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Linear
Programming 3:
The Simplex
Method

The simpler method 1e¢ presented and appiied to
the sclution of a certain class of linear pro-

gramming problems.

PREREBUISITES: Gaussian elimination
Chapter 21: Linear Programming 2

INTRODUCTION

At the end of Chapter 21, we described the simplex method as a
rrocedure for moving from one basic feasible solution of a linsar
programming problem to an adjacent basic feasible solution in such a
way that the value of the objective function never decreases. In
this chapter we shall describe the algebraic details of this proce-
dure, )

The general linear programming problem in »n variables was
stated as Problem 21.1 on page 304. However, in order to simplify
the presentation of the simplex method, we shall restrict ourselves
to linear programming problems having the following special form:
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PROBLEM 22.1 Find values of Bys Tpsevns Ty, which maximize

EAL < I o I R S S <

171 22 A

subject to

v s - R O K

Ggpy *agg¥a oot taym, < by

amlxl-+am2m2-+-«- +amn'xn j—bm
and

:cé_>_0, for =21, 2,..., 71,
where

b;20,  for j=1,2,...,m.

In Problem 22.1, the condition that each of the m constraints be a
< inequality is not restrictive since it can easily be shown that
any linear programming problem can always be written with all < con-
straints. It is the condition b;>0 for j=1, 2,...,m that is the
real restriction. Nevertheless, a large class of practical problems
are of this form, and the procedures developed in this chapter for
Problem 22.1 are used in the application of the simplex method to
the general linear programming problem.

To convert Problem 22.1 to one in standard form (see Problem
21.2 on page 304) we introduce m slack variables Ly e1? Bppges oo Lo i
one for each of the m constraints, to obtain

== e e ———— )
PROBLEM 22.2 Find valuee of Bis Togeves & which maxi-
mize ‘
z=3ﬁﬁ*¢fb+'”+cﬁ%+&%ﬂf”"+m%m
subjeet to

e e ———— N
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R RV IS T e AR = by
T e Lo * Bnd =b,
R I 7 b A s Lol

m n n+m m

and

for =1, 2,..., n¥m.

if we can find an optimal solution to Problem 22.2, then the values

of the variables Lys Egperes & will provide an optimal solutioen to
- "

problem 22.1.

THE SimMpPLEX TABLEAU

In order to more clearly describe the steps in the simplex
method, let us examine the following specific problem of the type
we are considering in this chapter:

PROBLEM 22.3 Find values of By Lo and @q which maximize

z=3x, ~x,+ 4

! 2 3
subject to
le- x2+3x3 <5
:nl + 4.102 - 2:<:3 <1
Bay * 6, < 4
and

.?:l, ;t:'z, ws > 0.

To convert Problem 22.3 to one in standard form, we add slack varia-
bles Lys Tgs Ty to obtain
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PROBLEM 22.4 Pind values of Ly Loy Ty Tyy Tes and xy

which maximize

- z=3x1mm + da +0m4+0x + Oz

2 3 5 6
subject to
2.:;1— Tyt 3w3+x4 =5
:cl+4a:2—2m3 * e = 1
le + 6.1'3 oy = 4
- and
.a:i, 332, .ccs, md, .ccS, x6 > 0.

For our purposes, it will be convenient to rephrase Problem 22.4 in
the following equivalent form:

PROBLEM 22.5 Find values of Tys Tos By Lys Ty T and z
which satisfy '

2x1~ x2+3x3+m4 = 5
x, + 4z, - 22 et =1
2 3 5
. £22:1)
Swl +6:r3 tae = 4
—le-i- .'r2-4x3 ta o= 0

and such that Lys Ty Tgs Bys Ty T are nonnegative and
z 18 gs large as possible.

In this formulation of the problem, z is treated as a variable on a
par with xy through xg, and the equation defining z in terms of the
x7 is treated as an additional constraint. Thus our problem is to
find a sclution of the linear system of four equations in seven un-
knowns given by (22:1) in which one of the variables, z, is as large
as possible and the other six variables are nonnegative.

