Kingdom of Saudi Arabia
Ministry of Higher Education
Saudi Electronic University

المملكة العربية السعودية
وزارة التعليم العالي
الجامعة الالكترونية السعودية

DISCRETE MATHEMATICS (MATH-150)

Level III

ASSIGNMENT-2 (2016)

Section-I

1. State whether the following statements are True or False
($6 \times 1=6$ Marks)
a) If $|A|=7,|B|=5,|A \bigcap B|=2$ then $|A \bigcup B|=12$.
(a) False
b) If $A=\{a, b, c\}$ and $B=\{b,\{c\}\}$ then $c \in A-B$.
(b) True
c) If $f: Z \rightarrow Z$ defined by $f(\mathrm{x})=\mathrm{x}+1$ then f is not invertible.
(c) False
d) Greedy Algorithms can be used to solve optimization problems.
(d) True
e) $4+{ }_{10} 12$ is equal to 6 .
(e) False
f) The Binary expansion of $(64)_{10}$ is $(1000000)_{2}$.
(f) True

Section-II

2. Select one of the alternative form each of the following questions as your answer
(a) If $\mathrm{U}=\{1,2,4,7,8,9\}, A=\{1,2,4,7\}$ and $B=\{4,7,8,9\}$, then $A \cap \bar{B}=$
(A) $\{1,2,4,7\}$
(B) $\{1,2\}$
(C) $\{8,9\}$
(D) $\}$
(b) If $f(x)=x^{2}-3$ and $g(x)=x+7$ then $(f \circ g)(x)$ is
(A) x^{2}
(B) $2 x+1$
(C) $x^{2}+4$
(D) $x^{3}+2$

NOTE: None of the alternative is correct. Award one mark for attempting the question.
(c) The value of $\sum_{i=2}^{6}(-1)^{i}$ is
(A) 0
(B) 2
(C) -1
(D) 1
(d) To sort a list with n elements, the insertion sort begins with which of the following element?
(A) First
(B) Second
(C) Third
(D) Fourth
(e) If a and b are positive integers, then
(A) $\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)=a / b$
(B) $\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)=b / a$
(C) $\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)=1 / a b$
(D) $\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)=a \cdot b$
(f) The prime factorization of 666 is
(A) $2^{2} \cdot 5^{2}$
(B) $2^{2} \cdot 3^{2}$
(C) $2^{2} \cdot 3^{2} \cdot 5^{2}$
(D) $2 \cdot 3^{2} \cdot 37$

Section-III

Answer the following. Each carries $\mathbf{3}$ marks.
3. If $f: Z^{+} \rightarrow Z^{+}$defined by $f(\mathrm{x})=2 \mathrm{x}+3$, then show that f is an injective function.

Solution: To prove that a function f is injective we need to show that if $f(\mathrm{a})=f(\mathrm{~b})$ for arbitrary a, b in the domain Z^{+}with $(a \neq b)$, then $a=b$.

$$
\begin{aligned}
& \text { Let } f(\mathrm{a})=f(\mathrm{~b}) \\
& \Rightarrow 2 \mathrm{a}+3=2 \mathrm{~b}+3(\mathrm{by} \text { definition of } f) \\
& \Rightarrow 2 \mathrm{a}=2 \mathrm{~b} \\
& \Rightarrow \mathrm{a}=\mathrm{b} \\
& \Rightarrow f \text { is an injective function } .
\end{aligned}
$$

4. Consider the recurrence relation $f_{\mathrm{n}}=f_{\mathrm{n}-1}+3 f_{\mathrm{n}-2}$ with initial conditions $f_{0}=0, f_{1}=1$. Find f_{3}, f_{5}, and f_{7}.

Solution: Given $f_{n}=f_{n-1}+3 f_{n-2}$ and $f_{0}=0, f_{1}=1$.
Putting $n=1,2,3,4,5,6$ and 7 in the given recurrence relation, we get

$$
\begin{aligned}
& f_{2}=f_{1}+3 f_{0}=1+3(0)=1 \\
& f_{3}=f_{2}+3 f_{1}=1+3(1)=4 \\
& f_{4}=f_{3}+3 f_{2}=4+3(1)=7 \\
& f_{5}=f_{4}+3 f_{3}=7+3(4)=19 \\
& f_{6}=f_{5}+3 f_{4}=19+3(7)=40 \\
& f_{7}=f_{6}+3 f_{5}=40+3(19)=97
\end{aligned}
$$

5. Prove the distributive law $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ for three sets A, B and C.

Solution: One can prove this identity by showing that each side is a subset of the other side
(OR)

By using a membership table for the combinations on both sides.

A	B	C	$B \cup C$	$A \cap(B \cup C)$	$A \cap B$	$A \cap C$	$(A \cap B) \cup(A \cap C)$
1	1	1	1	1	1	1	1
1	1	0	1	1	1	0	1
1	0	1	1	1	0	1	1
1	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	0	1	1	0	0	0	0
0	0	0	0	0	0	0	0

As the columns for $A \cap(B \cup C)$ and $(A \cap B) \cup(A \cap C)$ are same, the identity is valid.
6. Use the bubble sort and put the list $7,8,4,6,5$ in increasing order.

Solution:

First Pass: $(7,8,4,6,5) \rightarrow(7,4,8,6,5) \rightarrow(7,4,6,8,5) \rightarrow(7,4,6,5,8)$
Second Pass: $(7,4,6,5,8) \rightarrow(4,7,6,5,8) \rightarrow(4,6,7,5,8) \rightarrow(4,6,5,7,8)$
Third Pass: $(4,6,5,7,8) \rightarrow(4,5,6,7,8)$
Fourth Pass: $(4,5,6,7,8)$
7. Find the octal expansion of $(10111010111101)_{2}$.

Solution: To convert the binary expansion to octal, group the binary digits into blocks of three and write the corresponding octal digits. Add 0 's if necessary at the beginning to form a block of three binary digits.

Hence $\left(\begin{array}{lllll}010 & 111 & 010 & 111 & 101\end{array}\right)_{2}=\left(\begin{array}{ll}27275\end{array}\right)_{8}$
8. Find the greatest common divisor of 414 and 662, using the Euclidean algorithm.

Solution: By successively applying the division algorithm, we get the following:

$$
\begin{aligned}
& 662=414.1+248 \\
& 414=248.1+166 \\
& 248=166.1+82 \\
& 166=82.2+2 \\
& 82=2.41+0
\end{aligned}
$$

Hence, $\operatorname{gcd}(662,414)=$ the last nonzero remainder in the sequence of divisions. i.e., $\operatorname{gcd}(662,414)=2$.

