Chapter 4

Vector Spaces

4.1 Vectors in \mathbb{R}^{n}

Homework: [Textbook, §4.1 Ex. 15, 21, 23, 27, 31, 33(d), 45, 47, 49, 55, 57; p. 189-].

We discuss vectors in plane, in this section.

In physics and engineering, a vector is represented as a directed segment. It is determined by a length and a direction. We give a short review of vectors in the plane.

Definition 4.1.1 A vector x in the plane is represented geometrically by a directed line segment whose initial point is the origin and whose terminal point is a point $\left(x_{1}, x_{2}\right)$ as shown in in the textbook,
page 180.

The bullet at the end of the arrow is the terminal point $\left(x_{1}, x_{2}\right)$. (See the textbook,page 180 for a better diagram.) This vector is represented by the same ordered pair and we write

$$
\mathbf{x}=\left(x_{1}, x_{2}\right)
$$

1. We do this because other information is superfluous. Two vectors $\mathbf{u}=\left(u_{1}, u_{2}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}\right)$ are equal if $u_{1}=v_{1}$ and $u_{2}=v_{2}$.
2. Given two vectors $\mathbf{u}=\left(u_{1}, u_{2}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}\right)$, we define vector addition

$$
\mathbf{u}+\mathbf{v}=\left(u_{1}+v_{1}, u_{2}+v_{2}\right) .
$$

See the diagram in the textbook, page 180 for geometric interpretation of vector addition.
3. For a scalar c and a vector $\mathbf{v}=\left(v_{1}, v_{2}\right)$ define

$$
c \mathbf{v}=\left(c v_{1}, c v_{2}\right)
$$

See the diagram in the textbook, page 181 for geometric interpretation of scalar multiplication.
4. Denote $-\mathbf{v}=(-1) \mathbf{v}$.

Reading assignment: Read [Textbook, Example 1-3, p. 180-] and study all the diagrams.

Obvioulsly, these vectors behave like row matrices. Following list of properties of vectors play a fundamental role in linear algebra. In fact, in the next section these properties will be abstracted to define vector spaces.

Theorem 4.1.2 Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be three vectors in the plane and let c, d be two scalar.

1. $\mathbf{u}+\mathbf{v}$ is a vector in the plane closure under addition
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u} \quad$ Commutative property of addition
3. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$ Associate property of addition
4. $(\mathbf{u}+\mathbf{0})=\mathbf{u} \quad$ Additive identity
5. $\mathbf{u}+(-1) \mathbf{u}=\mathbf{0} \quad$ Additive inverse
6. $c \mathbf{u}$ is a vector in the plane closure under scalar multiplication
7. $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v} \quad$ Distributive propertyof scalar mult.
8. $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u} \quad$ Distributive property of scalar mult.
9. $c(d \mathbf{u})=(c d) \mathbf{u} \quad$ Associate property of scalar mult.
10. $1(\mathbf{u})=\mathbf{u} \quad$ Multiplicative identity property

Proof. Easy, see the textbook, papge 182.

4.1.1 Vectors in \mathbb{R}^{n}

The discussion of vectors in plane can now be extended to a discussion of vectors in n-space. A vector in n-space is represented by an ordered n-tuple $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

The set of all ordered n-tuples is called the n-space and is denoted by \mathbb{R}^{n}. So,

1. $\mathbb{R}^{1}=1-$ space $=$ set of all real numbers,
2. $\mathbb{R}^{2}=2-$ space $=$ set of all ordered pairs $\left(x_{1}, x_{2}\right)$ of real numbers
3. $\mathbb{R}^{3}=3-$ space $=$ set of all ordered triples $\left(x_{1}, x_{2}, x_{3}\right)$ of real numbers
4. $\mathbb{R}^{4}=4-$ space $=$ set of all ordered quadruples $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ of real numbers. (Think of space-time.)
5.
6. $\mathbb{R}^{n}=n$-space $=$ set of all ordered ordered n-tuples $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of real numbers.

Remark. We do not distinguish between points in the n-space \mathbb{R}^{n} and vectors in n-space (defined similalry as in definition 4.1.1). This is because both are describled by same data or information. A vector in the n-space \mathbb{R}^{n} is denoted by (and determined) by an n-tuples $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of real numbers and same for a point in n-space \mathbb{R}^{n}. The $i^{t h}$-entry x_{i} is called the $i^{t h}$-coordinate.

Also, a point in n-space \mathbb{R}^{n} can be thought of as row matrix. (Some how, the textbook avoids saying this.) So, the addition and scalar multiplications can be defined is a similar way, as follows.

Definition 4.1.3 Let $\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be vectors in \mathbb{R}^{n}. The the sum of these two vectors is defined as the vector

$$
\mathbf{u}+\mathbf{v}=\left(u_{1}+v_{1}, u_{2}+v_{2}, \ldots, u_{n}+v_{n}\right) .
$$

For a scalar c, define scalar multiplications, as the vector

$$
c \mathbf{u}=\left(c u_{1}, c u_{2}, \ldots, c u_{n}\right) .
$$

Also, we define negative of \mathbf{u} as the vector

$$
-\mathbf{u}=(-1)\left(u_{1}, u_{2}, \ldots, u_{n}\right)=\left(-u_{1},-u_{2}, \ldots,-u_{n}\right)
$$

and the difference

$$
\mathbf{u}-\mathbf{v}=\mathbf{u}+(-\mathbf{v})=\left(u_{1}-v_{1}, u_{2}-v_{2}, \ldots, u_{n}-v_{n}\right) .
$$

Theorem 4.1.4 All the properties of theorem 4.1.2 hold, for any three vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in n-space \mathbb{R}^{n} and salars c, d.

Theorem 4.1.5 Let \mathbf{v} be a vector in \mathbb{R}^{n} and let c be a scalar. Then,

1. $\mathbf{v}+\mathbf{0}=\mathbf{v}$.
(Because of this property, $\mathbf{0}$ is called the additive identity in \mathbb{R}^{n}.)

Further, the additive identitiy unique. That means, if $\mathbf{v}+\mathbf{u}=\mathbf{v}$ for all vectors \mathbf{v} in \mathbb{R}^{n} than $\mathbf{u}=\mathbf{0}$.
2. Also $\mathbf{v}+(-\mathbf{v})=\mathbf{0}$.
(Because of this property, $\mathbf{- \mathbf { v }}$ is called the additive inverse of \mathbf{v}.)
Further, the additive inverse of \mathbf{v} is unique. This means that $\mathbf{v}+\mathbf{u}=\mathbf{0}$ for some vector \mathbf{u} in \mathbb{R}^{n}, then $\mathbf{u}=-\mathbf{v}$.
3. $0 \mathbf{v}=0$.

Here the 0 on left side is the scalar zero and the bold $\mathbf{0}$ is the vector zero in \mathbb{R}^{n}.
4. $c \mathbf{0}=\mathbf{0}$.
5. If $c \mathbf{v}=\mathbf{0}$, then $c=0$ or $\mathbf{v}=\mathbf{0}$.
6. $-(-\mathbf{v})=\mathbf{v}$.

Proof. To prove that additive identity is unique, suppose $\mathbf{v}+\mathbf{u}=\mathbf{v}$ for all \mathbf{v} in \mathbb{R}^{n}. Then, taking $\mathbf{v}=\mathbf{0}$, we have $\mathbf{0}+\mathbf{u}=\mathbf{0}$. Therefore, $\mathbf{u}=\mathbf{0}$.

To prove that additive inverse is unique, suppose $\mathbf{v}+\mathbf{u}=\mathbf{0}$ for some vector \mathbf{u}. Add $-\mathbf{v}$ on both sides, from left side. So,

$$
-\mathbf{v}+(\mathbf{v}+\mathbf{u})=-\mathbf{v}+\mathbf{0}
$$

So,

$$
(-\mathbf{v}+\mathbf{v})+\mathbf{u}=-\mathbf{v}
$$

So,

$$
\mathbf{0}+\mathbf{u}=-\mathbf{v} \quad \text { So, } \quad \mathbf{u}=-\mathbf{v} .
$$

We will also prove (5). So suppose $c \mathbf{v}=\mathbf{0}$. If $c=0$, then there is nothing to prove. So, we assume that $c \neq 0$. Multiply the equation by c^{-1}, we have $c^{-1}(c \mathbf{v})=c^{-1} \mathbf{0}$. Therefore, by associativity, we have $\left(c^{-1} c\right) \mathbf{v}=\mathbf{0}$. Therefore $\mathbf{1} \mathbf{v}=\mathbf{0}$ and so $\mathbf{v}=\mathbf{0}$.

The other statements are easy to see. The proof is complete.
Remark. We denote a vector \mathbf{u} in \mathbb{R}^{n} by a row $\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$. As I said before, it can be thought of a row matrix

$$
\mathbf{u}=\left[\begin{array}{llll}
u_{1} & u_{2} & \ldots & u_{n}
\end{array}\right] .
$$

In some other situation, it may even be convenient to denote it by a column matrix:

$$
\mathbf{u}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\ldots \\
u_{n}
\end{array}\right]
$$

Obviosly, we cannot mix the two (in fact, three) different ways.
Reading assignment: Read [Textbook, Example 6, p. 187].

Exercise 4.1.6 (Ex. 46, p. 189) Let $\mathbf{u}=(0,0,-8,1)$ and $\mathbf{v}=(1,-8,0,7)$.
Find \mathbf{w} such that $2 \mathbf{u}+\mathbf{v}-3 \mathbf{w}=\mathbf{0}$.

Solution: We have

$$
\mathbf{w}=\frac{2}{3} \mathbf{u}+\frac{1}{3} \mathbf{v}=\frac{2}{3}(0,0,-8,1)+\frac{1}{3}(1,-8,0,7)=\left(\frac{1}{3},-\frac{8}{3},-\frac{16}{3}, 3\right) .
$$

Exercise 4.1.7 (Ex. 50, p. 189) Let $\mathbf{u}_{\mathbf{1}}=(1,3,2,1), \mathbf{u}_{\mathbf{2}}=(2,-2,-5,4)$, $\mathbf{u}_{\mathbf{3}}=(2,-1,3,6)$. If $\mathbf{v}=(2,5,-4,0)$, write \mathbf{v} as a linear combination of $\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \mathbf{u}_{\mathbf{3}}$. If it is not possible say so.

Solution: Let $\mathbf{v}=a \mathbf{u}_{\mathbf{1}}+b \mathbf{u}_{\mathbf{2}}+c \mathbf{u}_{\mathbf{3}}$. We need to solve for a, b, c. Writing the equation explicitly, we have

$$
(2,5,-4,0)=a(1,3,2,1)+b(2,-2,-5,4)+c(2,-1,3,6) .
$$

Therefore

$$
(2,5,-4,0)=(a+2 b+2 c, 3 a-2 b-c, 2 a-5 b+3 c, a+4 b+6 c)
$$

Equating entry-wise, we have system of linear equation

$$
\begin{aligned}
& a+2 b+2 c=2 \\
& 3 a-2 b-c=5 \\
& 2 a-5 b+3 c=-4 \\
& a+4 b+6 c=0
\end{aligned}
$$

We write the augmented matrix:

$$
\left[\begin{array}{rrrl}
1 & 2 & 2 & 2 \\
3 & -2 & -1 & 5 \\
2 & -5 & 3 & -4 \\
1 & 4 & 6 & 0
\end{array}\right]
$$

We use TI, to reduce this matrix to Gauss-Jordan form:

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

So, the system is consistent and $a=2, b=1, c=-1$. Therefore

$$
\mathbf{v}=2 \mathbf{u}_{\mathbf{1}}+\mathbf{u}_{\mathbf{2}}-\mathbf{u}_{\mathbf{3}}
$$

which can be checked directly,

4.2 Vector spaces

Homework: [Textbook, §4.2 Ex.3, 9, 15, 19, 21, 23, 25, 27, 35; p.197].

