
CHAPTER 7

THE CPU AND MEMORY

SHOE MACNELLY. DISTRIBUTED BY KING FEATURES SYNDICATE

7.0 INTRODUCTION
The previous chapter provided a detailed introduction to the Little Man model of a
computer. In that chapter we introduced a format, using a three-digit number divided
into op code and address fields, for the instructions that a computer can perform. We
introduced an instruction set that we indicated was representative of those found in a
real computer. We also showed the steps that are performed by the Little Man in order
to execute one of these instructions.

In this chapter and the next we will extend these concepts to the real computer.
Our primary emphasis in this chapter is on the central processing unit (CPU), together
with memory. In the real computer, memory is actually separated both physically
and functionally from the CPU. Memory and the CPU are intimately related in the
operation of the computer, however, and so we will treat memory together with the
CPU for the convenience of our discussion. Since every instruction requires memory
access,1 it makes sense to discuss the two together.

We will use the Little Man model and its instruction set as a guideline for our
discussion. The Little Man instruction set is fundamentally similar to the instruction
sets of many different computers. Of course, the Little Man instruction set is based on
a decimal number system, and the real CPU is binary, but this is a detail that won’t
concern us for most of this discussion. The CPU architectural model that we shall
discuss is not based on a particular make and model, but is typical of most computers.
Chapter 8 will discuss the implementation of this model in modern technology.
In Supplementary Chapter 2, we shall look specifically at several popular computer
models.

In this chapter you will see that the execution of instructions in the CPU together
with memory is nearly identical functionally to the Little Man Computer. There is
a one-to-one relationship between the various contents of the mailroom and the
functional components of the CPU plus memory. The major differences occur in the
facts that the CPU instruction set is created using binary numbers rather than decimal
and that the instructions are performed in a simple electronic way using logic based
upon Boolean algebra instead of having a Little Man running around a mailroom.

Sections 7.1 through 7.3 present a systematic introduction to the components of the
CPU and memory, offering a direct comparison with the components of the Little Man
Computer, and focusing on the concept of the register as a fundamental element of CPU
operation. In Section 7.4, we show how simple CPU and memory register operations
serve as the basic mechanism to implement the real computer’s instruction set.

In Section 7.5, we turn our attention to the third major computer system
component, the bus component. Buses provide the interconnection between various
internal parts of the CPU, and between the CPU and memory, as well as providing

1Recall that in the LMC every instruction must be fetched from a mailbox to be executed. The same is
true in the real computer.

199

200 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

connections between input and output devices, the CPU, and memory. There are many
different types of buses in a computer system, each optimized for a different type of task.
Buses can connect two components in a point-to-point configuration or may interconnect
several modules in a multipoint configuration. In general, the lines on buses carry signals that
represent data, addresses, and control functions. We consider the general requirements for
a bus, the features, advantages and disadvantages of different types of buses. In Chapter 11,
we will focus on the specific buses that interconnect the various components of a computer
system, and show you the ways in which the buses connect different parts of an entire
computer system together.

In Sections 7.6, 7.7, and 7.8, we return our attention to the CPU to discuss the
characteristics and features of the instruction sets provided in real computers: the different
types of instructions, the formats of instruction words, and the general requirements and
restraints that are required for instruction words.

You already understand from Chapter 6 how simple instructions can be combined to
form the programs that you write. When you complete this chapter, you will have a good
understanding of how those instructions are executed in a computer.

7.1 THE COMPONENTS OF THE CPU
A simplified conceptual block diagram of a CPU with memory is shown in Figure 7.1.2

For comparison purposes, the block diagram for the Little Man Computer is repeated in
Figure 7.2, with labels corresponding to the components in Figure 7.1.

Note the similarities between the two figures. As noted in Chapter 1, the computer
unit is made up conceptually of three major components, the arithmetic/logic unit (ALU),
the control unit (CU), and memory. The ALU and CU together are known as the central
processing unit (CPU). An input/output (I/O) interface is also included in the diagram.
The I/O interface corresponds in function roughly to the input and output baskets, although
its implementation and operation differ from that of the Little Man Computer in many
respects.

FIGURE 7.1

System Block Diagram

Control unit

Program counter

Memory

CPU

ALU
I/O

interface

The arithmetic/logic unit is the component of the CPU
where data is held temporarily and where calculations take
place. It corresponds directly to the calculator in the Little
Man Computer.

The control unit controls and interprets the execution
of instructions. It does so by following a sequence of actions
that correspond to the fetch-execute instruction cycle that
was described in the previous chapter. Most of these actions
are retrievals of instructions from memory followed by
movements of data or addresses from one part of the CPU
to another.

The control unit determines the particular instruc-
tion to be executed by reading the contents of a program

2This diagram is first attributed to John von Neumann in 1945. As discussed in Chapter 8, current
technology results in a different physical layout for the components in the model; nevertheless, the basic execution
of instructions is still consistent with the original model.

CHAPTER 7 THE CPU AND MEMORY 201

FIGURE 7.2

The Little Man Computer

50500

00 500

01 199

02 500

03 399

95

96

97

98

99 123

05

123
ALU

Memory

I/O
interface Control

unit

Program
counter

counter (PC), sometimes called an instruction pointer, which is a part of the control
unit. Like the Little Man’s location counter, the program counter contains the address of
the current instruction or the next instruction to be executed. Normally, instructions are
executed sequentially. The sequence of instructions is modified by executing instructions
that change the contents of the program counter. The Little Man branch instructions
are examples of such instructions. A memory management unit within the control unit
supervises the fetching of instructions and data from memory. The I/O interface is also
part of the control unit. In some CPUs, these two functions are combined into a single bus
interface unit. The program counter in the CPU obviously corresponds to the location
counter in the Little Man Computer, and the control unit itself corresponds to the
Little Man.

Memory, of course, corresponds directly to the mailboxes in the LMC.

7.2 THE CONCEPT OF REGISTERS
Before we discuss the way in which the CPU executes instructions, it is necessary to
understand the concept of a register. A register is a single, permanent storage location
within the CPU used for a particular, defined purpose. A register is used to hold a binary
value temporarily for storage, for manipulation, and/or for simple calculations. Note that
each register is wired within the CPU to perform its specific role. That is, unlike memory,
where every address is just like every other address, each register serves a particular purpose.
The register’s size, the way it is wired, and even the operations that take place in the register
reflect the specific function that the register performs in the computer.

202 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

Registers also differ from memory in that they are not addressed as a memory location
would be, but instead are manipulated directly by the control unit during the execution of
instructions. Registers may be as small as a single bit or as wide as several bytes, ranging
usually from 1 to 128 bits.

Registers are used in many different ways in a computer. Depending on the particular
use of a register, a register may hold data being processed, an instruction being executed,
a memory or I/O address to be accessed, or even special binary codes used for some other
purpose, such as codes that keep track of the status of the computer or the conditions
of calculations that may be used for conditional branch instructions. Some registers serve
many different purposes, while others are designed to perform a single, specialized task.
There are even registers specifically designed to hold a number in floating point format,
or a set of related values representing a list or vector, such as multiple pixels in an
image.

Registers are basic working components of the CPU. You have already seen, in
Chapter 6, that the computer is unable to distinguish between a value that is used as a
number in a program and a value that is actually an instruction or address, except in the
context of current use. When we refer to the ‘‘data’’ in a register, we might be talking about
any of these possibilities.

You have already become acquainted with two ‘‘registers’’ in the Little Man Computer,
namely, the calculator and the location counter.

In the CPU, the equivalent to the calculator is known as an accumulator. Even the
short example to add two numbers in Chapter 6 showed that it is often necessary to move
data to and from the accumulator to make room for other data. As a result, modern CPUs
provide several accumulators; these are often known as general-purpose registers. Some
vendors also refer to general-purpose registers as user-visible or program-visible registers
to indicate that they may be accessed by the instructions in user programs. Groups of
similar registers are also sometimes referred to collectively as a register file. General-purpose
registers or accumulators are usually considered to be a part of the arithmetic/logic unit,
although some computer manufacturers prefer to consider them as a separate register unit.
As in the Little Man Computer, accumulator or general-purpose registers hold the data that
are used for arithmetic operations as well as the results. In most computers, these registers
are also used to transfer data between different memory locations, and between I/O and
memory, again similar to the LMC. As you will see in Chapter 8, they can also be used for
some other similar purposes.

The control unit contains several important registers.

■ As already noted, the program counter register holds the address of the current
instruction being executed.

■ The instruction register (IR) holds the actual instruction being executed
currently by the computer. In the Little Man Computer this register was not
used; the Little Man himself remembered the instruction he was executing. In a
sense, his brain served the function of the instruction register.

■ The memory address register (MAR) holds the address of a memory location.
■ The memory data register (MDR), sometimes known as the memory buffer

register, will hold a data value that is being stored to or retrieved from the
memory location currently addressed by the memory address register.

CHAPTER 7 THE CPU AND MEMORY 203

The last two registers will be discussed in more detail in the next section, when we
explain the workings of memory. Although the memory address register and memory data
register are part of the CPU, operationally these two registers are more closely associated
with memory itself.

The control unit will also contain several 1-bit registers, sometimes known as flags,
that are used to allow the computer to keep track of special conditions such as arithmetic
carry and overflow, power failure, and internal computer error. Usually, several flags are
grouped into one or more status registers.

In addition, our typical CPU will contain an I/O interface that will handle input and
output data as it passes between the CPU and various input and output devices, much like
the LMC in and out baskets. For simplification, we will view the I/O interface as a pair of
I/O registers, one to hold an I/O address that addresses a particular I/O device, the other
to hold the I/O data. These registers operate similarly to the memory address and data
registers. Later, in Chapter 9, we will discuss a more common way of handling I/O that uses
memory as an intermediate storage location for I/O data.

Most instructions are executed by the sequenced movement of data between the
different registers in the ALU and the CU. Each instruction has its own sequence.

Most registers support four primary types of operations:

1. Registers can be loaded with values from other locations, in particular from
other registers or from memory locations. This operation destroys the previous
value stored in the destination register, but the source register or memory
location remains unchanged.

2. Data from another location can be added to or subtracted from the value
previously stored in a register, leaving the sum or difference in the register.

3. Data in a register can be shifted or rotated right or left by one or more bits. This
operation is important in the implementation of multiplication and division.
The details of the shift operation are discussed in Section 7.6.

4. The value of data in a register can be tested for certain conditions, such as zero,
positive, negative, or too large to fit in the register.

In addition, special provision is frequently made to load the value zero into a register,
which is known as clearing a register, and also to invert the 0s and 1s (i.e., take the 1’s
complement of the value) in a register, an operation that is important when working with
complementary arithmetic. It is also common to provide for the addition of the value 1
to the value in a register. This capability, which is known as incrementing the register, has
many benefits, including the ability to step the program counter, to count in for loops,
and to index through arrays in programs. Sometimes decrementing, or subtraction of 1, is
also provided. The bit inversion and incrementing operations are combined to form the
2’s complement of the value in a register. Most computers provide a specific instruction
for this purpose, and also provide instructions for clearing, inverting, incrementing, and
decrementing the general-purpose registers.

The control unit sets (‘‘1’’) or resets (‘‘0’’) status flags as a result of conditions that
arise during the execution of instructions.

