IT110-Computer Organizations

Assignment-3 solutions
 5 marks

Question1

a. Execute all five instructions by using pipelining.
b. What is the minimum number of clock cycles that will be required to execute all instructions?

Suppose the CPU has to execute 5 instructions. For each instruction, there are 5 stages of execution (given below) and each stage takes one clock cycle to complete.

IF	ID	EX	MEM	WB

Instruction 1 is dependent on instruction 4, instruction 3 is dependent on instruction 5 whereas instruction 2 is independent.

Solution:

b. At minimum, 11 clocks are required to complete the given 5 instructions.

Question2:

Execute the following instruction by using:
0 address machine, 1 address machine, 2 address machine, 2 address machine using registers, 3 address machine and 3 address machine with registers.

$$
A=a+c-b^{*} e^{*} f+\mathbf{w}
$$

Solution:

0 address machine	
CODE	Memory Refrances
PUSH a	1
PUSH c	1
ADD	0
PUSH b	1
PUSH e	1
PUSH f	1
MUL	0
SUB	0
PUSH w	1
ADD	0
POP A	1

* 1 address machine

CODE	Memory Refrances
LOAD a	1
ADD C	1
STORE T1	1
LOAD B	1
MUL e	1
MUL f	1
STORE T2	1
LOAD T1	1
SUB T2	1
ADD w	1
STORE A	1

* 2 address machine

CODE	Memory Refrances
MOVE T1, a	2
ADD T1, c	3
MOVE T2, b	2
MUL T2, e	3
MUL T2, f	3
SUB T1, T2	3
ADD T1, w	3
MOVE A , T1	2

* 2 address machine using registers ($11 / 2$ address machine)

CODE	Memory Refrances
MOVE R1, a	1
ADD R1, c	1
MOVE R2 , b	1
MUL R2, e	1
MUL R2, f	1
SUB R1, R2	0
ADD R1, w	1
MOVE A, R1	1

* 3 address machine

CODE	Memory Refrances
ADD T1, a, c	3
MULT2,, e	3
MULT2, T2,, f	3
SUB T1, T1, T 2	3
ADD $, \mathrm{T}, \mathrm{w}$	3

* 3 address machine using registers

CODE	Memory Refrances
ADD R1, a, c	2
MULR2,, e	2
MULR2, R2,, f	1
SUB R1, R1, R2	0
ADD A , R1, w	2

Question 3:

Define the characteristics of RISC?
Answer: RISC (Reduced Instruction Set Computers)

- Lower number of operations
- Compilers have more work to do
- Small no of instruction formats
- All instructions take one cycle
- Load or store architecture
- Smaller no of transistors, lower cpu complexity, therefore lower cpu prices.

