Chapter 4

Vector Spaces

4.1 Vectors in \mathbb{R}^n

Homework: [Textbook, §4.1 Ex. 15, 21, 23, 27, 31, 33(d), 45, 47, 49, 55, 57; p. 189-].

We discuss vectors in plane, in this section.

In physics and engineering, a vector is represented as a directed segment. It is determined by a length and a direction. We give a short review of vectors in the plane.

Definition 4.1.1 A vector \mathbf{x} in the plane is represented geometrically by a *directed line segment* whose *initial point* is the origin and whose terminal point is a point (x_1, x_2) as shown in the textbook,

page 180.

The bullet at the end of the arrow is the terminal point (x_1, x_2) . (See the textbook, page 180 for a better diagram.) This vector is represented by the same ordered pair and we write

$$\mathbf{x} = (x_1, x_2).$$

- 1. We do this because other information is superfluous. Two vectors $\mathbf{u} = (u_1, u_2)$ and $\mathbf{v} = (v_1, v_2)$ are equal if $u_1 = v_1$ and $u_2 = v_2$.
- 2. Given two vectors $\mathbf{u} = (u_1, u_2)$ and $\mathbf{v} = (v_1, v_2)$, we define **vector** addition

$$\mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2).$$

See the diagram in the textbook, page 180 for geometric interpretation of vector addition.

3. For a scalar c and a vector $\mathbf{v} = (v_1, v_2)$ define

$$c\mathbf{v} = (cv_1, cv_2)$$

See the diagram in the textbook, page 181 for geometric interpretation of scalar multiplication.

4. Denote $-\mathbf{v} = (-1)\mathbf{v}$.

Reading assignment: Read [Textbook, Example 1-3, p. 180-] and study all the diagrams.

Obviously, these vectors behave like row matrices. Following list of properties of vectors play a fundamental role in linear algebra. In fact, in the next section these properties will be abstracted to define vector spaces.

Theorem 4.1.2 Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be three vectors in the plane and let c, d be two scalar.

1. $\mathbf{u} + \mathbf{v}$ is a vector in the plane	$closure\ under\ addition$
$2. \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$	Commutative property of addition
3. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$	Associate property of addition
$4. (\mathbf{u} + 0) = \mathbf{u}$	$Additive\ identity$
5. $\mathbf{u} + (-1)\mathbf{u} = 0$	$Additive\ inverse$
6. $c\mathbf{u}$ is a vector in the plane	$closure\ under\ scalar\ multiplication$
7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$	$Distributive\ property of\ scalar\ mult.$
$8. (c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$	Distributive property of scalar mult.
9. $c(d\mathbf{u}) = (cd)\mathbf{u}$	Associate property of scalar mult.
$10. \ 1(\mathbf{u}) = \mathbf{u}$	Multiplicative identity property

Proof. Easy, see the textbook, page 182.

4.1.1 Vectors in \mathbb{R}^n

The discussion of vectors in plane can now be extended to a discussion of vectors in n-space. A vector in n-space is represented by an **ordered** n-**tuple** (x_1, x_2, \ldots, x_n) .

The set of all ordered n-tuples is called the n-space and is denoted by \mathbb{R}^n . So,

1. $\mathbb{R}^1 = 1 - space = set of all real numbers,$

- 2. $\mathbb{R}^2 = 2 space = set$ of all ordered pairs (x_1, x_2) of real numbers
- 3. $\mathbb{R}^3 = 3 space = set$ of all ordered triples (x_1, x_2, x_3) of real numbers
- 4. $\mathbb{R}^4 = 4 space = \text{set of all ordered quadruples } (x_1, x_2, x_3, x_4) \text{ of real numbers. } (Think of space-time.)$
- 5.
- 6. $\mathbb{R}^n = n$ -space = set of all ordered ordered n-tuples (x_1, x_2, \dots, x_n) of real numbers.

Remark. We do not distinguish between points in the n-space \mathbb{R}^n and **vectors** in n-space (defined similarly as in definition 4.1.1). This is because both are describled by same data or information. A vector in the n-space \mathbb{R}^n is denoted by (and determined) by an n-tuples (x_1, x_2, \ldots, x_n) of real numbers and same for a point in n-space \mathbb{R}^n . The i^{th} -entry x_i is called the i^{th} -coordinate.

Also, a point in n—space \mathbb{R}^n can be thought of as row matrix. (Some how, the textbook avoids saying this.) So, the addition and scalar multiplications can be defined is a similar way, as follows.

Definition 4.1.3 Let $\mathbf{u} = (u_1, u_2, \dots, u_n)$ and $\mathbf{v} = (v_1, v_2, \dots, v_n)$ be vectors in \mathbb{R}^n . The the sum of these two vectors is defined as the vector

$$\mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2, \dots, u_n + v_n).$$

For a scalar c, define scalar multiplications, as the vector

$$c\mathbf{u} = (cu_1, cu_2, \dots, cu_n).$$

Also, we define negative of \mathbf{u} as the vector

$$-\mathbf{u} = (-1)(u_1, u_2, \dots, u_n) = (-u_1, -u_2, \dots, -u_n)$$

and the difference

$$\mathbf{u} - \mathbf{v} = \mathbf{u} + (-\mathbf{v}) = (u_1 - v_1, u_2 - v_2, \dots, u_n - v_n).$$

Theorem 4.1.4 All the properties of theorem 4.1.2 hold, for any three vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in n-space \mathbb{R}^n and salars c, d.

Theorem 4.1.5 Let **v** be a vector in \mathbb{R}^n and let c be a scalar. Then,

1. v + 0 = v.

(Because of this property, **0** is called the **additive identity** in \mathbb{R}^n .)

Further, the additive identity unique. That means, if $\mathbf{v} + \mathbf{u} = \mathbf{v}$ for all vectors \mathbf{v} in \mathbb{R}^n than $\mathbf{u} = \mathbf{0}$.

2. Also $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$.

(Because of this property, $-\mathbf{v}$ is called the additive inverse of \mathbf{v} .) Further, the additive inverse of \mathbf{v} is unique. This means that $\mathbf{v} + \mathbf{u} = \mathbf{0}$ for some vector \mathbf{u} in \mathbb{R}^n , then $\mathbf{u} = -\mathbf{v}$.

3. $0\mathbf{v} = \mathbf{0}$.

Here the 0 on left side is the scalar zero and the bold $\mathbf{0}$ is the vector zero in \mathbb{R}^n .

- 4. $c\mathbf{0} = \mathbf{0}$.
- 5. If $c\mathbf{v} = \mathbf{0}$, then c = 0 or $\mathbf{v} = \mathbf{0}$.
- 6. $-(-\mathbf{v}) = \mathbf{v}$.

Proof. To prove that additive identity is unique, suppose $\mathbf{v} + \mathbf{u} = \mathbf{v}$ for all \mathbf{v} in \mathbb{R}^n . Then, taking $\mathbf{v} = \mathbf{0}$, we have $\mathbf{0} + \mathbf{u} = \mathbf{0}$. Therefore, $\mathbf{u} = \mathbf{0}$.

To prove that additive inverse is unique, suppose $\mathbf{v} + \mathbf{u} = \mathbf{0}$ for some vector \mathbf{u} . Add $-\mathbf{v}$ on both sides, from left side. So,

$$-\mathbf{v} + (\mathbf{v} + \mathbf{u}) = -\mathbf{v} + \mathbf{0}$$

$$(-\mathbf{v} + \mathbf{v}) + \mathbf{u} = -\mathbf{v}$$

So,

$$0 + \mathbf{u} = -\mathbf{v}$$
 So, $\mathbf{u} = -\mathbf{v}$.

We will also prove (5). So suppose $c\mathbf{v} = \mathbf{0}$. If c = 0, then there is nothing to prove. So, we assume that $c \neq 0$. Multiply the equation by c^{-1} , we have $c^{-1}(c\mathbf{v}) = c^{-1}\mathbf{0}$. Therefore, by associativity, we have $(c^{-1}c)\mathbf{v} = \mathbf{0}$. Therefore $1\mathbf{v} = \mathbf{0}$ and so $\mathbf{v} = \mathbf{0}$.

The other statements are easy to see. The proof is complete.

Remark. We denote a vector **u** in \mathbb{R}^n by a row $\mathbf{u} = (u_1, u_2, \dots, u_n)$. As I said before, it can be thought of a row matrix

$$\mathbf{u} = \left[\begin{array}{cccc} u_1 & u_2 & \dots & u_n \end{array} \right].$$

In some other situation, it may even be convenient to denote it by a column matrix:

$$\mathbf{u} = \left[\begin{array}{c} u_1 \\ u_2 \\ \dots \\ u_n \end{array} \right].$$

Obviously, we cannot mix the two (in fact, three) different ways.

Reading assignment: Read [Textbook, Example 6, p. 187].

Exercise 4.1.6 (Ex. 46, p. 189) Let $\mathbf{u} = (0, 0, -8, 1)$ and $\mathbf{v} = (1, -8, 0, 7)$. Find w such that $2\mathbf{u} + \mathbf{v} - 3\mathbf{w} = \mathbf{0}$.

Solution: We have

$$\mathbf{w} = \frac{2}{3}\mathbf{u} + \frac{1}{3}\mathbf{v} = \frac{2}{3}(0, 0, -8, 1) + \frac{1}{3}(1, -8, 0, 7) = (\frac{1}{3}, -\frac{8}{3}, -\frac{16}{3}, 3).$$

Exercise 4.1.7 (Ex. 50, p. 189) Let $\mathbf{u_1} = (1, 3, 2, 1), \mathbf{u_2} = (2, -2, -5, 4),$ $\mathbf{u_3} = (2, -1, 3, 6)$. If $\mathbf{v} = (2, 5, -4, 0)$, write \mathbf{v} as a linear combination of $\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3}$. If it is not possible say so.

