
CHAPTER 8

CPU AND MEMORY:
DESIGN , ENHANCEMENT,
AND IMPLEMENTATION

Adapted by Benjamin Reece



8.0 INTRODUCTION
The Little Man Computer design, implemented in binary form, may be sufficient to
implement any program, but it is not necessarily a convenient way to do so. It is like
traveling overseas by freight steamer instead of by fast plane: it might be fun, but it
sure ain’t the easiest way to get the job done! Computers today are more sophisticated
and flexible, providing a greater variety of instructions, improved methods of
addressing memory and manipulating data, and implementation techniques that
allow instructions to be executed quickly and efficiently.

In Chapter 7, we discussed the principal features of a CPU: the basic architecture
of the CPU, register concept, instruction set, instruction formats, means of addressing
memory, and the fetch-execute cycle. In this chapter we will investigate some of the
additional design features and implementation techniques that help to give the modern
CPU its power.

It probably won’t surprise you to know that there are a large number of different
ways of performing these tasks. At the same time, it is important to recognize, right
from the outset, that additional features and a particular choice of organization do
not change the fundamental operation of the computer as we have already described
it. Rather, they represent variations on the ideas and techniques that we have already
described. These variations can simplify the programmer’s task and possibly speed up
program execution by creating shortcuts for common operations. However, nothing
introduced in this chapter changes the most important idea: that the computer is
nothing more than a machine capable of performing simple operations at very high
speeds.

The first section investigates different CPU architectures, with particular focus on
the modern manifestation and organization of traditional architectures The section
also briefly considers two interesting recent architectures, the Transmeta VLIW and
Intel EPIC architectures.

In the second section we consider various CPU features and enhancements, with
an emphasis on alternatives to the traditional control unit/ALU CPU organization.
We explain how these alternative organizations address major bottlenecks that limit
CPU execution speed, with a number of innovative techniques for improving CPU
performance.

Section 8.3 looks at memory enhancements. The most significant improvement
in memory access speed is cache memory. Cache memory is discussed in considerable
depth.

In Section 8.4, we present a general model that includes the features, enhancements,
and techniques described in Section 8.2. This model represents the organization of
most current CPUs.

Section 8.5 considers the concept of multiprocessing: a computer organization
consisting of multiple CPUs directly connected together, sharing memory, major buses,

241



242 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

and I/O. This organization adds both performance enhancement and additional design
challenges. We also briefly introduce a complementary feature, simultaneous multithread-
ing. Two types of multiprocessors are presented: the symmetrical multiprocessor is more
common. It is well-suited for general purpose computing. An alternative, the master-slave
multiprocessor is useful for computer applications characterized by computationally
intense, repetitive operations, such as graphics processing.

Finally, in Section 8.6, we present a brief commentary on the implementation of the
CPU organization that we have discussed in previous sections.

It is not our intention to overwhelm you in this chapter with myriad details to
memorize, nor to help you create a new career as an assembly language programmer or
computer hardware engineer, but this chapter will at least introduce you to the major
concepts, methods, and terminology used in modern computers. When reading this
chapter, remember to keep your focus on the larger picture: the details are just variations
on a theme.

8.1 CPU ARCHITECTURES

Overview

A CPU architecture is defined by the basic characteristics and major features of the
CPU. (CPU architecture is sometimes called instruction set architecture (ISA).) These
characteristics include such things as the number and types of registers, methods of
addressing memory, and basic design and layout of the instruction set. It does not include
consideration of the implementation, instruction execution speed, details of the inter-
face between the CPU and associated computer circuitry, and various optional features.
These details are usually referred to as the computer’s organization. The architecture may
or may not include the absence or presence of particular instructions, the amount of
addressable memory, or the data widths that are routinely processed by the CPU. Some
architectures are more tightly defined than others.

These ideas about computer architecture should not surprise you. Consider house
architecture. A split-level ranch house, for example, is easily recognized by its general
characteristics, even though there may be wide differences in features, internal organization,
and design from one split-level ranch to the next. Conversely, an A-frame house or a
Georgian house is recognized by specific, well-defined features that must be present in the
design to be recognized as A-frame or Georgian.

There have been many CPU architectures over the years, but only a few with longevity.
In most cases, that longevity has resulted from evolution and expansion of the architecture
to include new features, always with protection of the integrity of the original architecture,
as well as with improved design, technology, and implementation of the architecture.

At present, important CPU architectural families include the IBM mainframe series,
the Intel x86 family, the IBM POWER/PowerPC architecture, and the Sun SPARC family.
Each of these is characterized by a lifetime exceeding twenty years. The original IBM
mainframe architecture is more than forty-five years old. Architectural longevity protects
the investment of users by allowing continued use of program applications through system
upgrades and replacements.



CHAPTER 8 CPU AND MEMORY: DESIGN, ENHANCEMENT, AND IMPLEMENTATION 243

Most CPU architectures today are variations on the traditional design described in
Chapter 7.1 There have also been a few interesting attempts to create other types, including
a stack-based CPU with no general-purpose registers, and two recent architectures called
very long instruction word (VLIW) from Transmeta and explicitly parallel instruction
computers (EPIC) from Intel. VLIW and EPIC architectures are too new to assess their
long-term value.

It should be noted that each of these architectures is consistent with the broad
characteristics that define a von Neumann computer.

Traditional Modern Architectures

Early CPU architectures were characterized by comparatively few general-purpose registers,
a wide variety of memory addressing techniques, a large number of specialized instructions,
and instruction words of varying sizes. Researchers in the late 1970s and early 1980s
concluded that these characteristics inhibited the efficient organization of the CPU. In
particular, their studies revealed that

■ Specialized instructions were used rarely, but added hardware complexity to the
instruction decoder that slowed down execution of the other instructions that are
used frequently.

■ The number of data memory accesses and total MOVE instructions could be
reduced by increasing the number of general-purpose registers and using those
registers to manipulate data and perform calculations. The time to locate and
access data in memory is much longer than that required to process data in a
register and requires more steps in the fetch-execute cycle of instructions that
access memory than those that don’t.

■ Permitting the use of general purpose registers to hold memory addresses, also,
would allow the addressing of large amounts of memory while reducing
instruction word size, addressing complexity, and instruction execution
time, as well as simplifying the design of programs that require indexing.
Reducing the number of available addressing methods simplifies CPU design
significantly.

■ The use of fixed-length, fixed-format instruction words with the op code and
address fields in the same position for every instruction would allow instructions
to be fetched and decoded independently and in parallel. With variable-length
instructions it is necessary to wait until the previous instruction is decoded in
order to establish its length and instruction format.

The Intel x86 is characteristic of older architectures; it has comparatively few general
purpose registers, numerous addressing methods, dozens of specialized instructions, and
instruction word formats that vary from 1 to 15 bytes in length. In contrast, every instruction

1Historically, traditional architecture was loosely categorized into one of two types, CISC (complex
instruction set computers) or RISC (reduced instruction set computers). In modern times, the dividing line
between CISC and RISC architectures has become increasingly blurred as many of the features of each have
migrated across the dividing line. Because modern architectures contain the major features of both, it is no longer
useful to distinguish one from the other.



244 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

in the newer Sun SPARC architecture is the same 32-bit length; there are only five primary
instruction word formats, shown earlier in Figure 7.21; and only a single, register-based,
LOAD/STORE memory addressing mode.

VLIW and EPIC Architectures

VLIW (very long instruction word) and EPIC (explicitly parallel instruction computer)
architectures represent recent approaches to architectural design. VLIW architecture is
represented by the Transmeta Crusoe and Efficeon families of CPU processors. The Intel
Itanium IA-64 series is based on EPIC architecture. The basic goal of each of these
architectures is to increase execution speed by processing instruction operations in parallel.
The primary difficulty in doing so results from the inherently sequential order of the
instructions in a program. In particular, the data used in an instruction may depend on
the result from a previous instruction. This situation is known as a data dependency. Also,
branches and loops may alter the sequence, resulting in control dependency. Data and
control dependencies are discussed in more depth in Section 8.2.

The Transmeta Crusoe architecture is based on a 128-bit instruction word called
a molecule. The molecule is divided into four 32-bit atoms. Each atom represents an
operation similar to those of a normal 32-bit instruction word, however, the atoms are
designed in such a way that all four operations may be executed simultaneously in separate
execution units. Figure 8.1 shows an example of a typical molecule.

The Crusoe CPU provides 64 general-purpose registers to assure adequate register
space for rapid register-to-register processing.

Although a programmer could write programs directly for a Crusoe CPU with the
128-bit word instruction set, that is not the primary goal of the Crusoe architecture. Indeed,
the fine details of the instruction set have not been publicly released to date. Instead, the
Crusoe CPU is intended for use with a specific software program that translates instruction
sets on the fly from other types of CPUs to the Crusoe instruction set for execution on

FIGURE 8.1

VLIW Format

FADD
operation

ADD
operation

LOAD
operation

BR on
condition

128 bit molecule

Atoms Atoms

Floating
point

execution
unit

Integer
ALU

Load/store 
unit

Branch
unit

Parallel
instruction 
execution 

units



CHAPTER 8 CPU AND MEMORY: DESIGN, ENHANCEMENT, AND IMPLEMENTATION 245

the Crusoe CPU. This translator is called a code-morphing layer.2 It is a fundamental
component within the Crusoe architecture. It is permanently resident in memory and
processes every instruction prior to execution. In addition to instruction translation,
the code-morphing layer also reorders the instructions as necessary to eliminate data
dependencies and other bottlenecks. Although this sounds like an inefficient way to process
instructions, Transmeta has demonstrated that the simplicity of its VLIW design and the
sophistication of its code-morphing software allow execution of the Pentium instruction
set at speeds comparable to the native execution speeds of a Pentium processor. Transmeta
claims, with apparent justification, that this simplicity allows a much simpler CPU
design, with fewer transistors and a much lower power consumption, resulting from the
elimination of complicated hardware implementation features commonly used to achieve
high execution speeds in a conventional CPU design. The Efficeon CPU extends the Crusoe
architecture to 256 bits, representing eight 32-bit atoms to be executed simultaneously.

