Haifa al-dobian 1348 / 2017 Linear Algebra math 251

From week 1 to 14 yail
https://www.youtube.com/watch?v=P8tXDuP9t88&list=PLO8ef9e)xtJa3svcoUCDmMG- IDx2ihWKF
oalall 7 i Juadi
Matrix J\

scalar 4aw) WS matrix Jb 4l AN 23 g entries avs Wb a8 JSy rectangular ¢ oks

4 ghuaal) Baasf 220 GeS a Y ([l ) dis L) paall udi (e (19S5 0¥ matrix J) (( gobs pen ) 2 1 Aliada
. All) 48 ghunal) i ghia 23 (5 by A Y

2x3(column) 3(row)x4 axa (e 4dgiaal (((all)) Ao Jla

298 X Liua (9S8 o puall Ales

2%4 4dghaa il
rzafi 33 [F00m
e 0l 750 (OOO O
(1-3H+2-+E-2)=13

The computations for the remaining entries are

(1.4) + (2.0) + (4.2) =12

(L) = (21) + (47) =27

(1.4) + (2.3) + (4.5) =30 ﬂﬂ_[lz 27 30 13]
(24) 4+ (6.0) 4 (0.2) =8 8 —4 26 12
21D =61+ (07) = -4

(23)+ (6.1) 4+ (0.2) =12

matrix J) pailad
Not comutitive 4a cud cpall Llee oY AB + BA
A-A=A+ (-4) =0
A-B = —-B-A4
A-0=4A4
A+B=B+ A
A+(B+C)=(B+A)+C
A(BC) = (AB)C
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: 8158 &) matrix J)

/ : Jia sl LIS aaa 6 ¢ Adghian A :Zero matrix -1 \

. [0]

Lo T T

\ -

/ 2 Jie Cilaal g Wy kb laela jliual LS g 4as e 4dghaa Special Matrix A @ Identity matrix -2 \

A square matrix with 1’s on the main diagonal and zeros elsewhere is called an identity
matrix. Some examples are

,_|
[ B
—_—
L 1
| e R
=0 = D
_— D
=0 O
=0 0 = O
o e O O
— O o O

/ 1 Jia ald ) La i g Special ! W) 3 AN (Sl g Identity matrix J) Jie & : Diagonal matrix -3 \

A general n x n diagonal matrix I? can be written as

dy 0 .o 0]
p_ |V & "
0 0 - d,|

o /
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/ s caligl (3gd (oS alB Y g o shua Culia g g Ary e 48 iuaa 1 Triangular matrix -4 \

ajy app apz ay ap 00 0
0 a»n axn an ay apn 0 0
0 0 a3 an ay; azp asz 0O

00 0 au a4l a4 a43 as4
4 peneral 4 = 4 upper 4 peneral 4 = 4 lower

K frimngular matrix triangular matrix /

: matrix J) s Clalal)

Jie main daiognal J) La_ké aae) geai katd Trace matrix J) g J) el quth 1) day o 48 gieas 1 Trace matrix -1

DEFINITION 8 If A i1s a square matrix, then the frace of A, denoted by tr{A), is
defined to be the sum of the entries on the main diagonal of A. The trace of A is
undefined if A is not a square matrix.

P> EXAMPLE 11 Trace of a Matrix

The following are examples of matrices and their traces.

tr(A) = ay + axp + ds; IT(B]Z—1+5+T+U=]1 |
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/

P EXAMPLE 7 A Technique for Evaluating 2 x 2 and 3 x 3 Determinants

: Ol L Determinants J) Jsally qulla 13 9 4z 1o 43 giian Determinants-2

\

3 1] T3 DI e ) 2%2 48 hesa
1 2| = 1275 =BE @ =—10) £ b g oabal
- O S| Az ya AAJLA.A
I 3 t E': e 4@ 815 3x3 Jia 2%2
-4 5 6|=| 4 5 43y jhalla axdia)
7 =8 9 T =8

=[45+ 84 +96] —[105—-48 -72] =240 4

/

[ . 04855 9 Adlhal) 4aidl) () g8 Jia Determinants J) ol 88 ; 4dadla J

: Determinants Cofactor -3
D sl

jcolumndisirow dly C;; ds minor e dS Mijd Cy; =(—1)" xMij
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EXAMPLE 1(_Finding Minors an@ -

Let

The minor of Bntrys

1

Cra 3 ga8 ) Lia Jigaadls d2ala 1)
o s Jaadly )) sk Al 3

SN (0) AN Ad N Cikal) i) A=1]2
((Determinants 4 Jaxd gliagla 1

Jsanll J5Y) Cacall Cadas

3 =16

4 B

The cofactor of 1 is

Similarly, the minor of en

3 e
fi
8

! 4

(@32

011—(—1@111—4”11—15

A 3 gand) Gl gl cida

3 )

= =26

—10-

The cofactor of @372 1s
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—4
5 [}
40K

‘gé‘)é A WY‘@@@'UU\J o_LEY (uSas Jadd

532={—1@{32= —Mzp=-26

Laila Cofactor J) =l
Mainor J gl (i
OMS 1) o LEY) LAl

>3 o) paa Jala
130 a5 J
cue) aan Juala ols
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» EXAMPLE 3 Cofactor Expansion Along th
A/

Find the determinant of the matrix

3 t oy
A=|-2 —4 3
Ls 4 —zJ

by cofactor expansion along the first row.

Solution
3 1 0 4 3
S R Sl R

=3(—4) — (-1 +0=-1

b EXAMPLE 4 Cofactor Expansion Along the|First Column ]
(A) by cofactor expansion along the

Let A be the matrix in Example 3, and evalua
first column of A.

Solution
3 1

0
det(A) = |[-2 -4 3 :3'_3 _; (-3;‘}1 _g 5'_31 g‘
51 4 =2

=3~ (- (-D@53) = -1
This agrees with the result obtained in Example 3.
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THEOREM 2.2.1

Let A be a square matrix. If 4 has a row of zeros or a column of zeros, then det(A) = (.

/ VG- LA B L PR kT \

EXAMPLE 1 det(A + B) # det(A) + det(B)

1 2 21 4 3
A=l 5} =[] Aveefs ]
We have det(4) = 1, det(8) = 8, and det(A - 5) = 23; thus

k det(A -} B} = det({A) + det(5) /

Consider

: Transpose matrix J! 4xsbeay Special (A 942 02 48 5has 1 Symmetric matrix-4

DEFINITION 1 A square matrix A is said to be symmetric if A = AT,

Properties of Symmetric matrix :

THEOREM 7.2.2 [f A is a symmetric matrix, then:
(a) The eigenvalues of A are all real numbers.

(b) Eigenvectors from different eigenspaces are orthogonal.

[ Transpose matrix J) gk J)gudls il 1319 aaa (5} (0 48 giaa 1 Transpose matrix -5 ]
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(o))

: 3x3 dbghas 53 Jia puSally beally ey Cpailly A entries J) Gl Jauiy U B i dny ya b ghaadl) S 13 | | 1

-2 4 1 3 =5
A= 3 7 0] — = | =2 8
-5 8 6 4 0 6

Interchange entries that are
symmetrically positioned

about the main diagonal.

1 3%2 ldl) sy yuali 2% 3 4dghiaa g3 Jia e ) i ghuall (lSa alli Ja8h day pa S 4d ghuaal) cuils 1)

4 2
5 6
7 3

Transpose Matrix Properties:

The transpose of a product of any number of matrices is the product of the transposes
in the reverse order:

: Ja
(AB)T = BTAT
;e Al Lllal a5 71 e Matrix J) osdld Transpose ¢ sl ot Ll Lguailiad ¢
ant=a
b e Ayl cuaad (ing G ) Gl (65 Y R (A Ll Lguailad (1
(A-B)' = A" - B
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: System J) £

1- Consistent : at least one solution.
2- Inconsistent : has no solution.
3- Homogeneous Systems: all equations are set =0
: Homogeneous s Jb

3x+2y=@

: non Homogeneous s Jua

3x+2y=@

: GsSia N ( Linear equations ) (s Adlaall lds 1adiadla

have no products or roots of variables and no variables involved in trigonometric, exponential,
or logarithmic functions , Variables appear only to the first power.

: Jha

* Ex 1: (Linear or Nonlinear)

| ~ ,
Linear (a)3x+2y=7 (b)£x+y-.?rz=w"2 Linear

Linear (€)x;,=2x, +10x;+x, =0 (d)(sin g)xu -4x, = ¢’ Lincar

- Exponentia |
Nonlinear (e)@z =2 (fXe)-2y =4 Nonlinear

not the first power

N onlinear (8‘@"‘ 2x, -3x;=0 (h ee 4 Nonlinear

trigonomet ric functions not the first power

SEU1.0RG



Haifa al-dobian 1348 / 2017 Linear Algebra math 251 From week 1to 14 (eils

f Solving Linear System by :\
1-Gauss Elimination
2-Gauss-Jordan Elimination

3-Inverse Matrix Method

k 4-Cramer Rule j

1-Row-echelon form (Gaussian elimination: is the procedure for reducing a matrix to a row-echelon
form).

Joal) Jhaal (g e Eilia o g giat g ary (598 cilan) o) (o gSilag clanl g Lo kg 1 o )l Ty ¥ chuall ¢ Lgdag pd (s
: Jia

AN W

Reduced row-echelon form (Gauss-Jordan elimination is the procedure for reducing a matrix to a
reduced row-echelon form).

S Jlia) dlatgdBgh 98 1 aB g o shua Gl o (g giad cilaal g W jlb Lghag pdi (e

. Jual 4iatg 4B b &gTeading T

+ afaadla

1-row-echelon form not unique JAY! ¢ 4dlida A5la) Gl JS

2-reduced row echelon form unique s g &S5 GOl Sl

SEU1.0RG
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Example 1 oadls (s utiBa(EMS)
Use Gaussian Elimination to Solve the system of linear equation?
Xx—3y+z=4
2x—8y+8z=-2
—6x—3y—15z=9

[ Gl iy 2 sy J ) il i |
[1 -3 1 41 R > R, - 2R

B . Lﬁm‘;uﬂﬂgm.l} +6 myadjiﬂi_l_a]';u_}.ﬂ
R > R, + 6R,

1 =3 1 4 g -2 e A caall dauss
0 -2 6 —=10}-.___ ) R,
0 —-15 -9 33 “Ry—
.
1 -3 1 4 ) Caall divaiy +15 aoge o SO Caall G s
0 1 =3 54 _+R. SR.+15R
0 —15 -9 33I° - ’

1 -3 1 4 —54 e SO Caall 4ani
R
Io 1 -3 5] _____ Ry > —
0 0 -54 108k-"~ —54
1 =3 1 43----3_
0 1 -3 5|--1 4
0 0 1 2k
(- .
I ~
-’I: \\\
o" y h
e 1 Se
- ! ~
« v K
z=-2 y—3z=5 x—3y+z=4
y—3(-2) = x=3(-D+(-2)=4
y+6=5 x+3-2=4
y=5—-6 x+1=4
x=4-1
y=-1
x=3]

SEU1.0RG 11



Haifa al-dobian 1348 / 2017 Linear Algebra math 251 From week 1to 14 (eils

Example2 :
Solving the system by using elementary operation
X — 2y + 37 = 9 (s Jhall Ciall g canl g ALS ) 45 U cisgl)
Lawad) Jiead a4
Sl a5
-X + 3y = —4

2x—5y+52:17\

J8& e system J) 4lS 48y 4k
1 -2 3 9 | 4hshas i & ¢ Augmented

-1 3 0 -4
2 -5 5 17/Qr+r, -,

2 =5 5 17| (-2r+r—r

0 -1 -1 —1|@r,+r,—r,

SEU1.0RG 12
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agaally 1 90 0 JAdgal (o A A8 LS 1) iss Juad ; Adiadla
3 5 S 3 ard) 138 5 J 5 el (ha da bl gl dran) g Ay pual J5Y)

1 1
0 0 2 4|5

5 Gl 12 a8 Jeal lde it Juably ALY Cially

i< g 13‘,.4,.%‘1‘,4\3?3}\43319,.”3‘1..‘

X — 2y + 3z = 9
y + 3z =
zZ = 2

— | el Gaadh mEll 13 Aiadla

b 4b ghaaal) Uy ya 13)
225l Ashas s, 4z e : Inverse Matrices
X
1] 414=1 4 2| 44 1=1 3| AB=BA=1

2 % 2 Lgaaa (S 1) Lgigilly culan) g A1 L jhadlg cualy (568 (g sdua Cillla (g gual Lgda Liagll g day e (160 Lgha gy (1

A_l - adibc [—dc _ab]

2% 2 (e yaS) s 1) L gild
(AB)~1=B-141
Transpose Inverse < 1-3-‘3313
AT 1= (a4 Hr
Determinants Inverse < L4 58

