Determine whether the following statements are true or false:

- 1. A 5 × 6 matrix has six rows. False
- 2. A diagonal matrix is upper and lower triangular matrix at the same time. True
- **3.** The matrix $B = A + A^T + A A^T$ is symmetric. True
- 4. If A and B are matrices of the same size, then AB = BA. false
- 5. If A and B are square matrices of same size, then $det(AB) \neq det(A) \cdot det(B)$. False
- 6. If A is a Square matrix with two proportional rows then det(A) = 0. True
- 7. If A and B are 2 \times 2 matrices, then AB = BA. False
- 8. Trace of matrix is the product of the elements on the main diagonal. False
- 9. A single linear equation with two or more unknowns must always have infinitely many solutions. True
- 10. The matrix $B = A + A^T + A A^T$ is symmetric. True
- 11. If Ax = 0 has infinitely many solutions then Ax = b will have no solution or infinitely many solutions but not a unique solution. True
- 12. A matrix is upper and lower triangular simultaneously if and only if it is a diagonal matrix. True
- **13.** If *A* and *B* are square matrices of same size, then $det(A + B) \neq det(A) + det(B)$. True
- 14. The Number $(-1)^{i+j} M_{ij}$ is called the Cofactor of a_{ij} . True
- 15. If A is a Square matrix with two proportional rows then $det(A) \neq 0$. Flase

- 16. Vectors (7,0,-2), (4,9,14) are orthogonal to each other. True
- 17. \mathbb{R}^2 is a subspace in \mathbb{R}^3 . False
- 18. All linearly independent set in a subspace W is a basis for W.False
- 19. The transformation T: $\mathbb{R}^2 \to \mathbb{R}^2$, T(x, y) = 2x + 3y is a linear transformation. True
- 20. The column space of a 5 \times 7 matrix is in \mathbb{R}^5 . True
- 21. If A is $m \times n$ matrix then row space of A and column space of A have different dimension. False
- 22. If each component of a vector v in R^4 is *tripled*, then the norm of the vector is $3^4 ||v||$. False
- 23. Vectors (*a*, 0,0), (0, *b*, 0) and (0,0, *c*) are orthogonal to each other (where *a*, *b* and *c* are not zero). True
- 24. The initial point and terminal point of the vector $\overrightarrow{AB} = (2,1,-10)$ are (3,-2,4) and (5,-1,-6) respectively. True
- 25. The zero vector space $\{0\}$ has dimension0. True
- 26. Any linearly independent set in a subspace *W* is a basis for *W*. False
- 27. Let $v_1, v_2, v_3 \cdots v_n$ be vectors in the vector space \mathbb{R}^n . Then the subset of all linear combination of these vectors is a subspace of \mathbb{R}^n . True
- 28. The null space of A is the solution set of the equation Ax = 0. True
- 29. The column space of an $m \times n$ matrix is in \mathbb{R}^m . True

In the matrix transformation $T_A {:} \, R^n \to R^m$, \forall vectors u and 30. v: $T_A(u + v) = T_A(u) - T_A(v)$. False

(a) The norm of the vector $u = \frac{1}{\|w\|} w$ is zero.

(b) The vectors (3,7) and (3,7,0) are equivalent.

- (c) The set of vectors $\{(2,3,1), (-1,1,1), (4,6,7)\}$ is linearly independent.
- (d) The set B = {(1,2), (3,4)} forms a basis of ℝ².
- (e) The dimension of a vector space is the number of elements in the largest linearly independent set in that vector space.
- (f) The dimension of row space and column space of a matrix is always same.

(f) <u>True</u>

(b) False

(c) <u>True</u>

(a) <u>False</u>

(d) True

(e) <u>True</u>

- (a) If (-2,3) and (4,1) are the initial and terminal points respectively then (-2,2) is the components of the vector.
- (b) If $\theta = 180^\circ$, be the angle between two vectors then these vectors are orthogonal.
- (c) The set \mathbb{R}^3 is a subspace of \mathbb{R}^4 .
- (d) The set $\{(1, 2, 1), (0, 1, 4), (6, 12, 6)\}$ of vectors in \mathbb{R}^3 is linearly dependent.
- (e) The basis of a vector space is not unique.
- (f) If A is a 3×3 matrix such that $|A| \neq 0$ then row vectors of A span \mathbb{R}^3 .

