Download system does not include special use
case relationships (e.g., extends or includes) or special-
ized actors. See whether you can come up with one

example for each of these special cases that may be help-
ful for Tune Source to add to the use case diagram.
Describe how the development effort may benefit from
including your examples.

14-1 IDENTIFYING USE CASE RELATIONSHIPS AND SPECIALIZED ACTORSY O U R

T U R N

c14TheMovementToObjects.qxd 10/5/11 10:39 AM Page 521

over time. The class diagram is very similar to the entity relationship diagram
(ERD) in Chapter 6; however, the class diagram depicts classes, which include
attributes, behaviors, and states, while entities in the ERD include only attributes.
The scope of a class diagram, like the ERD, is systemwide. The sections that fol-
low will first present the syntax of the class diagram and then the way in which a
class diagram is drawn.

Elements of a Class Diagram

Figure 14-15 shows a class diagram that was created to reflect the classes and rela-
tionships needed for a portion of the use cases which describe the RV sales system
in Chapters 4 and 5.

522 Chapter 14 The Movement to Objects

Customer

* *

* *

** *

Music Download System

Search
& Browse

Tunes

Marketing
Manager

Customer

Purchase
Tunes

Promote
Tunes

Customer

*

FIGURE 14-14
Tune Source Digital Music Download System Use Case Diagram

Create a use case diagram for the
system described next:

Owners of apartments fill in information forms
about the rental units they have available (e.g., location,
number of bedrooms, monthly rent), which are entered
into a database. Students can search through this data-

base via the Web to find apartments that meet their needs
(e.g., a two-bedroom apartment for $800 or less per
month within 1/2 mile of campus). They then contact the
apartment owners directly to see the apartment and pos-
sibly rent it. Apartment owners call the service to delete
their listing when they have rented their apartment(s).

14-2 DRAWING A USE CASE DIAGRAMY O U R

T U R N

c14TheMovementToObjects.qxd 10/5/11 10:39 AM Page 522

Class Diagram 523

Class The main building block of a class diagram is the class, which stores and
manages information in the system. (See Figure 14-17.) During analysis, classes
refer to the people, places, events, and things about which the system will cap-
ture information. Later, during design and implementation, classes can refer to
implementation-specific artifacts like windows, forms, and other objects used to
build the system. Each class is drawn by using three part-rectangles with the class’s
name at the top, attributes in the middle, and methods (also called operations) at
the bottom. You should be able to identify that Person, Employee, Shop Mechanic,

FIGURE 14-15
Class Diagram for Holiday Travel Vehicles

1

–lastname
–firstname
–address
–homephone
–birthdate
–/age

Person

–number
–make
–model
–year
–engine
–exterior trim
–interior trim
–dealer cost
–MSRP
–date acquired

Vehicle

–number
–date
–time
–dealer option
–price
–trade-in value

+change status()

Offer

–e-mail address

+make offer()
+accept terms()
+reject terms()
+provide trade-in()

CustomerEmployee

Shop Mechanic

Customer Service Team

–date hired

–hourly rate

+terminate() lists

Salesperson

0..*

1..*1
0..* 1

makes

writes

–commission rate

+write offer()
+calculate last offer()

c14TheMovementToObjects.qxd 10/5/11 10:39 AM Page 523

Salesperson, Customer, Offer, and Vehicle are classes in Figure 14-15. The attrib-
utes of a class and their values define the state of each object that is created from
the class, and the behavior is represented by the methods.

Attributes are properties of the class about which we want to capture infor-
mation. (See Figure 14-16.) Notice that the Person class in Figure 14-15 contains
the attributes lastname, firstname, address, phone, birthdate, and age. At times, you
may want to store derived attributes, which are attributes that can be calculated or
derived from other attributes and therefore are not stored. Derived attributed are
indicated by placing a slash (/) in front of the attribute’s name. Notice how the Per-
son class contains a derived attribute called “/age,” which can be derived by sub-
tracting the person’s birthdate from the current date. It is also possible to show the

524 Chapter 14 The Movement to Objects

Term and Definition Symbol

A class
 Represents a kind of person, place, or thing
 about which the system must capture and
 store information.
 Has a name typed in bold and centered in
 its top compartment.
 Has a list of attributes in its middle
 compartment.
 Has a list of operations in its bottom
 compartment.
 Does not explicitly show operations that
 are available to all classes.

An attribute
 Represents properties that describe the state
 of an object.
 Can be derived from other attributes, shown by
 placing a slash before the attribute’s name.

A method
 Represents the actions or functions that a
 class can perform.
 Can be classified as a constructor, query, or
 update operation.
 Includes parentheses that may contain
 special parameters or information needed
 to perform the operation.

An association
 Represents a relationship between multiple
 classes, or a class and itself.
 Is labeled by a verb phrase or a role
 name, whichever better represents the
 relationship.
 Can exist between one or more classes.
 Contains multiplicity symbols, which
 represent the minimum and maximum
 times a class instance can be associated
 with the related class instance.

Attribute name
/derived attribute name

Operation name ()

verb phrase1..* 0..1

–Attribute name
–/derived attribute name

Class name

+Operation name ()

FIGURE 14-16
Class Diagram Syntax

c14TheMovementToObjects.qxd 10/5/11 10:39 AM Page 524

Class Diagram 525

visibility of the attribute on the diagram. Visibility relates to the level of informa-
tion hiding to be enforced for the attribute. The visibility of an attribute can either
be public (�), protected (#), or private (�). A public attribute is one that is not hid-
den from any other object. As such, other objects can modify its value. A protected
attribute is one that is hidden from all other classes except its immediate subclasses.
A private attribute is one that is hidden from all other classes. The default visibil-
ity for an attribute normally is private.

Operations are actions or functions that a class can perform. (See Figure 14-16.)
The functions that are available to all classes (e.g., create a new instance, return
a value for a particular attribute, set a value for a particular attribute, or delete
an instance) are not explicitly shown within the class rectangle. Instead, only
those operations that are unique to the class are included, such as the “terminate”
and “make offer” operations in Figure 14-15. Notice that both of the operations
are followed by parentheses. Operations should be shown with parentheses that
are either empty, or filled with some value which represents a parameter that the
operation needs for it to act. As with attributes, the visibility of an operation can
be designated as public, protected, or private. The default visibility for an opera-
tion is normally public.

There are three kinds of operations that a class can contain: constructor,
query, and update. A constructor operation creates a new instance of a class. For
example, the vehicle class may have an operation called insert () that creates a new
vehicle instance. Because an operation available to all classes (e.g., create a new
instance) is not shown on class diagrams, you will not see constructor methods in
Figure 14-15.

A query operation makes information about the state of an object available to
other objects, but it will not change the object in any way. For instance, the “calcu-
late last offer ()” operation that determines when a salesperson last wrote an offer
will result in the object being accessed by the system, but it will not make any
change to its information. If a query operation merely asks for information from
attributes in the class (e.g., a customer’s name, address, or phone), then it is not
shown on the diagram, because we assume that all objects have operations that pro-
duce the values of their attributes.

An update operation will change the value of some or all of the object’s attrib-
utes, which may result in a change in the object’s state. Consider changing the sta-
tus of an offer from open to closed with a operation called “change status (),” or
associating a customer with a particular offer with make offer (offer).

Associations A primary purpose of the class diagram is to show the associations,
or relationships, that classes have with one another. These are depicted on the dia-
gram by lines drawn between classes. (See Figure 14-16.) These associations are
very similar to the relationships that are found on the ERD. Associations are main-
tained by references, which are similar to pointers and maintained internally by the
system (unlike in the relational models where relationships are maintained by for-
eign and primary keys).

When multiple classes share an association (or a class shares an association
with itself), a line is drawn and labeled with either the name of the association or
the roles that the classes play in the association. For example, in Figure 14-15, the
two classes customer and offer are associated with one another whenever a cus-
tomer makes an offer. Thus, a line labeled makes connects customer and offer, rep-
resenting exactly how the two classes are associated with each other. Also, notice

c14TheMovementToObjects.qxd 10/5/11 10:39 AM Page 525

that there is a small solid triangle beside of the name of the association. The tri-
angle allows a direction to be associated with the name of the association. In
Figure 14-15, the makes association includes a triangle, indicating that the asso-
ciation is to be read as customer makes offer. Inclusion of the triangle simply
increases the readability of the diagram.

Associations also have multiplicity, which shows how an instance of an object
can be associated with other instances. Numbers are placed on the association path
to denote the minimum and maximum instances that can be related through the
association in the format minimum number maximum number. (See Figure 14-17.)
This is identical to the modality and cardinality of a relationship on an ERD. The
numbers specify the association from the class at the far end of the association line
to the end with the number. For example, in Figure 14-15, there is a “1..” on the
offer end of the customer makes offer association. This means that a customer can
be associated with one through many different offers. At the customer end of this
same association there is a “1,” meaning that an offer must be associated with one
and only one (1) customer.

There are times when an association itself has associated properties, espe-
cially when its classes share a many-to-many relationship. In these cases, a class is
formed called an association class that has its own attributes and methods. This is
very similar to the intersection entity that is placed on an ERD. It is shown as a rec-
tangle attached by a dashed line to the association path, and the rectangle’s name
matches the label of the association. Figure 14-15 does not show any association

526 Chapter 14 The Movement to Objects

FIGURE 14-17
Multiplicity

Diagram Involving Instance(s)
Representation

of Instance(s)
Instance(s) Explanation of Diagram

Exactly one

Zero or more

1

0..*

A department has one
and only one boss.

An employee has zero
to many children.

Department Boss

Employee Child

One or more 1..*
A boss is responsible
for one or more employees.Boss Employee

Zero or one 0..1
An employee can be married
to zero or one spouse.Employee Spouse

Specified range 2..4
An employee can take between
two to four vacations each year.Employee Vacation

Multiple, disjoint
ranges

1..3, 5

1

0..*

1..*

0..1

2..4

1..3, 5
An employee is a member of
one to three or five committees.Employee Committee

c14TheMovementToObjects.qxd 10/5/11 10:39 AM Page 526

Class Diagram 527

classes. Most times, classes are related through a “normal” association, but there
are two special cases of an association that you will see appear quite often: gener-
alization and aggregation.

Generalization and Aggregation Generalization shows that one class (subclass)
inherits from another class (superclass), meaning that the properties and operations
of the superclass are also valid for objects of the subclass. The generalization path
is shown with a solid line from the subclass to the superclass and a hollow arrow
pointing at the superclass. For example, Figure 14-15 communicates that shop
mechanics, and salespeople are all kinds of employees and those employees and
customers are kinds of persons. The generalization association occurs when you
need to use words like “is a kind of ” to describe the relationship.

Aggregation is used when classes actually comprise other classes. For exam-
ple, think about a vehicle dealership that has decided to create customer care teams
that include shop mechanics and salespeople. As customers visit the dealership,
they are assigned to a customer care team that cares for their needs during their vis-
its. Figure 14-15 shows how this relationship is denoted on the class diagram. A
diamond is placed nearest the class representing the aggregation (customer care
team), and lines are drawn from the arrow to connect the classes that serve as its
parts (shop mechanics and salespeople). Aggregation associations are typically
identified when you need to use words like “is a part of ” or “is made up of ” to
describe the relationship.

Simplifying Class Diagrams

When a class diagram is drawn with all of the classes and associations for a
real-world system, the class diagram can become very complex. When this
occurs, it is sometimes necessary to simplify the diagram by using a view to
limit the amount of information displayed. Views are simply subsets of infor-
mation contained in the entire model. For example, a use case view shows only
the classes and relationships that are needed for a particular use case. Another
view could show only a particular type of relationship, such as aggregation,
association, or generalization. A third type of view could restrict the informa-
tion shown to just that associated with a specific class, such as its name, attrib-
utes, and/or methods.

A second approach to simplifying class diagrams is through the use of
packages (i.e., logical groups of classes). To make the diagrams easier to read
and keep the models at a reasonable level of complexity, you can group related
classes together into packages. Packages are general constructs that can be
applied to any of the elements in UML models. We discussed them previously as
a way to simplify use case diagrams, and they can also be used to simplify class
diagrams.

Creating a Class Diagram

Creating a class diagram (like any UML diagram) is an iterative process whereby
the analyst starts by drawing a rough version of the diagram and then refines it over
time. We will take you through one iteration of class diagram creation, but we
would expect that the diagram would change dramatically as you communicate
with users and fine-tune your understanding of the system.

c14TheMovementToObjects.qxd 10/5/11 10:39 AM Page 527

Identify Classes The steps for creating a class diagram are quite similar to the
steps that we learned to create an ERD. First, you will need to identify what classes
should be placed on the diagram. Remember, like ERDs, class diagrams show the
classes that are needed for the system as a whole. However, for demonstration pur-
poses, we investigate only a single use case: search and browse tunes.

Many different approaches have been suggested to aid the analyst in identify-
ing a set of candidate classes for the class diagram. The most common approach is
textual analysis, the analysis of the text in the use cases. The analyst starts by
reviewing the use cases and the use case diagrams. The text descriptions in the use
cases are examined to identify potential objects, attributes, methods, and associa-
tions. The nouns in the use case suggest possible classes, while the verbs suggest
possible operations or associations. Figure 14-18 presents a summary of guidelines
that we have found useful.

Identify Attributes and Operations Hopefully, you determined that the class dia-
gram will need to include classes that represent Available Tunes, Favorites, Interests,
Promotions, and Customer. The next step is to define the kinds of information that we
want to capture about each class. The use case also provides insight into the kind of

528 Chapter 14 The Movement to Objects

Nouns → imply objects or classes.
A common or improper noun implies a class of objects. “An employee serves the customer” implies two classes of objects,

employee and customer.
A proper noun or direct reference implies an instance “John addressed the issues raised by Susan” implies two instances of

of a class. an object, John and Susan.
A collective noun implies a class of objects made “The list of students was not verified” implies that a list of students is

up of groups of instances of another class. an object that has its own attributes and methods.

Verbs → imply associations or operations.
A doing verb implies an operation. “Don files purchase orders” implies a “file” operation.
A being verb implies a classification association “Joe is a dog” implies that Joe is an instance of the dog class.

between an object and its class.
A having verb implies an aggregation or association “The car has an engine” implies an aggregation association between

relationship. car and engine.
A transitive verb implies an operation. “Frank sent Donna an order” implies that Frank and Donna are

instances of some class that has an operation related to sending
an order.