As an example, Figure 7.3 identifies the programmer-accessible registers in the IBM
System z computers, which includes a variety of IBM mainframe models. Internal registers,
such as the instruction, memory address, and memory buffer registers are not specifically

204 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 7.3

Programmer-Accessible Registers in IBM zSeries Computers

General

Floating point

PSW

Control (+1
32-bit floating
point control)

Register type

For arithmetic, logical, and addressing operations;
adjoining registers may be joined to form up to eight
128-bit registers
Floating point arithmetic; registers may be joined to
form 128-bit registers
Combination program counter and status-flag register,
called the Program Status Word (PSW)
Various internal functions and parameters connected
with the operating system; accessible only to systems
programmers

NotesSize of each in bits

16

16

1

16

64

64

128

64

Number

identified in the table, since they are dependent on the implementation of the particular
model in the series.

7.3 THE MEMORY UNIT

The Operation of Memory

To understand the details of instruction execution for the real CPU, you need first to see
how instructions and data can be retrieved from memory. Real memory, like the mailboxes
in the Little Man Computer, consists of cells, each of which can hold a single value, and
each of which has a single address.

Two registers, the memory address register and the memory data register, act as an
interface between the CPU and memory. The memory data register is called the memory
buffer register by some computer manufacturers.

Figure 7.4 is a simplified representation of the relationship between the MAR, the
MDR, and memory. Each cell in the memory unit holds 1 bit of data. The cells in Figure 7.4
are organized in rows. Each row consists of a group of one or more bytes. Each group
represents the data cells for one or more consecutive memory addresses, shown in the
figure as addresses 000, 001, . . . , 2n − 1.

In modern computers, it is common to address 8 bytes at a time to speed up memory
access between the CPU and memory. The CPU can still isolate individual bytes from the
group of eight for its use, however.

The memory address register holds the address in the memory that is to be ‘‘opened’’
for data. The MAR is connected to a decoder that interprets the address and activates a
single address line into the memory. There is a separate address line for each group of
cells in the memory; thus, if there are n bits of addressing, there will be 2n address lines.
(In actuality, the decoding process is somewhat more complex, involving several levels of
address decoding, since there may be several millions or billions of addresses involved, but
the concept described here is correct.)

CHAPTER 7 THE CPU AND MEMORY 205

FIGURE 7.4

The Relationship Between the MDR, the MAR, and Memory

bit 0

bit n�1 2n�1

000

001

One or more bytes

.

.

.

.

.....

.....

.....

.....

.....

.....

.....

.....

Memory data register

Individual
memory

cellsAddress
line

M
em

or
y

ad
dr

es
s

re
gi

st
er

A
dd

re
ss

 d
ec

od
er

The memory data register is designed such that it is effectively connected to every cell
in the memory unit. Each bit of the MDR is connected in a column to the corresponding
bit of every location in memory. However, the addressing method assures that only a single
row of cells is activated at any given time. Thus, only one memory location is addressed at
any one time. A specific example of this is shown in Figure 7.5. (Note that in the drawing
msb stands for most significant bit and lsb for least significant bit.)

FIGURE 7.5

MAR-MDR Example

1

1

0

0

0

1 63

1
0

49

.....

.....

.....

.....

.....

.....

.....

.....

M
em

or
y

ad
dr

es
s

re
gi

st
er

A
dd

re
ss

 d
ec

od
er

msb

Isb

1100012 = 4910

Memory data register

4

Active
line

206 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

As a simple analogy to the operation we’ve just described, consider the memory as
being stored in a glass box, as shown in Figure 7.6. The memory data register has a
window into the box. The viewer, who represents each cell in the memory data register,
can see the cells in corresponding bit position for every location in memory through the
window. The cells themselves are light bulbs that can be turned on (1) or off (0). The
output from the memory address register is passed to an address decoder. The output from
the address decoder in our analogy consists of a series of lines, each of which can light
up the bulbs in a single row of cells. Only one line at a time can be activated—specifically,
the one corresponding to the decoded address. The active line will light the bulbs that
correspond to ‘‘1s,’’ leaving the ‘‘0s’’ dark. The viewer therefore will see only the single
group of cells that is currently addressed by the memory address register. We can extend
the analogy to include a ‘‘master switch’’ that controls all the lights, so that the data can be
read only at the appropriate instant.

A more detailed picture of an individual memory cell is shown in Figure 7.7. Although
this diagram is a bit complicated, it may help to clarify how data is transferred between
the MDR and memory. There are three lines that control the memory cell: an address line,
a read/write line, and an activation line. The address line to a particular cell is turned on
only if the computer is addressing the data within that cell. The read/write line determines
whether the data will be transferred from the cell to the MDR (read) or from the MDR to
the cell (write). This line works by turning on one of two switches in conjunction with the
address line and the activation line. The read switch, R, in the diagram turns on when the

FIGURE 7.6

A Visual Analogy for Memory

63

isb

msb

49

1

1

1
1

0
0

0

0

10101101

M
em

or
y

ad
dr

es
s

re
gi

st
er

A
dd

re
ss

 d
ec

od
er

1100012 = 4910

Memory data register

All cells
dark

0001 1 1 1 1

CHAPTER 7 THE CPU AND MEMORY 207

FIGURE 7.7

An Individual Memory Cell

MDR line

READ
SWITCH, R

WRITE
SWITCH, W

ONE
MEMORY

CELL

address line = “1”
activate line = “1”
R/W line = “1” (read)

address line = “1”
activate line = “1”
R/W line = “0” (write)

AND

Data read
when READ

SWITCH is ON

Data written
when WRITE

SWITCH is ON

AND

address line and the activation line are both on (on is usually represented by 1, off by 0),
and the read/write line is set to read; the switch then connects the output of the cell to the
MDR line. The write switch, W, works similarly; switch W turns on when the address line
and activation line are both on and the read/write switch is set to write. Switch W connects
the MDR line to the input of the cell, which transfers the data bit on the MDR line to the
cell for storage. Note that only one switch, at most, can be on at a given time.

The interaction between the CPU and the memory registers takes place as follows: to
retrieve or store data at a particular memory location, the CPU copies an address from
some register in the CPU to the memory address register. Note that addresses are always
moved to the MAR; there would never be a reason for an address transfer from the MAR to
another register within the CPU , since the CPU controls memory transfers and is obviously
aware of the memory address being used. At the same time that the MAR is loaded, the
CPU sends a message to the memory unit indicating whether the memory transfer is a
retrieval from memory or a store to memory. This message is sent by setting the read/write
line appropriately.

At the appropriate instant, the CPU momentarily turns on the switch that connects
the MDR with the register by using the activation line, and the transfer takes place between
memory and the MDR. The MDR is a two-way register. When the instruction being
executed is to store data, the data will be transferred from another register in the CPU
to the MDR, and from there it will be transferred into memory. The original data at that

208 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

location will be destroyed, replaced by the new data from the MDR. Conversely, when the
instruction is to load data from memory, the data is transferred from memory to the MDR,
and it will subsequently be transferred to the appropriate register in the CPU. In this case,
the memory data are left intact, but the previous data value in the MDR is replaced by the
new data from memory.

Memory Capacity

The number of possible memory locations in the Little Man Computer, one hundred
locations, was established by the two-digit address space in each instruction. The location
counter also addresses one hundred locations. There is no memory address register per
se, but the Little Man is certainly aware that each memory location requires two digits. In
theory, a larger location counter, say, three digits, would allow the Little Man to fetch more
instructions, but notice that his data fetches and stores are still limited to the one hundred
locations that the two digits of the address field in the instruction word can address.

Similarly, there are two factors that determine the capacity of memory in a real
computer. The number of bits in the memory address register determines how many
different address locations can be decoded, just as the two-digit addresses in the Little
Man Computer resulted in a maximum of one hundred mailboxes. For a memory address
register of width k bits, the number of possible memory addresses is

M = 2k

The other factor in establishing memory capacity is of course the number of bits in the
address field of the instruction set, which establishes how many memory locations can be
directly addressed from the instruction.

In the Little Man Computer, we have assumed that these two size factors are the same,
but in a real computer, that is not necessarily the case. Even if the size of the instruction
address field is sufficient to support a larger amount of memory, the number of physical
memory locations is, in fact, determined by the size of the memory address register. There
are also other ways of extending the addresses specified within instructions so that we can
reach more addresses than the size of the instruction address field would allow. Just to give
you one common method, consider a computer that can use one of the general-purpose
registers to hold an address. To find a memory location, the computer would use the value
in that register as a pointer to the address. Instead of an address field, the instruction needs
only to indicate which register contains the address. Using this technique, the addressing
capability of the computer is determined by the size of the register. For example, a computer
with 64-bit registers could address 264 addresses if the MAR were wide enough. Such an
extension would suggest that the MAR, and thus the actual memory capacity, is normally
at least as large as the instruction address field, but it may be much larger. There is a
brief discussion of simple addressing methods in Chapter 8. Additional, more sophisticated
addressing methods are presented in Supplementary Chapter 3.

Ultimately, the width of the MAR determines the maximum amount of addressable
memory in the computer. Today, a typical memory address register will be at least 32 bits
wide, and probably much wider. Many modern CPUs support 64-bit memory addresses.
A 32-bit memory address allows a memory capacity of 4 gigabytes (GB) (4 × 109 byte-size
spaces), whereas 64 bits allows a memory capacity of 16 × 1018 bytes (16 exabytes or

CHAPTER 7 THE CPU AND MEMORY 209

16 billion gigabytes). In modern computers, the ultimate size of memory is more likely
limited by physical space for the memory chips or by the time required to decode and
access addresses in a large memory, rather than by the capability of the CPU to address
such a large memory.

Of course the size of memory also affects the speed of access. The time needed for the
address decoder to identify a single line out of four billion is necessarily larger than that
required for a memory that is much smaller.

As an aside, it is worth noting that early models of IBM’s largest mainframe computer
systems had a total memory capacity of only 512 KB, (1/4000th the memory of a typical
modern PC with 2 GB of memory!) and that the original IBM PC came supplied with 64 KB
of memory, with a maximum capacity of 640 KB. In fact, Bill Gates, of Microsoft, was
quoted at the time as saying that he could see no need for more than 640 KB of memory,
ever!

The size of the data word to be retrieved or stored in a single operation is determined
by the size of the memory data register and by the width of the connection between memory
and the CPU. In most modern computers, data and instructions found in memory are
addressed in multiples of 8-bit bytes. This establishes the minimum instruction size as 8
bits. Most instructions cannot fit practically into 8 bits. If one were to allow 3 bits for
the op code (eight instruction types), only 5 bits remain for addressing. Five bits allows
25 = 32 different addresses, which is clearly insufficient address space. As a result, longer
instructions of 16, 24, 32, or even more bits will be stored in successive memory locations.
In the interest of speed, it is generally desirable to retrieve an entire instruction with a
single fetch, if possible. Additionally, data to be used in arithmetic calculations frequently
requires the precision of several bytes. Therefore, most modern computer memories are
designed to allow the retrieval or storage of at least 4 and, more commonly, 8 or even 16,
successive bytes in a single operation. Thus, the memory data register is usually designed
to retrieve the data or instruction(s) from a sequence of several successive addresses all at
once, and the MDR will be several bytes wide.