(e) <u>True</u>

(d) <u>True</u>

(f) True

(a) False

(c) False

(b) False

(a) The system of linear equations

$$2x - y = \frac{1}{2}$$
$$12x - 6y = 3$$

have a unique solution.

(a) <u>False</u> (b) If A is 2 × 3 and B is 3 × 4 matrix, then (AB)^T is the matrix of the size 4 × 2. (b) True (c) The matrix $\begin{bmatrix} -1 & 2 \\ 0 & 1 \end{bmatrix}$ is not invertible. (c) False (d) The matrix $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -4 \end{bmatrix}$ is lower triangular but not upper triangular. (d) False (e) The determinant of the matrix $A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 4 \\ 3 & 0 & 3 \end{bmatrix}$ is 3. (e) <u>False</u> (f) The absolute values of minors and cofactors of the elements of a square matrix are

identical.

(f) <u>True</u>

(a) Every system of linear equation is consistent.

(a) False

(b) <u>True</u>

(c) False

(b) The addition of two matrices is not possible only when there order differs.

(c) The transpose of a lower triangular matrix is again lower triangular matrix.

(d) If $A = \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$, then $AB = \begin{bmatrix} 6 & 0 \\ 0 & -4 \end{bmatrix}$

(e) The determinant of every non-singular matrix is zero.

(e) <u>False</u>

(d) <u>True</u>

(f) The absolute values of minors and cofactors of the elements of a square matrix are not identical.

(f) False

For Each Question, Choose the Correct Answer from the Multiple-Choice List.

1. Determine whether the matrix below $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ is in a)row echelon form b) reduced row echelon form c) both

- 2. If X is a 3 \times 1 matrix and Y is a 1 \times 2 matrix, then XY is a)1 \times 1 b) 3 \times 2 c) 2 \times 3
- 3. The quantity $(B^{-1}A^{-1})^{T}(B^{T}A^{T})^{2}(B^{T}A^{T})^{-1}$, is equal to a) $B^{-1}A^{-1}$ b) $B^{T}A^{T}$ c) I
- 4. The inverse of $\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ is a) $\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$ b) $\begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$ c) $\begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$

5. If A=
$$\begin{bmatrix} 3 & 1 & 2 \\ -1 & 4 & 5 \\ 0 & -3 & 6 \end{bmatrix}$$
, then the minor of a_{13} is:
a)3 b)-1 c)0

- 6. If the determinant of $A = \frac{1}{7}$, then $det(A^{-1})$: a) $\frac{1}{7}$ b) 7 c) $\frac{-1}{7}$
- 7. Determine whether the matrix below $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ is in a)row echelon form b) reduced row echelon form c) both
- 8. If X is a 3 \times 2 matrix and Y is a 2 \times 1 matrix, then XY is a) 3 \times 1 b) 2 \times 2

c) 2 × 1

9. The quantity $(A^{-1}B^{-1})^{T}(A^{T}B^{T})^{2}(A^{T}B^{T})^{-1}$, is equal to a) $A^{T}B^{T}$ b) I c) $A^{-1}B^{-1}$ $(A^{-1}B^{-1})^{T}(A^{T}B^{T})^{2}(A^{T}B^{T})^{-1}$ $= ((BA)^{-1})^{T}((BA)^{T})^{2}((BA)^{T})^{-1}$ $= ((BA)^{T})^{-1}(BA)^{T}(BA)^{T}((BA)^{T})^{-1}$ = |

10. The inverse of
$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$
 is
a) $\frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ b) $\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$
c) $\frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$

11. If
$$A = \begin{bmatrix} 4 & 0 & 1 \\ -2 & 2 & 3 \\ -1 & 5 & 6 \end{bmatrix}$$
, then the minor of a_{32} is:
a)-14 b)20 c)8
Minor of $a_{32} = (-1)^{3+2} \begin{vmatrix} 4 & 1 \\ -2 & 3 \end{vmatrix} = -1 \cdot (12+2) = -14.$

12. If the determinant of $A = \frac{11}{4}$, then $det(A^{-1})$: a) $\frac{11}{4}$ b) $\frac{4}{11}$ c) $\frac{-11}{4}$ 1. If u = (5,1,4) and v = (-1,0,2) are two vectors in \mathbb{R}^3 . Then the cross product $u \times v$: a. (-5,0,8)b. (4,2,6)c. (2,-14,1)

d. (0,0,0)