At present, Transmeta has provided a code-morphing layer only for the Pentium
CPU family. However, if there were reason to do so, Transmeta could easily create
code-morphing layers for other CPUs.

The EPIC architecture, designed by Intel for its IA-64 processor family, attempts to
achieve similar goals by slightly different means. The basic instruction set architecture is
new, although Intel has built x86 capability into the CPU to support compatibility with its
earlier architecture. The IA-64 offers 128 64-bit general-purpose registers and 128 82-bit
floating point registers. All instructions are 41 bits wide.

Like the VLIW architecture, the EPIC architecture also organizes instructions into
bundles prior to CPU execution, however the methodology and goal are somewhat different.
In this case, the instructions do represent the native instruction set of the architecture.
Instructions are presented to the CPU for execution in 128-bit bundles that include a group
of three instructions plus 5 bits that identify the type of each instruction in the bundle.

An assembly language programmer is expected to follow a set of published guidelines
that identify dependencies and allow the parallel execution of each bundle. Additionally,
bits within each instruction word provide information to the execution unit that identify
potential dependencies and other bottlenecks and help the programmer to optimize the
code for fast execution. High-level language EPIC compilers must also create code that
satisfies the guidelines.

A fundamental difference between the Transmeta VLIW and the Intel EPIC archi-
tectures is the placement of responsibility for correct instruction sequencing. The VLIW
architecture allows any sequence of instructions to enter the CPU for processing. The code-
morphing software, integral to the architecture, handles proper sequencing. The EPIC
architecture places the burden on the assembly language programmer or on the program
compiler software.

This does not suggest that one architecture is superior to the other. It simply indicates
a different approach to the solution of dependencies. Note that the Transmeta VLIW does

2On a lesser scale, code morphing can also be used to translate complex variable-width instruction words to
simpler fixed-width equivalents for faster execution. This technique allows the retention of legacy architectures
while permitting the use of modern processing methods. Modern x86 implementations use this approach.



246 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

not allow direct assembly language access to the CPU. All program code must be processed
through code-morphing software. Each architecture offers an interesting new approach to
program execution with potential benefits.

8.2 CPU FEATURES AND ENHANCEMENTS

Introduction

We have already introduced you to the fundamental model of a traditional CPU, represented
by an instruction set, registers, and a fetch-execute instruction cycle. Additionally, we
have presented some of the bells and whistles that have enhanced CPU capability and
performance. Some of the enhancements that were introduced in Chapter 7 include direct
support for floating point arithmetic, BCD arithmetic, and multimedia processing, as
well as the inclusion of additional addressing modes, which simplify data access, increase
potential memory size capability while maintaining reasonable instruction word sizes,
and improve list and array processing. In this chapter we have already presented a number
of architectural enhancements that can improve performance including features that
allow parallel execution of instructions to improve processing speed, register-oriented
instructions, the use of fixed-width instructions, and integral code-morphing software.

Since the purpose of a computer is to execute programs, the ability of the CPU to
execute instructions quickly is an important contributor to performance. Once a particular
architecture is established, there remain a number of different ways to increase the
instruction execution performance of a computer. One method is to provide a number
of CPUs in the computer rather than just one. Since a single CPU can process only one
instruction at a time, each additional CPU would, in theory, multiply the performance
of the computer by the number of CPUs included. We will return to a discussion of this
technique later, in Section 8.5.

Of more interest at the moment are approaches that can be used to improve the
performance of an individual CPU. In our introduction to CPU architectures, we suggested
a number of possibilities. Some of these require new design, such as the large number of
registers and register-to-register instructions that are characteristic of newer architectures.
As we already noted, even with older instruction sets, it is often possible to use code
morphing to create an intermediate instruction set that is used within the CPU as a
substitute for the more complex, original instruction set.

Another difficulty to be overcome when attempting system optimization is that some
computer instructions inherently require a large number of fetch-execute steps. Integer
division and floating point arithmetic instructions are in this category. Obviously, CPU
architects cannot create modern instruction sets that omit these instructions.

In this section, we consider a number of different, but interrelated, approaches to CPU
optimization that are applicable to nearly any CPU design. Interestingly enough, you will
see that similar approaches can be found in such diverse operations as automobile assembly
plants and restaurants.

In Chapter 7, you learned that the fetch-execute cycle is the basic operation by which
instructions get executed. You also observed that the steps in a fetch-execute cycle generally
must be performed in a particular sequence: an instruction must be fetched and identified
before it can be executed, for example. Otherwise the machine would have no way of



CHAPTER 8 CPU AND MEMORY: DESIGN, ENHANCEMENT, AND IMPLEMENTATION 247

knowing what to execute. And so on, step by step, through the entire instruction cycle.
(The first step in cooking spaghetti is to add water to the pot.) CPU performance can be
improved by any method that can perform the fetch-execute cycle steps more quickly or
more efficiently.

Then, a program is executed by performing the fetch-execute cycle in a specified
sequence, where the sequence is sometimes determined by the program itself during
execution. To be provably correct during program execution, the sequence must be
maintained and data dependencies resolved in proper order. (The ‘‘cook spaghetti,’’ ‘‘drain
spaghetti,’’ and ‘‘prepare sauce’’ instructions must be completed before the sauce is mixed into
the spaghetti.)

Observe that the limitation to performance results from the serial nature of CPU
processing: each instruction requires a sequence of fetch-execute cycle steps, and the
program requires the execution of a sequence of these instructions. Thus, the keys to
increased performance must rely on methods that either reduce the number of steps in the
fetch-execute cycle or reduce the time required for each step in the cycle and, ultimately,
reduce the time for each instruction in the program.

Fetch-Execute Cycle Timing Issues

As a first step, consider the problem of controlling the timing of each step in the
fetch-execute cycle to guarantee perfect CPU operation, to assure that each step follows the
previous step, in perfect order, as quickly as possible. There must be enough time between
steps to assure that each operation is complete and that data is where it is supposed to be
before the next step takes place. As you saw in Chapter 7, most steps in the fetch-execute
cycle work by copying, combining, or moving data between various registers. When data is
copied, combined, or moved between registers, it takes a short, but finite, amount of time
for the data to ‘‘settle down’’ in the new register, that is, for the results of the operation
to be correct. This occurs in part because the electronic switches that connect the registers
operate at slightly different speeds. (We’re actually talking billionths of a second here!) Also,
design allowances must be made for the fact that some operations take longer than others;
for example, addition takes more time than a simple data movement. Even more significant
is the amount of time that it takes for the address stored in the MAR to activate the correct
address in memory. The latter time factor is due to the complex electronic circuitry that is
required to identify one group of memory cells out of several million or billion possibilities.
This means that reducing the number of memory access steps by using registers for most
data operations will inherently improve performance. (We discuss methods to reduce the
memory access time, itself, in Section 8.3.) To assure adequate time for each step, the times
at which different events take place are synchronized to the pulses of an electronic clock.
The clock provides a master control as to when each step in the instruction cycle takes
place. The pulses of the clock are separated sufficiently to assure that each step has time
to complete, with the data settled down, before the results of that step are required by the
next step. Thus, use of a faster clock alone does not work if the circuitry cannot keep up.

A timing cycle for a Little Man ADD instruction is shown in Figure 8.2. Each block
in the diagram represents one step of the fetch-execute cycle. Certain steps that do not
have to access memory and which are not dependent on previous steps can actually be
performed at the same time. This can reduce the overall number of cycles required for the



248 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 8.2

Fetch-Execute Timing Diagram

PC
MAR

MDR
IR

IR[add]
MAR

MDR � A
A

PC � 1
PC

Next 
instruction

Time

1 3 4 52

instruction, which speeds up the computer. In this diagram, the data from the program
counter has been copied into the memory address register in the first step and is no longer
needed. Therefore, the program counter can be incremented at any time after the first step.
In Figure 8.2 the PC is incremented in parallel with the MDR → IR step. As shown in the
figure, the ADD instruction is completed in four clock cycles.

Figure 8.3 shows the improvement possible by using multiple data registers to
implement an ADD instruction. Since the register-to-register add can be done directly, the
number of steps in the cycle is reduced from four to three, with only a single execute step,
and the extra time required for the memory access is eliminated.

The built-in clock runs continuously whenever the power to the computer is on. The
frequency of its pulses is controlled by a quartz crystal, similar to that which might control
your wristwatch. The frequency of the clock and the number of steps required by each
instruction determine the speed with which the computer performs useful work.

The pulses of the clock are combined with the data in the instruction register to
control electronic switches that open and close in the right sequence to move data from

FIGURE 8.3

Fetch-Execute Cycle for Register-to-Register ADD Instruction

Note: C[Rdst] = contents of
destination register

PC � 1

PC
MAR

MDR
IR

PC

Next 
instruction

Time

1 3 42

C[Rsrc] � C[Rdst]
Rdst



CHAPTER 8 CPU AND MEMORY: DESIGN, ENHANCEMENT, AND IMPLEMENTATION 249

register to register in accordance with the instruction cycle for the particular instruction.
The memory activation line described in Section 7.3 is an example of a timing line. The
activation line is set up so that it will not turn on until the correct address decode line in
the MAR has had time to settle down. If this were not the case, several address lines might
be partially turned on, and the data transferred between the memory and MDR might be
incorrect. Such errors can obviously not be tolerated, so it is important to control timing
accurately.

Conceptually, each pulse of the clock is used to control one step in the sequence,
although it is sometimes possible to perform multiple operations within a single step.
The clock in the original IBM PC, for example, ran at 4.77 MHz (MHz is pronounced
megahertz), which meant that the machine could perform 4.77 million steps every second.
If a typical instruction in the IBM PC requires about ten steps, then the original IBM
PC could execute about (4.77/10) or about 0.5 million PC instructions per second. A
PC running at 8 MHz, with everything else equal, would perform approximately twice
as fast.

