
After Midterm Summary

Chapter (6-7-8)

Chapter 6 – Iteration

• While statement: executes a block of code repeatedly.

• while Loop Examples

Syntax 6.1 The while Statement

Self Check 6.1

How often is the following statement in the loop executed?

while (false) statement;

 Answer: Never

Infinite Loops

• Example:

int years = 0;

while (years < 20)

{

 double interest = balance * rate / 100;

 balance = balance + interest;

}

• Loop runs forever — must kill program

Q. What is an infinite loop and how can you terminate a program that

executes an infinite loop?

Answer: An infinite loop is a loop that will keep executing and never terminates.

It causes a run-time error where the program gets stuck looping.

The way to terminate the infinite loop is to kill the process.

• Off-by-one error: a loop executes one too few, or one
too many, times

for Loops

• Example:

for (int i = 1; i <= n; i++)

{

 double interest = balance * rate / 100;

 balance = balance + interest;

}

Syntax 6.2 The for Statement

• Use a for loop when a variable runs from a starting value to

an ending value with a constant increment or decrement

• for Loop Examples

Q. Rewrite the following for loop into a while loop and draw the flow chart.

int s = 0;

for (int i = 1; i <= 10; i++) s = s + i;

Solution:

int s = 0;

int i = 1;

while (i <= 10)

{

i++;

s = s + i;

}

Self Check 6.4

How many times does the following for loop execute?

for (i = 0; i <= 10; i++)

 System.out.println(i * i);

 Answer: 11 times.

Nested Loops

Nested Loops: Put loops together (loop inside loop)

Nested Loops Example:

1. Write a java program to print the following .

 *

 **

public class NestedLoop {

 public static void main(String[] args)

 {

for (int i=1;i<=4;i++)
 {
 for(int j=1; j<=i; j++)
 {
 System.out.print("*");
 }
 System.out.println();

 }}}

2. Write a java program to print the following .

public class NestedLoop {

 public static void main(String[] args)

 {

for (int i=1;i<=3;i++)
 {
 for(int j=1; j<=4; j++)
 {
 System.out.print("*");
 }
 System.out.println();

 }

}}

• Debugger: a program to execute your program and analyze
its run-time behavior

• A debugger: lets you stop and restart your program.

• The larger your programs, the harder to debug them simply by inserting

print commands

• Three key concepts of debugger:

• Breakpoints

• Single-stepping

• Inspecting variables

• In Debugging: Execution is suspended whenever a breakpoint is reached

• In a debugger, a program runs at full speed until it reaches a breakpoint.

• When program terminates, debugger stops as well

• Breakpoints stay active until you remove them

• Two variations of single-step command:

• Step Over: Skips method calls

• Step Into: Steps inside method calls

• Self Check 6.13

In the debugger, you are reaching a call to System.out.println.

Should you step into the method or step over it?

 Answer: You should step over it because you are not interested

 in debugging the internals of the println method.

Chapter 7 – Arrays and Array Lists

Array: Sequence of values of the same type .

• Construct array:

 new double[10]

• Store in variable of type double[]:

 double[] data = new double[10];

Declaring Arrays:

Syntax 7.1 Arrays

Self Check 7.1

What elements does the data array contain after the following statements?

double[] values = new double[10];

for (int i = 0; i < values.length; i++)

 values[i] = i * i;

 Answer: 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, but not 100

Get array length as values.length

Bounds error: Accessing a nonexistent element results.

Index values range: from 0 to length - 1

The first element index is; 0

The last element index is; array.length – 1

 Arrays have fixed length.

ArrayList

• ArrayList class: manages a sequence of objects.

• ArrayList class: Can grow and shrink as needed

• ArrayList class: supplies methods for many common tasks, such as

inserting and removing elements

• ArrayList: is a generic class:

• Size: number of elements in ArrayList

• To obtain the value an element at an index, use the get

method

• Index starts at 0

• String name = names.get(2);

// gets the third element of the array list

• Bounds error if index is out of range

• add method: add an object to the end of the array list.

