
CHAPTER 2

AN INTRODUCTION TO
SYSTEM CONCEPTS AND
SYSTEMS ARCHITECTURE

C. Covert Darbyshire/The Cartoon Bank

2.0 INTRODUCTION
In this book we discuss systems: computer systems, operating systems, file systems,
I/O (sub)systems, network systems, and more. Each of these same systems is also
an element with a major role in the information technology systems that form the
backbone of modern organizations. Indeed, these elements—computer hardware,
software, data, and communication—together represent the infrastructure of every IT
system. If we are to understand the various types of systems that are the focus of this
book, it is important that we first understand the concept of ‘‘system’’ itself, and, then,
equally important, the basic architectures of the IT systems that use these elements.
Only then is it possible to see clearly the role of the various system elements in the
larger IT picture as we visit each in turn.

Use of the word ‘‘system’’ is obviously not unique to IT. In our daily lives, too,
we often use the word ‘‘system’’ to describe things in everyday language. Our homes
have electrical systems, plumbing systems, heating and air conditioning systems, and
maybe for some, even, home theatre systems. There are ignition, braking, fuel, exhaust,
and electrical systems in our cars. Our cities have water systems, sewer systems,
and transportation systems, to name a few. Philosophers and social scientists talk
about social systems and linguistic systems. The economy deals with banking systems,
financial systems and trading systems, and, for that matter, economic systems. The
word ‘‘system’’ even appears in the names of thousands of companies.

So it seems as though everyone knows what a system is, but what is a system? We
use the word ‘‘system’’ intuitively, without thinking about the meaning of the word,
so we obviously have an intuitive understanding of what a system is. IT professionals,
however, spend their careers analyzing, designing, developing, implementing, upgrad-
ing, maintaining, administering, and using systems everyday. It is therefore important
that we have a deeper, more formal understanding of system concepts.

In this chapter, we consider the concept of a system from an IT perspective. We
investigate the characteristics and composition of systems, explain the meaning of
system architecture, and show the fundamental role of systems, particularly various
types of IT systems, in business. We offer examples of different types of IT systems,
and show how IT systems work together to accomplish tasks and solve problems. We
show how systems can themselves be composed of subsystems, where the subsystems
also fit the definition of systems.

After you have studied this chapter, you should have a clear understanding of
what a system is, what kinds of systems are used in IT, the purpose and goals for each
of these systems, and how these systems fit together and interact with each other and
with their environment. You’ll understand the concept of system architecture. This
discussion will set the stage for the remainder of the book, which considers individually
and collectively the specific computer-based systems and subsystems that constitute
the primary tools and components of business information technology.

39

40 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

2.1 THE GENERAL CONCEPT OF SYSTEMS
The most important characteristic that is shared by all of the systems mentioned above,
and, indeed, by all systems, is that each is built up from a set of components that are
linked together to form what we think of as a single unit. The house plumbing system, for
example, consists of sinks, faucets, toilets, a hot water heater, bathtubs or showers, valves,
and more, all connected together by pipes. An IT system consists of groups of computer
hardware, various I/O devices, and application and system software, connected together by
networks.

Often, the system is intended to serve a purpose or to produce results. The purpose of
the house plumbing system is to allow the residents of the home access to water to wash,
bathe, and drink. The purpose of an IT system is to allow organizations to process, access,
and share information. The results of a successful IT system are documents, information,
improved business processes and productivity, profits, strategic plans, and the like. This is,
in fact, the ‘‘output’’ of the IPO model described in Chapter 1. In general, though, there
is no requirement that a system serve a specific, definable purpose. The fact that the set
of components may be considered as a single unit is sufficient to satisfy the concept of a
system. The solar system is an example of a system where the purpose is unspecified.

There is also no requirement that the components of a system be physical. The links
between components can also be physical or conceptual. In fact, the system itself may be
conceptual, rather than physical. The number system is an example of a conceptual system.
Computer operating systems are also conceptual, rather than physical. Business systems
are also conceptual, although some of the components that they contain may be physical.
The words tangible and intangible are sometimes used in place of physical and conceptual,
respectively. Intangible or conceptual components and systems include ideas, methods,
principles and policies, processes, software, and other abstractions. If, for example, the
components in a system represent steps (intangible) in a multistep process, the links may
represent the need to complete one step before the next is begun (also intangible).

