
CHAPTER 6

THE LITTLE MAN COMPUTER

Raeside/Victoria Times-Colonist/Rothco

6.0 INTRODUCTION
The power of a computer does not arise from complexity. Instead, the computer has the
ability to perform simple operations at an extremely high rate of speed. These operations
can be combined to provide the computer capabilities that you are familiar with.

Consistent with this idea, the actual design of the computer is also simple, as you
will see.

(The beauty of the design is that these simple operations can be used to solve
extremely complex problems. The programmer’s challenge, of course, is to produce the
exact sequence of operations to perform a particular task correctly under all possible
circumstances, since any error in selection or sequence of operations will result in
a ‘‘buggy’’ program. With the large number of instructions required by modern
programs, it is not surprising that few of today’s programs are truly bug-free.)

In this chapter, we will begin to explore the operations that the computer is
capable of performing and look at how those operations work together to provide the
computer with its power. To simplify our exploration, we will begin by introducing
a model of the computer; a model that operates in a very similar way to the real
computer but that is easier to understand instinctively.

The model that we will use is called the Little Man Computer (LMC). The original
LMC was created by Dr. Stuart Madnick at MIT in 1965. In 1979, Dr. Madnick
produced a new version of the LMC, with a slightly modified instruction set; the later
version is used in this book. It is a strength of the original model that it operates so
similarly to a real computer that it is still an accurate representation of the way that
computers work thirty-five years after its introduction.

Using this model we will introduce a simplified, but typical, set of instructions that
a computer can perform. We will show you exactly how these instructions are executed
in the Little Man Computer. Then we will demonstrate how these instructions are
combined to form programs.

6.1 LAYOUT OF THE LITTLE MAN COMPUTER
We begin by describing the physical layout of the Little Man Computer. A diagram for
the Little Man Computer appears in Figure 6.1.

The LMC consists of a walled mailroom, represented by the dark line surrounding
the model in the diagram. Inside the mailroom are several objects:

First, there is a series of one hundred mailboxes, each numbered with an address
ranging from 00 to 99. This numbering system is chosen because each mailbox address
can be represented by two digits, and this is the maximum number of mailboxes that
can be represented by two decimal digits.

Each mailbox is designed to hold a single slip of paper, upon which is written
a three-digit decimal number. Note carefully that the contents of a mailbox are not
the same as the address of a mailbox. This idea is consistent with what you already
know about your post office box: your post office box number identifies where you go

181

182 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 6.1

The Little Man Computer

500500

00 500

01 199

02 500

03 399

95

96

97

98

99 123

05

123

In
Basket

Out
Basket

Reset button Instruction
location counter

Little man

Calculator

Mailboxes

to pick up your mail, but this has no relationship to the actual contents of the letters that
you find in that mailbox.

Next, there is a calculator . . . basically a simple pocket calculator. The calculator can
be used to enter and temporarily hold numbers, and also to add and subtract. The display
on the calculator is three digits wide. At least for the purposes of this discussion, there is no
provision made for negative numbers, or for numbers larger than three digits. As you are
already aware, 10’s complement arithmetic could be used for this purpose, but that is not
of interest here.

Third, there is a two-digit hand counter, the type that you click to increment the count.
The reset button for the hand counter is located outside the mailroom. We will call this
counter an instruction location counter.

Finally, there is the Little Man. It will be his role to perform certain tasks that will be
defined shortly.

Other than the reset switch on the hand counter, the only interaction between the
Little Man Computer and the outside environment are an in basket and an out basket.

A user outside of the mailroom can communicate with the Little Man in the mailroom
by putting a slip of paper with a three-digit number on it into the in basket, to be read by the
Little Man at the appropriate time. Similarly, the Little Man can write a three-digit number
on a slip of paper and leave it in the out basket, where it can be retrieved by the user.

CHAPTER 6 THE LITTLE MAN COMPUTER 183

Note that all communication between the Little Man Computer and the outside world
takes place using three-digit numbers. Except for the reset button on the instruction
location counter, no other form of communication is possible. The same is true within the
mailroom: all instructions to the Little Man must be conveyed as three-digit numbers.

6.2 OPERATION OF THE LMC
We would like the Little Man to do some useful work. For this purpose we have invented
a small group of instructions that he can perform. Each instruction will consist of a single
digit. We will use the first digit of a three-digit number to tell the Little Man which
operation to perform.

