

Ministry of Higher Education Kingdom of Saudi Arabia

CSTS SEU, KSA

Discrete Mathematics (Math 150) Level III, Assignment 3 (2016)

I. State whether the following statements are True or False	[6]
(1) Principle of Mathematical Induction is used to prove propositional functions <i>P</i>(<i>n</i>) v for negative integers <i>n</i>.(1) False	valid
(2) The well-ordering property states that every nonempty set of positive integers has a element. (2) <u>True</u>	a least
$(3) C(5,0) = 0$ $(3) \underline{\mathbf{False}}$	
(4) The number of three digit number formed from the set {1, 2, 3, 4} when repetition allowed any number of times is 12.	is
(4) <u>False</u>	
(5) The recurrence relation $a_n = a_{n-1}^2 + a_{n-2}$ is linear homogeneous with constant coefficients.	
(5) <u>False</u>	
(6) The generating function for the finite sequence 1, 4, 16, 64 and 256 is $1-4x+16x^2-64x^3+256x^4$.	
(6) <u>False</u>	

II. Select one of the alternatives from the following questions as your answer.

[6]

(1) Principle of Mathematical Induction, expressed as a rule of inference for the domain of positive integers is $(P(x) \land \forall k(P(k) \rightarrow P(k+1))) \rightarrow \forall n P(n)$, then x is:

A. 0

B. 1

C. -1

D. ½.

(2) If f is defined recursively by $f(n+1) = 3f(n)^2 - 4f(n-1)^2$ with f(0) = -1, f(1) = 2 for positive integers n, then f(2) is:

A. 16

B. -8

C. 8

D. -16

(3) A drawer contains half a dozen black socks and half a dozen brown socks, all unmatched.

A man takes socks out at random in the dark, the number of socks he must take out to be sure that he has at least two black socks?.

A. 3

B. 4

C. 6

D. 8

(4) If C(n, r) = 35 and P(n, r) = 210, the values of n and r are:

A. 7, 3

B. 3, 7

C. 5, 5

D. 7, 4

(5) The characteristic equation of the recurrence relation $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}$ is obtained by substituting

A.
$$a_n = r^2$$

B.
$$a_n = r^{-2}$$

$$\mathbf{C.} \ a_n = r^n$$

D.
$$a_n = r^{-n}$$

(6) The roots of the characteristic equation $r^2 - 4r + 4 = 0$ for the recurrence relation $a_n = 4a_{n-1} - 4a_{n-2}$ are r = 2, 2. The solution of the recurrence relation is:

A.
$$a_n = c_1 2^n + c_2 2^n$$

B.
$$a_n = c_1 2^{-n} + c_2 2^{-n}$$

C.
$$a_n = c_1 2^n + c_2 2 \cdot 2^n$$

D.
$$a_n = c_1 2^n + c_2 n \cdot 2^n$$

III. Answer the following. Each question carries 3 Marks.

 $[6 \times 3 = 18]$

1. Prove by Principle of Mathematical Induction:

1.2.3 + 2.3.4 + . . . +
$$n(n+1)(n+2) = \frac{n(n+1)(n+2)(n+3)}{4}$$
 for all positive integers n . [3]

Solution: Let
$$P(n) = 1.2.3 + 2.3.4 + \dots + n(n+1)(n+2) = \frac{n(n+1)(n+2)(n+3)}{4}$$

Basis Step: Let n = 1

$$L.H.S. = 1.2.3 = 6$$

R.H.S. =
$$1(1+1)(1+2)(1+3) / 4 = 24/4 = 6$$

As
$$L.H.S. = R.H.S$$

 $\Rightarrow P(1)$ is true.

Inductive Step: Assume that P(k) is true.

That means
$$1.2.3 + 2.3.4 + \dots + k(k+1)(k+2) = \frac{k(k+1)(k+2)(k+3)}{4}$$
(1)

for some arbitrary number k.

To prove that P(k+1) is true.

That means to prove that:

$$1.2.3 + 2.3.4 + \ldots + (k+1)(k+1+1)(k+1+2) = \frac{(k+1)(k+1+1)(k+1+2)(k+1+3)}{4}$$

$$\Rightarrow 1.2.3 + 2.3.4 + \dots + (k+1)(k+2)(k+3) = \frac{(k+1)(k+2)(k+3)(k+4)}{4}$$

Consider L.H.S.

$$1.2.3 + 2.3.4 + \dots + (k+1)(k+2)(k+3)$$

$$\Rightarrow \{1.2.3 + 2.3.4 + \dots + (k)(k+1)(k+2)\} + (k+1)(k+2)(k+3)$$

$$\Rightarrow \frac{k(k+1)(k+2)(k+3)}{4} + (k+1)(k+2)(k+3) \quad (sin ce from (1))$$

$$\Rightarrow \frac{k(k+1)(k+2)(k+3) + 4(k+1)(k+2)(k+3)}{4}$$

$$\Rightarrow \frac{(k+1)(k+2)(k+3)(k+4)}{4}$$

R.H.S. =
$$\frac{(k+1)(k+2)(k+3)(k+4)}{4}$$

As L.H.S. = R.H.S.

