Ministry of Higher Education

Kingdom of Saudi Arabia
CSTS
SEU, KSA

Discrete Mathematics (Math 150)

Level III, Assignment 3
(2016)
I. State whether the following statements are True or False
(1) Principle of Mathematical Induction is used to prove propositional functions $P(n)$ valid for negative integers n.
(1) False
(2) The well-ordering property states that every nonempty set of positive integers has a least element.
(2) True
(3) $C(5,0)=0$
(3) False
(4) The number of three digit number formed from the set $\{1,2,3,4\}$ when repetition is allowed any number of times is 12 .
(4) False
(5) The recurrence relation $a_{n}=a_{n-1}^{2}+a_{n-2}$ is linear homogeneous with constant coefficients.
(5) False
(6) The generating function for the finite sequence $1,4,16,64$ and 256 is $1-4 x+16 x^{2}-64 x^{3}+256 x^{4}$.
(6) False

II. Select one of the alternatives from the following questions as your answer.

(1) Principle of Mathematical Induction, expressed as a rule of inference for the domain of positive integers is $(P(x) \wedge \forall k(P(k) \rightarrow P(k+1))) \rightarrow \forall n P(n)$, then x is:
A. 0
B. 1
C. -1
D. $1 / 2$.
(2) If f is defined recursively by $f(n+1)=3 f(n)^{2}-4 f(n-1)^{2}$ with $f(0)=-1, f(1)=2$ for positive integers n, then $f(2)$ is:
A. 16
B. -8
C. 8
D. -16
(3) A drawer contains half a dozen black socks and half a dozen brown socks, all unmatched. A man takes socks out at random in the dark, the number of socks he must take out to be sure that he has at least two black socks?.
A. 3
B. 4
C. 6
D. 8
(4) If $C(n, r)=35$ and $P(n, r)=210$, the values of n and r are:
A. 7, 3
B. 3, 7
C. 5,5
D. 7,4
(5) The characteristic equation of the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}$ is obtained by substituting
A. $a_{n}=r^{2}$
B. $a_{n}=r^{-2}$
C. $a_{n}=r^{n}$
D. $a_{n}=r^{-n}$
(6) The roots of the characteristic equation $r^{2}-4 r+4=0$ for the recurrence relation $a_{n}=4 a_{n-1}-4 a_{n-2}$ are $r=2,2$. The solution of the recurrence relation is:
A. $a_{n}=c_{1} 2^{n}+c_{2} 2^{n}$
B. $a_{n}=c_{1} 2^{-n}+c_{2} 2^{-n}$
C. $a_{n}=c_{1} 2^{n}+c_{2} 2 \cdot 2^{n}$
D. $a_{n}=c_{1} 2^{n}+c_{2} n \cdot 2^{n}$
III. Answer the following. Each question carries 3 Marks.
[6 X $3=18$]

1. Prove by Principle of Mathematical Induction:
1.2.3 $2.3 .4+\ldots+n(n+1)(n+2)=\frac{n(n+1)(n+2)(n+3)}{4}$ for all positive integers n. [3]

Solution: Let $P(n)=1.2 .3+2.3 .4+\ldots+n(n+1)(n+2)=\frac{n(n+1)(n+2)(n+3)}{4}$
Basis Step: Let $n=1$
L.H.S. $=1.2 \cdot 3=6$
R.H.S. $=1(1+1)(1+2)(1+3) / 4=24 / 4=6$

As L.H.S. = R.H.S
$\Rightarrow P(1)$ is true.
Inductive Step: Assume that $P(k)$ is true.
That means 1.2.3+2.3.4+ $\ldots+k(k+1)(k+2)=\frac{k(k+1)(k+2)(k+3)}{4}$
for some arbitrary number k.
To prove that $P(k+1)$ is true.

That means to prove that:

$$
\begin{aligned}
& 1.2 .3+2.3 .4+\ldots+(k+1)(k+1+1)(k+1+2)=\frac{(k+1)(k+1+1)(k+1+2)(k+1+3)}{4} \\
& \Rightarrow 1.2 .3+2.3 .4+\ldots+(k+1)(k+2)(k+3)=\frac{(k+1)(k+2)(k+3)(k+4)}{4}
\end{aligned}
$$

Consider L.H.S.
$1.2 .3+2.3 .4+\ldots+(k+1)(k+2)(k+3)$
$\Rightarrow\{1.2 .3+2.3 .4+\ldots+(k)(k+1)(k+2)\}+(k+1)(k+2)(k+3)$
$\Rightarrow \frac{k(k+1)(k+2)(k+3)}{4}+(k+1)(k+2)(k+3) \quad(\sin$ ce from $(1))$
$\Rightarrow \frac{k(k+1)(k+2)(k+3)+4(k+1)(k+2)(k+3)}{4}$
$\Rightarrow \frac{(k+1)(k+2)(k+3)(k+4)}{4}$
R.H.S. $=\frac{(k+1)(k+2)(k+3)(k+4)}{4}$

As L.H.S. = R.H.S.
$\Rightarrow P(k+1)$ is true.
By Principle of Mathematical Induction, the statement $P(n)$ is true for all positive integers n.
2. Give a recursive definition of
(i) The set of positive integers that are multiples of 5 .
(ii) The set of even integers.

