CSTS
SEU, KSA

Discrete Mathematics (Math 150)
 Level III, Assignment 3
 (2015)

1. State whether the following statements are true or false:
(a) If a mathematical statement $P(n)$ is true for all $n \in \mathbb{Z}^{+} \cup\{0\}$, then $P(1)$ will be the basis step in the principle of mathematical induction.
(a) False
(b) In the principle of mathematical induction, the inductive step is equivalent to the conditional statement $\forall k(P(k) \rightarrow P(k+1))$.
(b) True
(c) The recursive definition of the set $A=\{1,6,11,16,21, \ldots\}$ is $1 \in A ; x \in A \rightarrow$ $x+5 \in A$..
(c) True
(d) There are 24 ways by which three digits number can be formed with the digits 7 , 4,1 and 2 .
(d) False
(e) $C(n, r)=C(n, n-r)$.
(e) True
(f) The value of $P(5,3)$ is 120 .
(f) False
(g) The recurrence relation $a_{n}=2 a_{n-1}+3 a_{n-4}-6 a_{n-3}+4$ is homogeneous.
(g) False
(h) The characteristic root of the recurrence relation $a_{n}=2 a_{n-1}$ is real.
(h) True
(i) The recurrence relation $a_{n}=a_{n-1}+3 a_{n-4}-8$ is not linear.
(i) False
2. Select one of the alternatives from the following questions as your answer.
(a) The sums of the first n positive odd integers are
A. $2 n+1$
B. $n^{2}(n-1)$
C. n^{2}
D. $(n-1)(n+1)$
(b) Let $P(n)$ be a mathematical statement and let $P(n) \rightarrow P(n+1)$ for all natural numbers, then $P(n)$ is true
A. for all $n>1$.
B. for all $n>m, m$ being a fixed positive integer.
C. for all n.
D. Nothing can be said.
(c) Let $P(n): 2^{n}<n$!, where n is a natural number, then $P(n)$ is true
A. for all n.
B. for all $n>2$.
C. for all $n>3$.
D. None of the above.
(d) Which of the following is equivalent to ${ }^{9} C_{6}$?
A. $\frac{9!}{6!3!}$
B. ${ }^{9} C_{6}$
C. $\frac{P(9,6)}{6!}$
D. All of the above.
(e) The number of arrangements that can be made with the letters of the word MISSISSIPPI are
A. $\frac{11!}{4!4!2!}$
B. $\frac{11!}{4!4!}$
C. $\frac{4!4!2!}{11!}$
D. $\frac{11!}{4!2!}$
(f) The coefficient of $x^{8} y^{7}$ in the expansion of $(7 x-4 y)^{15}$ is
A. $\binom{15}{8} 7^{8} 4^{7}$
B. $-\binom{15}{7} 7^{8} 4^{7}$
C. $-\binom{15}{8} 7^{8} 4^{7}$
D. $\binom{15}{7}$
(g) Which of the following recurrence relation have degree 3?
A. $a_{n}=3 a_{n-1}+a_{n-3}-13 a_{n-4}+3$
B. $a_{n}=6 a_{n-1}+a_{n-4} 4 a_{n-3}$
C. $a_{n}=-2 a_{n-2}+5 a_{n-3}-3 a_{n-1}+9$
D. B and C both.
(h) The characteristic roots of the recurrence relation $a_{n}=-4 a_{n-1}-4 a_{n-2}$ are
A. $2,-2$
B. $-2,-2$
C. 1,2
D. 2,3
(i) The characteristic equation of the recurrence relation $a_{n}=-3 a_{n-2}+4 a_{n-3}$ is
A. $r^{3}-3 r-4=0$
B. $r^{3}+3 r+4=0$
C. $r^{3}+3 r-4=0$
D. $r^{3}-3 r+4=0$
3. Prove by principle of mathematical induction, for all positive integers n, that

$$
1+3+3^{2}+\cdots+3^{n-1}=\frac{3^{n}-1}{2}
$$

Solution: Let $P(n): \quad 1+3+3^{2}+\cdots+3^{n-1}=\frac{3^{n}-1}{2}$
We will prove it by PMI.