The main point in the section is to define vector spaces and talk about examples.

The following definition is an abstruction of theorems 4.1.2 and theorem 4.1.4.

Definition 4.2.1 Let V be a set on which two operations (vector addition and scalar multiplication) are defined. If the listed axioms are satisfied for every $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in V and scalars c and d, then V is called a vector space (over the reals \mathbb{R}).

1. Addition:
(a) $\mathbf{u}+\mathbf{v}$ is a vector in V (closure under addition).
(b) $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$ (Commutative property of addition).
(c) $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$ (Associative property of addition).
(d) There is a zero vector $\mathbf{0}$ in V such that for every \mathbf{u} in V we have $(\mathbf{u}+\mathbf{0})=\mathbf{u}$ (Additive identity).
(e) For every \mathbf{u} in V, there is a vector in V denoted by $-\mathbf{u}$ such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$ (Additive inverse).
2. Scalar multiplication:
(a) $c \mathbf{u}$ is in V (closure under scalar multiplication 0 .
(b) $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$ (Distributive propertyof scalar mult.).
(c) $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$ (Distributive property of scalar mult.).
(d) $c(d \mathbf{u})=(c d) \mathbf{u}$ (Associate property of scalar mult.).
(e) $1(\mathbf{u})=\mathbf{u}$ (Scalar identity property).

Remark. It is important to realize that a vector space consisits of four entities:

1. A set V of vectors.
2. A set of scalars. In this class, it will alawys be the set of real numbers \mathbb{R}. (Later on, this could be the set of complex numbers \mathbb{C}.)
3. A vector addition denoted by + .
4. A scalar multiplication.

Lemma 4.2.2 We use the notations as in definition 4.2.1. First, the zero vector $\mathbf{0}$ is unique, satisfying the property (1d) of definition 4.2.1.

Further, for any \mathbf{u} in V, the additive inverse $-\mathbf{u}$ is unique.

Proof. Suppose, there is another element θ that satisfy the property (1d). Since $\mathbf{0}$ satisfy (1d), we have

$$
\theta=\theta+\mathbf{0}=\mathbf{0}+\theta=\mathbf{0} .
$$

The last equality follows because θ satisfes the property (1d).
(The proof that additive inverse of \mathbf{u} unique is similar the proof of theorem 2.3.2, regarding matrices.) Suppose \mathbf{v} is another additive inverse of \mathbf{u}.

$$
\mathbf{u}+\mathbf{v}=\mathbf{0} \quad \text { and } \quad \mathbf{u}+(-\mathbf{u})=\mathbf{0}
$$

So.

$$
-\mathbf{u}=\mathbf{0}+(-\mathbf{u})=(\mathbf{u}+\mathbf{v})+(-\mathbf{u})=\mathbf{v}+(\mathbf{u}+(-\mathbf{u}))=\mathbf{v}+\mathbf{0}=\mathbf{v}
$$

So, the proof is complete.
Reading assignment: Read [Textbook, Example 1-5, p. 192-]. These examples lead to the following list of important examples of vector spaces:

Example 4.2.3 Here is a collection examples of vector spaces:

1. The set \mathbb{R} of real numbers \mathbb{R} is a vector space over \mathbb{R}.
2. The set \mathbb{R}^{2} of all ordered pairs of real numers is a vector space over \mathbb{R}.
3. The set \mathbb{R}^{n} of all ordered n-tuples of real numersis a vector space over \mathbb{R}.
4. The set $C(\mathbb{R})$ of all continuous functions defined on the real number line, is a vector space over \mathbb{R}.
5. The set $C([a, b]))$ of all continuous functions defined on interval $[a, b]$ is a vector space over \mathbb{R}.
6. The set \mathbb{P} of all polynomials, with real coefficients is a vector space over \mathbb{R}.
7. The set \mathbb{P}_{n} of all polynomials of degree $\leq n$, with real coefficients is a vector space over \mathbb{R}.
8. The set $\mathbb{M}_{m, n}$ of all $m \times n$ matrices, with real entries, is a vector space over \mathbb{R}.

Reading assignment: Read [Textbook, Examples 6-6].

Theorem 4.2.4 Let V be vector space over the reals \mathbb{R} and \mathbf{v} be an element in V. Also let c be a scalar. Then,

1. $0 \mathrm{v}=0$.
2. $c \mathbf{0}=\mathbf{0}$.
3. If $c \mathbf{v}=\mathbf{0}$, then either $c=0$ or $\mathbf{v}=\mathbf{0}$.
4. $(-1) \mathbf{v}=-\mathbf{v}$.

Proof. We have to prove this theorem using the definition 4.2.1. Other than that, the proof will be similar to theorem 4.1.5. To prove (1), write $\mathbf{w}=0 \mathbf{v}$. We have
$\mathbf{w}=0 \mathbf{v}=(0+0) \mathbf{v}=0 \mathbf{v}+0 \mathbf{v}=\mathbf{w}+\mathbf{w} \quad$ (by distributivityProp. $2 c)$).
Add $-\mathbf{w}$ to both sides

$$
\mathbf{w}+(-\mathbf{w})=(\mathbf{w}+\mathbf{w})+(-\mathbf{w})
$$

By (1e) of 4.2.1, we have

$$
\mathbf{0}=\mathbf{w}+(\mathbf{w}+(-\mathbf{w}))=\mathbf{w}+\mathbf{0}=\mathbf{w} .
$$

So, (1) is proved. The proof of (2) will be exactly similar.
To prove (3), suppose $c \mathbf{v}=\mathbf{0}$. If $c=0$, then there is nothing to prove. So, we assume that $c \neq 0$. Multiply the equation by c^{-1}, we have $c^{-1}(c \mathbf{v})=c^{-1} \mathbf{0}$. Therefore, by associativity, we have $\left(c^{-1} c\right) \mathbf{v}=\mathbf{0}$. Therefore $\mathbf{1 v}=\mathbf{0}$ and so $\mathbf{v}=\mathbf{0}$.

To prove (4), we have

$$
\mathbf{v}+(-1) \mathbf{v}=1 . \mathbf{v}+(-1) \mathbf{v}=(1-1) \mathbf{v}=0 . \mathbf{v}=\mathbf{0} .
$$

This completes the proof.

Exercise 4.2.5 (Ex. 16, p. 197) Let V be the set of all fifth-degree polynomials with standared operations. Is it a vector space. Justify your answer.

Solution: In fact, V is not a vector space. Because V is not closed under addition(axiom (1a) of definition 4.2.1 fails): $f=x^{5}+x-1$ and $g=-x^{5}$ are in V but $f+g=\left(x^{5}+x-1\right)-x^{5}=x-1$ is not in V.

Exercise 4.2.6 (Ex. 20, p. 197) Let $V=\{(x, y): x \geq 0, y \geq 0\}$ with standared operations. Is it a vector space. Justify your answer.

Solution: In fact, V is not a vector space. Not every element in V has an addditive inverse (axiom $\mathrm{i}(1 \mathrm{e})$ of 4.2 .1 fails): $-(1,1)=(-1,-1)$ is not in V.

Exercise 4.2.7 (Ex. 22, p. 197) Let $V=\left\{\left(x, \frac{1}{2} x\right)\right.$: x real number $\}$ with standared operations. Is it a vector space. Justify your answer.

Solution: Yes, V is a vector space. We check all the properties in 4.2.1, one by one:

1. Addition:
(a) For real numbers x, y, We have

$$
\left(x, \frac{1}{2} x\right)+\left(y, \frac{1}{2} y\right)=\left(x+y, \frac{1}{2}(x+y)\right) .
$$

So, V is closed under addition.
(b) Clearly, addition is closed under addition.
(c) Clearly, addition is associative.
(d) The element $\mathbf{0}=(0,0)$ satisfies the property of the zero element.
(e) We have $-\left(x, \frac{1}{2} x\right)=\left(-x, \frac{1}{2}(-x)\right)$. So, every element in V has an additive inverse.
2. Scalar multiplication:
(a) For a scalar c, we have

$$
c\left(x, \frac{1}{2} x\right)=\left(c x, \frac{1}{2} c x\right)
$$

So, V is closed under scalar multiplication.
(b) The distributivity $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$ works for \mathbf{u}, \mathbf{v} in V.
(c) The distributivity $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$ works, for \mathbf{u} in V and scalars c, d.
(d) The associativity $c(d \mathbf{u})=(c d) \mathbf{u}$ works.
(e) Also $1 \mathbf{u}=\mathbf{u}$.

4.3 Subspaces of Vector spaces

We will skip this section, after we just mention the following.

Definition 4.3.1 A nonempty subset W of a vector space V is called a subspace of V if W is a vector space under the operations addition and scalar multiplication defined in V.

Example 4.3.2 Here are some obvious examples:

1. Let $W=\{(x, 0): x$ is real number $\}$. Then $W \subseteq \mathbb{R}^{2}$. (The notation \subseteq reads as 'subset of'.) It is easy to check that W is a subspace of \mathbb{R}^{2}.
2. Let W be the set of all points on any given line $y=m x$ through the origin in the plane \mathbb{R}^{2}. Then, W is a subspace of \mathbb{R}^{2}.
3. Let P_{2}, P_{3}, P_{n} be vector space of polynomials, respectively, of degree less or equal to $2,3, n$. (See example 4.2.3.) Then P_{2} is a subspace of P_{3} and P_{n} is a subspace of P_{n+1}.

Theorem 4.3.3 Suppose V is a vector space over \mathbb{R} and $W \subseteq V$ is a nonempty subset of V. Then W is a subspace of V if and only if the following two closure conditions hold:

1. If \mathbf{u}, \mathbf{v} are in W, then $\mathbf{u}+\mathbf{v}$ is in W.
2. If \mathbf{u} is in W and c is a scalar, then $c \mathbf{u}$ is in W.

Reading assignment: Read [Textbook, Examples 1-5].

4.4 Spanning sets and linear indipendence

Homework. [Textbook, §4.4, Ex. 27, 29, 31; p. 219].

The main point here is to write a vector as linear combination of a give set of vectors.

Definition 4.4.1 A vector \mathbf{v} in a vector space V is called a linear combination of vectors $\mathbf{u}_{1}, \mathbf{u}_{\mathbf{2}}, \ldots, \mathbf{u}_{\mathbf{k}}$ in V if \mathbf{v} can be written in the form

$$
\mathbf{v}=c_{1} \mathbf{u}_{\mathbf{1}}+c_{2} \mathbf{u}_{\mathbf{2}}+\cdots+c_{k} \mathbf{u}_{\mathbf{k}}
$$

where $c_{1}, c_{2}, \ldots, c_{k}$ are scalars.