A predicate or descriptive verb phrase implies an “If the two employees are in different departments, then …”
operation. implies an operation to test whether employees are or are not in

different departments.

Adjectives → imply attributes of a class.
An adjective implies an attribute of an object. “All 55-year-old customers are now eligible for the senior discount”

implies that age is an attribute.

Adverbs → imply an attribute of an association or operation.
An adverb implies an attribute of an association or “John drives very fast” implies a speed attribute associated with the

an attribute of an operation. driving operation.

These guidelines are based on Russell J. Abbott, “Program Design by Informal English Descriptions,” Communications of the ACM, 26(11), 1983,
pp. 882–94; Peter P-S Chen, “English Sentence Structure and Entity-Relationship Diagrams” Information Sciences: An International Journal, 29(2–3), 1983,
pp. 127–149; and Ian Graham, Migrating to Object Technology, Reading, MA: Addison-Wesley, 1995.

Guideline Example

FIGURE 14-18
Textual Analysis Guidelines

c14TheMovementToObjects.qxd 10/5/11 10:39 AM Page 528

Class Diagram 529

Favorite

–date added

Promotion

–code
–price
–term

Interest

–date added

–number
–lastname
–firstname
–address
–city
–state
–zipcode
–phone
–email
–username
–password

Customer

–ID
–title
–artist
–genre
–length
–price
–mp3short
–mp3full

Available Tune

FIGURE 14-19
Initial Attributes for Class Diagram

In “Your Turn 14-2,” you created a
use case diagram for the campus housing service that
helps students find apartments. From the use cases and
the use case diagram, create a class diagram for the

campus housing service. See whether you can identify at
least one potential derived attribute, aggregation associ-
ation, and generalization association for the diagram.

14-3 DRAWING A CLASS DIAGRAMY O U R

T U R N

information that needs to be captured, under the section labeled “Information for
Steps.” Sometimes additional requirements-gathering techniques from Chapter 3 are
also needed. At this point, try to list some pieces of information that we likely will
want to capture for each class—it may help to reread the description of the Search and
Browse Tunes use case and the Purchase Tunes use case in Chapter 4 (Figure 4-14).
One issue, of course, is that the use case reports in Chapter 4 were written to be used
in a structured environment, not an object-oriented environment, but you should be
able to make the translation. Take a moment and add attributes to the classes.

At this point, we also want to consider what special operations each class will
need to contain. (Remember that all classes can perform basic operations like
inserting a new instance, so these are not placed on the diagram.) Figure 14-19
shows a “first cut” at the attributes for the class diagram. Can you think of other
attributes that we could have included in any of these classes?

Draw Associations between the Classes Associations are added to the class diagram
by drawing association lines. Go through each class and determine other classes to
which it is associated, the name of the association (or the role it plays), and the
number of instances that can participate in the association. For example, the promo-
tion class is associated to the customer class because a promotion targets a customer.
A customer can be targeted by a zero or many promotions (multiplicity � 0..*), and

c14TheMovementToObjects.qxd 10/5/11 10:39 AM Page 529

530 Chapter 14 The Movement to Objects

a promotion can be associated with one and only one customer (multiplicity = 1). Take
time now to formulate the associations for Interest, Favorite, and Available Tunes.
Figure 14-20 shows the diagram that we have created so far. Notice that we
included associations between Customer and Favorite, Customer and Interest,
Favorite and Available Tune, Interest and Available Tune, and Promotion and Avail-
able Tune. Finally, you should examine the model for opportunities to use aggrega-
tion or generalization associations.

SEQUENCE DIAGRAM

The next major UML diagramming technique is the sequence diagram. A sequence
diagram illustrates the objects that participate in a use case and the messages that
pass between them over time for one use case. A sequence diagram is a dynamic
model that supports a dynamic view of the evolving systems. It shows the explicit
sequence of messages that are passed between objects in a defined interaction.
Since sequence diagrams emphasize the time-based ordering of the activity that
takes place among a set of objects, they are very helpful for understanding real-time
specifications and complex use cases.

The sequence diagram can be a generic sequence diagram that shows all pos-
sible scenarios4 for a use case, but usually each analyst develops a set of instance

Favorite

–date added

Promotion

–code
–price
–term

Interest

–date added

–number
–lastname
–firstname
–address
–city
–state
–zipcode
–phone
–e-mail
–username
–password

Customer

–ID
–title
–artist
–genre
–length
–price
–mp3short
–mp3full

Available Tune

creates

0..*

0..* 0..*

0..*

0..* 1

1 1

1

1

0..*

1targets

includes includes

promotes

has

FIGURE 14-20
Revised Attributes and Associations

4 Remember that a scenario is a single executable path through a use case.

c14TheMovementToObjects.qxd 10/5/11 10:39 AM Page 530

Sequence Diagram 531

sequence diagrams, each of which depicts a single scenario within the use case. If
you are interested in understanding the flow of control of a scenario by time, you
should use a sequence diagram to depict this information. The diagrams are used
throughout both the analysis and design phases; however, the design diagrams are
very implementation specific, often including database objects or specific GUI
components as the classes. The following sections first present the syntax of a
sequence diagram and then demonstrate how one should be drawn:

Elements of a Sequence Diagram Figure 14-21 presents an instance sequence dia-
gram that depicts the objects and messages for the “make offer” use case that
describes the process by which a customer creates a new offer for the Holiday Travel
Vehicle system. In this specific instance, the create offer process is portrayed.

Actors and objects participating in the sequence are placed across the top of
the diagram, depicted by actor symbols from the use case diagram or unlabeled rec-
tangles. (See Figure 14-22.) Notice that the objects in Figure 14-21 are aCustomer,
aSalesperson, Vehicles, Dealer Options, Trade-in Value, and anOffer. They are not
placed in any particular order, although it is nice to organize them in some logical
way, such as the order in which they participate in the sequence. For each of the
objects, the name of the class that they are an instance of is given after the object’s
name (e.g., Vehicles:List means that Vehicles is an instance of the List class that
contains individual vehicle objects).

A dotted line runs vertically below each actor and object to denote the lifeline
of the actors/objects over time. (See Figure 14-21.) Sometimes an object creates a

aSalesperson:Salesperson

Vehicles:List

MakeOffer()

Record Vehicle()

Record Dealer Options

Offer Price

[aTrade-in Exists] Determine Trade-in Value()

CreateOffer()

DealerOptions:List

aCustomer:Customer

Trade-inValue:List

anOffer:Offer

FIGURE 14-21
Sequence Diagram

c14TheMovementToObjects.qxd 10/5/11 10:39 AM Page 531

532 Chapter 14 The Movement to Objects

Term and Definition Symbol

An actor:
 Is a person or system that derives benefit
 from and is external to the system.
 Participates in a sequence by sending
 and/or receiving messages.
 Is placed across the top of the diagram.

An object:
 Participates in a sequence by sending
 and/or receiving messages.
 Is placed across the top of the diagram.

A lifeline:
 Denotes the life of an object during a
 sequence.
 Contains an X at the point at which the
 class no longer interacts.

A focus of control:
 Is a long narrow rectangle placed atop a
 lifeline.
 Denotes when an object is sending or
 receiving messages.

A message:
 Conveys information from one object to
 another one.

Object destruction:
 An X is placed at the end of an object’s
 lifeline to show that it is going out of
 existence.

X

anActor

aMessage()

anObject:aClass

FIGURE 14-22
Sequence Diagram Syntax

temporary object, and in this case an X is placed at the end of the lifeline at the
point the object is destroyed (not shown). For example, think about a shopping cart
object for a Web commerce application. The shopping cart is used for temporarily
capturing line items for an order, but once the order is confirmed, the shopping cart
is no longer needed. In this case, an X would be located at the point at which the
shopping cart object is destroyed. When objects continue to exist in the system after
they are used in the sequence diagram, the lifeline continues to the bottom of the
diagram. (This is the case with all of the objects in Figure 14-21.)

A thin, rectangular box, called the execution occurrence, is overlaid onto the life-
line to show when the classes are sending and receiving messages. (See Figure 14-22.)
A message is a communication between objects that conveys information, with the
expectation that activity will ensue, and messages passed between objects are
shown by solid lines connecting two objects, called links. (See Figure 14-22.) The
arrow on the link shows which way the message is being passed, and any argument
values for the message are placed in parentheses next to the message’s name. The
order of messages goes from the top to the bottom of the page, so messages located
higher on the diagram represent messages that occur earlier in the sequence, versus
the lower messages that occur later. Messages may also be numbered to enforce

c14TheMovementToObjects.qxd 10/5/11 10:39 AM Page 532

Sequence Diagram 533

sequence. In Figure 14-21, Record Vehicle is a message sent from the object aSales-
person to the object Vehicles, which is a container for the current vehicle to record
information about the vehicle under offer.

There are times that a message is sent only if a condition is met. In those
cases, the condition is placed between a set of [], such as [a Trade-in Exists]
Determine Trade-in Value(). The condition is placed in front of the message name.
However, when a sequence diagram is used to model a specific scenario, condi-
tions typically are not shown on any single sequence diagram. Instead, conditions
are implied only through the existence of different sequence diagrams. Finally, it
is possible to explicitly show the return from a message, with a return link, a
dashed message. However, adding return links tends to clutter the diagram.
Therefore, unless the return links add a lot of information to the diagram, they
should be omitted.

Sometimes, an object will create another object. This is shown by the message
being sent directly to an object instead of its lifeline. In Figure 14-21, the object
aSalesperson creates the object anOffer.

Creating a Sequence Diagram

The best way to learn how to create a sequence diagram is to draw one. We will use
the scenario of buying a tune immediately from the use case “Purchase Tunes” that
was created in Chapter 4 and illustrated in Figure 4-14. Figure 14-23 lists the main
steps that this “purchase a tune” sequence diagram will need to communicate. The
steps followed when creating a sequence diagram are somewhat similar to the steps
that we learned to create a DFD.

Identify Objects The first step is to identify instances of the classes that participate
in the sequence being modeled; that is, the objects that interact with each other dur-
ing the use case sequence. Think of the major kinds of information that need to be
captured by the system. Objects typically can be taken from the use case report cre-
ated during the development of the use case diagram. (See Chapter 4.) The sources
and destinations on the use case (i.e., the external entities or data stores) are usu-
ally a good starting point for identifying the classes. Also, classes can be external
actors that are represented on the use case diagram.

For example, the instances of classes used for the Purchase A Tune scenario
include Customer and Tune. These should be placed in boxes and listed across the
top of the drawing. (See Figure 14-24.) The instances of Customer and Tune corre-
spond to data stores that we ultimately will need in the system, whereas the
instances of Shopping Cart and Payment Approval represent external actors who
appeared on the use case diagram. Because the latter instances interact in the
sequence, we want to include them in the diagram.

1. User requests tune information.

2. User inserts tune into shopping cart.

3. User checks out and provides payment information.

4. Payment is authorized.

5. Tune released for download.

FIGURE 14-23
Steps of the Customer Buys
Tune Scenario

c14TheMovementToObjects.qxd 10/5/11 10:39 AM Page 533

Remember, at this point in time, you are trying to identify only the objects
that take part in a specific scenario of a use case. As such, don’t worry too much
about perfectly identifying all the objects of the use case. Other scenario-based
sequence diagrams may uncover additional objects. Also, the class diagram created
in the previous section of this chapter described how the classes are defined and
refined. However, based on the sequence diagrams created, the class diagram usu-
ally is revised, since analysts have a better understanding of the classes after they
develop them.

Add Messages Next, draw arrows to represent the messages being passed from
object to object, with the arrow pointing in the message’s transmission direction.
The arrows should be placed in order from the first message (at the top) to the
last (at the bottom) to show time sequence. Any parameters passed along with the
messages should be placed in parentheses next to the message’s name. If a mes-
sage is expected to be returned as a response to a message, then the return mes-
sage is not explicitly shown on the diagram. Examine the steps in Figure 14-23
and see whether you can determine the way in which the messages should be
added to the sequence diagram. Figure 14-24 shows our results. Notice how we
did not include messages back to Customer in response to Request Tune. In this
case, it is assumed that the customer will receive response messages about the
requested tune.

534 Chapter 14 The Movement to Objects

Request Tune (title,
artist, genre)

Add to Cart (Tune ID)

Check out (Payment info)

Payment Approval

aCustomer

Payment Approval

X

Shopping Cart

X

Release Download

Purchase
Complete

aTune:AvailableTunes

FIGURE 14-24
Sequence Diagram for Purchase Tunes
Scenario

c14TheMovementToObjects.qxd 10/5/11 10:39 AM Page 534

Behavioral State Machine Diagram 535

In “Your Turn 14-3” you were asked to draw a use case diagram for the campus housing system.
Select one of the use cases from the diagram and create a sequence diagram that represents the interaction among
objects in the use case.

14-4 DRAWING A SEQUENCE DIAGRAMY O U R

T U R N

Place Lifeline and Execution Occurrences Last, you will need to show when objects
are participating in the sequence. A vertical dotted line is added below each object
to represent the object’s existence during the sequence, and an X should be placed
below objects at the point on the lifeline where they are no longer interacting with
other objects. You should draw a narrow rectangular box over top of the lifelines to
represent when the objects are sending and receiving messages. See Figure 14-24
for the completed sequence diagram.

BEHAVIORAL STATE MACHINE DIAGRAM

Some of the classes in the class diagrams are quite dynamic in that they pass
through a variety of states over the course of their existence. For example, a vehi-
cle can change over time from being “new” to “pre-owned,” on the basis of its sta-
tus with the dealership. A behavioral state machine diagram is a dynamic model
that shows the different states that a single class passes through during its life in
response to events, along with its responses and actions. Typically, behavioral state
machine diagrams are not used for all classes, but just to further define complex
classes to help simplify the design of algorithms for their methods. The behavioral
state machine diagram shows the different states of the class and what events cause
the class to change from one state to another. In comparison to the sequence dia-
grams, behavioral state machine diagrams should be used if you are interested in
understanding the dynamic aspects of a single class and how its instances evolve
over time, and not with how a particular use case scenario is executed over a set of
classes.