1

det(4™) = Gor @
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Solve the matrix Finding A

Calculating the Inverse of a 2 x 2 Matrix :

=3 2
det(A) = (6)(2) — (1)(5) sasaall 4agdll 3353 ; Yl
=12—-5=6 O o o slial) aa g 1 Ll
1 1
1 B - _Z
A :E[—zs 61] - _35 °
6

Using the Row Operator ( find invers in new method ) : Al 48 )y

1% 3

-2 -7

: Jha

[a b= 1% 215 0]/ A S R e
=2

-7 0 1

[_12 _37 \(1) ‘1’] 2R, + R, - R,
1 3 (1 0

131 0

0 1 -2 -—1] 3R, — Ry > Ry
10[7 3

01 -2 -1

SEU1.0RG
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: 3 % 3 matrix & Al Jba

Solve the matrix Finding A™*

O il Jia ) Ciplall J gl Giagd) Y O seadly 4 sllaal) 4d ghuaal) aaa Jia LgiiS) oY g

1 2 3 1 0 0
2 5 3 01 0
1 0 8 00 oy

12310 0]
2 5 3 010
10 8 00 ’I_
1 2 3 1 00 We added =2 times the first
0 1 =3 =2 10 row to the second and — 1 times
0 =2 5 =101 ] the first row to the third.
e 3 1 oo We added 2 tnes the
01 =3 —2 10 second row to the thard
00 =1 -5 21 '
1z 3 10 0 We multiplied the third
01 =3 =2 1 o -+ by —1
00 1 5 -2 =1 rowby=1
(120 | -14 6§ 3] We added 2 times the third
0140 13 =5 =3 + row to the second and =3 times
_CI 01 5 =2 —i_ the third rosw to the first.
100 —40 16 ? We added =2 times the
D10 13 =5 =3 : d o the Bret
[:] I:I ] 5 _2 —1 SECONCG TOW 1O :
1 0 0]|—-40 16 O]
0 1 0 13 -5 -3
0 0 5 -2 —1]
Thus,
(40 16 9]
Al = 13 =5 =3
| 5 -2 -1

SEU1.0RG 15
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namely, x — .4 1k

I D OSE 1 e Jha
» EXAMPLE 1 Solution of a Linear System
Consider the system of linear equations

X + 2_12 + 3.1'_1 = 5
:.}.All + 5_12 + 3.1'_1 = 3
I + 8x: =17

In matrix form this system can be written as Ax = b, where

1 2 3 X 5
e Abghuna J5 Jo iSloghi gl | A= [2 5 3|, x=|x2|. b=]| 3
Jead 1 0 8 x5 17

In Example 4 of the preceding section, we showed that A is invertible and

- — —40 16 9
inverse J) g o gl U A = 13 -5 _3
5 -2 -1

By Theorem 1.6.2, the solution of the system is

—40 16 9 5 1
inverse J) il o gl Gl x=A"'bh= 13 -5 -3 3 —1
b 48 sdaaly 5 -2 —1]|]17 2

< |
<

SEU1.0RG 16
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Inverse Transformations :
I =T W =v
T(T ' (w) =T(v)=w

THEOREM 8.3.2 If T\:U —V and T,: V. — W are one-to-one linear transforma-
tions, then

(@) T:o T is one-to-one.
(b) (LoT)'=T7"0oT;".

v o "“n w =TI(v)

v ! R(T)

1 Jlia
EXAMPLE 4 An Inverse Transformation <

Let 7- g% _. ®* be the linear operator defined by the formula
Tz, xg,x3) = (3x) +xg, —2x) —dxg 4+ 3x3, 5x) +4x3— 2x3)

Determine whether T'is one-to-one; if so, find 71 (xl, X7, I3).

Solution It follows from Formula 12 of Section 4.9 that the standard matrix for I'is

301 0
Tl=|-2 -4 3
5 4 =2

(verify). This matrix is invertible, and from Formula 7 of Section 4.10 the standard matrix for
—1:
T8

4 —2 -3
Tl =171 1=|=-11 & 9
—12 7 10

Expressing this result in horizontal notation yields

71 (xl,xE,xg)z (4x1—2xz—3x3, — 11xy + 6xg 4+ 9x3, — 12x1 4 Txp 4 1[]):3)

SEU1.0RG
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_ det(Ay)

1= det(a)

Cramer’s Rule

.. det(4y) .
27 det(a) 73

_ det(A3)
"~ det(A)

» EXAMPLE & UsingCramer's Rul®to Solve a Linear System

Use Cramer’s rule to solve

2T Geta) | 44

6
30

8

6 0 2
30 4 6
8 -2 3

1 0 6
-3 4 30
-1 -2 8

det(Ay) T2 18

1’
38

x; + + 2x; =
—x; — 2x2 + 3x3 =
Solution — - B
1 0 2
A=|-3 4 6|, A=
_—1 -2 3_ |
1 6 2] i
A, =1-3 30 6|, Az3=
_—1 3 3_ N
Therefore,
. _ det(d) _—40 10
T det(A) T 44 T 11
det(A;) 152
X3 =

T det(A) 44 11

|

Solution space of the homogeneous system of equations Ax = 0 Called null Space.

THEOREM 4.7.1 A system of linear equations AX = b is consistent if and only if b

is in the column space of A.

SEU1.0RG
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-

\

Augmented Matrix :
: Jla
x—4y+3z=5
—x+3y—z=-3
2x —4z=06

Augmented Matrix :

1 -4 3
-1 3 -1
2 0 -4

Coefficient Matrix:

1 =
-1 3

~

4 3
-1
2 0 -4 /

1

: least square solution of linear matrix J! Ja <l ghi

Express the system in matrix :

Ax=Db

2 | Best Approximation sl Least Squares solutions :

ATAx = A"b

3 | Error vectors:

b — Ax
4 | Erorr:
b — Ax||

SEU1.0RG
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EXAMPLE 1 Least Sguares Solution -

(2} Find all least squares solutions of the linear system

X - &2 -
3xq i 2%z =
—2xq | dxog —
(b) Find the error vector and the error.
Sofution
() It will be convenient m@ syslem in 1[1-3 matri
] -1
1 A= 2 and b=
—E <
It follows that
1 —1
.9"".a_1=[ L ‘i] 3 2
- -2 4
4
r 1 3 =2
o[ ]
3
s0 the normal systet g7 dy — 4 is
14 =3|I=1]_
2 =3 21 |1%2] |1
Solving this systemn yields a unigue least fquares solution) namely,
R 4 = 143
T 28
(b) TheCerror veclodis
32
a1 T 1 =1 | 14 285
3 5 143 3 285
L= 285 95
57

SEU1.0RG
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4
1
3
where
.q
1
3

_ 14 =3
=3 21

1
0

]

3
5

F

B
=]
L

2

o
s A
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Linear Algebra math 251

-

: (% ¢ Vectors in coordinate system J!
Gumatrie -1
coordinate system -2

space J) sl (1 (583 a Y agard ) pgab ) agren 2 vector J) iadiadla

~

)

: component 2 s il vector two space s Jie
V=(1,4)
: component 3 & s 58 vector three space s Jba
Vv=(5,7,6)
J e Alial
column vector or column matrix isanm x 1:
I
T2
X =
T
row vector or row matrix isalxm

X=[$1 Ty ... a:m]

: slawd E3E A vector Norm )

:lgigildy ||v|| Wieus Length - magnitude - norm

Ivll = \/vi F VR VR R
: Unit Vectors JI 0si@
u=—7v

[lvl

: W& Euclidean norm !

IVl = Vv |2 + [v5]2 + - + 1,2
: W58 Distance vector J)

d(u,v) = |[u—v|

21
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: Norm J) e JIsm Jla

If v=(-3,2,1), find ||v||ff

lv|| = \/v% VI ViR OsiE 3 B a3 e il sl

b 71 Ao Y b adad) S 1) e 9B S a3 r vl = (=3)2 +22 +12 = V14

dgalal) AL Cilida @il

If v=>1,-3,2),andw=(4,2,1) findv+wandv—-w??

v+w=1+4+4,-3+2,2+1)

=(5,-1,3)

v-w=(1-4,-3-2,2-1)

=(-3,-5,1)

: Distance vector J! L& J)sw Jlia

Find the distance between u = (0,2) and v = (2,0) ??

du,v) = lu-vl=(0-2),2-0) = [-22]

= [(-2)2+22 =V4+4=18

scalar 2 Laila gadl

/ -5 Euclidean Dot prouduct J! ' Euclidean inner prouduct J! 8 inner prouduct J! 5! Dot prouduct J! \

TR UV = wvq + upvy + o+ u vy,
: 58 complex Dot prouduc s' complex Euclidean inner prouduct J!

U.V= U v + Uy + o+ u, v,

/

SEU1.0RG
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/ Inner Products : \

DEFINITION 1 Anganer produgy on areal vector space Vdsa functiomthat associates

a real number (u, v) with each pair of vectors in V in such a way that the following
axioms are satisfied for all vectors u, v, and w in V and all scalars k.

[. (u,v) = (v, u) [Symmetry axiom]

2. (u+v,w) = (u,w) + (v,w) [Additivity axiom]

3. (ku,v) = k(u,v) [Homogeneity axiom]|

4. (v,v) =0and (v,v) =0ifand only if v =0 [Positivity axiom]|

A real vector space with an inner product is called a real inner product space.

D sl

k (U, ¥) = u-V=1yv + Ut +---+u,v, /

Properties of the Dot Product :

THEOREM 3.2.2 [fu, v, and w are vectors in R", and if k is a scalar, then:

(@) u-v=v-.u |Symmetry property]
() u-(v+wj=u-v+u-w | Distributive property]
(c) k(u-v)=(ku)-v |Homogenelty property]

(d) v.-v=0andv-.-v=0Iifand onlyifv =1 [Positivity property]|

Properties of Euclidean Dot prouduct :

THEOREM 5.3.3 If u,v, and w are vectors in C", and if k is a scalar, then the
complex Euclidean inner product has the following properties:

(@) u.v=v.u [ Antisymmetry property]
(b) u-(v+w)=u.-v+u-w [Distributive property]

(c) k(u-v)=(ku)-.v |Homogenelty property]
(d) u-kv= k(u-v) |Antihomogenelty property]

() v.v=0andv.v=>0ifandonlyifv=10. [Positivity property]

SEU1.0RG 23
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Properties of Inner Products :

THEOREM 6.1.2 Ifu, v, and w are vectors in a real inner product space V, and if k

is a scalar, then:

(@ (0,v)=(v,0)=0
(b) (u,v+w)=(u,v)+ (u,w)
() (u,v—w)=(u,v) — (u,w)
(d) (u—v,w)={(u,w)—(v,w)
(e) k{u,v) = (u,kv)
: inner prouduct ' Dot prouduct & J&a
Ifu=(3,-2)andv=(4,5) ¢ : Jlisadl
u-v=(3)(4)+(-2)(5)=12-10=2 : s
: Dot Products and Matrices s J%
Table 1
Form Dot Product Example
1 5
u— | —3 Ty =[1 —3 5]|a4|=—7
ua c:rolulun ] |: 5:| |:0:|
matrix and v a u-v=mu"v=v"u _
column matrix = !
v = |:4] via =[5 4 0] |:—3:| = —7
o s
5
) u—=1[1 —3 5] uv =1 —3 51|:4:|=7
u a row matrix B 0
and v a column u-v =uv = viua’ 5
matrix v o= %+ 1
_0] Tu” =[5 a4 o] |:_3:| = 7
5
‘ -]
1 v = [5 4 o] —3 = —7
u a column u — —3 5
rr'r;:":r]ll}:ae::;i v a u-v = vu = u’ v’ | 5:| s
v=1[5 <4 0] T =1 —3 5] |:4:|=_7
0
5
) uv’ =1 —3 5] |:4:| = 7
:1:;]—?1: r'::':“-‘“ u-v = uv’ = vu’ w =D - *] ?
matrix v o= [5 <4 O] 1
v’ = [5 4 {]] |:_3:| - 7
5
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: U,V sy nonzero vector {w angle <13 cos @ J) ¢sid

7 u.v
coOs) = ———
lulllll

/ angle betweenuand v : \

o (uw,v)
0 = cos !
Tal vl

DEFINITION 1 Two vectors u and v in an inner product space are called orthogonal
it (u,v) = 0.