Solution: Let $\mathbf{v} = a\mathbf{u_1} + b\mathbf{u_2} + c\mathbf{u_3}$. We need to solve for a, b, c. Writing the equation explicitly, we have

$$(2,5,-4,0) = a(1,3,2,1) + b(2,-2,-5,4) + c(2,-1,3,6).$$

Therefore

$$(2,5,-4,0) = (a+2b+2c,3a-2b-c,2a-5b+3c,a+4b+6c)$$

Equating entry-wise, we have system of linear equation

$$a +2b +2c = 2$$

 $3a -2b -c = 5$
 $2a -5b +3c = -4$
 $a +4b +6c = 0$

We write the augmented matrix:

$$\begin{bmatrix} 1 & 2 & 2 & 2 \\ 3 & -2 & -1 & 5 \\ 2 & -5 & 3 & -4 \\ 1 & 4 & 6 & 0 \end{bmatrix}$$

We use TI, to reduce this matrix to Gauss-Jordan form:

$$\left[
\begin{array}{cccc}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}
\right]$$

So, the system is consistent and a = 2, b = 1, c = -1. Therefore

$$\mathbf{v} = 2\mathbf{u_1} + \mathbf{u_2} - \mathbf{u_3},$$

which can be checked directly,

4.2 Vector spaces

Homework: [Textbook, §4.2 Ex.3, 9, 15, 19, 21, 23, 25, 27, 35; p.197].

The main point in the section is to define vector spaces and talk about examples.

The following definition is an **abstruction** of theorems 4.1.2 and theorem 4.1.4.

Definition 4.2.1 Let V be a set on which two operations (**vector addition** and **scalar multiplication**) are defined. If the listed axioms are satisfied for every $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in V and scalars c and d, then V is called a **vector space** (over the reals \mathbb{R}).

1. Addition:

- (a) $\mathbf{u} + \mathbf{v}$ is a vector in V (closure under addition).
- (b) $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (Commutative property of addition).
- (c) $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ (Associative property of addition).
- (d) There is a **zero vector 0** in V such that for every \mathbf{u} in V we have $(\mathbf{u} + \mathbf{0}) = \mathbf{u}$ (Additive identity).
- (e) For every \mathbf{u} in V, there is a vector in V denoted by $-\mathbf{u}$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$ (Additive inverse).

2. Scalar multiplication:

(a) $c\mathbf{u}$ is in V (closure under scalar multiplication).

- (b) $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$ (Distributive property of scalar mult.).
- (c) $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$ (Distributive property of scalar mult.).
- (d) $c(d\mathbf{u}) = (cd)\mathbf{u}$ (Associate property of scalar mult.).
- (e) $1(\mathbf{u}) = \mathbf{u}$ (Scalar identity property).

Remark. It is important to realize that a vector space consisits of four entities:

- 1. A set V of vectors.
- 2. A set of scalars. In this class, it will alawys be the set of real numbers \mathbb{R} . (Later on, this could be the set of complex numbers \mathbb{C} .)
- 3. A vector addition denoted by +.
- 4. A scalar multiplication.

Lemma 4.2.2 We use the notations as in definition 4.2.1. First, the zero vector **0** is unique, satisfying the property (1d) of definition 4.2.1.

Further, for any \mathbf{u} in V, the additive inverse $-\mathbf{u}$ is unique.

Proof. Suppose, there is another element θ that satisfy the property (1d). Since **0** satisfy (1d), we have

$$\theta = \theta + \mathbf{0} = \mathbf{0} + \theta = \mathbf{0}.$$

The last equality follows because θ satisfies the property (1d).

(The proof that additive inverse of \mathbf{u} unique is similar the proof of theorem 2.3.2, regarding matrices.) Suppose \mathbf{v} is another additive inverse of \mathbf{u} .

$$\mathbf{u} + \mathbf{v} = \mathbf{0}$$
 and $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.

So.

$$-\mathbf{u} = \mathbf{0} + (-\mathbf{u}) = (\mathbf{u} + \mathbf{v}) + (-\mathbf{u}) = \mathbf{v} + (\mathbf{u} + (-\mathbf{u})) = \mathbf{v} + \mathbf{0} = \mathbf{v}.$$

So, the proof is complete.

Reading assignment: Read [Textbook, Example 1-5, p. 192-]. These examples lead to the following list of important examples of vector spaces:

Example 4.2.3 Here is a collection examples of vector spaces:

- 1. The set \mathbb{R} of real numbers \mathbb{R} is a vector space over \mathbb{R} .
- 2. The set \mathbb{R}^2 of all ordered pairs of real numers is a vector space over \mathbb{R} .
- 3. The set \mathbb{R}^n of all ordered n—tuples of real numers a vector space over \mathbb{R} .
- 4. The set $C(\mathbb{R})$ of all continuous functions defined on the real number line, is a vector space over \mathbb{R} .
- 5. The set C([a,b]) of all continuous functions defined on interval [a,b] is a vector space over \mathbb{R} .
- 6. The set \mathbb{P} of all polynomials, with real coefficients is a vector space over \mathbb{R} .
- 7. The set \mathbb{P}_n of all polynomials of degree $\leq n$, with real coefficients is a vector space over \mathbb{R} .
- 8. The set $\mathbb{M}_{m,n}$ of all $m \times n$ matrices, with real entries, is a vector space over \mathbb{R} .

Reading assignment: Read [Textbook, Examples 6-6].

Theorem 4.2.4 Let V be vector space over the reals \mathbb{R} and \mathbf{v} be an element in V. Also let c be a scalar. Then,

- 1. $0\mathbf{v} = \mathbf{0}$.
- 2. $c\mathbf{0} = \mathbf{0}$.
- 3. If $c\mathbf{v} = \mathbf{0}$, then either c = 0 or $\mathbf{v} = \mathbf{0}$.
- 4. $(-1)\mathbf{v} = -\mathbf{v}$.

Proof. We have to prove this theorem using the definition 4.2.1. Other than that, the proof will be similar to theorem 4.1.5. To prove (1), write $\mathbf{w} = 0\mathbf{v}$. We have

$$\mathbf{w} = 0\mathbf{v} = (0+0)\mathbf{v} = 0\mathbf{v} + 0\mathbf{v} = \mathbf{w} + \mathbf{w}$$
 (by distributivity Prop.(2c)).

Add $-\mathbf{w}$ to both sides

$$\mathbf{w} + (-\mathbf{w}) = (\mathbf{w} + \mathbf{w}) + (-\mathbf{w})$$

By (1e) of 4.2.1, we have

$$0 = w + (w + (-w)) = w + 0 = w.$$

So, (1) is proved. The proof of (2) will be exactly similar.

To prove (3), suppose $c\mathbf{v} = \mathbf{0}$. If c = 0, then there is nothing to prove. So, we assume that $c \neq 0$. Multiply the equation by c^{-1} , we have $c^{-1}(c\mathbf{v}) = c^{-1}\mathbf{0}$. Therefore, by associativity, we have $(c^{-1}c)\mathbf{v} = \mathbf{0}$. Therefore $1\mathbf{v} = \mathbf{0}$ and so $\mathbf{v} = \mathbf{0}$.

To prove (4), we have

$$\mathbf{v} + (-1)\mathbf{v} = 1.\mathbf{v} + (-1)\mathbf{v} = (1-1)\mathbf{v} = 0.\mathbf{v} = \mathbf{0}.$$

This completes the proof.

Exercise 4.2.5 (Ex. 16, p. 197) Let V be the set of all fifth-degree polynomials with standard operations. Is it a vector space. Justify your answer.

Solution: In fact, V is not a vector space. Because V is not closed under addition(axiom (1a) of definition 4.2.1 fails): $f = x^5 + x - 1$ and $g = -x^5$ are in V but $f + g = (x^5 + x - 1) - x^5 = x - 1$ is not in V.

Exercise 4.2.6 (Ex. 20, p. 197) Let $V = \{(x,y) : x \ge 0, y \ge 0\}$ with standard operations. Is it a vector space. Justify your answer.

Solution: In fact, V is not a vector space. Not every element in V has an addditive inverse (axiom i(1e) of 4.2.1 fails): -(1,1) = (-1,-1) is not in V.

Exercise 4.2.7 (Ex. 22, p. 197) Let $V = \{(x, \frac{1}{2}x) : x \text{ real number}\}$ with standard operations. Is it a vector space. Justify your answer.

Solution: Yes, V is a vector space. We check all the properties in 4.2.1, one by one:

1. Addition:

(a) For real numbers x, y, We have

$$\left(x, \frac{1}{2}x\right) + \left(y, \frac{1}{2}y\right) = \left(x + y, \frac{1}{2}(x + y)\right).$$

So, V is closed under addition.

- (b) Clearly, addition is closed under addition.
- (c) Clearly, addition is associative.
- (d) The element $\mathbf{0} = (0,0)$ satisfies the property of the zero element.

4.3. SUBSPACES OF VECTOR SPACES

127

- (e) We have $-\left(x, \frac{1}{2}x\right) = \left(-x, \frac{1}{2}(-x)\right)$. So, every element in V has an additive inverse.
- 2. Scalar multiplication:
 - (a) For a scalar c, we have

$$c\left(x, \frac{1}{2}x\right) = \left(cx, \frac{1}{2}cx\right).$$

So, V is closed under scalar multiplication.

- (b) The distributivity $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$ works for \mathbf{u}, \mathbf{v} in V.
- (c) The distributivity $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$ works, for \mathbf{u} in V and scalars c, d.
- (d) The associativity $c(d\mathbf{u}) = (cd)\mathbf{u}$ works.
- (e) Also $1\mathbf{u} = \mathbf{u}$.

