
Chapter 4

Vector Spaces

4.1 Vectors in R
n

Homework: [Textbook, §4.1 Ex. 15, 21, 23, 27, 31, 33(d), 45, 47, 49,
55, 57; p. 189-].

We discuss vectors in plane, in this section.

In physics and engineering, a vector is represented as a directed
segment. It is determined by a length and a direction. We give a short
review of vectors in the plane.

Definition 4.1.1 A vector x in the plane is represented geomet-

rically by a directed line segment whose initial point is the origin and

whose terminal point is a point (x1, x2) as shown in in the textbook,
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The bullet at the end of the arrow is the terminal point (x1, x2). (See

the textbook,page 180 for a better diagram.) This vector is represented

by the same ordered pair and we write

x = (x1, x2).

1. We do this because other information is superfluous. Two vectors

u = (u1, u2) and v = (v1, v2) are equal if u1 = v1 and u2 = v2.

2. Given two vectors u = (u1, u2) and v = (v1, v2), we define vector

addition

u + v = (u1 + v1, u2 + v2).

See the diagram in the textbook, page 180 for geometric interpre-

tation of vector addition.

3. For a scalar c and a vector v = (v1, v2) define

cv = (cv1, cv2)

See the diagram in the textbook, page 181 for geometric interpre-

tation of scalar multiplication.

4. Denote −v = (−1)v.
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Reading assignment: Read [Textbook, Example 1-3, p. 180-] and
study all the diagrams.

Obvioulsly, these vectors behave like row matrices. Following list of
properties of vectors play a fundamental role in linear algebra. In fact,
in the next section these properties will be abstracted to define vector
spaces.

Theorem 4.1.2 Let u,v,w be three vectors in the plane and let c, d

be two scalar.

1. u + v is a vector in the plane closure under addition

2. u + v = v + u Commutative property of addition

3. (u + v) + w = u + (v + w) Associate property of addition

4. (u + 0) = u Additive identity

5. u + (−1)u = 0 Additive inverse

6. cu is a vector in the plane closure under scalar multiplication

7. c(u + v) = cu + cv Distributive propertyof scalar mult.

8. (c + d)u = cu + du Distributive property of scalar mult.

9. c(du) = (cd)u Associate property of scalar mult.

10. 1(u) = u Multiplicative identity property

Proof. Easy, see the textbook, papge 182.

4.1.1 Vectors in R
n

The discussion of vectors in plane can now be extended to a discussion of
vectors in n−space. A vector in n−space is represented by an ordered
n−tuple (x1, x2, . . . , xn).

The set of all ordered n−tuples is called the n−space and is denoted
by R

n. So,

1. R
1 = 1 − space = set of all real numbers,
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2. R
2 = 2− space = set of all ordered pairs (x1, x2) of real numbers

3. R
3 = 3 − space = set of all ordered triples (x1, x2, x3) of real

numbers

4. R
4 = 4 − space = set of all ordered quadruples (x1, x2, x3, x4) of

real numbers. (Think of space-time.)

5. . . . . . .

6. R
n = n−space = set of all ordered ordered n−tuples (x1, x2, . . . , xn)

of real numbers.

Remark. We do not distinguish between points in the n−space R
n

and vectors in n−space (defined similalry as in definition 4.1.1). This
is because both are describled by same data or information. A vector
in the n−space R

n is denoted by (and determined) by an n−tuples
(x1, x2, . . . , xn) of real numbers and same for a point in n−space R

n.

The ith−entry xi is called the ith−coordinate.

Also, a point in n−space R
n can be thought of as row matrix. (Some

how, the textbook avoids saying this.) So, the addition and scalar mul-
tiplications can be defined is a similar way, as follows.

Definition 4.1.3 Let u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) be

vectors in R
n. The the sum of these two vectors is defined as the vector

u + v = (u1 + v1, u2 + v2, . . . , un + vn).

For a scalar c, define scalar multiplications, as the vector

cu = (cu1, cu2, . . . , cun).

Also, we define negative of u as the vector

−u = (−1)(u1, u2, . . . , un) = (−u1,−u2, . . . ,−un)

and the difference

u − v = u + (−v) = (u1 − v1, u2 − v2, . . . , un − vn).
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Theorem 4.1.4 All the properties of theorem 4.1.2 hold, for any three

vectors u,v,w in n−space R
n and salars c, d.

Theorem 4.1.5 Let v be a vector in R
n and let c be a scalar. Then,

1. v + 0 = v.

(Because of this property, 0 is called the additive identity in

R
n.)

Further, the additive identitiy unique. That means, if v + u = v

for all vectors v in R
n than u = 0.

2. Also v + (−v) = 0.

(Because of this property, −v is called the additive inverse of v.)

Further, the additive inverse of v is unique. This means that

v + u = 0 for some vector u in R
n, then u = −v.

3. 0v = 0.

Here the 0 on left side is the scalar zero and the bold 0 is the

vector zero in R
n.

4. c0 = 0.

5. If cv = 0, then c = 0 or v = 0.

6. −(−v) = v.

Proof. To prove that additive identity is unique, suppose v + u = v
for all v in R

n. Then, taking v = 0, we have 0 + u = 0. Therefore,
u = 0.

To prove that additive inverse is unique, suppose v+u = 0 for some
vector u. Add −v on both sides, from left side. So,

−v + (v + u) = −v + 0
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So,
(−v + v) + u = −v

So,
0 + u = −v So, u = −v.

We will also prove (5). So suppose cv = 0. If c = 0, then there
is nothing to prove. So, we assume that c 6= 0. Multiply the equation
by c−1, we have c−1(cv) = c−10. Therefore, by associativity, we have
(c−1c)v = 0. Therefore 1v = 0 and so v = 0.

The other statements are easy to see. The proof is complete.

Remark. We denote a vector u in R
n by a row u = (u1, u2, . . . , un).

As I said before, it can be thought of a row matrix

u =
[

u1 u2 . . . un

]

.

In some other situation, it may even be convenient to denote it by a
column matrix:

u =









u1

u2

. . .

un









.

Obviosly, we cannot mix the two (in fact, three) different ways.

Reading assignment: Read [Textbook, Example 6, p. 187].

Exercise 4.1.6 (Ex. 46, p. 189) Let u = (0, 0,−8, 1) and v = (1,−8, 0, 7).

Find w such that 2u + v − 3w = 0.

Solution: We have

w =
2

3
u +

1

3
v =

2

3
(0, 0,−8, 1) +

1

3
(1,−8, 0, 7) = (

1

3
,−

8

3
,−

16

3
, 3).

Exercise 4.1.7 (Ex. 50, p. 189) Let u1 = (1, 3, 2, 1), u2 = (2,−2,−5, 4),

u3 = (2,−1, 3, 6). If v = (2, 5,−4, 0), write v as a linear combination

of u1,u2,u3. If it is not possible say so.



4.1. VECTORS IN R
N 121

Solution: Let v = au1+bu2+cu3. We need to solve for a, b, c. Writing

the equation explicitly, we have

(2, 5,−4, 0) = a(1, 3, 2, 1) + b(2,−2,−5, 4) + c(2,−1, 3, 6).