\_ /

: nonzero vector & angle <lS 1) cos @ JI e Jlia

Find the angle between the vectors u = (2, 5) and v= (4, -3) ?? : Jisd)

gl
cos@ = 2 = @@W+G)(-3) _  8-15 -7 7
lulllvll ~ V22452442432 J4+25vi6s9 y2ovzs  5v29
— -1 7
@ = cos ( 5\/_) 105.1
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scalar oy vector Laila \gadi <«— : 458 outer product J' 4 cross product J!

the cross product u x v 1s the vector defined by

U X V= (U3 — U3Vq, U3V — U V3, UV — Uzl )e—>

ds¥) sl

DEFINITION 1 Ifuw = (uy, u2, u3) and v = (v1, v2, v3) are vectors in 3-space, then

or, in determinant notation,| Js¥ i) ua A Cila Ua Gl Gidal Ua

Jally (i A (e aal g LA

H2+H3 uﬁ uy| |u, v ou,

5 k]

wxv=(

(] Ly L (RS [ 1

) <+> ‘",515.!\ Heiat

(h

ARy phal) oA a ol LAY Alaadla
+ - +
—_ + —_
+ - +

A8y phal) (53¢ 4l Gyl Ales cross product J) b e3LA 4Adlal)
uxv=—(vxu)

uxu=0

/ : Dot prouduct J's cross product J) G 48l

THEOREM 3.5.1 Relationships Involving Cross Product and Dot Product
If u, v, and w are vectors in 3-space, then

(@) u-(uxv)=0 (U % vV is orthogonal to )
(b) ve(uxv)y=0 (U % Vv is orthogonal to V)
(€ Juxv[* =luf?|v]* — (w-v)*  (Lagrange's identity)

\

\

(d) ux(vxw)=(u-w)V—(u-V)W (relationship between cross and dot products)

(€) (uxv)xw=(u-w)v—(V-Wlu (relationship between cross and dot products)

SEU1.0RG
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: Subspace J
2 Oy Lgd
l-ifuand vrevectorsin W,thenu+visin W.

2-if k any scalar and u is any vectors in W, then k u is in W.

+ afiada

28 () g dnadi dal) ubanyy 0 J) g drand o (g Jia o8 hag ) AL e (ph y& & S U vector space J) by
D L. 0 by aaad) o plai aa dzand

1-if uand v are objectsinVthenu +visV

2-if k is any scalar and u is any object in Vthen k uisin V.

: Row Space J & Jba

Given the 3 X 4 matrix. Find the basis foof

A and its dimension. Where

gals e gl ol B B digiad | . P14 5\ 2 | el e i
JiulL 5 jiua Gilia 5 g ) row echlone form L Gglhaall A5 J4Y)
(smsuidsiwin | A2 1 3]0 ymdy

— =1 3 2.

As performing elementary row operation do not change

the row space. We convert A to reduced row echelon
form.

NI AEDN

So the basis is (1,4,5,2) (0,1,1, ;) and the dimension of
the row space of A is 2.
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: Linear dependent J! b &

THEOREM 4.3.2

0 o) W (g s (0 S o s 53 (M vector J)
3 | A finite set that contains 0 is linearly dependent.

1| A set with exactly one vector is linearly independent if and only if that vector is
not 0.

2

A set with exactly two vectors is linearly independent if and only if neither vector
is a scalar multiple of the other.

AT 2axl scalar Led 2 g

1

0SS 1y Jag sl < gila 13

Linear independent

0 gs4w Linear independent J) @&l W) 0 s Linear dependent J) gl ¢l Badl

: EMS 2dls (e (s Linear dependent J) s JUa

Determine whether the vectors the set (1, _2:3) !
Solution  Jal

R® i=(1,-23) = k =(3,21)

Cii + Cs/ + C3k = O ‘-“'_|

v (321 isLlorLD?

Alsleal) 3 yimy geills |

F Oz = 0000 [ mom |
(C1, —2C1,3C1) + (5C2, 6C3 C2) + (3C5,2C5,C3) = (0,0,00 =~~~ " [  anms |

, —2C,+6C,+2Cs , 3C, C, + C3) = (0,0,0)

c,(1,—2,3) + C,

(Cy + 5C;+3C3

Cy + 5C2+3C3 = 0 —= — — _

-~

CsS5 Amgiall (48 coWolaall Uy Liad
_ ’/, Q‘J‘M\@LA.;_‘P

-

—2C1+6C3+2C3; = 0 —= — _

3¢, Co +Cs =0 ——~"

| c.=c.=c: =0 thentL.a |
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Span:

Subset of vectors space V that is formed from all possible linear combinations of the vectors in a
nonempty set S is called Span of S.

Transformation maps denote f : V — W

Special case where V = W called operator

: Span J) s Jua
Example 3 Find agpanningset for th space of the matrix

-3 6 -1 1 -7
A=11 -2 2 3 -1
2 -4 5 8 -4
Solution

The first step is to find the general solution of Ax = 0 in terms of free
variables.

After transforming the augmented matrix [4 0] to the reduced row echelon form and we
get: PR BT, (IPX'Y “

1. 3 0 J’ e AN ) el Sy
2 2|0 Ak a9 Jg¥) 5% 1 a0
0 0 0|l o row echlon form
which corresponds to the system
x,-2x, - x,t3x,=0 e g as)
Xy T 2x;-2%,=0 system Js&
0=0

The general solution is
X; =200, X p-3%; " . - A

. s Adalaall BL S g ) ikl e ¢ sS leading 1 J) 4l 8 e Adalaal) i
x, = free variable \A§ GiSS Alilas 4 33 0¥ g Ireading GsSe Al Gl ikl

Xy == 2%, T 2%,

‘free variable

ree variable
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Next. decompose the vector giving the general solution into a linear combination of

vectors where the weights are the firee variables. That is.

Callg ma¥) ikl g
vector matrix

X5 2x, +x, -3x; 2 1 -3
25 X 1 (8] o
xy | = 2x, +2x = x Ol H+oag, | =2 |+, 2
oG X, o 6 | (o]
5 B o o 1
T T T
e AN i3

= x4 + x,v + x;w

Every linear combination of z, » and » is an element of Nul 4. Thus Jzs, v,

spanning set for Nul 4.

Vector Basis :
gk

1-Lineary independent.

2-Span.
3 -4 -2
ExampleS Letv,=|0|[v,=|1 |and v,=| 1 |. Determine if {v;, v,, v3} is a basis
-6 7 5

for R’

Solution  Since there are exactly three vectors here in R, we can use one of any
methods to determine whether they are basis for R’ or not. For this, let solve with help of
matrices. First form a matrix of vectors i.e. matrix 4 = [v; v, v;/. If this matrix is
invertible (i.e. |A| # 0 determinant should be non zero).

For instance, a simple computation shows that der 4 = 6=0. Thus 4 is invertible. As in
example 3, the columns of 4 form a basis for R’

Example 7  Check whether the set of vectors {(2, -3, 1), (4, 1, 1), (0, -7, 1)} 1s basis for

R
2 40
Now det|-3 1 -7[=2(8-4(4)t0=0
1 1 1

Therefore, the system (A) is inconsistent, and, consequently, the set S does not span the
space V.

SEU1.0RG
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/ Orthogonal : \
: ghyd

1| perpendicular

2 u.v=0

\ orthogonal set of unit vector is called an orthogonal set/

Orthogonal Basis :

: L gid

(w,v) =u-v=ujvy +trv2 +---+u,v,

Il o+ 03 03

d(wv) = —v1)?2 + Uy — v2)% + - + (Uy — V)2

Orthogonal Matrices : \

DEFINITION 1 A is said to be erthogonal if its transpose is the same

a that is, if I
orcequivalentls? if

AAT = ATA =1 (1)/

Properties of Orthogonal Matrices :

THEOREM 7.1.2

(a) |TheGuverseof an orthogonal matrix is orthogonal. e

If A and B are Orthogonal

(bY—A product of orthogonal matrices is orthogon 4— | matices of the same size

(c) ffA is orthogonal, then det(A) = 1 or det(A) = —1. ]
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Orthogonal Matrix = »&

s
A-1 = AT
ATA =1
1 1
Show that matrix A = \\? ;E] is orthogonal.
VZ V2

qara|]

1 dlalaia 48 gaiadll ob caldy Olall gakas

ATA =1

( transpose matrix ) 48 sdaaall Jaad aad — Yl

AT_I% T]
% %
( transpose matrix) 42siaal) Joad & A ghuaal) u i — Ll
[— 7”— ] [(w ()% (%) (;Z>x(«>+(—é>xm)]
vowlle vl [ (Gra)+ @xQ) (D xCER+@x=(0)
[( xR+ R (5) () =)+ R ))]
(Gx@)+ @=(0) ((D)xER+E) <))
B 198 AT ddghaal Jaas ga Gisall (BB 471 = AT o W
[ 1 1]
W
-1 1]
" vz V2
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-

.

Orthogonal Diagonalization :

Similar to :

PTAP =B

A is Orthogonal diagonalizable and Orthogonal set of n eigenvectors and Symmetric

\

)

EXAMPLE 1 A3x <

The matrix

is orthogonal since

ATa=

S | F= R ] | ST | [

SEU1.0RG

=
|
|
S| [ ST - S | [N ]

o | [ - | [ S | )
S | [ R ] B S [ | %]

| P | [ [ ]

e | [T ] Eo e | (W]

e | R [ IR | F- )

|
=Y~ -
[
—_- o

=ilon =l =des
S | [ | T |

: orthogonal A& J&a
2 Jligaad)

Determine whether the vectors in each pair
are perpendicular

u=(3,5)andv=(2,-8)
u=(2,1)andv=(-1,2)??

D qlsadl
u-v=(3)(2)+(5)(-8)=6-40=-3420
so u and v are not perpendicular.
u-v=(2)(-1)+(1)(2)=-2+2=0

so u and v are perpendicular
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Dimension :

DEFINITION 1 The dimension of a finite-dimensional vector space V is denoted by
dim(V) and is defined to be the number of vectors in a basis for V. In addition, the
zero vector space is defined to have dimension zero.

Exercises

: Dimension J! s Jba

For each subspace in exercises 1-6, (a) find a basis and (b) state the dimension.

2c¢
s—2tf ,
. a_ .
1 s+t _11R> o s 11R
3t /Zvector pace gu'th\> ¢ < z\gctor ;{aceug:fs\
% N2 Dimension Wtias a+2b | |, \\3 Dimension s/
t=[-2,1,3]
a=[0,1,0,1]
s=[1,1,0]
b=[01_11112]
c=[2,6,-3,0]
pe

THEOREM 4.5.6 If W is a subspace of a finite-dimensional vector space V, then:

(a) W is finite-dimensional.

(b) dim(W) < dim(V).

(¢) W =V ifand only if dim(W) = dim(V).

~

coefficient of the linear combination expressed in the form :

w = klvl + k21.72 + -+ knvn

SEU1.0RG
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Linear combination :

Find a linear combination letu = (1,2, —1) and v = (6,4,2) € R?, show that
w = (9,2,7) islinear combination of u & v.

Solution  Jall

______ -——”““:::: Jgadl & Clpdasal)
——————————— —4-’" }-“"-‘-F ‘_--—
w = (9,2,7) , u=(12,-1) , v = (6,4,2)
\\ ”/’ ””___’
AW =0 u+b v .. @
& om il ! \ S~
Alslaall " “ .
A LN
(9,2,7)=a(1,2,—1) + b (6,4,2) s pia
= (a,2a,—a) + (6b,4b,2b)
= (0+6b, 20+ 4b , —a + 2b)
F\ k ,4

Alalaall Aaleall aans
@ & @ e

@~ +6b+2b=9+7

8b =16

@ el & s gailly
r6(2)=9

+12 =9
=9—-12
IS I @) JEVEPNFRgTNp T
w=au+b v =~

healt sl

SEU1.0RG
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/ ( Rank < variables > ) dimension of the row space and column space of matrix.
( Nullity < parameters > ) dimension of the null space of A.

Rank (A) + nullity (A) =n

~

denoted by rank(7") and the nullity of T by nullity(7").

DEFINITION 3 Let T: V — W be a linear transformation. If the n::fT is finite-

dimensional, then its dimension is called the rank of T; and if theCkerng) of T is
finite-dimensional, then its (dimension is called the nullity pf T. The rank of T is

\_

%

J) srank J) adlai qigllaag 5 @Le-ua matrix Wale sl sS9 @b AT W ) 1 Rank J) A Jba
(nullity 8 rank ) sm Jsmdy hral) (aGaeeY) 33 ¢ ki L nuyllity

. Ja
Nul 4
=
B
Rr"
Figure 1
s
5 5
Example 1 TLet 4 =[ 15 93 ;] and let 2z =| 3 |. Determine ifzw  Nul 4 .
- -2
Solution To test if « satisfies du = 0. simply compute
S
| U s-9+4 o ..
A = 3 |= = . Thus z is in Nul 4.
-5 o 1 > 25+27-2 o
/ Image, Kernel and Range :

Image of any vector v in I expressed as :
T(w) = 1,T(wy) + c2T(v3) + -+ + ¢, T(vy)
THEOREM BA1.3 IfT: V — W is a linear transformation, then:

(a) The kernel of T is a subspace of V.
(b)) The range of T is a subspace of W.

o
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somorphism :

DEFINITION 1 If T: V — W is a linear transformation from a vector space V to a
f T maps distinct vectors in V into

vector space W, then T is said to

C gistincpvectors in W.