The usual procedure for solving a linear system of equations is
to construct the augmented matrix of the system and apply Gaussian
elimination or Gauss-Jordan elimination to it to put it in
row-echelon form (or reduced row-echelon form). The row-echelen
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form then determines the augmented matrix of an equivalent linear
system which is easily solved. The simplex method proceeds along
similar lines. Namely, the augmented matrix of the linear system is
constructed and a variation of Gaussian elimination, called pivotal
elimination, is applied to obtain augmented matrices in which basic
feasible solutions to the linear programming problem can be deter-
mined by inspection. Let us return to Problem 22.5 to see how this
is done. '
The augmented matrix of the linear system (22.1) is

2 ~1 3

1 0 ] 0 s
4 -2 0 1 0
. : . (22.2)
3 0 6 0 0 1 0 4
-3 1 -4 0 0 0 i 0

From the way the 1's and 0's are distributed in the 4th, 5th, 6th,
and 7th columns of this matrix, one particular solution of (22.1)
can be seen by inspection; namely,

x1=£), :r:2=0, :c3=0, m4=5, 3:5=1, x6=4,z=0. {(22.3)

-In terms of the corresponding linear programming problem, this is

0|

and z=0. (22.4)

B OO

It is easily seen that x' is a basic feasible solution of linear
programming Problem 22.4, according to Definition 21.5 on page 249,
The three variables x4, x5, ¥g are the basic variables, and their
corresponding values are found as the first three entries of the
last column of (22.2). The value of z is the last entry of this
column, That x' is a basic feasible solution is of crucial impor-
tance, since it is among the basic feasible solutions that we can
hope to find an optimal solution. To see how we may go about find-
ing another basic feasible solution, we rewrite (22.2) with some
additional labeling:
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Tableau 22.1

2 =1 3 5] =y
i 4 -2 1 =
0 6 4 [ -z

L=
[ )
i
w

3
L:S 1 -4

Fach column has been labeled with its corresponding variabie from
the linear system (22.1). On the right, we have labeled the entries
of the last column with the corresponding variables whose values
they determine in the solution given by {22.3). We have also drawn
a vertical and horizontal line within the matrix in order to high-
light certain entries which will be useful to us later on.

In the field of linear programming, the augmented matrix is re-
ferred to as a tableaw. In particular, Tableau 22.1 above is called
the initial tableau of the problem. We shall call the last row of
the tableau the objective row, since it arises from the objective
function of the original problem.

In Tableau 22.1 we have also shaded four particular columms.

It can be seen that these four columns are identical to the columns
of the 4 x4 identity matrix. Indeed, it was exactly this fact that
pexrmitted us to find the solution given in (22.3) so easily. We had
only to set those variables not corresponding to these four columns
equal to zero, and then the values of the variables corresponding to
the four columns were found in the last column of the augmented matrix.
This suggests a way of proceeding to a new solution of the linear
system. We apply appropriate elementary row operations tc Tableau
22.1 to arrive at a new tableau which again contains the four col-
umns of the 4 x4 identity matrix, but this time in different posi-
tion. To see how to do this, consider the following tableau, which
is just Tableau 22.1 with one of its entries shaded. (We postpone
for the moment a discussion of why this particular entry was chosen.)

Tableau 22.2

2 =) 3 1 0 0 51 ==,
i 4 0 1 0 1) ==
3 0 0 0 1 4 f = Xy
=5 1 0] 0 0 1 | OJ =
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pur objective will be to use elementary row operations to repiace
the shaded entry by a "1" and obtain zeros everywhere else in that
column. To do this we first divide the third row by six to obtain:

Tableau 22.3

x4 %5 Ty zy T Tg kS

& -1 3 1 0 ] 0 5
1 0 1 0 0 1
/2 0 0 0 1/6 0 2/3

L_TS 1 -4 0 0 0 1 l Q_J

Next we perform the following three elementary Tow operations:
1. Add -3 times the 3vd row to the ist row.
2. Add 2 times the 3rd row to the Znd row.
3., Add 4 times the 3rd row to the 4th row.

