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Linear
Programming 1:
A Geometric
Approach

A geometric technique for mawimising or mini-
mizging a linear expression in two variables
subject to a set of linear constraints is de-

seribed.

PRERERUISITES: Linear systems
Linear inequalities

INTRODUCTION

The study of linear programming theory. has expanded greatly
since the pioneer work of George Dantzig in the late nineteen-for-
ties. Today, linear programming is applied to a wide variety of
problems in industry and science. In this chapter we present a geo-
metric approach to the solution of simple linear programming prob-
lems. In Chapters 21 and 22 we develop the algebraic theory re-
quired to solve more general problems in this field.

Let us begin with some examples:

Exampre 20,1 A candy manufacturer has 130 pounds of chocolate-

covered cherries and 170 pounds of chocolate~covered mints in stock.

He decides to sell them in the form of two different mixtures. One
285
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mixture will contain half cherries and half mints and will sell for
$2.00 per pound. The other mixture will comtain one-third cherries
and two-thirds mints and will sell for $1.25 per pound. How many
pounds of each mixture should the candy manufacturer prepare in or-
der to maximize his sales revenue?

Let us first formulate this problem mathematically. Let the
mixture of half cherries and half mints be called mix 4, and let x
be the number of pounds of this mixture to be prepared. Let the
mixture of one-third cherries and two-thirds mints be called mix 3,
and let xp be the number of pounds of this mixture to be prepared.
Since mix 4 sells for $2.00 per pound and mix B sells for §$1.25 per
pound, the total sales z (in dollars) will be

1

8 = 2.00:::1 + 1.25.’1',‘2.

Since each pound of mix 4 contains 1/2 pound of cherries and each
pound of mix B contains 1/3 pound of cherries, the total number of
pounds of cherries used in both mixtures is

Similarly, since each pound of mix 4 contains 1/2 pound of mints and
each pound of mix B contains /3 pound of mints, the total number of
pounds of mints used in both mixtures is

1 2
S

Because the manufacturer can use at most 130 pounds of cherries and
170 pounds of mints, we must have

130

!

5
Y

¥+
tral

]
)
I

x, +we, < 170,

Also, since x4 and %, cannot be negative numbers, we must have

w >0 and z, 2 0.

The problem can therefore be formulated mathematically as follows:
Pind values of &y and z, which mawimize

g = 2.00x1-r1.25x2
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subject to
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In the next section we shall show how to solve this type of mathema-
tical problem geometrically.

ExampLE 20.2 A woman has up to $10,000 to invest. Her broker
suggests investing in two bonds, 4 and B. Bond 4 is a rather risky
bond with an annual yield of 10%, and bond B is a.rather safe bond
with an annual yield of 7%. After some consideration, she decides:
to invest at most $6,000 in bond 4, at least $2,0600 in bond B, and
to invest at least as much in bond 4 as in bond B. How should she
invest her $10,000 in order to maximize her annual yield?

; In order to formulate this problem mathematically, let x; be
the number of dollars to be invested in bond 4 and let xy be the
number of dollars to be invested in bond E. Since each dollar in-
vested in bond £ earns $.10 per yeéar and each dollar invested in
bond B earns $.07 per year, the total dollar amount z earned each

year by both bonds is 5!

2 = .10x1+ .G?xz.

The constraints imposed can be formulated mathematically as follows:

Invest no more than $10,000: L)+, < 1(,000
Invest at most $6,000 in bond A4: Ly < 6,000
Invest at least $2,000 in bond B: z, > 2,000
Invest at least as much in bond .
4 as in bond B: Xy 2 Ty
We also have the implicit assumption that % and x, are nonnegative:
l Ty >0 and Ty 2 0.

Thus, the complete mathematical formulation of the problem is as
follows:

Find values of ) and <, which maximisze

z = .10.'1:1+ .()7:.r:2
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subject to
< 16,000

., < 6,000

31
v

2,000

ExamPLE 20.3 A student desires to design a breakfast of corn
flakes and milk which is as econmomical as possible. On the basis of
what he eats during his other meals, he decides that his breakfast
should supply him with at least nine grams of protein, at least onhe-
third the recommended daily aliowance {RDA} of vitamin D, and at
least one-fourth the RDA of celcium. He finds the following nutri-
tion information on the milk and corn fiakes containers:

{ Milk Corn Flakes
1 cup 1 ounce
Cost | 7.5¢ 5.0¢
Protein ) 4 grams 2 grams
Vitamin D 1/8 of RDA | 1/10 of RDA
Calcium - i/6 of RDA none !

in order not to have his mixture too soggy or too dry, the student
decides to limit himself to mixtures which contain one to thres
ounces of corn flakes per cup of milk, inclusive. What quantities
of milk and corn flakes should he use to minimize the cost of his
breakfast?