In some cases, the operation will require the Little Man to use a particular mailbox to
store or retrieve data (in the form of three-digit numbers, of course!). Since the instruction
only requires one digit, we can use the other two digits in a three-digit number to indicate
the appropriate mailbox address to be used as a part of the instruction. Thus, using the
three digits on a slip of paper we can describe an instruction to the Little Man according to
the following diagram:

3 | 25

instruction | mailbox address

The instruction part of the three-digit code is also known as an ‘‘operation code,’’ or
op code for short. The op code number assigned to a particular instruction is arbitrary,
selected by the computer designer based on various architectural and implementation
factors. The op codes used by the author conform to the 1979 version of the Little Man
Computer model.

Now let’s define some instructions for the Little Man to perform:

LOAD instruction—op code 5
The Little Man walks over to the mailbox address specified in the instruction. He
reads the three-digit number located in that mailbox, and then walks over to the
calculator and punches that number into the calculator. The three-digit number
in the mailbox is left unchanged, but of course the original number in the calcu-
lator is replaced by the new number.

STORE instruction—op code 3
This instruction is the reverse of the LOAD instruction. The Little Man walks over
to the calculator and reads the number there. He writes that number on a slip of
paper and puts it in the mailbox whose address was specified as the address part
of the instruction. The number in the calculator is unchanged; the original num-
ber in the mailbox is replaced with the new value.

ADD instruction—op code 1
This instruction is very similar to the LOAD instruction. The Little Man walks
over to the mailbox address specified in the instruction. He reads the three-digit
number located in the mailbox and then walks over to the calculator and adds it
to the number already in the calculator. The number in the mailbox is unchanged.

184 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

SUBTRACT instruction—op code 2
This instruction is the same as the ADD instruction, except that the Little Man
subtracts the mailbox value from the value in the calculator. The result of a
subtraction can leave a negative value in the calculator. Chapter 5 discussed the
use of complements to implement negative values, but for simplicity, the LMC
model ignores this solution. For the purposes of our LMC model, we will simply
assume that the calculator holds and handles negative values correctly, and
provides a minus sign as a flag to indicate that the value is negative. The Little
Man cannot handle negative numbers outside of the calculator, however, because
there is no provision in the model for storing the negative sign within the
constraint of the three-digit number system used.

INPUT instruction (or read, if you prefer)—op code 9, ‘‘address’’ 01
The Little Man walks over to the in basket and picks up the slip of paper in the
basket. He then walks over to the calculator and punches it into the calculator.
The number is no longer in the in basket, and the original calculator value has
been replaced by the new number. If there are multiple slips of paper in the
basket, the Little Man picks them up in the order in which they were submitted,
but each INPUT instruction handles only a single slip of paper; other input values
must await the execution of subsequent INPUT instructions. Some authors use the
concept of a conveyor belt in place of the in basket, to emphasize this point.

OUTPUT instruction (or print)—op code 9, ‘‘address’’ 02
The Little Man walks over to the calculator and writes down the number that he
sees there on a slip of paper. He then walks over to the out basket and places the
slip of paper there for the user outside the mailroom to retrieve. The original
number in the calculator is unchanged. Each OUTPUT instruction places a single
slip of paper in the out basket. Multiple outputs will require the use of multiple
OUTPUT instructions.

Note that the INPUT and OUTPUT instructions do not use any mailboxes during execution,
since the procedure for each only involves the transfer of data between an in or out basket and
the calculator. Because this is true, the address part of the instruction can be used to extend
the capability of the instruction set, by using the same op code with different ‘‘address’’
values to create a number of different instructions. In the LMC, 901 is the code for an INPUT

instruction, while 902 is used for an OUTPUT instruction. In a real computer, for example, the
instruction address might be used to specify the particular I/O device to be used for input or
output.

COFFEE BREAK (or HALT) instruction—op code 0
The Little Man takes a rest. The Little Man will ignore the address portion of the
instruction.

The instructions that we have defined so far fall into four categories:

■ instructions that move data from one part of the LMC to another (LOAD,
STORE)

■ instructions that perform simple arithmetic (ADD, SUBTRACT)

CHAPTER 6 THE LITTLE MAN COMPUTER 185

■ instructions that perform input and output (INPUT, OUTPUT)
■ instructions that control the machine (COFFEE BREAK)

This is enough for now. We will discuss instructions 6, 7, and 8 later in this chapter.

6.3 A SIMPLE PROGRAM
Now let’s see how we can combine these instructions into a program to have the Little Man
do some useful work.

