5.9 Add the following two 12-bit binary 2's complement numbers. Then convert each number to decimal and check the results.

101011001000	6856 ₁₀
+ <u>111111111100</u>	$+4092_{10}$
101011001100	2764 ₁₀
010100101000	5416 ₁₀
+ <u>111010111011</u>	+ <u>3771</u> ₁₀
011001101101	1645 ₁₀

We forget the last bits to avoid the overflow but the result wouldn't be the same $010100101000_2 = 1320_{10}$ but $1010100101000_2 = 5416_{10}$ and $101011001000_2 = 1320_{10}$ but $1101011001000_2 = 6856_{10}$

5.10 Given the positive number 2468, what is the largest positive digit that you can add that will not cause overflow in a four-digit decimal, 10's complement number system?

10000 - 2468 = 7532, so 7531 is the largest number

5.11 In 12's complement base 12, how would you know if a number is positive or negative?

When you consider 3 digit in 12's complement base 12, split it in half and you will find 0-5 positive and from 6-11(or B) negative.

5.17 a. Convert the number 123.57×10^{15} to the format SEEMMMM, with the exponent stored excess - 49. <u>The implied decimal point is to the right of the first</u> <u>mantissa digit.</u> (Not with us)

b. What is the smallest number you can use with this format before underflow occurs? (Not with us)