Elements of a Behavioral State Machine Diagram

Figure 14-25 presents an example of a behavioral state machine diagram repre-
senting the offer class in the context of a vehicle dealership. From this diagram,
we can tell that an offer is brought to the dealership and is written. If the owner
finds the offer to be acceptable, it is closed and is no longer considered an offer
after two days elapse. If an offer is rejected, it may be renegotiated until it is
acceptable.

State A state is a set of values that describes an object at a specific point in time,
and it represents a point in an object’s life in which it satisfies some condition, per-
forms some action, or waits for something to happen. (See Figure 14-26.) In Figure
14-25, states include arriving, pending, closed, and under negotiation. A state is
depicted by a state symbol, which is a rectangle with rounded corners with a

c14TheMovementToObjects.qxd 10/5/11 10:39 AM Page 535

536 Chapter 14 The Movement to Objects

Arriving

Arrives at
dealership Written Pending

Decision

[Decision
= approved]

[Decision
= approved]

[Decision
= rejected]

Under
Negotiation

Closed
[>2 days]

FIGURE 14-25
Behavioral State Machine Diagram for an Offer for a Vehicle

Term and Definition Symbol

A state
 Is shown as a rectangle with rounded
 corners.
 Has a name that represents the state of an
 object.

An initial state
 Is shown as a small filled-in circle.
 Represents the point at which an object
 begins to exist.

A final state
 Is shown as a circle surrounding a small,
 solid filled-in circle (bull’s-eye).
 Represents the completion of activity.

An event
 Is a noteworthy occurrence that triggers a
 change in state.
 Can be a designated condition becoming
 true, the receipt of an explicit signal from
 one object to another, or the passage of a
 designated period.
 Is used to label a transition.

A transition
 Indicates that an object in the first state will
 enter the second state.
 Is triggered by the occurrence of the event
 labeling the transition.
 Is shown as a solid arrow from one state to
 another, labeled by the event name.

Event name

FIGURE 14-26
Behavioral State Machine Syntax

c14TheMovementToObjects.qxd 10/5/11 10:39 AM Page 536

Behavioral State Machine Diagram 537

descriptive label that communicates a particular state. There are two exceptions. An
initial state is shown by a small, solid, filled-in circle, and an object’s final state is
shown as a circle surrounding a small, solid, filled-in circle. These exceptions
depict when an object begins and ceases to exist, respectively.

The attributes or properties of an object affect the state that it is in; however,
not all attributes or attribute changes will make a difference. For example, think
about the address of the customer making the offer. In Figure 14-25, those attributes
make very little difference as to changes in an offer’s state. However, if states were
based upon a customer’s geographic location (e.g., in-town customers were treated
differently than out-of-town customers), changes to the customer’s address may
influence state changes. In the current diagram, the attribute that influences state
transitions is the offer price.

Event An event is something that takes place at a certain point in time and changes
a value(s) that describes an object, which in turn changes the object’s state. It can
be a designated condition becoming true, the receipt of the call for a method by an
object, or the passage of a designated period. The state of the object determines
exactly what the response will be. In Figure 14-25, arriving at the dealership, an
approved decision, and a 2-day time lapse are events that cause changes to the
offer’s state.

Arrows are used to connect the state symbols, representing the transitions
between states. A transition is a relationship that represents the movement of an
object from one state to another state. Some transitions will have a guard condition.
A guard condition is a Boolean expression that includes attribute values, which
allows a transition only if the condition is true. Each arrow is labeled with the
appropriate event name and with any parameters or conditions that may apply. For
example, the two transitions from pending to closed and under negotiation contain
guard conditions.

Creating a Behavioral State Machine Diagram

Behavioral state machine diagrams are drawn to depict a single class from a
class diagram. Typically, the classes are very dynamic and complex, requiring a
good understanding of their states over time and events triggering changes. You
should examine your class diagram to identify which classes will need to
undergo a complex series of state changes and draw a diagram for each of them.
Let us investigate the state of the selected tune class from the Tune Source Digital
Music Download system.

You have been working with the sys-
tem for the campus housing service that helps students
find apartments. One of the dynamic classes in this sys-
tem likely is the apartment class. Draw a behavioral state

machine diagram to show the various states that an
apartment class transitions to throughout its lifetime. Can
you think of other classes that would make good candi-
dates for a behavioral state machine diagram?

14-5 DRAWING A BEHAVIORAL STATE MACHINE DIAGRAMY O U R

T U R N

c14TheMovementToObjects.qxd 10/5/11 10:39 AM Page 537

Identify the States The first step is to identify the various states that a selected
tune will have over its lifetime. This information is gleaned from reading the use
case reports, talking with users, and relying on the requirements-gathering tech-
niques that you learned about in Chapter 3. You should begin by writing the steps
of what happens to a selection over time, from start to finish, similar to how you
would create the “major steps performed” section of a use case report. Figure 14-27
shows order from start to finish, from a selected tune’s perspective.

Identify the Transitions The next step is to identify the sequence of states that a
selected tune object will pass through during its lifetime and then determine exactly
what causes each state to occur. Place state figures on the diagram to represent the
states and label the transitions to describe the events that are taking place to cause
state changes. For example, the event Customer adds tune to cart moves the order
from the initial state to the in cart state. (See Figure 14-28.) During the in cart state,
the selected tune awaits the customer’s decision to buy the tune. At that point, the
tune awaits the payment approval. Once that is received, the tune awaits the cus-
tomer’s final purchase confirmation. When confirmation is received, the tune is
released for download.

538 Chapter 14 The Movement to Objects

FIGURE 14-28
Behavioral State Machine Diagram for a Customer Purchase

1. The customer adds items into the shopping cart.

2. The customer checks out and submits the purchase once he or she is finished.

3. The purchase is pending while payment is authorized.

4. The payment is approved.

5. The purchase is pending for final customer approval.

6. The customer confirms the purchase.

7. The download is released.
FIGURE 14-27
The Life of a Tune Download

ReleasedIn Cart Pending
Confirmation

Request
purchase

Payment
approved

Customer
confirms
purchase

Download
released

Customer adds
tune to cart

Pending
Payment

c14TheMovementToObjects.qxd 10/5/11 10:39 AM Page 538

Summary 539

SUMMARY

Today, the most exciting change to systems analysis and design is the move to
object-oriented techniques, which view a system as a collection of self-contained
objects that have both data and processes. However, the ideas underlying object-
oriented techniques are simply ideas that have either evolved from traditional
approaches to systems development or they are old ideas that have now become
practical due to the cost–performance ratios of modern computer hardware in com-
parison to the ratios of the past. Today, the cost of developing modern software is
composed primarily of the cost associated with the developers themselves and not
the computers. Therefore, object-oriented approaches to developing information
systems hold out much promise in controlling these costs.

An object is a person, place, or thing about which we want to capture infor-
mation. Each object has attributes that describe information about it and its behav-
iors, which are described by methods that specify what an object can do. Objects
are grouped into classes, which are collections of objects that share common attrib-
utes and methods. The classes can be arranged in a hierarchical fashion in which
low-level classes, or subclasses, inherit attributes and methods from superclasses
above them, to reduce the redundancy in development. Objects communicate with
each other by sending messages, which trigger methods. Polymorphism allows a
message to be interpreted differently by different kinds of objects. This form of
communication allows us to treat objects as black boxes and ignore the inner work-
ings of the objects. Encapsulation and information hiding allow an object to con-
ceal its inner processes and data from the other objects.

Object-oriented analysis and design using UML allows the analyst to decom-
pose complex problems into smaller, more manageable components through a com-
monly accepted set of notation. UML is a standard set of diagramming techniques
that provide a graphical representation rich enough to model any systems develop-
ment project, from analysis through implementation. Typically, today most object-
oriented analysis and design approaches use the UML to depict an evolving system.
Finally, many people believe that users do not think in terms of data or processes,
but instead in terms of a collection of collaborating objects. As such, object-
oriented analysis and design using UML allows the analyst to interact with the user,
employing objects from the user’s environment instead of a set of separate
processes and data.

Use Case Diagram
A use case diagram illustrates the main functions of a system and the different kinds
of users that interact with it. The diagram includes actors, which are people or things
that derive value from the system, and use cases that represent the functionality of the
system. The actors and use cases are separated by a system boundary and connected
by lines representing associations. At times, actors are specialized versions of more
general actors. Similarly, use cases can extend or include other use cases. Building
use case diagrams is a five-step process whereby the analyst identifies the use cases,
draws the system boundary, adds the use cases to the diagram, identifies the actors,
and, finally, adds appropriate associations to connect use cases and actors together.

Class Diagram
The class diagram shows the classes and relationships among classes that remain
constant in the system, over time. The main building block of the class diagram is

c14TheMovementToObjects.qxd 10/5/11 10:39 AM Page 539

a class, which stores and manages information in the system. Classes have attrib-
utes that capture information about the class and about operations, which are
actions that a class can perform. There are three kinds of operations: constructor,
query, and update. The classes are related to each other through an association,
which has a name and a multiplicity that denotes the minimum and maximum
instances that participate in the relationship. Two special associations, aggregation
and generalization, are used when classes comprise other classes or when one sub-
class inherits properties and behaviors from a superclass, respectively. Class dia-
grams are created by first identifying classes, along with their attributes and oper-
ations. Then relationships are drawn among classes to show associations. Special
notations are used to depict the aggregation and generalization associations.

Sequence Diagram
The sequence diagram is a dynamic model that illustrates instances of classes that
participate in a use case and messages that pass between them over time. Objects
are placed horizontally across the top of a sequence diagram, each having a dotted
line, called a lifeline, vertically below it. The focus of control, represented by a thin
rectangle, is placed over the lifeline to show when the objects are sending or receiv-
ing messages. A message is a communication between objects that conveys infor-
mation with the expectation that activity will ensue, and the messages are shown by
an arrow connecting two objects that points in the direction that the message is
being passed. To create a sequence diagram, first identify the classes that partici-
pate in the use case and then add the messages that pass among them. Finally, you
will need to add the lifeline and focus of control. Sequence diagrams are helpful for
understanding real-time specifications and for complex scenarios of a use case.

Behavioral State Machine Diagram
The behavioral state machine diagram shows the different states that a single
instance of a class passes through during its life in response to events, along with
responses and actions. A state is a set of values that describes an object at a specific
point in time, and it represents a point in an object’s life in which it satisfies some
condition, performs some action, or waits for something to happen. An event is
something that takes place at a certain point in time and changes a value(s) that
describes an object, which in turn changes the object’s state. As objects move from
state to state, they undergo transitions. When drawing a behavioral state machine
diagram, rectangles with rounded corners are first placed on the model to represent
the various states that the class will take. Next, arrows are drawn between the rec-
tangles to denote the transitions, and event labels are written above the arrows to
describe the event that causes the transition to occur.

540 Chapter 14 The Movement to Objects

A-Kind-Of (AKO)
Abstract class
Actor
Aggregation
Architecture centric
Association relationship
Association class

Attribute
Behavior
Behavior diagram
Behavioral state machine diagram
Class
Class diagram
Concrete class

Constructor operation
Derived attribute
Dynamic binding
Dynamic model
Dynamic view
Encapsulation
Event

KEY TERMS

c14TheMovementToObjects.qxd 10/5/11 10:39 AM Page 540

Questions 541

Execution occurrence
Extends relationship
Final state
Functional view
Generalization
Generic sequence diagram
Guard condition
Includes relationship
Incremental
Information hiding
Inherit
Inheritance
Initial state
Instance
Instance sequence diagram
Iterative
Lifeline
Links
Message

Method
Multiplicity
Object
Object-oriented approach
Operation
Package
Phased development RAD
Polymorphism
Private attribute
Protected attribute
Public attribute
Query operation
Rational Unified Process (RUP)
Reference
Role
Scenario
Sequence diagram
Specialized actor
State

State symbol
Static binding
Static model
Static view
Structure diagram
Subclass
Superclass
System boundary
Temporary object
Textual analysis
Transition
Unified Modeling Language

(UML)
Update operation
Use case
Use case diagram
Use case driven
View
Visibility

1. Contrast the items in the following sets of terms:
• Object; class; instance; entity relationship diagram

(ERD) entity
• Property; method; attribute
• State; behavior
• Superclass; subclass
• Concrete class; abstract class
• Method; message
• Encapsulation; inheritance; polymorphism
• Static binding; dynamic binding

2. How is the object approach different from the data
and process approaches to systems development?

3. How can the object approach improve the systems
development process?

4. Describe how the object approach supports the pro-
gram design concepts of cohesion and coupling that
were presented in Chapter 10.

5. What is the Unified Modeling Language (UML)?
How does it support the object approach to systems
development?

6. Describe the steps in creating a use case diagram.
7. How can you employ the use case report to develop

a use case diagram?
8. How is the use case diagram similar to the context

and level 0 data flow diagrams (DFDs)? How is it
different?

9. Give two examples of the extends associations on a
use case diagram. Give two examples for the includes
association.

10. Which of the following could be an actor found on
a use case diagram? Why?
• Ms. Mary Smith
• Supplier
• Customer
• Internet customer
• Mr. John Seals
• Data-entry clerk
• Database administrator

11. Consider a process called validate credit history,
which is used to validate the credit history for cus-
tomers who want to take out a loan. Explain how it
can be an example of an includes association on a
use case diagram. Describe how it is an example of
an extends association. As an analyst, how would
you know which interpretation is correct?

12. Give examples of a static model and a dynamic model
in UML. How are the two kinds of models different?

13. Describe the main building blocks for the sequence
diagram and how they are represented on the model.

14. Do lifelines always continue down the entire page
of a sequence diagram? Explain.

15. Describe the steps used to create a sequence diagram.

QUESTIONS

c14TheMovementToObjects.qxd 10/5/11 10:39 AM Page 541

542 Chapter 14 The Movement to Objects

16. How is a class diagram different from an ERD?
17. Give three examples of derived attributes that may

exist on a class diagram. How would they be
denoted on the model?

