Ministry of Higher Education Kingdom of Saudi Arabia

CSTS SEU, KSA

Discrete Mathematics (Math 150) Level III, Assignment 3 (2015)

- 1. State whether the following statements are true or false:
 - (a) If a mathematical statement P(n) is true for all $n \in \mathbb{Z}^+ \cup \{0\}$, then P(1) will be the basis step in the principle of mathematical induction.

(a) <u>False</u>

(b) <u>True</u>

(c) <u>True</u>

- (b) In the principle of mathematical induction, the inductive step is equivalent to the conditional statement $\forall k \ (P(k) \rightarrow P(k+1))$.
- (c) The recursive definition of the set $A = \{1, 6, 11, 16, 21, ...\}$ is $1 \in A$; $x \in A \rightarrow x + 5 \in A$..
- (d) There are 24 ways by which three digits number can be formed with the digits 7, 4, 1 and 2.
 - (d) <u>False</u>

(e) <u>True</u>

(f) The value of P(5,3) is 120.

(e) C(n,r) = C(n,n-r).

(f) <u>False</u>

(g) The recurrence relation $a_n = 2a_{n-1} + 3a_{n-4} - 6a_{n-3} + 4$ is homogeneous.

(g) <u>False</u>

(h) The characteristic root of the recurrence relation $a_n = 2a_{n-1}$ is real.

(h) <u>True</u>

(i) The recurrence relation $a_n = a_{n-1} + 3a_{n-4} - 8$ is not linear.

(i) <u>False</u>

Page 1 of 6 Please go on to the next page...

[9]

- 2. Select one of the alternatives from the following questions as your answer.
 - (a) The sums of the first n positive odd integers are
 - A. 2n + 1B. $n^2(n - 1)$ C. n^2 D. (n - 1)(n + 1)
 - (b) Let P(n) be a mathematical statement and let $P(n) \to P(n+1)$ for all natural numbers, then P(n) is true
 - A. for all n > 1.
 - B. for all n > m, m being a fixed positive integer.
 - C. for all n.
 - D. Nothing can be said.
 - (c) Let $P(n) : 2^n < n!$, where n is a natural number, then P(n) is true
 - A. for all n.
 - B. for all n > 2.
 - C. for all n > 3.
 - D. None of the above.
 - (d) Which of the following is equivalent to ${}^{9}C_{6}$?
 - A. $\frac{9!}{6!3!}$ B. ${}^{9}C_{6}$ C. $\frac{P(9,6)}{6!}$ D. All of the above.
 - (e) The number of arrangements that can be made with the letters of the word MIS-SISSIPPI are

A.
$$\frac{11!}{4!4!2!}$$

B. $\frac{11!}{4!4!}$
C. $\frac{4!4!2!}{11!}$
D. $\frac{11!}{4!2!}$

(f) The coefficient of x^8y^7 in the expansion of $(7x - 4y)^{15}$ is

A.
$$\begin{pmatrix} 15\\ 8 \end{pmatrix} 7^8 4^7$$

B.
$$-\begin{pmatrix} 15\\7 \end{pmatrix} 7^8 4^7$$

C. $-\begin{pmatrix} 15\\8 \end{pmatrix} 7^8 4^7$
D. $\begin{pmatrix} 15\\7 \end{pmatrix}$

- (g) Which of the following recurrence relation have degree 3?
 - A. $a_n = 3a_{n-1} + a_{n-3} 13a_{n-4} + 3$ B. $a_n = 6a_{n-1} + a_{n-4}4a_{n-3}$ C. $a_n = -2a_{n-2} + 5a_{n-3} - 3a_{n-1} + 9$ D. *B* and *C* both.
- (h) The characteristic roots of the recurrence relation $a_n = -4a_{n-1} 4a_{n-2}$ are A. 2, -2
 - B. -2, -2
 C. 1, 2
 D. 2, 3
- (i) The characteristic equation of the recurrence relation $a_n = -3a_{n-2} + 4a_{n-3}$ is A. $r^3 - 3r - 4 = 0$
 - B. $r^{3} + 3r + 4 = 0$ C. $r^{3} + 3r - 4 = 0$ D. $r^{3} - 3r + 4 = 0$
- 3. Prove by principle of mathematical induction, for all positive integers n, that

$$1 + 3 + 3^{2} + \dots + 3^{n-1} = \frac{3^{n} - 1}{2}$$

Solution: Let $P(n): 1+3+3^2+\cdots+3^{n-1}=\frac{3^n-1}{2}$ We will prove it by PMI.