DEFINITION 2 If T:V — W is a linear transformation from a vector space V to a
vector space W, then T is said to be @ (or ento W) if every vector in W is the

c‘f' at least one vector in V.

Vo~ w
—— .
a Range
—_ of T

v w v
==&
»-—-—>= -
=8 -
—_—
—_— = D
:ﬂne—to—oﬁb_ Distinct Hot one-to-gp®. There

vectors in V have
distinct images in W.

exist distinct vectors in

V with the same image.

W. Every vector in
15 the image of some
vector in V.

W. Mot every

vector in Wis the image

of some vector in V.

THEOREM 8.2.2 If V is a finite-dimensional vector space, and if T:V =V isa
linear operator, then the following statemenis are equivalent.

(a) T is one-to-one.

(b) ker(T) = {0}.

(c) T isontolie.,

R(T) =V].

1s both one-to-one and onto,

isomaorphic.

DEFINITION 3 If a linear transformatiof 7: V —
then@ is saidto be an isomorphism. and the vector spacesd _and W ar@u be

SEU1.0RG
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Chapter-8

Linear Transformations

* A linear transformation is a function T that maps a vector space
V into another vector space W:

T:V—EZ=5W, V,W:vector space

V: the domain of 7 V: Domain .y |

W: the co-domain of 77 @
Cpda i) 58ai 13) kB eati Lol J g :

Two axioms of linear fransformations

R.nrng-:
(1) Tu+v)=T)+7T(v), VuveV RN ’
(2) T(cu)=cT(u), VceR
rrv—-w W: Codomain
Jilaadl Jlaal)
* Image of v under T: * Notes:
Ifv isia and wis in i sichithat (1) A linear transformation is said to be operation preserving.
T(v)=w T(u+v)=T()+T(v) T(cu)=cT(u)
Then w is called the image of v under 7. I I L
Addition Addition Scalar Scalar
7 / multiplication | | multiplication
* the range of T . . ll?u [ IIZ " l
The set of all images of vectors in V.

range(T) ={T(v)

® the pre-image of w:

Vve V} (2) A linear transformation T : ¥ — Fom a vector space into
itself is called a linear operator.

The set of all v in V such that 7(v)=w.
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: Jha

T: R2 > R?v = (v,v3) €ER?, T(w,vy)= (v, — Vs, v + 2V3)

a. Find theimageofv = (—1,2) ?
b. Find the pre-image of w = (—1,11)7?

v =(—1,2)
T(V) =T(—1,2) =(—1—2,—1+ 2(2))
= (—3,3)

T(v) =w=(—1,11)

We know T (v,,v5) = (v, — vy, 71 + 2v5) = (—1,11)

OSaiil L cilalee ) Adleadl J g
i) Sl (e

—$y —2v, = —11+—— | Multiple -1 and Add

s Adslaall 8 yomy sl

_3U2—_12
—12
VT s T //|
1.71_4‘:—1
v, =—14+4 = v, =3

So (3,4) per-image of (-1,11)

SEU1.0RG
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General Linear Transformations :

In special case where v = w, Then linear transformation T is called linear operator on vector space I/

: Jha

EXAMPLE 1 Matrix for a Linear Transformation |

Let Ty —+ 3 be the linear transformation defined by
Tpi(x)) =xp(x)
Find the matrix for T with respect to the standard bases
B= {1.11, 'Ll.z} and B = {v1. Vz.vg}
where

wy=1 mzy=x, wy =1 wz=ux, vg:zz

Solution From the given formula for 77 we obtain
Tla) =Ty ==1(1)=x
T(uz) = T(x) = (x)(x) =z~

By inspection, the coordinate vectors for Tim; ) and 7T{u3) relative to 57 are

0 0
[T(a)lg=|1]. [Tlazdlg =
0 1

Thus, the matrix for T with respect to B and B is

oo
[Tlg.g=[[T(a1) ] g’ [T(azd]g'l=|1 O
o1

Compositions Transformations :

DEFINITION 1 If T: U — V and 7>: V — W are linear transformations, then the
compeosition of Ty with Ty, denoted by 73 o T} (which is read T3 circle T,7), is the
function defined by the formula

@m(u) = Ta(Ti(u)) (1)

where u 1s a vector in U.

Tll:l.l':l T21T|1I.I:|}
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DEFINITION 1 A factorization of a square matrix A as A = LU, where L is lower tri-
angularand U isupper triangular is called an L U-decomposition (or L U-factorization)

of A.

THEOREM 9.1.1 If A is a square matrix that can be reduced to a row echelon form
U by Gaussian elimination without row interchanges, then A can be factored as
A = LU, where L is a lower triangular matrix.

LU-Decompositions :

So._lvc i{ =h

SEU1.0RG

.:Z:/
T Ux sy Solve LY==
¥
e Find a LU Decomposition :
6 —2 O = dacs Al
A=]|9 —1 1
7
270 A = LU
6 —2 (8] - 7ﬁﬁ“-—_\‘ﬁ‘_ x o) o)
U=|J]9 —1 1 < T~ i L=|x x o
3 7 5 —‘ﬁ‘-‘k‘_“ x x x
[ 1 0] 6 0 0
i1 —= o0
lo 3 1} Ra — Ra — 9R, | x x O
T - L3 7 51 I R — Ra — 3R, I e X -
6 —2 o] . TTTTImTTeees ... 6 0 0
o -2 1 Ro { “fto x o
lo {8 5l = W s 3 x o
(6 —2 O] T 6 O O]
- e 5 e 9 2. 0
o & 2l [ momosm | R ERt
6 —=2 o]l -l 6 O 0]
o ES 9 2 o0
Keo) i% Rz — (1DRa2 | 3 8 ol
6 —2 O T [6 o) 0]
— 1 - L=]|9 2 o0
Y =1° 1 2 Tl 3 1
o o) 1 e L
s o oyle —=2 o T
A=LUu=\|9 2z oll|o 1 S
3 8 1l]o o i
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: Jha

EXAMPLE 2 An LU-Decomposition <

Find an LU-decomposition of

2 62
A=]-3 -8 0
4 92
2 6 2
-3 -8 0
4 9 2
L 100 2.0 0
Step 1 gxrow | E=lo 1 ol E'=|l0o1 0
0o 0 1 0 01
1 3 1
-3 —8 0
4 9 2]
1 3 1]
-3 —B 0
4 9 2
1 0 0 1 0 O
Step 2 BxrowD+row2 E,= |3 1 0 E5' -3 1 0
o 0 1 0o 0 1
1 3 1
O | 3
4 9 2
1 00 1 00
Step 3 (=dxrow [j+rowld E=[ 0 1 0 E;l= 010
-4 0 1 4 0 1
I3 l
I 3
0 -3 =2
| A Y I ] 1 { i
Slep 4 (3 = row 20+ row 3 £y a 1 0 f;'jl 0 1 i
0 3 | 1l -3
1 k) 1
L] | 3

=
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1 0 0 1 0 0
Step 3 L xrow 3 Es=|0 1 0 Ed=[o 1 0
00 = 00 7

2 0 0 1001t o o]t o o][1 0 o
L = (o1 0ol =2 1 aflo 1 offjo 1 oo 1 O
o o0 1 oo 1(4 0o 10 == 1|0 O 7
2 00
= =3 1 0
4 -3 7
S0
2 6 2 2 o o]f1 3 1
-3 g2 0|l=|-=3 1 0flo 1 3
4 9 2 4 —3 7||p o 1

is an LI-decomposition of 4.

Example 1:
Ui U1

31 Ip= L 0f| Uy U _
6 4| T | Ly 1 0 Uy | | Laly Laln4 Uy

then, comparing the left and right hand sides row by row implies that Uy = 3, Uz = 1,
LQ]UH = —f which imp]i{-‘.s ng = -2 and Lg[U[g + UQQ = —4 which implies that UQQ = -2

Hence
1) [ 1 0f]3 1
PRI

is an LU decomposition of [ —36 _1 ]
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Example 2:

Using material from the worked example in the notes we set

3 1 6 Un s Uha
—6 0 =16 | = | L, U7, LyUps +Us Lo Uiz + Usy
o 8 -17 L U, Ly Uig 4+ Lapllpe Lg Uz + Lgallag + Usg

and comparing elements row by row we see that

E)?[] = 3, U|.2 =1, L?lﬂ = 6:
Loy = -2, Use = 2, Uy =—4
j'_,m =) ng =4 Lr.'iﬂ = -1
and it follows that
3 1 (3] 1 00 3 1 6
-6 0 -16=|-210 02 —4
0 &8 -—17 0 4 1 00 -1

is an LU/ decomposition of the given mafrix.

Example 3:

1 2 4
A=13 8 14 | =LU
2 6 13
1 00 U Ug U
where L = | Ly 1 0 and V= 0 Uy Us
Ly Ly 1 0 0 U
Multiplying out LU and setting the answer equal to A gives
U Uha Ua 12 4
LUy Ly Uy + Usy LylUpy+Uy | =13 8 14
LUy LU+ LapUsy LagUsg + LigpUsy + Usg 2 6 13

Now we have to use this to find the entries in L and 7. Fortunately this is not nearly as hard
as it might at first seem. We begin by running along the top row to see that

Un=1], U=2|, Uy =4

Now consider the second row

Lzlbrll = 3 .l.Lzl = 1 = 3 . L21 = 3

Lz]_br12+U22=8 .'.3X2+U22=8 U22=2

LU+ Upm=14 " 3xd+4+Un=14 _ |Un=2
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Notice how, at each step, the equation in hand has only one unknown in it, and other quantities
that we have already found. This pattern continues on the last row

LU, =2 Ly x1=2 | Ly=2

LopglUa+ Lapllpn =8 2% 2+ Lpx2=06 | Liw=1

LU+ Laglos + U =13 1 (2x4)+ (1 x2)+ U =13 | Uspz =1

We have shown that

[ =T %
oy GO b
I QLAY
| S
O
= OO
o I el
=T Sl

Lo b i
—_ 1

[ER—

Example 4:

Let’s see an example of LU-Decomposition without pivoting:

1 -2 3
A=|2 -5 12
0 2 -10

The first step of Gaussian elimination is to subtract 2 times the first row form the second row.
In order to record what was done, the multiplier, 2, into the place it was used to make a zero.

RZ-2ZR1 1 =2 3
—(2) -1 6
0 2 -10

There is already a zero in the lower left corner, so we don’t need to eliminate anything there.
‘We record this fact with a (0). To eliminate a@5,, we need to subtract -2 times the second row
from the third row. Recording the -2:

R3-{-Z)R2 1 —2 3‘
— @ -1 6
0 (-2) 2

Let U be the upper triangular matrix produced, and let L be the lower triangular mairix with
the records and ones on the diagonal:

1 0 0 1 =2 3
L=12 1 0|, U=|0 -1 6
0 -2 1 0 0 -10
Then,
1 0 01 -2 3 1 -2 3
Liu=12 1 0|0 =1 6 |=12 =5 12 |=A
0 -2 1l 0 =10 0 2 =10
SEU1.0RG
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Singular Value Decomposition

DEFINITION 1 If A isanm x n matrix, and if A, A5, ..., A, are the eigenvalues of
ATA, then the numbers

o =vi, o=k, .., on = Aa

are called the singular values of A.

THEOREM 9.5.1 If A is an m x n matrix, then:
(a) A and ATA have the same null space.

(b) A and ATA have the same row space.

(c) AT and ATA have the same column space.
(d) A and ATA have the same rank.

THEOREM 9.5.2 If A is an m x n matrix, then:
(a) A"A is orthogonally diagonalizable.

(b) The eigenvalues of ATA are nonnegative.

