
 IT 110 Page 1

IT 110
Computer Organization

From Week #1 to Week#7

 IT 110 Page 2

Introduction:

Why study computer organization?
To be a professional in any field of computing today, one should not regard the computer

as just a black box that executes programs by magic. All students of computing should

acquire some understanding and appreciation of a computer system’s functional

components, their characteristics, their performance, and their interactions… in order to

structure a program so that it runs more efficiently on a real machine… [and] understand

the tradeoff among various components such as CPU clock speed vs. memory size.

What is a system?

A system is a collection of components linked together and organized in such a way as to

be recognizable as a single unit.

What is an architecture?
The fundamental properties, and the patterns of relationships, connections, constraints, and

linkages among the components and between the system and its environment are known

collectively as the architecture of the system.

 IT 110 Page 3

Elements of an information system architecture
o Hardware

o Software

o Data

o People

o Networks

Models for computation

 IT 110 Page 4

Models for computation

o Abstraction of hardware as a programming language

o Input/output

o Arithmetic, logic, and assignment

o Selection, conditional branching (if-then-else, if-goto)

o Looping, unconditional branching (while, for, repeat-until, goto)

Summary
o Studying computer organization is important for any technology professional.

o Information systems consist of components and links between them (hardware,

software, data, people, networks).

o Information systems can be viewed at varying levels of detail and abstraction.

 IT 110 Page 5

Counting Systems

Why do we use base 10?

Historically, it seems that the main reason that we use base 10 is that humans have ten

fingers, which is as good a reason as any.

Base 10 Number System
o Ten one digit numbers (0–9)

o To expand beyond 1-digit, add a position on the left, representing the next power of

ten.

o Each position represents a power of ten (a positional number system).

o Ex. 315,826.42

=

o Operations can take place at each position (e.g. adding two numbers by column with

carry).

Base 2 Number System

o Two one digit numbers (0–1).

o To expand beyond 1-digit, add a position on the left, representing the next power of

two.

o Leading zeros: Are insignificant, but often written to indicate the number of bits in a

quantity.

Ex. 0110 = 110.

0110=

Converting to and from binary
o Base 10 to base 2 conversion: repeated division with remainders

Ex.: Convert 9210 to binary.

 =

Converting to and from binary
o Base 2 to base 10 conversion: repeated multiplication and addition

Ex.: Convert 10111002 to decimal.

10111002=

 = 64+0+16+8+4+0+0=

 IT 110 Page 6

Base 8 and Base 16 Number Systems

Binary is cumbersome
o Long strings of 1’s and 0’s are hard to read. Group into sets or 3 (octal) or 4

(hexadecimal).

Base 10 Base 2 Base 8 Base 16

0 0 0 0

1 1 1 1

2 10 2 2

3 11 3 3

4 100 4 4

5 101 5 5

6 110 6 6

7 111 7 7

8 1000 10 8

9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

Ex.: Rewrite 1101111001012 as octal and hexadecimal.

Group by 3: 110 111 100 101  67458

Group by 4: 1101 1110 0101  DE516

Summary

o Base 10 number systems are not universal.

o Computers employ a base 2 (binary) system.

o Number systems use positions representing powers of the base.

o Converting from base 10 to another base involves division by the base and

examining the remainders.

o Converting from another base to base 10 involves multiplying by a power of the

base and summing.

o Octal and Hexadecimal are convenience groupings of binary numbers.

 IT 110 Page 7

Signed Integer Representations

Positional number arithmetic
o Addition, subtraction, multiplication, and division is done by column in base 10.

o The same general process can be followed in binary.

Ex:

 101101001

-001011000

100010001

 1111

 101101001

+001011000

 11000001

o Negative number representations—all use fixed width fields (i.e., a 16- or 32-bit

integer)

Simple binary—assumes all numbers are positive

6610 = 010000102

19410 = 110000102

o Negative number representations—all use fixed width fields (i.e., a 16- or 32-bit

integer)

o We have three method to represent a negative number:

1. Signed magnitude.

2. 1's complement.