Primary Memory Characteristics and Implementation

Through the history of computing there have been several different types of primary
memory used, reflecting the technology and the system requirements and capabilities of
the times. In the 1960s and 1970s, the dominant technology was magnetic core memory,
which used a tiny core of magnetic material to hold a bit of data, and the largest machines
might have had 512 KB of memory. Today, the primary memory in most computer systems
is dynamic RAM, and most machines have 1 GB of memory, or more. RAM is an acronym
that stands for random access memory, which is a slight misnomer, since other types of
semiconductor memory can also be accessed randomly (i.e., their addresses can be accessed
in any order). A more appropriate name would be read-write memory.

Memory today is characterized by two predominant operational factors and by a num-
ber of technical considerations. Operationally, the most important memory characteristic
is whether the memory is read-write capable or read-only. Almost as important is whether
the memory is volatile or nonvolatile. Nonvolatile memory retains its values when power
is removed. Volatile memory loses its contents when power is removed. Magnetic core
memory was nonvolatile. RAM is volatile.

210 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

Important technical considerations include the speed of memory access, the total
amount of memory that can be addressed, the data width, the power consumption and
heat generation, and the bit density (specified as the number of bits per square centimeter).
Cost is an additional factor.

Most current computers use a mix of static and dynamic RAM for memory. The
difference between static and dynamic RAM is in the technical design and is not of
importance here. However, dynamic RAM is less expensive, requires less electrical power,
generates less heat, and can be made smaller, with more bits of storage in a single integrated
circuit. Dynamic RAM also requires extra electronic circuitry that ‘‘refreshes’’ memory
periodically; otherwise the data fades away after a while and is lost. Static RAM does not
require refreshing. Static RAM is also faster to access than dynamic RAM and is therefore
useful in very-high-speed computers and for small amounts of high-speed memory, but
static RAM is lower in bit density and more expensive. Both dynamic and static RAM are
volatile: their contents are lost when power is turned off.

At the time of this writing, dynamic RAM is standard for most applications. The
amount of data that can be stored in a single dynamic RAM chip has increased rapidly in
the past few years, going from 64 Kilobits(Kb) to 512 Megabits (Mb) in fewer than fifteen
years. Currently, most systems are built with chips that can hold 256 or 512 Mb of data.
These chips are also designed to be packaged together in convenient plug-in packages that
can supply 1–2 gigabytes of memory, or more, in a single unit. 1 gigabit (Gb) and 2 Gb
RAM chips are also in production, but have not yet replaced 512 Mb chips for most system
applications, with the exception of mainframe systems. Most modern systems also provide
a small amount of static RAM memory that is used for high-speed access. This memory is
known as cache memory. The use of cache memory is discussed in Chapter 8.

Although current RAM technology is fast, inexpensive, and efficient, its volatility
makes some applications difficult or impossible. For example, nonvolatile RAM would
make it possible to shut off a computer without losing the programs and data in memory.
This would make it possible to restart the computer into its previous state without
rebooting, would eliminate the undesirable effects of power failures and laptop battery
discharge, and would simplify the use of computers in situations where power conservation
is critical, such as in long distance space missions. The desire for nonvolatile RAM has led
to considerable research on alternative technologies for creating and producing nonvolatile
RAM.

There are a small number of memory technologies in current use that are capable
of nonvolatile random access, but none in current large-scale production is capable of
replacing standard SRAM and DRAM for use in primary memory. Foremost among these
technologies is flash memory. Flash memory uses a concept called hot carrier injection to
store bits of data. Flash memory allows rewriting of cells by erasing groups of memory
cells selectively, and then writing the new pattern into the cells. Flash memory serves as
an inexpensive form of nonvolatile storage for portable computer storage, digital cameras.
MP3 players, and other electronic devices; however it is unsuitable for primary memory
because the rewrite time is extremely slow compared to standard RAM and the number
of rewrites over the lifetime of the ROM is somewhat limited. Flash memory is viewed
primarily as a potential replacement for slow long-term storage devices such as magnetic
disks and CD or DVD devices, although the significantly higher cost of flash memory is
still a factor at this point in time.

CHAPTER 7 THE CPU AND MEMORY 211

A number of nonvolatile memory technologies that might be capable of replacing
traditional RAM appear to be nearing production. These include magnetorestrictive
RAM (MRAM), ferroelectric RAM (FeRAM), phase-change RAM (PRAM), and carbon
nano[tube] RAM (NRAM). You will probably be reading about one or more of these in the
future.

ROM, or read-only memory, is used for situations where the software is built
semi-permanently into the computer, is required as part of the computer’s software,
and is not expected to change over the life of the computer, except perhaps very infre-
quently. Bootstrap programs and basic I/O system drivers fall into this category. Early
ROM memory was made up of integrated circuits with fuses in them that could be blown.
These fuses were similar to, but much smaller than, the fuses that you might have in your
home. A blown fuse might represent a ‘‘0,’’ an intact fuse a ‘‘1.’’ Modern ROM memo-
ries use a different technology, such as EEPROM or flash memory. EEPROM (Erasable
Electrically Programmable ROM) uses a concept called Fowler-Nordheim tunneling to
achieve rewritability. Because of its cost, need for special circuitry, and speed, EEPROM
has mostly been replaced by flash memory. Regardless of technology, ROM is nonvolatile.
Thus, although electrical power is required to access the data, the data remains consistent
with or without power.

7.4 THE FETCH-EXECUTE INSTRUCTION CYCLE
The fetch-execution instruction cycle is the basis for every capability of the computer.
This seems like a strong statement, but think about it: the purpose of the computer is
to execute instructions similar to those that we have already introduced. And, as you’ve
already seen from the Little Man Computer, the operation of every instruction is defined
by its fetch-execute instruction cycle. Ultimately, the operation of a computer as a whole
is defined by the primary operations that can be performed with registers, as explained in
Section 7.2: to move data between registers, to add or subtract data to a register, to shift
data within a register, and to test the value in a register for certain conditions, such as
negative, positive, or zero.

With the importance of the instruction cycle in mind, we can consider how these
few operations can be combined to implement each of the instructions in a computer.
The registers that will be of the most importance to us for this discussion will be the
general-purpose registers or accumulators used to hold data values between instructions
(A or GR), the program counter (PC), which holds the address of the current instruction,
the instruction register (IR), which will hold the current instruction while it is being
executed, and the memory address and data registers (MAR and MDR), used for accessing
memory.

To begin, review carefully the steps that the Little Man took to execute an instruction.
(You may want to read Section 6.6 again to refresh your memory.) You will recall that
there were two phases in the process. First, the Little Man fetched the instruction from
memory and read it. This phase was identical for every instruction. Then, he interpreted
the instruction and performed the actions required for that particular instruction.

He repeated this cycle endlessly, until he was given the instruction to stop.
The fetch-execute instruction cycle in a CPU works similarly. As noted, much of the

procedure consists of copying data from one register to another. You should always be

212 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

aware that data copying does not affect the ‘‘from’’ register, but it obviously replaces the
previous data in the ‘‘to’’ register with the new data being copied.

Remember that every instruction must be fetched from memory before it can
be executed. Therefore, the first step in the instruction cycle always requires that the
instruction must be fetched from memory. (Otherwise, how would the computer know
what instruction to perform?) Since the address of the current instruction to be executed is
identified by the value in the program counter register, the first step will be to transfer that
value into the memory address register, so that the computer can retrieve the instruction
located at that address.

We will use the following notation to indicate the transfer of a data value from one
register to another:

REGa → REGb

Then, in this notation, the first step in the execution of every instruction will be

(step 1) PC → MAR

As explained in the description of memory, this will result in the instruction being
transferred from the specified memory location to the memory data register. The next step
is to transfer that instruction to the instruction register:

(step 2) MDR → IR

The instruction register will hold the instruction through the rest of the instruction
cycle. It is the particular instruction in the IR that will control the particular steps that make
up the remainder of the cycle. These two steps comprise the fetch phase of the instruction
cycle.

The remaining steps are, of course, instruction dependent. Let us consider the steps
required to complete a LOAD instruction.

The next thing that the Little Man did was to read the address part of the LOAD

instruction. He then walked over to the mailbox specified by that address, read the data,
and copied it into the calculator. The real CPU will operate similarly, substituting register
transfers for the Little Man, of course. Thus,

(step 3) IR [address] → MAR

The notation IR [address] is used to indicate that only the address part of the contents
of the instruction register is to be transferred. This step prepares the memory module to
read the actual data that will be copied into the ‘‘calculator,’’ which in this case will be the
accumulator:

(step 4) MDR → A

The CPU increments the program counter, and the cycle is complete and ready to
begin the next instruction (actually this step can be performed any time after the previous
instruction is retrieved, and is usually performed early in the cycle in parallel with other
steps).

(step 5) PC+ 1 → PC

Notice the elegant simplicity of this process! The LOAD instruction requires only five
steps. Four of the steps simply involve the movement of data from one register to another.

CHAPTER 7 THE CPU AND MEMORY 213

The fifth step is nearly as simple. It requires the addition of the value 1 to the contents
of a register, and the new value is returned to the same register. This type of addition is
common in computers. In most cases, the result of an addition or subtraction is returned
to one of the original registers.

The remaining instructions operate similarly. Compare, for example, the steps required
to perform the STORE and the ADD instructions with those of the LOAD instruction, discussed
earlier.

The STORE instruction

PC → MAR
MDR → IR
IR [address] → MAR
A → MDR
PC+ 1 → PC

The ADD instruction

PC → MAR
MDR → IR
IR [address] → MAR
A+ MDR → A
PC+ 1 → PC

Study these examples carefully. For practice, relate them to the steps the Little Man
performs to execute the corresponding instruction. Notice that the only step that changes
in these three instructions is the fourth step.

The fetch-execute cycles for the remaining instructions are left as an exercise (see
Exercise 7.5 at the end of this chapter).

The following example, with comments, recaps the above discussion in the context of
a three-instruction program segment that loads a number from memory, adds a second
number to it, and stores the result back to the first memory location. Note that each
instruction is made up of its corresponding fetch-execute cycle. The program segment is
executed by processing each step of each fetch-execute cycle in sequence.

Assume that the following values are present just prior to execution of this segment:

Program Counter : 65
Value in Mem Location 65 : 590 (LOAD 90)
Value in Mem Location 66 : 192 (ADD 92)
Value in Mem Location 67 : 390 (STORE 90)
Value in Mem Location 90 : 111
Value in Mem Location 92 : 222

EXAMPLE

1st instruction LOAD 90: PC → MAR MAR now has 65
MDR → IR IR contains the instruction: 590
- - - - - - - - - - - - - ← end of fetch
IR [address] → MAR MAR now has 90, the location of the

data
MDR → A Move 111 from MDR to A
PC + 1 → PC PC now points to 66.

——————————————————————— end of execution, end of first instruction

214 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

2nd instruction ADD 92: PC → MAR MAR now contains 66
MDR → IR IR contains the instructions: 192
- - - - - - - - - - - - - ← end of fetch
IR [address] → MAR MAR now has 92
A + MDR → A 111+222=333 in A
PC + 1 → PC PC now points to 67

——————————————————————— end of execution, end of second instruction

3rd instruction STORE 90: PC → MAR MAR now contains 67
MDR → IR IR contains 390
- - - - - - - - - - - - - ← end of fetch
IR [address] → MAR MAR now holds 90
A → MDR The value in A, 333, moves to mem

location 90
PC + 1 → PC PC now points to 68

——————————————————————— end of execution, end of third instruction
← ready for next instruction

7.5 BUSES

Bus Characteristics

You have already seen that instructions are executed within the CPU by moving ‘‘data’’
in many different forms from register to register and between registers and memory. The
different forms that the ‘‘data’’ can take include instructions and addresses, in addition to
actual numerical data. ‘‘Data’’ moves between the various I/O modules, memory, and the
CPU in similar fashion. The physical connection that makes it possible to transfer data
from one location in the computer system to another is called a bus. From our previous
discussion of the way that the CPU and memory work together, it is probably already
obvious to you that there must be a bus of some kind linking the CPU and memory;
similarly, buses internal to the CPU can be used to link registers together at the proper
times to implement the fetch-execute cycles introduced in Section 7.4.