EXAMPLE 1 Singular Values -

Find the singular values of the matrix

[
[ QS e

Solution The first step is to find the eigenvalues of the matrix

S A R

=

The characteristic polynomial of 47 4is
M—ar+3=a-3)(r-1)

so the eigenvalues of 47 4 are A = 3 and A3 = 1 and the singular values of A in order of decreasing

rrl_ﬁ_ﬁ. FTE—E—I

size are
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Eigenvectors 454 cilgaiall g Eigenvalues 4s1d) adll s 7 &

Eigenvalues 4131 del) sy o5

|[A—x1]=0
s
NI —Al=0

Eigenvectors 4sidl cilgaiall sy o4l

[A=xIlx=0
¢ Find Eigenvalues and Eigenvectors of a 2x2 Matrix
_[5 -3
A = [—6 2 ]
N sy -1 :Eigenvalue 45130 Al dagy Jal ol gha
5
Identity d&laid) s | S InI—A4]=0
| = [1 Oj
o1 b 1 0 ~ 0
> = =
! [O 1] [0 PN

N s PR

5 jpaall Alalaall | pandy 3asaal) 1 4B ghuaall J gad
s Saaall (Ja zaa il
b - 5 3 Characteristic Equation
a = * - * \“\ N — N — i
@ Pl=@rd) (b0 | 64"(‘A>\—2| —0 <
L oLAN aa
50— ©®)
= — N — —
=
=x2— —5x 41018
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cpae e Gl Al Ja 45 )l
Tl 7 Lage ganag -8 5 Lagy

— 2
=x“—7xX—8 -
-8 541 Laa opanall | 5 yreall Alalalll

N N—8=0" Characteristic Equation

(N+1D)(X-8)=0
(A+1)=0 = x=-1
(N —8)=0 =x=+48

The eigenvalues are x= —1or x=8

Eigenvectors 48iall cilgadiall sy o8

INT—Alx=0
Put x= —1 - adadil) o2gd A5l Cilgaidl slayy s= —1 dadll 2l
T Yo N =

(o 25)() =)
R, - R, + Ry

=0

—bx; + 3x2=0

5 LSV & pe S G Ll S,

—6x; = —3x, ] 0 laele by sl X q o pciall anl 3 in gas

x =1

(=6)(1) = —3x;
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_____ —
P e o
xz = 2

An eigenvector (;)

Put x=8

INI—Alx =0

A AT DR
C H=-0)

Rz - Rz — 2R1
3 3 X1y _ /0
3%, +3x, =0
3x; = —3x, - 0 lele o gl X ol patall aal 8 ya gas
)C2 = _1
%, -3 o
— =
x1 —_— 1

An eigenvector (_11)

SEUL.ORG
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Eigenvalues and Eigenvectors :
nxn

Ax = ax

Characteristic Equation:
nxn

det(al —A) = 0

has nontrivial solution

: Eigenvalues and Eigenvectors J! & JYa

EXAMPLE 2 Finding Eigenvalues

In Example 1 we observed that \ = 3 15 an eigenvalue of the matrix

1 0
0 1

A= 3 0 42 2 Matrix
(B -1 T [Lzxaees

but we did not explain how we found it. Use the characteristic equation to find all eigenvalues

of this matrix.

A1 = 0 which we

stion Tt follows from K

oA o ol fall agd 3 guatall j J) i
ol Qb ) aty By 2 T ytet i
scalar J) Jia Jlswdys matrix J aaa
from which we obtain

This shows that the eigenvalues of 4 :ﬂ‘e@an Thus, in addition to the

eigenvalue \ = 3 noted in Example 1, we have discovered a second eigenvalue )\ = — 1.

SEU1.0RG
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system J) glhiy lampda Jw o2

Eigenvalues 13

whose general solution is

(verify) or in matrix form,

«—| Eigenvectors &

Thus,

l_
2

1 -l
is a basis for the eigenspace corresponding to ) — 3. We leave it ps an exercise for you to
follow the pattern of these computations and show that

i

is a basis for the eigenspace corresponding te {="— T >

: Positive Dominant Eigenvalue, A \

THEOREM 9.2.2 Let A be a symmetric n x n matrix with a positive dominant
eigenvalue i. If X is a nonzero vector in R" that is not orthogonal to the eigenspace
corresponding to A, then the sequence

AXy AX| AXg_|

X0, Xi=———"——— Xx=—— ..., =— """ 8
¢ I max(Axp) 2 max(Axy) A max(AxXg_1) )

converges to an eigenvector corresponding to i, and the sequence
AX] - X AX) + Xo AX3 + X3 AXy o+ Xy

) ) 9 o ey R S (9)
X1 - X X2 * X2 X3+X3 Xk * Xk

Kconverges o A. /
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/ The Power Method: \
DEFINITION 1 If th& distinct eigenvalues>of a matrix A are A1, A2, ..., Ax, and if
|A1| 1s larger than |As ]|, ..., ||, then A, i@dominant ei@ of A. Any
eigenvector corresponding to a dominant eigenvalue is called a dominant eigenvector
of A.
normalized power squence :
Axo Axl Axk_l
Xog,X1 = , X = e X = —/———
k O Aol T MAx LT T 1A /

EXAMPLE 2 The Power Method with Euclidean Scaling

Apply the power method with Euclidean scaling to
32 : 1
A= with =

Stop at X3 and compare the resulting approximations to the exact values of the dominant eigenvalue and

eigenvector.

Solution We will leave it for you to show that the eigenvalues of 4 are \ — { and ) = 5 and that the
eigenspace corresponding to the dominant eigenvalue \ — 5 1s the line represented by the parametric
equations x = {, ¥7 = {, which we can write in vector form as

1
,\ )

x=i
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Settingr =1/ ‘@ yields the normalized dominant eigenvector

1
o V2 __[0707106781187...
=1 1 |7 |o707106781187... (7
/2
Mow let us see what happens when we use the power method, starting with the unit vector Xg.
3 271117 [2 ~oAxg 1 [3]1. 1 [3]_[o83205
Axo = [2 3] [u_ - _2] Al T ‘{ﬁ[z]" 360555 H "[0.554?0
e = [3 2] [083205] _[360555] oo Ax; 1 [360555] [073480]
P12 3] 055470 | 332820 7 JlAx )l T 490682 | 332820 | | 067828
Ao | 3 2| [073480] _[3.56097] e Axa 1 [356097] [071274]
212 2] 0678287 | 2.50445 | 3= TAxall ~ 499616 | 350445 | 070143
e | 3 2| [071274] _[354108] __Axy 1 [354108] _ [0.70824]
72 3070143 |7 | 352076 ] T VAl T 459985 | 352976 | | 0.70597
_[3 2][o70824] [3.53666] oo Axa 1 [353666] [070733]
T2 3070597 ) | 353440 > TAxgll ~ 499999 | 353440 | 070688 |
’ - -
AD o [y |- xp = (4xy) Txy = (360555 3.32820]| V87997 | < 4.84615
| [ 0.55470 |
r ) .
AD = (x| x3 = (Axa) Txa = (356097 3.50445]| 072480 | 4 99361
\ | 0.67828
( [0.71274]
A = (A5 |- x5 = (Ax3) ez = [354108 3.52976) 12741 499974
\ | 0.70143
A = [ xg | xa= (Ax) Txa= [3 53666 353440]| 070520 [ - 4 99999
\ | 0.70597 |
A = A:;]-szr[dxﬂrxj:[E 53576 353531] g 20 1oz | = 5.00000
L L E

Thus, ' approximates the dominant eigenvalue to five decimal place accuracy and X3 approximates the

dominant eigenvector in 7 correctly to three decimal place accuracy.
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/ Diagonalization: \

B= P 1apP
+ afiada

diagonalizable matrix P is side to diagonalize A !
:property J!

Same determinant - Same Invertibility - Same Rank - Same Nullity - Same Trace - Same
kcharacteristic polynomial - Same Eigenvalues - Same Eigenspace dimension. /

: Diagonalization & J¥a

Find a matrix P that diagonalizes

Solution In Example 7 of the preceding section we found the characteristic equation of »
A=11A=2)2=0
and we found the following bases for the eigenspaces:

-1 0 -2
A=2 p1= 0 pz=|1|; A=1 p3= 1
1 0 1

There are three basis vectors in total, so the matrix

-1 0 =2
F 01 1
10 1
diagonalizes 4. As a check, you should verify that
10 2|00 =2||=10 =2 200
Plap=l 11 1ff12 1| 01 1]|=[020
-1 0 =121 0 3 10 1 001

(hiia o855 L% 43 ) lina complex number J) Complex Vector Spaces :

Z=a+l@<— A e (e o e

Z=a— bi
— | called complex conjugate
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Properties of the Complex Conjugate :

DEFINITION 1 If A is a complex matrix, then the conjugate transpose of A, denoted
by A*, is defined by _
A* = AT (1)

THEOREM 5.3.1 Ifuandv ﬂfﬂ C", and if k is a scalar, then:

(@) Uu=u

THEOREM5.3.2 IfAisanm x k campfand B is ak x n complex matrix,

r}:en:_

(@ A=A

(b) (AT)= (&)
(c) AB=AB

THEOREM 7.5.1 Ifk is a complex scalar, and if A, B, and C are complex matrices
whose sizes are such that the stated operations can be performed, then:

(@ (AH*=A

(b) (A+ B)* = A* + B*
(c) (A—B)*=A*_B*
d) (kA)* =KkA*

(e) (AB)* = B*A*
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: Jua
Find the complex conjugate :

5+3i

Answer:

5— 30 €—— | _Lag)aal)s L) il

:complex number (s J&a

FIRPTS
(3 —50) + (6 — 70)
(3—50)+(6-7i)= (3+6)+(=5+7)i=9+2i
1 gkl A Jha
(3 —50) — (6 — 70)
(3-50)—(6-7i)= (3—6)+(~5—"7)i=-3—12i
Dkl e Jha
(2 — (3 + 4i)
2-D@B+4)=2)3)+@2)@) + (-DH3) + (—)(4D)
= 6+ 8i— 3i— 4i® = 6 + 5i — 4(—1)
= 6+5i+4=10+5i
3 3 i 3 3i 3i 3i 3.
20 20 22 201 272 2
1 1 4-2i 4-2i 4 2. 2 1.
4+2i 4+2i 4-2i 16+4 20 20 10 10"
:Jha

EXAMPLE 1 Conjugate Transpose

Find the conjugate transpose _4 " of the matrix
A 1-+4 —3 0
2 -2 i
Sofution We have

= 1—3 i 0 - —7
A= and h A =47 = i i
[ 5 34 2 !_:| ENCE |i i 34 .21j|
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/ Hermitian Matrices : \
DEFINITION 2 AGSquare comple®matrix A is said to be unitary if

\A—l — A:{c (3}

and is said to bW
A* = A (4)

THEOREM 7.5.2 The eigenvalues of a Hermitian matrix are real numbers.

o /

: Jha

EXAMPLE 2 Recognizing Hermitian Matrices <

Hermitian matrices are easy to recognize because their diagonal entries are real (why?), and the
entries that are symmetrically positioned across the main diagonal are complex conjugates. Thus,
for example, we can tell by inspection that
1 i 143
A=| = =5 2-=i
1—i 2437 3

real numbers W _kd o5 a3
o_liliia ‘a&jﬂ [PAFEY)

S I PR S

/ Quadratic Forms : \

DEFINITION 1 A quadratic form x”Ax is said to be
positive definite if x"Ax > 0 forx # 0
negative definite if x'’Ax < 0 for x # 0

indefinite if x"Ax has both positive and negative values

o %
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System J) 3 e matrix J 3l Lale Jisud)
A\

2 x 2 Aadlaa s2a

2 3

2x2 4 bxy = 5y° =

3 =5

; |

3 % 3 ddalea s2a

4I|x;—2.1'|:l:3 b 8xaxy=[X1 x2 x3]

X

¥

: Jha

=

1.2 =1|[=x1
2’/? 4 (] x2
-1 443 || x3

main diagonal J) < system 3 x 3 JI <ils 13

B8N Jsa age 5535 2 o aganddi clalaall Bl g

Gl S 1

Bt e,

Solving Quadratic equations -

SEU1.0RG

: Jha

PLAW |

X249 +14=x+7(x+2)

7¢2=14
7+2=9

xX2—9%x+14=x-7)(x—-2)

(=7)* (=2) = 14

(-7 +(-2) = -

9
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x> +5x—14=(x+7)(x—2)
7e(-2)=-14
7+(-2)=+45

4

x*—5x—14=(x—-7)(x+2)
(-7)e2=—14
(-7 +2=-5
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Quadratic Forms : (_oxx 5l ) 48l ds pall e z3la

Express the quadratic forms in matrix, then the associated symmetric

3x7 + 2x5 — 4x3 — 2xgXg + 6XgXg XgXg
RN
Ao u—‘f-“uﬂb
3 —4
| A 2gaall g JY1 Caall ey |

AN Gaen il B gz gl g 58l
a_n_,hdl'hk;_u__l_)s..dfl Olsll 2asall
| AN 3 gaall y JgY1 aaall i |

| ¥ 3 ganll g J ¥ canall iny |
[ A0 S ganl s B ol ing |

| 0 2gaally N il iny |

| AN 3 gall g SAEN Cirall g |

Conjugate transpose

If A is a complex matrix, then the conjugate transpose of A denoted

by A*, is defined by

A*:AT

Find the conjugate transpose A" of the matrix
_ [1 +i —i 0]
3-2i i
N

A =AT o s
SR U s
o 23 -
_ 1—1i i 0
A= 2 3+2i fi]

A 3 panll 4 G Chiall SIS g oY) 2 pendl E oY) cheall Jead ey AT Agiiall 48 gheadll Joas a5 -

1—-i 2
1_4T=[ i 3420
0 —i

1—1i 2
A= i 3+2i
0 —i
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Unitary Matrices :

Definition of a A complex matrix 4 is unitary if
Unitary Matrix 4-1 = 4%
AA* = A"A =1
Show that the matrix A = l"_fi lﬁ is unitary.
Vi V3
AA* =1
A= AT
1 _1+i
4-| V3 J3
1-i 1
v3 V3
1 1-i
AT — \/§ '\/§
_1+i0 1
l V3 3
gV e
AL = 1\/Ei iﬁ ‘ ﬁi \/15
vz vll v 3
HE D) @E) D@
@)E@ECEE BEH+EGE
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Find the maximum values of P = 3x + 2y subject to
x + 4y < 20
2x + 3y < 30

x=>0,y>0

Solution:

1. Graph the feasible region.

A- Start with the line x + 4y = 20.

i- Find the intercepts by lettingx = 0and y = 0: (0, 5) and (20, 0).

ii- Test the origin: (0) + 4(0) < 20. This is true, so we keep the half-plane containing the origin.
B- Now the line 2x + 3y = 30.

i- Find the intercepts (0, 10) and (15, 0).

ii- Test the origin 2(0) + 3(0) < 30t is true.