18. Identify the operations that follow as constructor,
query, or update. Which operations would not need
to be shown in the class rectangle?
• Calculate employee raise (raise percent)
• Insert employee ()
• Insert spouse ()
• Calculate sick days ()
• Locate employee name ()
• Find employee address ()
• Increment number of employee vacation days ()
• Change employee address ()
• Place request for vacation (vacation day)

19. Draw the associations that are described by the
business rules that follow. Include the multiplicities
for each relationship.
• A patient must be assigned to only one doctor,

and a doctor can have one or many patients.
• An employee has one phone extension, and a

unique phone extension is assigned to an employee.
• A bookstore sells at least one book, and a book can

be sold at up to 10 other bookstores around town.
• A movie either has one star, two costars, or more

than 10 people starring together. A star must be in
at least one movie.

20. What are the two kinds of labels that a class dia-
gram can have for each association? When is each
kind of label used?

21. Why is an association class used for a class dia-
gram? Give an example of an association class that
may be found in a class diagram that captures stu-
dents and the courses that they have taken.

22. Give two examples of aggregation associations and
generalization associations. How is each type of
association depicted on a class diagram?

23. Are states always depicted by rounded rectangles
on a behavioral state machine diagram? Explain.

24. What three kinds of events can lead to state transi-
tions on a behavioral state machine diagram?

25. Describe the type of class that is best represented by
a behavioral state machine diagram. Give two
examples of classes that would be good candidates
for behavioral state machine diagrams.

26. Compare and contrast the rational unified process
(RUP) with UML.

27. Describe the way in which the RUP is implemented
on a systems project.

28. Identify the model(s) that contains each of the fol-
lowing components:
• Aggregation association
• Class
• Derived attributes
• Extends association
• Execution occurrence
• Guard condition
• Initial state
• Links
• Message
• Multiplicity
• Specialized actor
• System boundary
• Update method

29. What do you think are three common mistakes that
novice analysts make in using UML techniques?

30. Do you think that UML will become more popular
than the traditional structured techniques discussed
previously? Why or why not?

31. Some experts argue that object-oriented techniques
are simpler for novices to understand and use than
are DFDs and ERDs. Do you agree? Why or why
not?

A. Investigate the Web site for Rational Software
(www-306.ibm.com/software/rational/) and its
repository of information about Unified Modeling
Language (UML). Write a paragraph news brief on
the current state of UML (the current version and
when it will be released, future improvements, etc.).

B. Investigate the Object Management Group (OMG).
Write a brief memo describing what it is, its pur-
pose, and its influence on UML and the object

approach to systems development. (Hint: A good
resource is: www.omg.org.)

C. Investigate the rational unified process (RUP).
Describe the major benefits of RUP and the steps
that it contains. Compare the methodology with one
of the other methodologies described in Chapter 2.

D. Investigate computer-aided software engineering
(CASE) tools that support UML (e.g., Rational Soft-
ware’s Rational Rose, Microsoft’s VISIO) and

EXERCISES

c14TheMovementToObjects.qxd 10/5/11 10:40 AM Page 542

Exercises 543

describe how well they support the language. What
CASE tool would you recommend for a project team
about to embark on a project by using the object
approach? Why?

E. Consider a system that is used to run a small cloth-
ing store. Its main functionality is maintaining
inventory of stock, selling items to customers, and
producing sales reports for management. List exam-
ples for each of the following items that may be
found on a use case diagram that models such a sys-
tem: use case; extends use case; includes use case;
actor; specialized actor.

F. Create a use case diagram that would illustrate the
use cases for the following dentist office system:
Whenever new patients are seen for the first time,
they complete a patient information form that asks
their name, address, phone number, and brief med-
ical history, which is stored in the patient information
file. When a patient calls to schedule a new appoint-
ment or change an existing appointment, the recep-
tionist checks the appointment file for an available
time. Once a good time is found for the patient, the
appointment is scheduled. If the patient is a new
patient, an incomplete entry is made in the patient
file; the full information will be collected when the
patient arrives for the appointment. Because appoint-
ments are often made far in advance, the receptionist
usually mails a reminder postcard to each patient two
weeks before his or her appointment.

G. Create a use case diagram that would illustrate the
use cases for the following online university regis-
tration system: The system should enable the staff
members of each academic department to examine
the courses offered by their department, add and
remove courses, and change the information about
courses (e.g., the maximum number of students per-
mitted). It should permit students to examine cur-
rently available courses, add and drop courses to and
from their schedules, and examine the courses for
which they are enrolled. Department staff should be
able to print a variety of reports about the courses
and the students enrolled in them. The system
should ensure that no student takes too many
courses and that students who have any unpaid fees
are not permitted to register. (Assume that a fees
data store is maintained by the university’s financial
office, which the registration system accesses but
does not change.)

H. Create a use case diagram that would illustrate the
use cases for the following system: A Real Estate

Inc. (AREI) sells houses. People who want to sell
their houses sign a contract with AREI and provide
information on their house. This information is kept
in a database by AREI, and a subset of this informa-
tion is sent to the citywide multiple listing service
used by all real estate agents. AREI works with two
types of potential buyers. Some buyers have an
interest in one specific house. In this case, AREI
prints information from its database, which the real
estate agent uses to help show the house to the buyer
(a process beyond the scope of the system to be
modeled). Other buyers seek AREI’s advice in find-
ing a house that meets their needs. In this case, the
buyer completes a buyer information form that is
entered into a buyer database, and AREI real estate
agents use its information to search AREI’s database
and the multiple listing service for houses that meet
their needs. The results of these searches are printed
and used to help the real estate agent show houses to
the buyer.

I. Create a sequence diagram for each of the following
scenario descriptions for a video store system: A
Video Store (AVS) runs a series of fairly standard
video stores:
• Every customer must have a valid AVS customer

card in order to rent a video. Customers rent
videos for three days at a time. Every time a cus-
tomer rents a video, the system must ensure that
he or she does not have any overdue videos. If
there are overdue videos, they must be returned
and an overdue fee must be paid before the cus-
tomer can rent more videos.

• If the customer has returned overdue videos, but
has not paid the overdue fee, the fee must be paid
before new videos can be rented. If the customer is
a premier customer, the first two overdue fees can
be waived, and the customer can rent the video.

• Every morning, the store manager prints a report
that lists overdue videos; if a video is two or more
days overdue, the manager calls the customer to
remind him or her to return the video.

J. Create a sequence diagram for each of the following
scenario descriptions for a health club membership
system:
• When members join the health club, they pay a fee

for a certain length of time. The club wants to mail
out reminder letters to members, asking them to
renew their memberships one month before their
memberships expire. About half of the members
do not renew their memberships. These members

c14TheMovementToObjects.qxd 10/5/11 10:40 AM Page 543

544 Chapter 14 The Movement to Objects

are sent follow-up surveys to complete about why
they decided not to renew so that the club can
learn how to increase retention. If the member did
not renew because of cost, a special discount is
offered to that customer. Typically, 25% of
accounts are reactivated because of this offer.

• Every time a member enters the club, an attendant
takes his or her card and scans it to make sure that
the person is an active member. If the member is
not active, the system presents the amount of
money it costs to renew the membership. The cus-
tomer is given the chance to pay the fee and use
the club, and the system makes note of the reacti-
vation of the account so that special attention can
be given to this customer when the next round of
renewal notices is dispensed.

K. Create class diagrams that describe the classes and
relationships depicted in the following scenarios:
• Researchers are placed into a database that is

maintained by the state of Georgia. Information of
interest includes researcher name, title, position,
date began current position, number of years
at current position; university name, location,
enrollment; and research interests. Researchers
are associated with one institution, and each
researcher can have up to five research interests.
More than one researcher can have the same inter-
est, and the system tracks the ranking of the best
researchers for each interest. The system should
be able to insert new researchers, universities, and
research interests; produce information, such as
the number of researchers at each university, con-
tact information for the researchers, and research
interests that do not have associated researchers;
and change researcher rankings for the various
research interests.

• A department store has a bridal registry. This reg-
istry keeps information about the bride, the prod-
ucts that the store carries, and the products for
which each customer registers. Some products
include several related items; for example, dish
sets include plates, specialty dishes, and serving
bowls. Customers typically register for a large
number of products, and many customers register
for the same products. Draw the class diagram and
give at least two examples of query and update
operations that could be placed somewhere on the
model.

• Jim Smith’s dealership sells Fords, Hondas, and
Toyotas. The dealership keeps information about

each car manufacturer with whom employees deal
so that they can get in touch with manufacturers
easily. The dealership also keeps basic informa-
tion about the models of cars that it carries from
each manufacturer. The dealership keeps such
information as list price, the price the dealership
paid to obtain the model, and the model name and
series (e.g., Honda Civic LX). It also keeps infor-
mation about all sales that employees have made.
(For instance, the dealership will record the
buyer’s name, the car he or she bought, and the
amount the buyer paid for the car.) To contact the
buyers in the future, the dealership also keeps con-
tact information (e.g., address, phone number).

L. Think about sending a first-class letter to an interna-
tional pen pal. Describe the process that the letter
goes through to get from your initial creation of the
letter to being read by your friend, from the letter’s
perspective. Draw a behavioral state machine dia-
gram that depicts the states that the letter moves
through.

M. Consider the video store described in question I.
Draw a behavioral state machine diagram that
describes the various states that a video goes through
from the time it is placed on the shelf through the
rental and return processes.

N. Draw a behavioral state machine diagram that
describes the various states that a travel authoriza-
tion can have through its approval process. A travel
authorization form is used in most companies to
approve travel expenses for employees. Typically, an
employee fills out a blank form and sends it to his or
her boss for a signature. If the amount is fairly
small (under $300), then the boss signs the form and
routes it to accounts payable to be input into the
accounting system. The system cuts a check that is
sent to the employee for the right amount, and after
the check is cashed, the form is filed away with the
canceled check. If the check is not cashed within 90
days, the travel form expires. When the amount of
the travel voucher is large (over $300), the boss
signs the form and sends it to the chief financial offi-
cer (CFO) along with a paragraph explaining the
purpose of the travel, and the CFO will sign the
form and pass it along to accounts payable. Of
course, both the boss and the CFO can reject the
travel authorization form if they do not feel that the
expenses are reasonable. In this case, the employee
can change the form to include more explanation or
decide to pay the expenses.

c14TheMovementToObjects.qxd 10/5/11 10:40 AM Page 544

Exercises 545

O. Identify the use cases for the following system: Pic-
nics R Us (PRU) is a small catering firm with five
employees. During a typical summer weekend, PRU
caters 15 picnics for 20 to 50 people each. The busi-
ness has grown rapidly over the past year, and the
owner wants to install a new computer system for
managing the ordering and buying processes. PRU
has a set of 10 standard menus. When potential cus-
tomers call, the receptionist describes the menus to
them. If the customer decides to book a picnic, the
receptionist records the customer information
(name, address, phone number, etc.) and the infor-
mation about the picnic (e.g., place, date, time,
which one of the standard menus, total price) on a
contract. The customer is then faxed a copy of the
contract and must sign and return it along with a
deposit (often by credit card or check) before the
picnic is officially booked. The remaining money is
collected when the picnic is delivered. Sometimes,
the customer wants something special (e.g., birthday
cake). In this case, the receptionist takes the infor-
mation and gives it to the owner, who determines the
cost; the receptionist then calls the customer back
with the price information. Sometimes, the customer
accepts the price; other times, the customer requests
some changes, which have to go back to the owner
for a new cost estimate. Each week, the owner looks
through the picnics scheduled for that weekend and
orders the supplies (e.g., plates) and food (e.g.,
bread, chicken) needed to make them. The owner
would like to use the system for marketing as well.
It should be able to track how customers learned
about PRU and to identify repeat customers, so that
PRU can mail special offers to them. The owner also
wants to track the picnics on which PRU sent a con-
tract, but the customer neither signed the contract
nor actually booked a picnic.
• Create the use case diagram for the PRU system.
• Choose one use case diagram and create a

sequence diagram.
• Create a class diagram for the PRU system.
• Create a behavioral state machine diagram to depict

one of the classes on the previous class diagram.
P. Identify the use cases for the following system: Of-

the-Month Club (OTMC) is an innovative young firm
that sells memberships to people who have an inter-
est in certain products. People pay membership fees
for one year and each month receive a product by
mail. For example, OTMC has a coffee-of-the-month
club that sends members one pound of special coffee

each month. OTMC currently offers six member-
ships (coffee, wine, beer, cigars, flowers, and com-
puter games), each of which costs a different amount.
Customers usually belong to just one, but some
belong to two or more. When people join OTMC, the
telephone operator records the name, mailing
address, phone number, e-mail address, credit card
information, start date, and membership service(s)
(e.g., coffee). Some customers request a double or
triple membership (e.g., two pounds of coffee, three
cases of beer). The computer game membership
operates a bit differently from the others. In this case,
the member must also select the type of game
(action, arcade, fantasy/science fiction, educational,
etc.) and age level. OTMC is planning to greatly
expand the types of memberships it offers (e.g.,
video games, movies, toys, cheese, fruit, vegetables),
so the system must accommodate this future expan-
sion. OTMC is also planning to offer three-month
and six-month memberships.
• Create the use case diagram for the OTMC system.
• Choose one use case diagram and create a

sequence diagram.
• Create a class diagram for the OTMC system.
• Create a behavioral state machine diagram to depict

one of the classes on the previous class diagram.
Q. Think about your school or local library and the

processes involved in checking out books, signing
up new borrowers, and sending out overdue notices,
all from the library’s perspective. Describe three use
cases that represent these three functions.
• Create the use case diagram for the library system.
• Choose one use case diagram and create a

sequence diagram.
• Create a class diagram for the library system.
• Create a behavioral state machine diagram to

depict one of the classes on the previous class
diagram.

R. Think about the system that handles student admis-
sions at your university. The primary function of the
system should be to track a student from the request
for information through the admission process until
the student is either admitted or rejected for atten-
dance at the school. Write the use case report that
can describe an “admit student” use case.
• Create the use case diagram for the one use case.

Pretend that students of alumni are handled differ-
ently from other students. Also, a generic update
student information use case is available for your
system to use.

c14TheMovementToObjects.qxd 10/5/11 10:40 AM Page 545

546 Chapter 14 The Movement to Objects

1. The new information system at Jones Legal Investiga-
tion Services will be developed, using objects. The data
to be managed by this system will be complex, consist-
ing of large amounts of text, dates, numbers, graphical
images, video clips, and audio clips. The primary func-
tions of the system will be to establish an investigation
when requests come in from client-attorneys, record the
investigative procedures that are conducted and the
information that is gathered during an investigation,
and produce bills for investigative services. Develop a
use case diagram for this new system.