Specifically, a bus may be defined as a group of electrical, or, less commonly, optical,
conductors suitable for carrying computer signals from one location to another. The
electrical conductors may be wires, or they may be conductors on a printed circuit. Optical
conductors work similarly, using light that is directed from point to point in special thin
clear glass fibers. Optical conductors can carry data much faster than electrical conductors,
but their cost is high, which has limited their use to date. Nonetheless, there is considerable
lab research into ways to integrate more optical circuits into computers.

Buses are used most commonly for transferring data between computer peripherals
and the CPU, for transferring data between the CPU and memory, and for transferring data
between different points within the CPU. A bus might be a tiny fraction of an inch long,
carrying data between various parts of the CPU within an integrated circuit chip; it might
be a few inches long, carrying data between the CPU chip and memory; it might even be

CHAPTER 7 THE CPU AND MEMORY 215

hundreds of feet long, carrying data between different computers connected together in a
network.

The characteristics of buses are dependent on their particular use within the computer
environment. A bus can be characterized by the number of separate wires or optical
conductors in the bus; by its throughput, that is, the data transfer rate measured in bits
per second; by the data width (in bits) of the data being carried; by the number and type
of attachments that the bus can support; by the distance between the two end points; by
the type of control required; by the defined purpose of the bus; by the addressing capacity;
by whether the lines on the bus are uniquely defined for a single type of signal or shared;
and by the various features and capabilities that the bus provides. The bus must also be
specified electrically and mechanically; by the voltages used; by the timing and control
signals that the bus provides, by the protocol used to operate and control the bus, by the
number of pins on the connectors, if any; even by the size of the cards that plug into the
connector. A bus would not be very useful if the cards that it was to interconnect did not fit
into the space allotted! Unfortunately for the concept of standardization, there are dozens
of different buses in use, although a few are far more common than others.

The need to characterize buses comes from the necessity of interfacing the bus to
other components that are part of the computer system. Buses that are internal to the CPU
are usually not characterized formally at all, since they serve special purposes and do not
interface to the outside world. Buses that are used in this way are sometimes known as
dedicated buses. Buses that are intended for more general use must have a well-defined
standard; standard buses generally have a name. PCI Express, USB, IDE, and SATA are all
examples of named buses.

Each conductor in the bus is commonly known as a line. Lines on a bus are often
assigned names, to make individual lines easier to identify. In the simplest case, each line
carries a single electrical signal. The signal might represent one bit of a memory address,
or a sequence of data bits, or a timing control that turns a device on and off at the proper
time. Sometimes, a conductor in a bus might also be used to carry power to a module. In
other cases, a single line might represent some combination of functions.

The lines on a bus can be grouped into as many as four general categories: data,
addressing, control, and power. Data lines carry the ‘‘data’’ that is being moved from one
location to another. Address lines specify the recipient of data on the bus. Control lines
provide control and timing signals for the proper synchronization and operation of the bus
and of the modules and other components that are connected to the bus. A bus connecting
only two specific 32-bit registers within a CPU, for example, may require just thirty-two
data lines plus one control line to turn the bus on at the correct time. A backplane that
interconnects a 64-bit data width CPU, a large memory, and many different types of
peripherals might require many more than a hundred lines to perform its function.

The bus that connects the CPU and memory, for example, needs address lines to pass
the address stored in the MAR to the address decoder in memory and data lines to transfer
data between the CPU and the memory MDR. The control lines provide timing signals
for the data transfer, define the transfer as a read or write, specify the number of bytes to
transfer, and perform many other functions.

In reality, all of the lines except for the power lines in a bus can be used in different
ways. Each line in a bus may serve a single, dedicated purpose, such as a bus line that carries
the twelfth bit of an address, for example. Alternatively, a line may be configured to serve

216 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

different purposes at different times. A single line might be used to carry each of the bits of
an address in sequence, followed by the bits of data, for example. At their two extremes,
buses are characterized as parallel or serial. By definition, a parallel bus is simply a bus
in which there is an individual line for each bit of data, address, and control being used.
This means that all the bits being transferred on the bus can be transferred simultaneously.
A serial bus is a bus in which data is transferred sequentially, one bit at a time, using a
single data line pair. (A data return line is required to complete the circuit, just as there are
two wires in a standard 110-volt power circuit. Multiple data lines can share the same data
return line, commonly known as a ground line, but in some cases it is possible to reduce
noise and other interference by using a separate return line for each data line.)

A bus line may pass data in one direction only, or may be used to pass data in both
directions. A unidirectional line is called a simplex line. A bidirectional line may carry
data one direction at a time, in which case it is called a half-duplex line, or in both
directions simultaneously, known as a full-duplex line. The same nomenclature is also
used to describe data communication channels, because, ultimately, the basic concepts of
bus lines and communication channels are essentially similar.

Buses are also characterized by the way that they interconnect the various components
to which they are attached. A bus that carries signals from a single specific source to a single
specific destination is identified as a point-to-point bus. Point-to-point buses that connect
an external device to a connector are often referred to as cables, as in a printer cable or a
network cable. Thus, the cable that connects the USB port in a personal computer from the
computer to a printer is an example of a point-to-point bus. The internal connectors into
which external cables can be plugged are often called ports. Typical ports on a personal
computer might include parallel printer ports, network ports, USB ports, and firewire
ports.

Alternatively, a bus may be used to connect several points together. Such a bus is known
as a multipoint bus, or sometimes as a multidrop bus. It is also referred to as a broadcast
bus, because the signals produced by a source on the bus are ‘‘broadcast’’ to every other
point on the bus in the same way as a radio station broadcasts to anyone who tunes in. The
bus in a traditional Ethernet network is an example of a broadcast bus: the signal being sent
by a particular computer on the network is received by every other computer connected
to the network. (The operation of Ethernet is discussed in Chapter 13.) In most cases, a
multipoint bus requires addressing signals on the bus to identify the desired destination
that is being addressed by the source at a particular time. Addressing is not required with a
point-to-point bus, since the destination is already known, but an address may be required
if the message is being passed through the destination point to another location. Addressing
is also not required for a multipoint bus where the signal is actually intended to reach all
the other locations at once; this is sometimes the case for buses that are internal to the CPU.
Addressing may be integral to the lines of the bus itself, or may be part of the protocol that
defines the meaning of the data signals being transported by the bus.

Typical point-to-point and multipoint bus configurations are illustrated in Figure 7.8
A parallel bus that carries, say, 64 bits of data and 32 bits of address on separate

data and address lines would require a bus width of 96 lines, even before control lines
are considered. The parallel bus is characterized by high throughput capability because all
the bits of a data word are transferred at once. Virtually every bus internal to the CPU
is a parallel bus, since the high speed is essential to CPU operation. Also most internal

CHAPTER 7 THE CPU AND MEMORY 217

FIGURE 7.8

Point-to-Point and Multipoint Buses

Computer

CPU Memory

Computer

Computer Printer

Serial
port Modem

ALU
Control

unit

Examples of
point-to-point buses

Examples of
multipoint buses

Disk
controller Video

controller

operations and registers are inherently parallel, and the use of serial buses would require
additional circuitry to convert the parallel data to serial and back again. Until recently, the
buses that connected the CPU with memory and various high speed I/O modules such as
disk and display controllers were also parallel, for similar reasons.

The parallel bus does have a number of disadvantages, though. Parallel buses are expen-
sive and consume a considerable amount of space. Connectors used with parallel buses are
also expensive because of the large number of pins involved. External parallel buses, such
as printer cables are also expensive because of the large number of lines required. More
seriously, parallel buses are subject to radio-generated electrical interference between the
different lines at high data transfer rates. The higher the data rate, the worse the interference,
which ultimately limits the speed at which the parallel bus can operate. Additionally, there
is a slight difference in time delay on different lines, known as skew, as signals traverse the
bus. The transfer rate, and thus the clock speed of the bus, is also limited by the requirement
that the data must not change faster than the maximum skew time. Both of these problems
can cause data corruption. Finally, the cost of fiber optic technology makes a parallel optical
cable impractical.

Data on a serial bus is transferred sequentially, one bit at a time. Although you might
think that the throughput of a serial bus would be lower than that of a parallel bus
theoretically capable of the same per line transfer rate, the limitations noted above make
serial bus transmission attractive in many circumstances. Indeed, with advances in serial
bus technology, serial buses are now preferred for many, if not most, applications requiring
high data transfer rates.

Generally, a serial bus has a single data line pair and perhaps a few control lines. (For
simultaneous two-way communication, a second data line pair can be added.) There are

218 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 7.9

Alternative Bus Notations

16 16

no separate address lines in a serial bus. Serial buses are often set up for point-to-point
connection; no addressing is required in this case. If addressing is required in a serial bus
application, the address may be multiplexed with the data. What this means is that the same
line is used for both address and data at different times; if an address is required, for example,
the address might be sent first, one bit at a time, followed by the data. At its simplest, the
serial bus can be reduced to a single data line pair, used for data, control, and addressing.
Using modern materials such as fiber optics, very high transfer rates may be achieved.
In general, control is handled using a bus protocol that establishes agreement as to the
meaning and timing of each signal on the line among the components connected to the line.

It is also possible to design a parallel bus that multiplexes addresses and data on the
same lines, as the PCI bus does, or multiplexes 32-bit data on sixteen data lines, for example.
For example, the Pentium 4 multiplexes 128-bit data words to fit a 64-bit data path on the
Pentium system bus.

To use a bus, the circuits that are connected to the bus must agree on a bus protocol.
Recall from Chapter 1 that a protocol is an agreement between two or more entities that
establishes a clear, common path of communication and understanding between them. A
bus protocol is simply a specification that spells out the meaning of each line and each
signal on each line for this purpose. Thus, a particular control line on a bus might be
defined as a line that determines if the bus is to be used for memory read or memory write.
Both the CPU and memory would have to agree, for example, that a ‘‘0’’ on that particular
line means ‘‘memory read’’ and a ‘‘1’’ on the line means ‘‘memory write’’. The line might
have a name like MREAD/MWRITE, where the bar over MWRITE means that a ‘‘0’’ is the
active state. The bar itself stands for ‘‘NOT’’.3

Buses are frequently notated on diagrams using widened lines to indicate buses.
Sometimes a number is also present on the diagram. The number indicates the number of
separate lines in the bus. Two alternative ways of notating buses in diagrams are shown in
Figure 7.9.

7.6 CLASSIFICATION OF INSTRUCTIONS
Nearly every instruction in a computer performs some sort of operation on one or more
source data values, which results in one or more destination data values. The operation
may be a move or load, it may be an addition or subtraction, it may be an input or output,
or it may be one of many other operations that we have already discussed.

3A pound sign (#) following the name is sometimes used to stand for ‘‘NOT’’ instead.

