شُرح المصفوفة Unitary

Definition of a Unitary Matrix

A complex matrix A is unitary if

$$
A^{-1}=A^{*}
$$

$$
A A^{*}=A^{*} A=I
$$

Show that the matrix $A=\left[\begin{array}{cc}\frac{1}{\sqrt{3}} & -\frac{1-i}{\sqrt{3}} \\ \frac{1+i}{\sqrt{3}} & \frac{1}{\sqrt{3}}\end{array}\right]$ is unitary.
$A A^{*}=I$
$A^{*}=\bar{A}^{T}$
$\bar{A}=\left[\begin{array}{cc}\frac{1}{\sqrt{3}} & -\frac{1+i}{\sqrt{3}} \\ \frac{1-i}{\sqrt{3}} & \frac{1}{\sqrt{3}}\end{array}\right]$
$\bar{A}^{T}=\left[\begin{array}{cc}\frac{1}{\sqrt{3}} & \frac{1-i}{\sqrt{3}} \\ -\frac{1+i}{\sqrt{3}} & \frac{1}{\sqrt{3}}\end{array}\right]$
$A A^{*}=\left[\begin{array}{cc}\frac{1}{\sqrt{3}} & -\frac{1-\mathbf{i}}{\sqrt{3}} \\ \frac{1+\mathbf{i}}{\sqrt{3}} & \frac{1}{\sqrt{3}}\end{array}\right] \cdot\left[\begin{array}{cc}\frac{1}{\sqrt{3}} & \frac{1-\mathbf{i}}{\sqrt{3}} \\ -\frac{1+\mathbf{i}}{\sqrt{3}} & \frac{1}{\sqrt{3}}\end{array}\right]$
$=\left[\begin{array}{cc}\left(\begin{array}{c}\left.\frac{1}{\sqrt{3}}\right)\left(\frac{1}{\sqrt{3}}\right)+\left(-\frac{1-i}{\sqrt{3}}\right)\left(-\frac{1+i}{\sqrt{3}}\right) \\ \left(\frac{1}{\sqrt{3}}\right)\left(\frac{1-i}{\sqrt{3}}\right)+\left(-\frac{1+i}{\sqrt{3}}\right)\left(\frac{1}{\sqrt{3}}\right) \\ \left(\frac{1+i}{\sqrt{3}}\right)+\left(\frac{1}{\sqrt{3}}\right)\left(-\frac{1+i}{\sqrt{3}}\right) \\ \left(\frac{1+i}{\sqrt{3}}\right)\left(\frac{1-i}{\sqrt{3}}\right)+\left(\frac{1}{\sqrt{3}}\right)\left(\frac{1}{\sqrt{3}}\right)\end{array}\right]\end{array}\right]$
$=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=I$
is unitary