Figure 2.1 illustrates a number of different systems to show you some of the possi-
bilities. Figure 2.1(a) is a model of a home plumbing system. This is a physical system.
The components are plumbing fixtures, linked by pipes. Figure 2.1(b) is a simplified
representation of the solar system. The sun and planets are physical; the links in this system
are conceptual, specifically, the distance of each planet from the sun, interplanetary and
solar gravity, orbital relationships, the distances between planets at a particular point in
time, and other attributes. Figure 2.1(c) is a diagram of a home networking system. The
links in this case are a mixture of physical wires and (intangible) wireless connections.
Sometimes the nature of the links is important only in terms of providing the proper
interface connections to the components. Figure 2.1(d) is a simplified diagram of part of
the inventory control portion of a sales system. The relationships between the components
in this case are temporal (i.e., related to time). For example, inventory from a previous sale
must be deducted from stock before we process the next order; otherwise we can’t promise
delivery of goods on the new order because we don’t know if we still have sufficient goods
in stock to fill the order.

With these pictures and ideas about systems in mind, we will define a system as follows:

A system is a collection of components linked together and organized in such
a way as to be recognizable as a single unit.

FI
G
U
RE

2.
1(

a)

P
lu

m
bi

ng
S

ys
te

m
D

ia
gr

am

D
ra

in

W
at

er
 s

up
pl

y
sy

st
em A

ir
ch

am
be

r
R

el
ie

f
va

lv
e M

ai
n

sh
ut

of
f

W
at

er
m

et
er

M
ai

n
se

rv
ic

e
pi

pe
fr

om
 w

at
er

 s
up

pl
yS
hu

to
ff

 ”

 t
o

1
”

su
pp

ly
 p

ip
e

S
hu

to
ff

S
hu

to
ff

S
hu

to
ff

41

42 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

FIGURE 2.1(b)

The Solar System

Mercury
Jupiter

Neptune

Uranus
Saturn

Earth

Venus

Sun

Mars

FIGURE 2.1(c)

A Typical Home Network System

DSL or cable
modem

Phone line

or cable
Wireless
router

Network-Ready
PrinterNetwork-Attached

Storage (NAS)

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 43

FIGURE 2.1(d)

Flow Diagram for Part of an Inventory Control System

Sales
order

Inventory
1

Check order
against

inventory

To sales to
notify customer

To purchasing to
determine availability

and shipping date

2a
Not Available

2b
Available;

deduct from
inventory

3
Check against

inventory
reorder point

To warehouse for
order fulfillment

and shipping

To purchasing
for reorder

[Stock < minimum]

A general representation of a system is shown in Figure 2.2.
The linked components that constitute a system also define a boundary for the system.

Anything outside the boundary repesents the environment that the system operates or
presents itself within. The environment may interact with and affect the system in various
ways. The reverse is also true. The interface between the system and its environment is an
important characteristic of the system. If the interface is well-defined, it is often possible
to replace the existing system with a different system, as long as the interface between the
system and the environment remains constant. This idea can have important implications
when designing IT systems. For example, in a particular IT installation, a single large
computer may be functionally the same as a network of small computers. When we define
inputs and outputs for a system, the environment is the source of the input and also the
receiver of the output.

As an example of the relationship between a system and its environment, consider the
rather simplistic view of an e-business system illustrated in Figure 2.3. The organization
represented by this illustration purchases goods from suppliers and makes them available
for sale. (The value-adding component in the figure consists of various operations that
make it worthwhile to buy from this organization, rather than directly from the supplier.
For example, Amazon.com makes it possible to buy a wide variety of books from one source,
rather than having to place separate orders from a number of different suppliers.) The
environment for this system consists of customers who purchase from the system, suppliers

44 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

FIGURE 2.2

General Representation of a System

Environment Environment

Environment

Environment

Interface

Boundary

Components

Links

Interface

to the system, governments who control the legal aspects of the business and collect taxes,
employees and prospective employees, external support personnel (such as repair people),
financial resources, and others. The primary interfaces for this system are system input
from suppliers and system output to purchasers; however, there are additional, more subtle
interfaces to be considered, including legal, cultural, and financial interactions with the
system. For example, sensitive cultural and language issues that offend potential customers
on a website migh have an important impact on an organization’s sales.