2. Find the corner points.

We find (0,0) is one corner.
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Also, (0,5) is the corner from the y-intercept of the first equation.

The corner (15,0) is from the second equation.

We can find the fourth corner which is the intersection of the two lines using intersect on the calculator or

solving the two equations:

x + 4y =20

2x + 3y = 30

by elimination, we get (x,y) = (12, 2).
3. Evaluate the objective function at each vertex.

Put the vertices into a table:

Point P=3x+2y
(0,0) 0 Min

(0,5) 10

(15, 0) 45 Max

(12, 2) 40

4. The region is bounded; therefore a max and a min exist. The minimum is at the point (0,0) with a value of
P=0 . The maximum is at the point (15,0) and the value is P=45.
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2. Select one of the alternatives from the following questions as your answer.
(a) The characteristic equation of the matrix |4 = [ ﬁ 1 ] is
A. X2 —7T2—10=0
B. 224+72—10=0 .
© A2 —7TA+10 =0 | Jsa¥ida: Bgiad b5 ed diadl ale Jpudl ine |
D. 2 4+724+10=0 ! _ il o eigenvalue o 58 (e H

Al —Al=0 :

A2 —4)=324+12-2=0" |

A2—=71+10=0 :

3548 Jdc 8 je A4 siadl o DU

ol
\
(b) The eigenvalues of the matrix A%, where A = _are
A {1.4,-3}
B. {1,12,-9) s siall Bl SEigenvalue A5l el Sy
C. {1,64,27) oY) g sasa) Hhadll 36 il gf (g 5lal)

©) 16127}

(¢) Which of the following sets ol[ve('tors are ()r'(hogouallwith respect to the Euclidean
inner product on R2:

@ (1,2), (-2,1) i (5 g alariall 4l dad
B. (3.4).(2,6) u-v=0
C. (6,9).(5,2) u-v=1(-2)+(2)(1)
D. (0.4), (0.6 =-2+2=0
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Ll g gl
LN W

2. Select one of the alternatives from the following questions as your answer.

(a) If T : R? — R? be a linear operator given by T'(z,y) = (2z — y, —4z + 2y), then
which of the following vector is in ker(T')?

A, (1:4) ker(T)=0 2

B. (2,1) O sladia pilalaall

C. (1,1/2) aali e (o gy rilalaall aaf 22l
@ (1/2,1) Gl b Lt

(b) If T: W — V be a linear transformation, then ker(7T') and range(T') are subspaces
of vector space(s)

A V.
B. W.
@ W and V respectively.
D. V and W respectively.

diaa) Jladll

(¢) Which of the following sets of eigenvalues have a dominant eigenvalue:
A. {8,-7,—6,8}

®) {-5,-p.2,4}
C. {-3,-2,-1,,0,1,2,3} A ol i 5 Sy Tl Al

D. None of the above
)8 s =5 pdidlhadad I B <Y

Of o (5 AN Al Lgi s o3 e ganall b dillas dad S0 330
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(dy BB = | 4 0 | be a matrix where B = AT A, then the singular values of A

0 0
are

A. {4,9, 0}
B. {0, 9, 16}
@ {4,9.16}
D. {2,3,4}

(e) In linear programming, objective function and objective constraints are
A. solved.
B. quadratic.
. adjacent.

C
@ linear.

(f) The feasible region
A. is defined by the objective function.
is an area bounded by the collective constraints and represents all per-
missible combinations of the decision variables.

C. represents all values of each constraint.
D. may range over all positive or negative values of only one decision variable.

QALHCM‘ Sile ganal JS Jiad g 300aal) Jalail) (03 ) pasall dakat ng_%
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Consider the basis S = {V1,V2} for R? \where v1 = {L,1} and V2 = {10} and let
T: R? — RZbe the linear operator for whichT (v1) = (1,2) and T(v;) = (3,0) .

Find a formula forT (X1, X2) and use it to find T(2,—4).

Solution :

, T(x1,%7)
e Find a formula for ?

(x1,%2) = €103 + €1
=¢,(1,1) + ¢,(1,0)
= (c1,¢1) +(¢2,0)
Gt =x; Dx,+c,=x;, D =X —X,
€1 =X
(x1,%3) = %5(1,1) + %1 — x(1,0)
T(x1, %) = x%,T(L1) + (x; = x3)T(1,0)
= (x2)(1,2) + (x; — x,)(3,0)
= (x,,2x,) + (3x; — 3x,,0)

= (x, +3x; —3x, , 2x,+0)

T(xy,%,) = (3%, — 2xz»2xz)7 AL lagy Alladl b iy seily
find T(2,—4)?

T2 -9 =32 -@ED , 2(-4)

=(12, -8)
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A= [ 2 —1]
. Find the singular values of -1 21

Solution:

A" = [—21 _21]

ATA = [—21 _21] [—21 _21] - [—54 _54]

Al —ATA| =0

A=-5 -4
-4 A1-5

A=5A=5) -9 =0

=0

22—101+9=0
A-1)(A-9)=0

A=1 A,=9

0'1 — \/A_l = \/T = 1
Are not the Signaler values.
0'1 = ‘\/A_l — ‘\/6 = 3
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By : Atheel Exercises Chapter (6) — week (10)

Find least squares solution »

System (shaxadll I:> X — Xy =4
3x1 + ZXZ = 1
_2x1 + 4'x2 =3

> A s Sysiin ia

2 2

] <] b= Z]

q]* (3] e
E [:)
I;k ~3J1 b‘& [ \o ]

«034:»1!10)»

i -

/)—\.9

(2)(\) (Z I L
@x2) - (2x1) = (2“)
u:e)9g/)'\)‘ L)\_')lkﬂ} <_/Y)L_a.£‘ .A:D\g_\ O o4
X — 2%, = | = FPok
-3 X 4 21 =
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2R = 1
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g fFind evver 22

LH b"A K “ l ‘&Q.,Q._D(’;)J‘Ln) uy\?us SYey )‘L__S\i! 4

e s 8 % s
I NWeEnorm A2 )5@ ey eVov vyecter s 2 antead)) 5923V & F

9‘/‘ -

leasnl = J f 2= Fop B0 f g P o 4.5

g iy = URLE d

.Q;)\,‘M.)\ﬁ}k,é_‘(/)l/\sg‘.—)ib R |
\ ) .
e Bt Bl ! g
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1
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* et (AT - A) =0 o5 G -0 A
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|
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as ([2 2] - [;3]‘) B
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Hessah Aldayel- SEU-MATH251
Chapter 1 (systems of liner)

True-False Exercises

(1) A linear system whose equations are all homogeneous must be consistent. True
(2) Multiplying a linear equation through by zero is an acceptable elementary row operation. False
(3) The linear system
x—y=3
2x—-2y=k
cannot have a unique solution, regardless of the value of k. True

(4) A single linear equation with two or more unknowns must always have infinitely many solutions.
True

(5) If the number of equations in a linear system exceeds the number of unknowns, then the system
must be inconsistent. False

(6) If each equation in a consistent linear system is multiplied through by a constant c, then all
solutions to the new system can be obtained by multiplying solutions from the original system by c.
False

(7) Elementary row operations permit one equation in a linear system to be subtracted from another.
True

(8) The linear system with corresponding augmented matrix is consistent. False
(9) If a matrix is in reduced row echelon form, then it is also in row echelon form. True

(10) If an elementary row operation is applied to a matrix that is in row echelon form, the resulting
matrix will still be in row echelon form. False

(11) Every matrix has a unique row echelon form. False

(12) A homogeneous linear system in n unknowns whose corresponding augmented matrix has a
reduced row echelon form with 7 leading 1's has n — 7 free variables. True

(13) All leading 1's in a matrix in row echelon form must occur in different columns. True

(14) If every column of a matrix in row echelon form has a leading 1 then all entries that are not
leading 1's are zero. False

(15) If a homogeneous linear system of 12 equations in 7 unknowns has a corresponding augmented
matrix with a reduced row echelon form containing n leading 1's, then the linear system has only the
trivial solution. True

(16) If the reduced row echelon form of the augmented matrix for a linear system has a row of zeros,
then the system must have infinitely many solutions. False
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(17) If a linear system has more unknowns than equations, then it must have infinitely many
solutions. False

(18) The matrix }} ?) z has no main diagonal. True
(19) An m x n matrix has m column vectors and nn row vectors. False
(20) If A and B 2X2 are matrices, then AB = BA . False

(21) The ith row vector of a matrix product AB can be computed by multiplying 4 by the ith row
vector of B. False

(22) For every matrix 4, it is true that (AT)T = A. True

(23) If A and B are square matrices of the same order, then tr(AB) = tr(A)tr(B) . False
(24) If A and B are square matrices of the same order, then (AB)" = A"B" . False

(25) For every square matrix A, it is true that tr(A”) = tr(A) . True

(26) If A is a 6X4 matrix and B is an m x n_matrix such that B'A” is 2X6 a matrix, then m = 4 and
n=2

True

(27) If Ais an n x n matrix and c is a scalar, then t1(cA) = ctr (A) . True

(28) If 4, B, and C are matrices of the same size suchthat A — C = B — C, then A = B. True
(29) If 4, B, and C are square matrices of the same order such that AC = BC ,then A = B . False
(30) If AB + BA is defined, then 4 and B are square matrices of the same size. True

(31) If B has a column of zeros, then so does AB if this product is defined. True

(32) If B has a column of zeros, then so does BA if this product is defined. False

(33) Two n x n matrices, 4 and B, are inverses of one another if and only if AB = BA = 0 False

(34) For all square matrices A and B of the same size, it is true that (A + B)? = A% + 2AB + B? .
False

(35) For all square matrices A and B of the same size, it is true that A> — B> = (A — B)(A + B). False
(36) If A and B are invertible matrices of the same size, then AB is invertible and (AB) ' = A 'B~!
False

(37) If A and B are matrices such that AB is defined, then it is true that (AB)" = AT B”. False
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(38) The matrix

Zab

Acd

is invertible if and only if ad — bc = 0. True
(39) If A and B are matrices of the same size and k is a constant, then (kA + B)" = kA" + BT . True
(40) If A is an invertible matrix, then so is A .True

(41) ¥ p(x) = ag + a;x + ayx* + . +a,, x™ and I is an identity matrix, then p(I) = a, + a, +
a, +--..a,, False

(42) A square matrix containing a row or column of zeros cannot be invertible. True

(43) The sum of two invertible matrices of the same size must be invertible. False

(44) The product of two elementary matrices of the same size must be an elementary matrix. False
(45) Every elementary matrix is invertible. True

(46) If A and B are row equivalent, and if B and C are row equivalent, then 4 and C are row
equivalent. True

(47) If A is an n x n matrix that is not invertible, then the linear system Ax = 0 has infinitely many
solutions. True

(48) If A is an n x n matrix that is not invertible, then the matrix obtained by interchanging two rows
of A cannot be invertible. True

(49) If A is invertible and a multiple of the first row of 4 is added to the second row, then the resulting
matrix is invertible. True

(50) An expression of the invertible matrix 4 as a product of elementary matrices is unique. False
(51) It is impossible for a linear system of linear equations to have exactly two solutions. True

(52) If the linear system has a unique solution, then the linear system also must have a unique
solution. True

(53) If A and B are n x n matrices such that AB = I, then BA = I ,True

(54) If A and B are row equivalent matrices, then the linear systems Ax = 0 and Bx = 0 have the
same solution set. True