• Basis Step: We will show that P(1) is true. $P(1): 3^{1-1} = \frac{3-1}{2}$ 1=1. $\Rightarrow P(1)$ is true. • Inductive Step: Suppose P(k) is true. *i.e.* $P(k): 1+3+3^2+\dots+3^{k-1} = \frac{3^k-1}{2}$

Now we will show that

$$P(k+1): \quad 1+3+3^2+\dots+3^{k-1}+3^k = \frac{3^{k+1}-1}{2} \text{ is true.}$$

$$L.H.S = 1+3+3^2+\dots+3^{k-1}+3^k$$

$$= \frac{3^k-1}{2}+3^k$$

$$= \frac{3^k(1+2)-1}{2}$$

$$= \frac{3^{k+1}-1}{2}$$

$$= R.H.S.$$

 $\Rightarrow P(k+1)$ is true.

 \Rightarrow By PMI, given mathematical statement is true for all $n \in \mathbb{N}$.

4. Find the value of f(5), if f is defined recursively by f(0) = f(1) = 1 and for n = 1, 2, 3, ... [2] $f(n+1) = \frac{f(n)}{f(n-1)}.$

Solution: Given that

$$f(n+1) = \frac{f(n)}{f(n-1)}$$
$$f(2) = \frac{f(1)}{f(0)} = 1$$
$$f(3) = \frac{f(2)}{f(1)} = 1$$
$$f(4) = \frac{f(3)}{f(2)} = 1$$
$$f(5) = \frac{f(4)}{f(3)} = 1.$$

5. If ${}^{n}C_{r}$ represents the number of combinations of n items taken r at a time, what is the value of $\sum_{r=1}^{3} {}^{n}C_{r}$ when n = 4?

[2]

Math 150

Solution: Given that n = 4, so

$$\sum_{r=1}^{3} {}^{4}C_{r} = {}^{4}C_{1} + {}^{4}C_{2} + {}^{4}C_{3}$$
$$= \frac{4!}{3!} + \frac{4!}{2!2!} + \frac{4!}{3!}$$
$$= 4 + 6 + 14$$
$$= 14.$$

- Therefore $\sum_{r=1}^{3} {}^4C_r = 14.$
- 6. Find the number of subsets of the set $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$ having 5 elements.

Solution: Here the order of choosing the elements doesn't matter and this is a problem in combinations.

We have to find the number of ways of choosing 5 elements of this set which has 12 elements. This can be done in:

$$^{12}C_5 = \frac{12!}{5!7!} = 792$$
 ways.

7. Solve the recurrence relation $a_n = 7a_{n-1} - 10a_{n-2}$.

Solution: The corresponding characteristic equation of the given recurrence relation is given by

 $r^2 - 7r + 10 = 0$, which is a quadratic equation having roots 2 and 5. Therefore the solution of the recurrence relation is given by

$$a_n = c_1 2^n + c_2 5^n$$

where c_1 , c_2 are some coefficient.

- 8. Determine which of these are linear homogeneous recurrence relation with constant coefficient. Also, find the degree of those that are. [2]
 - 1. $a_n = 3a_{n-1} + 4a_{n-2} + 5a_{n-3}$
 - 2. $a_n = a_{n-2} + 5a_{n-3}^2$

- 3. $a_n = -2a_{n-3} + 4a_{n-4}^{1/2} + 6$
- 4. $a_n = 9a_{n-5} + 3a_{n-2} + a_{n-1}$

Solution: 1 and 4 recurrence relation are LHRR, while 2 and 3 relation are not linear. degree of recurrence relation $a_n = 3a_{n-1} + 4a_{n-2} + 5a_{n-3}$ is 3. degree of recurrence relation $a_n = 9a_{n-5} + 3a_{n-2} + a_{n-1}$ is 5.