2. The case investigation undergoes several states in the
Jones Legal Investigation Services system. The case

investigation is first established when the attorney
requests that an investigation be conducted. When the
investigator begins to perform the various investigative
techniques, the case investigation becomes active. The
client-attorney can begin settlement negotiations, or the
case can go to trial. Settlement negotiations may result
in a settlement, or the case may have to go to trial if set-
tlement negotiations fail. Ultimately, the case investiga-
tion is closed when the case is closed by settlement
agreement or judicial verdict. Develop a behavioral
state machine diagram for this situation.

• Choose one use case diagram and create a
sequence diagram. Pretend that a temporary
student object is used by the system to hold infor-
mation about people before they send in an admis-
sion form. After the form is sent in, these people
are considered students.

• Create a class diagram for the student admission
system. An admissions form includes the contents

of the form, SAT information, and references.
Additional information is captured about students
of alumni, such as their parents’ graduation
year(s), contact information, and college major(s).

• Create a behavioral state machine diagram to
depict a person as he or she moves through the
admissions process.

MINICASES

c14TheMovementToObjects.qxd 10/5/11 10:40 AM Page 546

A
Abstract classes, 508
Acceptance tests, 455, 456
Access control requirements, 296, 297
Access speed, optimization of, 427–432
Acknowledgment messages, 338, 340
Acquisition strategy(-ies), 262–278

alternative matrix of, 274–275
applying concepts of, 275–277
and business need, 270–271
custom development, 264–265
and in-house experience, 271
outsourcing, 267–269
packaged software, 265–267
and project management, 272
and project skills, 271–272
selecting, 270, 272–277
and time frame, 272

Actions, interface, 328
Action–object order, 335
Activity-based costing, 133, 136
Activity elimination, 136
Actors:

in sequence diagrams, 531–532
in use cases, 150, 151, 518

Adjusted project complexity (APC)
factor, 90, 92

Adoption:
enabling, 488–490
motivating, 486–488

Advanced Communications, 78
Aesthetics (interface design), 319, 321
Afferent processes, 378

Aggregated information, 414
Aggregation, 527
Agile development, 57–59, 61
A-Kind-Of (AKO) relationships, 508
Albrecht, Allen, 90
Alignment, strategic, 33
Alpha testing, 455, 456
Alternative courses (use cases), 152–153
Alternative matrix (acquisition strategies),

274–275
Amazon, 39, 132, 289–290, 297
AMR Research Inc., 46
Analysis, basic process of, 102
Analysis models, 14
Analysis phase (SDLC), 12–14, 102–104

purpose of, 260
transitioning to design from, 260–262,

277
Analysis strategy, 14
APC (adjusted project complexity)

factor, 90
APIs (application program interfaces),

289
Applications:

familiarity with, 24
general functions of, 406

Application logic, 283
Application program interfaces (APIs),

289
Application service providers (ASPs),

267
Applications systems, 415–417
Approval committee, 13, 20, 47–48

INDEX

BMndx.qxd 11/22/11 9:07 AM Page 547

548 Index

Arcs (PERT charts), 94
Architectural components, 282–283
Architecture centric systems analysis and design, 511
Architecture design, 14, 282–309

applying concepts of, 306–308
architectural components in, 282–283
client-based architectures, 287–288
client–server architectures, 283–286
client–server tiers, 284–286
and cloud computing, 289–290
comparing options for, 290
creating, 290–291
cultural and political requirements in, 299–301, 303
defined, 282
hardware and software specification in, 304–306
nonfunctional requirements in, 302
operational requirements in, 291–292, 303
performance requirements in, 292–294, 303
security requirements in, 294–299, 303
server-based architectures, 286–287
and virtualization, 288–289

Archive files, 409
As-is systems, 14

document analysis of, 126
duration analysis of, 132, 133
transitioning to to-be system from, see Transition

to new system
understanding, 102
unfreezing, 472

ASPs (application service providers), 267
Associations, 524–527, 529–530
Association class, 526, 527
Association relationships, 518–519
Assumption, 241
Asymmetric encryption algorithm, 298
Attributes:

in class diagrams, 524, 525, 528, 529
in entity relationship diagrams, 227, 228,

232–234, 419, 420
in object-oriented approach, 505

Audit files, 409
Authentication, 298–299
Availability and reliability requirements, 293, 294

B
Backups, 496
Balancing (in data flow diagrams), 191
Bar code readers, 342
Batch processing, 341
Batch reports, 347

BCW-Trim, 301
Behavior, 506
Behavioral state machine diagrams,

516, 535–538
creating, 537–538
elements of, 535–537

Behavior diagrams, 513
Bell, Ed, 17
Benchmarking:

defined, 133
informal, 133–134, 136

Benefits:
assigning values to, 29–31
change management assessment of, 484–486
identifying, 28

BEP (break-even point), 26–27
Beta software, 496
Beta testing, 455, 456
Bias, 348, 349
Black-box unit testing, 454, 455
Black hole errors, 208
Boehm, Barry W., 93
Bonhams 1793 Ltd., 265
Booch, Grady, 510
Bottom-up interviews, 116
BPA (Business Process Automation), 16
BPI (Business Process Improvement), 16
BPM (Business Process Management), 16–17
BPR, see Business Process Reengineering
Breadth of information, 129
Break-even point (BEP), 26–27
British Airways, 61
Bugs, 450, 477–478, 494, 496
Bundle, 185
Business analyst, 10
Business contingency plan, 473, 474, 478–480
Business contingency planning, 479
Business need, 15, 19, 20, 270–271
Business Process Automation (BPA), 16
Business processes, 189–193
Business Process Improvement (BPI), 16
Business Process Management (BPM), 16–17
Business Process Reengineering (BPR),

16, 17, 488
Business requirements, 18–20, 105

defined, 104
in systems request, 105

Business rules:
communicating, 226
defined, 226

BMndx.qxd 11/22/11 9:07 AM Page 548

Index 549

Business scenarios, 149
Business value, 18–20
Buttons, 314

C
CA (certificate authority), 299
Capacity requirements, 293, 295
Capital Blue Cross, 49
Cardinality (ERDs), 229
Carlson Hospitality, 30
CASE repository, 71, 419
CASE tools, see Computer-aided software engineering tools
Cash flow analysis, 25–26
Cash-flow method, 31–32
Catster.com, 132
CBT (computer-based training), 489, 490
Central processes, 378
Certificate authority (CA), 299
Champion, 33
Change:

compelling reason for, 486
resistance to, 481–483

Change agent, 481, 488
Change control, 448
Change management, 481–490

assessing costs and benefits, 484–486
motivating adoption, 486–488
revising management policies, 483
training, 488–490
understanding resistance to change, 481–483

Change management analyst, 10
Change requests, 492–495
Chase, 6
Check boxes, 344, 345
Check digit check, 345, 346
Chen, Peter, 224
Chicago, Illinois, 271
Chief information officers (CIOs), 46, 49
Child entity (ERDs), 228
Children (DFDs), 192
Christie’s International PLC, 265
CICS (customer information control systems), 49
CIOs (chief information officers), 46, 49
Class(es):

in class diagrams, 523, 524, 528
in object-oriented approach, 505–506

Class diagrams, 516, 521–530
creating, 527–530
elements of, 522–527
simplifying, 527

Classroom training, 489, 490
Client-based architectures, 287–288
Client computers, 283
Client–server architectures, 283–286

nonfunctional requirements for, 303
strengths and weaknesses of, 290

Client–server tiers, 284–286
Closed-ended questions, 114
Cloud computing, 289–290
Clustering, 430
COCOMO model, 93
Code control, 449
Cohesion (modules), 384–388
Coincidental cohesion, 386, 388
Color, for user interfaces, 319, 321
Combo boxes, 344, 345
Command languages, 335
Common coupling, 389
Commonwealth of Massachusetts, 17
Communication, complexity of, 68
Communicational cohesion, 388
Compatibility, systems, 25
Completeness check, 345, 346
Complexity, system, 90
Complex systems, 60
Computer-aided software engineering (CASE)

tools, 54, 71–72
for balancing DFDs and ERDs, 244
for drawing data models, 224
for indexing and clustering, 431, 432
for process modeling, 194

Computer-based training (CBT), 489, 490
Computer crime, 294
Concatenated identifiers (ERDs), 228
Concrete classes, 508
Concurrent multilingual system, 300
Conditions (sequence diagrams), 533
Conditional line (structure charts), 375, 376
Confirmation messages, 338, 340
Conflict, handling, 70, 124
Conflict avoidance strategies, 71
Connector (structure charts), 375
Consistency (interface design), 322
Consistency check, 345, 346
Construction, system, 15, 446
Constructor operations (class diagrams), 525
Construx Estimate, 62
Content awareness (interface design),

317, 319, 320
Content coupling, 386, 389

BMndx.qxd 11/22/11 9:07 AM Page 549

550 Index

Context diagrams (DFD):
creating, 194–196
defined, 191

Context-sensitive help, 340
Controls (security), 294
Control couple (structure charts), 376, 377
Control coupling, 389
Control module, 374
Conversion locations, 475–406, 477
Conversion modules, 476
Conversion strategy, 473–478
Conversion style, 474–475
Coordination (project activities), 70–73
Cost(s):

assigning values to, 29–31, 133
change management assessment of, 484–486
of conversion strategies, 478
identifying, 28–29
of requirements determination, 130

Costar, 62
Cost–benefit analysis, 25, 28–32. See also

Economic feasibility
Cost estimates, margin of error in, 75
Couples, 377, 382, 384–386
Coupling, 386, 389
Critical path, 97
Critical path method (CPM), 97
Critical success factors, 46
Critical tasks, 97
Critical thinking skills, 102–103
CRM (customer relationship management), 267, 268
CRUD matrix, 244–245, 421
Cultural and political requirements, 108, 299–301, 303
Custom development, 264–265, 270–271
Customer information control systems (CICSs), 49
Customer relationship management (CRM), 267, 268
Customization requirements, 300–301

D
Data:

backing up, 496
converting to new system, 480

Data access logic, 283
Databases, 409–415

defined, 406
legacy, 409–411
multidimensional, 414–415
object, 413–414
relational, 411–413

Database and file specifications, 15

Database check, 345, 346
Database management system (DBMS), 406, 407
Data capture, 341
Data couple (structure charts), 376, 377
Data coupling, 386, 389
Data dictionary, 71, 230–233
Data-entry operator, 341
Data files, 407
Data flow(s), 188–189

alternative, 193
defined, 188

Data flow diagrams (DFDs), 185–210
balancing ERDs with, 243–245
context diagrams, 194–196
creating, 193–210
defining business processes with, 189–193
DFD fragments, 196–198
elements of, 187–189
focus of, 184
identifying levels of, 380, 382
ISDs vs., 326–327
Level 0, 199
Level 1 and below, 199–206
logical, 366
physical, 366–371
processes on, 378
reading, 185–187
validating, 206–210

Data flow testing, 455
Data integrity, 426
Data marts, 414
Data model, 224
Data modeling, 224–246

applying concepts for, 236–239
creating entity relationship diagrams, 233–239
data dictionary and metadata, 230–233
elements of entity relationship diagrams, 226–230
reading entity relationship diagrams, 225–226
user’s role in, 240
validating entity relationship diagrams, 240–245

Data storage, 283
existing, 417
optimization of, 424–425
optimizing efficiency of, 425–427

Data storage design, 406–437
applying concepts of, 417–418, 421–424, 435–436
CRUD matrix, 421
data storage formats, 406–428
estimating storage size, 432–435
moving from logical to physical data models, 418

BMndx.qxd 11/22/11 9:07 AM Page 550

Index 551

optimizing access speed, 427–432
optimizing data storage, 424–425
optimizing storage efficiency, 425–427
physical entity relationship diagrams, 418–421

Data storage formats, 406–428
apply concepts related to, 417–418
databases, 409–415
files, 407, 409
selecting, 415–417

Data store, 189
Data types, 415, 416
Data warehousing, 414
DBMS (database management system),

406, 407
DDS, see Decision support systems
Decision support systems (DSS), 332,

414, 415, 417
Decision tables, 193
Decision trees, 193
Decomposition (of DFDs), 192, 201
Default values, 342
Delay messages, 338, 340
Deliverable, 11
Denormalization, 427–430
Density (layout), 319
Dependency, partial, 250
Dependent, 251
Dependent entity (ERDs), 235
Depth of information, 129
Derived attributes, 253, 524–525
Design phase (SDLC), 12, 14–15

avoiding classic mistakes in, 263
purpose of, 260
steps in, 262
transitioning from requirements to,

260–262, 277
Design prototype, 56
Design strategy, 14
Design time, 263
Design tools, switching, 263
Detail reports, 348, 350
Development costs, 28–29
DFDs, see Data flow diagrams
DFD fragments, 196–198
Digital signatures, 298
Direct conversion, 474, 477, 478
Direct manipulation (navigation), 337, 338
Discounted cash flows, 27, 32
Discrete multilingual system, 300
Document analysis, 126, 129

Documentation:
designing structure of, 458–460
identifying navigation terms, 461, 463
during planning phase, 72
system, 456
types of, 457–458
user, 456, 457
writing topics, 460–462

Documentation development, 456–463
Documentation navigation controls, 458, 461, 463
Documentation testing, 455
Documentation topics, 458, 460–462
Dogster.com, 132
Dominion Virginia Power, 49
Drop-down list boxes, 344, 345
Drop-down menus, 337–339
DSDM (dynamic systems development method), 57
Duration analysis, 132, 133, 136
Dynamic binding, 509–510
Dynamic models, 530
Dynamic systems development method (DSDM), 57
Dynamic view, 511

E
Ease of learning, 321
Ease of use, 321
Economic feasibility, 24–32

assigning values to costs/benefits, 19–31
break-even point, 26–27
cash flow analysis and measures, 25–26
discounted cash flow, 27
identification of costs/benefits, 28–29
net present value, 28
return on investment, 26

