

CSTS SEU, KSA

Discrete Mathematics (Math 150) Level III, Assignment 4 (2016)

I. State whether the following statements are True or False	[6]					
(1) The relation $R = ((1,1), (2,2), (1,2), (2,1), (3,3), (4,4))$ on the set $A = \{1,2,3,4\}$ is						
antisymmetric.	(1) <u>False</u>					
(2) A relation on a set A is an equivalence relation if it is reflexive, antisymmetric, and						
transitive.	(2) <u>False</u>					
(3) The sum of degrees of the vertices of an undirected graph is odd.						
	(3) <u>False</u>					
(4) The wheel W_6 has 6 edges.	(4) <u>False</u>					
(5) A tree is a connected undirected graph with no simple circuits.	(5) <u>True</u>					
(6) In a full binary tree with 1000 internal vertices, the edges are 200	00.					
	(6) <u>True</u>					
II. From questions 1 to 6 select the appropriate choice(s) as your response. [6]						
(1) The relation <i>R</i> represented by the matrix $M_R = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$ is						
A. Reflexive						
B. Symmetric						
C. Antisymmetric						
D. Reflexive and Antisymmetric						

(2) The number of relations on the set $A = \{1, 2, 3\}$

A. 8 B. 256 C. 512 D. 3

(3) For which value of *n*, the cycle C_n is bipartite?

A. 6 B. 7 C. 8 D. 9

- (4) Let G = (V, E) be a graph with 12 directed edges, then the sum of in-degrees of all vertices in G are
 - A. 6 B. 12 C. 24 D. 10

(5) A full 3-ary tree with 100 vertices has _____ leaves.

- A. 10 B. 11
- C. 12

<mark>D. 67</mark>

(6) A vertex of a rooted tree with no children is called

A. internal vertex

B. parent

C. leaf

D. ancestor

III. Answer the following. Each question carries 3 Marks.

If R = {(a,a), (a,b), (a,d), (b,a), (b,b), (b,c), (c,b), (c,c), (c,d), (d,a), (d,c), (d,d)}
represents a relation on the set A = {a,b,c,d}, then express the relation R by (i) matrix and (ii) directed graph. [3]

Solution: The matrix of the relation *R* is $M_R = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}$

2. Show that the relation $R = \{(a,b) | a - b \text{ is an integer}\}$ is an equivalence relation on the set of real numbers. [3]

Solution: As a - a = 0 is an integer implies that $(a, a) \in R$.

Therefore *R* is reflexive.

Let $(a,b) \in R$, then a - b is an integer and b - a is also an integer.

Implying that if $(a,b) \in R$ then $(b,a) \in R$.

Therefore *R* is symmetric.

Let $(a,b) \in R$ and $(b,c) \in R$, then a - b and b - c be are integers.

Now (a-b) + (b-c) = a - c is also an integer.

Implying that if $(a,b) \in R$ and $(b,c) \in R \Longrightarrow (a,c) \in R$.

Therefore *R* is transitive.

As R is reflexive, symmetric and transitive, the relation R is an equivalence relation.

[**3X6=18**]

 Represent the following graph with an adjacency matrix and find the in-degrees and outdegrees of all the vertices. [3]

Solution:

The adjacency matrix for the given graph is
$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

$$deg^{-}(a) = 2, deg^{+}(a) = 4, deg^{-}(b) = 3, deg^{+}(b) = 1,$$

 $deg^{-}(c) = 2, deg^{+}(c) = 2, deg^{-}(d) = 3, deg^{+}(d) = 3$

4. Draw the graph represented by the adjacency matrix $\begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 3 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$ [3]

Solution: The graph for the given adjacency matrix is:

5. Answer the questions about the rooted tree illustrated.

		d) <i>p</i>	e) <i>f</i> , <i>b</i> and a		g) <i>e</i> , <i>f</i> , <i>l</i> , <i>m</i> and <i>n</i> .		
Sol	ution:	a) <i>a</i>	b) <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> , <i>f</i> , <i>h</i> ,	j, q, and t	c) <i>e</i> , <i>g</i> , <i>i</i> , <i>k</i> , <i>l</i> , <i>m</i> , <i>n</i> , <i>o</i> , <i>p</i> , <i>r</i> , <i>s</i> and <i>u</i>		
c)	Which vertices are leaves?		f) Wh	f) Which vertices are descendants of <i>b</i> ?			
b)	Which vertices are internal?			e) Wh	e) Which vertices are ancestors of <i>m</i> ?		
a)	Which vertex is the root?			d) Wh	d) Which vertices are siblings of <i>o</i> ?		

6. Answer the questions about the rooted tree illustrated.

[3]

[3]

- a) Is the above rooted tree is a full m-ary tree for some positive integer m?
- b) What are the levels of the vertices *a*, *c*, *n* and *s*?
- c) Draw a subtree rooted at the vertex *d*.
- d) **Solution**: a) No b) 0, 1, 3 and 4