CHAPTER 7 THE CPU AND MEMORY 219

Actually, if you think about the classes of instructions that we have discussed, you will
realize that there are only a very few instructions that do not operate on data. Some of these
are concerned with the flow of the program itself, such as unconditional JUMP instructions.
There are also instructions that control the administration of the computer itself; the only
example in the Little Man Computer instruction set is the COFFEE BREAK or HALT that causes
the computer to cease executing instructions. Another example on many computers is the
NO OPERATION instruction that does nothing but waste time (which can be useful when a
programmer wants to create a time delay for some reason).

Most modern computers also provide instructions that aid the operating system
software in its work, by providing security, controlling memory access, and performing
other functions. Because the operating system will frequently be controlling many tasks
and users, these instructions must not be available to the users’ application programs.
Only the operating system can execute these instructions. These instructions are known as
privileged instructions. The HALT instruction is usually a privileged instruction, because
you would not want an individual user to stop the computer while other users are still in
the middle of their tasks.

Computer manufacturers usually group the instruction set into various categories
of instructions, such as data movement instructions, arithmetic instructions, shift and rotate
instructions, input/output instructions, conditional branch instructions, jump instructions,
and special-purpose instructions.

Within each category, the instructions usually have a similar instruction word format,
support similar addressing modes, and execute in a similar way. A typical instruction set,
divided into eight categories, appears in Figure 7.10. This figure represents nearly all the
user-accessible instructions in the Motorola 68000 series of microprocessors used in early
Apple Macintosh computers.4 The privileged instructions are not listed in the diagram,
nor are exception-handling instructions that are used primarily by system programmers.
These constitute an additional two categories for the 68000 series CPUs. Incidentally, notice
that this CPU does not have any I/O instructions. That is because the CPU is designed
in such a way that the move instructions can also be used for I/O. Notice particularly
that, except for the lack of I/O instructions, the categories conform fairly well to the
Little Man Computer instruction set. The additional instructions in this CPU are mostly
variations on instructions that are familiar to you plus special control instructions. The
68000 series CPUs also support a math coprocessor, which adds a category of floating point
arithmetic instructions. The floating point math instructions are built directly into 68000
series processors starting with the 68040 CPU.

Data Movement Instructions (LOAD, STORE, and Other Moves)

Because the move instructions are the most frequently used, and therefore the most basic
to the computer, computer designers try to provide a lot of flexibility in these instructions.
The MOVE category commonly includes instructions to move data from memory to general
registers, from general registers to memory, between different general registers, and, in

4Although the 68000 CPU series is old, it is still used in embedded computer systems. It was selected for this
illustration because of its clean design, with few extraneous bells and whistles.

FIGURE 7.10

68000 Instruction Set

CAS*
CAS2*
EXG
LEA
LINK
MOVE
MOVE16
MOVEA
MOVEM
MOVEP
MOVEQ
PEA
UNLK

Compare and swap with operand
Compare upper/lower and swapASR
Exchange registers
Load effective address
Link and allocate stack
Move src to dst
Move src to dst (68030-68060 only)
Move src to address register
Move multiple registers at once
Move to peripheral
Move short data to dst
Push effective address to stack
Unlink stack

ADD
ADDA
ADDI
ADDQ
ADDX
SUB, SUBA,
 SUBI, SUBQ,
 SUBX
MULS
MULU
DIVS
DIVU
DIVSL*
DIVUL*
CLR
CMP
CMPA
CMPI
CMPM
CMP2*
EXT
EXTB
NEG
NEGX

Add src to dst
Add src to address register
Add immediate data to dst
Add short data to dst
Add with extend bit to dst
Subtracts act similarly to adds

Signed multiply
Unsigned multiply
Signed divide
Unsigned divide
Long signed divide
Unsigned long divide
Clear value in register
Compare src to dst
Compare src to address register
Compare immediate data to dst
Compare memory
Compare register to upper/lower bounds
Sign extend
Sign extend byte
Negate register
Negate with extend

AND
ANDI
EOR
EORI
NOT
OR
ORI
Scc
TAS
TST
TRAPcc*

AND src to dst
AND immediate data to dst
Exclusive OR src to dst
Exclusive OR immediate data to dst
NOT destination
OR src to dst
OR immediate data to dst
Test condition codes and set operand
Test and set operand
Test operand and set condition codes
Trap on condition

Mnemonic Operation Mnemonic Operation

Data Movement Instructions

ASL
ASR
LSL
LSR
ROL
ROR
ROXL
ROXR
SWAP

Arithmetic shift register left
Arithmetic shift right
Logical shift left
Logical shift right
Rotate left
Rotate right
Rotate left with extend bit
Rotate right with extend bit
Swap words of a long word

Shift and Rotate Instructions

BFCHG*
BFCLR*
BFEXTS*
BFEXTU*
BFFFO*
BFINS*
BFSET*
BFTST*

Change bit field
Clear bit field
Extract and sign extend bit field
Extract and zero extend bit field
Find first set bit in bit field
Insert bit field
Set bit field
Test bit field

Bit Field Instructions

BCHG
BCLR
BTEST
BTST

Change bit
Clear bit
Set bit
Test bit

Bit Manipulation Instructions

ABCD
NBCD
PACK*
SBCD*
UNPK*

Add src to dst
Negate destination
Pack src to dst
Subtract src from dst
Unpack src to dst

Binary Coded Decimal Instructions

Bcc
BRA
BSR
CALLM*
DBcc
JMP
JSR
NOP
RTD*
RTE
RTM*
RTR
RTS
TRAP

*(68020–68060 only)
(src = source; dst = destination; cc = condition code
indicator, e.g. BGT branch of greater than)

Branch on condition code cc
Branch unconditionally
Branch to subroutine
Call module
Test, decrement, and branch on condition
Jump to address
Jump to subroutine
No operation
Return and deallocate stack (also 68010)
Return from exception (privileged)
Return from module
Return and restore condition codes
Return from subroutine
Trap to system

Program Flow Instructions

Integer Arithmetic Instructions

Boolean Logic Instructions

220

CHAPTER 7 THE CPU AND MEMORY 221

some computers, directly between different memory locations without affecting any general
register. There may be many different addressing modes available within a single computer.

Additionally, variations on these instructions are frequently used to handle different
data sizes. Thus, there may be a LOAD BYTE instruction, a LOAD HALF-WORD (2 bytes), a
LOAD WORD (4 bytes), and a LOAD DOUBLE WORD (8 bytes) within the same instruction set.
(Incidentally, the concept of a ‘‘word’’ is not consistent between manufacturers. To some
manufacturers the size of a word is 16 bits; to others, it is 32 or even 64 bits).

The Little Man LOAD and STORE instructions are simple, though adequate, examples
of MOVE instructions. Other than expanding the addressing mode capabilities and adding
multiple word size capabilities, which we have already discussed, the major limitation of
the Little Man LOAD and STORE instructions is the fact that they are designed to operate with
a single accumulator.

When we expand the number of accumulators or general-purpose registers, we must
expand the instruction to determine which register we wish to use. Thus, the instruction
must provide a field for the particular register. Fortunately, it takes very few bits to describe
a register. Even sixteen registers require only 4 bits. On the other hand, if the computer
uses the registers to hold pointers to the actual memory addresses as its standard addressing
mode, the required instruction size may actually decrease, since fewer bits are required for
the address field in this case.

Additionally, it is desirable to have the capability to move data directly between
registers, since such moves do not require memory access and are therefore faster to
execute. In fact, some modern CPUs, including the Sun SPARC and IBM PowerPC
architectures, provide only one pair of LOAD/STORE or MOVE instructions for moving data
between the CPU and memory. All other instructions in these CPUs move and manipulate
data only between registers. This allows the instruction set to be executed much more
rapidly. There is a detailed examination of the Power PC computer and its variants in
Supplementary Chapter 2.

Arithmetic Instructions

Every CPU instruction set includes integer addition and subtraction. Except for a few
special-purpose CPUs, every CPU today also provides instructions for integer multi-
plication and division. Many instruction sets provide integer arithmetic for several different
word sizes. As with the MOVE instructions, there may be several different integer arithmetic
instruction formats providing various combinations of register and memory access in
different addressing modes.

In addition, most current CPUs also provide floating point arithmetic capabilities.
On older PCs with 80386 or earlier processors, a floating point math coprocessor unit
had to be purchased separately and installed in a socket provided for that purpose on the
motherboard of the computer. Because of the expense, most users would not exercise this
option. Extensive floating point calculations are required for many graphics applications,
such as CAD/CAM programs, animation, and computer games; the presence of floating
point instructions reduces the processing time significantly. Floating point instructions
usually operate on a separate set of floating point data registers with 64-, 80-, or 128-bit
word sizes. The modern instruction set usually also contains instructions that convert data
between integer and floating point formats.

222 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

As noted in Chapter 5, most modern CPUs also provide at least a minimal set
of arithmetic instructions for BCD or packed decimal format, which simplifies the
programming of business data processing applications.

Of course, it is not absolutely necessary to provide all these different instruction
options. Multiplication and division can be performed with repeated addition and subtrac-
tion, respectively. In computers there is an even easier technique. In elementary school you
probably learned the ‘‘long’’ multiplication and division methods which multiply or divide
numbers one digit at a time and shift the results until the entire operation is complete.
Because of the simplicity of binary multiplication (1 × 1 = 1, all other results are 0), the
computer can implement the same method using only adds or subtracts together with shift
instructions. Internally, the multiplication and division instructions simply implement in
hardware this same method. Since the fetch-execute cycle requires a single-bit shift and
register add step for each bit in the multiplier, multiply and divide instructions execute
slowly compared to other instructions.

Even the subtract instruction is theoretically not necessary, since we showed in
Chapter 4 that integer subtraction is performed internally by the process of complementing
and adding.

As we already noted, the same is true of BCD and floating point instructions. On
the now rare computers that do not provide floating point instructions, there is usually a
library of software procedures that are used to simulate floating point instructions.

Boolean Logic Instructions

Most modern instruction sets provide instructions for performing Boolean algebra. Com-
monly included are a NOT instruction, which inverts the bits on a single operand, as well as
AND, (inclusive) OR, and EXCLUSIVE-OR instructions, which require two source arguments and
a destination.

Single Operand Manipulation Instructions

In addition to the NOT instruction described in the previous paragraph, most computers
provide other convenient single operand instructions. Most of these instructions operate
on the value in a register, but some instruction sets provide similar operations on memory
values as well. Most commonly, the instruction set will contain instructions for NEGATing a
value, for INCREMENTing a value, for DECREMENTing a value, and for setting a register to zero.
There are sometimes others. On some computers, the increment or decrement instruction
causes a branch to occur automatically when zero is reached; this simplifies the design of
loops by allowing the programmer to combine the test and branch into a single instruction.

Bit Manipulation Instructions

Most instruction sets provide instructions for setting and resetting individual bits in a
data word. Some instruction sets also provide instructions for operating on multiple bits
at once. Bits can also be tested, and used to control program flow. These instructions
allow programmers to design their own ‘‘flags’’ in addition to commonly provided
negative/positive, zero/nonzero, carry/borrow, and overflow arithmetic flags.