Edit checks, 345
EDS, 271
Efferent processes, 378
Effort, 93
Effort required, estimating, 93
EIM (enterprise information management) systems, 243
EISs (executive information systems), 415
E-JAD, 121
Elasticity, 289
Electronic JAD, 121
Electronic reports, 349, 351
Embedded hyperlinks, 339
Emerging technology, 15–16
Employees:

preparing for transition, 481
resistance to change by, 481–484

BMndx.qxd 11/22/11 9:07 AM Page 551

552 Index

Encapsulation, 413, 506, 507
Encryption, 297, 298
Encryption and authentication requirements, 297–299
End-user DBMSs, 407
Enterprise DBMSs, 407
Enterprise information management (EIM) systems, 243
Enterprise resource planning (ERP), 266
Entity (ERDs), 226–227

changing to tables or files, 418, 419
dependent, 235
identifying, 233
independent, 235
intersection, 235–236
metadata for, 232

Entity relationship diagrams (ERDs), 224–246
advanced syntax for, 235–239
balancing DFDs with, 243–245
creating, 233–239
data dictionary and metadata in, 230–233
defined, 224
elements of, 226–230
logical, 418
physical, 418–421
reading, 225–226
validating, 240–245

Ernst & Young (E&Y), 373
ERP (enterprise resource planning), 266
Errors (DFDs), 206–210
Error messages, 338, 340
ERwin, 224, 432–434
ESs (expert systems), 415
Essential use case, 154
Estimates, refining, 74–75
Estimation:

of data storage size, 432–435
defined, 61
function point approach, 62, 89–94
of project time frame, 61–63

Ethics, 9
European Central Bank, 476, 492
Event(s):

in behavioral state machine diagrams, 537
defined, 391
in program specification, 391, 393
in use cases, 149

Event-driven modeling, 149
Event-driven programming, 373
Exceptions (use cases), 153
Exception reports, 348, 350
Execution occurrences (sequence diagrams), 532, 534

Executive champions, 33
Executive information systems (EISs), 415
Expert systems (ESs), 415
Extends relationships, 519
External entities, 189
External triggers, 152
Extreme programming (XP), 57, 58
E&Y (Ernst & Young), 373

F
Facilitator:

defined, 119
JAD, 119–120, 122–124

Factoring, 386
Familiarity with technology, 24–25, 60
Familiarity with the application, 24
Fan-in, 386, 390
Fan-out, 388, 390
FAQs (frequently asked questions), 491
Fat clients, 283
FBI, 294
Feasibility analysis, 13, 23–37

defined, 23
economic feasibility, 25–32
organizational feasibility, 32–34
technical feasibility, 24–25

Feasibility studies, 23, 34
Feature creep, 54, 263
Fields, 319, 320

changing attributes to, 419, 420
defined, 317

Field labels, 317
Files, 407, 409, 416

changing entities to, 418, 419
defined, 406

File naming standards, 79
File specifications, 15
Final state, 537
First American Corporation, 240
First movers, 16
First normal form (1NF), 250–251
Fixed-price contracts, 269
Flags (control couples), 377
Foreign keys, 411, 420–421
Forms, 314

content awareness in, 317
layout of, 315–318

Formal system (of organization), 126
Formal usability testing, 333–334
Format check, 345, 346

BMndx.qxd 11/22/11 9:07 AM Page 552

Index 553

Fourth-generation/visual programming languages, 54
Freedman, Richard, 494
Frequently asked questions (FAQs), 491
Fully dressed use cases, 153–155
Functions (software systems), 283
Functional cohesion, 386
Functionality, 22
Functional lead, 68
Functional requirements, 105–107

defined, 104
and use cases, 156

Functional view, 511
Function point, 90
Function point approach (estimation), 62, 89–94

effort required estimates, 93
system size estimates, 90–93
time required estimates, 94

G
Gantt chart, 74, 82–83, 94, 95
Generalization, 527
Generic sequence diagrams, 530
Georgia Institute of Technology, 301
GLB (Graham–Leach–Bliley) Act, 294
Global Sample Management System (GSMS), 90
Governments, social media involvement of, 135
Gradual refinement, 13
Graham–Leach–Bliley (GLB) Act, 294
Grammar order, 335
Graphs, 348–350
Graphical user interfaces (GUI), 314
Ground rules (JAD sessions), 122
Group cohesiveness, 70
GroupSystems, 301
GSMS (Global Sample Management System), 90
Guard conditions, 537
GUI (graphical user interfaces), 314

H
Hallacy, Don, 19
Happy path, 152
Hardcoded values, 451
Hardware:

hardware and software specifications, 304–306
installing, 480
primary components of, 283

Hardware and software specifications, 304–306
HCI (human-computer interaction), 314
Health Insurance Portability and Accountability

Act (HIPAA), 294

Help desk, 491
Help-desk call centers, 490
Help messages, 338, 340
Help system, 457–458
Heuristic evaluation, 333
Hewlett Packard, 46, 47, 479
Hierarchical databases, 409–411
HIPAA (Health Insurance Portability and

Accountability Act), 294
History files, 409
Hot key, 336
HTML prototype, 330, 332
Human-computer interaction (HCI), 314
Human–machine boundary, 367
Hybrid clouds, 289
Hybrid object-oriented DBMS, 413
Hygeia Travel Health, 50
Hyperlink menus, 339

I
IBM, 90, 119, 483
IBM Credit, 135
I-CASE (Integrated CASE), 71
Icons, 328
IDEF1X, 227
Identifiers (ERDs), 226, 228, 234
Identifying relationship, 235
IF statement, 193
IIBA (International Institute of Business Analysis), 105, 107
Image maps, 337, 339
Implementation phase (SDLC), 12, 15, 446–468.

See also Transition to new system
applying concepts of, 463–467
avoiding classic mistakes in, 449
documentation development, 456–463
programming process management, 446–449
testing, 449–456

Includes relationships, 519
Incremental development, 511
Independent entity (ERDs), 235
Indexes, 431–432, 458, 459
Index terms, 461
Industry standards, 62
Informal benchmarking, 133–134, 136
Informal system (of organization), 126
Informational strategy (motivating adoption), 487
Information hiding, 506, 507
Information load, 347
Information-oriented requirements, 106
Information repository, 71

BMndx.qxd 11/22/11 9:07 AM Page 553

554 Index

Information systems (IS), 6
Infrastructure analyst, 10
Inherit (term), 508
Inheritance, 507–508
In-house experience, 271
Initial state, 537
Inputs:

in program specification, 393
types of, 343–345
for use cases, 153
validation of, 345–346

Input design, 340–346
basic principles of, 341–343
multiple layout areas for, 316–318
types of inputs, 343–345
validation of input, 345–346

Input mechanism, 314
Instances:

in entity relationship diagrams, 226, 227
in object-oriented approach, 505

Instance sequence diagrams, 530–531
Instantiation, 413
Institutionalization (of new systems), 491
Intangible benefits, 29, 30
Intangible costs, 30
Intangible value, 18
Integrated CASE (I-CASE), 71
Integration:

information, 129–130
systems, 266

Integration tests, 454, 455
Intelligent agents, 459
Interaction, 314
Interactive evaluation, 333
Interfaces, types of, 314
Interface actions, 328
Interface design, 14. See also User interface design
Interface design prototypes, 323, 329–332
Interface evaluation, 323–324, 332–334
Interface icons, 328
Interface metaphors, 327
Interface objects, 328
Interface standards design, 323, 327–329
Interface structure design, 325–327
Interface structure diagram (ISD), 323, 326–327
Interface templates, 327, 328
Interfile clustering, 430
Intergraph Corp., 343
Internal triggers, 152
International Institute of Business Analysis (IIBA), 105, 107

International Standards Organization (ISO), 294
Internet, 134

and cloud computing, 289
public key infrastructure of, 299

Interpersonal skills, 68, 69, 118
Intersection entity (ERDs), 235–236
Interviews, 112–119, 129

conducting, 116–118
follow-up to, 118, 119
preparing for, 116
questions for, 114–116
schedule for, 112–113

Interview notes, 118, 119
Interview report, 118, 119
Interview schedule, 112–113
Intrafile clustering, 430
Intrusion prevention system (IPS), 297
Invertible algorithms, 298–299
Iowa Soybean, 486
IPS (intrusion prevention system), 297
IS (information systems), 6
ISD (interface structure diagram), 323, 326–327
ISO (International Standards Organization), 294
ISO 17799, 294
Iteration:

in building structure charts, 374
in building use cases, 158
in DFD design, 199
in identifying use cases, 161, 162

Iterative development, 54, 55, 59, 60
of ERD creation, 233
in object-oriented approaches, 511

Iterative development RAD, 510
IT project failures, 6, 7

J
Jacobson, Ivar, 510
“Jelled team,” 58n.12
Jetsmart system, 7
Joint application development (JAD), 54, 129

as most common technique, 112
for requirements elicitation, 119–124
training for, 128

Jones, Capers, 119
Jones, Chris, 494

K
Kelly, Brian, 297
Keystrokes, minimizing, 342
KnowledgePLAN, 62

BMndx.qxd 11/22/11 9:07 AM Page 554

Index 555

L
Language controls, 335–336
Language prototypes, 330–332
Late projects, 78
Layout:

for data flow diagrams, 196, 197
in interface design, 315–318

Learning, ease of, 321
Legacy databases, 409–411
Legacy database management systems, 416
Legacy systems, 266
Legal requirements, 300, 301
Level 0 DFDs, 191, 192, 194, 199, 200
Level 1 DFDs, 191–192, 194, 199–206
Level 1 support, 491
Level 2 DFDs, 192–194, 199, 204
Level 2 support, 491, 492
Level 3 DFDs, 194, 199
Level 4 DFDs, 194
Lewin, Kurt, 472, 473
Library modules, 375, 376
Lifeline, 531–532, 535
Links, 459, 532
Linked lists, 407
Liquidity, 26–27
List boxes, 344, 345
Lithonia Lighting, 298
Logical cohesion, 388
Logical data flow diagrams, 366
Logical entity relationship diagrams, 418–419
Logical process models, 184, 366
Look-up files, 409
Look-up tables, 428
Loop (structure charts), 375, 376
Lower CASE, 71
Lynch, Conor, 486

M
McAfee, 6
McDermid, Lyn, 49
Machiavelli, Niccolo, 472
Magnetic stripe readers, 342
Mainframe, 286
Maintainability requirements, 291, 292
Maintenance, system, 473, 492–495
Management:

organizational, 33–34
of outsourcing relationships, 269
of requirements definitions, 109

Management information system (MIS), 415, 416
Management policies:

defined, 483
revision of, 483

Margin of error (estimates), 75
Marriott Corporation, 50
Master files, 409
Max Productivity Incorporated, 490
Measures, cash flow, 25–26
Measurements (change management), 483
Media, output, 349, 351
Members (databases), 411
Menus, 314

defined, 336
design of, 336–337

Menu bars, 337
Messages:

navigation, 338–340
in object-oriented approach, 506
in sequence diagrams, 532–534

Metadata:
for entity relationship diagrams, 230–233
updating, 369

Metaphors, interface, 327
Methods:

in class diagrams, 524, 525
in object-oriented approach, 506

Methodologies, 51–61
agile development, 57–59
defined, 51
parallel development, 53
rapid application development, 54
selecting, 59–61
waterfall development, 51–54, 58–59

Microcomputer, 287
Microsoft, 494
Microsoft Internet Explorer, 33
Middleware, 284
Migration plan, 473–490

business contingency plan, 478–480
change management, 481–490
components of, 472–473
conversion strategy, 474–478
costs and benefits assessment, 484–486
management policy revisions, 483
motivating adoption, 486–488
preparing people, 481
preparing technology, 480
and resistance to change, 481–483
training, 488–490

BMndx.qxd 11/22/11 9:07 AM Page 555

556 Index

Milestones, 65
Miracle processes, 208
MIS (management information system), 415, 416
Mission critical system, 296
Mistakes, navigation, 334–335
M:N relationships, 229, 236, 251
Modality (ERDs), 230
Modular approach, 371–373
Modular conversion, 476
Modules, 371

cohesion of, 384–388
conversion, 476
identifying, 380, 382
loosely coupled, 386
for structure charts, 374–377

Motivation, 69–70, 486–488
Moving to new system, 472. See also Transition

to new system
Multidimensional databases, 414–416
Multilingual requirements, 299–301
Multiplicity (associations), 526

N
Naming standards, 79
Natural language, 336
Navigation controls, 335–338
Navigation design, 334–340

basic principles of, 334–335
multiple navigation areas, 315–316
types of controls, 335–338

Navigation mechanism, 314
Net present value (NPV), 28, 32
Networks, 283
Network databases, 411
Nielsen Media, 90
Nike, 479, 480
Nodes (PERT charts), 94
Nonfunctional requirements, 107, 108

in architecture design, 282, 291, 302–303
defined, 104

Non-identifying relationship, 235
Normal course (use cases), 152, 156, 162
Normalization:

in ERD validation, 240, 243
to optimize data storage, 424, 427
rules of, 250–254
steps in, 250

NPV (net present value), 28, 32
n-tiered architecture, 285–286

Null relationships, 230
Number boxes, 344

O
Objects:

interface, 328
in object-oriented approach, 505–506
in sequence diagrams, 531–534

Object–action order, 335
Object classes, 413
Object (object-oriented) databases, 413–414
Object Management Group (OMG), 513
Object-oriented approach, 504–512, 539. See also Unified

Modeling Language (UML Version 2.0)
classes, 505–506
defined, 504
dynamic binding, 509–510
encapsulation, 506, 507
information hiding, 506, 507
inheritance, 507–508
messages, 506
methods, 506
objects, 505–506
polymorphism, 509
systems analysis and design, 510–512

Object-oriented database management systems
(OODBMSs), 413, 416

Object-oriented systems analysis and design, 510–512, 539
architecture centric, 511
incremental development, 511
iterative development, 511
use case driven, 511

“Object think,” 512
Observation, 126–129
Off-page connector, 375, 376
Offshore outsourcing, 58n.13
OMG (Object Management Group), 513
On-demand training, 491
One-on-one training, 489, 490
1:N relationships, 229, 234–235, 428, 429
1:1 relationships, 229, 428, 429
Online documentation, 457
Online processing, 341
Online support, 491
On-page connector, 375, 376
On-screen list boxes, 344, 345
OODBMSs (object-oriented database management systems),