Definition 4.4.2 Let V be a vector space over \mathbb{R} and $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\}$ be a subset of V. We say that S is a spanning set of V if every vector \mathbf{v} of V can be written as a liner combination of vectors in S. In such cases, we say that S spans V.

Definition 4.4.3 Let V be a vector space over \mathbb{R} and $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\}$ be a subset of V. Then the span of S is the set of all linear combinations of vectors in S,

$$
\operatorname{span}(S)=\left\{c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+\cdots+c_{k} \mathbf{v}_{\mathbf{k}}: c_{1}, c_{2}, \ldots, c_{k} \text { are scalars }\right\}
$$

1. The span of S is denoted by $\operatorname{span}(S)$ as above or $\operatorname{span}\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\}$.
2. If $V=\operatorname{span}(S)$, then say V is spanned by S or S spans V.

Theorem 4.4.4 Let V be a vector space over \mathbb{R} and $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\}$ be a subset of V. Then $\operatorname{span}(S)$ is a subspace of V.

Further, $\operatorname{span}(S)$ is the smallest subspace of V that contains S. This means, if W is a subspace of V and W contains S, then $\operatorname{span}(S)$ is contained in W.

Proof. By theorem 4.3.3, to prove that $\operatorname{span}(S)$ is a subspace of V, we only need to show that $\operatorname{span}(S)$ is closed under addition and scalar multiplication. So, let \mathbf{u}, \mathbf{v} be two elements in $\operatorname{span}(S)$. We can write

$$
\mathbf{u}=c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+\cdots+c_{k} \mathbf{v}_{\mathbf{k}} \quad \text { and } \quad \mathbf{v}=d_{1} \mathbf{v}_{\mathbf{1}}+d_{2} \mathbf{v}_{\mathbf{2}}+\cdots+d_{k} \mathbf{v}_{\mathbf{k}}
$$

where $c_{1}, c_{2}, \ldots, c_{k}, d_{1}, d_{2}, \ldots, d_{k}$ are scalars. It follows

$$
\mathbf{u}+\mathbf{v}=\left(c_{1}+d_{1}\right) \mathbf{v}_{\mathbf{1}}+\left(c_{2}+d_{2}\right) \mathbf{v}_{\mathbf{2}}+\cdots+\left(c_{k}+d_{k}\right) \mathbf{v}_{\mathbf{k}}
$$

and for a scalar c, we have

$$
c \mathbf{u}=\left(c c_{1}\right) \mathbf{v}_{\mathbf{1}}+\left(c c_{2}\right) \mathbf{v}_{\mathbf{2}}+\cdots+\left(c c_{k}\right) \mathbf{v}_{\mathbf{k}} .
$$

So, both $\mathbf{u}+\mathbf{v}$ and $c \mathbf{u}$ are in $\operatorname{span}(S)$, because the are linear combination of elements in S. So, $\operatorname{span}(S)$ is closed under addition and scalar multiplication, hence a subspace of V.

To prove that $\operatorname{span}(S)$ is smallest, in the sense stated above, let W be subspace of V that contains S. We want to show $\operatorname{span}(S)$ is contained in W. Let u be an element in $\operatorname{span}(S)$. Then,

$$
\mathbf{u}=c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+\cdots+c_{k} \mathbf{v}_{\mathbf{k}}
$$

for some scalars c_{i}. Since $S \subseteq W$, we have $v_{i} \in W$. Since W is closed under addition and scalar multiplication, \mathbf{u} is in W. So, $\operatorname{span}(S)$ is contained in W. The proof is complete.

Reading assignment: Read [Textbook, Examples 1-6, p. 207-].

4.4.1 Linear dependence and independence

Definition 4.4.5 Let V be a vector space. A set of elements (vectors) $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots \mathbf{v}_{\mathbf{k}}\right\}$ is said to be linearly independent if the equation

$$
c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+\cdots+c_{k} \mathbf{v}_{\mathbf{k}}=\mathbf{0}
$$

has only trivial solution

$$
c_{1}=0, c_{2}=0, \ldots, c_{k}=0
$$

We say S is linearly dependent, if S in not linearly independent. (This means, that S is said to be linearly dependent, if there is at least one nontrivial (i.e. nonzero) solutions to the above equation.)

Testing for linear independence

Suppose V is a subspace of the n-space \mathbb{R}^{n}. Let $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots \mathbf{v}_{\mathbf{k}}\right\}$ be a set of elements (i.e. vectors) in V. To test whether S is linearly independent or not, we do the following:

1. From the equation

$$
c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+\cdots+c_{k} \mathbf{v}_{\mathbf{k}}=\mathbf{0}
$$

write a homogeneous system of equations in variabled $c_{1}, c_{2}, \ldots, c_{k}$.
2. Use Gaussian elemination (with the help of TI) to determine whether the system has a unique solutions.
3. If the system has only the trivial solution

$$
c_{1}=0, c_{2}=0, \cdots, c_{k}=0
$$

then S is linearly independent. Otherwise, S is linearly dependent.

Reading assignment: Read [Textbook, Eamples 9-12, p. 214-216].

Exercise 4.4.6 (Ex. 28. P. 219) Let $S=\{(6,2,1),(-1,3,2)\}$. Determine, if S is linearly independent or dependent?

Solution: Let

$$
c(6,2,1)+d(-1,3,2)=(0,0,0)
$$

If this equation has only trivial solutions, then it is linealry independent. This equaton gives the following system of linear equations:

$$
\begin{array}{rr}
6 c-d & =0 \\
2 c+3 d & =0 \\
c & +2 d
\end{array}=0
$$

The augmented matrix for this system is

$$
\left[\begin{array}{rrr}
6 & -1 & 0 \\
2 & 3 & 0 \\
1 & 2 & 0
\end{array}\right] \text {. its gauss - Jordan form : }\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

So, $c=0, d=0$. The system has only trivial (i.e. zero) solution. We conclude that S is linearly independent.

Exercise 4.4.7 (Ex. 30. P. 219) Let

$$
S=\left\{\left(\frac{3}{4}, \frac{5}{2}, \frac{3}{2}\right),\left(3,4, \frac{7}{2}\right),\left(-\frac{3}{2}, 6,2\right)\right\} .
$$

Determine, if S is linearly independent or dependent?
Solution: Let

$$
a\left(\frac{3}{4}, \frac{5}{2}, \frac{3}{2}\right)+b\left(3,4, \frac{7}{2}\right)+c\left(-\frac{3}{2}, 6,2\right)=(0,0,0) .
$$

If this equation has only trivial solutions, then it is linealry independent. This equaton gives the following system of linear equations:

$$
\begin{aligned}
& \frac{3}{4} a+3 b-\frac{3}{2} c=0 \\
& \frac{5}{2} a+4 b+6 c=0 \\
& \frac{3}{2} a+\frac{7}{2} b+2 c=0
\end{aligned}
$$

The augmented matrix for this system is

$$
\left[\begin{array}{cccc}
\frac{3}{4} & 3 & -\frac{3}{2} & 0 \\
\frac{5}{2} & 4 & 6 & 0 \\
\frac{3}{2} & \frac{7}{2} & 2 & 0
\end{array}\right] \text {. its Gaus - Jordan form }\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] .
$$

So, $a=0, b=0, c=0$. The system has only trivial (i.e. zero) solution.
We conclude that S is linearly independent.

Exercise 4.4.8 (Ex. 32. P. 219) Let

$$
S=\{(1,0,0),(0,4,0),(0,0,-6),(1,5,-3)\} .
$$

Determine, if S is linearly independent or dependent?
Solution: Let

$$
c_{1}(1,0,0)+c_{2}(0,4,0)+c_{3}(0,0,-6)+c_{4}(1,5,-3)=(0,0,0) .
$$

If this equation has only trivial solutions, then it is linealry independent. This equaton gives the following system of linear equations:

$$
\begin{array}{llrl}
c_{1} & & +c_{4} & =0 \\
& 4 c_{2} & 5 c_{4} & =0 \\
& -6 c_{3} & -3 c_{4} & =0
\end{array}
$$

The augmented matrix for this system is

$$
\left[\begin{array}{rrrrr}
1 & 0 & 0 & 1 & 0 \\
0 & 4 & 0 & 5 & 0 \\
0 & 0 & -6 & -3 & 0
\end{array}\right] . \text { its Gaus-Jordan form }\left[\begin{array}{rrrrr}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1.25 & 0 \\
0 & 0 & 1 & .5 & 0
\end{array}\right] .
$$

Correspondingly:

$$
c_{1}+c_{4}=0, \quad c_{2}+1.25 c_{4}=0, \quad c_{3}+.5 c_{4}=0 .
$$

With $c_{4}=t$ as parameter, we have

$$
c_{1}=-t, \quad c_{2}=-1.25 t, \quad c_{3}=.5 t, \quad c_{4}=t .
$$

The equation above has nontrivial (i.e. nonzero) solutions. So, S is linearly dependent.

Theorem 4.4.9 Let V be a vector space and $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots \mathbf{v}_{\mathbf{k}}\right\}, k \geq$ 2 a set of elements (vectors) in V. Then S is linearly dependent if and only if one of the vectors v_{j} can be written as a linear combination of the other vectors in S.

Proof. (\Rightarrow) : Assume S is linearly dependent. So, the equation

$$
c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+\cdots+c_{k} \mathbf{v}_{\mathbf{k}}=\mathbf{0}
$$

has a nonzero solution. This means, at least one of the c_{i} is nonzero. Let c_{r} is the last one, with $c_{r} \neq 0$. So,

$$
c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+\cdots+c_{r} \mathbf{v}_{\mathbf{r}}=\mathbf{0}
$$

and

$$
\mathbf{v}_{\mathbf{r}}=-\frac{c_{1}}{c_{r}} \mathbf{v}_{\mathbf{1}}-\frac{c_{2}}{c_{r}} \mathbf{v}_{\mathbf{2}}-\cdots-\frac{c_{r-1}}{c_{r}} \mathbf{v}_{\mathbf{r}-\mathbf{1}} .
$$

So, $\mathbf{v}_{\mathbf{r}}$ is a linear combination of other vectors and this implication isproved.
(\Rightarrow) : to prove the other implication, we assume that $\mathbf{v}_{\mathbf{r}}$ is linear combination of other vectors. So

$$
\mathbf{v}_{\mathbf{r}}=\left(c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+\cdots+c_{r-1} \mathbf{v}_{\mathbf{r}-\mathbf{1}}\right)+\left(c_{r+1} \mathbf{v}_{\mathbf{r}+\mathbf{1}}+\cdots+c_{k} \mathbf{v}_{\mathbf{k}}\right) .
$$

So,

$$
\left(c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+\cdots+c_{r-1} \mathbf{v}_{\mathbf{r}-\mathbf{1}}\right)-\mathbf{v}_{\mathbf{r}}+\left(c_{r+1} \mathbf{v}_{\mathbf{r}+\mathbf{1}}+\cdots+c_{k} \mathbf{v}_{\mathbf{k}}\right)=\mathbf{0}
$$

The left hand side is a nontrivial (i.e. nozero) linear combination, because $\mathbf{v}_{\mathbf{r}}$ has coefficient -1 . Therefore, S is linearly dependent. This completes the proof.