Therefore

(2, 5,−4, 0) = (a + 2b + 2c, 3a − 2b − c, 2a − 5b + 3c, a + 4b + 6c)

Equating entry-wise, we have system of linear equation

a +2b +2c = 2

3a −2b −c = 5

2a −5b +3c = −4

a +4b +6c = 0

We write the augmented matrix:












1 2 2 2

3 −2 −1 5

2 −5 3 −4

1 4 6 0













We use TI, to reduce this matrix to Gauss-Jordan form:












1 0 0 2

0 1 0 1

0 0 1 −1

0 0 0 0













So, the system is consistent and a = 2, b = 1, c = −1. Therefore

v = 2u1 + u2 − u3,

which can be checked directly,
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4.2 Vector spaces

Homework: [Textbook, §4.2 Ex.3, 9, 15, 19, 21, 23, 25, 27, 35; p.197].

The main pointin the section is to define vector spaces and talk about
examples.

The following definition is an abstruction of theorems 4.1.2 and
theorem 4.1.4.

Definition 4.2.1 Let V be a set on which two operations (vector

addition and scalar multiplication) are defined. If the listed axioms

are satisfied for every u,v,w in V and scalars c and d, then V is called

a vector space (over the reals R).

1. Addition:

(a) u + v is a vector in V (closure under addition).

(b) u + v = v + u (Commutative property of addition ).

(c) (u+v)+w = u+(v+w) (Associative property of addition).

(d) There is a zero vector 0 in V such that for every u in V

we have (u + 0) = u (Additive identity).

(e) For every u in V , there is a vector in V denoted by −u such

that u + (−u) = 0 (Additive inverse).

2. Scalar multiplication:

(a) cu is in V (closure under scalar multiplication0.
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(b) c(u + v) = cu + cv (Distributive propertyof scalar mult.).

(c) (c + d)u = cu + du (Distributive property of scalar mult.).

(d) c(du) = (cd)u (Associate property of scalar mult.).

(e) 1(u) = u (Scalar identity property).

Remark. It is important to realize that a vector space consisits of four
entities:

1. A set V of vectors.

2. A set of scalars. In this class, it will alawys be the set of real
numbers R. (Later on, this could be the set of complex numbers
C.)

3. A vector addition denoted by +.

4. A scalar multiplication.

Lemma 4.2.2 We use the notations as in definition 4.2.1. First, the

zero vector 0 is unique, satisfying the property (1d) of definition 4.2.1.

Further, for any u in V , the additive inverse −u is unique.

Proof. Suppose, there is another element θ that satisfy the property
(1d). Since 0 satisfy (1d), we have

θ = θ + 0 = 0 + θ = 0.

The last equality follows because θ satisfes the property(1d).

(The proof that additive inverse of u unique is similar the proof
of theorem 2.3.2, regarding matrices.) Suppose v is another additive
inverse of u.

u + v = 0 and u + (−u) = 0.
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So.

−u = 0 + (−u) = (u + v) + (−u) = v + (u + (−u)) = v + 0 = v.

So, the proof is complete.

Reading assignment: Read [Textbook, Example 1-5, p. 192-]. These
examples lead to the following list of important examples of vector
spaces:

Example 4.2.3 Here is a collection examples of vector spaces:

1. The set R of real numbers R is a vector space over R.

2. The set R
2 of all ordered pairs of real numers is a vector space

over R.

3. The set R
n of all ordered n−tuples of real numersis a vector space

over R.

4. The set C(R) of all continuous functions defined on the real num-

ber line, is a vector space over R.

5. The set C([a, b])) of all continuous functions defined on interval

[a, b] is a vector space over R.

6. The set P of all polynomials, with real coefficients is a vector

space over R.

7. The set Pn of all polynomials of degree ≤ n, with real coefficients

is a vector space over R.

8. The set Mm,n of all m × n matrices, with real entries, is a vector

space over R.
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Reading assignment: Read [Textbook, Examples 6-6].

Theorem 4.2.4 Let V be vector space over the reals R and v be an

element in V. Also let c be a scalar. Then,

1. 0v = 0.

2. c0 = 0.

3. If cv = 0, then either c = 0 or v = 0.

4. (−1)v = −v.

Proof. We have to prove this theorem using the definition 4.2.1. Other
than that, the proof will be similar to theorem 4.1.5. To prove (1), write
w = 0v. We have

w = 0v = (0 + 0)v = 0v + 0v = w + w (by distributivityProp.(2c)).

Add −w to both sides

w + (−w) = (w + w) + (−w)

By (1e) of 4.2.1, we have

0 = w + (w + (−w)) = w + 0 = w.

So, (1) is proved. The proof of (2) will be exactly similar.

To prove (3), suppose cv = 0. If c = 0, then there is nothing to
prove. So, we assume that c 6= 0. Multiply the equation by c−1, we
have c−1(cv) = c−10. Therefore, by associativity, we have (c−1c)v = 0.

Therefore 1v = 0 and so v = 0.

To prove (4), we have

v + (−1)v = 1.v + (−1)v = (1 − 1)v = 0.v = 0.

This completes the proof.
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Exercise 4.2.5 (Ex. 16, p. 197) Let V be the set of all fifth-degree

polynomials with standared operations. Is it a vector space. Justify

your answer.

Solution: In fact, V is not a vector space. Because V is not closed

under addition(axiom (1a) of definition 4.2.1 fails): f = x5 + x− 1 and

g = −x5 are in V but f + g = (x5 + x − 1) − x5 = x − 1 is not in V.

Exercise 4.2.6 (Ex. 20, p. 197) Let V = {(x, y) : x ≥ 0, y ≥ 0}

with standared operations. Is it a vector space. Justify your answer.

Solution: In fact, V is not a vector space. Not every element in V has

an addditive inverse (axiom i(1e) of 4.2.1 fails): −(1, 1) = (−1,−1) is

not in V.

Exercise 4.2.7 (Ex. 22, p. 197) Let V = {
(

x, 1

2
x
)

: x real number}

with standared operations. Is it a vector space. Justify your answer.

Solution: Yes, V is a vector space. We check all the properties in

4.2.1, one by one:

1. Addition:

(a) For real numbers x, y, We have

(

x,
1

2
x

)

+

(

y,
1

2
y

)

=

(

x + y,
1

2
(x + y)

)

.

So, V is closed under addition.

(b) Clearly, addition is closed under addition.

(c) Clearly, addition is associative.

(d) The element 0 = (0, 0) satisfies the property of the zero

element.
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(e) We have −
(

x, 1

2
x
)

=
(

−x, 1

2
(−x)

)

.So, every element in V

has an additive inverse.

2. Scalar multiplication:

(a) For a scalar c, we have

c

(

x,
1

2
x

)

=

(

cx,
1

2
cx

)

.

So, V is closed under scalar multiplication.

(b) The distributivity c(u + v) = cu + cv works for u,v in V.

(c) The distributivity (c + d)u = cu + du works, for u in V and

scalars c, d.

(d) The associativity c(du) = (cd)u works.

(e) Also 1u = u.

4.3 Subspaces of Vector spaces

We will skip this section, after we just mention the following.

Definition 4.3.1 A nonempty subset W of a vector space V is called

a subspace of V if W is a vector space under the operations addition

and scalar multiplication defined in V.

Example 4.3.2 Here are some obvious examples:

1. Let W = {(x, 0) : x is real number}. Then W ⊆ R
2. (The

notation ⊆ reads as ‘subset of ’.) It is easy to check that W is a

subspace of R
2.
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2. Let W be the set of all points on any given line y = mx through

the origin in the plane R
2. Then, W is a subspace of R

2.