413, 416
Open-ended questions, 114
Open-source DBMSs, 407

BMndx.qxd 11/22/11 9:07 AM Page 556

Index 557

Operations (class diagrams), 525, 528, 529
Operational costs, 29
Operational requirements, 108, 291–292, 303
Operations group, 491
Optical character recognition, 342
Optimization:

of access speed, 427–432
of data storage, 424–425
of data storage efficiency, 425–427

Oracle, 88, 413
Organizational feasibility, 24, 32–34
Organizational management, 33–34
Orvis, 294
Outcome analysis, 134, 136
Outputs:

in program specification, 393
in use cases, 153

Output design, 347–351
basic principles of, 347–348
media, 349, 351
multiple layout areas for, 316–318
types of outputs, 348–350

Output mechanism, 314
Outsourcing, 270

as acquisition strategy, 267–269
types of contracts for, 269
when to use, 270–271

Over-budget projects, 78
Overhead, 433
Oxford Health Plans, 88, 294

P
Packages, 162, 527
Packaged software, 265–267, 270–271
Paglia, Todd, 494
Paper-based documentation, 457
Parallel conversion, 474, 475, 478, 480
Parallel development methodologies, 53, 59
Parents (DFDs), 192
Parent entity (ERDs), 228
Partial dependency, 250
Patterns, for user interfaces, 319
Payback method, 26
Payment Card Industry Data Security Standards

(PCI DSS), 294
PC (Processing Complexity), 90
Perception of costs/benefits, 483
Performance requirements, 108, 292–294, 303
Performance testing, 455
PERT chart, 74, 94, 96–97

Pets.com, 132
Phases (SDLC), 11
Phased conversion, 475–476, 478
Physical data flow diagram, 366–371
Physical data models, 406

defined, 224
moving from logical data models to, 418–419

Physical entity relationship diagrams, 418–421
Physical models, 184
Physical process models, 366–369
Pilot conversion, 475, 477, 478
PKI (public key infrastructure), 299
Planning phase (SDLC), 12–13
Platinum Technology, 224
PMP (Project Management Professional), 46
Pointers, 411
Political requirements, see Cultural and political

requirements
Political strategy (motivating adoption), 487
Polymorphism, 509
Pop-up menus, 337, 339
Portability requirements, 291, 292
Portfolio management, 47–48
Postconditions (use cases), 153
Postimplementation activities, 491–496

project assessment, 495–496
system maintenance, 492–495
system support, 491–492

Post-session report (JAD), 123
Potential adopters, 481, 484, 488
PPM Center software, 47
Preconditions (use cases), 152
Presentation logic, 283
Primary actor, 161, 173
Primary keys, 411, 419, 420
Primavera Systems, 46, 47
Priority (in use cases), 150
Private attributes, 525
Private clouds, 289
Private key, 298
Probing questions, 114
Problem analysis, 130, 136
Problem report, 491, 492
Procedural cohesion, 388
Procedural programming languages, 373
Procedure manuals, 458, 460
Process:

basic elements of, 187, 188
in data flow diagrams, 187–188
defined, 187

BMndx.qxd 11/22/11 9:07 AM Page 557

558 Index

Process descriptions (DFDs), 193
Processing Complexity (PC), 90
Process models:

defined, 184
requirements in, 106

Process modeling, 184–217
applying concepts of, 217
creating data flow diagrams, 193–210
defining business processes with data flow

diagrams, 189–193
elements of data flow diagrams, 187–189
reading data flow diagrams, 185–187

Process-oriented requirements, 106
Programs, 47
Program design, 15, 366–398

modular approaches to, 371–373
physical data flow diagram, 366–371
program design document, 373–374
program specification, 391–397
structure chart, 374–391

Program design document, 373–374
Program Evaluation and Review Technique,

see PERT chart
Program log, 448
Programming languages, 373

fourth-generation/visual, 54
object-oriented, 506

Programming process, 446–449
assigning tasks, 446, 447
coordinating activities, 447–448
schedule management for, 448–449

Program specifications, 391–397
applying concepts for, 394, 396–397
syntax, 391–394
writing, 372–373

Project activities, coordinating, 70–73
Project and Portfolio Management (software), 46
Project assessment, 473, 495–496
Project binder, 72
Project charter, 70
Project identification and initiation, 15–23

apply concepts of, 20–23
system request, 18–20

Project initiation, 13
Project management, 13, 46, 73–79

and acquisition strategy, 272
applying concepts of, 80–84
critical success factor for, 46
problem prevention with, 480
refining of planning estimates in, 74–75

risk management in, 78–79
scope management in, 75–77
timeboxing, 77–78

Project Management Institute, 46
Project Management Professional (PMP), 46
Project manager, 10, 13, 46
Project.net software, 46
Project plan, 13, 51–65

estimation of project time frame in, 61–63
margin of error in, 75
methodology options in, 51–61
work plan in, 63–67

Project portfolio management, 46, 47
Project selection, 47–50
Project size, 25
Project skills, 271–272
Project sponsor, 13, 17–20, 481, 488
Project standards, 73
Project team review, 495
Project time frame, 61–63
Project work plan, 65–68
ProSight, 46
Protected attributes, 525
Prototyping:

interface design prototype, 329–332
system, 54, 55, 59, 60
throwaway, 56–57, 59, 60

Pseudocode, 393–394
Public attributes, 525
Public clouds, 289
Public key, 298
Public key encryption, 298
Public key infrastructure (PKI), 299
Publix, 128
Pyramid Technology, 88

Q
Qantas, 7
Queries, 431
Query operations (class diagrams), 525
Questionnaires, 123–126, 129
Quicken, 327
Quinnipiac University, 297

R
RAD, see Rapid application development
Radio buttons, 344, 345
Radio frequency identification (RFID) tags, 342

BMndx.qxd 11/22/11 9:07 AM Page 558

Index 559

Radisson Hotels & Resorts, 30
Range check, 345, 346
Rapid application development (RAD), 54, 59, 61

competition in, 373
iterative, 510
timeboxing with, 77

Rate of return, 26–27
Rational Software Corporation, 510, 514
Rational unified process (RUP), 514
Raw data, 433
RDBMSs (relational database management systems),

411–413, 416
Ready adopters, 487
Real-time information, 341
Real-time reports, 347
References, 525
Reference documents, 457–458
Referential integrity, 411–413
Refreezing new system, 473
Relational database management systems

(RDBMSs), 411–413, 416
Relational databases, 411–413, 424
Relationships (ERDs), 228

cardinality, 229
identifying, 234–235
metadata for, 232
modality, 230

Reliability, system, 60
Reluctant adopters, 487, 488
Repeating attributes, 246, 250
Repeating groups, 250
Reports, 314

content awareness in, 317
layout of, 315–318
understanding usage of, 347

Reporting structure, 65, 68, 69
Request for information (RFI), 273
Request for proposal (RFP), 273
Request for quote (RFQ), 273
Required rate of return, 26–27
Requirements:

defined, 104
prioritizing, 111
types of, 104–108

Requirements analysis, 130–136
activity-based costing, 133
activity elimination, 136
duration analysis, 132, 133
informal benchmarking, 133–134
outcome analysis, 134

problem analysis, 130
root cause analysis, 130–132
technology analysis, 134

Requirements analyst, 10
Requirements definition statement (requirements

definition), 109–111
Requirements determination, 104–140

applying concepts of, 136–139
defined, 104
process of, 107, 109
requirements analysis strategies, 130–136
requirements definition statement, 109–111
requirements elicitation, 111–130
transitioning to design from, 260–262, 277
types of requirements, 104–108

Requirements elicitation, 111–130
with document analysis, 126
with interviews, 112–119
with joint application development,

119–124
by observation, 126–128
in practice, 111–112
with questionnaires, 123–126
selecting techniques for, 128–130

Requirements gathering, 14
Requirements testing, 455
Research-oriented development, 449
Resistance to change, 481–483
Resource allocation, 483
Response time, 292
Return on investment (ROI), 26, 33
Rewards (change management), 483
RFI (request for information), 273
RFID (radio frequency identification) tags, 342
RFP (request for proposal), 273
RFQ (request for quote), 273
Rheingold, Ted, 132
Risk(s):

with conversion to new system, 477
feasibility analysis of, 23

Risk analysis, 24
Risk assessment, 78, 79
Risk management, 78–79
Role (use case diagrams), 518
Role-play:

in use case analysis, 169
in validating DFDs, 209

Root cause analysis, 130–132, 136
Rumbaugh, James, 510
RUP (rational unified process), 514

BMndx.qxd 11/22/11 9:07 AM Page 559

560 Index

S
SaaS (Software as a Service), 267
Sabre Holdings Corporation, 47
Salesforce.com, 267
Sample (questionnaire), 124
SAN (storage area network), 289
San Jose, California police department, 343
Sans serif fonts, 319
SAP, 479, 480
Sarbanes–Oxley Act, 294
Scalable architectures, 284
Scenarios, 517

business, 149
use, 323–325

Schedule:
and choice of methodology, 61
estimating, 94
interview, 112–113
missing dates on, 76
for programming, 448–449
visibility of, 61

Scope creep, 54, 75–77, 448
Scope management, 75–77
Screen layout, 315–318
Scribes, 120
Scroll bars, 344, 345
Scrum, 57
Seattle University, 80
Second normal form (2NF), 250–253
Security requirements, 108, 294–299, 303
Security testing, 455
Selection (structure chart), 374
Selection boxes, 344
Semantics errors, 206–210
Sequence (structure chart), 374
Sequence diagrams, 516, 530–535

creating, 533–535
elements of, 531–533

Sequential cohesion, 388
Serif fonts, 319
Servers, 283
Server-based architectures, 286–287
Server virtualization, 33, 288
Sets (databases), 411
Shamrock Foods, 486
Silver bullet syndrome, 263
Simultaneous conversion, 476, 478
Size:

project, 25
system, 90–93

Skills:
and acquisition strategy, 271–272
critical thinking, 102–103
interpersonal, 118
and staffing decisions, 68, 69

Slider, 345
Smart cards, 342
Social media, 135
Software:

hardware and software specifications, 304–306
installing, 480

Software architect, 10
Software as a Service (SaaS), 267
Software bugs, 450, 477–478, 494, 496
Software systems, functions of, 283
Solutions, problems vs., 130, 131
SOPs (standard operating procedures), 483
Sotheby’s, 265
Source data automation, 342
South Dakota Department of Labor, Workers’

Compensation division, 20
Special connections, identifying, 382, 383
Special issues, in project assessment, 19, 20
Specialized actors, 518
Speed requirements, 292–293
Sponsor, project, 13, 17–20, 481, 488
Sprint Corporation, 19
SQL (Structured Query Language), 413
Staffing plan, 65, 68–70
Staffing projects, 65, 68–73

coordinating project activities, 70–73
staffing plan, 65, 68–70

Stakeholder(s):
defined, 33
for organizational feasibility, 34
in requirements determination, 109
in requirements elicitation, 111–112

Stakeholder analysis, 33
Stamp coupling, 389
Standards:

defined, 72
file naming, 79
interface standards design, 327–329
project, 73
security, 294
for teams, 72

Standard operating procedures (SOPs), 483
Star schema design, 428–430
States, 535, 537, 538
State symbol, 535, 536

BMndx.qxd 11/22/11 9:07 AM Page 560

Index 561

Static binding, 509
Static models, 521
Static view, 511
Steering committee, 13, 47
Steps (SDLC phases), 11
Storage area network (SAN), 289
Storage size, estimating, 432–435
Storage virtualization, 289
Storyboard, 329, 332
Strategic alignment, 33
Structure chart, 374–391

applying concepts for, 380–384
building, 377–380
defined, 372
design guidelines for, 384–391
syntax, 374–377

Structured English, 193
Structure diagrams, 513
Structured interviews, 115, 116
Structured Query Language (SQL), 413
Stubs, 451
Style, conversion, 474–475
Subclasses, 413, 507, 508
Subject areas (in data models), 241
Subordinate modules, 374
Summary report, 348
Superclasses, 507
Support plan, 15
Symmetric encryption algorithm, 298
Syntax errors, 206–208
System acquisition, see Acquisition strategy(-ies)
Systems analysts, 7–10

roles of, 9–10
skills of, 8–9

System architecture, see Architecture design
System boundary, 519–520
System complexity, 60
Systems Development Life Cycle (SDLC), 10–15

analysis phase, 12–14
and choice of methodology, 51
defined, 6
design phase, 12, 14–15
estimating time frames for phases, 62
gradual refinement of, 13
implementation phase, 12, 15
key person in, 7
phases of, 11–13
planning phase, 12, 13
streamlining, 57

System documentation, 456

Systems integration, 266, 463
System integration requirements, 291, 292
System interfaces, 314
System interface testing, 455
System maintenance, 473, 492–495
System proposal, 14, 103
System prototyping, 54, 55, 59, 60
System reliability, 60
System requests, 13, 18–20, 22, 105

change requests as, 493
creating, 22
defined, 18

System requirements:
defined, 104, 107
transitioning to design from, 260–262

System review, 495–496
System size, 90–93
System specification, 15, 262
System support, 473, 491–492
System tests, 454, 455
System users, as stakeholders, 34
System value, 295–296

T
Tables, changing entities to, 418, 419
Table of contents, 458, 459
Table scan, 430
Tab menus, 337, 339
TAFP (total adjusted function points), 90, 92
Tangible benefits, 29
Tangible value, 18
Task dependencies, 65
Task identification, 63–65
Technical environment requirements, 291–292
Technical feasibility, 24–25
Technical lead, 68
Technical risk analysis, 24
Technical skills, 68, 69
Techniques (SDLC), 11
Technology:

emerging, 15–16
familiarity with, 24–25, 60
preparing for transition, 480

Technology analysis, 134, 136
Template, interface, 327, 328
Temporal cohesion, 386, 388
Temporal triggers, 152
Temporary objects (sequence diagrams), 532
Terminals, 286

BMndx.qxd 11/22/11 9:07 AM Page 561

562 Index

Test case, 451
Testing, 449–456

acceptance tests, 455, 456
inadequate, 449
integration tests, 454, 455
system tests, 454, 455
test plan, 451–454
unit tests, 454, 455
usability, 333–334
and use cases, 156