For the mathematical formuliation of this problem, let x1 be the
quantity of milk used measured in %-cup units and let z7 be the
quantity of corn fiakes used measured in l-ounce units. Then if =
is the cost of the breakfast in cents, we may write the following:

Cost of breakfast: z = 7.5x1+-5.6m2

At least nine grams of protein: 4m1-+2m2'i 9

At least 1/3 of RDA of vitamin D: Alw -f—l—x > 4
871 1w072-3
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At least 1/4 of RDA of calcium: %-xl i'%

At least one ounce of corn flakes 1

per cup (two *-cups)of milk: mz/xl s (or &y = 20, <0)
At most three ounces of corn 3

flakes per cup {two %-cups)of milk: ;cz/xl Lk {or 33:1 - 2&:210.}

As before, we also have the implicit assumption that xy > 0 and
3 > 0. Thus the complete mathematical formulation of the problem
is as follows:

Find values of x and z, which minimize

g2 = 7.5x1+ S.Oxz

subject to

3 ®

L ol ki
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GEOMETRIC SOLUTION oF LINEAR PROGRAMMING PROBLEMS

‘Each of the three examples in the introduction is a special
case of the following problem;
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PROBLEM 20.1 Find valuee of % and z, which either

mamimise or minimize

g = o, heu, (20.1)
subdect to
| ayy¥y *agty (2)(230=) Py
Ap@y *app%y (2)(22(=) b,
. (0.5
%ﬂ¢1+amfb {i)(i}(=}2%
and

In each of the m equations of (20.2), any one of the symbols <; >, =
may be used.

Problem 17.1 is the general linear programnwing problem in two
variables. The linear function 3z in {20.1) is called the objective
Ffunction. Equations (20.2) and (20.3) are called the constraints;
in particular, Egs. (20.3) are called the nomnegativity conetraints
on the variables 1 and x32. :

We shall now show how to solve a linear programming problem in
two variables graphically. A pair of values (xy, xp) which satisfy
all of the constraints is called a feasible solution. The set of
ail feasible solutions determines a subset of the wjxp-plane called
the feasible region. Our desire is to find a feasible soclution
which maximizes the objective function. Such & solution is called
an optimal solution.

To examine the feasible region of a linear programming problem,
let us note that each constraint of the form

A AP o

& i s RS bi

i

defines a line in the wjyxp-plane, while each constraint of the form

G e S S il

s i R

or

Loyt gy 2 By

defines a half-plane which includes its boundary line

Qpyiy tapgfy = by



Thus, the feasible region is al-
ways an intersection of finitely
many lines and half-planes. For
example, the four comstraints

@, < 130

1A

170

b
| v
(=

of Example 20.1 define the half-
planes illustrated in Fig. 20.1{a),
(b), (¢}, and (d)}. The feasible
region of this problem is thus the
intersection of these four half-
planes, which is illustrated in
Fig. 20.1(e).

It can be shown that the fea-
sible region of a linear program-
ming problem has a boundary con-
sisting of a finite number of
straight-Iline segments. If the
feasible region can be enclosed in
a sufficiently large circle, it is
called bounded (Fig. 20.1(e));
otherwise it - is called wunbounded
(Fig. 20.5). If the feasible re-
gion is empty (coutains nc points),
then the constraints are inconsis-
tent and the linear programming
problem has no solution (Fig.
20.6). - '

Those boundary peints of a
feasible region which are inter-
sections of two of the straight-
line boundary segments are called
extreme pointe. (They are also
called corner points or vertex
points.) For example, from Fig.
20.1(e), the feasible region of
Example 20.1 has four extreme
points:
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(a)

)

()

(d)

(260, 0)
Figure 20.1
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(0,0, (0,255), (180,120), (260, O) . (20.4)

The importance of the extreme points of a feasible region is
shown by the following theorem:

“THEOREM 20.1 If the feasible region of a linear program-
ming problem i{s nonempty and bounded, then the objective

funetion attains both a maximwm and minimum value and
these occur at extreme points of the feasible region. If
the feasible region is wnbounded, then the objective func-
tion may or may not attain a maximwn or minimum value:
however, if it attains a maximum or minimum value, it

does so at an extreme point.