3. Let P2, P3, Pn be vector space of polynomials, respectively, of de-

gree less or equal to 2, 3, n. (See example 4.2.3.) Then P2 is a

subspace of P3 and Pn is a subspace of Pn+1.

Theorem 4.3.3 Suppose V is a vector space over R and W ⊆ V is a

nonempty subset of V. Then W is a subspace of V if and only if the

following two closure conditions hold:

1. If u,v are in W, then u + v is in W.

2. If u is in W and c is a scalar, then cu is in W.

Reading assignment: Read [Textbook, Examples 1-5].
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4.4 Spanning sets and linear indipendence

Homework. [Textbook, §4.4, Ex. 27, 29, 31; p. 219].

The main point here is to write a vector as linear combination of a
give set of vectors.

Definition 4.4.1 A vector v in a vector space V is called a linear

combination of vectors u1,u2, . . . ,uk in V if v can be written in the

form

v = c1u1 + c2u2 + · · · + ckuk,

where c1, c2, . . . , ck are scalars.

Definition 4.4.2 Let V be a vector space over R and

S = {v1,v2, . . . ,vk} be a subset of V. We say that S is a spanning

set of V if every vector v of V can be written as a liner combination

of vectors in S. In such cases, we say that S spans V.

Definition 4.4.3 Let V be a vector space over R and

S = {v1,v2, . . . ,vk} be a subset of V. Then the span of S is the

set of all linear combinations of vectors in S,

span(S) = {c1v1 + c2v2 + · · · + ckvk : c1, c2, . . . , ck are scalars}.

1. The span of S is denoted by span(S) as above or span{v1,v2, . . . ,vk}.

2. If V = span(S), then say V is spanned by S or S spans V.
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Theorem 4.4.4 Let V be a vector space over R and

S = {v1,v2, . . . ,vk} be a subset of V. Then span(S) is a subspace

of V.

Further, span(S) is the smallest subspace of V that contains S.

This means, if W is a subspace of V and W contains S, then span(S)

is contained in W.

Proof. By theorem 4.3.3, to prove that span(S) is a subspace of V,

we only need to show that span(S) is closed under addition and scalar
multiplication. So, let u,v be two elements in span(S). We can write

u = c1v1 + c2v2 + · · · + ckvk and v = d1v1 + d2v2 + · · · + dkvk

where c1, c2, . . . , ck, d1, d2, . . . , dk are scalars. It follows

u + v = (c1 + d1)v1 + (c2 + d2)v2 + · · · + (ck + dk)vk

and for a scalar c, we have

cu = (cc1)v1 + (cc2)v2 + · · · + (cck)vk.

So, both u + v and cu are in span(S), because the are linear combina-
tion of elements in S. So, span(S) is closed under addition and scalar
multiplication, hence a subspace of V.

To prove that span(S) is smallest, in the sense stated above, let
W be subspace of V that contains S. We want to show span(S) is
contained in W. Let u be an element in span(S). Then,

u = c1v1 + c2v2 + · · · + ckvk

for some scalars ci. Since S ⊆ W, we have vi ∈ W. Since W is closed
under addition and scalar multiplication, u is in W. So, span(S) is
contained in W. The proof is complete.

Reading assignment: Read [Textbook, Examples 1-6, p. 207-].
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4.4.1 Linear dependence and independence

Definition 4.4.5 Let V be a vector space. A set of elements (vectors)

S = {v1,v2, . . .vk} is said to be linearly independent if the equation

c1v1 + c2v2 + · · · + ckvk = 0

has only trivial solution

c1 = 0, c2 = 0, . . . , ck = 0.

We say S is linearly dependent, if S in not linearly independent.

(This means, that S is said to be linearly dependent, if there is at least

one nontrivial (i.e. nonzero) solutions to the above equation.)

Testing for linear independence

Suppose V is a subspace of the n−space R
n. Let S = {v1,v2, . . .vk}

be a set of elements (i.e. vectors) in V. To test whether S is linearly
independent or not, we do the following:

1. From the equation

c1v1 + c2v2 + · · · + ckvk = 0,

write a homogeneous system of equations in variabled c1, c2, . . . , ck.

2. Use Gaussian elemination (with the help of TI) to determine
whether the system has a unique solutions.

3. If the system has only the trivial solution

c1 = 0, c2 = 0, · · · , ck = 0,

then S is linearly independent. Otherwise, S is linearly depen-
dent.

Reading assignment: Read [Textbook, Eamples 9-12, p. 214-216].
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Exercise 4.4.6 (Ex. 28. P. 219) Let S = {(6, 2, 1), (−1, 3, 2)}. De-

termine, if S is linearly independent or dependent?

Solution: Let

c(6, 2, 1) + d(−1, 3, 2) = (0, 0, 0).

If this equation has only trivial solutions, then it is linealry independent.

This equaton gives the following system of linear equations:

6c −d = 0

2c +3d = 0

c +2d = 0

The augmented matrix for this system is






6 −1 0

2 3 0

1 2 0






. its gauss − Jordan form :







1 0 0

0 1 0

0 0 0







So, c = 0, d = 0. The system has only trivial (i.e. zero) solution. We

conclude that S is linearly independent.

Exercise 4.4.7 (Ex. 30. P. 219) Let

S =

{(

3

4
,
5

2
,
3

2

)

,

(

3, 4,
7

2

)

,

(

−
3

2
, 6, 2

)}

.

Determine, if S is linearly independent or dependent?

Solution: Let

a

(

3

4
,
5

2
,
3

2

)

+ b

(

3, 4,
7

2

)

+ c

(

−
3

2
, 6, 2

)

= (0, 0, 0) .

If this equation has only trivial solutions, then it is linealry independent.

This equaton gives the following system of linear equations:

3

4
a +3b −3

2
c = 0

5

2
a +4b +6c = 0

3

2
a +7

2
b +2c = 0
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The augmented matrix for this system is







3

4
3 −3

2
0

5

2
4 6 0

3

2

7

2
2 0






. its Gaus − Jordan form







1 0 0 0

0 1 0 0

0 0 1 0






.

So, a = 0, b = 0, c = 0. The system has only trivial (i.e. zero) solution.

We conclude that S is linearly independent.

Exercise 4.4.8 (Ex. 32. P. 219) Let

S = {(1, 0, 0), (0, 4, 0), (0, 0,−6), (1, 5,−3)}.

Determine, if S is linearly independent or dependent?

Solution: Let

c1(1, 0, 0) + c2(0, 4, 0) + c3(0, 0,−6) + c4(1, 5,−3) = (0, 0, 0).

If this equation has only trivial solutions, then it is linealry independent.

This equaton gives the following system of linear equations:

c1 +c4 = 0

4c2 5c4 = 0

−6c3 −3c4 = 0

The augmented matrix for this system is







1 0 0 1 0

0 4 0 5 0

0 0 −6 −3 0






. its Gaus−Jordan form







1 0 0 1 0

0 1 0 1.25 0

0 0 1 .5 0






.

Correspondingly:

c1 + c4 = 0, c2 + 1.25c4 = 0, c3 + .5c4 = 0.
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With c4 = t as parameter, we have

c1 = −t, c2 = −1.25t, c3 = .5t, c4 = t.