Test plan, 451–454
Text boxes, 343
Text design, 319
Text search, 459
Textual analysis, 528
Thick clients, 283
Thin clients, 284
Third normal form (3NF), 253–254
Three-clicks rule, 322
Three-tiered architecture, 285
Throwaway prototyping, 56–57, 59, 60
Time and arrangements contracts, 269
Timeboxing, 77–78
Time estimates, margin of error in, 75
Time factor, in conversion, 478
Time frame, acquisition strategy and, 272
Tipping Point Technology, 297
TMR Telecommunications Consultants, 78
To-be models, 366
To-be system, 14. See also Transition to new system
Tool bars, 337, 339
Tool tips, 328
Top-down interviews, 115–116
Top-down modular approach, 371, 372
Total adjusted function points (TAFP), 90, 92
Total unadjusted function points (TUFP), 90, 92
Toys R Us, 6
Trade-offs:

defined, 48
in project management, 73–74
in project selection, 48

Training:
on-demand, 491
in transition to new system, 488–490

Training plan, 15
Transactions files, 409
Transaction processing, 341
Transaction processing systems, 415
Transaction structure, 379
Transcript, 236

Transform structure, 379, 380
Transitions, 537, 538
Transition to new system, 472–498

applying concepts of, 496–498
migration plan, 473–490
postimplementation activities, 491–496

Transitive dependency, 253
Travelers Insurance Company, 58
Triggers (use cases), 149, 152
TUFP (total unadjusted function points), 90, 92
Turnaround documents, 348, 350
Tutorials, 458, 460
24/7, 294, 308
Two-tiered architecture, 285

U
Ultrathin client, 287
Umphress, David, 80
Unfreezing habits and norms, 472
Unified Modeling Language (UML), 503, 510
Unified Modeling Language (UML Version 2.0), 513–540

behavioral state machine diagrams, 516, 535–538
class diagrams, 516, 521–530
diagram techniques in, 514–516
rational unified process, 514
sequence diagrams, 516, 530–535
use case diagrams, 516–521

U.S. Army, 113, 206, 479
U.S. Department of Defense, 206
U.S. Department of Justice, 33
U.S. Marine Corps, 206
U.S. Navy, 6
Unit tests, 454, 455
University of Georgia, 319, 320
Unstated norms, 300, 301
Unstructured interviews, 115
Update operations (class diagrams), 525
Upgrading, 496
Upper CASE, 71
Usability testing, 333–334
Use, ease of, 321
Use cases, 149

alternative formats for, 154–156
confirming correctness of, 169–170
and data flow diagrams, 187
defined, 148, 511
elements of, 150–154
identification of, 158–162
for use case diagrams, 519

BMndx.qxd 11/22/11 9:07 AM Page 562

Use case analysis, 148–177
alternative formats for use cases, 154–156
applying concepts of, 172–177
building use cases, 157–171
elements of use cases, 150–154
and functional requirements, 156
identifying elements within steps, 166–169
identifying steps in, 162–166
revising functional requirements based on, 170–272
and testing, 156

Use case diagrams, 516–521
creating, 520–521
elements of, 517–520

Use case driven systems analysis and design, 511
Use case package, 162
User documentation, 456, 457
User effort minimization (interface design), 322
User experience (interface design), 321–322
User interfaces, 314
User interface design, 314–358

applying concepts of, 351–357
input design, 340–346
interface design prototype, 329–332
interface evaluation, 332–334
interface standards design, 327–329
interface structure design, 325–327
navigation design, 334–340
output design, 347–351
principles for, 314–322
process of, 323–334
use scenario development, 324–325

User interface testing, 455
User involvement, in requirements determination, 130
User requirements, 105, 107

defined, 104, 148
for methodologies, 59

User role:
in data modeling, 240
in use cases, 150, 151

Use scenarios, 323–325
Use scenario testing, 455

V
Validation:

of data flow diagrams, 206–210
of entity relationship diagrams, 240–245
of input design, 345–346

Valid value, 419
Valley Enterprises, 78
Value:

tangible and intangible, 18
valid, 419

Value-added contracts, 269
VDI (virtual desktop infrastructure), 287
Verizon wireless, 6
Versions, 54
Viewpoint, 196
Virtual desktop infrastructure (VDI), 287
Virtualization:

in architecture design, 288–289
server, 33

Viruses, 299
Virus control requirements, 299
Visibility (of attributes), 525
Visible Analyst Workbench, 388
Visual Basic, 373
V-model, 53–54, 59
Volumetrics, 432, 433

W
Walk-through, 103
Walk-through evaluation, 333
Waterfall development, 51–54, 58–61
Web pages, 314
Weighted alternative matrix, 274–275
Welch Foods, Inc., 267
White-box unit testing, 454, 455
White space, 319
Whole-system conversion, 476
Wilson, Carl, 50
Wilson, Doug, 78
Workarounds, 266
Work breakdown structure,

64–65
Work plan, 13, 63–67

project work plan, 65–68
task identification in, 63–65

X
XP (extreme programming), 57, 58

Z
Zero client computing, 287

Index 563

BMndx.qxd 11/22/11 9:07 AM Page 563

BMndx.qxd 11/23/11 1:33 PM Page 564

This page is intentionally left blank

BMndx.qxd 11/23/11 1:33 PM Page 565

This page is intentionally left blank

BMndx.qxd 11/23/11 1:33 PM Page 566

This page is intentionally left blank

BMndx.qxd 11/23/11 1:33 PM Page 567

This page is intentionally left blank

BMndx.qxd 11/23/11 1:33 PM Page 568

This page is intentionally left blank

	Copyright
	Preface
	Brief Contents
	Contents
	PART ONE: PLANNING PHASE
	CHAPTER 1: THE SYSTEMS ANALYST AND INFORMATION SYSTEMS DEVELOPMENT
	Introduction
	The Systems Analyst
	Systems Analyst Skills
	Systems Analyst Roles

	The Systems Development Life Cycle
	Planning
	Analysis
	Design
	Implementation

	Project Identification and Initiation
	System Request
	Applying the Concepts at Tune Source

	Feasibility Analysis
	Technical Feasibility
	Economic Feasibility
	Organizational Feasibility
	Applying the Concepts at Tune Source

	Summary
	Appendix 1A—Detailed Economic Feasibility Analysis for Tune Source

	CHAPTER 2: PROJECT SELECTION AND MANAGEMENT
	Introduction
	Project Selection
	Applying the Concepts at Tune Source

	Creating the Project Plan
	Project Methodology Options
	Selecting the Appropriate Development Methodology
	Estimating the Project Time Frame
	Developing the Work Plan

	Staffing The Project
	Staffing Plan
	Coordinating Project Activities

	Managing and Controlling The Project
	Refining Estimates
	Managing Scope
	Timeboxing
	Managing Risk

	Applying The Concepts At Tune Source
	Staffing the Project
	Coordinating Project Activities

	Summary
	Appendix 2A: The Function Point Approach
	Appendix 2B: Project Management Tools: The Gantt Chart and PERT Chart
	Gantt Chart
	PERT Chart

	PART TWO: ANALYSIS PHASE
	CHAPTER 3: REQUIREMENTS DETERMINATION
	Introduction
	The Analysis Phase
	Requirements Determination
	What Is a Requirement?
	The Process of Determining Requirements
	The Requirements Definition Statement

	Requirements Elicitation Techniques
	Requirements Elicitation in Practice
	Interviews
	Joint Application Development (JAD)
	Questionnaires
	Document Analysis
	Observation
	Selecting the Appropriate Techniques

	Requirements Analysis Strategies
	Problem Analysis
	Root Cause Analysis
	Duration Analysis
	Activity-Based Costing
	Informal Benchmarking
	Outcome Analysis
	Technology Analysis
	Activity Elimination
	Comparing Analysis Strategies

	Applying The Concepts At Tune Source
	Eliciting and Analyzing Requirements
	Requirements Definition
	System Proposal

	Summary

	CHAPTER 4: USE CASE ANALYSIS
	Introduction
	Use Cases
	Elements of a Use Case
	Alternative Use Case Formats
	Use Cases and the Functional Requirements
	Use Cases and Testing
	Building Use Cases

	Applying The Concepts At Tune Source
	Identifying the Major Use Cases
	Elaborating on the Use Cases

	Summary

	CHAPTER 5: PROCESS MODELING
	Introduction
	Data Flow Diagrams
	Reading Data Flow Diagrams
	Elements of Data Flow Diagrams
	Using Data Flow Diagrams to Define Business Processes
	Process Descriptions

	Creating Data Flow Diagrams
	Creating the Context Diagram
	Creating Data Flow Diagram Fragments
	Creating the Level 0 Data Flow Diagram
	Creating Level 1 Data Flow Diagrams (and Below)
	Validating the Data Flow Diagrams

	Applying the Concepts At Tune Source
	Creating the Context Diagram
	Creating Data Flow Diagram Fragments
	Creating the Level 0 Data Flow Diagram
	Creating Level 1 Data Flow Diagrams (and Below)
	Validating the Data Flow Diagrams

	Summary

	CHAPTER 6: DATA MODELING
	Introduction
	The Entity Relationship Diagram
	Reading an Entity Relationship Diagram
	Elements of an Entity Relationship Diagram
	The Data Dictionary and Metadata

	Creating An Entity Relationship Diagram
	Building Entity Relationship Diagrams
	Advanced Syntax
	Applying the Concepts at Tune Source

	Validating An Erd
	Design Guidelines
	Normalization
	Balancing Entity Relationship Diagrams with Data Flow Diagrams

	Summary
	Appendix 6A: Normalizing the Data Model

	PART THREE: DESIGN PHASE
	CHAPTER 7: MOVING INTO DESIGN
	Introduction
	Transition from Requirements to Design
	System Acquisition Strategies
	Custom Development
	Packaged Software
	Outsourcing

	Influences on the Acquisition Strategy
	Business Need
	In-House Experience
	Project Skills
	Project Management
	Time Frame

	Selecting an Acquisition Strategy
	Alternative Matrix
	Applying the Concepts at Tune Source

	Summary

	CHAPTER 8: ARCHITECTURE DESIGN
	Introduction
	Elements of an Architecture Design
	Architectural Components
	Client–Server Architectures
	Client–Server Tiers
	Less Common Architectures
	Advances in Architecture Configurations
	Comparing Architecture Options

	Creating An Architecture Design
	Operational Requirements
	Performance Requirements
	Security Requirements
	Cultural and Political Requirements
	Designing the Architecture

	Hardware And Software Specification
	Applying The Concepts At Tune Source
	Creating an Architecture Design
	Hardware and Software Specification

	Summary

	CHAPTER 9: USER INTERFACE DESIGN
	Introduction
	Principles for User Interface Design
	Layout
	Content Awareness
	Aesthetics
	User Experience
	Consistency
	Minimize User Effort

	User Interface Design Process
	Use Scenario Development
	Interface Structure Design
	Interface Standards Design
	Interface Design Prototyping
	Interface Evaluation

	Navigation Design
	Basic Principles
	Types of Navigation Controls
	Messages

	Input Design
	Basic Principles
	Types of Inputs
	Input Validation

	Output Design
	Basic Principles
	Types of Outputs
	Media

	Applying The Concepts At Tune Source
	Use Scenario Development
	Interface Structure Design
	Interface Standards Design
	Interface Template Design
	Design Prototyping
	Interface Evaluation

	Summary

	CHAPTER 10: PROGRAM DESIGN
	Introduction
	Moving from Logical to Physical Process Models
	The Physical Data Flow Diagram
	Applying the Concepts at Tune Source

	Designing Programs
	Structure Chart
	Syntax
	Building the Structure Chart
	Applying the Concepts at Tune Source
	Design Guidelines

	Program Specification
	Syntax
	Applying the Concepts at Tune Source

	Summary

	CHAPTER 11: DATA STORAGE DESIGN
	Introduction
	Data Storage Formats
	Files
	Databases
	Selecting a Storage Format
	Applying the Concepts at Tune Source

	Moving from Logical to Physical Data Models
	The Physical Entity Relationship Diagram
	Revisiting the CRUD Matrix
	Applying the Concepts at Tune Source

	Optimizing Data Storage
	Optimizing Storage Efficiency
	Optimizing Access Speed
	Estimating Storage Size
	Applying the Concepts at Tune Source

	Summary

	PART FOUR: IMPLEMENTATION PHASE
	CHAPTER 12: MOVING INTO IMPLEMENTATION
	Introduction
	Managing the Programming Process
	Assigning Programming Tasks
	Coordinating Activities
	Managing the Schedule

	Testing
	Test Planning
	Unit Tests
	Integration Tests
	System Tests
	Acceptance Tests

	Developing Documentation
	Types of Documentation
	Designing Documentation Structure
	Writing Documentation Topics
	Identifying Navigation Terms

	Applying the Concepts at Tune Source
	Managing Programming
	Testing
	Developing User Documentation

	Summary

	CHAPTER 13: TRANSITION TO THE NEW SYSTEM
	Introduction
	Making the Transition to the New System
	The Migration Plan
	Selecting the Conversion Strategy
	Preparing a Business Contingency Plan
	Preparing the Technology
	Preparing People for the New System
	Understanding Resistance to Change
	Revising Management Policies
	Assessing Costs and Benefits
	Motivating Adoption
	Enabling Adoption: Training

	Postimplementation Activities
	System Support
	System Maintenance
	Project Assessment

	Applying the Concepts at Tune Source
	Implementation Process
	Preparing the People
	Postimplementation Activities

	Summary

	CHAPTER 14: THE MOVEMENT TO OBJECTS
	Introduction
	Basic Characteristics of Object-Oriented Systems
	Classes and Objects
	Methods and Messages
	Encapsulation and Information Hiding
	Inheritance
	Polymorphism and Dynamic Binding

	Object-Oriented Systems Analysis and Design
	Use Case Driven
	Architecture Centric
	Iterative and Incremental
	Benefits of Object-Oriented Systems Analysis and Design

	Unified Modeling Language, Version 2.0
	The Rational Unified Process (RUP)
	Four Fundamental UML Diagrams

	Use Case Diagram
	Elements of a Use Case Diagram
	Creating a Use Case Diagram

	Class Diagram
	Elements of a Class Diagram
	Simplifying Class Diagrams
	Creating a Class Diagram

	Sequence Diagram
	Creating a Sequence Diagram

	Behavioral State Machine Diagram
	Elements of a Behavioral State Machine Diagram
	Creating a Behavioral State Machine Diagram

	Summary

	INDEX