CHAPTER 7 THE CPU AND MEMORY 223

Shift and Rotate Instructions

Shift and rotate operations have been mentioned previously as a means to implement
multiplication and division. Shifts and rotate operations have other programming appli-
cations, and CPU instruction sets commonly provide a variety of different shift and rotate
instructions for the programmer to use. As shown in Figure 7.11, shift instructions move
the data bits left or right one or more bits. Rotate instructions also shift the data bits left or
right, but the bit that is shifted out of the end is placed into the vacated space at the other
end. Depending on the design of the particular instruction set, bits shifted out the end of
the word may be shifted into a different register or into the carry or overflow flag bit, or
they may simply ‘‘fall off the end’’ and be lost.

Two different kinds of shifts are usually provided. The data word being shifted might
be logical or it might be numeric. Logical shift instructions simply shift the data as you
would expect, and zeros are shifted in to replace the bit spaces that have been vacated.
Arithmetic shift instructions are commonly used to multiply or divide the original value
by a power of 2. Therefore, the instruction does not shift the leftmost bit, since that bit
usually represents the algebraic sign of the numeric value—obviously the sign of a number
must be maintained. Left arithmetic shifts do not shift the left bit, but zeros replace the
bits from the right as bits are moved to the left. This will effectively double the numeric
value for each shift of one bit. On the other hand, right arithmetic shifts fill the space of
moved bits with the sign bit rather than with zero. This has the effect of halving the value

FIGURE 7.11

Typical Register Shifts and Rotates

0

Before shift

After shift

Sign bit

a. Left logical shift register 1 bit b. Rotate right 1 bit

c. Right arithmetic shift 2 bits

After shift

Before shift

0

01

0 11 00 11 11 00 1

0

0 00 11 00 11 11 00 1

0 11 00 11 11 00 11 0 1 00 00 11 00 11 11 0

1 00 00 11 11 00 00 1

1 11 11 00 00 11 11 0

224 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

for each bit shifted, while maintaining the sign of the value. It may not seem obvious to
you that this works correctly, but it becomes more apparent if you recall that negative
numbers in complementary arithmetic count backward starting from the value −1, which
is represented in 2’s complement by all ones.

Rotate instructions take the bits as they exit and rotate them back into the other end of
the register. Some instructions sets include the carry or overflow bit as part of the rotation.
Some CPUs also allow the rotation to take place between two registers. Rotate instructions
can be used to exchange the 2 bytes of data in a 16-bit word, for example, by rotating the
word by 8 bits.

Program Control Instructions

Program control instructions control the flow of a program. Program control instructions
include jumps and branches, both unconditional and conditional, and also subroutine
CALL and RETURN instructions. Various conditional tests are provided, including those with
which you are already familiar: branch on zero, branch on nonzero, branch on positive,
branch on negative, branch on carry, and so on.

CALL instructions, sometimes known as JUMP SUBROUTINE instructions, are used to
implement subroutine, procedure and function calls. Thus, CALL instructions are important
as a means to enable program modularization.

From your programming experience, recall what happens when your program calls a
subroutine or procedure. The program jumps to the starting location of the subroutine

FIGURE 7.12

Operation of CALL and RETURN Instructions

Calling program

Subroutine
308

...

...

...

305 instruction
306 instruction before call
307 CALL 425
308 instruction after call

425 first instruction
426 instruction

435 return

Saves program
counter somewhere

Reloads program counter
with original value (308)

Causing return to instruction
after call

Jumps to 425

Returns to
308

and executes the code in the subrou-
tine. When the subroutine is completed,
program execution returns to the calling
program and continues with the instruc-
tion following the call. The machine lan-
guage CALL instruction works the same
way. A jump to the starting location
of the subroutine occurs, and execution
continues from that point. The only dif-
ference between a CALL instruction and
a normal JUMP instruction is that the
CALL instruction must also save some-
where the program counter address from
which the jump occurred, so that the
program may return to the instruction
in the calling program following the call
after the subroutine is completed. The
RETURN instruction restores the original
value to the program counter, and the
calling program proceeds from where it
left off. Operation of the CALL and RETURN

instructions are illustrated in Figure 7.12.

CHAPTER 7 THE CPU AND MEMORY 225

Different computers use different methods to save the return address. One common
method is to store the return address on a memory stack; the RETURN instruction operates
by removing the address from the stack and moving it to the program counter. The use of
stacks is discussed briefly in the next section. Another method for performing CALLs and
RETURNs is explored in Exercise S3.14.

Stack Instructions

One of the most important data storage structures in programming is the stack. A stack
is used to store data when the most recently used data will also be the first needed. For
that reason, stacks are also known as LIFO, for last-in, f irst-out, structures. As an analogy,
stacks are frequently described by the way plates are stored and used in a cafeteria. New
plates are added to the top of the stack, or pushed, and plates already on the stack move
down to make room for them. Plates are removed from the top of the stack, or popped,
so that the last plates placed on the stack are the first removed. Similarly, the last number
entered onto a computer memory stack will be the first number available when the stack is
next accessed. Any data that must be retrieved in reverse order from the way it was entered
is a candidate for the use of stacks. Figure 7.13 shows the process of adding to and removing
numbers from the stack.

Stacks are an efficient way of storing intermediate data values during complex
calculations. In fact, storage in Hewlett-Packard calculators is organized around a stack of
memory. As we already noted, stacks are also an excellent method for storing the return
addresses and arguments from subroutine calls. Program routines that are recursive must
‘‘call themselves.’’ Suppose the return address were stored in a fixed location, as shown in
Figure 7.14a. If the routine is called a second time, from within itself, Figure 7.14b, the
original returning address (56) is lost and replaced by the new return address (76). The
program is stuck in an infinite loop between 76 and 85. In Figure 7.15, the return address is
stored on a stack. This time when the routine is again called, the original address is simply

FIGURE 7.13

Using a Stack

153

299

701

428

017

153

299

701

428

505

017

153

299

701

428

017

153

299

701

428

153

299

701

428

017 505 505 017

(a) Adding to the stack (b) Removing from the stack

226 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 7.14

Fixed Location Subroutine Return Address Storage

70

69 56

...
70

69 76

...

55 CALL 70
56 next instruction
 after subroutine

55 CALL 70
56 next instruction
 after subroutine

Most recent
return address

Most recent
return address

Jump to location
indicated by 69

Jump to location
indicated by 69

Subroutine Subroutine

85 RETURN

75 CALL 70
76
85 RETURN

a. Subroutine called from loc.55 b. Subroutine re-called from 75,
within the subroutine

pushed down the stack, below the most recent address. Notice that the program ‘‘winds its
way back out’’ in the reverse order from which the routines were entered. This is exactly
what we want: we always return from the last called subroutine to the one just previous.
J. Linderman of Bentley University notes that the same technique would be used to back
out of a maze for which the explorer has written down each turn that she made after
entering.

There are many other interesting applications for stacks in computers, but further
discussion is beyond the scope of this book. The curious reader is referred to For Further
Reading for references.

Computers do not generally provide special memory for stack use, although many
machines provide special STACK instructions to simplify the bookkeeping task. Instead,
the programmer sets aside one or more blocks of regular memory for this purpose. The
‘‘bottom’’ of the stack is a fixed memory location, and a stack pointer points to the ‘‘top’’
of the stack, that is, the most recent entry. This is shown in Figure 7.16. A new entry is
added to the stack, or pushed, by incrementing the stack pointer, and then storing the
data at that location. An entry is removed from the stack, or popped, by copying the value
pointed to and then decrementing the stack pointer. If a register is provided for the stack
pointer, register-deferred addressing can be used for this purpose. (You should note that
memory is drawn upside-down in Figure 7.16 so that incrementing the stack pointer moves
it upward.)

Many instruction sets provide PUSH and POP instructions as direct support for stacks,
but stacks can be implemented easily without special instructions. (Exercise S3.15 illustrates
one solution.) Some computers also specify the use of a particular general-purpose register
as a stack pointer register.

FIGURE 7.15

Stack Subroutine Return Address Storage

56

1 2

55 CALL 70
56 next instruction
 after subroutine
 completes

55 CALL 70
56 next instruction
 after subroutine
 completes

55 CALL 70
56 next instruction
 after subroutine
 completes

70 beginning
 of subroutine. . .
75 CALL 70

76

85 RETURN

STACK

Return to 76
(top of stack)
and pop stack

Subroutine call from
LOC 55

2nd subroutine call from LOC
75 (within the subroutine)

Return address

...
76

STACK
Return address

...

56
70 beginning
 of subroutine.. .
75 CALL 70

76

85 RETURN

3 Return from
inner call

70 beginning
 of subroutine . . .
75 CALL 70

76

85 RETURN

56
STACK

...

55 CALL 70
56 next instruction
 after subroutine
 completes

Return to 56
(top of stack)
and pop stack

4 Return from
original call

70 beginning
 of subroutine . . .
75 CALL 70

76

85 RETURN

(em
pty)

STACK

227

228 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 7.16

Using a Block of Memory as a Stack

54
54

53 53
52
51
50

323

323

555
108
919
277

54
53
52
51
50

323
555
108
919
277

54

53

323

PUSH increments
pointer, then
STORES data

POP loads data, then
decrements pointer

Stack
pointer

Bottom of
stack

Stack
pointer

Bottom of
stack

Multiple Data Instructions

Multimedia applications rank high in com-
putational demands on the CPU in modern
PCs and workstations. In response to the
demand, CPU designers have created special-
ized instructions that speed up and simplify
multimedia processing operations.

Multimedia operations are commonly
characterized by a number of simple oper-
ations applied identically to every piece of
data in the set. As a simple example, the
brightness of an image might be modified
by multiplying the value of every pixel in
the image by a common scale factor. Or, a

measure of similarity between two images could be established by subtracting all the pixel
values in one image from the corresponding pixel values in a second image and averaging
the results.

Multiple data instructions perform a single operation on multiple pieces of data
simultaneously. For this reason they are also known as SIMD instructions. SIMD
stands for Single Instruction, Multiple Data. The SIMD instructions provided on Intel
Pentium processors are typical. The processor provides eight 128-bit registers specifically
for SIMD instruction use and also allows the use of the standard 64-bit floating point
registers for this purpose. The Pentium CPU SIMD instructions can process from two
64-bit integers up to sixteen 8-bit integer arithmetic operations or up to two 64-bit
floating point number operations simultaneously as well as providing instructions for
packing and unpacking the values and moving them between registers and memory, and a

FIGURE 7.17

Operation of a 4-Wide SIMD ADD Instruction

+ + + +

Register
1

Register
2

Register
2

A1 B1 C1 D1

A2

A1 + A2 B1 + B2 C1 + C2 D1 + D2

B2 C2 D2

variety of other related instructions. Other ven-
dors, including AMD, IBM, Sun, Transmeta, and
VIA provide compatible or similar SIMD instruc-
tions. The IBM Cell processor, which serves as the
CPU in the Sony Playstation 3, provides a par-
ticularly powerful SIMD capability that accounts
for much of the Playstation’s graphics strength.
Figure 7.17 shows the operation of a SIMD ADD

instruction.
Although multimedia operations are a primary

application for these instructions, these instructions
can be applied to any vector or array processing
application, and are useful for a number of purposes
in addition to multimedia processing, including
voice-to-text processing, the solutions to large-scale
economics problems, weather prediction, and data
encryption and decryption.

CHAPTER 7 THE CPU AND MEMORY 229

Other Instructions

The remainder of the instructions includes input/output instructions and machine con-
trol instructions. In most systems both groups are privileged instructions. Input/output
instructions are generally privileged instructions because we do not want input and output
requests from different users and programs interfering with each other. Consider, for
example, two users requesting printer output on a shared printer at the same time, so that
each page of output is divided back and forth between the two users. Obviously, such
output would not be acceptable. Instead, these requests would be made to the operating
system that controls the printer, which would set priorities, maintain queues, and service
the requests. We will deal with the subject of input/output in Chapters 9 and 10, and with
operating systems in Chapters 15 through 18.