4.5 Basis and Dimension

Homework: [Textbook, §4.5 Ex. 1, 3, 7, 11, 15, 19, 21, 23, 25, 28, 35, $37,39,41,45,47,49,53,59,63,65,71,73,75,77$, page 231].

The main point of the section is

1. To define basis of a vector space.
2. To define dimension of a vector space.

These are, probably, the two most fundamental concepts regarding vector spaces.

Definition 4.5.1 Let V be a vector space and $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots \mathbf{v}_{\mathbf{k}}\right\}$ be a set of elements (vectors)in V. We say that S is a basis of V if

1. S spans V and
2. S is linearly independent.

Remark. Here are some some comments about finite and infinite basis of a vector space V :

1. We avoided discussing infinite spanning set S and when an infinite S is linearly independent. We will continue to avoid to do so. ((1) An infinite set S is said span V, if each element $\mathbf{v} \in V$ is a linear combination of finitely many elements in V. (2) An infinite set S is said to be linearly independent if any finitely subset of S is linearly independent.)
2. We say that a vector space V is finite dimensional, if V has a basis consisting of finitely many elements. Otherwise, we say that V is infinite dimensional.
3. The vector space P of all polynomials (with real coefficients) has infinite dimension.

Example 4.5.2 (example 1, p 221) Most standard example of basis is the standard basis of \mathbb{R}^{n}.

1. Consider the vector space \mathbb{R}^{2}. Write

$$
\mathbf{e}_{\mathbf{1}}=(1,0), \mathbf{e}_{\mathbf{2}}=(0,1) .
$$

Then, $\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}$ form a basis of \mathbb{R}^{2}.
2. Consider the vector space \mathbb{R}^{3}. Write

$$
\mathbf{e}_{\mathbf{1}}=(1,0,0), \mathbf{e}_{\mathbf{2}}=(0,1,0), \mathbf{e}_{\mathbf{2}}=(0,0,1) .
$$

Then, $\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}, \mathbf{e}_{\mathbf{3}}$ form a basis of \mathbb{R}^{3}.
Proof. First, for any vector $\mathbf{v}=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$, we have

$$
\mathbf{v}=x_{1} \mathbf{e}_{\mathbf{1}}+x_{2} \mathbf{e}_{\mathbf{2}}+x_{3} \mathbf{e}_{\mathbf{3}} .
$$

So, \mathbb{R}^{3} is spanned by $\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}, \mathbf{e}_{\mathbf{3}}$.
Now, we prove that $\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}, \mathbf{e}_{\mathbf{3}}$ are linearly independent. So, suppose

$$
c_{1} \mathbf{e}_{\mathbf{1}}+c_{2} \mathbf{e}_{\mathbf{2}}+c_{3} \mathbf{e}_{\mathbf{3}}=\mathbf{0} \quad O R \quad\left(c_{1}, c_{2}, c_{3}\right)=(0,0.0)
$$

So, $c_{1}=c_{2}=c_{3}=0$. Therefore, $\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}, \mathbf{e}_{\mathbf{3}}$ are linearly independent. Hence $\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}, \mathbf{e}_{\mathbf{3}}$ forms a basis of \mathbb{R}^{3}. The proof is complete.
3. More generally, consider vector space \mathbb{R}^{n}. Write

$$
\mathbf{e}_{\mathbf{1}}=(1,0, \ldots, 0), \mathbf{e}_{2}=(0,1, \ldots, 0), \ldots, \mathbf{e}_{\mathbf{n}}=(0,0, \ldots, 1)
$$

Then, $\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}, \mathbf{e}_{\mathbf{3}}, \ldots, \mathbf{e}_{\mathbf{n}}$ form a basis of \mathbb{R}^{n}. The proof will be similar to the above proof. This basis is called the standard basis of \mathbb{R}^{n}.

Example 4.5.3 Consider

$$
\mathbf{v}_{\mathbf{1}}=(1,1,1), \mathbf{v}_{\mathbf{2}}=(1,-1,1), \mathbf{v}_{\mathbf{3}}=(1,1,-1) \quad \text { in } \quad \mathbb{R}^{3}
$$

Then $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}$ form a basis for \mathbb{R}^{3}.

Proof. First, we prove that $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}$ are linearly independent. Let $c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+c_{3} \mathbf{v}_{\mathbf{3}}=\mathbf{0} . \quad$ OR $\quad c_{1}(1,1,1)+c_{2}(1,-1,1)+c_{3}(1,1,-1)=(0,0,0)$.

We have to prove $c_{1}=c_{2}=c_{3}=0$. The equations give the following system of linear equations:

$$
\begin{array}{llll}
c_{1} & +c_{2} & +c_{3} & =0 \\
c_{1} & -c_{2} & +c_{3} & =0 \\
c_{1} & +c_{2} & -c_{3} & =0
\end{array}
$$

The augmented matrix is

$$
\left[\begin{array}{rrrr}
1 & 1 & 1 & 0 \\
1 & -1 & 1 & 0 \\
1 & 1 & -1 & 0
\end{array}\right] \quad \text { its Gauss - Jordan form }\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

So, $c_{1}=c_{2}=c_{3}=0$ and this estblishes that $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}$ are linearly independent.

Now to show that $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}$ spans \mathbb{R}^{3}, let $\mathbf{v}=\left(x_{1}, x_{2}, x_{3}\right)$ be a vector in \mathbb{R}^{3}. We have to show that, we can find c_{1}, c_{2}, c_{3} such that

$$
\left(x_{1}, x_{2}, x_{3}\right)=c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+c_{3} \mathbf{v}_{\mathbf{3}}
$$

OR

$$
\left(x_{1}, x_{2}, x_{3}\right)=c_{1}(1,1,1)+c_{2}(1,-1,1)+c_{3}(1,1,-1) .
$$

This gives the system of linear equations:

$$
\left[\begin{array}{lll}
c_{1} & +c_{2} & +c_{3} \\
c_{1} & -c_{2} & +c_{3} \\
c_{1} & +c_{2} & -c_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \quad O R \quad\left[\begin{array}{rrr}
1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

The coefficient matrix

$$
A=\left[\begin{array}{rrr}
1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right] \quad \text { has inverse } \quad A^{-1}=\left[\begin{array}{rrr}
0 & .5 & .5 \\
.5 & -.5 & 0 \\
.5 & 0 & -.5
\end{array}\right]
$$

So, the above system has tha solution:

$$
\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=A^{-1}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{rrr}
0 & .5 & .5 \\
.5 & -.5 & 0 \\
.5 & 0 & -.5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] .
$$

So, each vector $\left(x_{1}, x_{2}, x_{3}\right)$ is in the span of $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}$. So, they form a basis of \mathbb{R}^{3}. The proof is complete.

Reading assignment: Read [Textbook, Examples 1-5, p. 221-224].

Theorem 4.5.4 Let V be a vector space and $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ be a basis of V. Then every vector \mathbf{v} in V can be written in one and only one way as a linear combination of vectors in S. (In other words, \mathbf{v} can be written as a unique linear combination of vectors in S.)

Proof. Since S spans V, we can write \mathbf{v} as a linear combination

$$
\mathbf{v}=c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+\cdots+c_{n} \mathbf{v}_{\mathbf{n}}
$$

for scalars $c_{1}, c_{2}, \ldots, c_{n}$. To prove uniqueness, also let

$$
\mathbf{v}=d_{1} \mathbf{v}_{\mathbf{1}}+d_{2} \mathbf{v}_{\mathbf{2}}+\cdots+d_{n} \mathbf{v}_{\mathbf{n}}
$$

for some other scalars $d_{1}, d_{2}, \ldots, d_{n}$. Subtracting, we have

$$
\left(c_{1}-d_{1}\right) \mathbf{v}_{\mathbf{1}}+\left(c_{2}-d_{2}\right) \mathbf{v}_{\mathbf{2}}+\cdots+\left(c_{n}-d_{n}\right) \mathbf{v}_{\mathbf{n}}=\mathbf{0}
$$

Since, $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}$ are also linearly independent, we have

$$
c_{1}-d_{1}=0, c_{2}-d_{2}=0, \ldots, c_{n}-d_{n}=0
$$

OR

$$
c_{1}=d_{1}, c_{2}=d_{2}, \ldots, c_{n}=d_{n} .
$$

This completes the proof.

Theorem 4.5.5 Let V be a vector space and $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ be a basis of V. Then every set of vectors in V containing more than n vectors in V is linearly dependent.

Proof. Suppose $S_{1}=\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \ldots, \mathbf{u}_{\mathbf{m}}\right\}$ ne a set of m vectors in V, with $m>n$. We are requaired to prove that the zero vector $\mathbf{0}$ is a nontrivial (i.e. nonzero) linear combination of elements in S_{1}. Since S is a basis, we have

$$
\begin{array}{rrrrr}
\mathbf{u}_{\mathbf{1}}= & c_{11} \mathbf{v}_{\mathbf{1}} & +c_{12} \mathbf{v}_{\mathbf{2}} & +\cdots & +c_{1 n} \mathbf{v}_{\mathbf{n}} \\
\mathbf{u}_{\mathbf{2}}= & c_{21} \mathbf{v}_{\mathbf{1}} & +c_{22} \mathbf{v}_{\mathbf{2}} & +\cdots & +c_{2 n} \mathbf{v}_{\mathbf{n}} \\
\ldots & \cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \\
\mathbf{u}_{\mathbf{m}}= & c_{m 1} \mathbf{v}_{\mathbf{1}} & +c_{m 2} \mathbf{v}_{\mathbf{2}} & +\cdots & +c_{m n} \mathbf{v}_{\mathbf{n}}
\end{array}
$$

Consider the system of linear equations

$$
\begin{array}{rrrr}
c_{11} x_{1} & +c_{22} x_{2} & +\cdots & +c_{m 1} x_{m}
\end{array}=0
$$

which is

$$
\left[\begin{array}{cccc}
c_{11} & c_{22} & \cdots & c_{m 1} \\
c_{12} & c_{22} & \cdots & c_{m 2} \\
\cdots & \cdots & \cdots & \cdots \\
c_{1 n} & c_{2 n} & \cdots & c_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\cdots \\
x_{m}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\cdots \\
0
\end{array}\right]
$$

Since $m>n$, this homegeneous system of linear equations has fewer equations than number of variables. So, the system has a nonzero solution (see [Textbook, theorem 1.1, p 25]). It follows that

$$
x_{1} \mathbf{u}_{\mathbf{1}}+x_{2} \mathbf{u}_{\mathbf{2}}+\cdots+x_{m} \mathbf{u}_{\mathbf{m}}=\mathbf{0}
$$