4.3 Subspaces of Vector spaces

We will skip this section, after we just mention the following.

Definition 4.3.1 A nonempty subset W of a vector space V is called a subspace of V if W is a vector space under the operations addition and scalar multiplication defined in V.

Example 4.3.2 Here are some obvious examples:

1. Let $W = \{(x,0) : x \text{ is real number}\}$. Then $W \subseteq \mathbb{R}^2$. (The notation $\subseteq \text{ reads as 'subset of'}$.) It is easy to check that W is a subspace of \mathbb{R}^2 .

- 2. Let W be the set of all points on any given line y = mx through the origin in the plane \mathbb{R}^2 . Then, W is a subspace of \mathbb{R}^2 .
- 3. Let P_2, P_3, P_n be vector space of polynomials, respectively, of degree less or equal to 2, 3, n. (See example 4.2.3.) Then P_2 is a subspace of P_3 and P_n is a subspace of P_{n+1} .

Theorem 4.3.3 Suppose V is a vector space over \mathbb{R} and $W \subseteq V$ is a **nonempty** subset of V. Then W is a subspace of V if and only if the following two closure conditions hold:

- 1. If \mathbf{u}, \mathbf{v} are in W, then $\mathbf{u} + \mathbf{v}$ is in W.
- 2. If \mathbf{u} is in W and c is a scalar, then $c\mathbf{u}$ is in W.

Reading assignment: Read [Textbook, Examples 1-5].

4.4 Spanning sets and linear indipendence

Homework. [Textbook, §4.4, Ex. 27, 29, 31; p. 219].

The main point here is to write a vector as linear combination of a give set of vectors.

Definition 4.4.1 A vector \mathbf{v} in a vector space V is called a **linear combination** of vectors $\mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_k}$ in V if \mathbf{v} can be written in the form

$$\mathbf{v} = c_1 \mathbf{u_1} + c_2 \mathbf{u_2} + \dots + c_k \mathbf{u_k},$$

where c_1, c_2, \ldots, c_k are scalars.

Definition 4.4.2 Let V be a vector space over \mathbb{R} and $S = \{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_k}\}$ be a subset of V. We say that S is a **spanning set** of V if every vector \mathbf{v} of V can be written as a liner combination of vectors in S. In such cases, we say that S **spans** V.

Definition 4.4.3 Let V be a vector space over \mathbb{R} and $S = \{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_k}\}$ be a subset of V. Then the **span of** S is the set of all linear combinations of vectors in S,

$$span(S) = \{c_1\mathbf{v_1} + c_2\mathbf{v_2} + \dots + c_k\mathbf{v_k} : c_1, c_2, \dots, c_k \text{ are scalars}\}.$$

- 1. The span of S is denoted by span(S) as above or $span\{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_k}\}$.
- 2. If V = span(S), then say V is spanned by S or S spans V.

Theorem 4.4.4 Let V be a vector space over \mathbb{R} and $S = \{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_k}\}$ be a subset of V. Then span(S) is a subspace of V.

Further, span(S) is the smallest subspace of V that contains S. This means, if W is a subspace of V and W contains S, then span(S) is contained in W.

Proof. By theorem 4.3.3, to prove that span(S) is a subspace of V, we only need to show that span(S) is closed under addition and scalar multiplication. So, let \mathbf{u}, \mathbf{v} be two elements in span(S). We can write

$$\mathbf{u} = c_1 \mathbf{v_1} + c_2 \mathbf{v_2} + \dots + c_k \mathbf{v_k}$$
 and $\mathbf{v} = d_1 \mathbf{v_1} + d_2 \mathbf{v_2} + \dots + d_k \mathbf{v_k}$

where $c_1, c_2, \ldots, c_k, d_1, d_2, \ldots, d_k$ are scalars. It follows

$$\mathbf{u} + \mathbf{v} = (c_1 + d_1)\mathbf{v_1} + (c_2 + d_2)\mathbf{v_2} + \dots + (c_k + d_k)\mathbf{v_k}$$

and for a scalar c, we have

$$c\mathbf{u} = (cc_1)\mathbf{v_1} + (cc_2)\mathbf{v_2} + \dots + (cc_k)\mathbf{v_k}.$$

So, both $\mathbf{u} + \mathbf{v}$ and $c\mathbf{u}$ are in span(S), because the are linear combination of elements in S. So, span(S) is closed under addition and scalar multiplication, hence a subspace of V.

To prove that span(S) is smallest, in the sense stated above, let W be subspace of V that contains S. We want to show span(S) is contained in W. Let \mathbf{u} be an element in span(S). Then,

$$\mathbf{u} = c_1 \mathbf{v_1} + c_2 \mathbf{v_2} + \dots + c_k \mathbf{v_k}$$

for some scalars c_i . Since $S \subseteq W$, we have $v_i \in W$. Since W is closed under addition and scalar multiplication, \mathbf{u} is in W. So, span(S) is contained in W. The proof is complete.

Reading assignment: Read [Textbook, Examples 1-6, p. 207-].

4.4.1 Linear dependence and independence

Definition 4.4.5 Let V be a vector space. A set of elements (vectors) $S = {\mathbf{v_1, v_2, ... v_k}}$ is said to be **linearly independent** if the equation

$$c_1\mathbf{v_1} + c_2\mathbf{v_2} + \dots + c_k\mathbf{v_k} = \mathbf{0}$$

has only trivial solution

$$c_1 = 0, c_2 = 0, \dots, c_k = 0.$$

We say S is **linearly dependent**, if S in not linearly independent. (This means, that S is said to be linearly dependent, if there is at least one nontrivial (i.e. nonzero) solutions to the above equation.)

Testing for linear independence

Suppose V is a subspace of the n-space \mathbb{R}^n . Let $S = \{\mathbf{v_1}, \mathbf{v_2}, \dots \mathbf{v_k}\}$ be a set of elements (i.e. vectors) in V. To test whether S is linearly independent or not, we do the following:

1. From the equation

$$c_1\mathbf{v_1} + c_2\mathbf{v_2} + \dots + c_k\mathbf{v_k} = \mathbf{0},$$

write a homogeneous system of equations in variabled c_1, c_2, \ldots, c_k .

- 2. Use Gaussian elemination (with the help of TI) to determine whether the system has a unique solutions.
- 3. If the system has only the trivial solution

$$c_1 = 0, c_2 = 0, \cdots, c_k = 0,$$

then S is linearly independent. Otherwise, S is linearly dependent.

Reading assignment: Read [Textbook, Eamples 9-12, p. 214-216].

Exercise 4.4.6 (Ex. 28. P. 219) Let $S = \{(6, 2, 1), (-1, 3, 2)\}$. Determine, if S is linearly independent or dependent?

Solution: Let

$$c(6,2,1) + d(-1,3,2) = (0,0,0).$$

If this equation has only trivial solutions, then it is linealry independent. This equaton gives the following system of linear equations:

$$6c -d = 0$$
$$2c +3d = 0$$
$$c +2d = 0$$

The augmented matrix for this system is

$$\begin{bmatrix} 6 & -1 & 0 \\ 2 & 3 & 0 \\ 1 & 2 & 0 \end{bmatrix}. its gauss - Jordan form: \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

So, c = 0, d = 0. The system has only trivial (i.e. zero) solution. We conclude that S is linearly independent.

Exercise 4.4.7 (Ex. 30. P. 219) Let

$$S = \left\{ \left(\frac{3}{4}, \frac{5}{2}, \frac{3}{2} \right), \left(3, 4, \frac{7}{2} \right), \left(-\frac{3}{2}, 6, 2 \right) \right\}.$$

Determine, if S is linearly independent or dependent?

Solution: Let

$$a\left(\frac{3}{4}, \frac{5}{2}, \frac{3}{2}\right) + b\left(3, 4, \frac{7}{2}\right) + c\left(-\frac{3}{2}, 6, 2\right) = (0, 0, 0).$$

If this equation has only trivial solutions, then it is linealry independent. This equaton gives the following system of linear equations:

The augmented matrix for this system is

$$\begin{bmatrix} \frac{3}{4} & 3 & -\frac{3}{2} & 0 \\ \frac{5}{2} & 4 & 6 & 0 \\ \frac{3}{2} & \frac{7}{2} & 2 & 0 \end{bmatrix}. its Gaus - Jordan form \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

So, a = 0, b = 0, c = 0. The system has only trivial (i.e. zero) solution. We conclude that S is linearly independent.

Exercise 4.4.8 (Ex. 32. P. 219) Let

$$S = \{(1,0,0), (0,4,0), (0,0,-6), (1,5,-3)\}.$$

Determine, if S is linearly independent or dependent?

Solution: Let

$$c_1(1,0,0) + c_2(0,4,0) + c_3(0,0,-6) + c_4(1,5,-3) = (0,0,0).$$

If this equation has only trivial solutions, then it is linealry independent. This equaton gives the following system of linear equations:

$$c_1 + c_4 = 0$$

 $4c_2 5c_4 = 0$
 $-6c_3 -3c_4 = 0$

The augmented matrix for this system is

Correspondingly:

$$c_1 + c_4 = 0$$
, $c_2 + 1.25c_4 = 0$, $c_3 + .5c_4 = 0$.

With $c_4 = t$ as parameter, we have

$$c_1 = -t$$
, $c_2 = -1.25t$, $c_3 = .5t$, $c_4 = t$.

The equation above has nontrivial (i.e. nonzero) solutions. So, S is linearly dependent.

Theorem 4.4.9 Let V be a vector space and $S = \{\mathbf{v_1}, \mathbf{v_2}, \dots \mathbf{v_k}\}, k \geq 2$ a set of elements (vectors) in V. Then S is linearly dependent if and only if one of the vectors v_j can be written as a linear combination of the other vectors in S.