Solution: (i) Let S be the subset of integers recursively defined by Basis Step: $5 \in S$.

Inductive step: If $x \in S$ and $y \in S$, then $x+y \in S$.
(ii) Let S be the subset of integers recursively defined by

Basis Step: $0 \in S$.
Inductive step: If $x \in S$, then $x+2 \in S$ and $x-2 \in S$.
3. In a University, there are three women and four men working as faculty in Mathematics department. Find the number of ways to select a committee of three members of the department if at least one woman must be on the committee.

Solution: The possible selections are:

Women(3)	Men(4)	Selection(3)
1	2	${ }^{3} C_{1} \times{ }^{4} C_{2}=\frac{3!}{1!2!} \times \frac{4!}{2!2!}=18$
2	1	${ }^{3} C_{2} \times{ }^{4} C_{1}=\frac{3!}{2!1!} \times \frac{4!}{1!3!}=12$
3	0	${ }^{3} C_{3} \times{ }^{4} C_{0}=\frac{3!}{3!0!} \times \frac{4!}{0!4!}=1$

The number of ways of selecting a committee of three members of the department so that at least one woman is there on the committee $=18+12+1=31$ ways.
4. Find the coefficient of $x^{7} y^{3}$ in the expansion of $(3 x-5 y)^{10}$.

Solution:

$$
\begin{aligned}
(3 x-5 y)^{10}=[(3 x)+(-5 y)]^{10} & =\sum_{r=0}^{10}\binom{10}{r}(3 x)^{10-r}(-5 y)^{r} \\
& =\sum_{r=0}^{10}\binom{10}{r}(3)^{10-r}(-5)^{r}(x)^{10-r}(y)^{r}
\end{aligned}
$$

To find the coefficient of $x^{7} y^{3}$, put $r=3$.
Therefore, the coefficient of $x^{7} y^{3}$ in the expansion of $(3 x-5 y)^{10}$ is $\binom{10}{3} 3^{7}(-5)^{3}$.
5. Solve the recurrence relation $a_{n}=5 a_{n-1}-6 a_{n-2}$ for $n \geq 2, a_{0}=1, a_{1}=2$.

Solution: Given $a_{n}=5 a_{n-1}-6 a_{n-2} \ldots \ldots \ldots \ldots \ldots$..............

$$
\text { Degree }=2
$$

Put $a_{n}=r^{n}$ in the given recurrence relation (1).

$$
\begin{aligned}
& \Rightarrow r^{n}=5 r^{n-1}-6 r^{n-2} \\
& \Rightarrow r^{2}-5 r+6=0 \\
& \Rightarrow(r-2)(r-3)=0
\end{aligned}
$$

The roots of the characteristic equation are $r=2, r=3$.
The solution of (1) is $a_{n}=c_{1}(2)^{n}+c_{2}(3)^{n}$
Given, $a_{0}=1 \Rightarrow c_{1}+c_{2} \quad=1$ \qquad

$$
\begin{equation*}
a_{1}=2 \Rightarrow 2 c_{1}+3 c_{2}=2 \tag{3}
\end{equation*}
$$

Solving equations (3) and (4), we get $c_{1}=1, c_{2}=0$.
The solution of the given recurrence relation is $a_{n}=(2)^{n}$.
6. Find the values of the extended binomial coefficients $\binom{-3}{4}$ and $\binom{1 / 3}{4}$.

Solution: If n is a real number and r is a nonnegative integer, then

$$
\begin{aligned}
& \binom{n}{r}=\frac{n(n-1)(n-2) \ldots(n-r+1)}{r!} \\
& \binom{-3}{4}=\frac{(-3)(-3-1)(-3-2)(-3-3)}{4!}=15 . \\
& \binom{1 / 3}{4}=\frac{\left(\frac{1}{3}\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{3}-2\right)\left(\frac{1}{3}-3\right)}{4!}=\frac{-10}{243} .
\end{aligned}
$$

