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Linear
Programming 2:
Basic Concepts

The basic concepts needed to develop the
simplex method for solving linear program-

ming problems are presented.

PREREGUISITES: * Linear Systems
Matrices
Linear independence
Euclidean space R
Chapter 20: Linear Programming 1

INTRODUCTION

In the last chapter we presented a geometric technique for
solving linear programming problems in two variables. However, this
technique is net practical for the solution of linear programming
>roblems in three or more variables. In this chapter we develop the
fundamental ideas behind an algebraic technique, called the simplex
nethod, for solving linear programming problems in any number of
jariables. The simplex method itself is presented in Chapter 22.

The general linear programming problem in n variables, describ-
:d below, is analogous to Problem 20.1 in the last chapter.

303



304 / Basic Concepis
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PROBLEM 21.1 Find values of @y, ..., @, Which etther

maximize or minimize

g=qg., te deer b p
11 2:::2 nn

subject to
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As in Chapter 20, the linear function z in (21.1) is called the ob-
Jective function and conditions (21.2) and (21.3) are called the
constraints of the problem,

Por our purposes, it is necessary that we first convert our
general linear programming problem to the following standard form:

PROBLEM 21.2 PFind values of Lys Losenes T which maximize

I ) (21.4) §

subject to

lnxn = bl

2nxn =b 2

45 W o e -

Sggly T Egpis ™y I NS R

(21.5) §

-
.
.

a_,x,ka terrtg 3 =h
ml 1 ma 2 i 1 m

for =1, 2,..., 7,

Any linear programming problem can always be put in this standard
form using the following three steps:
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Step 1. Convert a minimization problem to a maximization pro-
blem by defining a new objective function

gt= -z,
For example, the preblem of minimizing the objective function

5= 23c1+ 3:02— Sms

i$ equivalent to the problém of maximizing the objective function

fom o, -
2 1 3 +5:):3

2

Step 2. Convert a > constraint to a < constraint by multipiy-
ing the inequality by -1. Thus, the constraint

&y T 2, - Awg > &

is the same as the coastraint

ml - 2x2 + 4m3 < -6,

Step 3. Convert a < constraint to an equality constraint by
adding a nonnegative slack variabie to the lefthand side of the in-
equality. For example, if the original problem contains three var-
iables, and one of the constraints is

@y - 20yt dxy < -6,

we add a new variabile x, > 0 to the lefthand side to obtain

a:l— 2m2+4m3+m4 = w6,

The variable x4 takes up the slack between the two sides of the in-
equality. In this way, a new variable is added to the problem for
each < constraint. We assign e¢ach slack variable introduced a co-
efficient ¢; =0 in the objective function, so that the objective
function is not affected by the values of the slack variables.

EXAMPLE 21.1 Convert the fellowing linear programming problem to
one in standard form:

Minimize &= 3x, - dx +3:3-.r

1 2 4
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Subject to
2m1+5x2-6x3— m4_<_2
x1-7x2-5:z:3+2m4 > 6
2x1-8x2-83:3+6x4 =5
and

Lys Lys Ly Ty > 0.

SoLUTION The first step is to multiply the objective function by
-1 to convert the problem to a maximization problem. The second
step is to multiply the second constraint by -1 to convert it to a
< inequality. The third step is to add slack variables zg and a4
to the first and second constraints to convert them to equalities.
The final problem in standard form is

- . _
Maximize =z 3m1+2x2 m3+:c4+0m5+0m6

subject to
2x1+5m2—6m3- Tyt g = 2
-ac1+7o:2+53:3—2x4 iy = -6
2x1—8x2—8m3+6:r4 = 5
and

xl, .7;2, .7:3, x4, xs, x6 > 0.

il i el

It will be convenient to use matrix notation to express Problem Z21.2
in a more compact form as follows (the expression x > 0 below denotes
that each entry of the vector x is nennegative):

PROBLEM 21.2 (in matrix notation)

Mininize z=c’x.

subject to




where
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In this formulation, the problem is to find a nonnegative vector x
in the vector space ' which satisfies the constraint condition
Ax=b and which makes the objective function z=c¥x as large as

possible.