3. 2's complement.

o Signed magnitude—use most significant bit to represent the sign. 0 is

positive, 1 is negative.

 6610 = 010000102

-6610 = 110000102

Disadvantage: Can't include the sign bit in addition

o 1's complement —All 0's become 1's and all 1's become 0's

Ex. Find the representation of using 1's complement.

 IT 110 Page 8

Ex. Subtract from using 1's complement.

 1

 0101

 +1110

(1)0011

 + 1

 0100

over flow (1) +

o 2's complement —Change the bit after the first 1 from the right hand side.

0101 1011,00010100 11101100

Ex. Subtract from using 2's complement.

 0101

 +1111

(1)0100

over flow (1)

Ex.

 0101

 +1010

 1111

(1) on the left = -

Summary
o Computers use positional arithmetic.

o Choices in representing negative numbers include signed magnitude, binary coded

decimal, and two’s complement.

o Two’s complement solves several problems:

o No “negative zero” representation

o Subtraction becomes addition of a negative number, simplifying CPU

hardware.

 IT 110 Page 9

Little Man Computer and Instruction Cycle

Little Man Computer
o Developed by Dr. Stuart Madnick of MIT in 1965

o A model for how computers execute programs

o The Little Man executes instructions that are stored in memory. Like everything

else, these are encoded.

Mnemonic Code Description

LDA 5XX Load calculator with data from box XX

STO 3XX Store calculator value in box XX

ADD 1XX Add data in box XX to calculator

SUB 2XX Subtract data in box XX from calculator

IN 901 Get input from inbox, put in calculator

OUT 902 Write calculator total to outbox

HLT 000 Stop executing

BRZ 7XX Zero? Next instruction is in box XX

BRP 8XX Positive? Next instruction is in box XX

BR 6XX Next instruction is in box XX

DAT Data storage reserved

 IT 110 Page 10

Execute cycle
o Fetch

o Little Man looks at the instruction counter.

o Little Man retrieves the instruction from the mailbox indicated by the counter.

o Little Man increments the instruction counter.

o Execute

o Little Man performs the instruction retrieved from the previous step.

 Example program: Read two numbers, add them, output the result

Box Assembly Code

01 IN 901

02 STO 07 307

03 IN 901

04 ADD 07 107

05 OUT 902

06 HLT 000

07 DAT 000

Summary
o LMC is a model for computation based on real principles.

o Instructions consist of an operation and, optionally, an operand on which to act.

o Fetch/execute cycle (simple):

o Retrieve instruction indicated by PC.

o Increment program counter.

o Execute instruction.

o Operations of load, store, add, subtract, input, output, and branching are the simplest

possible instruction set.

 IT 110 Page 11

Assembly Language

Generations of programming languages
o First generation: programmed directly in binary using wires or switches.

o Second generation: assembly language. Human readable, converted directly to

machine code.

o Third generation: high-level languages, while loops, if-then-else, structured. Most

programming today, including object-oriented.

o Fourth generation: 1990s natural languages, non-procedural, report generation. Use

programs to generate other programs. Limited use today.

 IT 110 Page 12

o Key idea: Regardless of the language of writing, computers only process machine

code.

o All non-machine code goes through a translation phase into machine code.

o Code generators

o Compilers

o Assemblers

Language translation process
o High level languages use comparison constructs, loops, variables, etc.

o Machine code is binary, directly executed by CPU.

o Convert high level language to if/goto.

o Convert if/goto to assembly (LMC here).

 IT 110 Page 13

o Assemble the instructions to machine code.