Proof. (\Rightarrow) : Assume S is linearly dependent. So, the equation

$$c_1\mathbf{v_1} + c_2\mathbf{v_2} + \dots + c_k\mathbf{v_k} = \mathbf{0}$$

has a nonzero solution. This means, at least one of the c_i is nonzero. Let c_r is the last one, with $c_r \neq 0$. So,

$$c_1\mathbf{v_1} + c_2\mathbf{v_2} + \dots + c_r\mathbf{v_r} = \mathbf{0}$$

and

$$\mathbf{v_r} = -\frac{c_1}{c_r} \mathbf{v_1} - \frac{c_2}{c_r} \mathbf{v_2} - \dots - \frac{c_{r-1}}{c_r} \mathbf{v_{r-1}}.$$

So, $\mathbf{v_r}$ is a linear combination of other vectors and this implication is proved.

 (\Rightarrow) : to prove the other implication, we assume that $\mathbf{v_r}$ is linear combination of other vectors. So

$$\mathbf{v_r} = (c_1\mathbf{v_1} + c_2\mathbf{v_2} + \dots + c_{r-1}\mathbf{v_{r-1}}) + (c_{r+1}\mathbf{v_{r+1}} + \dots + c_k\mathbf{v_k}).$$

So,

$$(c_1\mathbf{v_1} + c_2\mathbf{v_2} + \dots + c_{r-1}\mathbf{v_{r-1}}) - \mathbf{v_r} + (c_{r+1}\mathbf{v_{r+1}} + \dots + c_k\mathbf{v_k}) = \mathbf{0}.$$

The left hand side is a nontrivial (i.e. nozero) linear combination, because $\mathbf{v_r}$ has coefficient -1. Therefore, S is linearly dependent. This completes the proof.

4.5 Basis and Dimension

Homework: [Textbook, §4.5 Ex. 1, 3, 7, 11, 15, 19, 21, 23, 25, 28, 35, 37, 39, 41,45, 47, 49, 53, 59, 63, 65, 71, 73, 75, 77, page 231].

The main point of the section is

- 1. To define basis of a vector space.
- 2. To define dimension of a vector space.

These are, probably, the two most fundamental concepts regarding vector spaces.

Definition 4.5.1 Let V be a vector space and $S = \{\mathbf{v_1}, \mathbf{v_2}, \dots \mathbf{v_k}\}$ be a set of elements (vectors) in V. We say that S is a **basis** of V if

- 1. S spans V and
- 2. S is linearly independent.

Remark. Here are some some comments about finite and infinite basis of a vector space V:

- 1. We avoided discussing infinite spanning set S and when an infinite S is linearly independent. We will continue to avoid to do so. ((1) An infinite set S is said span V, if each element $\mathbf{v} \in V$ is a linear combination of finitely many elements in V. (2) An infinite set S is said to be linearly independent if any finitely subset of S is linearly independent.)
- 2. We say that a vector space V is **finite dimensional**, if V has a basis consisting of finitely many elements. Otherwise, we say that V is **infinite dimensional**.
- 3. The vector space P of all polynomials (with real coefficients) has infinite dimension.

Example 4.5.2 (example 1, p 221) Most standard example of basis is the standard basis of \mathbb{R}^n .

1. Consider the vector space \mathbb{R}^2 . Write

$$e_1 = (1, 0), e_2 = (0, 1).$$

Then, $\mathbf{e_1}$, $\mathbf{e_2}$ form a basis of \mathbb{R}^2 .

4.5. BASIS AND DIMENSION

137

2. Consider the vector space \mathbb{R}^3 . Write

$$\mathbf{e_1} = (1, 0, 0), \mathbf{e_2} = (0, 1, 0), \mathbf{e_2} = (0, 0, 1).$$

Then, $\mathbf{e_1}$, $\mathbf{e_2}$, $\mathbf{e_3}$ form a basis of \mathbb{R}^3 .

Proof. First, for any vector $\mathbf{v} = (x_1, x_2, x_3) \in \mathbb{R}^3$, we have

$$\mathbf{v} = x_1 \mathbf{e_1} + x_2 \mathbf{e_2} + x_3 \mathbf{e_3}.$$

So, \mathbb{R}^3 is spanned by $\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}$.

Now, we prove that $\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}$ are linearly independent. So, suppose

$$c_1\mathbf{e_1} + c_2\mathbf{e_2} + c_3\mathbf{e_3} = \mathbf{0}$$
 OR $(c_1, c_2, c_3) = (0, 0.0).$

So, $c_1 = c_2 = c_3 = 0$. Therefore, $\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}$ are linearly independent. Hence $\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}$ forms a basis of \mathbb{R}^3 . The proof is complete.

3. More generally, consider vector space \mathbb{R}^n . Write

$$\mathbf{e_1} = (1, 0, \dots, 0), \mathbf{e_2} = (0, 1, \dots, 0), \dots, \mathbf{e_n} = (0, 0, \dots, 1).$$

Then, $\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}, \dots, \mathbf{e_n}$ form a basis of \mathbb{R}^n . The proof will be similar to the above proof. This basis is called the **standard** basis of \mathbb{R}^n .

Example 4.5.3 Consider

$$\mathbf{v_1} = (1, 1, 1), \mathbf{v_2} = (1, -1, 1), \mathbf{v_3} = (1, 1, -1)$$
 in \mathbb{R}^3 .

Then $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}$ form a basis for \mathbb{R}^3 .

Proof. First, we prove that v_1, v_2, v_3 are linearly independent. Let

$$c_1\mathbf{v_1} + c_2\mathbf{v_2} + c_3\mathbf{v_3} = \mathbf{0}.$$
 OR $c_1(1,1,1) + c_2(1,-1,1) + c_3(1,1,-1) = (0,0,0).$

We have to prove $c_1 = c_2 = c_3 = 0$. The equations give the following system of linear equations:

$$c_1 +c_2 +c_3 = 0$$

$$c_1 -c_2 +c_3 = 0$$

$$c_1 +c_2 -c_3 = 0$$

The augmented matrix is

$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & -1 & 1 & 0 \\ 1 & 1 & -1 & 0 \end{bmatrix} its Gauss - Jordan form \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

So, $c_1 = c_2 = c_3 = 0$ and this estblishes that $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}$ are linearly independent.

Now to show that $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}$ spans \mathbb{R}^3 , let $\mathbf{v} = (x_1, x_2, x_3)$ be a vector in \mathbb{R}^3 . We have to show that, we can find c_1, c_2, c_3 such that

$$(x_1, x_2, x_3) = c_1 \mathbf{v_1} + c_2 \mathbf{v_2} + c_3 \mathbf{v_3}$$

OR

$$(x_1, x_2, x_3) = c_1(1, 1, 1) + c_2(1, -1, 1) + c_3(1, 1, -1).$$

This gives the system of linear equations:

$$\begin{bmatrix} c_1 & +c_2 & +c_3 \\ c_1 & -c_2 & +c_3 \\ c_1 & +c_2 & -c_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \quad OR \quad \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

The coefficient matrix

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix} \quad has inverse \quad A^{-1} = \begin{bmatrix} 0 & .5 & .5 \\ .5 & -.5 & 0 \\ .5 & 0 & -.5 \end{bmatrix}.$$

So, the above system has the solution:

$$\begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = A^{-1} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 & .5 & .5 \\ .5 & -.5 & 0 \\ .5 & 0 & -.5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$$

So, each vector (x_1, x_2, x_3) is in the span of $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}$. So, they form a basis of \mathbb{R}^3 . The proof is complete.

Reading assignment: Read [Textbook, Examples 1-5, p. 221-224].

Theorem 4.5.4 Let V be a vector space and $S = \{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\}$ be a basis of V. Then every vector \mathbf{v} in V can be written in one and only one way as a linear combination of vectors in S. (In other words, \mathbf{v} can be written as a unique linear combination of vectors in S.)

Proof. Since S spans V, we can write \mathbf{v} as a linear combination

$$\mathbf{v} = c_1 \mathbf{v_1} + c_2 \mathbf{v_2} + \cdots + c_n \mathbf{v_n}$$

for scalars c_1, c_2, \ldots, c_n . To prove uniqueness, also let

$$\mathbf{v} = d_1 \mathbf{v_1} + d_2 \mathbf{v_2} + \dots + d_n \mathbf{v_n}$$

for some other scalars d_1, d_2, \ldots, d_n . Subtracting, we have

$$(c_1 - d_1)\mathbf{v_1} + (c_2 - d_2)\mathbf{v_2} + \dots + (c_n - d_n)\mathbf{v_n} = \mathbf{0}.$$

Since, $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$ are also linearly independent, we have

$$c_1 - d_1 = 0, c_2 - d_2 = 0, \dots, c_n - d_n = 0$$

OR

$$c_1 = d_1, c_2 = d_2, \dots, c_n = d_n.$$

This completes the proof.

Theorem 4.5.5 Let V be a vector space and $S = {\mathbf{v_1, v_2, ..., v_n}}$ be a basis of V. Then every set of vectors in V containing more than nvectors in V is linearly dependent.