2. Let
$$T_1(v_1, v_2) = (v_1 - v_2, v_1 + v_2)$$
 and $T_2(v_1, v_2) = (2v_2, 2v_1)$.
The value of $T_1(T_2(v_1, v_2))$ is:
a. $(2v_2 + 2v_1, 2v_1 - 2v_2)$
b. $(2v_2 - 2v_1, 2v_1 + 2v_2)$
c. $(2v_1 - 2v_2, 2v_1 + 2v_2)$
d. $(2v_1 + 2v_1, 2v_1 - 2v_2)$

- 3. Let $S = \{v_1, v_2, v_3\}$ is a basis of V and $v_2 = 3v_1 5v_2$. Then the coordinate vector of V relative to $S((v)_s)$ is:
 - a. (3,5,0) b. (3,0,−5) c. (5,−3) d. (3,−5)

4. A linear combination formed by the vectors $w_1 = (1,1,0)$, $w_2 = (0,1,-2)$ and $w_3 = (2,0,4)$ is:

- a. $w_3 = 4w_1 3w_2$ b. $w_2 = w_1 + w_3$ c. $w_3 = 2w_1 - 2w_2$ d. $w_1 = -w_2 - w_3$
- 4. If *u* and *v* are two vectors in R^3 (3-Space), then the vector $u \times v$ is perpendicular to

a. *u* only
b. *v* only
c. both *u* and *v*

9 SHAHAD ALHAWASHI

d. none of them.

- 5. If *a*, *b* and *c* are constants that are not all zero, then the equation 2ax + 2by + cz = 0 represents
 - e. a plane passing through (0,0,0)
 - f. a plane passing through (2a, 2b, c)
 - g. a line passing through (0,0,0)
 - h. a line passing through (2a, 2b, c)

6. The set $V = \mathbb{R}^3$, together with the operation $r \times \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ y \\ r \end{bmatrix}$ and the addition is the standard operation on \mathbb{R}^3 is not a vector space because:

e. $u + v \neq v + u$ f. $0 \notin V$ g. $1 \times u \neq u$ h. $u + (v + w) \neq (u + v) + w$

4. A linear combination formed by the vectors $x_1 = (1,0,-3)$, $x_2 = (1,-1,0)$ and $x_3 = (-2,3,-3)$ is:

e. $x_3 = x_1 + x_2$ f. $x_2 = 2x_1 + x_3$ g. $x_3 = x_1 - 3x_2$ h. $x_1 = x_2 - x_3$

2. Select one of the alternatives from the following questions as your answer.

(a) The matrix equation AX = B, where $A = \begin{bmatrix} 2 & -1 \\ 3 & -2 \end{bmatrix}$, $X = \begin{bmatrix} x \\ y \end{bmatrix}$ and $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ A.

- 2x + 3y = 0-x 2y = 1B.2x + y = 03x 2y = 1C.2x 2y = 03x y = 1D.2x y = 03x y = 1
- (b) If If A, B and C are matrices of orders 3 × 4, 4 × 5 and 5 × 2 respectively; then the order of the matrix (A.B).C is
- A. 3×5 B. 3×4 C. 3×2 D. product is not possible. (c) If $A = \begin{bmatrix} 2 & 2 \\ 5 & 6 \end{bmatrix}$, then A^{-1} is A. $\frac{1}{2} \begin{bmatrix} 6 & -5 \\ -2 & 2 \end{bmatrix}$ B. $\frac{1}{2} \begin{bmatrix} 6 & 2 \\ -5 & -2 \end{bmatrix}$ C. $\begin{bmatrix} 3 & -1 \\ -\frac{5}{2} & 1 \end{bmatrix}$ D. inverse does not exists.

- (d) The inverse of a upper triangular matrix is
 - A. upper triangular
 - B. lower triangular
 - C. does not exists
 - D. any matrix

(e) If
$$A = \begin{bmatrix} 3 & 1 & 4 \\ 2 & 1 & 2 \\ 3 & -1 & -1 \end{bmatrix}$$
 then the value of cofactor corresponding to the entry a_{32} is
A. -2
B. 2
C. 14
D. -14