The equation above has nontrivial (i.e. nonzero) solutions. So, S is

linearly dependent.

Theorem 4.4.9 Let V be a vector space and S = {v1,v2, . . .vk}, k ≥

2 a set of elements (vectors) in V. Then S is linearly dependent if and

only if one of the vectors vj can be written as a linear combination of

the other vectors in S.

Proof. (⇒) : Assume S is linearly dependent. So, the equation

c1v1 + c2v2 + · · · + ckvk = 0

has a nonzero solution. This means, at least one of the ci is nonzero.
Let cr is the last one, with cr 6= 0. So,

c1v1 + c2v2 + · · · + crvr = 0

and
vr = −

c1

cr

v1 −
c2

cr

v2 − · · · −
cr−1

cr

vr−1.

So, vr is a linear combination of other vectors and this implication
isproved.

(⇒) : to prove the other implication, we assume that vr is linear com-
bination of other vectors. So

vr = (c1v1 + c2v2 + · · · + cr−1vr−1) + (cr+1vr+1 + · · · + ckvk) .

So,

(c1v1 + c2v2 + · · · + cr−1vr−1) − vr + (cr+1vr+1 + · · · + ckvk) = 0.

The left hand side is a nontrivial (i.e. nozero) linear combination,
because vr has coefficient −1. Therefore, S is linearly dependent. This
completes the proof.
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4.5 Basis and Dimension

Homework: [Textbook, §4.5 Ex. 1, 3, 7, 11, 15, 19, 21, 23, 25, 28, 35,
37, 39, 41,45, 47, 49, 53, 59, 63, 65, 71, 73, 75, 77, page 231].

The main point of the section is

1. To define basis of a vector space.

2. To define dimension of a vector space.

These are, probably, the two most fundamental concepts regarding vector
spaces.
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Definition 4.5.1 Let V be a vector space and S = {v1,v2, . . .vk} be

a set of elements (vectors)in V. We say that S is a basis of V if

1. S spans V and

2. S is linearly independent.

Remark. Here are some some comments about finite and infinite basis
of a vector space V :

1. We avoided discussing infinite spanning set S and when an infinite
S is linearly independent. We will continue to avoid to do so. ((1)
An infinite set S is said span V, if each element v ∈ V is a linear
combination of finitely many elements in V. (2) An infinite set
S is said to be linearly independent if any finitely subset of S is
linearly independent.)

2. We say that a vector space V is finite dimensional, if V has
a basis consisting of finitely many elements. Otherwise, we say
that V is infinite dimensional.

3. The vector space P of all polynomials (with real coefficients) has
infinite dimension.

Example 4.5.2 (example 1, p 221) Most standard example of ba-

sis is the standard basis of R
n.

1. Consider the vector space R
2. Write

e1 = (1, 0), e2 = (0, 1).

Then, e1, e2 form a basis of R
2.
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2. Consider the vector space R
3. Write

e1 = (1, 0, 0), e2 = (0, 1, 0), e2 = (0, 0, 1).

Then, e1, e2, e3 form a basis of R
3.

Proof. First, for any vector v = (x1, x2, x3) ∈ R
3, we have

v = x1e1 + x2e2 + x3e3.

So, R
3 is spanned by e1, e2, e3.

Now, we prove that e1, e2, e3 are linearly independent. So, sup-

pose

c1e1 + c2e2 + c3e3 = 0 OR (c1, c2, c3) = (0, 0.0).

So, c1 = c2 = c3 = 0. Therefore, e1, e2, e3 are linearly indepen-

dent. Hence e1, e2, e3 forms a basis of R
3. The proof is complete.

3. More generally, consider vector space R
n. Write

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1).

Then, e1, e2, e3, . . . , en form a basis of R
n. The proof will be

similar to the above proof. This basis is called the standard

basis of R
n.

Example 4.5.3 Consider

v1 = (1, 1, 1),v2 = (1,−1, 1),v3 = (1, 1,−1) in R
3.

Then v1,v2,v3 form a basis for R
3.
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Proof. First, we prove that v1,v2,v3 are linearly independent. Let

c1v1+c2v2+c3v3 = 0. OR c1(1, 1, 1)+c2(1,−1, 1)+c3(1, 1,−1) = (0, 0, 0).

We have to prove c1 = c2 = c3 = 0. The equations give the following

system of linear equations:

c1 +c2 +c3 = 0

c1 −c2 +c3 = 0

c1 +c2 −c3 = 0

The augmented matrix is







1 1 1 0

1 −1 1 0

1 1 −1 0






its Gauss − Jordan form







1 0 0 0

0 1 0 0

0 0 1 0







So, c1 = c2 = c3 = 0 and this estblishes that v1,v2,v3 are linearly

independent.

Now to show that v1,v2,v3 spans R
3, let v = (x1, x2, x3) be a vector

in R
3. We have to show that, we can find c1, c2, c3 such that

(x1, x2, x3) = c1v1 + c2v2 + c3v3

OR

(x1, x2, x3) = c1(1, 1, 1) + c2(1,−1, 1) + c3(1, 1,−1).

This gives the system of linear equations:







c1 +c2 +c3

c1 −c2 +c3

c1 +c2 −c3






=







x1

x2

x3






OR







1 1 1

1 −1 1

1 1 −1













c1

c2

c3






=







x1

x2

x3






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The coefficient matrix

A =







1 1 1

1 −1 1

1 1 −1






has inverse A−1 =







0 .5 .5

.5 −.5 0

.5 0 −.5






.

So, the above system has tha solution:







c1

c2

c3






= A−1







x1

x2

x3






=







0 .5 .5

.5 −.5 0

.5 0 −.5













x1

x2

x3






.

So, each vector (x1, x2, x3) is in the span of v1,v2,v3. So, they form a

basis of R
3. The proof is complete.

Reading assignment: Read [Textbook, Examples 1-5, p. 221-224].

Theorem 4.5.4 Let V be a vector space and S = {v1,v2, . . . ,vn} be

a basis of V. Then every vector v in V can be written in one and only

one way as a linear combination of vectors in S. (In other words, v can

be written as a unique linear combination of vectors in S.)

Proof. Since S spans V, we can write v as a linear combination

v = c1v1 + c2v2 + · · · + cnvn

for scalars c1, c2, . . . , cn. To prove uniqueness, also let

v = d1v1 + d2v2 + · · · + dnvn

for some other scalars d1, d2, . . . , dn. Subtracting, we have

(c1 − d1)v1 + (c2 − d2)v2 + · · · + (cn − dn)vn = 0.

Since, v1,v2, . . . ,vn are also linearly independent, we have

c1 − d1 = 0, c2 − d2 = 0, . . . , cn − dn = 0
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OR

c1 = d1, c2 = d2, . . . , cn = dn.

This completes the proof.

Theorem 4.5.5 Let V be a vector space and S = {v1,v2, . . . ,vn} be

a basis of V. Then every set of vectors in V containing more than n

vectors in V is linearly dependent.