Analogous to the terminology in Chapter 20, any nonnega-

tive vector x which satisfies the constraint 4x=b is called a
feasible solution to the linear programming problem. The set of all
feasible solutions in B" is called the feasible set or the feasible
region of the problem., A feasible solution which maximizes the ob-
jective functiom is called an optimal solution. As in Chapter 20,
there are three possible outcomes to a linear programming problem:

1)
(i1}

(iii)

The constraints are incensistent so that there
are no feasible solutiomns.

The feasible set is unbounded and the objective
function can be made arbitrarily large.

There is at least one coptimal sclution.

In most realistic applications only case (iii) arises.
We now examine the nature of the feasible set of a linear pro-
gramming problem. To begin, let us introduce the following defini-

tion:

DEFINITION 21.1 4 set of vectors in 2" is called convex
if whenever x; and X, belong to the set, so does the vec-

tor

for any number t in the interval [0, 1].

¥ = i:x1+ (1~ t}x2
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Geometrically, the vector X=1%xj +
(1-1%t)xy lies on the line segment
connecting the tips of the vec-
tors %7 and x2 (Fig. 21.1). Thus,
a convex set can be viewed as one
in which the line segment connect-
ing any two points in the set also
belongs to the set. Figures
-21.2(a), (), and (c¢) illustrate
three convex sets in R 2, Figure
21.1(d) is an example of a set in
RZ? which is not convex. In Exer-
cise 21.7, we ask the reader to
prove the following theorem:

THEOREM 21.1 The feasible
set of a standard Linear

programming problem is con-

X=X +t(xl-x

2 2)

= txl + 1= 't:)xz

Figuyre 21.1

{al . Convex

{b) Convex

{c} Convex

{di  Not Convex

Figure 21.2
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ExampLE 21,2 For the following linear programming problem:

Maximize z=3x, +x,- 22

1 2 3

subject to

3:cl+zc2+ ws = 10

2:1_;*1 -x, + 23:3 = 10
and

le mz: xs _?“ 0 E]
the feasible set consists of the g
portion of the intersection of A
the two planes : (0, 30/3,20/3)
Iz, v+ 2, = 10

1 2 3
2r. -x,+ 2x, = 10

1 2 3
which lies in the first octant of /

xixowrsy-space. As we ask the 5/2.0,5/2
reader to show in Exercise 21.8, (5/2, 0, '/. )
this intersection consists of the
line segment connecting the points

(s/2, 0, 5/2) and (0, 10/3, 20/3) “1

(Fig. 21.3), which is clearly
CONVex.
Figure 21.3

ExampLE 21.3 For the following linear programming problem:

Mav¥imi = "
Maximize &z =ux; 3m2+2x3

subject to
2m1+4:c2+3x3 = 12
and '

Ly Ly Xy >0,
the feasible set consists of the portion of the plane

25014- 4m2+ st = 12
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which lies in the first octant of
ryxoxz-space. The reader can
easily verify that Fig. 21.4 is
a diagram of this feasible set
and that it is convex.
e ot i

In Chapter 20, we introduced 2
the concept of an extreme point
of a feasible set in wxjxp-space. (0,0, 4)
For an arbitrary convex set in
R"™, the corresponding definition
is the following:

| DEFINITION 21.2 4 vector X
5_ in a convex set 18 an exitreme

peint of the comvex set if

x 7 %y + x,) | Figure 21.4

for any two vectors x, and X,
in the set. '

In other words, the extreme points of a convex set are those points
which do not lie midway between any two points in the set. For ex-
ample, the extreme points of the convex set illustrated in Fig. 21.2
are the two endpoints

{5/2, 0, 5/2) and (0, 10/3, 20/3)

of the straight-line segment. For the convex set illustrated in
Fig. 21.4, the extreme points are the three corner points