Before we do this, we need to store the instructions somewhere, and we need a method
to tell the Little Man where to find the particular instruction that he is supposed to perform
at a given time.

Without discussing how they got there, for now we will assume that the instructions
are stored in the mailboxes, starting at mailbox number 00. The Little Man will perform
instructions by looking at the value in the instruction location counter and executing
the instruction found in the mailbox whose address has that value. Each time the Little
Man completes an instruction, he will walk over to the instruction location counter and
increment it. Again he will perform the instruction specified by the counter. Thus, the Little
Man will execute the instructions in the mailboxes sequentially, starting from mailbox 00.
Since the instruction location counter is reset from outside the mailroom, the user can
restart the program simply by resetting the counter to 00.

Now that we have a method for guiding the Little Man through a program of instruction
steps, let’s consider a simple program that will allow the user outside the mailroom to use
the Little Man Computer to add two numbers together. The user will place two numbers
in the in basket. The sum of the two will appear as a result in the out basket. The question
is what instructions we will need to provide to have the Little Man perform this operation.

INPUT 901
Since the Little Man must have access to the data, the first step, clearly, is to have
the Little Man read the first number from the in basket to the calculator. This
instruction leaves the first number to be added in the calculator.

STORE 99 399
Note that it is not possible for the Little Man to simply read another number into
the calculator. To do so would destroy the first number. Instead, we must first
save the first number somewhere.

Mailbox 99 was chosen simply because it is clearly out of the way of the program.
Any other location that is beyond the end of the program is equally acceptable.

Storing the number at a location that is within the program would destroy the
instruction at that location. This would mean that when the Little Man went to
perform that instruction, it wouldn’t be there.

More seriously, there is no way for the Little Man to distinguish between an
instruction and a piece of data—both are made up of three-digit numbers. Thus,
if we were to store data in a location that the Little Man is going to use as an
instruction, the Little Man would simply attempt to perform the data as though it
were an instruction. Since there is no way to predict what the data might contain,
there is no way to predict what the program might do.

186 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

The concept that there is no way to distinguish between instructions and data
except in the context of their use is a very important one in computing. For
example, it allows a programmer to treat an instruction as data, to modify it, and
then to execute the modified instruction.

INPUT 901
With the first number stored away, we are ready to have the Little Man read the
second number into the calculator.

ADD 99 199
Note that there is no specific reason to save the second number. If we were going
to perform some operation that required the reuse of the second number, it
could be stored somewhere.

In this program, however, we have both numbers in place to perform the
addition. The result is, of course, left in the calculator.

OUTPUT 902
All that remains is for us to have the Little Man output the result to the out basket.

COFFEE BREAK 000
The program is complete, so we allow the Little Man to take a rest.

These instructions are stored sequentially starting from mailbox 00, where the
Little Man will retrieve and execute them one at a time, in order. The program is
reshown in Figure 6.2.

Since we were careful to locate the data outside the program, this program can be
rerun simply by telling the Little Man to begin again.

6.4 AN EXTENDED INSTRUCTION SET
The instructions that we have defined must always be executed in the exact sequence
specified. Although this is sufficient for simple program segments that perform a sequence
of operations, it does not provide any means for branching or looping, both constructs that
you know are very important in programming. Let us extend the instruction set by adding
three more instructions for this purpose:

FIGURE 6.2

Program to Add Two Numbers

00
01
02
03
04
05
99

901
399
901
199
902
000

INPUT
STORE DATA
INPUT 2ND #
ADD 1ST # TO IT
OUTPUT RESULT
STOP
DATA

Mailbox code Instruction description

BRANCH UNCONDITIONALLY instruction
(sometimes known as JUMP)—op code 6

This instruction tells the Little Man to walk over to
the instruction location counter and actually change
the counter to the location shown in the two address
digits of the instruction. (Assume that the hand
counter has thumbwheels for this purpose.) This
means that the next instruction that the Little Man
will execute is located at that mailbox address.

This instruction is very similar, conceptually, to
the GOTO instruction in BASIC. Its execution
will always result in a break in the sequence to
another part of the program.

CHAPTER 6 THE LITTLE MAN COMPUTER 187

Note that this instruction also uses the address digits in an unusual way, since the
Little Man does not use the data at the address specified. Indeed, the Little Man
expects to find an instruction at that address, the next to be performed.

