IT110-Computer Organizations

Assignment-3 solutions 5 marks

Question1

- **a.** Execute all five instructions by using *pipelining*.
- **b.** What is the *minimum* number of clock cycles that will be required to execute all instructions?

Suppose the CPU has to execute 5 instructions. For each instruction, there are 5 stages of execution (given below) and each stage takes one clock cycle to complete.

IF	ID	EX	MEM	WB
----	----	----	-----	----

Instruction 1 is dependent on instruction 4, instruction 3 is dependent on instruction 5 whereas instruction 2 is independent.

Solution:

a.						(Clock Cy	ycle				
		1	2	3	4	5	6	7	8	9	10	11
Instruction	4	IF	ID	EX	MEM	WB]					
	5		IF	ID	EX	MEM	WB					
	2			IF	ID	EX	MEM	WB				
	1						IF	ID	EX	MEM	WB	
	3							IF	ID	EX	MEM	WB

b. At minimum, 11 clocks are required to complete the given 5 instructions.

Question2:

Execute the following instruction by using:

0 address machine, 1 address machine, 2 address machine, 2 address machine using registers, 3 address machine and 3 address machine with registers.

$\mathbf{A} = \mathbf{a} + \mathbf{c} - \mathbf{b} \overset{\texttt{*}}{\mathbf{e}} \overset{\texttt{*}}{\mathbf{f}} + \mathbf{w}$

Solution:

✤ 0 address machine

CODE	Memory Refrances
PUSH a	1
PUSH c	1
ADD	0
PUSH b	1
PUSH e	1
PUSH f	1
MUL	0
SUB	0
PUSH w	1
ADD	0
POP A	1

✤ 1 address machine

CODE	Memory Refrances
LOAD a	1
ADD C	1
STORE T1	1
load b	1
MUL e	1
MUL f	1
STORE T2	1
LOAD T1	1
SUB T2	1
ADD w	1
STORE A	1

✤ 2 address machine

CODE	Memory Refrances
MOVE T1, a	2
ADD T1, c	3
MOVE T2, b	2
MUL T2, e	3
MUL T2, f	3
SUB T1, T2	3
ADD T1, w	3
MOVE A, T1	2

✤ 2 address machine using registers (1 ¹/₂ address machine)

CODE	Memory Refrances
MOVE R1, a	1
ADD R1, c	1
MOVE R2, b	1
MUL R2, e	1
MUL R2, f	1
SUB R1, R2	0
ADD R1, w	1
MOVE A, R1	1

✤ 3 address machine

CODE	Memory Refrances
ADD T1,a,c	3
MUL T2 , b , e	3
MUL T2 , T2, , f	3
SUB T1 , T1 , T2	3
ADD A , T1 , w	3

✤ 3 address machine using registers

CODE	Memory Refrances
ADD R1,a,c	2
MUL R2 , b , e	2
MUL R2 , R2, , f	1
SUB R1 , R1 , R2	0
ADD A , R1 , w	2

Question 3:

Define the characteristics of RISC?

Answer: RISC (Reduced Instruction Set Computers)

- Lower number of operations
- Compilers have more work to do
- Small no of instruction formats
- All instructions take one cycle
- Load or store architecture
- Smaller no of transistors, lower cpu complexity, therefore lower cpu prices.