Proof. Suppose S1 = {u1,u2, . . . ,um} ne a set of m vectors in V, with
m > n. We are requaired to prove that the zero vector 0 is a nontrivial
(i.e. nonzero) linear combination of elements in S1. Since S is a basis,
we have

u1 = c11v1 +c12v2 + · · · +c1nvn

u2 = c21v1 +c22v2 + · · · +c2nvn

· · · · · · · · · · · · · · ·
um = cm1v1 +cm2v2 + · · · +cmnvn

Consider the system of linear equations

c11x1 +c22x2 + · · · +cm1xm = 0
c12x1 +c22x2 + · · · +cm2xm = 0
· · · · · · · · · · · · · · ·

c1nx1 +c2nx2 + · · · +cmnxm = 0

which is








c11 c22 · · · cm1

c12 c22 · · · cm2

· · · · · · · · · · · ·
c1n c2n · · · cmn

















x1

x2

· · ·
xm









=









0
0

· · ·
0









Since m > n, this homegeneous system of linear equations has fewer
equations than number of variables. So, the system has a nonzero
solution (see [Textbook, theorem 1.1, p 25]). It follows that

x1u1 + x2u2 + · · · + xmum = 0.
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We justify it as follows: First,

[

u1 u2 . . . um

]

=
[

v1 v2 . . . vn

]









c11 c22 · · · cm1

c12 c22 · · · cm2

· · · · · · · · · · · ·
c1n c2n · · · cmn









and then

x1u1 + x2u2 + . . . + xmum =
[

u1 u2 . . . um

]









x1

x2

· · ·
xm









which is

=
[

v1 v2 . . . vn

]









c11 c22 · · · cm1

c12 c22 · · · cm2

· · · · · · · · · · · ·
c1n c2n · · · cmn

















x1

x2

· · ·
xm









which is

=
[

v1 v2 . . . vn

]









0
0

· · ·
0









= 0.

Alternately, at your level the proof will be written more explicitly as
follows: x1u1 + x2u2 + . . . + xmum =

m
∑

j=i

xjuj =
m
∑

j=1

xj

(

n
∑

i=1

cijvi

)

=
n
∑

i=1

(

m
∑

j=1

cijxj

)

vi =
n
∑

i=1

0vi = 0.

The proof is complete.

Theorem 4.5.6 Suppose V is a vector space and V has a basis with

n vectors. Then, every basis has n vectors.
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Proof. Let

S = {v1,v2, . . . ,vn} and S1 = {u1,u2, . . . ,um}

be two bases of V. Since S is a basis and S1 is linearly independent, by
theorem 4.5.5, we have m ≤ n. Similarly, n ≤ m. So, m = n. The proof
is complete.

Definition 4.5.7 If a vector space V has a basis consisting of n vectors,

then we say that dimension of V is n. We also write dim(V ) = n. If

V = {0} is the zero vector space, then the dimension of V is defined

as zero.

(We say that the dimension of V is equal to the ‘cardinality’ of

any basis of V. The word ‘cardinality’ is used to mean ‘the number of

elements’ in a set.)

Theorem 4.5.8 Suppose V is a vector space of dimension n.

1. Suppose S = {v1,v2, . . . ,vn} is a set of n linearly independent

vectors. Then S is basis of V.

2. Suppose S = {v1,v2, . . . ,vn} is a set of n vectors. If S spans V,

then S is basis of V.

Remark. The theorem 4.5.8 means that, if dimension of V matches
with the number of (i.e. ’cardinality’ of) S, then to check if S is a basis
of V or not, you have check only one of the two required prperties (1)
indpendece or (2) spannning.

Example 4.5.9 Here are some standard examples:

1. We have dim(R) = 1. This is because {1} forms a basis for R.
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2. We have dim(R2) = 2. This is because the standard basis

e1 = (1, 0), e2 = (0, 1)

consist of two elements.

3. We have dim(R3) = 3. This is because the standard basis

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)

consist of three elements.

4. Mor generally, dim(Rn) = n. This is because the standard basis

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, . . . , 1)

consist of n elements.

5. The dimension of the vector space Mm,n of all m × n matrices is

mn. Notationally, dim(Mm,n) = mn. To see this, let eij be the

m × n matrix whose (i, j)th−entry is 1 and all the rest of the

entries are zero. Then,

S = {eij : i = 1, 2, . . . ,m; j1, 2, . . . , n}

forms a basis of Mm,n and S has mn elements.

6. Also recall, if a vector space V does not have a finite basis, we

say V is inifinite dimensional.

(a) The vector space P of all polynomials (with real coefficients)

has infinite dimension.

(b) The vector space C(R) of all continuous real valued functions

on real line R has infinite dimension.
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Exercise 4.5.10 (Ex. 4 (changed), p. 230) Write down the stan-

dard basis of the vector space M3,2 of all 3 × 2−matrices with real

entires.

Solution: Let eij be the 3 × 2−matrix, whose (i, j)th−entry is 1 and

all other entries are zero. Then,

{e11, e12, e21, e22, e31, e32}

forms a basis of M3,2. More explicitly,

e11 =







1 0

0 0

0 0






, e12 =







0 1

0 0

0 0






, e21 =







0 0

1 0

0 0







and

e22 =







0 0

0 1

0 0






, e31 =







0 0

0 0

1 0






, e33 =







0 0

0 0

0 1






.

It is easy to verify that these vectors in M32 spans M32 and are linearly

independent. So, they form a basis.

Exercise 4.5.11 (Ex. 8. p. 230) Explain, why the set

S = {(−1, 2), (1,−2), (2, 4)} is not a basis of R
2?

Solution: Note

(−1, 2) + (1,−2) + 0(2, 4) = (0, 0).

So, these three vectors are not linearly independent. So, S is not a

basis of R
2.

Alternate argument: We have dim (R2) = 2 and S has 3 elements.

So, by theorem 4.5.6 above S cannot be a basis.
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Exercise 4.5.12 (Ex. 16. p. 230) Explain, why the set

S = {(2, 1,−2), (−2,−1, 2), (4, 2,−4)}

is not a basis of R
3?

Solution: Note

(4, 2,−4) = (2, 1,−2) − (−2,−1, 2)

OR

(2, 1,−2) − (−2,−1, 2) − (4, 2,−4) = (0, 0, 0).

So, these three vectors are linearly dependent. So, S is not a basis of

R
3.

Exercise 4.5.13 (Ex. 24. p. 230) Explain, why the set

S = {6x − 3, 3x2, 1 − 2x − x2}

is not a basis of P2?

Solution: Note

1 − 2x − x2 = −
1

3
(6x − 3) −

1

3
(3x2)

OR

(1 − 2x − x2) +
1

3
(6x − 3) +

1

3
(3x2) = 0.

So, these three vectors are linearly dependent. So, S is not a basis of

P2.

Exercise 4.5.14 (Ex. 36,p.231) Determine, whether

S = {(1, 2), (1,−1)}
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is a basis of R
2 or not?

Solution: We will show that S is linearly independent. Let

a(1, 2) + b(1,−1) = (0, 0).

Then

a + b = 0, and 2a − b = 0.

Solving, we get a = 0, b = 0. So, these two vectors are linearly indepen-

dent. We have dim (R2) = 2. Therefore, by theorem 4.5.8, S is a basis

of R
2.

Exercise 4.5.15 (Ex. 40. p.231) Determine, whether

S = {(0, 0, 0), (1, 5, 6), (6, 2, 1)}

is a basis of R
3 or not?

Solution: We have

1.(0, 0, 0) + 0.(1, 5, 6) + 0.(6, 2, 1) = (0, 0, 0).

So, S is linearly dependent and hence is not a basis of R
3.

