

DISCRETE MATHEMATICS (MATH150) Level III ASSIGNMENT-1 2016

Section-I

1.State whether the following statements are True or False.

(9X1=9 Marks)

(a) The conditional statement $p \rightarrow q$ is true if p is false and q is false.

(a) True

(b) The contrapositive of $p \rightarrow q$ is $\neg q \rightarrow \neg p$

(b) True

- (c) Two propositions are logically **e**quivalent if they always have the different truth values for all possible cases of the two statements.
 - (c) False
- (d) If P(x) denotes "x < 0" and domain is set of all integers, then $\forall x \ P(x)$ is false.
 - (d) True
- (e) Let P(x, y) denote "x + y = 0". The truth value of the quantification $\exists x \forall y P(x, y)$ is true.
 - (e) False

(f)
$$\neg \forall x (P(x) \rightarrow Q(x)) \equiv \exists x (P(x) \land \neg Q(x))$$

(f) True

(g) For the given logical circuit, the output is $F = A + (\overline{B}.C) + BC$

(g) False

(h) In Boolean algebra x + y = y + x

(h) True

(i) The value of Boolean expression is $\overline{1.0} + \overline{1+0} = 1$.

(i) True

Section-II

2. Select one of the alternatives from the following questions as your answer.

(9x1=9 Marks)

- (a) How many rows appear in a truth table with three propositions p, q and r?
 - (A)3
 - (B) 4
 - (C) 6

(D) 8

- (b) Negation of $p \wedge q$ is
 - (A) $\neg p \land q$
 - (B) $\neg p \lor q$
 - (C) $\neg p \lor \neg q$
 - (D) $\neg p \land \neg q$
- (c) The compound proposition $p \land (p \lor q)$ is logically equivalent to
 - (A) *p*
 - (B) q
 - (C) $p \wedge q$
 - (D) $p \vee q$
- (d) The universal quantification $\forall x P(x)$ is false if
 - (A) P(x) is false for every x
 - (B) There is an x for which P(x) is false
 - (C) P(x) is true for every x
 - (D) P(x) is neither true nor false for every x
- (e) Proof by Contrapositive (Indirect proof) of the statement $p \rightarrow q$ is same as proving
 - (A) $\neg p \rightarrow \neg q$
 - (B) $\neg p \leftrightarrow \neg q$
 - $(C) \neg q \rightarrow \neg p$
 - (D) $q \rightarrow p$
- (f) The sum of two positive integer is always positive. Its logical translation is
 - (A) $\forall x \exists y ((x > 0) \rightarrow (x + y > 0))$
 - (B) $\forall x \exists y ((x > 0) \land (y > 0) \rightarrow (x + y > 0))$
 - (C) $\forall x \ \forall y \ ((x > 0) \land (y > 0) \rightarrow (x + y > 0))$
 - (D) None of the above.

- (g) The basic logic gate whose output is the complement of the input is the
 - (A) AND Gate
 - (B) OR Gate

(C) Inverter Gate

- (D) NAND Gate
- (h) The dual of x. $\overline{z} + \underline{x} \cdot 0 + \overline{x} \cdot 1 + (\overline{y} + z)$ is equal to
 - (A)(x+z).(x+1).(x+1).(y.z)

(B) $(x+z^{-})$. (x+1). $(x^{-}+0)$. $(y^{-}z)$

- (C) $(x+\overline{z})$. (x+1). (x+1). (y.z)
- (D) (x+z). (x+0).(x+1).(y-z)
- (i) The value of $\overline{x} + \overline{y} + \overline{x} \cdot \overline{y}$ is equal to
 - (A) 1
 - (B) 0
 - (C) xy + x + y
 - (D) $x + y + \overline{x \cdot y}$

Section-III

Answer the following Questions

 $(6 \times 2 \text{ marks} = 12 \text{ marks})$

Q 3. By means of a truth table, show that the statement $p \ v \ \neg \ (p \ \Lambda \ q)$ is a tautology. **Solution**: The Truth table for the given statement is:

p	a	рΛα	¬ (p Λ q)	$p v \neg (p \Lambda q)$
T	T	T	F	T
T	F	F	T	T
F	T	F	T	T
F	F	F	T	T

Since the given statement has truth-values T for all its entries in the last column, the given statement is a tautology.

Q 4. Find the converse and inverse statements of the statement "If you do your homework, then you will be allowed to play".

Solution: Let p(x): You do your homework.

q(x): You will be allowed to play.

Converse for $p \rightarrow q$ is $q \rightarrow p$. "If you will be allowed to play, then you do your homework". **Inverse** for $p \rightarrow q$ is $\neg p \rightarrow \neg q$. "If you do not do your homework, then you will not be allowed to play".

Q 5. Prove that for an integer n, if n^2 is odd, then n is odd.

Solution: Proof by method of contraposition.

Proving the statement $p \rightarrow q$ is same as proving $\neg q \rightarrow \neg p$

Assume that n is even.

Therefore, there exists an integer k such that n = 2k.

Now $n^2 = 4k^2 = 2(2k^2)$

Which implies that n^2 is even.

We have shown that if n is an even integer, then n^2 is also even.

Therefore by contraposition, for an integer n, if n² is odd, then n is odd.

Q 6. Over the universe of animals, let

p(x): x is a whale;

q(x): x is a fish;

r(x): x lives in water.

Write the following sentences as quantified statements:

- (1) There exists an animal, which does not live in water.
- (2) There exists a fish that is not a whale.
- (3) Every whale that lives in the water is a fish.

Solution: (1) $\exists x (\neg r(x))$.

- (2) $\exists x (q(x) \land \neg p(x)).$
- (3) $\forall x ((p(x) \land r(x) \rightarrow q(x)).$
- Q 7. Verify the distributive law by constructing a truth table for the Boolean variables x, y, z x + y, z = (x + y), (x + z)

Solution:

X	у	Z	y.z	x+yz	x+y	x+z	(x+y)(x+z)
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	0	0	0	1	1	1	1
0	1	1	1	1	1	1	1
0	1	0	0	0	1	0	0
0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0

We can see from the truth table, column 5 and column 8 are identical

Q 8. Write $f(x, y, z) = (x + y.z).(\bar{x} + y.z)$ as sum of products for the Boolean variables x, y, z. **Solution**:

X	y	Z	\bar{x}	y.z	x+ y.z	\bar{x} +y.z	$(x+y.z).(\bar{x}+y.z)$
1	1	1	0	1	1	1	1
1	1	0	0	0	1	0	0
1	0	1	0	0	1	0	0
1	0	0	0	0	1	0	0
0	1	1	1	1	1	1	1
0	1	0	1	0	0	1	0
0	0	1	1	0	0	1	0
0	0	0	1	0	0	1	0

In the last column only two 1's are present, so we have to write two terms related to input variables x, y and z. Therefore, $\mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \mathbf{x} \cdot \mathbf{y} \cdot \mathbf{z} + \overline{\mathbf{x}} \cdot \mathbf{y} \cdot \mathbf{z}$