The result is the following tableau:

Tableau 22.4

1) -1 A8 2 4
Z 4 1/3 = gz

1/2 0 1/6 = 2,
iﬁ~1 1 2/3 =z

It can be seen that Tableau 22.4 contains within it the four columns
of the 4 x 4 identity matrix, though not in their usual order. Con-
sequently, if we set the variables not associated with these columns
equal to zero, we obtain the following solution to linear system
(22.1):

Fe o= 0y

L 2=0, m'SﬁZ/S,x

4w3, .'x:5=7'/3, .:c6=0, 5=28/3. (22.5)

As before, we have labeled the entries in the last column with the
variables whose values they determine in this solution.
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Solution (22.5) specifies the following vector solution of
Problem 22.4:

and =z = 8/3. (22.6)

We see that x" is a basic feasible solution with basic variables Xz,
T4, *g.  We also see that x' as given in (22.4) and x" are adjacent
basic feasible solutions since they have m- 1=2 basic variables in
common; namely, &, and xg. That 1s, the elementary row operations
we performed on Tableau 22.1 to obtain Tableau 22.4 took us from the
basic feasible solution x' to the adjacent basic feasible solution
x". In addition, the value of the objective function increased from
2=0 to z=8/5. :

The shaded entry in Tableau 22.2 is called the pivot entry of
that particular tableau. The column in which it lies is called the
pivot colurm, and the row in which it lies is called the pivot row.
After the elementary row operations were applied to obtain Tableau
22.4, the pivot column contained all zeros, except for a one in the
pivot entry position. Thus the pivot column was converted to one of
the columns of the 4 x4 identity matrix, and the variable x3 corre-

. sponding to the pivot column was converted from a nonbasic variable
to a basic variable. At the same time, the variable z, which label-
ed the pivot row, was converted from a basic variable to a nonbasic
variable. That is, x; replaced x; as a basic variable in going from
Tableau 22.1 to Tableau 22.4. For this reason, 7 is called the
entering vartable and xg is called the departing variable of Tableau
22715

Let us see if we can increase the value of the objective func-
tion above the value z=8/3 attained in Tableau 22.4. Below we have
rewritten Tableau 22.4 with a pivot entry shaded. Again, we post-
pone unti! the next section a discussion of how this pivot entry was
chosen.

Tabieau 22.5

.'Bl .’L‘z .'.C3 .?:4 935 :L‘6 &
-1 1 0 -1/2 0 | 3 =,
4 1 /3 7hE L o= 5
0 1 0 0 1/6 e 3
1 0 0 0 2/3 1 l 8/3-} 5

Enter *,
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We apply the elementary row operations to the first column to con-
vert it to a column with a "1'" in the pivot position and zeros
everywhere else. Thus, £y will be the entering variable and xg will
be the departing variable, as the arrows in the tableau indicate.
The reader can easily verify that the elementary row operations nec-
essary will produce the next tableau!

Tableau 22.6

z, 2, s z, e g z
~2 -1/4 -7/12 = .r4
2 1/2 1/6 =
~1 -1/4 1/12 = $3
3 1/2 5/6 = z

Setting those variables not corresponding to the shaded columns
equal to zero yields the solution

=0, z=23/6.
(22.7)

For the linear programming problem, we then have the following basic
feasible solution and objective function value:

(776 1
H 0 H

g = 2;;%;! and  pra8%E (22.8)
0

0

xls?_/ﬁ, %,=0, £, =1/12, .754=29/12, a0y,

2 5 6

As we shall show in the next section, the value z= 23/6 is the lar-

gest value the objective function can -assume over the feasible set.

Thus we have reached an optimal solution. For the solution to Prob-
lem 22.3, we discard the slack variables x,, xs; x, and write

as the optimal solution, with the corresponding maximum 2z = 23/6 for
the objective function.

This example illustrates the kinds of calculations required to
implement the simplex method. In the next section we shall discuss
how to choose the pivot entry and how to determine if an optimal
solution has been reached.
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STeEPS IN THE SIMPLEX METHOD

In this section we shall outline the steps in the simplex
method and give an example. In the next section we shall discuss
their mathematical justification. The simplex method consists of
the following five steps:

STEP 1 Construct the initial tableau.