Remark. In fact, any subset S of a vector space V that contains 0 is
linearly dependent.

Exercise 4.5.16 (Ex. 46. p.231) Determine, whether

S =
{

4t − t2, 5 + t3, 3t + 5, 2t3 − 3t2
}

is a basis of P3 or not?

Solution: Note the standard basis

{

1, t, t2, t3
}
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of P3 has four elements. So, dim (P3) = 4. Because of theorem 4.5.8,

we will try to check, if S is linearly independent or not. So, let

c1(4t − t2) + c2(5 + t3) + c3(3t + 5) + c4(2t
3 − 3t2) = 0

for some scalars c1, c2, c3, c4. If we simplify, we get

(5c2 + 5c3) + (4c1 + 3c3)t + (−c1 − 3c4)t
2 + (c2 + 2c4)t

3 = 0

Recall, a polynomial is zero if and only if all the coefficients are zero.

So, we have

5c2 +5c3 = 0

4c1 +3c3 = 0

−c1 −3c4 = 0

c2 +2c4 = 0

The augmented matrix is













0 5 5 0 0

4 0 3 0 0

−1 0 0 −3 0

0 1 0 2 0













its Gauss−Jordan form













1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0













.

Therefore, c1 = c2 = c3 = c4 = 0. Hence S is linearely independent. So,

by theorem 4.5.8, S is a basis of P3.

Exercise 4.5.17 (Ex. 60. p.231) Determine the dimension of P4.

Solution: Recall, P4 is the vector space of all polynomials of degree

≤ 4. We claim that that

S = {1, t, t2, t3, t4}

is a basis of P4. Clearly, any polynomial in P4 is a linear combination

of elements in S. So, S spans P4. Now, we prove that S is linearly
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independent. So, let

c01 + c1t + c2t
2 + c3t

3 + c4t
4 = 0.

Since a nonzero polynomial of degree 4 can have at most four roots,

it follows c0 = c1 = c2 = c3 = c4 = 0. So, S is a basis of P4 and

dim(P4) = 5.

Exercise 4.5.18 (Ex. 62. p.231) Determine the dimension of M32.

Solution: In exercise 4.5.10, we established that

S = {e11, e12, e21, e22, e31, e32}

is a basis of M3,2. So, dim(M32) = 6.

Exercise 4.5.19 (Ex. 72. p.231) Let

W = {(t, s, t) : s, t ∈ R} .

Give a geometric description of W, find a basis of W and determine the

dimension of W.

Solution: First note that W is closed under addition and scalar multi-

plication. So, W is a subspace of R
3. Notice, there are two parameters

s, t in the description of W. So, W can be described by x = z. Therefore,

W represents the plane x = z in R
3.

I suggest (guess) that

u = (1, 0, 1),v = (0, 1, 0)

will form a basis of W. To see that they are mutually linearly indepen-

dent, let

au + bv = (0.0.0); OR (a, b, a) = (0.0.0).
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So, a = 0, b = 0 and hence they are linearly independent. To see that

they span W, we have

(t, s, t) = tu + sv.

So, {u,v} form a basis of W and dim(W ) = 2.

Exercise 4.5.20 (Ex. 74. p.232) Let

W = {(5t,−3t, t, t) : t ∈ R} .

Fnd a basis of W and determine the dimension of W.

Solution: First note that W is closed under addition and scalar mul-

tiplication. So, W is a subspace of R
4. Notice, there is only parameters

t in the description of W. (So, I expect that dim(W ) = 1. I suggest

(guess)

e = {(5,−3, 1, 1)}

is a basis of W. This is easy to check. So, dim(W ) = 1.
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4.6 Rank of a matrix and SoLE

Homework: [Textbook, §4.6 Ex. 7, 9, 15, 17, 19, 27, 29, 33, 35, 37,
41, 43, 47, 49, 57, 63].

Main topics in this section are to define

1. We define row space of a matrix A and the column space of a

matrix A.

2. We define the rank of a matrix,

3. We define nullspace N(A) of a homoheneous system Ax = 0 of

linear equations. We also define the nullity of a matrix A.
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Definition 4.6.1 Let A = [aij] be an m × n matrix.

1. The n−tuples corresponding to the rows of A are called row

vectors of A.

2. Similarly, the m−tuples corresponding to the columns of A are

called column vectors of A.

3. The row space of A is the subspace of R
n spanned by row vectors

of A.

4. The column space of A is the subspace of R
m spanned by column

vectors of A.

Theorem 4.6.2 Suppose A,B are two m × n matrices. If A is row-

equivalent of B then row space of A is equal to the row space of B.

Proof. This follows from the way row-equivalence is defined. Since B

is rwoequivalent to A, rows of B are obtained by (a series of) scalar
multiplication and addition of rows of A. So, it follows that row vectors
of B are in the row space of A. Therefore, the subspace spanned by row
vectors of B is contained in the row space of A. So, the row space of B

is contained in the row space of A. Since A is row-equivalent of B, it
also follows the B is row-equivalent of A. (We say that the ‘relationship’
of being ‘row-equivalent’ is reflexive.) Therefore, by the same argumen,
the row space of A is contained in the row space of B. So, they are
equal. The proof is complete.

Theorem 4.6.3 Suppose A is an m×n matrix and B is row-equivalent

to A and B is in row-echelon form. Then the nonzero rows of B form

a basis of the row space of A.

Proof. From theorem 4.6.2, it follows that row space of A and B are
some. Also, a basis of the row space of B is given by the nonzero rows
of B. The proof is complete.
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Theorem 4.6.4 Suppose A is an m × n matrix. Then the row space

and column space of A have same dimension.

Proof. (You can skip it, I will not ask you to prove this.) Write

A =













a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n

· · · · · · · · · · · · · · ·
am1 am2 am3 · · · amn













Let v1,v2, . . . ,vm denote the row vectors of A and u1,u2, . . . ,un de-
note the column vectors of A. Suppose that the row space of A has
dimension r and

S = {b1,b2, . . . ,br}

is a basis of the row space of A. Also, write

bi = (bi1, bi2, . . . , bin).

We have
v1 = c11b1 +c12b2 + · · · +c1rbr

v2 = c21b1 +c22b2 + · · · +c2rbr

· · · · · · · · · · · · · · ·
vm = cm1b1 +cm2b2 + · · · +cmrbr

Looking at the first entry of each of these m equations, we have

a11 = c11b11 +c12b21 · · · +c1rbr1

a21 = c21b11 +c22b21 · · · +c2rbr1

a31 = c31b11 +c32b21 · · · +c3rbr1

· · · · · · · · · · · · · · ·
am1 = cm1b11 +cm2b21 · · · +cmrbr1

Let ci denote the ith column of the matrix C = [cij]. So, it follows from
these m equations that

u1 = b11c1 + b21c2 + · · · + br1cr.
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Similarly, looking at the jth entry of the above set of equations, we have

uj = b1jc1 + b2jc2 + · · · + brjcr.

So, all the columns uj of A are in span(c1, c2, . . . , cr). Therefore, the
column space of A is contained in span(c1, c2, . . . , cr). It follows from
this that the rank of the column space of A has dimension ≤ r = rank
of the row space of A. So,

dim(column space of A) ≤ dim(row space of A).

Similarly,

dim(row space of A) ≤ dim(column space of A).

So, they are equal. The proof is complete.