(6.0, 0}, (0, 3, 0}, and (9, ¢, 4)
of the triangular-shaped region.
Recall that in the last chapter we called a set in R 2 pounded

if it can be enclosed in a sufficiently large circle; that is, if
there is some positive radius r such that each point x= Gsl,xz) in

the set satisfies
HxH=Vm§+x§§zn

Similarly, we can define a bounded set in B” as follows:
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DEFINITION 21.3 4 set in R"is sald to be bounded if

there 18 some positive number r such that each point

X = (ml, CPTRRRE mn) in the set satisfiles

The following theorem, which is just Theorem 20.1 of Chapter 2¢
extended to the space ™, shows that if a linesr programming problem
has an optimal solution, it can be found among the extreme points of
the feasible set.

THEOREM 21.2 If the feastble set of a linear programming
problem ©s nonempty and.@aunded, then the objective func-
tion attains its maximum at an extreme point of the set.
If the feasible set ig unbounded, then the objective
function may or may not attain a maximm value; however,

if it attaine a mawimum value, 1t dees sc at an extreme

point.

The proof of this theorem follows the same lines as that outlined
in Chapter 20 for two variables. Let us apply this theorem to the
two problems posed in Examples 21.2 and 21.3.

ExamPLE 21,2 (REVISITED) g jijustrated in Fig. 21.3, the fea-

sible set for this problem is nonempty and bounded. Consequently,
by Theorem 21.2 the objective function

z=3x1+x2—2x3

attains its maximum at one of the two extreme points of the set.
At the extreme point
(5/2, 0, 5/2)
we have
' z = 5/2,
and at the extreme point
(o, 10/3, 20/3)
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we have
z = -10.

Thus, the maximum value of the objective function is z=5/2, and an
optimal solution to the problem is *y = 5/2, x,=0, and x,=5/2,

ExampLE 21,3 (REVIS'ITED) The feasible set of Example 21,3 is
illustrated in Fig. 21.4, Since it is nonempty and bounded, Theorem

21.2 guarantees that the objective function

=3, ~ Rn?+ 2z

I 3

attains its maximum value at one of the three extreme points. The
following table gives the values of the objective function at these
extreme points:

Extreme point Value of
(xl, Lo xS) By - 3:,32 +* 23:5_
(6, 0,-0) 6
{0, 3, 0) g o
(0, 0, 4) 8

Thus the maximum value of 2z is 8 and an optimal solution is =0,
.‘I.‘z ={, 5’33 =4,

In the above two examples (and in all of the examples in Chap-
ter 20) the extreme points of the feasible sets were found geometri-
cally., But geometric techniques are not possible if the problem has
more than three variables. In such cases, we need an algebraic
technique for generating the extreme points of the feasible set. In
the next section we describe such an algebraic technique.

Basic FEasiBLE SoLuTtions

Let us reexamine the linear system
Adx=b (21.7)
of Problem 21.2, where 4 is ap mxn matrix. Although it is not es-

sential, we will assume for simplicity that m<n; i.e., that there
are no mere constraints than variables. We shall also assume that
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the m rows of 4 are linearly independent. This implies that 4 con-
tains m linearly independent columns since the row space and column
space of any matrix have the same dimension. In Exercise 21.10, we
ask the reader to show that the linear system (21.7) can also be
written as

T@y FLB, 0 +:cnan=b (21.8)

where a7 (=1, 2,...,n) is the i-th column vector of the matrix 4.
Thus, solving Adx=b for x is equivalent te solving the vector equa-
tion (21.8) for x1, £,..., Tn. For convenience, we say that the
variable xz; "corresponds' to the column vector a{. As noted above,
there must exist at least one set of m linearly independent vectors
among the colummn vectors ay, az,..., a,. For example, suppose the
first m of these vectors, aj, &p,..., 8y, form such a set. Since
these m vectors lie in E™, and since R is m~dimensional, &j, ap,...,
ay constitute a basis for R™. Thus the vector b in (21.8) is
uniquely expressible as a linear compination of aj, a,..., @y. . That
is, there is a unique solution of (21.8) for which

xm+1 =eree = =), (21.9)