We justify it as follows: First,

$$
\left[\begin{array}{llll}
\mathbf{u}_{\mathbf{1}} & \mathbf{u}_{\mathbf{2}} & \ldots & \mathbf{u}_{\mathbf{m}}
\end{array}\right]=\left[\begin{array}{llll}
\mathbf{v}_{\mathbf{1}} & \mathbf{v}_{\mathbf{2}} & \ldots & \mathbf{v}_{\mathbf{n}}
\end{array}\right]\left[\begin{array}{cccc}
c_{11} & c_{22} & \cdots & c_{m 1} \\
c_{12} & c_{22} & \cdots & c_{m 2} \\
\ldots & \ldots & \cdots & \ldots \\
c_{1 n} & c_{2 n} & \cdots & c_{m n}
\end{array}\right]
$$

and then

$$
x_{1} \mathbf{u}_{1}+x_{2} \mathbf{u}_{2}+\ldots+x_{m} \mathbf{u}_{\mathrm{m}}=\left[\begin{array}{llll}
\mathbf{u}_{1} & \mathbf{u}_{2} & \ldots & \mathbf{u}_{\mathrm{m}}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\ldots \\
x_{m}
\end{array}\right]
$$

which is

$$
=\left[\begin{array}{llll}
\mathbf{v}_{\mathbf{1}} & \mathbf{v}_{\mathbf{2}} & \ldots & \mathbf{v}_{\mathbf{n}}
\end{array}\right]\left[\begin{array}{cccc}
c_{11} & c_{22} & \cdots & c_{m 1} \\
c_{12} & c_{22} & \cdots & c_{m 2} \\
\cdots & \cdots & \cdots & \cdots \\
c_{1 n} & c_{2 n} & \cdots & c_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\cdots \\
x_{m}
\end{array}\right]
$$

which is

$$
=\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \ldots & \mathbf{v}_{\mathrm{n}}
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
\ldots \\
0
\end{array}\right]=\mathbf{0}
$$

Alternately, at your level the proof will be written more explicitly as follows: $x_{1} \mathbf{u}_{1}+x_{2} \mathbf{u}_{\mathbf{2}}+\ldots+x_{m} \mathbf{u}_{\mathbf{m}}=$

$$
\sum_{j=i}^{m} x_{j} \mathbf{u}_{\mathbf{j}}=\sum_{j=1}^{m} x_{j}\left(\sum_{i=1}^{n} c_{i j} \mathbf{v}_{\mathbf{i}}\right)=\sum_{i=1}^{n}\left(\sum_{j=1}^{m} c_{i j} x_{j}\right) \mathbf{v}_{\mathbf{i}}=\sum_{i=1}^{n} 0 \mathbf{v}_{\mathbf{i}}=\mathbf{0}
$$

The proof is complete.

Theorem 4.5.6 Suppose V is a vector space and V has a basis with n vectors. Then, every basis has n vectors.

Proof. Let

$$
S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\} \quad \text { and } S_{1}=\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \ldots, \mathbf{u}_{\mathbf{m}}\right\}
$$

be two bases of V. Since S is a basis and S_{1} is linearly independent, by theorem 4.5.5, we have $m \leq n$. Similarly, $n \leq m$. So, $m=n$. The proof is complete.

Definition 4.5.7 If a vector space V has a basis consisting of n vectors, then we say that dimension of V is n. We also write $\operatorname{dim}(V)=n$. If $V=\{\mathbf{0}\}$ is the zero vector space, then the dimension of V is defined as zero.
(We say that the dimension of V is equal to the 'cardinality' of any basis of V. The word 'cardinality' is used to mean 'the number of elements' in a set.)

Theorem 4.5.8 Suppose V is a vector space of dimension n.

1. Suppose $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ is a set of n linearly independent vectors. Then S is basis of V.
2. Suppose $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ is a set of n vectors. If S spans V, then S is basis of V.

Remark. The theorem 4.5.8 means that, if dimension of V matches with the number of (i.e. 'cardinality' of) S, then to check if S is a basis of V or not, you have check only one of the two required prperties (1) indpendece or (2) spannning.

Example 4.5.9 Here are some standard examples:

1. We have $\operatorname{dim}(\mathbb{R})=1$. This is because $\{1\}$ forms a basis for \mathbb{R}.
2. We have $\operatorname{dim}\left(\mathbb{R}^{2}\right)=2$. This is because the standard basis

$$
\mathbf{e}_{\mathbf{1}}=(1,0), \mathbf{e}_{\mathbf{2}}=(0,1)
$$

consist of two elements.
3. We have $\operatorname{dim}\left(\mathbb{R}^{3}\right)=3$. This is because the standard basis

$$
\mathbf{e}_{\mathbf{1}}=(1,0,0), \mathbf{e}_{2}=(0,1,0), \mathbf{e}_{3}=(0,0,1)
$$

consist of three elements.
4. Mor generally, $\operatorname{dim}\left(\mathbb{R}^{n}\right)=n$. This is because the standard basis

$$
\mathbf{e}_{\mathbf{1}}=(1,0,0, \ldots, 0), \mathbf{e}_{2}=(0,1,0, \ldots, 0), \ldots, \mathbf{e}_{\mathbf{n}}=(0,0, \ldots, 1)
$$

consist of n elements.
5. The dimension of the vector space $\mathbb{M}_{m, n}$ of all $m \times n$ matrices is $m n$. Notationally, $\operatorname{dim}\left(\mathbb{M}_{m, n}\right)=m n$. To see this, let $\mathbf{e}_{\mathbf{i j}}$ be the $m \times n$ matrix whose $(i, j)^{t h}$-entry is 1 and all the rest of the entries are zero. Then,

$$
S=\left\{\mathbf{e}_{\mathbf{i j}}: i=1,2, \ldots, m ; j 1,2, \ldots, n\right\}
$$

forms a basis of $\mathbb{M}_{m, n}$ and S has $m n$ elements.
6. Also recall, if a vector space V does not have a finite basis, we say V is inifinite dimensional.
(a) The vector space \mathbb{P} of all polynomials (with real coefficients) has infinite dimension.
(b) The vector space $C(\mathbb{R})$ of all continuous real valued functions on real line \mathbb{R} has infinite dimension.

Exercise 4.5.10 (Ex. 4 (changed), p. 230) Write down the standard basis of the vector space $\mathbb{M}_{3,2}$ of all 3×2-matrices with real entires.

Solution: Let $\mathbf{e}_{\mathbf{i j}}$ be the 3×2-matrix, whose $(i, j)^{t h}$-entry is 1 and all other entries are zero. Then,

$$
\left\{\mathbf{e}_{11}, \mathbf{e}_{12}, \mathbf{e}_{21}, \mathbf{e}_{22}, \mathbf{e}_{31}, \mathbf{e}_{32}\right\}
$$

forms a basis of $\mathbb{M}_{3,2}$. More explicitly,

$$
\mathbf{e}_{11}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right], \quad \mathbf{e}_{12}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right], \quad \mathbf{e}_{21}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 0
\end{array}\right]
$$

and

$$
\mathbf{e}_{22}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right], \quad \mathbf{e}_{31}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0
\end{array}\right], \quad \mathbf{e}_{33}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right] .
$$

It is easy to verify that these vectors in \mathbb{M}_{32} spans \mathbb{M}_{32} and are linearly independent. So, they form a basis.

Exercise 4.5.11 (Ex. 8. p. 230) Explain, why the set $S=\{(-1,2),(1,-2),(2,4)\}$ is not a basis of \mathbb{R}^{2} ?

Solution: Note

$$
(-1,2)+(1,-2)+0(2,4)=(0,0)
$$

So, these three vectors are not linearly independent. So, S is not a basis of \mathbb{R}^{2}.

Alternate argument: We have $\operatorname{dim}\left(\mathbb{R}^{2}\right)=2$ and S has 3 elements. So, by theorem 4.5.6 above S cannot be a basis.

Exercise 4.5.12 (Ex. 16. p. 230) Explain, why the set

$$
S=\{(2,1,-2),(-2,-1,2),(4,2,-4)\}
$$

is not a basis of \mathbb{R}^{3} ?
Solution: Note

$$
(4,2,-4)=(2,1,-2)-(-2,-1,2)
$$

OR

$$
(2,1,-2)-(-2,-1,2)-(4,2,-4)=(0,0,0)
$$

So, these three vectors are linearly dependent. So, S is not a basis of \mathbb{R}^{3}.

Exercise 4.5.13 (Ex. 24. p. 230) Explain, why the set

$$
S=\left\{6 x-3,3 x^{2}, 1-2 x-x^{2}\right\}
$$

is not a basis of \mathbb{P}_{2} ?
Solution: Note

$$
1-2 x-x^{2}=-\frac{1}{3}(6 x-3)-\frac{1}{3}\left(3 x^{2}\right)
$$

OR

$$
\left(1-2 x-x^{2}\right)+\frac{1}{3}(6 x-3)+\frac{1}{3}\left(3 x^{2}\right)=\mathbf{0} .
$$

So, these three vectors are linearly dependent. So, S is not a basis of \mathbb{P}_{2}.

Exercise 4.5.14 (Ex. 36,p.231) Determine, whether

$$
S=\{(1,2),(1,-1)\}
$$

is a basis of \mathbb{R}^{2} or not?
Solution: We will show that S is linearly independent. Let

$$
a(1,2)+b(1,-1)=(0,0) .
$$

Then

$$
a+b=0, \quad \text { and } \quad 2 a-b=0 .
$$

Solving, we get $a=0, b=0$. So, these two vectors are linearly independent. We have $\operatorname{dim}\left(\mathbb{R}^{2}\right)=2$. Therefore, by theorem 4.5.8, S is a basis of \mathbb{R}^{2}.

Exercise 4.5.15 (Ex. 40. p.231) Determine, whether

$$
S=\{(0,0,0),(1,5,6),(6,2,1)\}
$$

is a basis of \mathbb{R}^{3} or not?
Solution: We have

$$
1 .(0,0,0)+0 \cdot(1,5,6)+0 \cdot(6,2,1)=(0,0,0) .
$$

So, S is linearly dependent and hence is not a basis of \mathbb{R}^{3}.

Remark. In fact, any subset S of a vector space V that contains $\mathbf{0}$ is linearly dependent.

Exercise 4.5.16 (Ex. 46. p.231) Determine, whether

$$
S=\left\{4 t-t^{2}, 5+t^{3}, 3 t+5,2 t^{3}-3 t^{2}\right\}
$$

is a basis of \mathbb{P}_{3} or not?
Solution: Note the standard basis

$$
\left\{1, t, t^{2}, t^{3}\right\}
$$

of \mathbb{P}_{3} has four elements. So, $\operatorname{dim}\left(\mathbb{P}_{3}\right)=4$. Because of theorem 4.5.8, we will try to check, if S is linearly independent or not. So, let

$$
c_{1}\left(4 t-t^{2}\right)+c_{2}\left(5+t^{3}\right)+c_{3}(3 t+5)+c_{4}\left(2 t^{3}-3 t^{2}\right)=0
$$

for some scalars $c_{1}, c_{2}, c_{3}, c_{4}$. If we simplify, we get

$$
\left(5 c_{2}+5 c_{3}\right)+\left(4 c_{1}+3 c_{3}\right) t+\left(-c_{1}-3 c_{4}\right) t^{2}+\left(c_{2}+2 c_{4}\right) t^{3}=0
$$

Recall, a polynomial is zero if and only if all the coefficients are zero. So, we have

$$
\left.\begin{array}{rlrl}
& 5 c_{2} & +5 c_{3} & \\
4 c_{1} & & =0 \\
-c_{1} & & & \\
& & & =0 \\
& c_{2} & & +2 c_{4}
\end{array}\right)=0
$$

The augmented matrix is

$$
\left[\begin{array}{rrrrr}
0 & 5 & 5 & 0 & 0 \\
4 & 0 & 3 & 0 & 0 \\
-1 & 0 & 0 & -3 & 0 \\
0 & 1 & 0 & 2 & 0
\end{array}\right] \text { its Gauss-Jordan form }\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right] .
$$

Therefore, $c_{1}=c_{2}=c_{3}=c_{4}=0$. Hence S is linearely independent. So, by theorem 4.5.8, S is a basis of \mathbb{P}_{3}.