• To Replace an element to a new value, use the set method.

• Self Check 7.3

How do you construct an array of 10 strings? An array list of strings?

Answer:

 new String[10];

 new ArrayList<String>();

Self Check 7.4

What is the content of names after the following statements?

 ArrayList<String> names = new ArrayList<String>();

 names.add("A");

 names.add(0, "B");

 names.add("C");

Answer: names contains the strings "B" and "C" at positions 0 and 1

Wrapper Classes:

• For each primitive type there is a wrapper class for storing
values of that type:

Double d = new Double(29.95);

There are wrapper classes for all eight primitive types:

Q. What is the difference between the types double and Double?

Answer: double: is a primitive data type.

Double: is wrapper class that wraps the primitive data type double and

makes it into an object.

• Auto-boxing: Automatic conversion between primitive types and the

corresponding wrapper classes.

• Auto-boxing even works inside arithmetic expressions

• Storing wrapped numbers is quite inefficient
• Acceptable if you only collect a few numbers
• Use arrays for long sequences of numbers or characters

Self Check 7.5

What is the difference between the types double and Double?

Answer: double is one of the eight primitive types. Double is a

class type.

Self Check 7.6

Suppose values is an ArrayList<Double> of size > 0. How do you

increment the element with index 0?

Answer:

values.set(0, values.get(0) + 1);

The “for each” Loop

Q. Rewrite the following loops without using the “for each” construct.

double[] values = ...;

 double sum = 0;

 for (double element : values)

 {

 sum = sum + element;

 }

Solution: Using Traditional for Loop

double[] values = ...;

 double sum = 0;

 for (int i = 0; i < values.length; i++)

 {

 double element = values[i];

 sum = sum + element;

 }

• The ―for each loop‖ does not allow you to modify the contents of an
array:

Self Check 7.7

Write a ―for each‖ loop that prints all elements in the array values.

Answer:

 for (double element : values)

 System.out.println(element);

Self Check 7.8

What does this ―for each‖ loop do?

int counter = 0; for (BankAccount a : accounts)

{

 if (a.getBalance() == 0) { counter++; }

}

Answer: It counts how many accounts have a zero balance.

• Usually, array is partially filled

Self Check 7.9

Write a loop to print the elements of the partially filled array

values in reverse order, starting with the last element.

Answer:

for (int i = valuesSize - 1; i >= 0; i--)

 System.out.println(values[i]);

Self Check 7.10

How do you remove the last element of the partially filled array values?

Answer:

valuesSize--;

Self Check 7.11

Why would a programmer use a partially filled array of numbers instead of
an array list?

Answer: You need to use wrapper objects in an

ArrayList<Double>, which is less efficient.

• Fill an array with zeroes:

for (int i = 0; i < values.length; i++)

{

 values[i] = 0;

}

• Fill an array list with squares (0, 1, 4, 9, 16, ...):

for (int i = 0; i < values.size(); i++)

{

 values.set(i, i * i;

}

• To compute the sum of all elements, keep a running total:

double total = 0;

for (double element : values)

{

 total = total + element;

}

• To obtain the average, divide by the number of elements:

double average = total /values.size();

// for an array list

linear search: The process of checking all elements until you have

found a match

 Removing an Element from array list

• Array list ⇒ use method remove

• Unordered array ⇒
1. Overwrite the element to be removed with the last element of the

array

2. Decrement the variable tracking the size of the array

values[pos] = values[valuesSize - 1];

valuesSize--;

• Ordered array ⇒
1. Move all elements following the element to be removed to

a lower index

2. Decrement the variable tracking the size of the array

for (int i = pos; i < valuesSize - 1; i++)

{

 values[i] = values[i + 1];

}

valuesSize--;