There are several factors that determine the number of instructions that a computer
can perform in a second. Obviously the clock speed is one major factor. Some current
PC computers run their clocks at 3 GHz (pronounced gigahertz) or even more to achieve
higher instruction cycle rates.

A Model for Improved CPU Performance

The current organizational model of a CPU uses three primary, interrelated techniques to
address the limitations of the conventional CU/ALU model and to improve performance.

■ Implementation of the fetch-execute cycle is divided into two separate units: a
fetch unit to retrieve and decode instructions and an execution unit to perform
the actual instruction operation. This allows independent, concurrent operation
of the two parts of the fetch-execute cycle.

■ The model uses an assembly line technique called pipelining to allow overlapping
between the fetch-execute cycles of sequences of instructions. This reduces the
average time needed to complete an instruction.

■ The model provides separate execution units for different types of instructions.
This makes it possible to separate instructions with different numbers of
execution steps for more efficient processing. It also allows the parallel execution
of unrelated instructions by directing each instruction to its own execution unit.
You have already seen this method applied to the Transmeta and Itanium
architectures in Section 8.1.

We next consider each of these techniques in turn.

SEPARATE FETCH UNIT/EXECUTE UNIT Picture a modified Little Man Computer
in which the Little Man has been given an assistant. The assistant will fetch and decode
the instructions from the mailboxes at a pace that allows the Little Man to spend his time
executing instructions, one after another. Note that a similar division of labor is used in a
restaurant: waiters and waitresses gather the food orders from the customers and pass them
to the cooks for processing.



250 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

The current preferred CPU implementation model divides the CPU similarly into two
units, which correspond roughly to the fetch and execute parts of the instruction cycle.
To achieve maximum performance, these two parts operate as independently from each
other as possible, recognizing, of course, that an instruction must be fetched before it can
be decoded and executed. Figure 8.4 illustrates this alternative CPU organization.

The fetch unit portion of the CPU consists of an instruction fetch unit and an
instruction decode unit. Instructions are fetched from memory by the fetch unit, based on
the current address stored in an instruction pointer (IP) register. The fetch unit is designed
to fetch several instructions at a time in parallel. The IP register effectively acts as a program
counter, but is given a different name to emphasize that there are a number of instructions
in the pipeline simultaneously. There is a bus interface unit that provides the logic and
memory registers necessary to address memory over the bus. Once an instruction is fetched,
it is held in a buffer until it can be decoded and executed. The number of instructions held
will depend upon the size of each instruction, the width of the memory bus and memory

FIGURE 8.4

Alternative CPU Organization

Registers

Execution unit

Arithmetic
logic unit

Execution
control unit

Instruction
fetch unit

Instruction
decode unit

Bus
interface

unit

Bus to 
memory

Addressing
unit

Fetch unit



CHAPTER 8 CPU AND MEMORY: DESIGN, ENHANCEMENT, AND IMPLEMENTATION 251

data register3, and the size of the buffer. As instructions are executed, the fetch unit takes
advantage of time when the bus is not otherwise being used and attempts to keep the
buffer filled with instructions. In general, modern memory buses are wide enough and fast
enough that they do not limit instruction retrieval.

Recall that in Figure 8.3 we showed that register-to-register operations could be
implemented with only a single memory access, in the fetch portion of the fetch-execute
cycle. Fetching the instructions in advance allows the execution of these instructions to
take place quickly, without the delay required to access memory.

Instructions in the fetch unit buffer are sent to the instruction decoder unit. The decoder
unit identifies the op code. From the op code it determines the type of the instruction. If
the instruction set is made up of variable length instructions, it also determines the length
of the particular instruction. The decoder then assembles the complete instruction with its
operands, ready for execution.

The execution unit contains the arithmetic/logic unit and the portion of the control
unit that identifies and controls the steps that comprise the execution part for each different
instruction. The remainder of what we previously called the control unit is distributed
throughout the model, controlling the fetching and decoding of instructions at the correct
times, and in the correct order, address generation for instructions and operands, and so
forth. The ALU provides the usual computational abilities for the general registers and
condition flags.

When the execution unit is ready for an instruction, the instruction decoder unit
passes the next instruction to the control unit for execution. Instruction operands requiring
memory references are sent to the addressing unit. The addressing unit determines the
memory address required, and the appropriate data read or write request is then processed
by the bus interface unit.

The bus interface and addressing units operate independently of the instruction
pipeline and provide services to the fetch, decode, and execution units as requested by each
unit.

PIPELINING Look at Figure 8.2 again. In the figure, there are two stages to the execution
phase of the instruction cycle. If each stage is implemented separately, so that the instruction
simply passes from one stage to the next as it is executed, only one stage is in use at any given
time. If there are more steps in the cycle, the same is still true. Thus, to speed up processing
even more, modern computers overlap instructions, so that more than one instruction is
being worked on at a time. This method is known as pipelining. The pipelining concept is
one of the major advances in modern computing design. It has been responsible for large
increases in program execution speed.

In its simplest form, the idea of pipelining is that as each instruction completes a step,
the following instruction moves into the stage just vacated. Thus, when the first instruction
is completed, the next one is already one stage short of completion. If there are many steps
in the fetch-execute cycle, we can have several instructions at various points in the cycle.
The method is similar to an automobile assembly line, where several cars are in different
degrees of production at the same time. It still takes the same amount of time to complete

3Recall that in Chapter 7 we noted that it is common modern practice to retrieve several bytes from memory
with each memory access.



252 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

one instruction cycle (or one car), but the pipelining technique results in a large overall
increase in the average number of instructions performed in a given time.

Of course, a branch instruction may invalidate all the instructions in the pipeline
at that instant if the branch is taken, and the computer still must have the data from
the previous instruction if the next instruction requires it in order to proceed. Modern
computers use a variety of techniques to compensate for the branching problem. One
common approach is to maintain two or more separate pipelines so that instructions from
both possible outcomes can be processed until the direction of the branch is clear. Another
approach attempts to predict the probable branch path based on the history of previous
execution of the same instruction. The problem of waiting for data results from previous
instructions can be alleviated by separating the instructions so that they are not executed
one right after the other. Many modern computer designs contain logic that can reorder
instructions as they are executed to keep the pipelines full and to minimize situations
where a delay is necessary. Instruction reordering also makes it possible to provide parallel
pipelines, with duplicate CPU logic, so that multiple instructions can actually be executed
simultaneously. This technique is equivalent to providing multiple car assembly lines. It is
known as superscalar processing. We will look at superscalar processing again in the next
section.

Pipelining and instruction reordering complicate the electronic circuitry required for
the computer and also require careful design to eliminate the possibility of errors occurring
under unusual sequences of instructions. (Remember that the programmer must always be
able to assume that instructions are executed in the specified order.) Despite the added com-
plexity, these methods are now generally accepted as a means for meeting the demand for
more and more computer power. The additional task of analyzing, managing, and steer-
ing instructions to the proper execution unit at the proper time is usually combined
with instruction fetching and decoding to form a single instruction unit that handles all
preparation of instructions for execution.

A diagram illustrating pipelining is shown in Figure 8.5. For simplicity, instruction
reordering has not been included. The figure shows three instructions, one for each row in
the diagram. The ‘‘steps’’ in the diagram represent the sequence of steps in the fetch-execute

FIGURE 8.5

Pipelining

step
1Instruction 3

Instruction 2

Instruction 1

step
2

step
3

step
1

step
2

step
3

step
4

step
1

step
2

step
3

step
4

Time

5 64321



CHAPTER 8 CPU AND MEMORY: DESIGN, ENHANCEMENT, AND IMPLEMENTATION 253

cycle for each instruction. Timing marks are indicated along the horizontal axis. The F-E
cycle for instruction 3 shows a delay between step 1 and step 2; such a delay might result
because the second step of the instruction needs a result from step 3 of the previous
instruction, for example, the data in a particular register.

MULTIPLE, PARALLEL EXECUTION UNITS It is not useful to pipe different types of
instructions through a single pipeline. Different instructions have different numbers of
steps in their cycles and, also, there are differences in each step. Instead, the instruction
decode unit steers instructions into specific execution units. Each execution unit provides
a pipeline that is optimized for one general type of instruction. Typically, a modern CPU
will have a LOAD/STORE unit, an integer arithmetic unit, a floating point arithmetic unit,
and a branch unit. More powerful CPUs may have multiple execution units for the more
commonly used instruction types and, perhaps, may provide other types of execution
units as well. Again, an analogy may aid in understanding the concept of multiple, parallel
execution units. A simple automobile plant analogy would note that most automobile
plants have separate assembly lines for different car models. The most popular models
might have multiple assembly lines operating in parallel.

The use of multiple execution units operating in parallel makes it possible to perform
the actual execution of several instructions simultaneously.

Scalar and Superscalar Processor Organization

The previous discussion has shown you that modern CPUs achieve high performance by
separating the two major phases of the fetch-execute cycle into separate components, then
further separating the execution phase into a number of independent execution units,
each with pipeline capability. Once a pipeline is filled, an execution unit can complete an
instruction with each clock tick. With a single execution unit pipeline, ignoring holes in
the pipeline resulting from different instruction types and branch conditions, the CPU
can average instruction execution approximately equal to the clock speed of the machine.
A processor fulfilling this condition is called a scalar processor. With multiple execution
units it is possible to process instructions in parallel, with an average rate of more than
one instruction per clock cycle. The ability to process more than one instruction per
clock cycle is known as superscalar processing. Superscalar processing is a standard
feature in modern CPUs. Superscalar processing can increase the throughput by double
or more. Commonly, current CPU designs produce speed increases of between two and
five times.

