Kingdom of Saudi Arabia

CSTS

SEU, KSA

Discrete Mathematics (Math 150)

Level III, Assignment 4
(2016)

I. State whether the following statements are True or False

(1) The relation $R=((1,1),(2,2),(1,2),(2,1),(3,3),(4,4))$ on the set $A=\{1,2,3,4\}$ is antisymmetric.
(1) False
(2) A relation on a set A is an equivalence relation if it is reflexive, antisymmetric, and transitive.
(2) False
(3) The sum of degrees of the vertices of an undirected graph is odd.
(3) False
(4) The wheel W_{6} has 6 edges.
(4) False
(5) A tree is a connected undirected graph with no simple circuits.
(5) True
(6) In a full binary tree with 1000 internal vertices, the edges are 2000.
(6) True
II. From questions 1 to 6 select the appropriate choice(s) as your response.
(1) The relation R represented by the matrix $M_{R}=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right]$ is
A. Reflexive
B. Symmetric
C. Antisymmetric
D. Reflexive and Antisymmetric
(2) The number of relations on the set $A=\{1,2,3\}$
A. 8
B. 256
C. 512
D. 3
(3) For which value of n, the cycle C_{n} is bipartite?
A. 6
B. 7
C. 8
D. 9
(4) Let $G=(V, E)$ be a graph with 12 directed edges, then the sum of in-degrees of all vertices in G are
A. 6
B. 12
C. 24
D. 10
(5) A full 3-ary tree with 100 vertices has \qquad leaves.
A. 10
B. 11
C. 12
D. 67
(6) A vertex of a rooted tree with no children is called
A. internal vertex
B. parent
C. leaf
D. ancestor

III. Answer the following. Each question carries 3 Marks.

1. If $R=\{(a, a),(a, b),(a, d),(b, a),(b, b),(b, c),(c, b),(c, c),(c, d),(d, a),(d, c),(d, d)\}$ represents a relation on the set $A=\{a, b, c, d\}$, then express the relation R by (i) matrix and (ii) directed graph.

Solution: The matrix of the relation R is $M_{R}=\left[\begin{array}{llll}1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1\end{array}\right]$

The directed graph for the relation R is

2. Show that the relation $R=\{(a, b) \mid a-b$ is an integer $\}$ is an equivalence relation on the set of real numbers.

Solution: As $a-a=0$ is an integer implies that $(a, a) \in R$.
Therefore R is reflexive.
Let $(a, b) \in R$, then $a-b$ is an integer and $b-a$ is also an integer.
Implying that if $(a, b) \in R$ then $(b, a) \in R$.
Therefore R is symmetric.
Let $(a, b) \in R$ and $(b, c) \in R$, then $a-b$ and $b-c$ be are integers.
Now $(a-b)+(b-c)=a-c$ is also an integer.
Implying that if $(a, b) \in R$ and $(b, c) \in R \Rightarrow(a, c) \in R$.
Therefore R is transitive.
As R is reflexive, symmetric and transitive, the relation R is an equivalence relation.
3. Represent the following graph with an adjacency matrix and find the in-degrees and outdegrees of all the vertices.

Solution:

The adjacency matrix for the given graph is $\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1\end{array}\right]$

$$
\begin{aligned}
& \operatorname{deg}^{-}(a)=2, \operatorname{deg}^{+}(a)=4, \operatorname{deg}^{-}(b)=3, \operatorname{deg}^{+}(b)=1, \\
& \operatorname{deg}^{-}(c)=2, \operatorname{deg}^{+}(c)=2, \operatorname{deg}^{-}(d)=3, \operatorname{deg}^{+}(d)=3
\end{aligned}
$$

4. Draw the graph represented by the adjacency matrix $\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 1 \\ 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 3 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1\end{array}\right]$

Solution: The graph for the given adjacency matrix is:

5. Answer the questions about the rooted tree illustrated.

a) Which vertex is the root?
d) Which vertices are siblings of o ?
b) Which vertices are internal?
e) Which vertices are ancestors of m ?
c) Which vertices are leaves?
f) Which vertices are descendants of b ?

Solution:
a) a
b) a, b, c, d, f, h, j, q, and t
c) $e, g, i, k, l, m, n, o, p, r, s$ and u
d) p
e) f, b and a
g) e, f, l, m and n.
6. Answer the questions about the rooted tree illustrated.

a) Is the above rooted tree is a full m-ary tree for some positive integer m ?
b) What are the levels of the vertices a, c, n and s ?
c) Draw a subtree rooted at the vertex d.
d) Solution: a) No
b) $0,1,3$ and 4
c)