BRANCH ON ZERO instruction—op code 7
The Little Man will walk over to the calculator and will observe the number
stored there. If its current value is zero, he will walk over to the instruction
location counter and modify its value to correspond to the address specified
within the instruction. The next instruction executed by the Little Man will be
located at that address.

If the value in the calculator is not zero, he will simply proceed to the next
instruction in sequence.

BRANCH ON POSITIVE instruction—op code 8
The Little Man will walk over to the calculator and will observe the number
stored there. If its current value is positive, he will walk over to the instruction
location counter and modify its value, to correspond to the address specified
within the instruction. The next instruction executed by the Little Man will be
located at that address.

If the value in the calculator is negative, he will simply proceed to the next
instruction in sequence. Zero is considered to be a positive value.

Note that is it not necessary to provide BRANCH ON NEGATIVE or BRANCH ON NONZERO

instructions. The instructions supplied can be used together to achieve equivalent
results.

These three instructions make it possible to break from the normal sequential process-
ing of instructions. Instructions of this type are used to perform branches and loops. As an
example, consider the following WHILE-DO loop, common to many programming languages:

WHILE Value = 0 DO
Task;

NextStatement

This loop could be implemented using the Little Man BRANCH instruction as follows.
Assume that these instructions are located starting at mailbox number 45 (comments are
provided to the right of each line):

45 LDA 90 590 90 is assumed to contain value
46 BRZ 48 748 Branch if the value is zero
47 BR 60 660 Exit loop; Jump to NextStatement
48 ..

.
This is where the task is located

59 BR 45 645 End to Task; loop to test again
60 Next statement

EXAMPLE
Here is an example of a Little Man program that uses the BRANCH instructions to alter the flow
of the program. This program finds the positive difference between two numbers (sometimes
known as the absolute magnitude of the difference). For convenience, we are introducing
a set of abbreviations for each instruction. These abbreviations are known as mnemonics

188 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 6.3

Little Man Mnemonic Instruction Codes with
Their Corresponding OP Codes

LDA
STO
ADD
SUB
IN
OUT
COB or HLT
BRZ
BRP
BR
DAT

5xx
3xx
1xx
2xx
901
902
000
7xx
8xx
6xx

Load
Store
Add
Subtract
Input
Output
Coffee break (or Halt)
Branch if zero
Branch if positive or zero
Branch unconditional
Data storage location

(the first ‘‘m’’ is silent). Once you learn to read these mnemonics, you’ll find that programs
written with mnemonics are generally easy to read. It is more common to write programs this
way. For a while, we will continue to print both the mnemonic and the code, but eventually,
we will stop printing the code. Most programs are also written with comments, which help
to clarify the code. The mnemonic instructions that we will use are shown in Figure 6.3.
The DAT abbreviation is used to indicate that a particular mailbox will be used to store data.
The data may be specified in advance, for example, to use as a constant, or it may be zero if
the particular location is to be used to store the data later, during execution of the program.

The program, shown in Figure 6.4, works as follows: the first four instructions simply
input and store the two numbers. The fifth instruction, in mailbox 04, subtracts the first

FIGURE 6.4

LMC Program to Find Positive Difference of Two
Numbers

00
01
02
03
04
05
06
07
08
09
10
11

IN
STO
IN
STO
SUB
BRP
LDA
SUB
OUT
COB
DAT
DAT

901
310
901
311
210
808
510
211
902
000
000
000

test
negative; reverse order

print result and
 stop.
used for data
 “

10

11
10
08
10
11

00
00

CHAPTER 6 THE LITTLE MAN COMPUTER 189

number from the second. Instruction 05 tests the result. If the result is positive, all that’s
left to do is print out the answer. So, the instruction can be used to branch to the printout
instruction. If the answer is negative, the subtraction is performed in the other order. Then
the result is output, and the Little Man takes his break. Note that if the COB instruction is
omitted (as in forgotten—this is a very common error!), the Little Man will attempt to execute
the data stored in locations 10 and 11. Please study the example until you understand how
it works in every detail.

The nine instructions that make up the instruction set that we have presented are
sufficient to perform the steps of any computer program, although not necessarily in the
most efficient way. It is important for you to realize that, although simplified, the Little Man
instruction set is very similar to the instruction sets that appear in most real computers. In
real computers, as in the Little Man Computer, most instruction steps are involved with
the movement of data between the equivalent of mailbox locations and calculators, with
very simple calculations, and with program branching.