STEP 2 Test for optimality. If the tableau yields an
optimal solution, thewm stop; otherwise, continue
to Step &.

STEP 3 Determine the pivet colum.
STEP 4 Determine the pivot row.

STEP 5 Apply the elementary row operatione to obtain
all zercs im the pivot columm, except for a
"one! in the pivot row. Return o Step 2.

The details for Steps 2, 3, and 4 are as follows:

Test for Optimality. 1f all of the entries in the ob-
jective row are nonnegative (ignoring the rightmost entry)
the tableau determines an optimal solution.

Determination of Pivot Column. Choose the pivot column
so that i1t contains the most negative entry of the ob-
jective row (ignoring the rightmost entry).

Determination of Pivot Row. Ignoring the objective row,
divide each positive entry of the pivot column into the
last entry in its row. Choose the pivot row te be one
which yields the smallest such ratio.

The reader should return to the tableaus constructed in connection
with Problem 22.5 to verify that the pivot entries in each tableau
were selected according to the above rules, and also to verify that
Tableau 22.6 determines an optimal solution to the problem.

Let us apply the simplex method as described above to the fol-
lowing example:

EXAMPLE 2.1 Find values of Ly T zz which maximize

2= 3x14-¢r2+ ng
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subject to
3?;1+ 23:2+ 4m3 <9 JE
m14-2r2+ st o 7
Lyt xyt Ty S 6
and

xlﬂ Zos x3 > 0.

SOLUTION In standard form, this problem is

| Maximize = =3xl-+4m2-k2x3vFOx4-+Ox5-+0x6

subject to

3:n1+2:r2+4x3+x4 = 15
T r R,y THg = 7
2x1+ Ty * Ty +m6 = 6
and
xl, xz, x3, m4, ms, w6 > 0.
The initial tableau for the problem is then
Tableau 22.7
' -
i 3 2 15 = $4
i1 2 3 7 = xS
2 1 . 6 | = Zg
ts i) 5 ! 0_] -

The objective row contains negative entries, so that the initial
tableau does not determine an optimal solution. The most negative
entry, -4, lies in the second column, so that the second column will
be the pivot column. To determine the pivot row, we evaluate the
following ratios:
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1st row: 15/2=7%. 2nd row: 7/2=3%. 3rd row: 6/1=6.

The 2nd row yields the smallest ratio so that it will be the pivot
row. So far we have the following:

Tableau 22.8

.’L‘l .1',‘2 $3 .ra .'L'S .7.’,‘6 =
Deaart 3 4 1 0 O 0 15 =
T 1 3 0 1 a9 0 7=
7] 1 a 0 i 0 61=
-3 -4 2 o 0 0 1 i o_I = 3z
* P
Enter xz

We now apply the following elementary row operations to Tableau 22.8:

. Divide the 2Znd row by 2.

Add -2 times the 2nd row to the lst row.
Add -1 times the 2nd row to the 3rd row.
Add . 4 times the 2nd row to the 4th row.

o o =

The resulting tableau is the following:

Tahieauy 22.9

%, £y z. Z, zo T =z
2 1 -1 =z,

1/2 3/2 1/2 = x2
3/2 -1/2 -1/2 = xﬁ
4 2 = 2

The objective row still contains a negative entry, so that we have
not yet reached an optimal solution. The new pivot column is the
first since it contains the only negative entry of the objective
row. To determine the pivot row, we evaluate the following ratios:

Ist row: 8/2=4. 2nd Tow: (7/2)/(1/2)=7. 3rd row: (5/2)/(5/2)=1%.
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The third row yields the smallest ratio, so that it is the new pivot
row. S0 far, we have

Tableau 22.10

.rl :.."2 x3 .274 ms a’:6 z
0 1 1 -1 0 0 8 | ==z,
Deﬂart 1 3/2 0 1/2 0 0 7/2 = L
T o 0 -1/2 0 -1/2 1 0 5/2) = =,
0 4 0 2 0 1 14| =z
- & .
Enter *y

We now apply the following elementary row operations to Tableau
22.10:

. Divide the 3rd row by 3/2.