It is important to remember that pipelining and superscalar processing techniques
do not affect the cycle time of any individual instruction. An instruction fetch-execute
cycle that requires six clock cycles from start to finish will require six clock cycles whether
instructions are performed one at a time or pipelined in parallel with a dozen other
instructions. It is the average instruction cycle time that is improved by performing some
form of parallel execution. If an individual instruction must be completed for any reason
before another can be executed, the CPU must stall for the full cycle time of the first
instruction.

Figure 8.6 illustrates the difference between scalar and superscalar processing with
pipelining in the execution unit. In the illustration the execution phase of the fetch-execute



254 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 8.6

Scalar versus Superscalar Processing

fetch

fetch

fetch

fetch

fetch

fetch

fetch

fetch

decode

decode

decode

decode

decode

decode

execute

decode

decode

execute

execute

execute

a. Scalar

write-
back

execute

write-
back

execute

write-
back

execute

write-
back

write-
back
write-
back

execute

write-
back

write-
back

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 1

Instruction 2

Instruction 3

Instruction 4

b. Superscalar

Clock pulses

cycle is divided into three parts that can be executed separately. Thus, the diagram is divided
into steps that fetch, decode, execute, and write back the results of the execute operation.
Presumably, each step is carried out by a separate component within the execution unit.
To simplify the illustration, we have also assumed that in each case the pipeline is full.
Generally, a single fetch unit pipeline is sufficient to fetch multiple instructions, even when
multiple execution units are present.

In the scalar processor, Figure 8.6a, each step is assumed to take one clock cycle. If
the instructions are all of the same length, they will finish consecutively, as shown in the
diagram. More complexity in the instruction set will create bubbles in the pipeline, but
does not alter the basic idea that we are illustrating. Panel b of the figure assumes the
presence of two execution units. It also assumes that the instructions executing in parallel
are independent of each other; that is, the execution of one does not depend upon results
from the other. Therefore, two instructions can be executed at a time in parallel, resulting
in a substantial improvement in overall instruction completion performance.

Superscalar processing complicates the design of a CPU considerably. There are a
number of difficult technical issues that must be resolved to make it possible to execute
multiple instructions simultaneously. The most important of these are

■ Problems that arise from instructions completing in the wrong order
■ Changes in program flow due to branch instructions
■ Conflicts for internal CPU resources, particularly general-purpose registers



CHAPTER 8 CPU AND MEMORY: DESIGN, ENHANCEMENT, AND IMPLEMENTATION 255

OUT-OF-ORDER PROCESSING Out-of-order instruction execution can cause prob-
lems because a later instruction may depend on the results from an earlier instruction. This
situation is known as a hazard or a dependency. If the later instruction completes ahead of
the earlier one, the effect of the earlier instruction upon the later cannot be satisfied. The
most common type of a dependency is a data dependency. This is a situation in which the
later instruction is supposed to use the results from the earlier instruction in its calculation.
There are other types of dependencies also.

With multiple execution units, it is possible for instructions to complete in the wrong
order. There are a number of ways in which this can occur. In the simplest case, an
instruction with many steps in its cycle may finish after an instruction with just a few steps,
even if it started earlier. As a simple example, a MULTIPLY instruction takes longer to execute
than a MOVE or ADD instruction. If a MULTIPLY instruction is followed in the program by an
ADD instruction that adds a constant to the results of the multiplication, the result will be
incorrect if the ADD instruction is allowed to complete ahead of the MULTIPLY instruction.
This is an example of data dependency. Data dependency can take several different forms.

Many data dependencies are sufficiently obvious that they can be detected by the
CPU. In this case, execution of the dependent instruction is suspended until the results
of the earlier instruction are available. This suspension may, itself, cause out-of-order
execution, since it may allow another, still later, instruction to complete ahead of the
suspended instruction. Some CPUs provide reservation stations within each execution unit
or a general instruction pool to hold suspended instructions so that the execution unit may
continue processing other instructions.

Finally, some systems intentionally allow out-of-order instruction execution. These
CPUs can actually search ahead for instructions without apparent dependencies, to keep
the execution units busy. Current Intel x86 CPUs, for example, can search twenty to thirty
instructions ahead, if necessary, to find instructions available for execution.

BRANCH INSTRUCTION PROCESSING Branch instructions must always be processed
ahead of subsequent instructions, since the addresses of the proper subsequent instructions
to fetch are determined from the branch instruction. For unconditional branch instructions,
this is simple. Branch instructions are identified immediately as they enter the instruction
fetch pipeline. The address in the instruction is decoded and used to fill the instruction
fetch pipeline with instructions from the new location. Normally, no delay is incurred.

Unfortunately, conditional branch instructions are more difficult, because the condi-
tion decision may depend on the results from instructions that have not yet been executed.
These situations are known as flow or branch dependencies. If the wrong branch is in the
pipeline, the pipeline must be flushed and refilled, wasting time. Worse yet, an instruction
from the wrong branch, that is, one that should not have been executed, can alter a previous
result that is still needed.

The solution to the conditional branching problem may be broken into two parts:
methods to optimize correct branch selection and methods to prevent errors as a result of
conditional branch instructions. Selection of the wrong branch is time wasting, but not
fatal. By contrast, incorrect results must be prevented.

Errors are prevented by setting the following guideline: although instructions may be
executed out of order, they must be completed in the correct order. Since branches and
subtle data dependencies can occur, the execution of an instruction out of order may or



256 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

may not be valid, so the instruction is executed speculatively, that is, on the assumption
that its execution will be useful. For this purpose, a separate bank of registers is used to
hold results from these instructions until previous instructions are complete. The results
are then transferred to their actual register and memory locations, in correct program
instruction order. This technique of processing is known as speculative execution. On
occasion, the results from some speculatively executed instructions must be thrown away,
but on the whole, speculative execution results in a performance boost sufficient to justify
the extra complexity required.

A few systems place the burden for error prevention on the assembly language pro-
grammer or program language compiler by requiring that a certain number of instructions
following a conditional branch instruction be independent of the branch. In these systems,
one or more instructions sequentially following the branch are always executed, regardless
of the outcome of the branch.

There are various creative methods that are used in CPUs to optimize conditional
branch processing. One possible solution to this problem is to maintain two separate
instruction fetch pipelines, one for each possible branch outcome. Instructions may be
executed speculatively from both branches until the correct pipeline is known. Another
solution is to have the CPU attempt to predict the correct path based on program usage
or past performance. A loop, for example, may be expected to execute many times before
exiting. Therefore, the CPU might assume that a branch to a previous point in the program
is usually taken. Some systems provide a branch history table, a small amount of dedicated
memory built into the CPU that maintains a record of previous choices for each of several
branch instructions that have been used in the program being executed to aid in prediction.
A few systems even include a ‘‘hint’’ bit in the branch instruction word that can be set
by the programmer to tell the CPU the more probable outcome of the branch. Of course,
when a branch prediction is incorrect, there is a time delay to purge and refill the fetch
pipeline and speculative instructions, but, overall, branch prediction is effective.

CONFLICT OF RESOURCES Conflicts between instructions that use the same registers
can be prevented by using the same bank of registers that is used to hold the results of
speculative instructions until instruction completion. This register bank is given different
names by different vendors. They are called variously rename registers or logical registers
or register alias tables. The registers in the bank can be renamed to correspond logically to
any physical register and assigned to any execution unit. This would allow two instructions
using the ‘‘same’’ register to execute simultaneously without holding up each other’s
work At completion of an instruction, the CPU then selects the corresponding physical
register and copies the result into it. This must occur in the specified program instruction
order.

8.3 MEMORY ENHANCEMENTS
Within the instruction fetch-execute cycle, the slowest steps are those that require memory
access. Therefore, any improvement in memory access can have a major impact on program
processing speed.

The memory in modern computers is usually made up of dynamic random access
memory circuit chips. DRAM is inexpensive. Each DRAM chip is capable of storing millions



CHAPTER 8 CPU AND MEMORY: DESIGN, ENHANCEMENT, AND IMPLEMENTATION 257

of bits of data. Dynamic RAM has one major drawback, however. With today’s fast CPUs,
the access time of DRAM is too slow to keep up with the CPU, and delays must be inserted
into the LOAD/STORE execution pipeline to allow memory to keep up. Thus, the use of
DRAM is a potential bottleneck in processing. Instructions must be fetched from memory
and data must be moved from memory into registers for processing.

The fetch-execute CPU implementation introduced in Section 8.2 reduces instruc-
tion fetch delay to a minimum with modern instruction prefetch and branch control
technologies, and the increased adoption of register-to-register instructions also reduces
delays. Nonetheless, memory accesses are always required ultimately to move the data from
memory to register and back, and improvements in memory access still have an impact on
processing speed.

As mentioned in Chapter 7, static RAM, or SRAM, is an alternative type of random
access memory that is two to three times as fast as DRAM. The inherent memory capacity of
SRAM is severely limited, however. SRAM design requires a lot of chip real estate compared
to DRAM, due to the fact that SRAM circuitry is more complex and generates a lot of
heat that must be dissipated. One or two MB of SRAM requires more space than 64 MB of
DRAM, and will cost considerably more.

With today’s memory requirements, SRAM is not a practical solution for large amounts
of memory except in very expensive computers; therefore, designers have created alternative
approaches to fulfill the need for faster memory access. Three different approaches are
commonly used to enhance the performance of memory:

■ Wide path memory access
■ Memory interleaving
■ Cache memory

These three methods are complementary. Each has slightly different applicability, and they
may be used together in any combination to achieve a particular goal. Of these techniques,
the use of cache memory has the most profound effect on system performance.

Wide Path Memory Access

As mentioned in Chapter 7, Section 7.3, the simplest means to increase memory access is
to widen the data path so as to read or write several bytes or words between the CPU and
memory with each access; this technique is known as wide path memory access. Instead
of reading 1 byte at a time, for example, the system can retrieve 2, 4, 8, or even 16 bytes,
simultaneously. Most instructions are several bytes long, in any case, and most data is at
least 2 bytes, and frequently more. This solution can be implemented easily by widening
the bus data path and using a larger memory data register. The system bus on most modern
CPUs, for example, has a 64-bit data path and is commonly used to read or write 8 bytes of
data with a single memory access.