Exercise 4.5.17 (Ex. 60. p.231) Determine the dimension of \mathbb{P}_{4}.
Solution: Recall, \mathbb{P}_{4} is the vector space of all polynomials of degree ≤ 4. We claim that that

$$
S=\left\{1, t, t^{2}, t^{3}, t^{4}\right\}
$$

is a basis of \mathbb{P}_{4}. Clearly, any polynomial in \mathbb{P}_{4} is a linear combination of elements in S. So, S spans \mathbb{P}_{4}. Now, we prove that S is linearly
independent. So, let

$$
c_{0} 1+c_{1} t+c_{2} t^{2}+c_{3} t^{3}+c_{4} t^{4}=0
$$

Since a nonzero polynomial of degree 4 can have at most four roots, it follows $c_{0}=c_{1}=c_{2}=c_{3}=c_{4}=0$. So, S is a basis of \mathbb{P}_{4} and $\operatorname{dim}\left(\mathbb{P}_{4}\right)=5$.

Exercise 4.5.18 (Ex. 62. p.231) Determine the dimension of \mathbb{M}_{32}.
Solution: In exercise 4.5.10, we established that

$$
S=\left\{\mathbf{e}_{11}, \mathbf{e}_{12}, \mathbf{e}_{21}, \mathbf{e}_{22}, \mathbf{e}_{31}, \mathbf{e}_{32}\right\}
$$

is a basis of $\mathbb{M}_{3,2}$. So, $\operatorname{dim}\left(\mathbb{M}_{32}\right)=6$.

Exercise 4.5.19 (Ex. 72. p.231) Let

$$
W=\{(t, s, t): s, t \in \mathbb{R}\}
$$

Give a geometric description of W, find a basis of W and determine the dimension of W.

Solution: First note that W is closed under addition and scalar multiplication. So, W is a subspace of \mathbb{R}^{3}. Notice, there are two parameters s, t in the description of W. So, W can be described by $x=z$. Therefore, W represents the plane $x=z$ in \mathbb{R}^{3}.

I suggest (guess) that

$$
\mathbf{u}=(1,0,1), \mathbf{v}=(0,1,0)
$$

will form a basis of W. To see that they are mutually linearly independent, let

$$
a \mathbf{u}+b \mathbf{v}=(0.0 .0) ; \quad O R \quad(a, b, a)=(0.0 .0)
$$

So, $a=0, b=0$ and hence they are linearly independent. To see that they span W, we have

$$
(t, s, t)=t \mathbf{u}+s \mathbf{v}
$$

So, $\{\mathbf{u}, \mathbf{v}\}$ form a basis of W and $\operatorname{dim}(W)=2$.

Exercise 4.5.20 (Ex. 74. p.232) Let

$$
W=\{(5 t,-3 t, t, t): t \in \mathbb{R}\}
$$

Fnd a basis of W and determine the dimension of W.
Solution: First note that W is closed under addition and scalar multiplication. So, W is a subspace of \mathbb{R}^{4}. Notice, there is only parameters t in the description of W. (So, I expect that $\operatorname{dim}(W)=1$. I suggest (guess)

$$
\mathbf{e}=\{(5,-3,1,1)\}
$$

is a basis of W. This is easy to check. So, $\operatorname{dim}(W)=1$.

4.6 Rank of a matrix and SoLE

Homework: [Textbook, §4.6 Ex. 7, 9, 15, 17, 19, 27, 29, 33, 35, 37, 41, 43, 47, 49, 57, 63].

Main topics in this section are to define

1. We define row space of a matrix A and the column space of a matrix A.
2. We define the rank of a matrix,
3. We define nullspace $N(A)$ of a homoheneous system $A \mathbf{x}=\mathbf{0}$ of linear equations. We also define the nullity of a matrix A.

Definition 4.6.1 Let $A=\left[a_{i j}\right]$ be an $m \times n$ matrix.

1. The n-tuples corresponding to the rows of A are called row vectors of A.
2. Similarly, the m-tuples corresponding to the columns of A are called column vectors of A.
3. The row space of A is the subspace of \mathbb{R}^{n} spanned by row vectors of A.
4. The column space of A is the subspace of \mathbb{R}^{m} spanned by column vectors of A.

Theorem 4.6.2 Suppose A, B are two $m \times n$ matrices. If A is rowequivalent of B then row space of A is equal to the row space of B.

Proof. This follows from the way row-equivalence is defined. Since B is rwoequivalent to A, rows of B are obtained by (a series of) scalar multiplication and addition of rows of A. So, it follows that row vectors of B are in the row space of A. Therefore, the subspace spanned by row vectors of B is contained in the row space of A. So, the row space of B is contained in the row space of A. Since A is row-equivalent of B, it also follows the B is row-equivalent of A. (We say that the 'relationship' of being 'row-equivalent' is reflexive.) Therefore, by the same argumen, the row space of A is contained in the row space of B. So, they are equal. The proof is complete.

Theorem 4.6.3 Suppose A is an $m \times n$ matrix and B is row-equivalent to A and B is in row-echelon form. Then the nonzero rows of B form a basis of the row space of A.

Proof. From theorem 4.6.2, it follows that row space of A and B are some. Also, a basis of the row space of B is given by the nonzero rows of B. The proof is complete.

Theorem 4.6.4 Suppose A is an $m \times n$ matrix. Then the row space and column space of A have same dimension.

Proof. (You can skip it, I will not ask you to prove this.) Write

$$
A=\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3 n} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
a_{m 1} & a_{m 2} & a_{m 3} & \cdots & a_{m n}
\end{array}\right]
$$

Let $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{m}}$ denote the row vectors of A and $\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \ldots, \mathbf{u}_{\mathbf{n}}$ denote the column vectors of A. Suppose that the row space of A has dimension r and

$$
S=\left\{\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}}, \ldots, \mathbf{b}_{\mathbf{r}}\right\}
$$

is a basis of the row space of A. Also, write

$$
\mathbf{b}_{\mathbf{i}}=\left(b_{i 1}, b_{i 2}, \ldots, b_{i n}\right) .
$$

We have

$$
\begin{aligned}
& \mathbf{v}_{\mathbf{1}}=c_{11} \mathbf{b}_{\mathbf{1}}+c_{12} \mathbf{b}_{\mathbf{2}}+\cdots+c_{1 r} \mathbf{b}_{\mathbf{r}} \\
& \mathbf{v}_{\mathbf{2}}=c_{21} \mathbf{b}_{\mathbf{1}}+c_{22} \mathbf{b}_{\mathbf{2}}+\cdots+c_{2 r} \mathbf{b}_{\mathbf{r}} \\
& \mathbf{v}_{\mathbf{m}}=c_{m 1} \mathbf{b}_{\mathbf{1}}+c_{m 2} \mathbf{b}_{\mathbf{2}}+\cdots+c_{m r} \mathbf{b}_{\mathbf{r}}
\end{aligned}
$$

Looking at the first entry of each of these m equations, we have

$$
\begin{array}{ccccc}
a_{11}= & c_{11} b_{11} & +c_{12} b_{21} & \cdots & +c_{1 r} b_{r 1} \\
a_{21}= & c_{21} b_{11} & +c_{22} b_{21} & \cdots & +c_{22} b_{r 1} \\
a_{31}= & c_{31} b_{11} & +c_{32} b_{21} & \cdots & +c_{33} b_{r 1} \\
\ldots & \cdots & \cdots & \cdots & \cdots \\
a_{m 1} & =c_{m 1} b_{11} & +c_{m 2} b_{21} & \cdots & +c_{m r} b_{r 1}
\end{array}
$$

Let $\mathbf{c}_{\mathbf{i}}$ denote the $i^{\text {th }}$ column of the matrix $C=\left[c_{i j}\right]$. So, it follows from these m equations that

$$
\mathbf{u}_{\mathbf{1}}=b_{11} \mathbf{c}_{\mathbf{1}}+b_{21} \mathbf{c}_{\mathbf{2}}+\cdots+b_{r 1} \mathbf{c}_{\mathbf{r}}
$$

Similarly, looking at the $j^{\text {th }}$ entry of the above set of equations, we have

$$
\mathbf{u}_{\mathbf{j}}=b_{1 j} \mathbf{c}_{\mathbf{1}}+b_{2 j} \mathbf{c}_{\mathbf{2}}+\cdots+b_{r j} \mathbf{c}_{\mathbf{r}}
$$

So, all the columns $\mathbf{u}_{\mathbf{j}}$ of A are in $\operatorname{span}\left(\mathbf{c}_{\mathbf{1}}, \mathbf{c}_{\mathbf{2}}, \ldots, \mathbf{c}_{\mathbf{r}}\right)$. Therefore, the column space of A is contained in $\operatorname{span}\left(\mathbf{c}_{\mathbf{1}}, \mathbf{c}_{\mathbf{2}}, \ldots, \mathbf{c}_{\mathbf{r}}\right)$. It follows from this that the rank of the column space of A has dimension $\leq r=r a n k$ of the row space of A. So,

$$
\operatorname{dim}(\text { column space of } A) \leq \operatorname{dim}(\text { row space of } A) \text {. }
$$

Similarly,
$\operatorname{dim}($ row space of $A) \leq \operatorname{dim}($ column space of $A)$.
So, they are equal. The proof is complete.

Definition 4.6.5 Suppose A is an $m \times n$ matrix. The dimension of the row space (equivalently, of the column space) of A is called the rank of A and is denoted by $\operatorname{rank}(A)$.

Reading assignment: Read [Textbook, Examples 2-5, p. 234-].