Inserting an Element from array list

• Array list ⇒ use method add

• Unordered array ⇒
1. Insert the element as the last element of the array

2. Increment the variable tracking the size of the array

if (valuesSize < values.length)

{

 values[valuesSize] = newElement;

 valuesSize++;

}

• Ordered array ⇒
1. Start at the end of the array, move that element to a

higher index, then move the one before that, and so on
until you finally get to the insertion location

2. Insert the element
3. Increment the variable tracking the size of the array

if (valuesSize < values.length)

{

 for (int i = valuesSize; i > pos; i--)

 {

 values[i] = values[i - 1];

 }

 values[pos] = newElement;

 valuesSize++;

}

• To make a true copy of an array, call the Arrays.copyOf method:

double[] prices = Arrays.copyOf(values, values.length);

• To grow an array that has run out of space, use the Arrays.copyOf

method:

values = Arrays.copyOf(values, 2 * values.length);

Self Check 7.12

What does the find method do if there are two bank accounts

with a matching account number?

Answer: It returns the first match that it finds.

Self Check 7.13

Would it be possible to use a ―for each‖ loop in the getMaximum

method?

Answer: Yes, but the first comparison would always fail.

Regression Testing

• Test suite: a set of tests for repeated testing

• Cycling: bug that is fixed but reappears in later
versions

• Regression testing: repeating previous tests to
ensure that known failures of prior versions do not
appear in new versions

Self Check 7.16

Suppose you modified the code for a method. Why do you want to repeat
tests that already passed with the previous version of the code?

Answer: It is possible to introduce errors when modifying code.

Self Check 7.17

Suppose a customer of your program finds an error. What action
should you take beyond fixing the error?

Answer: Add a test case to the test suite that verifies that
the error is fixed.

Self Check 7.19

How do you declare and initialize a 4-by-4 array of integers?

Answer:

 int[][] array = new int[4][4];

Chapter 8 – Designing Classes

Discovering Classes

• A class represents a single concept from the problem domain

• Name for a class should be a noun that describes concept

• Actors: (end in -er, -or) – objects do some kinds of work for you:

 Scanner

• Utility classes – no objects, only static methods and constants:

 Math

• Program starters: only have a main method

Self Check 8.1

What is the rule of thumb for finding classes?

Answer: Look for nouns in the problem description.

Coupling and Cohesion

What is the differace between coupling and cohesion?

• Cohesion: A class should represent a single concept.
• The public interface of a class is cohesive if all of its features

are related to the concept that the class represents

• Coupling: A class depends on another if it uses objects of
that class.

Example for cupling:

• CashRegister depends on Coin to determine the value of the

payment

• Coin does not depend on CashRegister

• UML: Unified Modeling Language

• High coupling = Many class dependencies

Self Check 8.4

Why does the Coin class not depend on the CashRegister class?

 Answer: None of the Coin operations require the CashRegister
 class.

Self Check 8.5

Why should coupling be minimized between classes?

Answer: If a class doesn’t depend on another, it is not
affected by interface changes in the other class.

• Accessor: Does not change the state of the implicit parameter:
• Mutator: Modifies the object on which it is invoked:

• Immutable class: Has no mutator methods (e.g., String):

Self Check 8.6

Is the substring method of the String class an accessor or a

mutator?

Answer: It is an accessor — calling substring doesn’t

modify the string on which the method is invoked. In fact, all

methods of the String class are accessors.

Self Check 8.7

Is the Rectangle class immutable?

 Answer: No — translate is a mutator.

• Side effect of a method: Any externally observable data
modification.

• Modifying explicit parameter can be surprising to
programmers

Call by Value and Call by Reference

• Call by value: Method parameters are copied into the
parameter variables when a method starts

• Call by reference: Methods can modify parameters
• Java has call by value
• A method can change state of object reference

parameters, but cannot replace an object reference
with another

Preconditions

• Precondition: Requirement that the caller of a
method must meet.