Similarly, any set of m linearly independent column vectors of 4
would lead to a solution of (21.8) in which n -m of the variables
are zero and the remaining m are uniquely determined. This suggests
the following definition: :

[

is ecalled a basic solution of the linear system Ax=b Lif
n-m of the variables Bys Tpseens &, are zer0 and the re-

maining m variables correspond to linearly independent

colwm vectors of A. The n-m zero variables are called
the nonbasic variables, and the m variables scorresponding
to the Zineéﬂy independent column vectors are called the

basic variables of x.
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A 1inear system of m equations in n variables has as many basic
solutions as there are sets of m linearly independent columns among
the n columns of the ceefficient matrix 4.

ExampLe 21.4 Find all basic solutions of the linear system

20

5

23:1 f.x3+4w4+2m

m1+x2—m3+ :n4+3:z:s = 10.

SOLUTION The coefficient matrix of the linear system is

2 0 1 4 2
ABiga 9 1 1zl

As we can see, any two columns of this matrix are linearly indepen-

dent. Thus to find a basic selution we choose any two of these col-
umns, set the three appropriate nonbasic variables equal to zers and
solve the resulting 2 x 2 linear system for the two basic variables.

For example, if we choose the two columns

2 1
a1=l and a = 1

we set the nonbasic variables

:cz, Ly and xg

equal to zerc and obtain the system

23:1 ta, = 20

X, -x, = 10

for the basic variables zq and xz. This system is easily found te
have the seolution 23 =10 and xz=0. The resulting basic solution te
the original problem is

i !‘—‘
o o e

=
o o©



Linear Programming II/ 315

where we have underlined the basic variables. As the reader can
verify, the ten possible pairs of columns of 4 lead to the following
ten ‘basic solutions:

r_;_q r_;_q_ [__1_0— f__l_g_ Follo] [ o]l [ollo] [o]
0 0 0 0|30 |5 k20 ol [of |o
0 0 0 0o ||20]]0 0! -4] |8 |0}(21.10)
0 0 0 o-llo]ls 0 6l lolta
0 0 0 0 0o 10 o fs| |2

where we have underlined the two basic variables in each case.
e

From (21.10), we see that the first four basic solutions are
equal as vectors in the vector space RS, Nevertheless, we shall
consider them to be distinct basic seolutions because they result
from different pairs of linearly independent columns of A. This
particular circumstance arises because one of the basic variables
in each of these four basic solutions is equal to zero. In general,
a basic solution is said to be degenerate if any of its basic varia-
bles is equal to zero. Otherwise, it is said to be nondegenerate.

Recall that the feasible set of a standard linear programming
problem consists of those vectors which satisfy a linear equation

Ax=b
and which satisfy the nonnegativity condition
x>0,

Adjoining the nonnegativity condition to the concept of a basic
solution we are led to the following definition:

DEFINITION 21.5 In a standard linear programming prob-
lem @ feasible solution which ig also a basic solution
of the system Ax=b is called « basic feasible solution:

We are now ready to state the following fundamental theorem in
the theory of linear programming:

TﬁEOREM 21.3 A vector x ig an extreme point of the feasi-
ble set of a linear progranming problem if and only if it
¢ a basic feasible solution of the problem,
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This theorem will yield an algebraic technique for finding extreme
points. The proof of this theorem is too long to present here. In-
stead, we refer the reader to any standard text in linear program-
ming theory , such as S.I. Gass, Linear Programming, 4th ed., New
York: McGraw-Hill Book Company, 1975.

ExampLE 21,5 Find an optil‘;ial solution of the linear programming
problem:

Maximize z=2,m1+3x2..x3.+4m5+x.6

- subject to

2z +x3+4w4+2x5=20

and
%55 mz, acs, x4, xs > 0.