4.6.1 The Nullspace of a matrix

Theorem 4.6.6 Suppose A is an $m \times n$ matrix. Let $N(A)$ denote the set of solutions of the homogeneous system $A \mathbf{x}=\mathbf{0}$. Notationally:

$$
N(A)=\left\{\mathbf{x} \in \mathbb{R}^{n}: A \mathbf{x}=\mathbf{0}\right\}
$$

Then $N(A)$ is a a subspace of \mathbb{R}^{n} and is called the nullspace of A. The dimension of $N(A)$ is called the nullity of A. Notationally:

$$
\operatorname{nullity}(A):=\operatorname{dim}(N(A))
$$

Proof. First, $N(A)$ is nonempty, because $\mathbf{0} \in N(A)$. By theorem 4.3.3, we need only to check that $N(A)$ is closed under addition and scalar multiplication. Suppose $\mathbf{x}, \mathbf{y} \in N(A)$ and c is a scalar. Then

$$
A \mathbf{x}=\mathbf{0}, \quad A \mathbf{y}=\mathbf{0}, \quad \text { so } \quad A(\mathbf{x}+\mathbf{y})=A \mathbf{x}+A \mathbf{y}=\mathbf{0}+\mathbf{0}=\mathbf{0}
$$

So, $\mathbf{x}+\mathbf{y} \in N(A)$ and $N(A)$ is closed under addition. Also

$$
A(c \mathbf{x})=c(A \mathbf{x})=c \mathbf{0}=\mathbf{0} .
$$

Therefore, $c \mathrm{x} \in N(A)$ and $N(A)$ is closed under scalar multiplication.

Theorem 4.6.7 Suppose A is an $m \times n$ matrix. Then

$$
\operatorname{rank}(A)+\operatorname{nullity}(A)=n .
$$

That means, $\operatorname{dim}(N(A))=n-\operatorname{rank}(A)$.
Proof.Let $r=\operatorname{rank}(A)$. Let B be a matrix row equivalent to A and B is in Gauss-Jordan form. So, only the first r rows of B are nonzero. Let B^{\prime} be the matrix formed by top r (i.e. nonzero) rows of B. Now,
$\operatorname{rank}(A)=\operatorname{rank}(B)=\operatorname{rank}\left(B^{\prime}\right), \quad \operatorname{nullity}(A)=\operatorname{nullity}(B)=\operatorname{nullity}\left(B^{\prime}\right)$.
So, we need to prove $\operatorname{rank}\left(B^{\prime}\right)+\operatorname{nullity}\left(B^{\prime}\right)=n$. Switching columns of B^{\prime} would only mean re-labeling the variables (like $x_{1} \mapsto x_{1}, x_{2} \mapsto$ $x_{3}, x_{3} \mapsto x_{2}$). In this way, we can write $B^{\prime}=\left[I_{r}, C\right]$, where C is a $r \times n-r$ matrix and corresponds to the variables, x_{r+1}, \ldots, x_{n}. The homogeneous system corresponding to B^{\prime} is given by:

$$
\begin{array}{rcrrrrc}
x_{1} & \cdots & +c_{11} x_{r+1} & +c_{12} x_{r+2} & +\cdots & +c_{1, n-r} x_{n} & =0 \\
& & \cdots & & +c_{21} x_{r+1} & +c_{22} x_{r+2} & +\cdots \\
& x_{2} & \cdots & +c_{2, n-r} x_{n} & =0 \\
& \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
& \cdots & x_{r} & +c_{r 1} x_{r+1} & +c_{r 2} x_{r+2} & +\cdots & +c_{r, n-r} x_{n}
\end{array}=0
$$

The solution space $N\left(B^{\prime}\right)$ has $n-r$ papameters. A basis of $N\left(B^{\prime}\right)$ is given by

$$
S=\left\{\mathbf{E}_{\mathbf{r}+\mathbf{1}}, \mathbf{E}_{\mathbf{r}+\mathbf{2}}, \ldots, \mathbf{E}_{\mathbf{n}}\right\}
$$

where

$$
\mathbf{E}_{\mathbf{r}+\mathbf{1}}=-\left(c_{11} e_{1}+c_{21} e_{2}+\cdots+c_{r 1} e_{r}\right)+e_{r+1} \quad \text { so on }
$$

and $\mathbf{e}_{\mathbf{i}} \in \mathbb{R}^{n}$ is the vector with 1 at the $i^{\text {th }}$ place and 0 elsewhere. So, $\operatorname{nullity}\left(B^{\prime}\right)=\operatorname{cardinality}(S)=n-r$. The proof is complete.
Reading assignment: Read [Textbook, Examples 6, 7, p. 241-242].

4.6.2 Solutionf of SoLE

Given a system of linear equations $A \mathbf{x}=\mathbf{b}$, where A is an $m \times n$ matrix, we have the following:

1. Corresponding to such a system $A \mathbf{x}=\mathbf{b}$, there is a homogeneous system $A \mathbf{x}=\mathbf{0}$.
2. The set of solutions $N(A)$ of the homogeous system $A \mathbf{x}=\mathbf{0}$ is a subspace of \mathbb{R}^{n}.
3. In contrast, if $\mathbf{b} \neq \mathbf{0}$, the set of solutions of $A \mathbf{x}=\mathbf{b}$ is not a subspace. This is because $\mathbf{0}$ is not a solution of $A \mathbf{x}=\mathbf{b}$.
4. The system $A \mathbf{x}=\mathbf{b}$ may have many solution. Let $\mathbf{x}_{\mathbf{p}}$ denote a PARTICULAR one such solutions of $A \mathbf{x}=\mathbf{b}$.
5. The we have

Theorem 4.6.8 Every solution of the system $A \mathbf{x}=\mathbf{b}$ can be written as

$$
\mathrm{x}=\mathrm{x}_{\mathrm{p}}+\mathrm{x}_{\mathrm{h}}
$$

where $\mathbf{x}_{\mathbf{h}}$ is a solution of the homogeneous system $A \mathbf{x}=\mathbf{0}$.
Proof. Suppose \mathbf{x} is any solution of $A \mathbf{x}=\mathbf{b}$. We have

$$
A \mathbf{x}=\mathbf{b} \quad \text { and } \quad A \mathbf{x}_{\mathbf{p}}=\mathbf{b}
$$

Write $\mathbf{x}_{\mathbf{h}}=\mathbf{x}-\mathbf{x}_{\mathrm{p}}$. Then

$$
A \mathrm{x}_{\mathrm{h}}=A\left(\mathrm{x}-\mathrm{x}_{\mathrm{p}}\right)=A \mathrm{x}-A \mathrm{x}_{\mathrm{p}}=\mathbf{b}-\mathbf{b}=\mathbf{0} .
$$

So, $\mathbf{x}_{\mathbf{h}}$ is a solution of the homogeneoud system $A \mathbf{x}=\mathbf{0}$ and

$$
\mathrm{x}=\mathrm{x}_{\mathrm{p}}+\mathrm{x}_{\mathrm{h}} .
$$

The proof is complete.

Theorem 4.6.9 A system $A \mathbf{x}=\mathbf{b}$ is consistent if and only if \mathbf{b} is in the column space of A.

Proof. Easy. It is, in fact, interpretation of the matrix multiplication $A \mathrm{x}=\mathrm{b}$.

Reading assignment: Read [Textbook, Examples 8,9, p. 244-245].

Theorem 4.6.10 Suppose A is a square matrix of size $n \times n$. Then the following conditions are equivalent:

1. A is invertible.
2. $A \mathbf{x}=\mathbf{b}$ has unique solution for every $m \times 1$ matrix \mathbf{b}.
3. $A \mathrm{x}=\mathbf{0}$ has only the trivial solution.
4. A is row equivalent to the identity matrix I_{n}.
5. $\operatorname{det}(A) \neq 0$.
6. $\operatorname{Rank}(A)=n$.
7. The n row vectors of A are linearly independent.
8. The n column vectors of A are linearly independent.

Exercise 4.6.11 (Ex. 8, p. 246) Let

$$
A=\left[\begin{array}{rrr}
2 & -3 & 1 \\
5 & 10 & 6 \\
8 & -7 & 5
\end{array}\right]
$$

(a) Find the rank of the matrix A. (b) Find a basis of the row space of A, (c) Find a basis of the column space of A.

Solution: First, the following is the row Echelon form of this matrix (use TI):

$$
B=\left[\begin{array}{rrr}
1 & -.875 & .625 \\
0 & 1 & .2 \\
0 & 0 & 0
\end{array}\right]
$$

The rank of A is equal to the number of nonzero rows of B. So, $\operatorname{rank}(A)=2$.

A basis of the row space of A is given by the nonzero rwos of B. So,

$$
\mathbf{v}_{\mathbf{1}}=(1,-.875, .625) \quad \text { and } \quad \mathbf{v}_{\mathbf{2}}=(0,1, .2)
$$

form a basis of the row space of A.
The column space of A is same as the row space of the transpose A^{T}. We have

$$
A^{T}=\left[\begin{array}{rrr}
2 & 5 & 8 \\
-3 & 10 & -7 \\
1 & 6 & 5
\end{array}\right]
$$

The following is the row Echelon form of this matrix (use TI):

$$
C=\left[\begin{array}{rrr}
1 & -\frac{10}{3} & \frac{7}{3} \\
0 & 1 & 0.2857 \\
0 & 0 & 0
\end{array}\right]
$$

A basis of the column space of A is given by the nonzero rows of C, (to be written as column):

$$
\mathbf{u}_{\mathbf{1}}=\left[\begin{array}{r}
1 \\
-\frac{10}{3} \\
\frac{7}{3}
\end{array}\right], \quad \mathbf{u}_{\mathbf{2}}=\left[\begin{array}{r}
0 \\
1 \\
0.2857
\end{array}\right] .
$$

Exercise 4.6.12 (Ex. 16, p. 246) Let

$$
S=\{(1,2,2),(-1,0,0),(1,1,1)\} \subseteq \mathbb{R}^{3}
$$

Find a basis of of the subspace spanned by S.
Solution: We write these rows as a matrix:

$$
A=\left[\begin{array}{rrr}
1 & 2 & 2 \\
-1 & 0 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

Now the row space of A will be the same as the subspace spanned by S. So, we will find a basis of the row space of A. Use TI and we get the row Echelon form of A is given by

$$
B=\left[\begin{array}{lll}
1 & 2 & 2 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

So, a basis is:

$$
\mathbf{u}_{\mathbf{1}}=(1,2,2), \quad \mathbf{u}_{\mathbf{2}}=(0,1,1) .
$$

Remark. The answers regrading bases would not be unique. The following will also be a basis of this space:

$$
\mathbf{v}_{\mathbf{1}}=(1,2,2), \quad \mathbf{v}_{\mathbf{2}}=(1,0,0) .
$$

Exercise 4.6.13 (Ex. 20, p. 246) Let

$$
S=\{(2,5,-3,-2),(-2,-3,2,-5),(1,3,-2,2),(-1,-5,3,5)\} \subseteq \mathbb{R}^{4}
$$

Find a basis of of the subspace spanned by S.
Solution: We write these rows as a matrix:

$$
A=\left[\begin{array}{rrrr}
2 & 5 & -3 & -2 \\
-2 & -3 & 2 & -5 \\
1 & 3 & -2 & 2 \\
-1 & -5 & 3 & 5
\end{array}\right]
$$

Now the row space of A will be the same as the subspace spanned by S. So, we will find a basis of the row space of A.

Use TI and we get the row Echelon form of A is given by

$$
B=\left[\begin{array}{rrrr}
1 & 2.5 & -1.5 & -1 \\
0 & 1 & -0.6 & -1.6 \\
0 & 0 & 1 & -19 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

So, a basis is:
$\left\{\mathbf{u}_{\mathbf{1}}=(1,2.5,-1.5,-1), \quad \mathbf{u}_{\mathbf{2}}=(0,1,-0.6,-1.6), \quad \mathbf{u}_{\mathbf{3}}=(0,0,1,-19)\right\}$.