• If precondition is violated, method is not
responsible for computing the correct result. It is
free to do anything

Syntax 8.1 Assertion

• Postcondition: requirement that is true after a method has
completed .

• If method call is in accordance with preconditions, it must
ensure that postconditions are valid

• There are two kinds of postconditions:
• The return value is computed correctly
• The object is in a certain state after the method call is completed

• Contract: If caller fulfills preconditions, method must fulfill
postconditions .

Self Check 8.10

Why might you want to add a precondition to a method
that you provide for other programmers?

Answer: Then you don’t have to worry about
checking for invalid values — it becomes the caller’s
responsibility.

Static Methods

Static Methods : Every method must be in a class

Static Methods : is not invoked on an object .

• Numbers aren’t objects, you can’t invoke methods on them.

E.g. x.sqrt() can never be legal in Java

• main is static — there aren’t any objects yet

Self Check 8.12

Suppose Java had no static methods. How would you use the Math.sqrt

method for computing the square root of a number x?

Answer:

 Math m = new Math();

 y = m.sqrt(x);

 Static variable: belongs to the class, not to any
object of the class.

Static variables: should always be declared as private.

• Minimize the use of static variables.

Self Check 8.14

Name two static variables of the System class.

Answer: System.in and System.out.

Scope of Local Variables

• Scope of variable: Region of program in which the variable
can be accessed

• Scope of a local variable extends from its declaration to end
of the block that encloses it

• Scope of a local variable cannot contain the definition of
another variable with the same name:

Overlapping Scope

• A local variable can shadow a variable with the same name
• Local scope wins over class scope.
• Access shadowed variables by qualifying them with the this

reference:

 value = this.value * exchangeRate;

• Generally, shadowing an instance variable is poor code —
error-prone, hard to read

Packages

• Package: Set of related classes.

• Important packages in the Java library:

• To put classes in a package, you must place a line

 package packageName;

• Package name consists of one or more identifiers separated
by periods

• For example, to put the Financial class introduced into a package

named com.horstmann.bigjava, the Financial.java file must

start as follows:

 package com.horstmann.bigjava;

public class Financial

{

 ...

}

• Default package has no name, no package statement

Package Purpose Sample Class

java.lang Language support Math

java.util Utilities Random

java.io Input and output PrintStream

java.awt Abstract Windowing Toolkit Color

java.applet Applets Applet

java.net Networking Socket

java.sql Database Access ResultSet

javax.swing Swing user interface JButton

omg.w3c.dom
Document Object Model for

XML documents
Document

Syntax 8.2 Package Specification

Importing Packages

• Can always use class without importing:

java.util.Scanner in = new java.util.Scanner(System.in);

• Tedious to use fully qualified name
• Import lets you use shorter class name:

 import java.util.Scanner;
 ...
 Scanner in = new Scanner(System.in)

• Can import all classes in a package:

 import java.util.*;

• Never need to import java.lang

• You don’t need to import other classes in the same package

• Use packages to avoid name clashes

• Package names should be unambiguous

• Recommendation: start with reversed domain name:

com.horstmann.bigjava

• edu.sjsu.cs.walters: for Britney Walters’ classes

(walters@cs.sjsu.edu)
• Path name should match package name:

com/horstmann/bigjava/Financial.java

• Base directory: holds your program's Files.

• Path name, relative to base directory, must
match package name.

Self Check 8.18

Which of the following are packages?

a. java

b. java.lang

c. java.util

d. java.lang.Math

Answer:

a. No

b. Yes

c. Yes

d.No

Self Check 8.19

Is a Java program without import statements limited to using the

default and java.lang packages?

Answer: No — you simply use fully qualified names for all

other classes, such as java.util.Random and

java.awt.Rectangle

• Unit test frameworks: simplify the task of writing classes that
contain many test cases.

• whenever you implement a class, also make a companion
test class. Run all tests whenever you change your code