Proof. Suppose $S_1 = \{\mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_m}\}$ ne a set of m vectors in V, with m > n. We are requaired to prove that the zero vector **0** is a nontrivial (i.e. nonzero) linear combination of elements in S_1 . Since S is a basis, we have

$$\mathbf{u_1} = c_{11}\mathbf{v_1} + c_{12}\mathbf{v_2} + \cdots + c_{1n}\mathbf{v_n}$$

$$\mathbf{u_2} = c_{21}\mathbf{v_1} + c_{22}\mathbf{v_2} + \cdots + c_{2n}\mathbf{v_n}$$

$$\cdots \cdots \cdots \cdots \cdots$$

$$\mathbf{u_m} = c_{m1}\mathbf{v_1} + c_{m2}\mathbf{v_2} + \cdots + c_{mn}\mathbf{v_n}$$

Consider the system of linear equations

$$c_{11}x_1 + c_{22}x_2 + \cdots + c_{m1}x_m = 0$$

$$c_{12}x_1 + c_{22}x_2 + \cdots + c_{m2}x_m = 0$$

$$\cdots \cdots \cdots \cdots \cdots$$

$$c_{1n}x_1 + c_{2n}x_2 + \cdots + c_{mn}x_m = 0$$

which is

$$\begin{bmatrix} c_{11} & c_{22} & \cdots & c_{m1} \\ c_{12} & c_{22} & \cdots & c_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ c_{1n} & c_{2n} & \cdots & c_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Since m > n, this homegeneous system of linear equations has fewer equations than number of variables. So, the system has a nonzero solution (see [Textbook, theorem 1.1, p 25]). It follows that

$$x_1\mathbf{u_1} + x_2\mathbf{u_2} + \dots + x_m\mathbf{u_m} = \mathbf{0}.$$

We justify it as follows: First,

$$\begin{bmatrix} \mathbf{u_1} & \mathbf{u_2} & \dots & \mathbf{u_m} \end{bmatrix} = \begin{bmatrix} \mathbf{v_1} & \mathbf{v_2} & \dots & \mathbf{v_n} \end{bmatrix} \begin{bmatrix} c_{11} & c_{22} & \dots & c_{m1} \\ c_{12} & c_{22} & \dots & c_{m2} \\ \dots & \dots & \dots & \dots \\ c_{1n} & c_{2n} & \dots & c_{mn} \end{bmatrix}$$

and then

$$x_1\mathbf{u_1} + x_2\mathbf{u_2} + \ldots + x_m\mathbf{u_m} = \begin{bmatrix} \mathbf{u_1} & \mathbf{u_2} & \ldots & \mathbf{u_m} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \ldots \\ x_m \end{bmatrix}$$

which is

which is

$$= \left[\begin{array}{cccc} \mathbf{v_1} & \mathbf{v_2} & \dots & \mathbf{v_n} \end{array} \right] \left[\begin{array}{c} 0 \\ 0 \\ \dots \\ 0 \end{array} \right] = \mathbf{0}.$$

Alternately, at your level the proof will be written more explicitly as follows: $x_1\mathbf{u_1} + x_2\mathbf{u_2} + \ldots + x_m\mathbf{u_m} =$

$$\sum_{j=i}^{m} x_{j} \mathbf{u_{j}} = \sum_{j=1}^{m} x_{j} \left(\sum_{i=1}^{n} c_{ij} \mathbf{v_{i}} \right) = \sum_{i=1}^{n} \left(\sum_{j=1}^{m} c_{ij} x_{j} \right) \mathbf{v_{i}} = \sum_{i=1}^{n} 0 \mathbf{v_{i}} = \mathbf{0}.$$

The proof is complete.

Theorem 4.5.6 Suppose V is a vector space and V has a basis with n vectors. Then, every basis has n vectors.

Proof. Let

$$S = {\mathbf{v_1, v_2, \dots, v_n}}$$
 and $S_1 = {\mathbf{u_1, u_2, \dots, u_m}}$

be two bases of V. Since S is a basis and S_1 is linearly independent, by theorem 4.5.5, we have $m \leq n$. Similarly, $n \leq m$. So, m = n. The proof is complete.

Definition 4.5.7 If a vector space V has a basis consisting of n vectors, then we say that dimension of V is n. We also write $\dim(V) = n$. If $V = \{0\}$ is the zero vector space, then the dimension of V is defined as zero.

(We say that the dimension of V is equal to the 'cardinality' of any basis of V. The word 'cardinality' is used to mean 'the number of elements' in a set.)

Theorem 4.5.8 Suppose V is a vector space of dimension n.

- 1. Suppose $S = \{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\}$ is a set of n linearly independent vectors. Then S is basis of V.
- 2. Suppose $S = \{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\}$ is a set of n vectors. If S spans V, then S is basis of V.

Remark. The theorem 4.5.8 means that, if dimension of V matches with the number of (i.e. 'cardinality' of) S, then to check if S is a basis of V or not, you have check only one of the two required prperties (1) independence or (2) spanning.

Example 4.5.9 Here are some standard examples:

1. We have $\dim(\mathbb{R}) = 1$. This is because $\{1\}$ forms a basis for \mathbb{R} .

4.5. BASIS AND DIMENSION

143

2. We have $\dim(\mathbb{R}^2) = 2$. This is because the standard basis

$$e_1 = (1,0), e_2 = (0,1)$$

consist of two elements.

3. We have $\dim(\mathbb{R}^3) = 3$. This is because the standard basis

$$e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1)$$

consist of three elements.

4. Mor generally, $\dim(\mathbb{R}^n) = n$. This is because the standard basis

$$\mathbf{e_1} = (1, 0, 0, \dots, 0), \mathbf{e_2} = (0, 1, 0, \dots, 0), \dots, \mathbf{e_n} = (0, 0, \dots, 1)$$

consist of n elements.

5. The dimension of the vector space $\mathbb{M}_{m,n}$ of all $m \times n$ matrices is mn. Notationally, $\dim(\mathbb{M}_{m,n}) = mn$. To see this, let $\mathbf{e_{ij}}$ be the $m \times n$ matrix whose $(i,j)^{th}$ —entry is 1 and all the rest of the entries are zero. Then,

$$S = {\mathbf{e_{ij}} : i = 1, 2, \dots, m; j1, 2, \dots, n}$$

forms a basis of $\mathbb{M}_{m,n}$ and S has mn elements.

- 6. Also recall, if a vector space V does not have a finite basis, we say V is inifinite dimensional.
 - (a) The vector space \mathbb{P} of all polynomials (with real coefficients) has infinite dimension.
 - (b) The vector space $C(\mathbb{R})$ of all continuous real valued functions on real line \mathbb{R} has infinite dimension.

Exercise 4.5.10 (Ex. 4 (changed), p. 230) Write down the standard basis of the vector space $\mathbb{M}_{3,2}$ of all 3×2 -matrices with real entires.

Solution: Let $\mathbf{e_{ij}}$ be the 3×2 -matrix, whose $(i, j)^{th}$ -entry is 1 and all other entries are zero. Then,

$$\left\{e_{11},e_{12},e_{21},e_{22},e_{31},e_{32}\right\}$$

forms a basis of $M_{3,2}$. More explicitly,

$$\mathbf{e_{11}} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad \mathbf{e_{12}} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad \mathbf{e_{21}} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}$$

and

$$\mathbf{e_{22}} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad \mathbf{e_{31}} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}, \quad \mathbf{e_{33}} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

It is easy to verify that these vectors in \mathbb{M}_{32} spans \mathbb{M}_{32} and are linearly independent. So, they form a basis.

Exercise 4.5.11 (Ex. 8. p. 230) Explain, why the set $S = \{(-1, 2), (1, -2), (2, 4)\}$ is not a basis of \mathbb{R}^2 ?

Solution: Note

$$(-1,2) + (1,-2) + 0(2,4) = (0,0).$$

So, these three vectors are not linearly independent. So, S is not a basis of \mathbb{R}^2 .

Alternate argument: We have $\dim(\mathbb{R}^2) = 2$ and S has 3 elements. So, by theorem 4.5.6 above S cannot be a basis.

Exercise 4.5.12 (Ex. 16. p. 230) Explain, why the set

$$S = \{(2, 1, -2), (-2, -1, 2), (4, 2, -4)\}$$

is not a basis of \mathbb{R}^3 ?

Solution: Note

$$(4,2,-4) = (2,1,-2) - (-2,-1,2)$$

OR

$$(2,1,-2) - (-2,-1,2) - (4,2,-4) = (0,0,0).$$

So, these three vectors are linearly dependent. So, S is not a basis of \mathbb{R}^3 .

Exercise 4.5.13 (Ex. 24. p. 230) Explain, why the set

$$S = \{6x - 3, 3x^2, 1 - 2x - x^2\}$$

is not a basis of \mathbb{P}_2 ?

Solution: Note

$$1 - 2x - x^2 = -\frac{1}{3}(6x - 3) - \frac{1}{3}(3x^2)$$

OR

$$(1-2x-x^2) + \frac{1}{3}(6x-3) + \frac{1}{3}(3x^2) = \mathbf{0}.$$

So, these three vectors are linearly dependent. So, S is not a basis of \mathbb{P}_2 .

Exercise 4.5.14 (Ex. 36,p.231) Determine, whether

$$S = \{(1, 2), (1, -1)\}$$

is a basis of \mathbb{R}^2 or not?

Solution: We will show that S is linearly independent. Let

$$a(1,2) + b(1,-1) = (0,0).$$

Then

$$a + b = 0$$
, and $2a - b = 0$.

Solving, we get a = 0, b = 0. So, these two vectors are linearly independent. We have dim $(\mathbb{R}^2) = 2$. Therefore, by theorem 4.5.8, S is a basis of \mathbb{R}^2 .

Exercise 4.5.15 (Ex. 40. p.231) Determine, whether

$$S = \{(0,0,0), (1,5,6), (6,2,1)\}$$

is a basis of \mathbb{R}^3 or not?

Solution: We have

$$1.(0,0,0) + 0.(1,5,6) + 0.(6,2,1) = (0,0,0).$$

So, S is linearly dependent and hence is not a basis of \mathbb{R}^3 .

Remark. In fact, any subset S of a vector space V that contains $\mathbf{0}$ is linearly dependent.