Within the CPU, these bytes can be separated as required and processed in the usual
way. With modern CPU implementation, instruction groups can be passed directly to the
instruction unit for parallel execution. As the number of bytes simultaneously accessed
is increased, there is a diminishing rate of return, since the circuitry required to separate
and direct the bytes to their correct locations increases in complexity, fast memory access
becomes more difficult, and yet it becomes less likely that the extra bytes will actually be



258 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

used. Even a 64-bit data path is adequate to assure that a pipeline will remain filled and
bursts of consecutive 64-bit reads or writes can handle situations that require high-speed
access to large blocks of data. Very few systems read and write more than 8 bytes at a time.
Most systems read and write a fixed number of bytes at a time, but there are a few systems
that can actually read and write a variable number of bytes.

Modern computers are commonly built with standard, off-the-shelf memory circuits
and chips that include wide path memory access as a standard feature.

Memory Interleaving

Another method for increasing the effective rate of memory access is to divide memory into
parts, called memory interleaving, so that it is possible to access more than one location at
a time. Then, each part would have its own address register and data register, and each part
is independently accessible. Memory can then accept one read/write request from each part
simultaneously. Although it might seem to you that the obvious way to divide up memory
would be in blocks, for example, by separating the high addresses into one block and the
low addresses into the other, it turns out that as a practical matter it is usually more useful
to divide the memory so that successive access points, say, groups of 8 bytes (see above),
are in different blocks. Breaking memory up this way is known as n-way interleaving,
where a value of 2 or 4 or some other value is substituted for n, depending on the number
of separate blocks. For example, two-way interleaving would be designed so that it would
be possible to access an odd memory address and an even memory address concurrently.
If 8-byte wide access is provided, this would allow the concurrent access to 16 successive
bytes at a time. A memory with eight-way interleaving would allow access to eight different
locations simultaneously, but the system could not access locations 0, 8, 16, or 24 at the
same time, for instance, nor 1, 9, 17, or 25. It could access locations 16 and 25 or 30 and 31
concurrently, however. Since memory accesses tend to be successive, memory interleaving
can be effective. A diagram of four-way interleaving is shown in Figure 8.7.

FIGURE 8.7

Four-Way Memory Interleaving

MDR

0
4
8
…

M
A

R

MDR

address 
bus

data bus

1
5
9
…

MDR

2
6

10
…

MDR

3
7
11
…

M
A

R

M
A

R

M
A

R



CHAPTER 8 CPU AND MEMORY: DESIGN, ENHANCEMENT, AND IMPLEMENTATION 259

This method is particularly applicable when multiple devices require access to the
same memory. The IBM mainframe architecture, for example, is designed to allow multiple
CPUs to access a common memory area; the I/O channel subsystem also has access to
the storage area. Thus, several different components may make memory requests at the
same time. The IBM S/3033 computer, for example, partitioned memory into eight logical
storage elements. Each element can independently accept a memory request. Thus, eight
memory requests can be processed concurrently.

The personal computer memory that holds images while they are being displayed,
known as video RAM, is another example. Changes to part of the video RAM can be made
at the same time that another part of the video RAM is being used to produce the actual
display on the monitor.

Cache Memory

A different strategy is to position a small amount of high-speed memory, for example,
SRAM, between the CPU and main storage. This high-speed memory is invisible to the
programmer and cannot be directly addressed in the usual way by the CPU. Because it
represents a ‘‘secret’’ storage area, it is called cache memory. This concept is illustrated in
Figure 8.8.

Cache memory is organized differently than regular memory. Cache memory is
organized into blocks. Each block provides a small amount of storage, perhaps between
8 and 64 bytes, also known as a cache line. The block will be used to hold an exact
reproduction of a corresponding amount of storage from somewhere in main memory.
Each block also holds a tag. The tag identifies the location in main memory that corresponds
to the data being held in that block. In other words, taken together, the tags act as a directory
that can be used to determine exactly which storage locations from main memory are also
available in the cache memory. A typical 64 KB cache memory might consist of 8000
(actually 8192) 8-byte blocks, each with tag.

A simplified, step-by-step illustration of the use of cache memory is shown in Figure 8.9.
Every CPU request to main memory, whether data or instruction, is seen first by cache
memory. A hardware cache controller checks the tags to determine if the memory location
of the request is presently stored within the cache. If it is, the cache memory is used as if it
were main memory. If the request is a read, the corresponding word from cache memory
is simply passed to the CPU. Similarly, if the request is a write, the data from the CPU is
stored in the appropriate cache memory location. Satisfying a request in this way is known
as a hit.

FIGURE 8.8

Cache Memory

CPU
Bus

MemoryCache
memory

M
em

or
y 

m
an

ag
em

en
t 

un
it

If the required memory data is not already present
in cache memory, an extra step is required. In this case,
a cache line that includes the required location is copied
from memory to the cache. Once this is done, the transfer is
made to or from cache memory, as before. The situation in
which the request is not already present in cache memory
is known as a miss. The ratio of hits to the total number
of requests is known as the hit ratio.

When cache memory is full, some block in cache mem-
ory must be selected for replacement. Various algorithms



260 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 8.9

Step-by-Step Use of Cache

CPU

3. If there is a hit, the cache location is
used instead of memory.

4. In this case, a miss requires
the cache controller to
select a line for replacement
from memory.

5. After which, the new line in
cache is as treated before.

2. which checks the
request against each
tag. (In this illustration,
each line contains 4 
bytes starting with the
tag address.)

1. Every memory request goes
to the cache controller,

Cache
controller

1032

2334

0040

Tags Data

2332

CPU

Cache
controller

Memory

1032

3701

3700
0040

Tags Data

2332

have been implemented by different computer designers to make this selection, but most
commonly, some variation on a least recently used, or LRU , algorithm is used. An LRU
algorithm, as the name implies, keeps track of the usage of each block and replaces the
block that was last used the longest time ago.

Cache blocks that have been read, but not altered, can simply be read over during
replacement. Memory write requests impose an additional burden on cache memory



CHAPTER 8 CPU AND MEMORY: DESIGN, ENHANCEMENT, AND IMPLEMENTATION 261

operations, since written data must also be written to the main memory to protect the
integrity of the program and its data. Two different methods of handling the process of
returning changed data from cache to main storage are in common use. The first method,
write through, writes data back to the main memory immediately upon change in the
cache. This method has the advantage that the two copies, cache and main memory, are
always kept identical. Some designers use an alternative technique known variously as store
in, write back, or copy back. With this technique, the changed data is simply held in cache
until the cache line is to be replaced. The write back method is faster, since writes to
memory are made only when a cache line is actually replaced, but more care is required in
the design to ensure that there are no circumstances under which data loss could occur. If
two different programs were using the same data in separate cache blocks, for example, and
one program changed the data, the design must assure that the other program has access
to the updated data.

The entire cache operation is managed by the cache controller. This includes tag
searching and matching, write through or write back, and implementation of the algorithm
that is used for cache block replacement. The CPU and software are unaware of the presence
of cache memory and the activities of the cache controller. We note in passing that to
be effective, these operations must be controlled completely by hardware. It is possible
to envision using a program to implement the cache block replacement algorithm, for
example, but this is not feasible. Since memory accesses would be required to execute the
program, this would defeat the entire purpose of cache memory, which is to provide access
quickly to a single memory location.

Cache memory works due to a principle known as locality of reference. The locality of
reference principle states that at any given time, most memory references will be confined
to one or a few small regions of memory. If you consider the way that you were taught to
write programs, this principle makes sense. Instructions are normally executed sequentially;
therefore, adjoining words are likely to be accessed. In a well-written program, most of
the instructions being executed at a particular time are part of a small loop or a small
procedure or function. Likewise, the data for the program is likely taken from an array.
Variables for the program are all stored together. Studies have verified the validity of the
locality principle. Cache memory hit ratios of 90 percent and above are common with
just a small amount of cache. Since requests that can be fulfilled by the cache memory are
fulfilled much faster, the cache memory technique can have a significant impact on the
overall performance of the system. Program execution speed improvements of 50 percent
and more are common.

The hit ratio is an important measure of system performance. Cache hits can access
memory data at or near the speed that instructions are executed, even with sophisticated
instruction steering and multiple execution units. When a miss occurs, however, there is
a time delay while new data is moved to the cache. The time to move data to the cache is
called stall time. The stall time is typically long compared to instruction execution time.
This can result in a condition in which there are no instructions available to feed to the
execution units; the pipelines empty and instruction execution is stalled until the needed
cache line is available, reducing performance.

Some modern architectures even provide program instructions to request cache
preloading for data or instructions that will be needed soon. This improves execution speed
even more. Also, some system designers interleave the cache or implement separate caches



262 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

for instructions and data. This allows even more rapid access, since the instruction and
its operands can be accessed simultaneously much of the time. Furthermore, design of a
separate instruction cache can be simplified, since there is no need to write the instruction
cache back to main memory if the architecture imposes a pure coding requirement on
the programmer. The trade-off is that accommodating separate instruction and data
caches requires additional circuit complexity, and many system designers opt instead for a
combined, or unified, cache that holds both data and instructions.

It is also possible to provide more than one level of cache memory. Consider the two
level cache memory shown in Figure 8.10. This memory will work as follows. The operation
begins when the CPU requests an instruction (or piece of data) be read (or written) from
memory. If the cache controller for the level closest to the CPU, which we’ll call level 1
(normally abbreviated as L1), determines that the requested memory location is presently
in the level 1 cache, the instruction is immediately read into the CPU.

