SEU, KSA

Discrete Mathematics (Math 150)
 Level III, Assignment 1

(2015)

1. State whether the following statements are true or false:
(a) $y \vee \neg(\neg x \wedge y)$ is a tautology.
(a) True
(b) The compound propositions $\neg(p \wedge q)$ and $\neg p \vee \neg q$ are not equivalent.
(b) False
(c) The negation of conjunction of two propositions is equivalent to the disjunction of the negation of those propositions.
(c) True
(d) In Boolean algebra, $1+x=x$.
(d) False
(e) The product of sums is basically the ORing of ANDed terms.
(e) False
(f) The dual of $(x+y) . z$ is $x . y+z$.
(f) True
(g) The universal quantification $\forall x P(x)$ is false only when $P(x)$ is false for each value of x in the domain.
(g) False
(h) The quantified statement $\forall x, y \in \mathbb{N}, x+y>x \wedge x+y>y$ is true.
(h) True
(i) Negation of $\exists x(p(x) \wedge q(x))$ is $\forall x \neg p(x) \rightarrow q(x)$.
(i) \qquad
2. Select one of the alternatives from the following questions as your answer.
(a) The compound proposition $p \wedge q$ is equivalent to
A. $p \rightarrow q$
B. $\neg(p \rightarrow \neg q)$
C. $\neg p \rightarrow q$
D. None
(b) The converse statement of the compound proposition $q \rightarrow p$ is
A. $\neg p \rightarrow \neg q$
B. $\neg q \rightarrow \neg p$
C. $p \rightarrow q$
D. None
(c) The compound proposition $p \vee(p \wedge q)$ is equivalent to
A. p
B. q
C. $p \vee q$
D. $p \wedge q$
(d) Which of the following expression is in the sum-of-products form?
A. $(x+y) \cdot(z+w)$
B. $x \cdot y+z \cdot w$
C. $(x) y(z w)$
D. None of above
(e) The values of x, y, z and w that makes the sum term $\bar{x}+y+\bar{z}+w$ equal to zero is
A. $x=1, y=0, z=0, w=0$
B. $x=0, y=1, z=0, w=0$
C. $x=1, y=0, z=1, w=1$
D. $x=1, y=0, z=1, w=0$
(f) The resulting Boolean expression for the following circuit is

A. $(C(A+B) D)+E$
B. $[(C(A+B) D)] E$
C. $A B C D E$
D. $C(A+B) D E$
(g) The multiplicative inverse law for the nonzero rational numbers is given by
A. $\forall x \exists y(x y=1)$
B. $\exists x \forall y(x y=1)$
C. $\forall x \forall y(x y=1)$
D. all of the above.
(h) The negation of $\exists x(p(x) \wedge q(x))$ is
A. $\forall x, p(x) \rightarrow \neg q(x)$
B. $\forall x, \neg p(x) \rightarrow q(x)$
C. $\forall x, p(x) \vee \neg q(x)$
D. $\forall x, p(x) \rightarrow q(x)$
(i) When multiple quantifiers differ, then the meaning of a predicate logic sentence
A. is determined by arithmetic operators
B. depends on order
C. is ambiguous
D. is independent of order
3. Construct the truth table of compound proposition $(p \rightarrow q) \wedge(\neg p \rightarrow r)$.

Solution: The truth table is given below

p	q	$p \rightarrow q$	$\neg p$	r	$\neg p \rightarrow r$	$(p \rightarrow q) \wedge(\neg p \rightarrow r)$
T	T	T	F	T	F	F
T	F	T	F	F	T	T
F	T	F	T	F	T	F
F	F	T	T	T	T	T

4. Find the contrapositive and inverse statements of the statement "If you do every exercise in this book then you are a good student"

Solution: Let us suppose that p denotes the proposition you do every exercise in this book and q denotes the proposition you are a good student. Then $\neg p$ will denotes the proposition you don't do every exercise in this book and $\neg q$ denotes the proposition you are not a good student.

We know that the contrapositive of $p \rightarrow q$ is the proposition $\neg q \rightarrow \neg p$. Therefore the contrapositive of the given statement will be "If you are not a good student then don't do every exercise in this book".

The proposition $\neg p \rightarrow \neg q$ is called the inverse of $p \rightarrow q$. Therefore the inverse of the given statement will be "If you don't do every exercise in this book then you are not a good student."
5. Find the values of the boolean function $f(x, y, z)=\bar{x} \bar{y} z+\bar{x} y z+x y \bar{z}$.

Solution: The values of the Boolean function are tabulated as follows:

x	y	z	$f(x, y, z)$
0	0	0	0
0	0	1	1
0	1	0	0
1	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1
1	1	1	0

6. Determine the output of the following combinatorial circuit:

Solution:

The resulting output of the given circuit will be

$$
R=\bar{A} \cdot(\bar{B}+C \cdot(A+B)) \quad \text { (Verify it.) }
$$

7. Prove that $n^{2}-2$ is not divisible by 5 .

Solution: We will prove that $n^{2}-2$ is not divisible by 5 , by giving the counter example. Take $n=6, n^{2}-2=34$, not divisible by 5 .
8. Let the domain for x be the set of integers.
$p(x): x$ is even.
$q(x): x$ is a prime number.
$r(x): 5$ divides x.

Write the following symbols as quantified statements.

1. $\exists x,(p(x) \wedge q(x))$.
2. $\forall x(p(x) \wedge q(x)) \rightarrow r(x)$.

Solution: The quantified statements will be as follows:

1. Some integers are even and prime numbers.
2. 5 divides every even and prime integers.