Exercise 4.5.16 (Ex. 46. p.231) Determine, whether

$$S = \left\{4t - t^2, 5 + t^3, 3t + 5, 2t^3 - 3t^2\right\}$$

is a basis of \mathbb{P}_3 or not?

Solution: Note the standard basis

$$\left\{1, t, t^2, t^3\right\}$$

of \mathbb{P}_3 has four elements. So, dim $(\mathbb{P}_3) = 4$. Because of theorem 4.5.8, we will try to check, if S is linearly independent or not. So, let

$$c_1(4t - t^2) + c_2(5 + t^3) + c_3(3t + 5) + c_4(2t^3 - 3t^2) = 0$$

for some scalars c_1, c_2, c_3, c_4 . If we simplify, we get

$$(5c_2 + 5c_3) + (4c_1 + 3c_3)t + (-c_1 - 3c_4)t^2 + (c_2 + 2c_4)t^3 = 0$$

Recall, a polynomial is zero if and only if all the coefficients are zero. So, we have

$$5c_2 +5c_3 = 0$$

$$4c_1 +3c_3 = 0$$

$$-c_1 -3c_4 = 0$$

$$c_2 +2c_4 = 0$$

The augmented matrix is

$$\begin{bmatrix} 0 & 5 & 5 & 0 & 0 \\ 4 & 0 & 3 & 0 & 0 \\ -1 & 0 & 0 & -3 & 0 \\ 0 & 1 & 0 & 2 & 0 \end{bmatrix} its Gauss-Jordan form \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}.$$

Therefore, $c_1 = c_2 = c_3 = c_4 = 0$. Hence S is linearly independent. So, by theorem 4.5.8, S is a basis of \mathbb{P}_3 .

Exercise 4.5.17 (Ex. 60. p.231) Determine the dimension of \mathbb{P}_4 .

Solution: Recall, \mathbb{P}_4 is the vector space of all polynomials of degree ≤ 4 . We claim that that

$$S = \{1, t, t^2, t^3, t^4\}$$

is a basis of \mathbb{P}_4 . Clearly, any polynomial in \mathbb{P}_4 is a linear combination of elements in S. So, S spans \mathbb{P}_4 . Now, we prove that S is linearly

independent. So, let

$$c_0 1 + c_1 t + c_2 t^2 + c_3 t^3 + c_4 t^4 = 0.$$

Since a nonzero polynomial of degree 4 can have at most four roots, it follows $c_0 = c_1 = c_2 = c_3 = c_4 = 0$. So, S is a basis of \mathbb{P}_4 and $\dim(\mathbb{P}_4) = 5$.

Exercise 4.5.18 (Ex. 62. p.231) Determine the dimension of \mathbb{M}_{32} .

Solution: In exercise 4.5.10, we established that

$$S = \{e_{11}, e_{12}, e_{21}, e_{22}, e_{31}, e_{32}\}$$

is a basis of $\mathbb{M}_{3,2}$. So, $\dim(\mathbb{M}_{32}) = 6$.

Exercise 4.5.19 (Ex. 72. p.231) Let

$$W = \{(t, s, t) : s, t \in \mathbb{R}\}.$$

Give a geometric description of W, find a basis of W and determine the dimension of W.

Solution: First note that W is closed under addition and scalar multiplication. So, W is a subspace of \mathbb{R}^3 . Notice, there are two parameters s, t in the description of W. So, W can be described by x = z. Therefore, W represents the plane x = z in \mathbb{R}^3 .

I suggest (guess) that

$$\mathbf{u} = (1, 0, 1), \mathbf{v} = (0, 1, 0)$$

will form a basis of W. To see that they are mutually linearly independent, let

$$a\mathbf{u} + b\mathbf{v} = (0.0.0); \quad OR \quad (a, b, a) = (0.0.0).$$

So, a = 0, b = 0 and hence they are linearly independent. To see that they span W, we have

$$(t, s, t) = t\mathbf{u} + s\mathbf{v}.$$

So, $\{\mathbf{u}, \mathbf{v}\}$ form a basis of W and $\dim(W) = 2$.

Exercise 4.5.20 (Ex. 74. p.232) Let

$$W = \{(5t, -3t, t, t) : t \in \mathbb{R}\}.$$

Fnd a basis of W and determine the dimension of W.

Solution: First note that W is closed under addition and scalar multiplication. So, W is a subspace of \mathbb{R}^4 . Notice, there is only parameters t in the description of W. (So, I expect that $\dim(W) = 1$. I suggest (guess)

$$e = \{(5, -3, 1, 1)\}$$

is a basis of W. This is easy to check. So, $\dim(W) = 1$.

4.6 Rank of a matrix and SoLE

Homework: [Textbook, §4.6 Ex. 7, 9, 15, 17, 19, 27, 29, 33, 35, 37, 41, 43, 47, 49, 57, 63].

Main topics in this section are to define

- 1. We define row space of a matrix A and the column space of a matrix A.
- 2. We define the rank of a matrix,
- 3. We define nullspace N(A) of a homoheneous system $A\mathbf{x} = \mathbf{0}$ of linear equations. We also define the nullity of a matrix A.

Definition 4.6.1 Let $A = [a_{ij}]$ be an $m \times n$ matrix.

- 1. The n-tuples corresponding to the rows of A are called **row** vectors of A.
- 2. Similarly, the m-tuples corresponding to the columns of A are called **column vectors** of A.
- 3. The **row space** of A is the subspace of \mathbb{R}^n spanned by row vectors of A.
- 4. The **column space** of A is the subspace of \mathbb{R}^m spanned by column vectors of A.

Theorem 4.6.2 Suppose A, B are two $m \times n$ matrices. If A is row-equivalent of B then row space of A is equal to the row space of B.

Proof. This follows from the way row-equivalence is defined. Since B is rwo-equivalent to A, rows of B are obtained by (a series of) scalar multiplication and addition of rows of A. So, it follows that row vectors of B are in the row space of A. Therefore, the subspace spanned by row vectors of B is contained in the row space of A. So, the row space of B is contained in the row space of A. Since A is row-equivalent of B, it also follows the B is row-equivalent of A. (We say that the 'relationship' of being 'row-equivalent' is reflexive.) Therefore, by the same argumen, the row space of A is contained in the row space of B. So, they are equal. The proof is complete.

Theorem 4.6.3 Suppose A is an $m \times n$ matrix and B is row-equivalent to A and B is in row-echelon form. Then the nonzero rows of B form a basis of the row space of A.

Proof. From theorem 4.6.2, it follows that row space of A and B are some. Also, a basis of the row space of B is given by the nonzero rows of B. The proof is complete.

Theorem 4.6.4 Suppose A is an $m \times n$ matrix. Then the row space and column space of A have same dimension.

Proof. (You can skip it, I will not ask you to prove this.) Write

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{bmatrix}$$

Let $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_m}$ denote the row vectors of A and $\mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_n}$ denote the column vectors of A. Suppose that the row space of A has dimension r and

$$S = \{\mathbf{b_1}, \mathbf{b_2}, \dots, \mathbf{b_r}\}$$

is a basis of the row space of A. Also, write

$$\mathbf{b_i} = (b_{i1}, b_{i2}, \dots, b_{in}).$$

We have

$$\mathbf{v_1} = c_{11}\mathbf{b_1} + c_{12}\mathbf{b_2} + \cdots + c_{1r}\mathbf{b_r}$$

$$\mathbf{v_2} = c_{21}\mathbf{b_1} + c_{22}\mathbf{b_2} + \cdots + c_{2r}\mathbf{b_r}$$

$$\cdots \cdots \cdots \cdots \cdots$$

$$\mathbf{v_m} = c_{m1}\mathbf{b_1} + c_{m2}\mathbf{b_2} + \cdots + c_{mr}\mathbf{b_r}$$

Looking at the first entry of each of these m equations, we have

$$a_{11} = c_{11}b_{11} + c_{12}b_{21} \cdots + c_{1r}b_{r1}$$

$$a_{21} = c_{21}b_{11} + c_{22}b_{21} \cdots + c_{2r}b_{r1}$$

$$a_{31} = c_{31}b_{11} + c_{32}b_{21} \cdots + c_{3r}b_{r1}$$

$$\cdots \cdots \cdots \cdots \cdots$$

$$a_{m1} = c_{m1}b_{11} + c_{m2}b_{21} \cdots + c_{mr}b_{r1}$$

Let $\mathbf{c_i}$ denote the i^{th} column of the matrix $C = [c_{ij}]$. So, it follows from these m equations that

$$\mathbf{u_1} = b_{11}\mathbf{c_1} + b_{21}\mathbf{c_2} + \dots + b_{r1}\mathbf{c_r}.$$

Similarly, looking at the j^{th} entry of the above set of equations, we have

$$\mathbf{u_j} = b_{1j}\mathbf{c_1} + b_{2j}\mathbf{c_2} + \dots + b_{rj}\mathbf{c_r}.$$

So, all the columns $\mathbf{u_j}$ of A are in $span(\mathbf{c_1}, \mathbf{c_2}, \dots, \mathbf{c_r})$. Therefore, the column space of A is contained in $span(\mathbf{c_1}, \mathbf{c_2}, \dots, \mathbf{c_r})$. It follows from this that the rank of the column space of A has dimension $\leq r = \text{rank}$ of the row space of A. So,

 $\dim(column\ space\ of\ A) \leq \dim(row\ space\ of\ A).$

Similarly,

 $\dim(row\ space\ of\ A) \leq \dim(column\ space\ of\ A).$

So, they are equal. The proof is complete.

Definition 4.6.5 Suppose A is an $m \times n$ matrix. The dimension of the row space (equivalently, of the column space) of A is called the **rank** of A and is denoted by rank(A).

Reading assignment: Read [Textbook, Examples 2-5, p. 234-].