Definition 4.6.5 Suppose A is an m×n matrix. The dimension of the

row space (equivalently, of the column space) of A is called the rank

of A and is denoted by rank(A).

Reading assignment: Read [Textbook, Examples 2-5, p. 234-].

4.6.1 The Nullspace of a matrix

Theorem 4.6.6 Suppose A is an m× n matrix. Let N(A) denote the

set of solutions of the homogeneous system Ax = 0. Notationally:

N(A) = {x ∈ R
n : Ax = 0} .

Then N(A) is a a subspace of R
n and is called the nullspace of A. The

dimension of N(A) is called the nullity of A. Notationally:

nullity(A) := dim(N(A)).
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Proof. First, N(A) is nonempty, because 0 ∈ N(A). By theorem 4.3.3,
we need only to check that N(A) is closed under addition and scalar
multiplication. Suppose x,y ∈ N(A) and c is a scalar. Then

Ax = 0, Ay = 0, so A(x + y) = Ax + Ay = 0 + 0 = 0.

So, x + y ∈ N(A) and N(A) is closed under addition. Also

A(cx) = c(Ax) = c0 = 0.

Therefore, cx ∈ N(A) and N(A) is closed under scalar multiplication.

Theorem 4.6.7 Suppose A is an m × n matrix. Then

rank(A) + nullity(A) = n.

That means, dim(N(A)) = n − rank(A).

Proof.Let r = rank(A). Let B be a matrix row equivalent to A and
B is in Gauss-Jordan form. So, only the first r rows of B are nonzero.
Let B′ be the matrix formed by top r (i.e. nonzero) rows of B. Now,

rank(A) = rank(B) = rank(B′), nullity(A) = nullity(B) = nullity(B′).

So, we need to prove rank(B′) + nullity(B′) = n. Switching columns
of B′ would only mean re-labeling the variables (like x1 7→ x1, x2 7→
x3, x3 7→ x2). In this way, we can write B′ = [Ir, C], where C is a
r × n − r matrix and corresponds to the variables, xr+1, . . . , xn. The
homogeneous system corresponding to B′ is given by:

x1 · · · +c11xr+1 +c12xr+2 + · · · +c1,n−rxn = 0
x2 · · · +c21xr+1 +c22xr+2 + · · · +c2,n−rxn = 0

· · · · · · · · · · · · · · · · · ·
· · · xr +cr1xr+1 +cr2xr+2 + · · · +cr,n−rxn = 0

The solution space N(B′) has n − r papameters. A basis of N(B′) is
given by

S = {Er+1,Er+2, . . . ,En}
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where

Er+1 = − (c11e1 + c21e2 + · · · + cr1er) + er+1 so on

and ei ∈ R
n is the vector with 1 at the ith place and 0 elsewhere. So,

nullity(B′) = cardinality(S) = n − r. The proof is complete.

Reading assignment: Read [Textbook, Examples 6, 7, p. 241-242].

4.6.2 Solutionf of SoLE

Given a system of linear equations Ax = b, where A is an m×n matrix,
we have the following:

1. Corresponding to such a system Ax = b, there is a homogeneous
system Ax = 0.

2. The set of solutions N(A) of the homogeneous system Ax = 0 is
a subspace of R

n.

3. In contrast, if b 6= 0, the set of solutions of Ax = b is not a
subspace. This is because 0 is not a solution of Ax = b.

4. The system Ax = b may have many solution. Let xp denote a
PARTICULAR one such solutions of Ax = b.

5. The we have

Theorem 4.6.8 Every solution of the system Ax = b can be

written as

x = xp + xh

where xh is a solution of the homogeneous system Ax = 0.

Proof. Suppose x is any solution of Ax = b. We have

Ax = b and Axp = b.
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Write xh = x − xp. Then

Axh = A (x − xp) = Ax − Axp = b − b = 0.

So, xh is a solution of the homogeneoud system Ax = 0 and

x = xp + xh.

The proof is complete.

Theorem 4.6.9 A system Ax = bis consistent if and only if b is in

the column space of A.

Proof. Easy. It is, in fact, interpretation of the matrix multiplication
Ax = b.

Reading assignment: Read [Textbook, Examples 8,9, p. 244-245].

Theorem 4.6.10 Suppose A is a square matrix of size n × n. Then

the following conditions are equivalent:

1. A is invertible.

2. Ax = b has unique solution for every m × 1 matrix b.

3. Ax = 0 has only the trivial solution.

4. A is row equivalent to the identity matrix In.

5. det(A) 6= 0.

6. Rank(A) = n.

7. The n row vectors of A are linearly independent.

8. The n column vectors of A are linearly independent.
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Exercise 4.6.11 (Ex. 8, p. 246) Let

A =







2 −3 1

5 10 6

8 −7 5






.

(a) Find the rank of the matrix A. (b) Find a basis of the row space of

A, (c) Find a basis of the column space of A.

Solution: First, the following is the row Echelon form of this matrix

(use TI):

B =







1 −.875 .625

0 1 .2

0 0 0






.

The rank of A is equal to the number of nonzero rows of B. So,

rank(A) = 2.

A basis of the row space of A is given by the nonzero rwos of B. So,

v1 = (1,−.875, .625) and v2 = (0, 1, .2)

form a basis of the row space of A.

The column space of A is same as the row space of the transpose

AT . We have

AT =







2 5 8

−3 10 −7

1 6 5






.

The following is the row Echelon form of this matrix (use TI):

C =







1 −10

3

7

3

0 1 0.2857

0 0 0






.
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A basis of the column space of A is given by the nonzero rows of C, (to

be written as column):

u1 =







1

−10

3

7

3






, u2 =







0

1

0.2857






.

Exercise 4.6.12 (Ex. 16, p. 246) Let

S = {(1, 2, 2), (−1, 0, 0), (1, 1, 1)} ⊆ R
3.

Find a basis of of the subspace spanned by S.

Solution: We write these rows as a matrix:

A =







1 2 2

−1 0 0

1 1 1






.

Now the row space of A will be the same as the subspace spanned by

S. So, we will find a basis of the row space of A. Use TI and we get the

row Echelon form of A is given by

B =







1 2 2

0 1 1

0 0 0






.

So, a basis is:

u1 = (1, 2, 2), u2 = (0, 1, 1).

Remark. The answers regrading bases would not be unique. The

following will also be a basis of this space:

v1 = (1, 2, 2), v2 = (1, 0, 0).
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Exercise 4.6.13 (Ex. 20, p. 246) Let

S = {(2, 5,−3,−2), (−2,−3, 2,−5), (1, 3,−2, 2), (−1,−5, 3, 5)} ⊆ R
4.

Find a basis of of the subspace spanned by S.

Solution: We write these rows as a matrix:

A =













2 5 −3 −2

−2 −3 2 −5

1 3 −2 2

−1 −5 3 5













.

Now the row space of A will be the same as the subspace spanned by

S. So, we will find a basis of the row space of A.

Use TI and we get the row Echelon form of A is given by

B =













1 2.5 −1.5 −1

0 1 −0.6 −1.6

0 0 1 −19

0 0 0 0













.

So, a basis is:

{u1 = (1, 2.5,−1.5,−1), u2 = (0, 1,−0.6,−1.6), u3 = (0, 0, 1,−19)} .