Suppose, however, that the instruction is not presently in level 1 cache. In this case,
the request is passed on to the controller for level 2 cache. Level 2 cache works in exactly
the same way as level 1 cache. If the instruction is presently in the level 2 cache, a cache
line containing the instruction is moved to the level 1 cache and then to the CPU. If not,
then the level 2 cache controller requests a level 2 cache line from memory, the level 1
cache receives a cache line from the level 2 cache, and the instruction is transferred to the
CPU. This technique can be extended to more levels, but there is usually little advantage in
expanding beyond level 3.

What does the second level buy us? Most system designers believe that more cache
would improve performance enough to be worthwhile. In this case, the system designers
provide a second level of cache, external to the chip. A personal computer secondary
cache commonly provides an additional 512 KB–2 MB of cache. A typical AMD Athlon 64
processor provides 64 KB of L1 data cache, 64 KB of L1 instruction cache, and 512 KB or
1 MB of level 2 cache within the same package as the CPU. The use of a dedicated on-chip
bus between level 1 cache and level 2 cache provides faster response than connecting the
level 1 cache to memory or to a level 2 cache on the regular memory bus.

To be useful, the second level of cache must have significantly more memory than the
first level; otherwise, the two cache levels would contain the same data, and the secondary
cache would serve no purpose. It is also normal to provide a larger cache line in the
secondary cache. This increases the likelihood that requests to the secondary cache can be
met without going out to main memory every time.

FIGURE 8.10

Two-Level Cache

CPU Memory

Level
1

cache
(L1)

Level
2

cache
(L2)



CHAPTER 8 CPU AND MEMORY: DESIGN, ENHANCEMENT, AND IMPLEMENTATION 263

Before leaving the subject of memory caching, a side note: the concept of caching also
shows up in other, unrelated but useful, areas of computer system design. For example,
caching is used to reduce the time necessary to access data from a disk. In this case, part of
main memory can be allocated for use as a disk cache. When a disk read or write request is
made, the system checks the disk cache first. If the required data is present, no disk access
is necessary; otherwise, a disk cache line made up of several adjoining disk blocks is moved
from the disk into the disk cache area of memory. Most disk manufacturers now provide
separate buffer memory for this purpose. This feature is implemented within the hardware
of a disk controller. Another example is the cache of previous Web pages provided by Web
browser application software.

All of these examples of caching share the common attribute that they increase
performance by providing faster access to data, anticipating its potential need in advance,
then storing that data temporarily where it is rapidly available.

8.4 THE COMPLEAT MODERN
SUPERSCALAR CPU

Figure 8.11 is a model of a CPU block diagram that includes all the ideas just discussed. The
design shown in this diagram is very similar to the one used in Sun SPARC and IBM Power
and PowerPC processors and, with minor variations, to that used in various generations of
the Intel Pentium and Itanium families, as well as various IBM mainframe processors. As
you would expect, the CPU is organized into modules that reflect the superscalar, pipelined
nature of the architecture. Although it is difficult to identify the familiar components that
we introduced in Chapter 7, the control unit, arithmetic/logic unit, program counter, and
the like, they are indeed embedded into the design, as you saw in Figure 8.4. The control
unit operation is distributed through much of the diagram, controlling each step of the
usual fetch-execute cycle as instructions flow through different blocks in the CPU. The
functions of the arithmetic/logic unit are found within the integer unit. The program
counter is part of the instruction unit.

In operation, instructions are fetched from memory by the memory management unit
as they are needed for execution, and placed into a pipeline within the instruction unit. The
instructions are also partially decoded within the instruction unit, to determine the type of
instruction that is being executed. This allows branch instructions to be passed quickly to
the branch processing unit for analysis of future instruction flow.

Instructions are actually executed in one of several types of execution units. Each
execution unit has a pipeline designed to optimize the steps of the execute cycle for a
particular type of instruction.

As you can see from the block diagram, there are separate execution units for branch
instructions, for integer instructions, for floating point instructions, and for load and
store instructions. Some processors provide multiple integer execution units to increase
the processing capacity of the CPU still further. Some models also have a separate system
register unit for executing system-level instructions. Some CPUs combine the load/store
instructions into the integer unit. The PowerPC provides reservation stations in each
execution unit. The Intel Pentium processors provide a general instruction pool where
decoded instructions from the instruction unit are held as they await operand data from
memory and from unresolved data dependencies. The Pentium instruction pool also holds



264 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 8.11

Modern CPU Block Diagram

Bus interface unit

Completion
or retire

unit

Floating
point

registers

General-
purpose
registers

Branch
processing

unit

Cache memory and
memory management unit

Instruction
unit

Load/
store
unit

Floating
point

processing
unit(s)

Integer
processing

unit(s)

completed instructions after execution until they can be retired in order. The Pentium also
separates the LOAD and STORE execution units.

The instruction unit is responsible for maintaining the fetch pipeline and for dis-
patching instructions. Because branch instructions affect the addresses of the following
instructions in the pipeline, they are processed immediately. Other instructions are pro-
cessed as space becomes available in the appropriate execution unit(s). Branch prediction is
usually built into the branch unit. When conditional branches occur, execution of instruc-
tions continues speculatively along the predicted branch until the condition is resolved.
Also, the use of multiple execution units makes it possible that instructions will execute
in the wrong order, since some instructions may have to wait for operands resulting from
other instructions and since the pipelines in each execution unit are of different lengths. As
we noted earlier, some current superscalar processors can look ahead several instructions
to find instructions that can be processed independently of the program order to prevent



CHAPTER 8 CPU AND MEMORY: DESIGN, ENHANCEMENT, AND IMPLEMENTATION 265

delays or errors arising from data dependency. The ability to process instructions out of
order is an important factor in the effectiveness of these processors. The completion or
‘‘retire’’ unit accepts or rejects speculative instructions, stores results in the appropriate
physical registers and cache memory locations, and retires instructions in the correct pro-
gram order, assuring correct program flow. The Crusoe and Itanium architectures prevent
out-of-order retirement by reordering the instructions prior to execution. This simplifies
the CPU design.

From this discussion, you can see that the modern CPU includes many sophisticated fea-
tures designed to streamline the basically simple fetch-execute cycle for high-performance
processing. The modern CPU features different types of execution units, tailored to the
needs of different types of instructions, and a complex steering system that can steer
instructions through the instruction unit to available execution units, manage operands,
and retire instructions in correct program order. The goal of each of these techniques is
to increase the parallelism of instruction execution, while maintaining the basic sequential
characteristic of a von Neumann computer architecture.

As a brief diversion, consider the similarities between the operation of the modern
CPU and the operation of a moderately large restaurant. Each of the waiters and waitresses
taking orders represent the fetch unit fetching instructions. Customers’ orders are fed to
the kitchen, where they are sorted into categories: soup orders to the soup chef, salads to
the salad chef, entrées to the entrée chef, and so on. Typically, the entrée chef will have the
most complex orders to fill, equivalent to the longest pipeline in the CPU. If the kitchen
is large, the entrée area will be further subdivided into multiple execution areas: frying,
baking, and so on, and there may be multiple cooks working in the busiest areas. As with
the programs being executed in a computer, there are dependencies between the various
cooks. For example, green beans must be blanched before they may be placed in the salad.
Finally, we observe that, like computer program instructions, the restaurant must provide
food from the kitchen to the customers in the proper sequence, and with appropriate
timing, to satisfy the customers’ requirements.

In this section we have introduced the basic ideas of superscalar processing, briefly
indicated the difficulties, and explained the reasoning for its use. There are many excellent
references listed in the For Further Reading if you are interested in more of the details of
superscalar processing and modern CPU design.

8.5 MULTIPROCESSING
One obvious way to increase performance in a computer system is to increase the number
of CPUs. Computers that have multiple CPUs within a single computer, sharing some or all
of the system’s memory and I/O facilities, are called multiprocessor systems, or sometimes
tightly coupled systems. When multiple CPU processors are supplied within a single
integrated circuit, they are more commonly called multicore processors. Figure 8.12 shows
a typical multiprocessor configuration. All the processors in a multiprocessor configuration
have access to the same programs and data in shared memory and to the same I/O devices, so
it is possible to divide program execution between different CPUs. Furthermore, programs
or pieces of programs may be run in any CPU that is available, so that each additional
processor extends the power available for multitasking in a multiprocessing system, at least
within the capability of the shared components, the memory, buses, and I/O controllers.



266 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 8.12

Typical Multiprocessing System Configuration

Memory

System bus

PCI bus

Other I/O
controllers

I/O
controller

Disks

CPU
1

CPU
2

CPU
3

Host/PCI
bridge

Under ideal conditions, each CPU processes
its own assigned sequence of program instruc-
tions independently. Thus, a dual-core processor
effectively doubles the number of instructions
executed in a given time, a quad-core processor
would quadruple the rate, and so forth. Of course
this assumes that there are multiple independent
tasks available to be executed simultaneously.
Since modern computer systems are normally
executing many programs and segments of pro-
grams concurrently this is nearly always the case.

In practice, increasing the number of CPUs
is, in fact, usually effective, although, as the
number of CPUs increases, the value of the addi-
tional CPUs diminishes because of the overhead
required to distribute the instructions in a useful
way among the different CPUs and the conflicts
among the CPUs for shared resources, such as
memory, I/O, and access to the shared buses.
With the exception of certain, specialized sys-
tems, there are rarely more than sixteen CPUs

sharing the workload in a multiprocessing computer; more commonly today, a multipro-
cessor might consist of two, four, or eight core CPUs within a single chip. Still, each core
in the chip is a full-blown superscalar CPU, of the type discussed in the previous sections
of this chapter.

Although increased computing power is a significant motivation for multiprocessing,
there are other considerations that make multiprocessing attractive:

■ Since the execution speed of a CPU is directly related to the clock speed of the
CPU, equivalent processing power can be achieved at much lower clock speeds,
reducing power consumption, heat, and stress within the various computer
components.

