Ministry of Higher Education Kingdom of Saudi Arabia

CSTS SEU, KSA

Discrete Mathematics (Math 150) Level III, Assignment 1 (2015)

- 1. State whether the following statements are true or false:
 - (a) $y \lor \neg(\neg x \land y)$ is a tautology.
 - (b) The compound propositions $\neg(p \land q)$ and $\neg p \lor \neg q$ are not equivalent.
 - (c) The negation of conjunction of two propositions is equivalent to the disjunction of the negation of those propositions.
 - (d) In Boolean algebra, 1 + x = x.
 - (e) The product of sums is basically the ORing of ANDed terms.
 - (f) The dual of (x+y).z is x.y+z.

(I) <u>IIUe</u>

- (g) The universal quantification $\forall x P(x)$ is false only when P(x) is false for each value of x in the domain.
- (h) The quantified statement $\forall x, y \in \mathbb{N}, x + y > x \land x + y > y$ is true.

Page 1 of 6

(h) <u>True</u>

(i) <u>False</u>

(i) Negation of $\exists x(p(x) \land q(x))$ is $\forall x \neg p(x) \rightarrow q(x)$.

Please go on to the next page...

[9]

(c) <u>True</u>

(a) <u>True</u>

(b) False

(d) <u>False</u>

(e) <u>False</u>

(f) <u>True</u>

(g) <u>False</u>

[9]

Math 150

- 2. Select one of the alternatives from the following questions as your answer.
 - (a) The compound proposition $p \wedge q$ is equivalent to
 - A. $p \rightarrow q$ B. $\neg (p \rightarrow \neg q)$ C. $\neg p \rightarrow q$ D. None
 - (b) The converse statement of the compound proposition $q \to p$ is
 - A. $\neg p \rightarrow \neg q$ B. $\neg q \rightarrow \neg p$ C. $p \rightarrow q$ D. None
 - (c) The compound proposition $p \lor (p \land q)$ is equivalent to
 - A. pB. qC. $p \lor q$ D. $p \land q$
 - (d) Which of the following expression is in the sum-of-products form?
 - A. (x + y).(z + w)B. x.y + z.wC. (x)y(zw)D. None of above

(e) The values of x, y, z and w that makes the sum term x
 + y + z
 + w equal to zero is

A. x = 1, y = 0, z = 0, w = 0
B. x = 0, y = 1, z = 0, w = 0
C. x = 1, y = 0, z = 1, w = 1
D. x = 1, y = 0, z = 1, w = 0

(f) The resulting Boolean expression for the following circuit is

A. (C(A+B)D) + EB. [(C(A+B)D)]EC. ABCDED. C(A+B)DE

(g) The multiplicative inverse law for the nonzero rational numbers is given by

- A. $\forall x \exists y \ (xy = 1)$
- B. $\exists x \forall y \ (xy = 1)$
- C. $\forall x \forall y \ (xy = 1)$
- D. all of the above.
- (h) The negation of $\exists x (p(x) \land q(x))$ is

A. $\forall x, p(x) \rightarrow \neg q(x)$ B. $\forall x, \neg p(x) \rightarrow q(x)$

- C. $\forall x, p(x) \lor \neg q(x)$
- D. $\forall x, p(x) \rightarrow q(x)$
- (i) When multiple quantifiers differ, then the meaning of a predicate logic sentence
 - A. is determined by arithmetic operators
 - B. depends on order
 - C. is ambiguous
 - D. is independent of order
- 3. Construct the truth table of compound proposition $(p \to q) \land (\neg p \to r)$. [2]

Solution: The truth table is given below

p	q	$p \rightarrow q$	$\neg p$	r	$\neg p \rightarrow r$	$(p \to q) \land (\neg p \to r)$
Т	Т	Т	F	Т	F	F
T	F	Т	F	F	Т	Т
F	Т	F	Т	F	Т	\mathbf{F}
F	F	Т	Т	Т	Т	Т

4. Find the contrapositive and inverse statements of the statement "If you do every exercise [2] in this book then you are a good student"

Solution: Let us suppose that p denotes the proposition you do every exercise in this book and q denotes the proposition you are a good student. Then $\neg p$ will denotes the proposition you don't do every exercise in this book and $\neg q$ denotes the proposition you are not a good student.

We know that the contrapositive of $p \to q$ is the proposition $\neg q \to \neg p$. Therefore the contrapositive of the given statement will be "If you are not a good student then don't do every exercise in this book".

The proposition $\neg p \rightarrow \neg q$ is called the inverse of $p \rightarrow q$. Therefore the inverse of the given statement will be "If you don't do every exercise in this book then you are not a good student."

5. Find the values of the boolean function $f(x, y, z) = \bar{x}\bar{y}z + \bar{x}yz + xy\bar{z}$.

Solution: The values of the Boolean function are tabulated as follows:

x	y	z	f(x, y, z)
0	0	0	0
0	0	1	1
0	1	0	0
1	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1
1	1	1	0

6. Determine the output of the following combinatorial circuit:

Solution:

The resulting output of the given circuit will be

$$R = \bar{A}.(\bar{B} + C.(A + B)) \qquad \text{(Verify it.)}$$

[2]

[2]

7. Prove that $n^2 - 2$ is not divisible by 5.

Solution: We will prove that $n^2 - 2$ is not divisible by 5, by giving the counter example. Take n = 6, $n^2 - 2 = 34$, not divisible by 5.

- 8. Let the domain for x be the set of integers. p(x): x is even. q(x): x is a prime number.
 - r(x): 5 divides x.

Write the following symbols as quantified statements.

- 1. $\exists x, (p(x) \land q(x)).$
- 2. $\forall x(p(x) \land q(x)) \rightarrow r(x).$

Solution: The quantified statements will be as follows:

- 1. Some integers are even and prime numbers.
- 2. 5 divides every even and prime integers.