The real computer differs mostly in the variations to these instructions that are pro-
vided, and with the addition of a few instructions that provide programming convenience,
particularly multiplication and division instructions, and also instructions that shift the
data in a word left or right. (Note that the traditional method of performing multiplication
can be done in the computer using SHIFT and ADD instructions.)

We will discuss many of these variations when we look at the instruction sets in some
real computers, in Chapters 7, 8, 11, and Supplementary Chapters 2 and 3.

6.5 THE INSTRUCTION CYCLE
We will refer to the steps that the Little Man takes to perform an instruction as the
instruction cycle. This cycle, which is similar for all the instructions, can be broken into
two parts:

1. The fetch portion of the cycle, in which the Little Man finds out what instruction
he is to execute, and

2. The execute portion of the cycle, in which he actually performs the work specified
in the instruction.

The fetch portion of the cycle is identical for every instruction. The Little Man walks to
the location counter and reads its value. He then goes to the mailbox with the address that
corresponds to that value and reads the three-digit number stored there. That three-digit
number is the instruction to be performed. This is depicted in the drawings of Figure 6.5a.

The fetch portion of the cycle has to occur first: until the Little Man has performed the
fetch operation, he does not even know what instruction he will be executing!

The execute portion of each instruction is, of course, different for each instruction.
But even here, there are many similarities. The first six instructions all require the Little
Man to move data from one place in the mailroom to another. The first four instructions
all involve the use of a second mailbox location for the data.

The LOAD instruction is typical. First, the Little Man fetches the instruction. To perform
the execute phase of the LOAD instruction, the Little Man first looks at the mailbox with the
address that is contained in the instruction. He reads the three-digit number on the slip

190 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 6.5(a)

The Fetch Portion of the Instruction Cycle

25 589

89 222

25

25

5 89

333

25 589

89 222

25

333

25 589

89 222

25

333

(1) The Little Man reads the address
 from the location counter

(2) . . . walks over to the mailbox that
 corresponds to the location counter

(3) . . . and reads the number on the
 slip of paper. (He then puts the
 slip of paper back, in case he
 should need to read it again later.)

of paper in that mailbox and returns the slip of paper to its place. Then he walks over to
the calculator and punches the number into the calculator. Finally, he walks over to the
location counter and increments it. He has completed one instruction cycle and is ready to
begin the next. These steps are shown in Figure 6.5b.

With the exception of the step in which the Little Man increments the location counter,
the steps must be performed in the exact sequence shown. (The location counter can be
incremented anytime after the fetch has occurred.) The fetch steps must occur before the

CHAPTER 6 THE LITTLE MAN COMPUTER 191

FIGURE 6.5(b)

The Execute Portion of the Instruction Cycle (LOAD Instruction)

25 589

89 222

222

333

25 589

89 222

25

222

25 589

89 222

25

333

25 589

89 222

222

25

25
26
25
26

5 89 (1) The Little Man goes to the mailbox
 address specified in the instruction he
 previously fetched

(3) . . . he walks over to the calculator and
 punches the number in

(2) . . . he reads the number in that mailbox
 (he remembers to replace it in the case it's
 needed again)

(4) . . . finally, he walks over to the location
 counter and clicks it, which gets him
 ready to fetch the next instruction

222

execution steps; within the fetch, the Little Man must look at the location counter before
he can pull the instruction from its mailbox.

Just as the sequence of instructions in a program is important—and you know that
this is true for any language, Pascal, Little Man, or any other—so it is also true that the
steps within each instruction must be performed in a particular order.

Notice that the ADD and SUBTRACT instructions are almost identical to the LOAD

instruction. The only difference occurs during the execute step, when the Little Man enters

192 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

the number into the calculator. In the case of the arithmetic instructions, the Little Man
adds or subtracts the number that he is carrying into the calculator, rather than simply
entering it.

The other instructions are slightly different, although not any more difficult to trace
through and understand. To improve your understanding, you should trace the steps of
the Little Man through the remaining six instructions.

6.6 A NOTE REGARDING COMPUTER
ARCHITECTURES

As we noted in Chapter 1, John von Neumann is usually considered to be the developer of
the computer as we know it today. Between 1945 and 1951 von Neumann set down a series
of guidelines that came to be known as the von Neumann architecture for computers.
Although other experimental computer architectures have been developed and built, the
von Neumann architecture continues to be the standard architecture for computers; no
other architecture has had any commercial success to date. It is significant that, in a
field where technological change occurs almost overnight, the architecture of computers is
virtually unchanged since 1951.