(55) If Aisan n x n matrix and S is an n x n invertible matrix, then if x is a solution to the linear
system (S 1AS)x = b, then Sx is a solution to the linear system Ay = Sb. True

(56) Let A be an n x n matrix. The linear system Ax = 4x has a unique solution if and only if
A — 4 {is an invertible matrix. True

(57) Let A and B be n x n matrices. If A or B (or both) are not invertible, then neither is AB. True
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(58) The transpose of a diagonal matrix is a diagonal matrix. True
(59) The transpose of an upper triangular matrix is an upper triangular matrix. False
(60) The sum of an upper triangular matrix and a lower triangular matrix is a diagonal matrix. False

(61) All entries of a symmetric matrix are determined by the entries occurring on and above the main
diagonal. True

(62) All entries of an upper triangular matrix are determined by the entries occurring on and above
the main diagonal. True

(63) The inverse of an invertible lower triangular matrix is an upper triangular matrix. False

(64) A diagonal matrix is invertible if and only if all of its diagonal entries are positive. False

(65) The sum of a diagonal matrix and a lower triangular matrix is a lower triangular matrix. True
(66) A matrix that is both symmetric and upper triangular must be a diagonal matrix. True

(67) If A and B are n x n matrices such that 4 + B is symmetric, then A and B are symmetric. False

(68) If A and B are n x n matrices such that A + B is upper triangular, then 4 and B are upper
triangular. False

(69) If A is a symmetric matrix, then 4 is a symmetric matrix. False

(70) If kA is a symmetric matrix for some k + 0, then A is a symmetric matrix. True

a b

(71) The determinant of the 2X2 c d matrix is ad + bc False

(72) Two square matrices A and B can have the same determinant only if they are the same size.
False

(73) The minor M;; is the same as the cofactor C;; if and onlyifi + j is even. True
(74) If A'is a 3X3 symmetric matrix, then C;; = C;; for all i and j. True

(75) The value of a cofactor expansion of a matrix 4 is independent of the row or column chosen for
the expansion.True

(76) The determinant of a lower triangular matrix is the sum of the entries along its main diagonal.
False

(77) For every square matrix A and every scalar ¢, we have det(cA) = cdet(A). False
(78) For all square matrices A and B, we have det(A + B) = c det (B) . False
(79) For every 2X2 matrix 4, we have det(A?) = (det(A))?. True

(80) If A is a 4 x 4 matrix and B is obtained from A by interchanging the first two rows and then
interchanging the last two rows, then det(B) = det(A) . True
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(81) If Ais a 3x3 matrix and B is obtained from A by multiplying the first column by 4 and multiplying
the third column by Z ,then det(B) = 3det(A). True

(82) If Ais a 3x3 matrix and B is obtained from A by adding 5 times the first row to each of the
second and third rows, then det(B) = 25det(A) . False

(83) If Ais an n x x matrix and B is obtained from A by multiplying each row of 4 by its row number,

then det(B) = n(n2+1) det (A) False

(84) If A is a square matrix with two identical columns, then det(A) = 0. True

(85) If the sum of the second and fourth row vectors of a 6x6 matrix 4 is equal to the last row vector,
thendet(A) = 0. True

(86) If Ais a 3x3 matrix, then det (2A) = 2 det (A) .False
(87) If A and B are square matrices of the same size such that det(A4) = det(B), then
det (A+ B) = 2det(A) .False

(88) If A and B are square matrices of the same size and A is invertible, then det(A 'BA) =
det(B) True

(89) A square matrix A is invertible if and only if det(A) = 0. False

(90) The matrix of cofactors of A is precisely [adj(A)] T True

(91) For every . x n matrix A, we have A .adj(A) = (det (A))I,, True

(92) If A is a square matrix and the linear system Ax = 0 has multiple solutions for x, Then
det(A) = 0.True

(93) If A is an n x n matrix and there exists an 2 x 1 matrix b such that the linear system Ax = b has
no solutions, then the reduced row echelon form of 4 cannot be I,,. True

(94) If E is an elementary matrix, then Ex = 0 has only the trivial solution. True

(95) If A is an invertible matrix, then the linear system Ax = 0 has only the trivial solution if and only
if the linear system A~ 'x = 0 has only the trivial solution. True

(96) If A is invertible, then adj(A) must also be invertible. True

(97) If A has a row of zeros, then so does adj(A) . False

(98) Two equivalent vectors must have the same initial point. False

(99) The vectors (a,b) and (a, b, 0) are equivalent. False

(100) If k is a scalar and v is a vector, then v and kv are parallel if and only if k > 0. False
(101) The vectors v + (u + w) and (w + v) + u are the same. True

(102)fu+v = u+w ,thenv =w. True
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(103) If a and b are scalars such that au + bv = 0, then u and v are parallel vectors. False
(104) Collinear vectors with the same length are equal. False

(105)If (a,b,c) + (x,y,z) = (x,y,z), then (a, b, c) must be the zero vector. True

(106) If kK and m are scalars and u and v are vectors, then (k + m)(u + v) = ku + mv False

(107) If the vectors v and w are given, then the vector equation 3(2v — x) = 5x — 4w + v can be
solved for x. True

(108) The linear combinations a,v; + a,v,and byv; + bV, can only be equal if a; = b; and
a, = b, . False
(109) If each component of a vector in R? is doubled, the norm of that vector is doubled. True

(110) In R? , the vectors of norm 5 whose initial points are at the origin have terminal points lying on
a circle of radius 5 centered at the origin. True

(111) Every vector in R™ has a positive norm. False
(112) If v is a nonzero vector in R™ , there are exactly two unit vectors that are parallel to v. True
(113) If ||u|| = 2,||v|| =1, and u.v = 1, then the angle between 1 and v is 7t/3 radians. True

(114) The expressions (u.v) + w and u. (v + w) are both meaningful and equal to each other.
False

(115)fu.v =u.w ,then v = w. False
(116) If u.v = 0, then eitheru = 0 orv = 0. False

(117) In R? , if u lies in the first quadrant and v lies in the third quadrant, then 1 . v cannot be
positive. True

(118) For all vectors u, v, and w in R, we have ||u +v + w|| < ||u|| + ||v|| + ||w|| True
(119) The vectors (3,—1,2) and (0,0, 0) are orthogonal. True

(120) If u and v are orthogonal vectors, then for all nonzero scalars k and m, ku and mv are
orthogonal vectors. True

(121) The orthogonal projection of u along a is perpendicular to the vector component of
u orthogonal to a True

(122) If a and b are orthogonal vectors, then for every nonzero vector i, we have
proj,(proj,(u) = 0 True

(123) If a and u nonzero vectors , then proj,(proj,(u)) = proj,(u) True
(124) the relationship holds for some nonzero vector a, then u = v . False

(125) For all vectors u and v, it is true that ||[u + v|| = ||u|| + ||v]|| False
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(126) The vector equation of a line can be determined from any point lying on the line and a nonzero
vector parallel to the line. True

(127) The vector equation of a plane can be determined from any point lying in the plane and a
nonzero vector parallel to the plane. False

(128) The points lying on a line through the origin in R?R* or R3 are all scalar multiples of any nonzero
vector on the line. True

(129) All solution vectors of the linear system Ax = b are orthogonal to the row vectors of the matrix
Aifandonlyif b = 0. True

(130) The general solution of the nonhomogeneous linear system Ax = b can be obtained by adding
b to the general solution of the homogeneous linear system Ax = 0 . False

(131) If x1 and x,are two solutions of the nonhomogeneous linear system Ax = b, then x; — xyis a
solution of the corresponding homogeneous linear system. True

(132) The cross product of two nonzero vectors 1 and v is a nonzero vector if and only if u and v are
not parallel. True

(133) 4 normal vector to a plane can be obtained by taking the cross product of two nonzero and
noncollinear vectors lying in the plane. True

(134) The scalar triple product of u, v, and w determines a vector whose length is equal to the volume
of the parallelepiped determined by u, v, and w. False

(135) If u and v are vectors in 3 — space, then ||v x u||is equal to the area of the parallelogram
determined by u and v. True

(136) For all vectors u, v, and w in 3 — space, the vectors (1 x v) x w and u x (v x w) are the same.
False

(137) If u, v, and w are vectors in R® , where 1 is nonzeroand u x v = ux w, then v = w . False
(138) A vector is a directed line segment (an arrow). False

(139) A vector is an n — tuple of real numbers. False

(140) A vector is any element of a vector space. True

(141) There is a vector space consisting of exactly two distinct vectors. False

(142) The set of polynomials with degree exactly 1 is a vector space under the operations defined in
Exercise 12. False

(143) Every subspace of a vector space is itself a vector space. True
(144) Every vector space is a subspace of itself. True
(145) Every subset of a vector space I/ that contains the zero vector in V is a subspace of V. False

(146) The set R! is a subspace of R> False
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(147) The solution set of a consistent linear system Ax = b of m equations in 7 unknowns is a
subspace of R™. False

(148) The span of any finite set of vectors in a vector space is closed under addition and scalar
multiplication.True

(149) The intersection of any two subspaces of a vector space I/ is a subspace of /. True
(150) The union of any two subspaces of a vector space I/ is a subspace of I/. False
(151) Two subsets of a vector space I/ that span the same subspace of I/ must be equal. False

(152) The set of upper triangular n x n matrices is a subspace of the vector space of all n x n matrices.
True

(153) The polynomials x — 1,(x — 1)%,and (x — 1) ®span P . False
(154) A set containing a single vector is linearly independent. False

(155) The set of vectors {v, kv } is linearly dependent for every scalar k. True
(156) Every linearly dependent set contains the zero vector. False

(157) If the set of vectors {v, v,, v3} is linearly independent, then is also linearly independent for
every nonzero scalar k. True

(158) If v4, ....., v, are linearly dependent nonzero vectors, then at least one vector v, is a unique
linear combination of v, ... ... , Vi_1 True

(159) The set of 2x2 matrices that contain exactly two 1's and two 0's is a linearly independent set in
M, . False

(160) The three polynomials (x — 1)(x + 2), (x + 2) and x(x — 1) are linearly independent. True
(161) The functions f; and f, are linearly dependent if there is a real number x so that
kif1 (x) + kyf, (x) = 0 for some scalars k; and k,. False
(162) fV = span {vq, ....,v,}, then {v,, ....., v, } is a basis for V. False
(163) Every linearly independent subset of a vector space V is a basis for /. False

(164) If {v{, Vo, ... ... , U, } is a basis for a vector space I, then every vector in I/ can be expressed as a
linear combination of v, v, ... ... , U True

(165) The coordinate vector of a vector x in R™ relative to the standard basis for R™ is x. True
(166) Every basis of P , contains at least one polynomial of degree 3 or less. False

(167) The zero vector space has dimension zero. True

(168) There is a set of 17 linearly independent vectors in R'7 . True

(169) There is a set of 11 vectors that span R'7 . False
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(170) Every linearly independent set of five vectors in R° is a basis for R°. True

(171) Every set of five vectors that spans R is a basis for R . True

(172) Every set of vectors that spans R" contains a basis for R™. True

(173) Every linearly independent set of vectors in R" is contained in some basis for R™ . True
(174) There is a basis for M, consisting of invertible matrices. True

(175) If A has size n x nand In, 4, A%, ...., A™* are distinct matrices, then {I", 4, A%, ... A"} is linearly
dependent. True

(176) There are at least two distinct three-dimensional subspaces of p? . False

(177) If B, and B, are bases for a vector space I/, then there exists a transition matrix from B, to B, .
True

(178) Transition matrices are invertible. True
(179) If B is a basis for a vector space R", then P B — B is the identity matrix. True

(180) If PB,-» B,is a diagonal matrix, then each vector in is a scalar multiple of some vectorin B .
True

(181) If each vector in B, is a scalar multiple of some vector in B, ,then P B; — B, is a diagonal
matrix. False

(182) If A is a square matrix, then A = PB, — B, for some bases B, andB, for R" . False

(183) The span of v4, ...., v,, is the column space of the matrix whose column vectors are v4, ..., v,,.
True

(184) The column space of a matrix A is the set of solutions of Ax = b . False

(185) If R is the reduced row echelon form of 4, then those column vectors of R that contain the
leading 1's form a basis for the column space of A. False

(186) The set of nonzero row vectors of a matrix A is a basis for the row space of A. False

(187) If A and B are n x n matrices that have the same row space, then 4 and B have the same
column space. False

(188) If E is an m x m elementary matrix and A is an m x n matrix, then the null space of E A is the
same as the null space of A. True

(189) If E is an m x m elementary matrix and A is an m x n matrix, then the row space of E A is the
same as the row space of A. True

(190) If E is an m x m elementary matrix and A4 is an m x n matrix, then the column space of E A is
the same as the column space of A. False