 $\Rightarrow P(k+1)$ is true.

By Principle of Mathematical Induction, the statement P(n) is true for all positive integers n.

- 2. Give a recursive definition of
 - (i) The set of positive integers that are multiples of 5.
 - (ii) The set of even integers.

[3]

Solution: (i) Let *S* be the subset of integers recursively defined by

Basis Step: $5 \in S$.

Inductive step: If $x \in S$ and $y \in S$, then $x + y \in S$.

(ii) Let S be the subset of integers recursively defined by

Basis Step: $0 \in S$.

Inductive step: If $x \in S$, then $x + 2 \in S$ and $x - 2 \in S$.

3. In a University, there are three women and four men working as faculty in Mathematics department. Find the number of ways to select a committee of three members of the department if at least one woman must be on the committee. [3]

Solution: The possible selections are:

Women(3)	Men(4)	Selection(3)
1	2	${}^{3}C_{1} \times {}^{4}C_{2} = \frac{3!}{1! 2!} \times \frac{4!}{2! 2!} = 18$
2	1	${}^{3}C_{2} \times {}^{4}C_{1} = \frac{3!}{2! 1!} \times \frac{4!}{1! 3!} = 12$
3	0	${}^{3}C_{3} \times {}^{4}C_{0} = \frac{3!}{3! 0!} \times \frac{4!}{0! 4!} = 1$

The number of ways of selecting a committee of three members of the department so that at least one woman is there on the committee = 18 + 12 + 1 = 31 ways.

4. Find the coefficient of x^7y^3 in the expansion of $(3x-5y)^{10}$. [3]

Solution:

$$(3x - 5y)^{10} = [(3x) + (-5y)]^{10} = \sum_{r=0}^{10} {10 \choose r} (3x)^{10-r} (-5y)^r$$
$$= \sum_{r=0}^{10} {10 \choose r} (3)^{10-r} (-5)^r (x)^{10-r} (y)^r$$

To find the coefficient of x^7y^3 , put r = 3.

Therefore, the coefficient of x^7y^3 in the expansion of $(3x-5y)^{10}$ is $\binom{10}{3}3^7(-5)^3$.

5. Solve the recurrence relation $a_n = 5a_{n-1} - 6a_{n-2}$ for $n \ge 2$, $a_0 = 1$, $a_1 = 2$. [3]

Solution: Given $a_n = 5a_{n-1} - 6a_{n-2} \dots (1)$

Degree = 2.

Put $a_n = r^n$ in the given recurrence relation (1).

$$\Rightarrow r^{n} = 5r^{n-1} - 6r^{n-2}$$
$$\Rightarrow r^{2} - 5r + 6 = 0$$
$$\Rightarrow (r - 2)(r - 3) = 0$$

The roots of the characteristic equation are r = 2, r = 3.

The solution of (1) is $a_n = c_1(2)^n + c_2(3)^n$(2)

Given,
$$a_0 = 1 \Rightarrow c_1 + c_2 = 1 \dots (3)$$

$$a_1 = 2 \Rightarrow 2c_1 + 3c_2 = 2 \dots (4)$$

Solving equations (3) and (4), we get $c_1 = 1$, $c_2 = 0$.

The solution of the given recurrence relation is $a_n = (2)^n$.

6. Find the values of the extended binomial coefficients $\begin{pmatrix} -3\\4 \end{pmatrix}$ and $\begin{pmatrix} 1/3\\4 \end{pmatrix}$. [3]

Solution: If n is a real number and r is a nonnegative integer, then

$$\binom{n}{r} = \frac{n(n-1)(n-2)\dots(n-r+1)}{r!}$$

$$\binom{-3}{4} = \frac{(-3)(-3-1)(-3-2)(-3-3)}{4!} = 15.$$

$$\binom{1/3}{4} = \frac{\left(\frac{1}{3}\right)\left(\frac{1}{3} - 1\right)\left(\frac{1}{3} - 2\right)\left(\frac{1}{3} - 3\right)}{4!} = \frac{-10}{243}.$$