The major guidelines that define a von Neumann architecture include:

■ Memory holds both programs and data; this is known as the stored program
concept. The stored program concept allows programs to be changed easily.

■ Memory is addressed linearly; that is, there is a single sequential numeric address
for each and every memory location.

■ Memory is addressed by the location number without regard to the data
contained within.

Instructions are executed sequentially unless an instruction or an outside event (such as
the user resetting the location counter) causes a branch to occur.

In addition, von Neumann defined the functional organization of the computer to be
made up of a control unit that executes instructions, an arithmetic/logic unit that performs
arithmetic and logical calculations, and memory. The control unit and arithmetic/logic
unit together make up the CPU, or central processing unit.

If you check over the guidelines just given, you will observe that the Little Man
Computer is an example of a von Neumann architecture. In fact, we took care to point
out features of the von Neumann architecture during our discussion of the Little Man
Computer.

SUMMARY AND REVIEW
The workings of the computer can be simulated by a simple model. The Little Man
Computer model consists of a Little Man in a mailroom with mailboxes, a calculator,
and a counter. Input and output baskets provide communication to the outside world.
The Little Man Computer meets all the qualifications of a von Neumann computer
architecture.

CHAPTER 6 THE LITTLE MAN COMPUTER 193

The Little Man performs work by following simple instructions, which are described
by three-digit numbers. The first digit specifies an operation. The last two digits are used
for various purposes, but most commonly to point to an address. The instructions provide
operations that can move data between the mail slots and the calculator, move data between
the calculator and the input and output baskets, perform addition and subtraction, and
allow the Little Man to stop working. There are also instructions that cause the Little Man
to change the order in which instructions are executed, either unconditionally or based on
the value in the calculator.

Both data and instructions are stored in individual mail slots. There is no differentiation
between the two except in the context of the particular operation taking place. The Little
Man normally executes instructions sequentially from the mail slots except when he
encounters a branching instruction. In that case he notes the value in the calculator, if
required, and resumes executing instructions from the appropriate location.

The exact steps performed by the Little Man are important because they reflect closely
the steps performed in a real CPU in executing an instruction.

KEY CONCEPTS AND TERMS
instruction cycle
linear memory addressing
Little Man Computer

(LMC)

mnemonics
op code
stored program concept
von Neumann architecture

READING REVIEW QUESTIONS
6.1 Without looking at the book, draw a Little Man Computer. Label each of the

components in your drawing.

6.2 Instructions in the Little Man Computer are three digits, divided into two parts.
Show the format of an LMC instruction.

6.3 Describe, step by step, what the Little Man does to execute a STORE instruction.

6.4 Describe, step by step, what the Little Man does to execute an INPUT instruction.

6.5 Extend the simple program shown in Section 6.3 to accept three inputs from a user,
add them, and output the result.

6.6 If a user wants to enter two numbers, what must the Little Man program do before
she enters the second number? Why?

6.7 Write a Little Man program that accepts two numbers as input and outputs the
numbers in reverse order.

6.8 Write a Little Man program that accepts two numbers as input, subtracts the first
from the second and outputs the result.

6.9 Explain carefully what the Little Man will do when he executes a JUMP instruction.

6.10 Explain carefully, step by step, what the Little Man will do when he executes a
BRANCH ON ZERO instruction.

6.11 Why is the instruction cycle called a cycle?

194 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

6.12 Even if he runs out of instructions to execute, the Little Man only stops trying to
execute instructions under one condition. What is that condition? What happens
if the Little Man runs out of instructions and that condition is not met?

6.13 The instruction cycle is divided into two phases. Name each phase. The first phase
is the same for every instruction. What is the purpose of the first phase that makes
this true? Explain what the Little Man does during the first phase.

6.14 What does the Little Man do during the second phase of a COFFEE BREAK or HALT

instruction?

EXERCISES
6.1 The steps that the Little Man performs are closely related to the way in which the

CPU actually executes instructions. Draw a flow chart that carefully describes the
steps that the Little Man follows to execute a branch instruction.

6.2 Repeat Exercise 6.1 for a subtract instruction.

6.3 Repeat Exercise 6.1 for a branch on positive instruction.

6.4 What are the criteria that define a von Neumann architecture? How does the
example in this chapter in which we enter and add two numbers illustrate each of
the criteria?