SOLUTION As we ask the reader to show in Exercise 21.9, the feasi-
ble set of this problem is bounded. Consequently, from Theorem 21.2
the objective function attains its maximum value at an extreme point.
The linear system Ax=b in the comstraints is the same system con-
sidered in Example 21.4. Equations (21.10) give the ten basic solu-
tions of this linear system. Of these ten, the eight listed in
{21.11) are basic feasible solutions since they satisfy the nonnega-
tivity condition. Thus, from Theorem 21,3, the exXtreme points of
the feasible set are also given by Eq. {(21.11). (Notice that these
eight basic feasible solutions determine only five distinct extreme
points.) Below each of the eight basic feasible selutions we have
given the corresponding value of the objective function. From this
we see that z=70 is the maximm value of the objective function and
an optimal selution is xy=0, xy=30, ®3=20, x4=0, w5=0.

a— s o e o - - - e -
10 10 10 10 0 0 0 0
1] 0 0 0 130 5 0 0
Xp=| O fxy=1 0|xg= Ofxg=] 0ixc= 120 x.=]|0|x,={8|xz=|0
0 0 0 0 0 5 0 4
0 0 0 0 0 0 6 2
L - Lo = L L o L L

(21.11)
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The technique used in Example 21.5 can, in principle, be used
to solve any linear programming problem. However, the number of
basic feasible solutions quickly increases as the number of varia-
bles increases. For example, a linear programming problem with for-
ty variables and twenty equality constraints could have over 130
billion basic feasible solutions. It would be completely impracti-
cal to find all of them, even with the fastest computer. Chapter 21
describes a practical alternative to this technique called the eim-
plex method. We finish this chapter with a brief qualitative de-
scription. of the simplex méthod to prepare for that chapter.

INTRODUCTION TO THE SimpLEX MeTHOD

Let us 1ntroduce the f0110w1ng deflnltlon

" DEFINITION 21.6 In a Zznear prvgrammzng problenu w0
basic feasible solutions having m basie variables ave

sa%d to be adiacent i1f they have m~ 1 bastie varmables
in common. :

Geometrically, extreme points corresponding to adjacent basic fea-
sible solutions are connected by some '"edge' of the feasible set.
However, we shall mot pursue this geometric interpretation.

ExampLE 21.5 (REVISITED) Let us find the adjacent basic feasi-

ble selutions of the linear programming problem posed in Example
21.5. The eight basic feasible solutions of this problem are given
in Eq. (21.11). In Fig. 21.5 we have drawn a graph of the eight
basic feasible solutions. In this graph we have linked adjacent
basic feasible solutions with a single line. For example, xg5 and
x7 are adjacent because they have m~1=2-1=1 basic variable in
common, namely xz. On the other hand, x4 and x5 are not adjacent
since they do nmot have m- 1 =1 basic variable in commen.

e e i

The simplex method is a way of proceeding from one basic feasi-
ble solution to an adjacent basic feasible solution in such a way
that the value of the objective function never decreases. This
usually leads te a basic feasible solution for which the value of
the objective function is as large as possible. We say "usually"
because there is a slight complication caused by degeneracy which
we shall describe below.

In Fig. 21.6{a) we have redrawn Fig. 21.5 and labeled each of
the eight basic feasible solutions with the corresponding value of
the objective function as given by (21.11). If somehow we generate
Xg as a basic feasible solution, one can show that the simplex
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method will generate for us the adjacent basic feasible solution Xg-
The value of the objective function is thereby increased from z= 18
te z=35. From Xg, the simplex method will then generate the adja-
cent basic feasible solution xr, where 2=70. At all basic feasible
splutions adjacent teo X, the value of the objective function is
less than 76. Thus z=70 is the maximm value of the objective
function and x5 is an optimal solution to the problem.

If any of the basic feasible solutions is degenerate, however,
it is possible that the simplex method will not lead to an optimal
solution. Since the simplex method only guarantees that the value
of the objective function will not decrease, it is possible that the
situation described in Figure 21.6(b) might arise. Here, we move
around the basic feasible solutions xz, Xy, X7, and x4 indefinitely
without ever reaching the optimal basic feasible solution xg. This
phenomenen is known as cycling. Fortunately, it is not a serious
problem in realistic linear programming problems. The circumstances
which may preduce cycling are rarely encountered in practice; and
round-off error in a computer tends te destroy degeneracy so that a
loop such as in Fig. 21.6(b) is eventually exited. At any rate,
there are algorithms available which can eliminate cycling if it is
suspected to be encountered in some specific problem.