Add -2 times the 3rd row to the lst row.
Add -% times the 3rd row to the 2nd row.
. Add 1 times the 3rd row to the 4th row.

e S

The resulting tablieau is

Tableau 22.11

g T x -

5/3 -1/3 -4/3 14/3M1 =2,
5/3 2/3 ~1/$ 8/3 3§ = Ty
~1/3 -1/3 2/3 5/3 | = xy
11/3 5/3 2/3 47/3 | = 2

The objective row of this tableau does not contain any negative en-
tries and so this tableau determines an optimal solution. The basic
variables in the optimal basic feasible splution are xj, Zos and Zy
as the righthand labeling indicates. The optimal solution is

xlz.s/s, .7:2=8/3, :c3=0, x4=14/3, xsno, m6=0, B2=47/3.
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For the coriginal problem posed in this example, we discard the slack
variabies x4, %5, xg and simply write

m1=5/3, w2=8/3, x3=0, z2=47/3.

We conclude this section with some remarks concerning complica-
tions which may arise in the use of the simplex method as we have
described it:

I. In Step 3 it is possible that there is a tie for the most
negative entry in the objective row. In that case, any
one of them may be chosen, and no complications arise.

2. In Step 4 it is possible that there is more than one row
with the same smallest ratio. In that case, any one of
them may be used to determine the pivot row and no compli-
cations arise in the calculations, However, if such a tis
arises, it can be shown that the basic feasible solution
determined by the next tableau will be degenerate (i.e., will
have a basic variable whose value is zero). As discussed in
the last chapter, it is degeneracy which may bring about cy-
cling. But as we also mentioned, it is more a theoretical
problem than a practical problem.

3. In Step 4 it is pessible that no entry in the pivot columam
is positive, in which case our technique for evaluating the
pivot row is meaningless. It can be shown that if this
situation arises, the problem has an wunbounded solution.

JUSTIFICATION OF THE STEPS IN THE SIMPLEX METHOD

Let us return to the linear programming problem in »+m varia-
bles posed in Problem 22.2. Suppose at some point in our calcula-
tions we have arrived at Tableau 22.12. (In Exercise 22,11, we
ask the reader to show that in any tableau the column lzbeled "z' al-
ways has the form indicated.) Thus the current basic variables are

Lpqs Tppseoes Lpo with corresponding values dl’dz""’d%’ and the

current value of the cbiective variable is w. Let us see if the
entry Bop would make a suitable pivot entry. The entering variable
would be x, and the departing variable would be Lo It yrsgéo, the
elementary row operations in Step 5 of the simplex method wiil pro-

duce a tableau having the form of Tableau 22.13.
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Tableau 22.12

xl xz « e+ xs - a 'V‘n+m z

911 4] dl = wBI
Ir1 < d2 = gy

Depart . : . :

Ton €| Ypy 0 dp | = Ty
yml 0 dm = me
‘21 532 see @ wea C?@'!'m 1 w = g
4
Enter x
Tableau 22.13

xy x &
¥y ¥ 0 dl"yl$dr/yrs = p1
Y3 Y 0 dy = Ypg%pllips | * %52
g ¥ 0 dr/yrs =%
yrx, ¥ b Dy =Ygyl Yps | = Zom
ci c* 1 w"csdr/yrs " &

The pivot column now contains all zeros except for the "1" in the
previous pivol emtry position. All of the other entries in the
tableau have new values, which we indicate with asterisks, except
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in terms of the entries in Tableau 22.12. First, let us examine
the value of the entering variable Xy

@ = dfY, (22.10)

Since drio, we see that we must have Yy >0 in order to satisfy

the constraint x_>0. Let us list this fact as

OBSERVATION 22.1 The pivot entry must be positive in
order that the new tableau determine a feasible solution.