6.5 Consider the example in this chapter in which we enter and add two numbers.
Suppose we had stored the first input entry in mailbox location 00. Would the
program have produced the same result? What would have happened if the program
were executed a second time? What characteristic of the computer makes this true?

6.6 Write a Little Man program that accepts three values as input and produces the
largest of the three as output.

6.7 Write a Little Man program to accept an indefinite number of input values. The
output value will be the largest of the input values. You should use the value 0 as a
flag to indicate the end of input.

6.8 Write a Little Man program that accepts three values as input and outputs them
in order of size, largest to smallest. (This is a more challenging variation on
Exercise 6.6.)

6.9 Write a Little Man program that adds a column of input values and produces the
sum as output. The first input value will contain the number of values that follow
as input to be added.

6.10 Write a Little Man program that prints out the odd numbers from 1 to 99. No
input is required.

6.11 Write a Little Man program that prints out the sums of the odd values from 1 to
39. The output will consist of 1, 1 + 3, 1 + 3 + 5, 1 + 3 + 5 + 7 No input is
required.
As an aside, do you notice anything interesting about the output results that are
produced by this series? (Hint: This series is sometimes used as part of an algorithm
for finding square roots of numbers.)

CHAPTER 6 THE LITTLE MAN COMPUTER 195

6.12 The following Little Man program is supposed to add two input numbers, subtract
a third input number from the sum, and output the result, i.e.,

OUT = IN1 + IN2 -- IN3

mailbox mnemonic code numeric code
00 IN 901
01 STO 99 399
02 IN 901
03 ADD 99 199
04 STO 99 399
05 IN 901
06 SUB 99 299
07 OUT 902
08 COB 000

What is wrong with this program? Modify the program so that it produces the
correct result.

6.13 Suppose we have a need to handle both negative and positive data beyond the
simple test in the various conditional branch instructions. One way to do this
would be to replace the subtract instruction with a 10’s complement instruction.
The COMP instruction complements the value in the calculator and leaves the value
in the calculator.

a. How would subtraction be performed in this case?

b. Carefully trace the steps that the Little Man would perform to execute the new
COMP instruction.

c. What is the new range of values possible with this modification, and how are
these values represented in the Little Man Computer?

d. What would the Little Man do to execute a BRANCH ON POSITIVE instruction?

6.14 The programs that we have discussed in this chapter seem to have appeared in the
mailboxes by magic. Consider a more realistic alternative:

Suppose a small program is permanently stored in the last few mailbox locations.
A BRANCH instruction at location 0, also permanent, will start this program. This
program will accept input values and will store them at consecutive mailbox
locations, starting with mailbox 001. You may assume that these values represent
the instructions and data of a user’s program to be executed. When a 999 is received
as input data, the program jumps to location 001 where it will proceed to execute
the values just entered.

The small program described here is known as a program loader, or, under
certain circumstances as a bootstrap. Write a Little Man program loader. (Hint: It
may be useful to remember that instructions and data are indistinguishable. Thus,
instructions could be treated as if they were data, if necessary.)

6.15 Show carefully how you would implement an IF-ELSE statement using Little Man
instructions.

196 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

6.16 Show how you would implement a DO-WHILE statement using Little Man instructions.

6.17 The input data values in our problems have always been entered in the order that
they were to be used. This is not always possible or convenient. Can you think of a
simple way to accept input data in the wrong order and still use it correctly?

6.18 Suppose the Little Man Computer had been implemented as a 16-bit binary
machine. Assume that the binary LMC provides the same instruction set, with the
same op codes (in binary, of course), and the same instruction format (op code
followed by address). How many bits would be required for the op code portion
of the instruction? How many mailboxes could the binary machine accommodate?
What is the range of 2’s complement data that this machine could handle?

6.19 The original version of the Little Man Computer used op code 7 (i.e., instruction
700) for a COFFEE BREAK instruction instead of op code 0. What is the advantage of
using 000 for the COB instruction instead of 700? (Hint: Consider what happens if
the programmer forgets to put a COB instruction at the end of a program.)

6.20 When we discussed conditional branching we claimed that a BRANCH NEGATIVE

instruction is not necessary. Show a sequence of BRANCH instructions that will cause
a program to branch to location 50 if the value in the calculator is negative.

6.21 Show a sequence of instructions that will cause a program to branch to location 75
if the value in the calculator is greater than zero.

CHAPTER 6 THE LITTLE MAN COMPUTER 197