When analyzing a system, the components of the system may be treated as irreducible
or they may themselves be representable as systems. When considered in the context of
a particular system, these components would be viewed more accurately as subsystems.
A business IT system, for example, might have marketing, manufacturing, purchasing,
inventory, finance, and accounting subsystems, among others. Even these components
might be expanded. The marketing subsystem might be further broken down into sales,
development, and advertising components, as one possibility. The level of detail to be
considered depends on the context in which the system is being considered, discussed,
evaluated, or used. The division of a system or subsystem into its components and linkages is
called decomposition. Decomposition is inherently hierarchical. The ability to decompose
a system hierarchically into subsequent sets of components and subsytems is an important
property of systems.

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 45

FIGURE 2.3

A Simple E-Business System

Employees &
prospective employees

Government,
law

Culture,
language

Financial
resources

Competitors

Suppliers Customers
Value-adding
processing Sales

Marketing

Finance &
accounting

Purchasing &
receiving

The fundamental properties, and the patterns of relationships, connections, constraints,
and linkages among the components and between the system and its environment are
known collectively as the architecture of the system. Some people choose to differentiate
the architecture of a system from the organization of a system. The assumption is that
the architecture is fundamental to the meaning and value of the system whereas the
organization is one of possibly many combinations of components and linkages that meets
the requirements of the architecture. The difference is subtle and often unimportant.

It is common to represent systems and their components by models or drawings on
paper or objects within a computer program. These representations are abstractions. They
represent the real system but are not actually the real system. (For example, the solar system
does not fit conveniently inside a computer!) It should be obvious to you that all of the
illustrations of systems in Figures 2.1, 2.2, and 2.3 are abstractions.

The primary reason for humans to group components into systems and to represent
them as abstractions is to simplify understanding and analysis, particularly if the individual
components are numerous and complex. We can study the relationships between the
different components without the distraction created by the details of individual compo-
nents. We can decompose, isolate and study individual components when required. We
can study the interactions between the environment and the system as a whole. Effectively,
our analyses are simplified by eliminating factors that are not relevant in the context of our
interests. In a large network of computers, for example, we may be concerned primarily

46 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

with the flow of data between computers. The details of the individual computers are
unimportant. In general, dealing with models at the system level allows us to isolate and
focus on the specific elements of interest more easily, by treating other elements collectively.

To escape our fixation on information technology systems for an instant, consider,
just for fun, the solar system that we’ve used previously as an example. If we are studying
the Milky Way galaxy, it is convenient and sufficient to treat the solar system as a single
irreducible component in the galaxy. We might be interested in the location and movement
of our Sun in the galaxy, for example, but the structure of the planets is irrelevant to our study
in this case. On the other hand, if we are interested in studying the effects of the tides on a
sea shore where we are planning to vacation, we will have to expand the ‘‘Earth’’ component
and look at the specific effects of the moon and other nearby objects as part of our analysis.

Consider, too, the role played by decomposition and the ability to isolate and study
individual components. A complex system may be divided into relatively independent
components and analyzed by different individuals, each a specialist in their own area. Thus
a plumber can create a home water system component without concern for the details
of the electrician’s efforts. They can work together on the linkages that concern both of
them, for example, the wiring for the boiler in a hot water heating system. The system
architect coordinates the different efforts. The role of an IT system architect is similar: to
work with finance experts on the finance component, marketing experts on the marketing
component, and so forth.

When the goal of a project is to implement a system of some type, it is sometimes
convenient to view the components of a system as modules that can be implemented
independently, then linked together to produce the final result. This technique can simplify
analysis, design, assembly, upgrading, and even repair. It also supports collaboration during
the design process, since individual components can be designed by different individuals
using specifications for the interfaces.