EXERCISES

21.1 Convert the following linear programming problem to one in
standard form: :

Minimize 2= 2z, + 5x

1 2
subject to
&rl— 6r, < 2
Tt X, <3
x4 > &
Ty 25
and

Tys Xy 2 g.

21.2 Convert the following linear programming problem to one in
standard form: :

+

Maximize &= —33:i +x2 3
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subject to
g~ Byt ag = §
—2x1~ Ty <2
xI > 5
mz > 2
and
Lys Eoy & > 0,

21.3 For

1’ 3
the following linear programming preblem in standard form:

‘Maximize z= 29:1 - Xyt wg + 3m4

subject to
.:cl a,* 2.173 = 2
ml +m%+m4=l.
and _
.’L'l, x2, xs, x4 >0,
{a) show that the feasible set is bounded,
(b) find all basic selutions of the linear system 4x=b,
- (¢} find all basic feasible solutions of the problem,

(d)
(e)

21.4 Fer

find an optimal solution and the maximum value of the
ebjective function,

draw a graph of the basic feasible solutions, as in
Fig. 21.5, in which adjacent basic¢ feasible solutieons
are linked with a single Iine.

the follewing linear programming problem in standard form:

Maximize =z=2z¢,-6x.+ 3z

subject to

and

(a)
(b)

1 2 3
x1+ 5332+'3m3 = 2
~.:c'1+ 2m2+4o:3 .m. 3

ml’ mz, :cs >0,

find all basic solutiens of the linear system Ax=b,
show that the problem has no basic feasible solutions.
(From this it follews that the feasible set of this
problem is empty.)
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21.5 For the following linear programming problem:

Maximize &= 3z +2m2—:c

1 3
subject to
2m1+33:2+ x_Si 4
x,l * 2.702 + 3m3 <5
and

x}’ mz: xssz_ Os

{a) convert the problem to one in standard form,

(b) find all basic solutions of the linear system Ax=Db in
the standard problem,

(¢) find all basic feasible solutions of the standard problem,

{d) find an optimal solution of the standard problem and the
maximum value of the objective function,

(e} draw a graph of the basic feasible solutions of the standard
problem, as in Fig. 21.5, in which adjacent basic feasible
selutions are linked with a single line.

(f) find an optimal seolutien of the original problem.

21.6 Repeat the instrictions in Exercise 21.5 for the linear pro-
gramming problem:

Minimize &= 2.91:1 - 3x2 +ac3

subject to

8
!
[
B
+
¥
HES
1

N
B
fomd
4
8
~
1
[
3]
L3
3
L3S

and

ml, Loy &g > 0.

21.7 Prove Theorem 2i.1 as follows:

{a) Show that if Ax =D and sz

X = tx1+ {1- t)xz for any ¢ in the interval [0, 1].

=h, then Adx=b if

(b) Show that if x;20 and x2_>_0, then x>0 if x=tx1+ (1~ t}x2
for any ¢ in the interval [0, 1].

21.8 Show that the feasible set of the linear programming problem
in Example 21,2 is the set i1llustrated in Fig. 21.3.
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21.9 Show that the feasible set of the linear programming problem
in Example 21.5 is bounded. Proceed as follows:

(a) From the constraint

23:1-+ Ty + 4.1:4 + st = 20

and the nonnegativity conditions x; >0 (£{=1,2,3,4,5) con-
clude that xiizﬂ for 1=1,3,4,5

(b) Add the two constraints together and conclude that Zy< 30.

(c) From {a) and (b), conclude that Hx” < r for some pesitive
number »,

21.10 Show that the linear system (21.7)} can be written in the vec-
tor form (21.8).
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