■ Programs can be divided into independent pieces, and the different parts
executed simultaneously on multiple CPUs.

■ With multiprocessing, increasing computational power may be achieved by
adding more CPUs, which is relatively inexpensive.

■ Data dependencies and cache memory misses can stall the pipelines in a single
CPU. Multiprocessing allows the computer to continue instruction execution in
the other CPUs, increasing overall throughput.

Assignment of work to the various processors is the responsibility of the operating
system. Work is assigned from among the programs available to be executed, or, more
commonly, from independent segments of those programs called threads. Since each of the
CPUs has access to the same memory and I/O, any CPU can theoretically execute any thread
or program currently in memory, including the operating system. This raises the question
of control of the system. There are two basic ways of configuring a multiprocessing system:



CHAPTER 8 CPU AND MEMORY: DESIGN, ENHANCEMENT, AND IMPLEMENTATION 267

■ Master-slave multiprocessing, in which one CPU, the master, manages the
system, and controls all resources and scheduling. Only the master may execute
the operating system. Other CPUs are slaves, performing work assigned to them
by the master.

■ Symmetrical multiprocessing (SMP), in which each CPU has identical access
to the operating system, and to all system resources, including memory. Each
CPU schedules it own work, within parameters, constraints, and priorities set by
the operating system. In a normal SMP configuration, each of the CPUs is
identical.

A number of CPUs also implement a simplified, limited form of multiprocessing using
parallel execution units within a single CPU to process two or more threads simultaneously.
This technique is called simultaneous thread multiprocessing (STM). STM is also known
as hyperthreading. STM is particularly useful in dealing with cache stalls, because the CPU
can be kept busy working on the alternative thread or threads. The operating system
manages STM in a manner similar to SMP. Since STM operates within a single CPU and
SMP operates between CPUs, STM and SMP can be used together.

For general purpose computing, the symmetrical configuration has many advantages.
Because every CPU is equal, every CPU has equal access to the operating system. Any
CPU can execute any task and can process any interrupt.4 Processors are all kept equally
busy, since each processor can dispatch its own work as it needs it. Thus, the workload
is well balanced. It is easy to implement fault-tolerant computing with a symmetrical
configuration—critical operations are simply dispatched to all CPUs simultaneously.
Furthermore, a failure in a single CPU may reduce overall system performance, but it will
not cause system failure. As an interesting aside, note that a program may execute on a
different CPU each time it is dispatched, although most SMP systems provide a means to
lock a program onto a particular CPU, if desired. Thus, the symmetrical configuration offers
important capabilities for multiprocessing: maximum utilization of each CPU, flexibility,
high reliability, and optional support for fault-tolerant computing. Most modern general
purpose multiprocessing systems are SMP systems.

Because of the somewhat limited flexibility in distributing the workload, the master-
slave configuration is usually considered less suitable for general purpose computing. In
a master-slave configuration the master is likely to be the busiest CPU in the system. If a
slave requires a work assignment while the master is busy, the slave will have to wait until
the master is free. Furthermore, since the master handles all I/O requests and interrupts, a
heavily loaded system will cause a backload in the master. If slaves are dependent on the
results of these requests, the system is effectively stalled.

Conversely, there are a number of specialized computing applications for which the
master-slave configuration is particularly well suited. These applications are characterized by
a need for a master control program, supported by repetitive or continuous, computation-
and data-intensive, time-critical tasks. For example, the processor in a game controller

4Interrupts are a special feature of the CPU in which outside events such as mouse movements and power
interruptions can affect the sequence of instructions processed by the CPU. Interrupts are discussed in detail in
Chapter 9.



268 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

must execute the code that plays the game. At the same time, it requires support that can
rapidly calculate and display new images based on movements of the objects in the image,
compute shadings and light reflections resulting from the movements; often, the processor
must create new pixel values for every pixel in the image. It must also be able to create the
appropriate reactions and display in response to events that occur, such as explosions or
fires or objects bouncing off a wall, and more.

Many important applications in economics, biology, physics, and finance, particularly
those based on simulation and modeling, have similar requirements.

EXAMPLE
The recently developed Cell Broadband Engine processor is organized in a master-slave con-
figuration. It was developed jointly by IBM, Sony, and Toshiba as the first of a new generation
of processors intended for use in high-performance intensive computing applications. It is
the main processor used in the Sony PlayStation 3.

A block diagram of the Cell processor is shown in Figure 8.13. The master processor
is similar to a 64-bit PowerPC CPU. There are eight slave processors. A high-speed bus
interconnects the master processor and each of the slave processors. For those interested, a
more detailed description of the PowerPC Cell processor can be found in Gschwind, et. al.
[GSCH06].

FIGURE 8.13

Cell Processor Block Diagram

SXU1

Cache
memory

SPE (slave)

Power processor
element
(master)

Memory
interface

Element interconnect bus

Notes:
SXU = Synergistic execution unit
SPE = Synergistic process element

I/O
interface

Cache
memory

Power
core

SXU2

Cache
memory

SPE (slave)

SXU3

Cache
memory

SPE (slave)

SXU8

Cache
memory

SPE (slave)

...



CHAPTER 8 CPU AND MEMORY: DESIGN, ENHANCEMENT, AND IMPLEMENTATION 269

8.6 A FEW COMMENTS ON IMPLEMENTATION
It is not the intention of this book to discuss the electronic implementation of the computer
in any detail. A brief introduction is provided in Supplementary Chapter 1, but the details
of such a discussion are better left to an engineering textbook. There are several good
computer engineering textbooks listed in the For Further Reading for the supplementary
chapter if you are interested in learning more about how the computer works.

Although the increased capacity of current integrated circuit technology has allowed
computer designers the option of creating very complex circuits, much of that capacity
is currently used to provide increased capability in the form of multiple execution units,
increased amounts of cache memory, and multicore processing; the basic design and
implementation of a processor is simpler than you might imagine.

If you look again at the instruction classes that constitute the operations of a CPU
together with the fetch-execute cycles that make up each of the instructions, you can see
that the great majority of operations within the CPU consist of moving data from one
register to another. The steps

PC → MAR and
MDR → IR

are examples of this type of operation.
In addition, we must include the capability to add data to a register with data from

another register or from a constant (usually the constant 1 or −1), the capability to perform
simple Boolean functions (AND, OR, NOT) on data in registers, and the capability to shift the
data in a register to the left or right. Finally, the CPU must include the capability to make
simple decisions based on the values stored in flags and registers (conditional branches).
All of these operations are under the timed control of a clock. Control unit logic opens and
closes switches at the right times to control the individual operations and the movement of
data from one component within the CPU to another.

And for all practical purposes, that’s about it. The small number of different operations
used in a CPU suggest that the CPU can be directly implemented in electronic hardware, and
indeed that is the case. In Supplementary Chapter 1, we demonstrate for the curious reader,
in somewhat simplified fashion, that all of the preceding functions can be implemented
using logic gates that perform Boolean algebra. The registers, flags, and counters that
control timing are made up of electronic devices called flip-flops, which are, themselves,
made up of logic gates.

So, as you can see, the basic hardware implementation of the CPU is relatively
straightforward and simple. Although the addition of pipelining, superscaling, and other
features complicates the design, it is possible, with careful design, to implement and
produce an extremely fast and efficient CPU at low cost and in large quantities.

SUMMARY AND REVIEW

In this chapter we presented a number of different techniques that are used to enhance the
power and flexibility of a CPU. We began with a discussion of three different approaches
to CPU architecture, with particular emphasis on traditional computer architecture. We
presented the advantages, disadvantages, and trade-offs for each architecture.



270 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

Next, we looked at the various aspects of instruction execution in a CPU, with the
purpose of improving performance. This discussion culminated in the presentation of a
model for an alternative organization that preserves the basic rules of execution, but allows
much faster instruction execution. The important features of this model include separating
the fetch-execute cycle into two separate fetch and execute units that can operate in
parallel, pipelining to allow instructions to execute in an assembly line, and multiple
execution units to allow parallel execution of unrelated instructions. A variety of innovative
techniques, including rename registers, speculative execution, out-of-order execution, and
branch prediction help to reduce bottlenecks and contribute to the performance. We noted
that the resulting model is capable of superscalar processing, with instructions processed at
average rates far exceeding the cycle rate of the clock.

We then turned our attention to memory enhancements, particularly the techniques
and benefits of cache memory, a fast, intermediate memory between then CPU and regular
memory. Following this, we put together a model of the compleat susperscalar CPU that
contained all of the features that we had presented up to this point.

To increase performance even further, it is possible to combine CPUs into multiple
units that share memory, buses, I/O, and other resources, a concept called multiprocessing.
We presented two different configurations of multiprocesors.

We concluded the chapter with a brief introduction to the technology used to
implement the modern processor.

With all of the advances and variations in technology, architecture, and organization
that we have introduced in this chapter, and despite all of the different types of computers,
applications, and uses for computers that are available today, it is important to remember
that, regardless of the specifics, every current CPU conforms to the basic model created by
Von Neumann more than a half century ago. There is little evidence that the basic concepts
that govern CPU operation are likely to change in the near future.

FOR FURTHER READING

The many references used to write this chapter are all listed in the bibliography section
at the end of the book. The following books and articles are particularly useful for their
clear descriptions and explanations of these topics. Stallings [STAL05] and Tanenbaum
[TANE05] describe the different types of architectures, focusing on the differences between
CISC and RISC architectures in great depth. Information about the VLIW and EPIC archi-
tectures may be found at the Transmeta and Intel websites, respectively. The IBM website
contains a wealth of information about zSeries, POWER, and Cell architectures, including
the Redbooks, which are free, downloadable, book-length explanations of various computer
topics. These range in difficulty from beginner to highly technical. Intel.com (for the x86
series) and sun.com (for the SPARC architecture) are other useful brand-specific websites.