Box Code Assembler

01 520 LDA k

02 222 SUB ten

03 717 BRZ done

04 519 LDA i

05 119 ADD j

06 321 STO fib

07 519 LDA j

08 319 STO i

09 521 LDA fib

10 319 STO j

11 519 LDA i

12 902 OUT

13 520 LDA k

14 123 ADD one

15 320 STO k

16 601 BR loop

17 000 HLT

Summary
o High level languages are convenient to read and write for humans.

o Computers execute only binary machine code.

o Conversion between the two is required.

o Compilers translate high level languages to machine code.

o Assemblers translate assembly language into machine code.

o Use if/goto pseudo-code as an intermediate language between high level and

assembler.

 IT 110 Page 14

Fetch/Execute Cycle

Von Neumann Architecture

Detailed Architecture

 IT 110 Page 15

Number Operation Number Operation

0 ACCbus 8 ALUACC

1 Load ACC 9 INCPC

2 PCbus 10 ALU

operation

3 Load PC 11 ALU

operation

4 Load IR 12 Addrbus

5 Load MAR 13 CS

6 MDRbus 14 R/W

7 Load MDR

Detailed Fetch/Execute Cycle

 IT 110 Page 16

Summary

o The fetch/execute cycle consists of many steps and is implemented in the control

unit as microcode.

o Control signals select operations, control access to the bus, and allow data to flow

from component to component.

o Adding new instructions means modifying the microprogram in the control unit.

 IT 110 Page 17

Instruction Set Architectures

ISA determines instruction formats
o The LMC is a one-address architecture (an accumulator-based machine).

o There are other instruction set architectures, all based on the number of explicit

operands.

o 0-address (stack)

o 1-address (accumulator)

o 2-address

o 3-address

0-Address Machines
o All operands for binary operations are implicit on the stack. Only push/pop

reference memory.

o e.g., calculating a = a * b +(c –(d * e))

Code # Memory Refs

PUSH A 1

PUSH B 1

MUL 0

PUSH C 1

PUSH D 1

PUSH E 1

MUL 0

SUB 0

ADD 0

POP A 1

 IT 110 Page 18

1-Address Machines
o Accumulator is a source and destination. Second source is explicit.

a = a * b + c –(d * e)

Code # Memory Refs

LOAD A 1

MUL B 1

ADD C 1

STORE T1 1

LOAD D 1

MUL E 1

STORE T2 1

LOAD T1 1

SUB T2 1

STORE A 1

 IT 110 Page 19

2-Address Machines
o Two source addresses for operands. One source is also the destination.

a = a * b + c –(d * e)

Code # Memory Refs

MOVE T1, A 2

MUL T1, B 3

ADD T1, C 3

MOVE T2, D 2

MUL T2, E 3

SUB T1, T2 3

MOVE A, T1 2

3-Address Machines
o One destination operand, two source operands, all explicit

a = a * b + c –(d * e)

Code # Memory Refs

MPY T1, A, B 3

ADD T1, T1, C 3

MPY T2, D, E 3

SUB A, T1, T2 3

 IT 110 Page 20

Comparison
o Assume 8 registers (3 bits), 32 op-codes (5 bits), 15-bit addresses, 16-bit integers.

Which ISA accesses memory the least?

 Instructions Data refs Total

0-address 10 x 20 bits = 200

bits

6 x 16 bits = 96 bits 296 bits

1-address 10 x 20 bits = 200

bits

10 x 16 bits = 160

bits

360 bits

1½-address 7 x 23 bits = 161

bits

6 x 16 bits = 96 bits 257 bits

2 address 7 x 35 bits = 245

bits

18 x 16 bits = 288

bits

519 bits

3-address 4 x 50 bits = 200

bits

12 x 16 bits =192

bits

392 bits

3-address

(regs)

4 x 38 bits = 152

bits

6 x 16 bits = 96 bits 248 bits

Summary
o The instruction set architecture determines the format of instructions (and therefore

the assembly language).

o Four basic types with variations:

o 0-address (stack)

o 1-address (accumulator)

o 2-address (register variant is 1½-address)

o 3-address (with register variant)

o ISA dramatically affects the number of times memory is accessed.