- Basis Step: We will show that $P(1)$ is true.
$P(1): \quad 3^{1-1}=\frac{3-1}{2}$
$1=1$.
$\Rightarrow \quad P(1)$ is true.
- Inductive Step: Suppose $P(k)$ is true. i.e.
$P(k): \quad 1+3+3^{2}+\cdots+3^{k-1}=\frac{3^{k}-1}{2}$
Now we will show that
$P(k+1): \quad 1+3+3^{2}+\cdots+3^{k-1}+3^{k}=\frac{3^{k+1}-1}{2}$ is true.

$$
\begin{aligned}
\text { L.H.S } & =1+3+3^{2}+\cdots+3^{k-1}+3^{k} \\
& =\frac{3^{k}-1}{2}+3^{k} \\
& =\frac{3^{k}(1+2)-1}{2} \\
& =\frac{3^{k+1}-1}{2} \\
& =\text { R.H.S. }
\end{aligned}
$$

$\Rightarrow \quad P(k+1)$ is true.
\Rightarrow By PMI, given mathematical statement is true for all $n \in \mathbb{N}$.
4. Find the value of $f(5)$, if f is defined recursively by $f(0)=f(1)=1$ and for $n=1,2,3, \ldots$ $f(n+1)=\frac{f(n}{f(n-1)}$.

Solution: Given that

$$
\begin{aligned}
f(n+1) & =\frac{f(n}{f(n-1)} \\
f(2) & =\frac{f(1)}{f(0)}=1 \\
f(3) & =\frac{f(2)}{f(1)}=1 \\
f(4) & =\frac{f(3)}{f(2)}=1 \\
f(5) & =\frac{f(4)}{f(3)}=1 .
\end{aligned}
$$

5. If ${ }^{n} C_{r}$ represents the number of combinations of n items taken r at a time, what is the value of $\sum_{r=1}^{3}{ }^{n} C_{r}$ when $n=4$?

Solution: Given that $n=4$, so

$$
\begin{aligned}
\sum_{r=1}^{3}{ }^{4} C_{r} & ={ }^{4} C_{1}+{ }^{4} C_{2}+{ }^{4} C_{3} \\
& =\frac{4!}{3!}+\frac{4!}{2!2!}+\frac{4!}{3!} \\
& =4+6+14 \\
& =14 .
\end{aligned}
$$

Therefore $\sum_{r=1}^{3}{ }^{4} C_{r}=14$.
6. Find the number of subsets of the set $\{1,2,3,4,5,6,7,8,9,10,11,12\}$ having 5 elements.

Solution: Here the order of choosing the elements doesn't matter and this is a problem in combinations.

We have to find the number of ways of choosing 5 elements of this set which has 12 elements. This can be done in:

$$
{ }^{12} C_{5}=\frac{12!}{5!7!}=792 \text { ways. }
$$

7. Solve the recurrence relation $a_{n}=7 a_{n-1}-10 a_{n-2}$.

Solution: The corresponding characteristic equation of the given recurrence relation is given by
$r^{2}-7 r+10=0$, which is a quadratic equation having roots 2 and 5.
Therefore the solution of the recurrence relation is given by

$$
a_{n}=c_{1} 2^{n}+c_{2} 5^{n}
$$

where c_{1}, c_{2} are some coefficient.
8. Determine which of these are linear homogeneous recurrence relation with constant coefficient. Also, find the degree of those that are.

1. $a_{n}=3 a_{n-1}+4 a_{n-2}+5 a_{n-3}$
2. $a_{n}=a_{n-2}+5 a_{n-3}^{2}$
3. $a_{n}=-2 a_{n-3}+4 a_{n-4}^{1 / 2}+6$
4. $a_{n}=9 a_{n-5}+3 a_{n-2}+a_{n-1}$

Solution: 1 and 4 recurrence relation are LHRR, while 2 and 3 relation are not linear.
degree of recurrence relation $a_{n}=3 a_{n-1}+4 a_{n-2}+5 a_{n-3}$ is 3 .
degree of recurrence relation $a_{n}=9 a_{n-5}+3 a_{n-2}+a_{n-1}$ is 5 .