Exercise 4.6.14 (Ex. 28, p. 247) Let

A =







3 −6 21

−2 4 −14

1 −2 7






.

Find the dimension of the solution space of Ax = 0.
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Solution: Step-1: Find rank of A : Use TI, the row Echelon form of

A is

B =







1 −2 7

0 0 0

0 0 0






.

So, the number of nonzero rows of B is rank(A) = 1.

Step-2: By theorem 4.6.7, we have

rank(A) + nullity(A) = n = 3, so nullity(A) = 3 − 1 = 2.

That means that the solution space has dimension 2.

Exercise 4.6.15 (Ex. 32, p. 247) Let

A =













1 4 2 1

2 −1 1 1

4 2 1 1

0 4 2 0













.

Find the dimension of the solution space of Ax = 0.

Solution: Step-1: Find rank of A : Use TI, the row Echelon form of

A is

B =













1 .5 .25 .25

0 1 .5 0

0 0 1 1

3

0 0 0 1













.

So, the number of nonzero rows of B is rank(A) = 4.

Step-2: By theorem 4.6.7, we have

rank(A) + nullity(A) = n = 4, so nullity(A) = 4 − 4 = 0.

That means that the solution space has dimension 0. This also means

that the the homogeneous system Ax = 0 has only the trivial solution.
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Exercise 4.6.16 (Ex. 38 (edited), p. 247) Consider the homoge-

neous system

2x1 +2x2 +4x3 −2x4 = 0

x1 +2x2 +x3 +2x4 = 0

−x1 +x2 +4x3 −x4 = 0

Find the dimension of the solution space and give a basis of the same.

Solution: We follow the following steps:

1. First, we write down the coefficient matrix:

A =







2 2 4 −2

1 2 1 2

−1 1 4 −1







2. Use TI, the Gauss-Jordan for of the matrix is

B =







1 0 0 −1

0 1 0 2

0 0 1 −1







3. The rank of A is number of nonzero rows of B. So,

rank(A) = 3, by thm. 4.6.7, nullity(A) = n−rank(A) = 4−3 = 1.

So, the solution space has dimension 1.

4. To find the solution space, we write down the homogeneous sys-

tem corresponding to the coeeficient matrix B. So, we have

x1 −x4 = 0

x2 +2x4 = 0

x3 −x4 = 0
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5. Use x4 = t as parameter and we have

x1 = t, x2 = −2t, x3 = t, x4 = t.

6. So the solution space is given by

{(t,−2t, t, t) : t ∈ R}.

7. A basis is obtained by substituting t = 1. So

u = (1,−2, 1, 1)

forms a basis of the solution space.

Exercise 4.6.17 (Ex. 39, p. 247) Consider the homogeneous sys-

tem

9x1 −4x2 −2x3 −20x4 = 0

12x1 −6x2 −4x3 −29x4 = 0

3x1 −2x2 −7x4 = 0

3x1 −2x2 −x3 −8x4 = 0

Find the dimension of the solution space and give a basis of the same.

Solution: We follow the following steps:

1. First, we write down the coefficient matrix:

A =













9 −4 −2 −20

12 −6 −4 −29

3 −2 0 −7

3 −2 −1 −8












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2. Use TI, the Gauss-Jordan for of the matrix is

B =













1 0 0 −4

3

0 1 0 1.5

0 0 1 1

0 0 0 0













3. The rank of A is number of nonzero rows of B. So,

rank(A) = 3, by thm. 4.6.7, nullity(A) = n−rank(A) = 4−3 = 1.

So, the solution space has dimension 1.

4. To find the solution space, we write down the homogeneous sys-

tem corresponding to the coeeficient matrix B. So, we have

x1 −4

3
x4 = 0

x2 +1.5x4 = 0

x3 +x4 = 0

0 = 0

5. Use x4 = t as parameter and we have

x1 =
4

3
t, x2 = −1.5t, x3 = −t, x4 = t.

6. So the solution space is given by
{

(
4

3
t,−1.5t,−t, t) : t ∈ R

}

.

7. A basis is obtained by substituting t = 1. So

u = (
4

3
,−1.5,−1, 1)

forms a basis of the solution space.
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Exercise 4.6.18 (Ex. 42, p. 247) Consider the system of equations

3x1 −8x2 +4x3 = 19

−6x2 +2x3 +4x4 = 5

5x1 +22x3 +x4 = 29

x1 −2x2 +2x3 = 8

Determine, if this system is consistent. If yes, write the solution in

the form x = xh + xp where xh is a solution of the corresponding

homogeneous system Ax = 0 and xp is a particular solution.

Solution: We follow the following steps:

1. To find a particular solution, we write the augmented matrix of

the nonhomogeneous system:













3 −8 4 0 19

0 −6 2 4 5

5 0 22 1 29

1 −2 2 0 8













The Gauss-Jordan form of the matrix is












1 0 0 −2 0

0 1 0 −.5 0

0 0 1 .5 0

0 0 0 0 1













The last row suggests 0 = 1. So, the system is not consistents.

Exercise 4.6.19 (Ex. 44, p. 247) Consider the system of equations

2x1 −4x2 +5x3 = 8

−7x1 +14x2 +4x3 = −28

3x1 −6x3 +x3 = 12
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Determine, if this system is consistent.If yes, write the solution in the

form x = xh + xp where xh is a solution of the corresponding homoge-

neous system Ax = 0 and xp is a particular solution.

Solution: We follow the following steps:

1. First, the augmented matrix of the system is






2 −4 5 8

−7 14 4 −28

3 −6 1 12






.

Its Gauss-Jordan form is






1 −2 0 4

0 0 1 0

0 0 0 0






.

This corresponds to they system

x1 −2x2 = 4

x3 = 0

0 = 0

.

The last row indicates that the system is consistent. We use

x2 = t as a paramater and we have

x1 = 4 + 2t, x2 = t, x3 = 0.

Thaking t = 0, a particular solutions is

xp = (4, 0, 0).

2. Now, we proceed to find the solution of the homogeneous system

2x1 −4x2 +5x3 = 0

−7x1 +14x2 +4x3 = 0

3x1 −6x3 +x3 = 0
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(a) The coefficient matrix

A =







2 −4 5

−7 14 4

3 −6 1






.

(b) Its Gauss-Jordan form is

B =







1 −2 0

0 0 1

0 0 0






.

(c) The homogeneous system corresponding to B is

x1 −2x2 = 0

x3 = 0

0 = 0

(d) We use x2 = t as a paramater and we have

x1 = 2t, x2 = t, x3 = 0.

(e) So, in parametrix form

xh = (2t, t, 0).

3. Final answer is: With t as parameter, any solutions can be written

as

x = xh + xp = (2t, t, 0) + (4, 0, 0).

Exercise 4.6.20 (Ex. 50, p. 247) Let

A =







1 3 2

−1 1 2

0 1 1






and b =







1

1

0






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Determine, if b is in the column space of A.

Solution: The question means, whether the system Ax = b has a

solutions (i.e. is consistent).

Accordingly, the augmented matrix of this system Ax = b is







1 3 2 1

−1 1 2 1

0 1 1 0






.

The Gauss-Jordan form of this matrix is i







1 0 −1 0

0 1 1 0

0 0 0 1






.

The last row indicates that the system is not consistent. So, b is not

in the column space of A.



168 CHAPTER 4. VECTOR SPACES