7.7 INSTRUCTION WORD FORMATS
Instructions in the Little Man Computer were made up entirely of three-digit decimal
numbers, with a single-digit op code, and a two-digit address field. The address field
was used in various ways: for most instructions, the address field contained the two-digit
address where data for the instruction could be found (e.g., LOAD) or was to be placed
(STORE). In a few instructions, the address field was unused (e.g., HALT). For the branch
instructions, the address field space was used instead to hold the address of the next
instruction to be executed. For the I/O instructions, the address field became a sort of
extension of the op code. In reality, the I/O address field contained the ‘‘address’’ of an I/O
device, in our case 01 for the in basket and 02 for the out basket.

The instruction set in a typical real CPU is similar. Again, the instruction word can be
divided into an op code and zero or more address fields. A simple 32-bit instruction format
with one address field might look like that shown in Figure 7.18. In this example, the 32
bits are divided into an 8-bit op code and 24 bits of address field.

In the Little Man Computer, reference to an address specifically referred to a mem-
ory address. However, we have already noted that the computer might have several
general-purpose registers and that it would be necessary for the programmer to select a
particular register to use as a part of the instruction. To be more general, we will use the
word ‘‘address’’ to refer to any data location, whether it is a user-accessible register or a
memory location. We will use the more specific expression memory address when we want
to specify that the address is actually a memory location.

FIGURE 7.18

A Simple 32-bit Instruction Format

op code Address field

10101010 101010101010101010101010

bit 0 7 8 31

In general, computer instructions that manip-
ulate data require the specification of at least two
locations for the data: one or more source loca-
tions and one destination location. These locations
may be expressed explicitly, as address fields in the
instruction word, or implicitly, as part of the defini-
tion of the instruction itself. The instruction format
of the Little Man LOAD instruction, for example,
takes the data from the single address field as the

230 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 7.19

Typical Two Operation Register Move Format

op code
source
register

destination
register

MOVE 5 10

explicit source address. Explicit addresses in the Little
Man Computer are always memory addresses. The des-
tination address in this case is implicit: this instruction
always uses the accumulator register as a destination.
The Little Man ADD and SUBTRACT instructions require two
sources and a destination. Source data addressed by the
instruction’s single explicit address field is added to the
value in the implicitly stated accumulator, with the result
placed implicitly in the accumulator.

For a particular instruction, the source(s) and destination may be the same or may be
different. For example, an instruction that complements a value to change its sign would
usually be done ‘‘in place’’; that is, the source and destination register or memory location
is usually the same. The Little Man ADD instruction uses the accumulator register both as
a source for one of the numbers to be added and as the destination for the result. On
the other hand, when we move data, using a LOAD or STORE or some other type of MOVE

operation, two operands are required. The source and destination are obviously different,
or the move would not be useful! A register-to-register MOVE, for example, might use an
instruction format such as that shown in Figure 7.19. In the figure, the instruction word
consists of an opcode and two fields that point to registers. As shown, this instruction
would move data from register 5 to register 10. Unless the operation is done in place, the
sources are normally left unchanged by the instruction, whereas the destination is almost
always changed.

The source and destination addresses may be registers or memory locations. Since
most modern computers have multiple registers available to the user it is usually necessary
to provide at least two explicit address fields, even for an address-register move, since the
number of the particular register must be specified in the instruction.

The sources and destinations of data for an instruction, whether implicit or explicit, are
also known as operands. Thus, instructions that move data from one place to another have
two operands: one source operand and one destination operand. Arithmetic operations
such as ADD and SUBTRACT require three operands. Explicit address fields are also known as
operand fields.

Most commonly, instructions that manipulate data will have one address field for
operations that happen in place, and two or three address fields for move and arithmetic
operations. On some computers one or more of the addresses may be implicit, and
no address field is required for the implicit address. However, in modern computers
most address references are explicit, even for register addresses, because this increases
the generality and flexibility of the instruction. Thus, most computer instructions will
consist of an op code and one, two, or three explicit address fields. Some textbooks refer
to instructions with one, two, or three explicit address fields as unary, binary, or ternary
instructions, respectively.

7.8 INSTRUCTION WORD REQUIREMENTS
AND CONSTRAINTS

The size of the instruction word, in bits, is dependent on the particular CPU architecture,
particularly by the design of its instruction set. The size of the instruction word may be

CHAPTER 7 THE CPU AND MEMORY 231

fixed at, say, 32 bits, or it may vary depending on the usage of the address fields. The Sun
Sparc CPU, for example, takes the former approach: every instruction word is exactly 32
bits wide. Conversely, some of the basic instruction words for the x86 microprocessor line
used in the common PC, for example, are as small as 1 or 2 bytes long, but there are some
instructions in the Pentium microprocessor that are as many as 15 bytes long. The IBM
Series z architecture is an evolutionary extension of upward compatible CPU architectures
dating back to the 1960s. The legacy instructions in the IBM Series z CPU are mostly 4 bytes,
or 32 bits long, with a few 2-byte or 6-byte long instructions. To expand the architecture to
64-bit addressing and data, IBM added a number of new instructions. These are all 6 bytes
in length.

The challenge in establishing an instruction word size is the need to provide both
enough op code bits to support a reasonable set of different instructions as well as enough
address field bits to meet the ever growing demand for increasing amounts of addressable
memory. Consider again, for example, the extremely straightforward instruction format
shown in Figure 7.18. This format assumes a single address field with a 32-bit fixed length
instruction. With the division shown, we have access to 28 = 256 different instructions and
224 = approximately 16 million memory addresses.

Even if the designer creates a smaller instruction set, with fewer op codes, the amount
of memory that may be specified in a 32-bit instruction word is severely limited by modern
standards. Most of today’s computers support an address size of at least 32 bits. Many
newer machines support 64-bit addresses.

Further, with additional registers, the simple instruction format shown in Figure 7.18
must be expanded to handle explicit addressing of multiple registers, including moves
between registers, as well as identifying the proper register in operations between registers
and memory. In short, the simple instruction format used in the Little Man Computer is
inadequate for the instruction sets in modern computers.

The use of instructions of different lengths is one of several techniques developed
by instruction set designers to allow more flexibility in the design of the instruction set.
Simple instructions can be expressed in a small word, perhaps even a single byte, whereas
more complicated instructions will require instruction words many bytes long. Longer
instructions are stored in successive bytes of memory. Thus, a Little Man HALT, IN, or OUT

instruction would be stored in a single location. A LOAD might require two successive
locations to store memory addresses of five digits or three locations for an eight-digit
address. The use of variable length instructions is efficient in memory usage, since each
instruction is only as long as it needs to be.

There are a number of important disadvantages to variable length instructions,
however. Most modern computers increase CPU processing speed by ‘‘pipelining’’
instructions, that is, by fetching a new instruction while the previous one is still completing
execution, similar to the processing on an automobile assembly line. Variable length
instructions complicate pipelining, because the starting point of the new instruction is
not known until the length of the previous instruction has been determined. If you extend
this idea to multiple instructions, you can see the difficulty of maintaining a smooth
assembly line. This issue is discussed in more detail in Chapter 8. Because pipelining has
become so important to processing speed in modern computers, the use of variable length
instructions has fallen out of favor for new CPU designs. Nearly all new CPU designs use
fixed length instructions exclusively.

232 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

As we mentioned previously in our discussion of memory size, an effective alternative
to large instructions or variable instruction words is to store the address that would
otherwise be located in an instruction word address field at some special location that can
hold a large address, such as a general purpose register, and use a small address field within
the instruction to point to the register location. There are a number of variations on this
theme. This technique is used, even on systems that provide variable length instructions. A
single CPU might provide a number of different variations to increase the flexibility of the
instruction set. This flexibility also includes the ability to code programs that process lists
of data more efficiently. The various ways of addressing registers and memory are known
as addressing modes. The Little Man Computer provides only a single mode, known as
direct addressing. The alternative just described is called register deferred addressing. An
example of a deferred LOAD instruction is shown in Figure 7.20. This instruction would load
the data value stored at memory address 3BD421 into general purpose register 7. There
are a number of addressing modes discussed in detail in Supplementary Chapter 3. The
use of different addressing modes is the most important method for minimizing the size of
instruction words and for writing efficient programs.

Examples of instruction formats from two different CPUs are shown in Figure 7.21.
There may be several different formats within a single CPU. We have shown only a partial
set for each machine, although the SPARC set is complete except for small variations. (There
are twenty-three different IBM formats in all.) It is not necessary that you understand every
detail in Figure 7.21, but it is useful to note the basic similarities between the instruction
set formats in different computers.

FIGURE 7.20

Deferred Register Addressing

address data

LOAD

op code source
register

destination
register

registers

4BAA30E

4BAA30E

memory

3BD421

3BD421

...

...

...

3 7

7

3

FIGURE 7.21

Examples of Instruction Formats

op code Register to registerRsrc Rdst

op code Rsrc Xdst Bdst Ddst
Register to
indexed storage

op code Register to storageRsrc Rdst Bdst Ddst

op code Bdst Ddst Single operand

op code L Bsrc Dsrc Bdst Ddst Storage to storage

op code CALL instruction

31 29 0

Relative displacement

op code op code LOAD high 22 bits immediate

31 29 25 22 0

Rdst Immediate data

op code Test
cond op code

31 29 28 25 22 0

a Relative displacement BRANCH

INTEGER instructions
(also, with 1 in bit 14, and
bits 0-13 immediate address)

FLOATING POINT instructions

op code op code

31 14192529 13 5 0

Rdst Rsrc1 Rsrc20 Alt space

IBM mainframe formats

op code op code

31 14192529 5 0

Rdst Rsrc1 Rsrc2op code (FP)

0 8 12 15

0 8 12 16 20 31

0 8 12 16 20 31

0 8 16 20 32 36 47

0 16 20 31

Code:
R = Data register
B = Base register
X = Index register
D = Relative displacement
L = Length

SPARC formats

233

234 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

SUMMARY AND REVIEW
Functionally, the operation of the CPU, together with memory, is essentially identical to
that of the Little Man Computer. For each component of the Little Man Computer, there
is a corresponding component in the computer unit.

Within the CPU, the most important components are registers. Data may be moved
between registers, may be added or subtracted from the current contents of a register, and
can be shifted or rotated within a register or between registers. Each instruction in the
instruction set is executed by performing these simple operations, using the appropriate
choice of registers and operations in the correct sequence for the particular instruction.
The sequence of operations for a particular instruction is known as its fetch-execute cycle.
A fetch-execute cycle exists for every instruction in the instruction set. Fetch-execute
instruction cycles constitute the basis for all program execution in the computer. The
sequence for each instruction corresponds closely to the actions taken by the Little Man in
performing a similar instruction.

The operation of memory is intimately related to two registers in particular, the
memory address register and the memory data register. Addresses placed into the MAR
are decoded in memory, resulting in the activation of a single memory address line. At
the proper instant, data can then be transferred in either direction between that memory
location and the MDR. The direction is specified by a read/write control line. The number
of available memory locations is established by the size of the MAR; the data word size is
established by the size of the MDR.