The remaining basic variables have values given by

xBi=di-y1isdr/yrs for 4=1,2%0.my e, [(22.11)

We must have xBif_O for the new solution to be feasible. Now if
for some 7 we have Uis s 0, then (22.11) states that for that <,
mBi?—O since dT:_>_O, dr?- g, gnd B ™ 0. On the other hand, if for
some 7 we have Bga® 0, then (21.11) requires that

di -

Y0yl Yy 2. O (22:12)

in order that Ly >0 for that <. Equation (22.12) can also be writ-
ten as

dr 7
— < — . : (22.13)
Ypg ~ Yis

In other words, Eq. (22.13) must be safisfied for ail those 7 for

which ¥jg > 0 in order that the new tableau determine a feasible
solution. We state this as

OBSERVATION 22.2 In order that the new tableau determine
a feasible solution, the following must be true: The ratio
of the element in the rightmost columm of the pivot row to
the pivot entry must be the smallest of the corresponding
. ratios in all of the other rows which contain positive en-

tries in the pitvot column (ignoring the objective row).
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Next; let us examine the new value w* of the objective function.
From Tableau 22.13, we see that

w*=w-c d [y (22.14)

e ¥ pg’
-Ideally, we would want the increase in the objective function
L 7 !
_? w csdr Ysis (i22.15)
to be as large as possible. But this would require that we compute

the quantities

"csdr/yrs

for all possible values of »r and & to find the largest one. Usually

this is not done because of the large nmumber of calculations this

would require. Instead, the entering variable x; is chosen so that

¢g is as negative as possible. Since d_>0 and y__>0, Eq. (22.15)
r- rs

then guarantees that

w¥-w > 0;

i.e., that the objective function does not decrease. As discussed
in the last chapter, this always eventually leads to an optimal
solution, except for the very remote possibility of cycling. Let
us summarize this as follows:

OBSERVATION 22.3 Choose the pivot colwmn so that it con—
tains the most negative entry of the objective row (ig-

noring the entry in the rightmost colwm).

Equation (22.15) also tells us the following: If all of the ¢'s are
nonnegative then the value of the objective function cannot increase,
regardless of the choice of pivot entry. In this case, we must

have already attained the maximum value of the objective function.
Thus, we have

UBSERVATION 22.4 If all of the entries in the objective
row, except for the rightmost emtry, are nonnegative,

the tableau determines an optimal solution.
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The above four observations justify the steps in the simplex

method.
Readers interested in pursuing linear programming in more de-

tail are referred to the following texts:

S. 1. Gass, Linear Programming, 4th ed. Neéw York: McGraw-Hill
Book Company, 1975, ‘

L. Cooper and D. Steinberg, Methods and Applications of Iinear
Programming, Philadelphia: W. B. Saunders Company, 1974.

EFXERCISES

In Exercises 22.1 to 55.6 solve the given linear programming prob-
lem by the simplex method.

22.1 _ Maximize == 3:61 + 43:2
_ subject to
2ml + 3332 =7
Sy + 28, < 3
and
Xys Ty 2 g,
22.2 Maximize &= Zml + m_2
subject to
3w, + 2302. < 4
3.7(:1+ @y L 3
Zx}. &3
and
xl, mz > 0.
22.3 Maximize == Sml - 2x2 + G.rs

subject to

and
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22.4 Maximize =z= 2.731 + L= Ty
subject to
Zml - 33:2 + xS
Ly + Sac2 - 2x3
le - 43:2 - &g

[ O PN
vy

and
-

f]

:cl, Ly Ly
22.5 Maximize z:SxI*ZxZ-x3+x4
subject to

2m1- 3:c2+3c3— .7::4
xl+2m2-m3+2w4

[A |a
B - 8

and

> 0

x s Fgs Ty 2

g

22.6 Maximize == @) - 2:::2 + 3.7:3 + L,

subject to

Ty~ mak X+ 3w, < 8

4
2zcl+3:c2— x3+23:4 <5
x1+ mz—-3m3+4a:4 <6

and
3:1, 3:2, xs, 'r;; >0

22.7 Solve Example 20.1 by the simplex method.
22.8 Solve Exercise 20.1 by the simplex method.
22.9 Solve Exercise 20.6 by the simplex method.
22.10 Solve Exercise 20.7 by the simplex method,

22,11 Show that in any tableau the column labeled "z" always has the
form indicated in Tableau 2Z.12.
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