Figure 20.2 suggests the idea behind the proof of this theorem,
Since the objective function

a2 = GI.‘EI # 021:2

of a linear programming problem is a linear function of x1 and x5,
its level curves (the curves along which z has constant values) are
straight lines. As we move in a direction perpendlcular to these
level curves, the objective function either increases or decreases
monotonically Within a bounded feasible region, the maximum and
minimum values of z must therefore occur at extreme points, as
Figure 20.2 indicates. ]

7 / z minimized

o

decreasing ' level curves

z increasing

z maximized

¥ o1

Figure 20.2
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) In the next few examples, we use Theorem 20.1 to solve several
linear programming problems and illustrate the variations in the
nature of the solutions which may occur.

EXAMPLE 20,1 (REVISITED) From Figure 20.1(e), we see that the
feasible region of Example 20.1 is bounded. Consequently, from

~ Theorem 20.1 the objective function

z = 200z * 1258,

1

attains both its minimum and maximun values at extreme points. The
four extreme points and the corresponding values of z are given in
the following table

Extreme point Value of
{ml,mz) z==2.00w14-1.25x2
(G, 0) 0
(6, 255) " 318.75
{180; 120) 510.00
{260, 0) 520.00

We see that the largest value of z is-520.00, and the corresponding
optimal solution is (260, 0). Thus, the candy manufacturer attains
maximum- sales of $520 when he produces 260 pounds of mixture 4 and
none of mixture 3.

EXAMPLE 2044 Find values of z. and @, which maximize

E

z = x1-¥3m2

subject to

2xl4-332 < 24

Ty - Xy 27
x, 2 6
r 2z G
& 0.
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Figure 20.3

SOLUTION In Fig. 20.3 we have drawn the feasible region of this
problem. Since it is bounded, the maximum value of 3 is attained
at one of the five extreme points. The values of the objective
function at the five extreme peints are given in the following
table:

Extreme point Value of
{ccl, .9:2] 2=y + 33::2
(0, 6 18
(3, 6) 21
(9, 2} 15
(7, 6 7
(0, 0} 0

Irom this table, the maximum value of 2 is 21, which is attained at
m1=3 and x2=6.

ExamprLe 20,5

Find values of xq and &, which maximize

z = 4x1-+6x2
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subiect to
23:1 +3x2 < 24
LTy Ty 2 7
Ly L 6
€y 2 0
zy 2 0.

SoLUTION The constraints in this preblem are identical to the con-
straints in Example 20.4, and so the feasible region of this problem
is also given by Fig. 20.3, The values of the objective function at
the extreme points are as follows:

Extreme point Value of

: {.’x:l, xz} B= 4m1 + 6_.7:2
(0, 6) 36
(3, 6) 48
00,2} 48
(7, 0) 28
(0, 0) , 0

We see that the objective function attains a maximum value of 48 at
two adjacent extreme points, (3, 6) and (9, 2). This shows that an
optimal sclution te a linear programming problem need not be unique.
As we ask the reader to show in Exercise 20.9, if the objective
function has the same value at two adjacent extreme points, it has
the same value at all points on the straight-line boundary segment
connecting the two extreme points. Thus, in this example the maxi-
mum value of z is attained at all points on the straight-line seg-
ment connecting the extreme points (3, 6) and (9, 2).

ExampLe 20.6 Finé values of %y and «, which minimize

subject to
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22, + 3¢, = 12

1 2
Zrl- sz >0
xy >0
*, >0

SOLUTION In Fig. 20.4 we have drawn the feasible region of this
problem. Because one of the constraints is an equality constraint,
the feasible region is a straight line segment with two extreme
points. The values of z at the two extreme points are as follows:

Extreme point | Value of
(g, 2,) | 3=22, -a,
(3, 2) 4
(6, 0) 12

. The minimum value of 2 is thus 4 and is attained at xy = 3 and
x,=2 :
2 .

£

A
Mg

2351""3((.'2:12
2:::1-3x2=0

— (3, 2)

Figure 20.4



Linear Programming I/ 297

ExampLe 20,7

Find values of x, and x, which maximize

%
z = 1t &rz
subject to
xp. z, > 8
dw) v oy <2
2wy - 3z, 20
2 0
x, 2 0.