4.6.1 The Nullspace of a matrix

Theorem 4.6.6 Suppose A is an $m \times n$ matrix. Let N(A) denote the set of solutions of the homogeneous system $A\mathbf{x} = \mathbf{0}$. Notationally:

$$N(A) = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0} \}.$$

Then N(A) is a subspace of \mathbb{R}^n and is called the **nullspace** of A. The dimension of N(A) is called the **nullity** of A. Notationally:

$$nullity(A) := \dim(N(A)).$$

Proof. First, N(A) is nonempty, because $\mathbf{0} \in N(A)$. By theorem 4.3.3, we need only to check that N(A) is closed under addition and scalar multiplication. Suppose $\mathbf{x}, \mathbf{y} \in N(A)$ and c is a scalar. Then

$$Ax = 0$$
, $Ay = 0$, so $A(x + y) = Ax + Ay = 0 + 0 = 0$.

So, $\mathbf{x} + \mathbf{y} \in N(A)$ and N(A) is closed under addition. Also

$$A(c\mathbf{x}) = c(A\mathbf{x}) = c\mathbf{0} = \mathbf{0}.$$

Therefore, $c\mathbf{x} \in N(A)$ and N(A) is closed under scalar multiplication.

Theorem 4.6.7 Suppose A is an $m \times n$ matrix. Then

$$rank(A) + nullity(A) = n.$$

That means, $\dim(N(A)) = n - rank(A)$.

Proof.Let r = rank(A). Let B be a matrix row equivalent to A and B is in Gauss-Jordan form. So, only the first r rows of B are nonzero. Let B' be the matrix formed by top r (i.e. nonzero) rows of B. Now,

$$rank(A) = rank(B) = rank(B'), \quad nullity(A) = nullity(B) = nullity(B').$$

So, we need to prove rank(B') + nullity(B') = n. Switching columns of B' would only mean re-labeling the variables (like $x_1 \mapsto x_1, x_2 \mapsto x_3, x_3 \mapsto x_2$). In this way, we can write $B' = [I_r, C]$, where C is a $r \times n - r$ matrix and corresponds to the variables, x_{r+1}, \ldots, x_n . The homogeneous system corresponding to B' is given by:

The solution space N(B') has n-r papameters. A basis of N(B') is given by

$$S = \{\mathbf{E_{r+1}}, \mathbf{E_{r+2}}, \dots, \mathbf{E_n}\}$$

where

$$\mathbf{E_{r+1}} = -(c_{11}e_1 + c_{21}e_2 + \dots + c_{r1}e_r) + e_{r+1}$$
 so on

and $\mathbf{e_i} \in \mathbb{R}^n$ is the vector with 1 at the i^{th} place and 0 elsewhere. So, nullity(B') = cardinality(S) = n - r. The proof is complete.

Reading assignment: Read [Textbook, Examples 6, 7, p. 241-242].

4.6.2 Solution of SoLE

Given a system of linear equations $A\mathbf{x} = \mathbf{b}$, where A is an $m \times n$ matrix, we have the following:

- 1. Corresponding to such a system $A\mathbf{x} = \mathbf{b}$, there is a homogeneous system $A\mathbf{x} = \mathbf{0}$.
- 2. The set of solutions N(A) of the homogeneous system $A\mathbf{x} = \mathbf{0}$ is a subspace of \mathbb{R}^n .
- 3. In contrast, if $\mathbf{b} \neq \mathbf{0}$, the set of solutions of $A\mathbf{x} = \mathbf{b}$ is not a subspace. This is because $\mathbf{0}$ is not a solution of $A\mathbf{x} = \mathbf{b}$.
- 4. The system $A\mathbf{x} = \mathbf{b}$ may have many solution. Let $\mathbf{x}_{\mathbf{p}}$ denote a PARTICULAR one such solutions of $A\mathbf{x} = \mathbf{b}$.
- 5. The we have

Theorem 4.6.8 Every solution of the system $A\mathbf{x} = \mathbf{b}$ can be written as

$$\mathbf{x} = \mathbf{x_p} + \mathbf{x_h}$$

where $\mathbf{x_h}$ is a solution of the homogeneous system $A\mathbf{x} = \mathbf{0}$.

Proof. Suppose x is any solution of Ax = b. We have

$$A\mathbf{x} = \mathbf{b}$$
 and $A\mathbf{x}_{\mathbf{p}} = \mathbf{b}$.

Write $\mathbf{x_h} = \mathbf{x} - \mathbf{x_p}$. Then

$$A\mathbf{x_h} = A(\mathbf{x} - \mathbf{x_p}) = A\mathbf{x} - A\mathbf{x_p} = \mathbf{b} - \mathbf{b} = \mathbf{0}.$$

So, $\mathbf{x_h}$ is a solution of the homogeneoud system $A\mathbf{x} = \mathbf{0}$ and

$$\mathbf{x} = \mathbf{x_p} + \mathbf{x_h}$$
.

The proof is complete.

Theorem 4.6.9 A system $A\mathbf{x} = \mathbf{b}$ is consistent if and only if \mathbf{b} is in the column space of A.

Proof. Easy. It is, in fact, interpretation of the matrix multiplication $A\mathbf{x} = \mathbf{b}$.

Reading assignment: Read [Textbook, Examples 8,9, p. 244-245].

Theorem 4.6.10 Suppose A is a square matrix of size $n \times n$. Then the following conditions are equivalent:

- 1. A is invertible.
- 2. $A\mathbf{x} = \mathbf{b}$ has unique solution for every $m \times 1$ matrix \mathbf{b} .
- 3. $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- 4. A is row equivalent to the identity matrix I_n .
- 5. $\det(A) \neq 0$.
- 6. Rank(A) = n.
- 7. The n row vectors of A are linearly independent.
- 8. The n column vectors of A are linearly independent.

Exercise 4.6.11 (Ex. 8, p. 246) Let

$$A = \left[\begin{array}{ccc} 2 & -3 & 1 \\ 5 & 10 & 6 \\ 8 & -7 & 5 \end{array} \right].$$

(a) Find the rank of the matrix A. (b) Find a basis of the row space of A, (c) Find a basis of the column space of A.

Solution: First, the following is the row Echelon form of this matrix (use TI):

$$B = \left[\begin{array}{ccc} 1 & -.875 & .625 \\ 0 & 1 & .2 \\ 0 & 0 & 0 \end{array} \right].$$

The rank of A is equal to the number of nonzero rows of B. So, rank(A) = 2.

A basis of the row space of A is given by the nonzero rwos of B. So,

$$\mathbf{v_1} = (1, -.875, .625)$$
 and $\mathbf{v_2} = (0, 1, .2)$

form a basis of the row space of A.

The column space of A is same as the row space of the transpose A^T . We have

$$A^T = \left[\begin{array}{rrr} 2 & 5 & 8 \\ -3 & 10 & -7 \\ 1 & 6 & 5 \end{array} \right].$$

The following is the row Echelon form of this matrix (use TI):

$$C = \left[\begin{array}{ccc} 1 & -\frac{10}{3} & \frac{7}{3} \\ 0 & 1 & 0.2857 \\ 0 & 0 & 0 \end{array} \right].$$

A basis of the column space of A is given by the nonzero rows of C, (to be written as column):

$$\mathbf{u_1} = \begin{bmatrix} 1 \\ -\frac{10}{3} \\ \frac{7}{3} \end{bmatrix}, \quad \mathbf{u_2} = \begin{bmatrix} 0 \\ 1 \\ 0.2857 \end{bmatrix}.$$

Exercise 4.6.12 (Ex. 16, p. 246) Let

$$S = \{(1, 2, 2), (-1, 0, 0), (1, 1, 1)\} \subseteq \mathbb{R}^3.$$

Find a basis of of the subspace spanned by S.

Solution: We write these rows as a matrix:

$$A = \left[\begin{array}{rrr} 1 & 2 & 2 \\ -1 & 0 & 0 \\ 1 & 1 & 1 \end{array} \right].$$

Now the row space of A will be the same as the subspace spanned by S. So, we will find a basis of the row space of A. Use TI and we get the row Echelon form of A is given by

$$B = \left[\begin{array}{ccc} 1 & 2 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{array} \right].$$

So, a basis is:

$$\mathbf{u_1} = (1, 2, 2), \quad \mathbf{u_2} = (0, 1, 1).$$

Remark. The answers regrading bases would not be unique. The following will also be a basis of this space:

$$\mathbf{v_1} = (1, 2, 2), \quad \mathbf{v_2} = (1, 0, 0).$$

Exercise 4.6.13 (Ex. 20, p. 246) Let

$$S = \{(2, 5, -3, -2), (-2, -3, 2, -5), (1, 3, -2, 2), (-1, -5, 3, 5)\} \subset \mathbb{R}^4.$$

Find a basis of of the subspace spanned by S.

Solution: We write these rows as a matrix:

$$A = \begin{bmatrix} 2 & 5 & -3 & -2 \\ -2 & -3 & 2 & -5 \\ 1 & 3 & -2 & 2 \\ -1 & -5 & 3 & 5 \end{bmatrix}.$$

Now the row space of A will be the same as the subspace spanned by S. So, we will find a basis of the row space of A.

Use TI and we get the row Echelon form of A is given by

$$B = \begin{bmatrix} 1 & 2.5 & -1.5 & -1 \\ 0 & 1 & -0.6 & -1.6 \\ 0 & 0 & 1 & -19 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

So, a basis is:

$$\{\mathbf{u_1} = (1, 2.5, -1.5, -1), \quad \mathbf{u_2} = (0, 1, -0.6, -1.6), \quad \mathbf{u_3} = (0, 0, 1, -19)\}.$$

Exercise 4.6.14 (Ex. 28, p. 247) Let

$$A = \left[\begin{array}{rrr} 3 & -6 & 21 \\ -2 & 4 & -14 \\ 1 & -2 & 7 \end{array} \right].$$

Find the dimension of the solution space of $A\mathbf{x} = \mathbf{0}$.