Exercise 4.6.14 (Ex. 28, p. 247) Let

$$
A=\left[\begin{array}{rrr}
3 & -6 & 21 \\
-2 & 4 & -14 \\
1 & -2 & 7
\end{array}\right]
$$

Find the dimension of the solution space of $A \mathbf{x}=\mathbf{0}$.

Solution: Step-1: Find rank of A: Use TI, the row Echelon form of A is

$$
B=\left[\begin{array}{rrr}
1 & -2 & 7 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

So, the number of nonzero rows of B is $\operatorname{rank}(A)=1$.
Step-2: By theorem 4.6.7, we have

$$
\operatorname{rank}(A)+\operatorname{nullity}(A)=n=3, \quad \text { so } \quad \operatorname{nullity}(A)=3-1=2 .
$$

That means that the solution space has dimension 2.
Exercise 4.6.15 (Ex. 32, p. 247) Let

$$
A=\left[\begin{array}{rrrr}
1 & 4 & 2 & 1 \\
2 & -1 & 1 & 1 \\
4 & 2 & 1 & 1 \\
0 & 4 & 2 & 0
\end{array}\right]
$$

Find the dimension of the solution space of $A \mathbf{x}=\mathbf{0}$.
Solution: Step-1: Find rank of A : Use TI, the row Echelon form of A is

$$
B=\left[\begin{array}{rrrr}
1 & .5 & .25 & .25 \\
0 & 1 & .5 & 0 \\
0 & 0 & 1 & \frac{1}{3} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

So, the number of nonzero rows of B is $\operatorname{rank}(A)=4$.
Step-2: By theorem 4.6.7, we have

$$
\operatorname{rank}(A)+\operatorname{nullity}(A)=n=4, \quad \text { so } \quad \operatorname{nullity}(A)=4-4=0 .
$$

That means that the solution space has dimension 0 . This also means that the the homogeneous system $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.

Exercise 4.6.16 (Ex. 38 (edited), p. 247) Consider the homogeneous system

$$
\begin{array}{rrrl}
2 x_{1} & +2 x_{2} & +4 x_{3} & -2 x_{4}
\end{array}=0
$$

Find the dimension of the solution space and give a basis of the same.
Solution: We follow the following steps:

1. First, we write down the coefficient matrix:

$$
A=\left[\begin{array}{rrrr}
2 & 2 & 4 & -2 \\
1 & 2 & 1 & 2 \\
-1 & 1 & 4 & -1
\end{array}\right]
$$

2. Use TI, the Gauss-Jordan for of the matrix is

$$
B=\left[\begin{array}{rrrr}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & -1
\end{array}\right]
$$

3. The rank of A is number of nonzero rows of B. So,

$$
\operatorname{rank}(A)=3, \quad \text { by thm.4.6.7, } \quad \operatorname{nullity}(A)=n-\operatorname{rank}(A)=4-3=1 .
$$

So, the solution space has dimension 1.
4. To find the solution space, we write down the homogeneous system corresponding to the coeeficient matrix B. So, we have

$$
\begin{array}{lll}
x_{1} & & -x_{4}
\end{array}=0
$$

5. Use $x_{4}=t$ as parameter and we have

$$
x_{1}=t, \quad x_{2}=-2 t, \quad x_{3}=t, \quad x_{4}=t .
$$

6. So the solution space is given by

$$
\{(t,-2 t, t, t): t \in \mathbb{R}\} .
$$

7. A basis is obtained by substituting $t=1$. So

$$
\mathbf{u}=(1,-2,1,1)
$$

forms a basis of the solution space.

Exercise 4.6.17 (Ex. 39, p. 247) Consider the homogeneous system

$$
\begin{array}{rlll}
9 x_{1} & -4 x_{2} & -2 x_{3} & -20 x_{4}
\end{array}=0
$$

Find the dimension of the solution space and give a basis of the same.

Solution: We follow the following steps:

1. First, we write down the coefficient matrix:

$$
A=\left[\begin{array}{rrrr}
9 & -4 & -2 & -20 \\
12 & -6 & -4 & -29 \\
3 & -2 & 0 & -7 \\
3 & -2 & -1 & -8
\end{array}\right]
$$

2. Use TI, the Gauss-Jordan for of the matrix is

$$
B=\left[\begin{array}{rrrr}
1 & 0 & 0 & -\frac{4}{3} \\
0 & 1 & 0 & 1.5 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

3. The rank of A is number of nonzero rows of B. So,
$\operatorname{rank}(A)=3, \quad$ by thm.4.6.7, $\quad \operatorname{nullity}(A)=n-\operatorname{rank}(A)=4-3=1$.
So, the solution space has dimension 1 .
4. To find the solution space, we write down the homogeneous system corresponding to the coeeficient matrix B. So, we have

$$
\begin{aligned}
& x_{1} \quad-\frac{4}{3} x_{4}=0 \\
& x_{2}+1.5 x_{4}=0 \\
& x_{3} \quad+x_{4}=0 \\
& 0=0
\end{aligned}
$$

5. Use $x_{4}=t$ as parameter and we have

$$
x_{1}=\frac{4}{3} t, \quad x_{2}=-1.5 t, \quad x_{3}=-t, \quad x_{4}=t .
$$

6. So the solution space is given by

$$
\left\{\left(\frac{4}{3} t,-1.5 t,-t, t\right): t \in \mathbb{R}\right\}
$$

7. A basis is obtained by substituting $t=1$. So

$$
\mathbf{u}=\left(\frac{4}{3},-1.5,-1,1\right)
$$

forms a basis of the solution space.

Exercise 4.6.18 (Ex. 42, p. 247) Consider the system of equations

$$
\begin{array}{rrrrr}
3 x_{1} & -8 x_{2} & +4 x_{3} & & =19 \\
& -6 x_{2} & +2 x_{3} & +4 x_{4} & =5 \\
5 x_{1} & & +22 x_{3} & +x_{4} & =29 \\
x_{1} & -2 x_{2} & +2 x_{3} & & =8
\end{array}
$$

Determine, if this system is consistent. If yes, write the solution in the form $\mathbf{x}=\mathbf{x}_{\mathbf{h}}+\mathbf{x}_{\mathbf{p}}$ where $\mathbf{x}_{\mathbf{h}}$ is a solution of the corresponding homogeneous system $A \mathbf{x}=\mathbf{0}$ and $\mathbf{x}_{\mathbf{p}}$ is a particular solution.

Solution: We follow the following steps:

1. To find a particular solution, we write the augmented matrix of the nonhomogeneous system:

$$
\left[\begin{array}{rrrrr}
3 & -8 & 4 & 0 & 19 \\
0 & -6 & 2 & 4 & 5 \\
5 & 0 & 22 & 1 & 29 \\
1 & -2 & 2 & 0 & 8
\end{array}\right]
$$

The Gauss-Jordan form of the matrix is

$$
\left[\begin{array}{rrrrr}
1 & 0 & 0 & -2 & 0 \\
0 & 1 & 0 & -.5 & 0 \\
0 & 0 & 1 & .5 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

The last row suggests $0=1$. So, the system is not consistents.

Exercise 4.6.19 (Ex. 44, p. 247) Consider the system of equations

$$
\begin{array}{rrrr}
2 x_{1} & -4 x_{2} & +5 x_{3} & =8 \\
-7 x_{1} & +14 x_{2} & +4 x_{3} & =-28 \\
3 x_{1} & -6 x_{3} & +x_{3} & =12
\end{array}
$$

Determine, if this system is consistent.If yes, write the solution in the form $\mathbf{x}=\mathbf{x}_{\mathbf{h}}+\mathbf{x}_{\mathbf{p}}$ where $\mathbf{x}_{\mathbf{h}}$ is a solution of the corresponding homogeneous system $A \mathbf{x}=\mathbf{0}$ and $\mathbf{x}_{\mathbf{p}}$ is a particular solution.

Solution: We follow the following steps:

1. First, the augmented matrix of the system is

$$
\left[\begin{array}{rrrr}
2 & -4 & 5 & 8 \\
-7 & 14 & 4 & -28 \\
3 & -6 & 1 & 12
\end{array}\right]
$$

Its Gauss-Jordan form is

$$
\left[\begin{array}{rrrr}
1 & -2 & 0 & 4 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

This corresponds to they system

$$
\begin{aligned}
& x_{1}-2 x_{2}=4 \\
& \\
& x_{3} \\
&=0
\end{aligned} .
$$

The last row indicates that the system is consistent. We use $x_{2}=t$ as a paramater and we have

$$
x_{1}=4+2 t, \quad x_{2}=t, \quad x_{3}=0 .
$$

Thaking $t=0$, a particular solutions is

$$
\mathbf{x}_{\mathbf{p}}=(4,0,0)
$$

2. Now, we proceed to find the solution of the homogeneous system

$$
\begin{array}{rrrl}
2 x_{1} & -4 x_{2} & +5 x_{3} & =0 \\
-7 x_{1} & +14 x_{2} & +4 x_{3} & =0 \\
3 x_{1} & -6 x_{3} & +x_{3} & =0
\end{array}
$$

(a) The coefficient matrix

$$
A=\left[\begin{array}{rrr}
2 & -4 & 5 \\
-7 & 14 & 4 \\
3 & -6 & 1
\end{array}\right]
$$

(b) Its Gauss-Jordan form is

$$
B=\left[\begin{array}{rrr}
1 & -2 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

(c) The homogeneous system corresponding to B is

$$
\begin{aligned}
x_{1}-2 x_{2} & =0 \\
x_{3} & =0 \\
0 & =0
\end{aligned}
$$

(d) We use $x_{2}=t$ as a paramater and we have

$$
x_{1}=2 t, \quad x_{2}=t, \quad x_{3}=0 .
$$

(e) So, in parametrix form

$$
\mathbf{x}_{\mathbf{h}}=(2 t, t, 0)
$$

3. Final answer is: With t as parameter, any solutions can be written as

$$
\mathbf{x}=\mathbf{x}_{\mathbf{h}}+\mathbf{x}_{\mathbf{p}}=(2 t, t, 0)+(4,0,0)
$$

Exercise 4.6.20 (Ex. 50, p. 247) Let

$$
A=\left[\begin{array}{rrr}
1 & 3 & 2 \\
-1 & 1 & 2 \\
0 & 1 & 1
\end{array}\right] \quad \text { and } \quad \mathbf{b}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

Determine, if \mathbf{b} is in the column space of A.
Solution: The question means, whether the system $A \mathbf{x}=\mathbf{b}$ has a solutions (i.e. is consistent).

Accordingly, the augmented matrix of this system $A \mathbf{x}=\mathbf{b}$ is

$$
\left[\begin{array}{rrrr}
1 & 3 & 2 & 1 \\
-1 & 1 & 2 & 1 \\
0 & 1 & 1 & 0
\end{array}\right] .
$$

The Gauss-Jordan form of this matrix is i

$$
\left[\begin{array}{rrrr}
1 & 0 & -1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

The last row indicates that the system is not consistent. So, \mathbf{b} is not in the column space of A.