SOLUTION The feasible region of this linear programming problem is
illustrated in Fig. 20.5. Since it is unmbounded, we are not assured
by Theorem 20.1 that the objective function attains a maximum value.
In fact, it is easily seen that since the feasible region contains
points for which both x7 and xo are arbltrarlly large and positive,
then the objective function

z = 2x1i-5m2

can be made arbitrarily large and positive. This problem has no op-
timal solution. Instead, we say the problem has an umbounded solu~
tion,

"4&:1 ‘+m2 =2/"—

2.1’71—3&‘.'2 =0

Figure 20.5
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EXAMPL—E 20’8 Find values of x., and .'L‘Z which maximize

1
8 = -5x1+w2
subject to
2301+ x, > 8
~dpyp X, <2
le- 3.9:2 =0
.rl =0
2, >0

SOLUTION The above comstraints are the same as those in Example
20,7, so that the feasible region of this problem is also given by
Fig, 20.5. In Exercise 20,10, we ask the reader to show that the
objective function of this problem attains a maximum within the fea-
sible region. By Theorem 20.1, this maximum must be attained at an
extreme point. The values of z at the two extreme points of the
feasible region ave given by

Extremé point Value of
(ml, acZJ z=—5x1+x2
(1, 6) 1
[3: 2) -13

The maximum value of 2z is thus 1 and is attained at the extreme
point @y = I; z, = 6.

EXAMPLE 20'9 Find the values :cl and z, which minimize
B = 3¢, - 8x

subject to
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Zrl— z, < 4

3x1-+11w2 < 33

3m14- 4x2 > 24
%y >0
Ly > Q.

SOL-Ui‘ION As can be seen from Fig. 20.6, the intersection of the
five half-planes defined by the five constraints is empty. This
linear programming problem has no feasible solutions since the con-
straints are inconsistant.

Lo

There are no points
common to all five
shaded half-planes

Figure 20.6

EXERCISES

20.1 Find values of xl and %, which maximize

5 = 3m1-+2x2

subject to
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2m1+3a:2<6
Zml« mzm_()
x1_2
:cz__l
acl__O
xzio.

20.2 Find valiues of ml and x2 which minimize

z = 3:c1—5:c2
subject to
2m1—32_<_-2
4.x1»332_>_0
w2i3
m1_>_0
x2_>_0.

20.3 Find values of xy and xz which minimize

2 = -le + 2m2

subiect to

A, - &, > ~5

1 2 =
.—m1+ Xy 2 1
2.7cl+45f;2_i12

.ccl_>_.0
Ty 2 0.

2C.4 Solve the linear programming problem posed in Bxample 20.2.

20.5 Solve the linear programming problem posed in Example 20.3.
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20.6 A trucking firm ships the containers of two companies, 4 and
B. Each container of Company 4 weighs 40 pounds and is 2 cubic
feet in volume. Each container of Company B weighs 50 pounds
and is 3 cubic feet in volume. The trucking firm charges Com-
pany 4 $2.20 for each container shipped and charges Company B
$3.00 for each container shipped. If one of the firm's trucks
cannot carry more than 37,000 pounds and cannot hold more than
2000 cubic feet, how many containers from companies 4 and B
should a truck carry to maximize the shipping charges?

20,7 Repeat Exercise 20.6 if the trucking firm raises its price for
shipping a container of Company 4 to $2.50.

20.8 A manufacturer produces sacks of chicken feed from two ingre-
dients, 4 and B. Each sack i5 to contain at least 10 ounces of
nutrient ¥y, at least 8 ounces of nutrient N,, and at least 12
ounces of nutrient ¥3. Each pound of ingredient 4 contains
2 ounces of nutrient Ny, 2 ounces of nutrient ¥3, and 6 ounces
of nutrient Nz. Each pound of ingredient B contains 5 ounces
of nutrient ¥y. 3 ounces of nutrient ¥y, and 4 ounces of nutri-
ent Nz. If ingredient 4 costs 8¢ per pound and ingredient B
costs 9¢ per pound, how much of each ingredient should the man-
ufacturer use in each sack of feed to minimize his costs?

2049 If the objective function of a linear programming problem has
the same value at twe adjacent extreme points, show that it has
the same value at all points on the straight-line segment con-
necting the two extreme points. Hint: if {mi, mé) and (", m;)

are any two points in the plane, a point (ml,mzjlies‘on the

straight-line segment connecting them if

- t it "
xy = tx1-+(1 t}wl

and

= ] = 1"
@, txz-fil t)xz

where *+ is & number in the interval [0, 1] .
20.10 Show that the objective function in Example 20.8 attains a max-

imum value in the feasible set. Hint: Examine the level curves
of the objective function.
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