(191) The system Ax = b is inconsistent if and only if is not in the column space of A. True
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(192) There is an invertible matrix A and a singular matrix B such that the row spaces of A and B are
the same. False

(193) Either the row vectors or the column vectors of a square matrix are linearly independent. False

(194) A matrix with linearly independent row vectors and linearly independent column vectors is
square. True

(195) The nullity of a nonzero m x n matrix is at most m. False

(196) Adding one additional column to a matrix increases its rank by one. False

(197) The nullity of a square matrix with linearly dependent rows is at least one. True

(198) If A is square and Ax = b is inconsistent for some vector , then the nullity of 4 is zero. False

(199) If a matrix A has more rows than columns, then the dimension of the row space is greater than
the dimension of the column space.False

(200) If rank (A") = rank (A) , then A is square. False

(201) There is no 3x3 matrix whose row space and null space are both lines in 3 — space. True
(202) If A is a 2x3 matrix, then the domain of the transformation TA is R” . False

(203) If A is an m x n matrix, then the codomain of the transformation 7, is R" . False

(204) If T:R™ — R™and T(0) = 0, then T is a matrix transformation. False

(205)IfT:R™ — R™and T(c x + cy) = ¢, T(x) + c;T(y) forall scalars c; and ¢, and all vectors
x and yinR™, then T is a matrix transformation. True

(206) There is only one matrix transformation 7: R — R™such that T(—x) = —T(x) for every
vector x in R" . False

(207) There is only one matrix transformation 7: R — R™suchthat T(x + y) = T(x — y) forall
vectors xand y in R™. True

(208) If is a nonzero vector in Rn, then T(x) = x + b is a matrix operator on Rn . False

1

2
1

2

(209) The matrix is the standard matrix for a rotation . False

N[= DN =

(210) The standard matrices of the reflections about the coordinate axes in 2 — space have the

form ¢ 0 , Where a = +1 True
0 —a

(211) IfT: R™ — R™ is a one-to-one matrix transformation, then there are no distinct vectors
x and y for which T(x —y) = 0 True

(212) If T: R™ — R™is a matrix transformation and m > n, then T is one-to-one. False
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(213) If T: R™ — R™is a matrix transformation and m = n , then T is one-to-one. False
(214) f T: R™ — R™is a matrix transformation and m < n, then T is one-to-one. False
(215) The image of the unit square under a one-to-one matrix operator is a square. False

(216) A 2x2 invertible matrix operator has the geometric effect of a succession of shears,
compressions, expansions, and reflections. True

(217) The image of a line under a one-to-one matrix operator is a line. True

(218) Every reflection operator on R? is its own inverse. True

(219) The matrix 1

1 1 represents reflection about a line. False

(220) The matrix 1

2 1 represents a shear.False

(221) The matrix i (3) represents an expansion .True

(222) If A is a square matrix and Ax = Ax for some nonzero scalar 4, then x is an eigenvector of A.
False

(223) If A is an eigenvalue of a matrix 4, then the linear system(Al - A)x = 0 has only the trivial
solution. False

(224) If the characteristic polynomial of a matrix Ais p(1) = A% + 1,then A is invertible. True
p

(225) If A is an eigenvalue of a matrix A, then the eigenspace of A corresponding to 4 is the set of
eigenvectors of A corresponding to 4. False

(226) If 0 is an eigenvalue of a matrix 4, then A” is singular. True

(227) The eigenvalues of a matrix A are the same as the eigenvalues of the reduced row echelon form
of A. False

(228) If 0 is an eigenvalue of a matrix 4, then the set of columns of A is linearly independent. False
(229) Every square matrix is similar to itself. True

(230) If A, B, and C are matrices for which A is similar to B and B is similar to C, then A is similar to
C.True

(231) If A and B are similar invertible matrices, then A~ 'and B~ are similar. True

(232) If A is diagonalizable, then there is a unique matrix P such that P~1APis diagonal. False
(233) If A is diagonalizable and invertible, then A~ 'is diagonalizable. True

(234) If A is diagonalizable, then A7 is diagonalizable. True

(235) If there is a basis R™ for consisting of eigenvectors of an n x n matrix 4, then A4 is
diagonalizable. True
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(236) If every eigenvalue of a matrix A has algebraic multiplicity 1, then A is diagonalizable. True
(237) There is a real 5x5 matrix with no real eigenvalues. False

(238) The eigenvalues of a 2x2 complex matrix are the solutions of the equation

A% — tr(A)A + det(A) = 0 True

(239) Matrices that have the same complex eigenvalues with the same algebraic multiplicities have
the same trace. False

(240) If A is a complex eigenvalue of a real matrix 4 with a corresponding complex eigenvector v,
then 4 is a complex eigenvalue of 4 and v is a complex eigenvector of A corresponding to 4 . True

(241) Every eigenvalue of a complex symmetric matrix is real. False

(242) If a 2x2 real matrix A has complex eigenvalues and x is a vector in R? , then the vectors
xo,Axy,A%xq , ..., A™x,lie on an ellipse. False

(243) The dot product on R?is an example of a weighted inner product. True

(244) The inner product of two vectors cannot be a negative real number. False

(245) (w.v + w) = (v.u) + (w.u) True

(246)(ku. kv) = k2%(u.v). True

(247) If (u.v) = 0,thenu=0orv = 0. False

(248) If ||v||> = 0,thenv = 0. True

(249) If A is an 1. x n matrix, then (u.v) = Au - Av defines an inner product on R" . False
(250) If u is orthogonal to every vector of a subspace W, then u = 0. False

(251) If u is a vector in both W and W', thenu = 0. True

(252) If u and v are vectors in WL , then u+visin W.L. True

(253) If u is a vector in W' and k is a real number, then ku isin W'. True

(254) If u and v are orthogonal, then |(u.v)| = [|u]|||v]||. False

(255) If u and v are orthogonal, then ||u + v|| = ||ul|| + ||v|| . False

(256) If A is an m x n matrix, then A" A is a square matrix. True

(257) If AT A is invertible, then 4 is invertible. False

(258) If A is invertible, then A”A is invertible. True

(259) If Ax = b is a consistent linear system, then A”Ax = A”b is also consistent. True

(260) If Ax = b is an inconsistent linear system, then A’ Ax = A”bis also inconsistent. False
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(261) Every linear system has a least squares solution. True
(262) Every linear system has a unique least squares solution. False

(263) If A is an m x n matrix with linearly independent columns and b is in R™ , then Ax = b has a
unique least squares solution. True

1 0
(264)The matrix 0 1 isorthogonal . False
0 0

(265) The matrix ; _1 is orthogonal. False

(266) An m x n_matrix A is orthogonal if A”A = I. False

(267) A square matrix whose columns form an orthogonal set is orthogonal. False

(268) Every orthogonal matrix is invertible. True

(269) If A is an orthogonal matrix, then A” is orthogonal and (det A)* = 1. True

(270) Every eigenvalue of an orthogonal matrix has absolute value 1. True

(271) If A'is a square matrix and ||Au|| = 1 for all unit vectors u, then A is orthogonal. True
(272) If A is a square matrix, then AA” and A" A are orthogonally diagonalizable. True
(273) If v; and v, are eigenvectors from distinct eigenspaces of a symmetric matrix, then
[lv1 + va|? = [[v1]|* + |[v2]| 2. True

(274) Every orthogonal matrix is orthogonally diagonalizable. False

(275) If A is both invertible and orthogonally diagonalizable, then A~ is orthogonally
diagonalizable. True

(276) Every eigenvalue of an orthogonal matrix has absolute value 1. True

(277) If A is an n x n orthogonally diagonalizable matrix, then there exists an orthonormal basis for
R™ consisting of eigenvectors of A. False

(278) If A is orthogonally diagonalizable, then A has real eigenvalues. True

(279) A symmetric matrix with positive definite eigenvalues is positive definite. True

(280) x% — ; — g + 4x1x,x3 is a quadratic form . False

(281) (x; — 3x,)?is a quadratic form. True
(282) A positive definite matrix is invertible. True
(283) A symmetric matrix is either positive definite, negative definite, or indefinite. False

(284) If A is positive definite, then —A is negative definite. True
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(285) X.X is a quadratic form for all x in R™ . True
(286) If x" Ax is a positive definite quadratic form, then sois x” A~ 1x. True

(287) If A is a matrix with only positive eigenvalues, then x” Ax is a positive definite quadratic form.
False

(288) If A is a 2x2 symmetric matrix with positive entries and det(A) > 0, then A is positive
definite. True

(289) If x" Ax is a quadratic form with no cross product terms, then A is a diagonal matrix. False

(290) If x" Ax is a positive definitequadratic form in two variables and ¢ + 0, then the graph of the
equation x” Ax = c is an ellipse. False

(291) The matrix (l) é is Hermitian . False

sl
5l-

(292)The matrix 0 S
i

V2

is unitary . False

=~ <=
Sl =Gl =~ &l

(293) The conjugate transpose of a unitary matrix is unitary. True
(294) Every unitarily diagonalizable matrix is Hermitian. False

(295) A positive integer power of a skew-Hermitian matrix is skew-Hermitian. False

(296) f T (cqvq + cyvy) = ¢1T(vy) + c,T(v,) for all vectors v; and v, in V and all scalars c¢; and

c,, then T is a linear transformation. True

(297) If v is a nonzero vector in V, then there is exactly one linear transformation 7: V' — W such th
T(—v) = —T(v) False

(298) There is exactly one linear transformation T: V — W for which T(u + v) = T(u — v) for all
vectors uand vin V. True

(299) If v, is a nonzero vector in V/, then the formula T (v) = v + v defines a linear operator on I.
False

(300) The kernel of a linear transformation is a vector space. True
(301) The range of a linear transformation is a vector space. True
(302) IfT: P, — M, is a linear transformation, then the nullity of T is 3. False

(303) The function T: M,, — R defined by T(A) = det A is a linear transformation. False

(304) The linear transformation T: M,, — M, defined by T(A4) :; 2 A hasrank 1. False

(305) The vector spaces R* and P, are isomorphic. False
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(306) If the kernel of a linear transformation T: P; — P35 is {0}, then T is an isomorphism. True
(307) Every linear transformation from M, to Pyis an isomorphism. False
(308) There is a subspace of M that is isomorphic to R*. True

(309) Thereis a 2x2 matrix P such that T: M,, — M,, defined by T(A) = AP — PA isan
isomorphism. False

(310) There is a linear transformation T: P, — P, such that the kernel of T is isomorphic to the range
of T False

(311) The composition of two linear transformations is also a linear transformation. True

(312)If T{:V — V and T,:V — V are any two linear operators,then T; o T, = T, o T, False
(313) The inverse of a linear transformation is a linear transformation. False

(314) If a linear transformation T has an inverse, then the kernel of T is the zero subspace. True

(315) If T: R? — R? is the orthogonal projection onto the x-axis, then 7~ ':R?> — R? maps each point
on the x-axis onto a line that is perpendicular to the x-axis. False

(316)IfT{:U — V and T,: U — V are linear transformations, and if T' is not one-to one, then
neitheris T, o T; True

4
3 ’

(317) If the matrix of a linear transformation T: V — W relative to some bases of I and W is 3

then there is a nonzero vector x in I/ such that T(x) = 2x . False

(318) If the matrix of a linear transformation T: V — W relative to bases for VV and W is , then

2 4
0 3
there is a nonzero vector x in I/ such that T'(x) = 4x . False

(319) If the matrix of a linear transformation T: V — W relative to certain bases for I/ and IV is

w s

1
2
, then T is one-to-one. True

(320)IfS:V — V and T:V — V are linear operators and B is a basis for I/, then the matrix of
S o Trelativeto Bis [T|g [s] 5 False

(321)If T:V — V is aninvertible linear operator and B is a basis for V/, then the matrix for 7!

relative to Bis [T]', .True
(322) Every square matrix has an LU-decomposition. False

(323) If a square matrix A is row equivalent to an upper triangular matrix U, then 4 has an
LU-decomposition. False

(324)If L4, Lo, ...., L, are nxn lower triangular matrices, then the product L, Lo, ...., Lis lower
triangular.True

(325) If a square matrix A has an LU-decomposition, then A has a unique LDU decomposition. True
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(326) Every square matrix has a PLU-decomposition. True

(327) If Ais an m x n matrix, then A’ A is an m x m matrix False

(328) If A is an m x n_matrix, then A" 4 is a symmetric matrix. True

(329) If A is an m x n matrix, then the eigenvalues of A”A are positive real numbers. False
(330) If A is an 1 x n matrix, then A is orthogonally diagonalizable. False

(331) If A is an m x n matrix, then A" 4 is orthogonally diagonalizable. True

(332) The eigenvalues of A’ A are the singular values of A. False

(333) Every m x n matrix has a singular value decomposition. True

The End
sl oSl I JLad

SEU1.0RG 91