Interconnections between various parts of a computer are provided by buses. There
are many different types of buses. Buses connect different modules within the CPU. They
also connect the CPU to memory and to the I/O peripherals. Buses can connect two
components in a point-to-point configuration or may interconnect several modules in a
multipoint configuration. Buses may be parallel or serial. In general, the lines on buses
carry signals that represent data, address, and control functions.

Instructions fall naturally into a small number of categories: moves, integer arith-
metic, floating point arithmetic, data flow control, and so forth. There are also privileged
instructions, which control functions internal to the CPU and are accessible only to the
operating system.

Instructions in a real CPU are made up of an op code and up to three address field
operands. The size of the instruction word is CPU dependent. Some computers use variable
length instruction words. Other computers use a fixed length instruction, most commonly,
32 bits in length.

FOR FURTHER READING
There are many excellent textbooks that describe the implementation and operation
of the components of the computer system. A brief, but very clear, explanation of the
fetch-execute cycle can be found in Davis and Rajkumar [DAV02]. Three classic engineering
textbooks that discuss the topics of this chapter in great detail are those authored by Stallings
[STAL05], Patterson and Hennessy [PATT07], and Tanenbaum [TAN05]. Wikipedia offers
a brief, but clear, introduction to the principal concepts of von Neumann architecture.
There are many books and papers describing various components and techniques associated

CHAPTER 7 THE CPU AND MEMORY 235

with the implementation and operation of the CPU and memory. Also see the For Further
Reading section in Chapter 8 for more suggestions.

KEY CONCEPTS AND TERMS
accumulator
address field
arithmetic/logic unit (ALU)
arithmetic shift
broadcast bus
bus
bus interface bridge
bus protocol
cable
central processing unit

(CPU)
control unit (CU)
dynamic RAM
EEPROM (electronically

erasable programmable
ROM)

explicit source address
fetch-execute instruction

cycle
flag
flash memory

full-duplex line
general-purpose register
half-duplex line
implicit source address
instruction pointer
instruction register (IR)
line (bus)
logical shift
memory
memory address register

(MAR)
memory data register

(MDR)
memory management unit
multiplex
multipoint bus
nonvolatile memory
operands
parallel bus
point-to-point bus
port

program counter (PC)
program counter register
Program Status Word

(PSW)
privileged instruction
RAM
register
register file
ROM
rotate operation
serial bus
shift operation
SIMD
simplex line
stack
stack pointer
static RAM
status register
subroutine call and return
user-visible register
volatile memory

READING REVIEW QUESTIONS
7.1 What does ALU stand for? What is its corresponding component in the Little

Man Computer? What does CU stand for? What is its corresponding LMC
component?

7.2 What is a register? Be precise. Name at least two components in the LMC that
meet the qualifications for a register. Name several different kinds of values that
a register might hold.

7.3 What is the purpose of the instruction register? What takes the place of the
instruction register in the LMC?

7.4 When a value is copied from one register to another, what happens to the value
in the source register? What happens to the value in the destination register?

7.5 There are four primary operations that are normally performed on a register.
Describe each operation.

7.6 Explain the relationship between the memory address register, the memory data
register, and memory itself.

7.7 If the memory register for a particular computer is 32 bits wide, how much
memory can this computer support?

236 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

7.8 What is the difference between volatile and nonvolatile memory? Is RAM volatile
or nonvolatile? Is ROM volatile or nonvolatile?

7.9 Registers perform a very important role in the fetch-execute cycle. What is the
function of registers in the fetch-execute instruction cycle?

7.10 Explain each of the fetch part of the fetch-execute cycle. At the end of the fetch
operation, what is the status of the instruction? Specifically, what has the fetch
operation achieved that prepares the instruction for execution? Explain the
similarity between this operation and the corresponding operation performed
steps performed by the Little Man.

7.11 Once the fetch operation is complete, what is the first step of the execution phase
for any instruction that accesses a memory address for data (e.g., LOAD, STORE)?

7.12 Using the ADD instruction as a model, show the fetch-execute cycle for a SUBTRACT

instruction.

7.13 Assume the following values in various registers and memory locations at a given
point in time:
PC: 20 A: 150 Memory location 20: 160 [ADD 60] Memory location 60: 30.
Show the values that are stored in each of the following registers at the completion
of the instruction: PC, MAR, MDR, IR, and A.

7.14 Define a bus. What are buses used for?

7.15 What three types of ‘‘data’’ might a bus carry?

7.16 Explain how data travels on a bus when the bus is simplex. Half-duplex.
Full-duplex.

7.17 What is the difference between a multipoint bus and a point-to-point bus? Draw
diagrams that illustrate the difference.

7.18 Briefly describe each of the major disadvantages of parallel buses.

7.19 Which Little Man Computer instructions would be classified as data movement
instructions?

7.20 What operations would you expect the arithmetic class of instructions to
perform?

7.21 Explain the difference between SHIFT and ROTATE instructions.

7.22 What do program control instructions do? Which LMC instructions would be
classified as program control instructions?

7.23 What is a stack? Explain how a stack works. Create a diagram that shows how
PUSH and POP instructions are used to implement a stack.

7.24 What is a privileged instruction? Which LMC instructions would normally be
privileged?

7.25 Show a 32-bit instruction format that allows 32 different op codes. How many
bits are available for addressing in your format?

7.26 Show an instruction format that could be used to move data or perform
arithmetic between two registers. Assume that the instruction is 32 bits wide and
that the computer has sixteen general-purpose data registers. If the op code uses
8 bits, how many bits are spares, available for other purposes, such as special
addressing techniques?

CHAPTER 7 THE CPU AND MEMORY 237

EXERCISES
7.1 Draw side-by-side flow diagrams that show how the Little Man executes a store

instruction and the corresponding CPU fetch-execute cycle.

7.2 Suppose that the following instructions are found at the given locations in
memory:

20 LDA 50
21 ADD 51
50 724
51 006

a. Show the contents of the IR, the PC, the MAR, the MDR, and A at the
conclusion of instruction 20.

b. Show the contents of each register as each step of the fetch-execute cycle is
performed for instruction 21.

7.3 One large modern computer has a 48-bit memory address register. How much
memory can this computer address?

7.4 Why are there two different registers (MAR and MDR) associated with memory?
What are the equivalents in the Little Man Computer?

7.5 Show the steps of the CPU fetch-execute cycle for the remaining instructions in
the Little Man instruction set.

7.6 Most of the registers in the machine have two-way copy capability; that is, you
can copy to them from another register, and you can copy from them to another
register. The MAR, on the other hand, is always used as a destination register;
you only copy to the MAR. Explain clearly why this is so.

7.7 a. What is the effect of shifting an unsigned number in a register two bits to
the left? One bit to the right? Assume that 0s are inserted to replace bit
locations at the end of the register that have become empty due to the shift.

b. Suppose the number is signed, that is, stored using 2’s complement. Now
what is the effect of shifting the number?

c. Suppose that the shift excludes the sign bit, so that the sign bit always
remains the same. Furthermore, suppose that during a right shift, the sign
bit is always used as the insertion bit at the left end of the number (instead
of 0). Now what is the effect of these shifts?

7.8 If you were building a computer to be used in outer space, would you be likely
to use some form of flash memory or RAM as main memory? Why?

7.9 Using the register operations indicated in this chapter, show the fetch-execute
cycle for an instruction that produces the 2’s complement of the number in A.
Show the fetch-execute cycle for an instruction that clears A (i.e., sets A to 0).

7.10 Many older computers used an alternative to the BRANCH ON CONDITION instruction
called SKIP ON CONDITION that worked as follows: if the condition were true, the
computer would skip the following instruction and go on to the one after;
otherwise, the next instruction in line would be executed. Programmers usually
place a jump instruction in the ‘‘in-between’’ location to branch on a FALSE

238 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

condition. Normally, the skip instruction was designed to skip one memory
location. If the instruction set uses variable length instructions, however, the
task is more difficult, since the skip must still skip around the entire instruction.
Assume a Little Man mutant that uses a variable length instruction. The op code
is in the first word, and there may be as many as three words following. To make
life easy, assume that the third digit of the op code word is a number from 1 to
4, representing the number of words in the instruction. Create a fetch-execute
cycle for this machine.

7.11 Suppose that the instruction format for a modified Little Man Computer
requires two consecutive locations for each instruction. The high-order digits of
the instruction are located in the first mail slot, followed by the low-order digits.
The IR is large enough to hold the entire instruction and can be addressed as
IR [high] and IR [low] to load it. You may assume that the op code part of the
instruction uses IR [high] and that the address is found in IR [low]. Write the
fetch-execute cycle for an ADD instruction on this machine.

7.12 The Little Prince Computer (LPC) is a mutant variation on the LMC. (The LPC
is so named because the differences are a royal pain.) The LPC has one additional
instruction. The extra instruction requires two consecutive words:

0XX
0YY

This instruction, known as move, moves data directly from location XX to
location YY without affecting the value in the accumulator. To execute this
instruction, the Little Prince would need to store the XX data temporarily. He
can do this by writing the value on a piece of paper and holding it until he
retrieves the second address. The equivalent in a real CPU might be called the
intermediate address register, or IAR. Write the fetch-execute cycle for the LPC
MOVE instruction.

7.13 Generally, the distance that a programmer wants to move from the current
instruction location on a BRANCH ON CONDITION is fairly small. This suggests that it
might be appropriate to design the BRANCH instruction in such a way that the new
location is calculated relative to the current instruction location. For example,
we could design a different LMC instruction 8CX. The C digit would specify the
condition on which to branch, and X would be a single-digit relative address.
Using 10’s complement, this would allow a branch of −5 to +4 locations from
the current address. If we were currently executing this instruction at location 24,
803 would cause a branch on negative to location 27. Write a fetch-execute cycle
for this BRANCH ON NEGATIVE RELATIVE instruction. You may ignore the condition
code for this exercise, and you may also assume that the complementary addition
is handled correctly. The single-digit address, X, is still found in IR [address].

7.14 As computer words get larger and larger, there is a law of diminishing returns:
the speed of execution of real application programs does not increase and may,
in fact, decrease. Why do you suppose that this is so?

7.15 Most modern computers provide a large number of general-purpose registers
and very few memory access instructions. Most instructions use these registers to
hold data instead of memory. What are the advantages to such an architecture?

CHAPTER 7 THE CPU AND MEMORY 239

7.16 Create the fetch-execute cycle for an instruction that moves a value from general
purpose register-1 to general purpose register-2. Compare this cycle to the cycle
for a LOAD instruction. What is the major advantage of the MOVE over the LOAD?

7.17 What are the trade-offs in using a serial bus versus a parallel bus to move data
from one place to another?

7.18 Until recently, most personal computers used a parallel PCI bus as a backplane
to interconnect the various components within the computer, but the PCI bus
was rarely, if ever, used to connect external devices to the computer. Modern
computers often use a serial adaptation of the PCI bus called PCI Express, which
is sometimes made available as a port to connect external devices. Identify at
least three shortcomings of the original PCI bus that made external use of the
bus impractical. Explain how the PCI Express bus overcomes each of these
limitations.

7.19 Explain why skew is not a factor in a serial bus.

7.20 Point-to-point buses generally omit lines for addressing. Why is this possible?
Suppose a point-to-point bus is used to connect two components together where
one of the components actually represents multiple addresses. How could a bus
with no address lines be used to satisfy the requirement for different addresses
in this case?