Instruction sets, instruction formats, and addressing are discussed at length in every
computer architecture textbook. The book by Patterson and Hennessy [PATT07] covers
the topics of Chapters 7 and 8 thoroughly, and has the additional benefit of being highly
readable. A more advanced treatment, by the same authors, is found in [HENN06].
Good discussions of multiprocessing are also found in Patterson and Hennessy and in
Tanenbaum. Two readable websites introducing the Cell processor are Gschwind, et. al.
[GSCH06] and Moore [MOOR06].



CHAPTER 8 CPU AND MEMORY: DESIGN, ENHANCEMENT, AND IMPLEMENTATION 271

A different approach to this material is to compare the architectures of various
machines. The book by Tabak [TABA95] looks at several different CPUs in detail. Most
of these CPUs are obsolete, but the comparison between different architectures is useful.
There are textbooks and trade books devoted to the architecture of every major CPU.
The most thorough discussion of the x86 architecture is found in Mueller [MUEL08].
I also recommend Brey [BREY08], Messmer [MESS01], and Sargent and Shoemaker
[SARG95] for the Intel x86 series. The PC System Architecture series is a collection of short
books describing the architectures of various parts of computers. Volume 5 [SHAN04]
describes the evolution and architecture of the Pentium 4. The case studies provided in
Supplementary Chapter 2 are additional information resources.

Stallings also includes an entire chapter on superscalar processors. Clear, detailed
discussions of all aspects of CPU and memory design can be found in the two books by
Patterson and Hennessy [PATT07, HENN06]. There are many additional references in each
of these books. Specific discussions of the superscalar processing techniques for particular
CPUs can be found in Liptay [LIPT92] for the IBM ES/9000 mainframe, in Becker and
colleagues [BECK93], Thompson and Ryan [THOM94], Burgess and colleagues [BURG94],
and Ryan [RYAN93] for the PowerPC, and ‘‘Tour of the P6’’ [THOR95] for the P6.

An alternative approach to the topics in this chapter can be found in any assembly lan-
guage textbook. There are many good books on these topics, with new ones appearing every
day. A website such as Amazon is a good resource for identifying the best currently available.

KEY CONCEPTS AND TERMS
branch history table
cache controller
cache line
clock
code morphing layer
control dependency
data dependency
disk cache
execution unit
explicitly parallel

instruction computer
(EPIC)

fetch unit
hazard
hit
hit ratio
instruction reordering

instruction set architecture
(ISA)

instruction unit
locality of reference
logical register
logical storage elements
master-slave

multiprocessing
memory interleaving
miss
multiprocessor systems
multicore processor
n-way interleaving
organisation
pipelining
register alias table
rename register

scalar processing
simultaneous thread

multiprocessing (STM)
speculative execution
stall time
superscalar processing
symmetrical

multiprocessing (SMP)
tag
threads
tightly coupled system
very long instruction word

(VLIW)
wide path memory access
write-back
write through

READING REVIEW QUESTIONS
8.1 The x86 series is an example of a CPU architecture. As you are probably aware, there

are a number of different chips, including some from different manufacturers even,



272 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

that qualify as x86 CPUs. What, exactly, defines the x86 architecture? What word
defines the difference between the various CPUs that share the same architecture?
Name at least one different CPU architecture.

8.2 What is the major performance advantage that results from the use of multiple
general-purpose data registers?

8.3 Explain the advantage in implementing separate fetch and execute units in a
CPU. What additional task is implemented in the fetch unit as a performance
enhancement measure?

8.4 Explain how pipelining serves to reduce the average number of steps in the
execution part of the fetch-execute cycle.

8.5 Which class of instructions can reduce performance by potentially invalidating
the instructions in a pipeline? Identify two methods that can be used to partially
overcome this problem.

8.6 Most CPUs today are superscalar. What does that mean?

8.7 The use of multiple execution units can improve performance but also cause
problems called hazards or dependencies. Explain how a hazard can occur. How can
hazards be managed?

8.8 What is a rename register? What is it used for?

8.9 What performance improvement is offered by memory interleaving?

8.10 What specific performance improvement is offered by the use of cache memory?

8.11 Describe how cache memory is organized. What is a cache line? How is it used?

8.12 Explain the hit ratio in cache memory.

8.13 Explain the difference between cache write-through and cache write-back. Which
method is safer? Which method is faster?

8.14 Explain what takes place when cache memory is full.

8.15 Explain the locality of reference principle and its relationship to cache memory
performance and the hit ratio.

8.16 When a system has multiple levels of cache memory, L2 always has more memory
than L1. Why is this necessary?

8.17 Modern computers are usually described as multicore. What does this mean? Under
ideal conditions, what performance gain would be achieved using a four-core
processor over a single-core processor?

8.18 Identify and briefly explain two different ways of configuring a multiprocessing
system. Which configuration is more effective for general purpose computing?
Which configuration is more effective for handling specialized processing tasks,
such as those used in game applications?

EXERCISES
8.1 Find a good reference that describes the x86 chip. Discuss the features of the

architecture that make superscalar processing possible in this chip. What limitations
does the Pentium architecture impose on its superscalar processing?

8.2 Consider a CPU that implements a single instruction fetch-decode-execute-write-
back pipeline for scalar processing. The execution unit of this pipeline assumes



CHAPTER 8 CPU AND MEMORY: DESIGN, ENHANCEMENT, AND IMPLEMENTATION 273

that the execution stage requires one step. Describe, and show in diagram form,
what happens when an instruction that requires one execution step follows one
that requires four execution steps.

8.3 a. Consider a CPU with two parallel integer execution units. An addition
instruction requires 2 clock pulses to complete execution, and a multiplication
requires 15 clock pulses. Now assume the following situation: the program is
to multiply two numbers, located in registers R2 and R4, and store the results
in R5. The following instruction adds the number in R5 to the number in R2
and stores the result in R5. The CPU does not stall for data dependencies, and
both instructions have access to an execution unit simultaneously. The initial
values of R2, R4, and R5 are 3, 8, and 0, respectively. What is the result? Now
assume that the CPU does handle data dependencies correctly. What is the
result? If we define wasted time as time in which an execution unit is not busy,
how much time is wasted in this example?

b. Now assume that a later instruction in the fetch pipeline has no data
dependencies. It adds the value in R1, initially 4, to the value in R4 and stores
the result in R5. Data dependencies are handled correctly. There are no rename
registers, and the CPU retires instructions in order. What happens? If the
CPU provides rename registers, what happens? What effect does out-of-order
execution have upon the time required to execute this program?

8.4 Suppose that a CPU always executes the two instructions following a branch
instruction, regardless of whether the branch is taken or not. Explain how this can
eliminate most of the delay resulting from branch dependency in a pipelined CPU.
What penalties or restrictions does this impose on the programs that are executed
on this machine?

8.5 Some systems use a branch prediction method known as static branch prediction,
so called because the prediction is made on the basis of the instruction, without
regard to history. One possible scenario would have the system predict that all
conditional backward branches are taken and all forward conditional branches are
not taken. Recall your experience with programming in the Little Man Computer
language. Would this algorithm be effective? Why or why not? What aspects of
normal programming, in any programming language, support your conclusion?

8.6 How would you modify the Little Man Computer to implement the pipelined
instruction fetch-execution unit model that was described in this chapter? What
would it take to supply multiple execution units? Describe your modified LMC in
detail and show how an instruction flows through it.

8.7 a. Suppose we are trying to determine the speed of a computer that executes
the Little Man instruction set. The LOAD and STORE instructions each make up
about 25% of the instructions in a typical program; ADD, SUBTRACT, IN, and
OUT take 10% each. The various branches each take about 5%. The HALT

instruction is almost never used (a maximum of once each program, of
course!). Determine the average number of instructions executed each second
if the clock ticks at 100 MHz.

b. Now suppose that the CPU is pipelined, so that each instruction is fetched
while another instruction is executing. (You may also neglect the time required



274 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

to refill the pipeline during branches and at the start of program execution.)
What is the average number of instructions that can be executed each second
with the same clock in this case?

8.8 The goal of scalar processing is to produce, on average, the execution of one
instruction per clock tick. If the clock ticks at a rate of 2 GHz, how many
instructions per second can this computer execute? How many instructions would
a 2 GHz superscalar processor that processes three instructions per clock cycle
execute?

8.9 Consider a cache memory that provides three hundred 16-byte blocks. Now
consider that you are processing all the data in a two-dimensional array of, say, four
hundred rows by four hundred columns, using a pair of nested loops. Assume that
the program stores the array column by column. You can write your program to
nest the loops in either direction, that is, process row by row or column by column.
Explain which way you would choose to process the data. What is the advantage?
Conversely, what is the disadvantage of processing the data the other way? What
effect does choosing the incorrect way have on system performance?

8.10 Carefully discuss what happens when a cache miss occurs. Does this result in a
major slowdown in execution of the instruction? If so, why?

8.11 What is the purpose of the tag in a cache memory system?

8.12 Describe the trade-offs between the memory cache write-through and write-back
techniques.

8.13 Carefully describe the advantages and disadvantages of master-slave multiprocess-
ing and symmetrical multiprocessing. Which would you select for fault-tolerant
computing? Why?

8.14 Locate information about the Cell Processor. Describe the tasks performed by the
various slave processors. What is the primary role of the master processor? Explain
the advantages of master-slave multiprocessing over other forms of processing for
this application. Can you think of some other types of computer problems that
would benefit from this approach?

8.15 As you know, a single CPU processes one instruction at a time. Adding a second
CPU (or core, in current terminology) allows the system to process two instructions
at a time, simultaneously, effectively doubling the processing power of the system.
A third core will offer triple the processing power of a single CPU, and so on.
However, studies have shown that, in general, the expected increase in computing
power starts to decline when the number of cores grows large, beyond eight or so.
Why would you expect this to be the case? For what types of computing problems
might this not be true?



CHAPTER 8 CPU AND MEMORY: DESIGN, ENHANCEMENT, AND IMPLEMENTATION 275