Solution: Step-1: Find rank of A: Use TI, the row Echelon form of A is

$$B = \left[\begin{array}{rrr} 1 & -2 & 7 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right].$$

So, the number of nonzero rows of B is rank(A) = 1.

Step-2: By theorem 4.6.7, we have

$$rank(A) + nullity(A) = n = 3,$$
 so $nullity(A) = 3 - 1 = 2.$

That means that the solution space has dimension 2.

Exercise 4.6.15 (Ex. 32, p. 247) Let

$$A = \left[\begin{array}{rrrr} 1 & 4 & 2 & 1 \\ 2 & -1 & 1 & 1 \\ 4 & 2 & 1 & 1 \\ 0 & 4 & 2 & 0 \end{array} \right].$$

Find the dimension of the solution space of $A\mathbf{x} = \mathbf{0}$.

Solution: Step-1: Find rank of A: Use TI, the row Echelon form of A is

$$B = \begin{bmatrix} 1 & .5 & .25 & .25 \\ 0 & 1 & .5 & 0 \\ 0 & 0 & 1 & \frac{1}{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

So, the number of nonzero rows of B is rank(A) = 4.

Step-2: By theorem 4.6.7, we have

$$rank(A) + nullity(A) = n = 4,$$
 so $nullity(A) = 4 - 4 = 0.$

That means that the solution space has dimension 0. This also means that the homogeneous system $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.

Exercise 4.6.16 (Ex. 38 (edited), p. 247) Consider the homogeneous system

$$2x_1 +2x_2 +4x_3 -2x_4 = 0$$

$$x_1 +2x_2 +x_3 +2x_4 = 0$$

$$-x_1 +x_2 +4x_3 -x_4 = 0$$

Find the dimension of the solution space and give a basis of the same.

Solution: We follow the following steps:

1. First, we write down the coefficient matrix:

$$A = \left[\begin{array}{rrrr} 2 & 2 & 4 & -2 \\ 1 & 2 & 1 & 2 \\ -1 & 1 & 4 & -1 \end{array} \right]$$

2. Use TI, the Gauss-Jordan for of the matrix is

$$B = \left[\begin{array}{rrrr} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -1 \end{array} \right]$$

3. The rank of A is number of nonzero rows of B. So,

$$rank(A)=3, \quad by\ thm.\ 4.6.7, \quad nullity(A)=n-rank(A)=4-3=1.$$

So, the solution space has dimension 1.

4. To find the solution space, we write down the homogeneous system corresponding to the coefficient matrix B. So, we have

$$x_1$$
 $-x_4 = 0$
 x_2 $+2x_4 = 0$
 x_3 $-x_4 = 0$

5. Use $x_4 = t$ as parameter and we have

$$x_1 = t$$
, $x_2 = -2t$, $x_3 = t$, $x_4 = t$.

6. So the solution space is given by

$$\{(t, -2t, t, t) : t \in \mathbb{R}\}.$$

7. A basis is obtained by substituting t = 1. So

$$\mathbf{u} = (1, -2, 1, 1)$$

forms a basis of the solution space.

Exercise 4.6.17 (Ex. 39, p. 247) Consider the homogeneous system

$$9x_1 -4x_2 -2x_3 -20x_4 = 0$$

$$12x_1 -6x_2 -4x_3 -29x_4 = 0$$

$$3x_1 -2x_2 -7x_4 = 0$$

$$3x_1 -2x_2 -x_3 -8x_4 = 0$$

Find the dimension of the solution space and give a basis of the same.

Solution: We follow the following steps:

1. First, we write down the coefficient matrix:

$$A = \begin{bmatrix} 9 & -4 & -2 & -20 \\ 12 & -6 & -4 & -29 \\ 3 & -2 & 0 & -7 \\ 3 & -2 & -1 & -8 \end{bmatrix}$$

4.6. RANK OF A MATRIX AND SOLE

163

2. Use TI, the Gauss-Jordan for of the matrix is

$$B = \begin{bmatrix} 1 & 0 & 0 & -\frac{4}{3} \\ 0 & 1 & 0 & 1.5 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

3. The rank of A is number of nonzero rows of B. So,

$$rank(A)=3, \quad by\ thm.\ 4.6.7, \quad nullity(A)=n-rank(A)=4-3=1.$$

So, the solution space has dimension 1.

4. To find the solution space, we write down the homogeneous system corresponding to the coefficient matrix B. So, we have

5. Use $x_4 = t$ as parameter and we have

$$x_1 = \frac{4}{3}t$$
, $x_2 = -1.5t$, $x_3 = -t$, $x_4 = t$.

6. So the solution space is given by

$$\left\{ \left(\frac{4}{3}t, -1.5t, -t, t\right) : t \in \mathbb{R} \right\}.$$

7. A basis is obtained by substituting t = 1. So

$$\mathbf{u} = (\frac{4}{3}, -1.5, -1, 1)$$

forms a basis of the solution space.

Exercise 4.6.18 (Ex. 42, p. 247) Consider the system of equations

$$3x_1$$
 $-8x_2$ $+4x_3$ $= 19$
 $-6x_2$ $+2x_3$ $+4x_4$ $= 5$
 $5x_1$ $+22x_3$ $+x_4$ $= 29$
 x_1 $-2x_2$ $+2x_3$ $= 8$

Determine, if this system is consistent. If yes, write the solution in the form $\mathbf{x} = \mathbf{x_h} + \mathbf{x_p}$ where $\mathbf{x_h}$ is a solution of the corresponding homogeneous system $A\mathbf{x} = \mathbf{0}$ and $\mathbf{x_p}$ is a particular solution.

Solution: We follow the following steps:

1. To find a particular solution, we write the augmented matrix of the nonhomogeneous system:

$$\begin{bmatrix} 3 & -8 & 4 & 0 & 19 \\ 0 & -6 & 2 & 4 & 5 \\ 5 & 0 & 22 & 1 & 29 \\ 1 & -2 & 2 & 0 & 8 \end{bmatrix}$$

The Gauss-Jordan form of the matrix is

$$\begin{bmatrix}
1 & 0 & 0 & -2 & 0 \\
0 & 1 & 0 & -.5 & 0 \\
0 & 0 & 1 & .5 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}$$

The last row suggests 0 = 1. So, the system is not consistents.

Exercise 4.6.19 (Ex. 44, p. 247) Consider the system of equations

$$2x_1 -4x_2 +5x_3 = 8$$

$$-7x_1 +14x_2 +4x_3 = -28$$

$$3x_1 -6x_3 +x_3 = 12$$

Determine, if this system is consistent. If yes, write the solution in the form $\mathbf{x} = \mathbf{x_h} + \mathbf{x_p}$ where $\mathbf{x_h}$ is a solution of the corresponding homogeneous system $A\mathbf{x} = \mathbf{0}$ and $\mathbf{x_p}$ is a particular solution.

Solution: We follow the following steps:

1. First, the augmented matrix of the system is

$$\begin{bmatrix} 2 & -4 & 5 & 8 \\ -7 & 14 & 4 & -28 \\ 3 & -6 & 1 & 12 \end{bmatrix}.$$

Its Gauss-Jordan form is

$$\left[\begin{array}{cccc} 1 & -2 & 0 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right].$$

This corresponds to they system

$$x_1 -2x_2 = 4
 x_3 = 0 .
 0 = 0$$

The last row indicates that the system is consistent. We use $x_2 = t$ as a parameter and we have

$$x_1 = 4 + 2t, \quad x_2 = t, \quad x_3 = 0.$$

Thaking t = 0, a particular solutions is

$$\mathbf{x}_{\mathbf{p}} = (4, 0, 0).$$

2. Now, we proceed to find the solution of the homogeneous system

$$2x_1 -4x_2 +5x_3 = 0$$

$$-7x_1 +14x_2 +4x_3 = 0$$

$$3x_1 -6x_3 +x_3 = 0$$

(a) The coefficient matrix

$$A = \left[\begin{array}{rrr} 2 & -4 & 5 \\ -7 & 14 & 4 \\ 3 & -6 & 1 \end{array} \right].$$

(b) Its Gauss-Jordan form is

$$B = \left[\begin{array}{ccc} 1 & -2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right].$$

(c) The homogeneous system corresponding to B is

$$x_1 -2x_2 = 0$$

$$x_3 = 0$$

$$0 = 0$$

(d) We use $x_2 = t$ as a parameter and we have

$$x_1 = 2t$$
, $x_2 = t$, $x_3 = 0$.

(e) So, in parametrix form

$$\mathbf{x_h} = (2t, t, 0).$$

3. Final answer is: With t as parameter, any solutions can be written as

$$\mathbf{x} = \mathbf{x_h} + \mathbf{x_p} = (2t, t, 0) + (4, 0, 0).$$

Exercise 4.6.20 (Ex. 50, p. 247) Let

$$A = \begin{bmatrix} 1 & 3 & 2 \\ -1 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix} \quad and \quad \mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

Determine, if \mathbf{b} is in the column space of A.

Solution: The question means, whether the system $A\mathbf{x} = \mathbf{b}$ has a solutions (i.e. *is consistent*).

Accordingly, the augmented matrix of this system $A\mathbf{x} = \mathbf{b}$ is

$$\left[\begin{array}{rrrr} 1 & 3 & 2 & 1 \\ -1 & 1 & 2 & 1 \\ 0 & 1 & 1 & 0 \end{array}\right].$$

The Gauss-Jordan form of this matrix is i

$$\left[\begin{array}{cccc} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right].$$

The last row indicates that the system is not consistent. So, \mathbf{b} is not in the column space of A.