Kingdom of Saudi Arabia Ministry of Higher Education Saudi Electronic University



# **DISCRETE MATHEMATICS (MATH-150)**

# Level III

### ASSIGNMENT-2 (2016)

-----

#### Section-I

| 1. | State whether the following statements are True or False |
|----|----------------------------------------------------------|
|    |                                                          |

a) If |A| = 7, |B| = 5,  $|A \cap B| = 2$  then  $|A \cup B| = 12$ .

(a) **<u>False</u>** 

(b) <u>True</u>

- b) If  $A = \{a, b, c\}$  and  $B = \{b, \{c\}\}$  then  $c \in A B$ .
- c) If  $f: Z \rightarrow Z$  defined by f(x) = x + 1 then *f* is not invertible.

(c) False

- d) Greedy Algorithms can be used to solve optimization problems.
- (d) <u>**True</u>** e)  $4 +_{10} 12$  is equal to 6.</u>
  - -
  - f) The Binary expansion of  $(64)_{10}$  is  $(1000000)_2$ .

(f) <u>**True**</u>

(e) False

(6×1= 6 Marks)

## Section-II

### 2. Select one of the alternative form each of the following questions as your answer (6×1= 6 Marks)

- (a) If U= {1, 2, 4, 7, 8, 9},  $A = \{1, 2, 4, 7\}$  and  $B = \{4, 7, 8, 9\}$ , then  $A \cap \overline{B} =$ 
  - (A) {1, 2, 4, 7}
    (B) {1, 2}
    (C) {8, 9}
    (D) {}
- (b) If  $f(x) = x^2 3$  and g(x) = x + 7 then  $(f \circ g)(x)$  is
  - (A)  $x^2$
  - **(B)** 2x + 1
  - (C)  $x^2 + 4$
  - (D)  $x^3 + 2$

NOTE: None of the alternative is correct. Award one mark for attempting the question.

- (c) The value of  $\sum_{i=2}^{6} (-1)^i$  is
  - (A) 0
  - **(B)** 2
  - (C) -1
  - (D) 1

(d) To sort a list with *n* elements, the insertion sort begins with which of the following element?

(A) First
(B) Second
(C) Third
(D) Fourth

(6×3=18 Marks)



- (A)  $gcd(a,b) \cdot lcm(a,b) = a/b$
- (B)  $gcd(a,b) \cdot lcm(a,b) = b/a$
- (C)  $gcd(a,b) \cdot lcm(a,b) = 1/ab$
- (D)  $gcd(a,b) \cdot lcm(a,b) = a \cdot b$
- (f) The prime factorization of 666 is
  - (A)  $2^2 \cdot 5^2$ (B)  $2^2 \cdot 3^2$
  - (C)  $2^2 \cdot 3^2 \cdot 5^2$

(D)  $2 \cdot 3^2 \cdot 37$ 



#### Answer the following. Each carries 3 marks.

**3.** If  $f: Z^+ \to Z^+$  defined by f(x) = 2x + 3, then show that *f* is an injective function.

**Solution:** To prove that a function *f* is injective we need to show that if f(a) = f(b) for arbitrary a, b in the domain  $Z^+$  with  $(a \neq b)$ , then a = b.

Let f(a) = f(b)  $\Rightarrow 2a + 3 = 2b + 3$  (by definition of f)  $\Rightarrow 2a = 2b$   $\Rightarrow a = b$  $\Rightarrow f$  is an injective function. **4.** Consider the recurrence relation  $f_n = f_{n-1} + 3 f_{n-2}$  with initial conditions  $f_0 = 0$ ,  $f_1 = 1$ . Find  $f_3$ ,  $f_5$ , and  $f_7$ .

**Solution:** Given  $f_n = f_{n-1} + 3f_{n-2}$  and  $f_0 = 0$ ,  $f_1 = 1$ .

Putting n = 1, 2, 3, 4, 5, 6 and 7 in the given recurrence relation, we get

$$\begin{split} f_2 &= f_1 + 3f_0 = 1 + 3(0) = 1 \\ f_3 &= f_2 + 3f_1 = 1 + 3(1) = 4 \\ f_4 &= f_3 + 3f_2 = 4 + 3(1) = 7 \\ f_5 &= f_4 + 3f_3 = 7 + 3(4) = 19 \\ f_6 &= f_5 + 3f_4 = 19 + 3(7) = 40 \\ f_7 &= f_6 + 3f_5 = 40 + 3(19) = 97 \end{split}$$

5. Prove the distributive law  $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$  for three sets A, B and C.

Solution: One can prove this identity by showing that each side is a subset of the other side

(OR)

By using a membership table for the combinations on both sides.

| A | В | С | $B \cup C$ | $A \cap (B \cup C)$ | $A \cap B$ | $A \cap C$ | $(A \cap B) \cup (A \cap C)$ |
|---|---|---|------------|---------------------|------------|------------|------------------------------|
| 1 | 1 | 1 | 1          | 1                   | 1          | 1          | 1                            |
| 1 | 1 | 0 | 1          | 1                   | 1          | 0          | 1                            |
| 1 | 0 | 1 | 1          | 1                   | 0          | 1          | 1                            |
| 1 | 0 | 0 | 0          | 0                   | 0          | 0          | 0                            |
| 0 | 1 | 1 | 1          | 0                   | 0          | 0          | 0                            |
| 0 | 1 | 0 | 1          | 0                   | 0          | 0          | 0                            |
| 0 | 0 | 1 | 1          | 0                   | 0          | 0          | 0                            |
| 0 | 0 | 0 | 0          | 0                   | 0          | 0          | 0                            |

As the columns for  $A \cap (B \cup C)$  and  $(A \cap B) \cup (A \cap C)$  are same, the identity is valid.

6. Use the bubble sort and put the list 7, 8, 4, 6, 5 in increasing order.

```
Solution:

First Pass: (7,8,4,6,5) \rightarrow (7,4,8,6,5) \rightarrow (7,4,6,8,5) \rightarrow (7,4,6,5,8)

Second Pass: (7,4,6,5,8) \rightarrow (4,7,6,5,8) \rightarrow (4,6,7,5,8) \rightarrow (4,6,5,7,8)

Third Pass: (4,6,5,7,8) \rightarrow (4,5,6,7,8)

Fourth Pass: (4,5,6,7,8)
```

7. Find the octal expansion of (10 1110 1011 1101)<sub>2</sub>.

**Solution:** To convert the binary expansion to octal, group the binary digits into blocks of three and write the corresponding octal digits. Add 0's if necessary at the beginning to form a block of three binary digits.

Hence  $(010 \ 111 \ 010 \ 111 \ 101)_2 = (27275)_8$ 

8. Find the greatest common divisor of 414 and 662, using the Euclidean algorithm.

Solution: By successively applying the division algorithm, we get the following:

```
662 = 414.1 + 248414 = 248.1 + 166248 = 166.1 + 82166 = 82.2 + 282 = 2.41 + 0
```

Hence, gcd(662, 414) = the last nonzero remainder in the sequence of divisions.

i.e., gcd(662, 414) = 2.