(f) If A is a square matrix of order 3 with det(A) = 4, then det(2A) is

- A. 32
- B. 16
- C. 8
- D. 4

2. Select one of the alternatives from the following questions as your answer.

(a) If
$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & -1 \end{bmatrix}$$
, then $((A^T)^T)^T =$
A. $(A^3)^T$
B. does not exists
C. $\begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & -1 \end{bmatrix}$
D. $\begin{bmatrix} 2 & 1 \\ 3 & 2 \\ 4 & -1 \end{bmatrix}$
(b) If $A = \begin{bmatrix} 0 & 1 & 2 \\ 2 & 1 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} -2 & 10 \\ 4 & 7 \\ -3 & -4 \end{bmatrix}$, then $A + B^T =$
A. addition is not possible
B. $\begin{bmatrix} -2 & 5 & -1 \\ 12 & 8 & -7 \end{bmatrix}$
C. $\begin{bmatrix} -2 & 5 & -1 \\ 12 & 8 & -1 \end{bmatrix}$
D. $\begin{bmatrix} 2 & 5 & -1 \\ 12 & 8 & -1 \end{bmatrix}$
D. $\begin{bmatrix} 2 & 5 & -1 \\ 12 & 8 & -1 \end{bmatrix}$
(c) If $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -2 \end{bmatrix}$, then matrix A is
A. upper triangular.
B. lower triangular.
C. diagonal matrix.
D. all of the above.

- (d) The inverse of a lower triangular matrix is
 - A. upper triangular
 - B. lower triangular
 - C. does not exists
 - D. any matrix

(e) If $B = \begin{bmatrix} 3 & 2 & -1 \\ -1 & 8 & 7 \\ 4 & -3 & 1 \end{bmatrix}$ then the value of minor corresponding to the entry a_{22} is A. 7

n a calina i di di di

B. -7
C. 1
D. -1
(f) If
$$A = \begin{bmatrix} 2 & 1 \\ 4 & -2 \end{bmatrix}$$
, then adjoint of A is given by
A. $\begin{bmatrix} -2 & 1 \\ 4 & 2 \end{bmatrix}$
B. $\begin{bmatrix} -2 & 4 \\ 1 & 2 \end{bmatrix}$
C. $\begin{bmatrix} -2 & -1 \\ -4 & 2 \end{bmatrix}$
D. $\begin{bmatrix} 2 & -1 \\ -4 & -2 \end{bmatrix}$

2. Select one of the alternatives from the following questions as your answer. 6 (a) If u = (1, 2, 0), v = (4, 0, 6), then d(u, v) =A. $\sqrt{48}$ B. 7 C. 48 D. 49 (b) If u = (7, 3, −4, 5) and v = (2, 1, −1, 0) then u.v = A. $\sqrt{21}$ B. 13 C. 21 D. 12 (c) The set $A = \left\{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right\}$ forms a basis of the vector space A. M₃₂ B. M₂₂ C. M₃₃ D. M₂₃ (d) If v = (2, 1, −2) and ||kv|| = 12, then the value of k A. 4 B. $\frac{5}{2}$ C. $-\frac{5}{2}$ D. 3

- (e) If A_{n×n} is a square matrix such that |A| ≠ 0, then which of the following is/are correct
 - A. nullity of A = 0.
 - B. rank of A = n.
 - C. A is invertible.
 - D. all of the above.
- (f) If A is m × n matrix, then
 - A. rank (A) = n
 - B. rank (A) = m
 - C. rank $(A) \leq \min(m, n)$
 - D. rank (A) = m.n

- (b) If u = (3,1,4,−6) and v = (−3,−1,−4,6) then the distance between u and v is
 - A. 0
 - B. 15
 - C. $\sqrt{248}$
 - D. None of the above
- (c) Which of the following set of vectors in ℝ³ is linearly independent?

A. $\{(1, 2, -4), (-8, 14, 6), (3, 4, -9), (1, 0, 0)\}$ B. $\{(1, 2, 5), (2, 5, 1), (1, 5, 2)\}$ C. $\{(1, 2, 3), (0, 0, 0), (3, 2, 1)\}$ D. $\{(3, 2, -4), (24, 16, -32)\}$

- (d) The dimension of the vector space of 3 × 3 matrices of real numbers under the usual addition and scalar multiplication of matrices is
 - A. infinite
 - B. 9
 - C. 6
 - D. 27
- (e) For which value of a and b the vector w = (1, -3, 4) is a linear combination of u = (2, 4, 0) and v = (1, 4, -2) i.e. w = au + bv?
 - A. a = 1, b = -2B. a = -3, b = -2C. a = -1, b = -2D. None of the above
- (f) If the rank of a 4 × 4 matrix is equal to 3, then
 - A. the matrix is invertible.
 - B. the dimension of the null space is 4.
 - C. the dimension of the null space is 3.
 - D. the dimension of the row space is 3.