For example, a cell phone might consist of a computer control module, a memory
module, a display module, an audio input/output module, a radio transmitter/receiver
module, a keypad/text input module, and a wireless networking module. Each component
might have been developed by a different team. These modules, designed, constructed, and
manufactured as individual assemblies, properly interfaced, wired together, and mounted
into a case, constitute the design of a typical cell phone. They also represent the components
that might appear in the system diagram for a cell phone. The same approach might be
taken with a computer system, with a central processor module, a graphics display module,
an audio module, a network module, a hard drive controller module, and so on. Figure 2.4,
for example, shows the basic system hardware components that make up an iPhone.

It is also important to realize that there may be many different representations for a
system, to reflect the various uses of the system model. Returning to our IT roots for an
example, the representation of the business system shown in Figure 2.5(a) is a traditional
hierarchical oranization chart. The components are departments that perform various
functions within the business. In contrast, a partial model of the same business shown in
Figure 2.5(b) represents the application architecture of an IT system within this business.
Take another look at Figure 1.4 for still another representation of a business. As another
simple example, you could represent a house by the physical appearance of its exterior, by
the function and layout of its rooms, or by the various subsystems, electrical, plumbing,
heating, and so on that the house requires. Presumably, each of these representations would
be useful to a different participant. In fact, we would expect an architect to provide all of
these for use by the owner, the builder, and the various contractors.

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 47

FIGURE 2.4

iPhone Components

Flash memory

Main circuit boards

Battery

Communications
GSM cell, WiFi, EDGE

CPU

Display (rear)

Courtesy Christopher Harting.

FIGURE 2.5(a)

Business Organization Chart

Corporate
exec. management

Marketing and
sales IT Human

Resources Finance

System planning
& development

System
Administration

User support

Employment

Organizational
development

Contracts

Sales

Advertising

Planning

Order
Fulfillment

Accounting

Financial
planning

Purchasing

Auditing &
control

48 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

FIGURE 2.5(b)

Partial View of a Business Application Architecture

Marketing
Information

System

Executive
Information

System

Financial
Information

System

Order Entry
System

Accounts
ReceivableCustomers

Order
fulfillment

Accounts
payable

Purchasing

Orders

Products

Suppliers

2.2 IT SYSTEM ARCHITECTURES
The use of system concepts is particularly applicable when discussing the various types of
IT systems. In general, the goal of IT systems is to assist organizations to meet the strategic
needs of the enterprise. Not surprisingly, IT systems are frequently complex, and the ability
to separate them naturally into subsystems or components of manageable size simplifies
understanding of the system as a whole. The analysis, design, and implementation of IT
systems must take place at different levels of detail and frequently require collaboration
among many analysts and designers. This corresponds well with the ability to decompose
systems into components, hierarchically, which allows us to concentrate at the appropriate

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 49

levels of detail during each step along the way. This approach is known as a top-down
approach. The top-down approach allows us to focus on the specific areas of interest
without the distraction of details that are irrelevant for the level that we’re studying. In
this way, a system architect can analyze and study the IT system as a whole, encapsulating
the computer systems, software systems, network architecture, and Web architecture that
represent components, and focusing instead on the large picture: the purpose of each
component and the requirements for the interfaces and linkages that connect and integrate
them. With the IT system architecture firmly established, we can consider the individual
business functions, computer systems, and networks that will link them together. For IT
system analysis, this is often sufficient, at least superficially, assuming that the system
architects actually understand the conditions and constraints imposed by details at the
lower levels.

Although there are other, equally valid, approaches to IT system analysis and design,
and many other important considerations as well, this approach suits the purposes of this
book well because it allows us to establish general requirements for IT systems and then
to show how the specific capabilities and characteristics of computer hardware, operating
systems, networks, and data fulfill those requirements.

With these ideas in mind, let us return to the simple word processing example from
Chapter 1 and reconsider it from a system architecture perspective. Recall that in this
example you are sitting at your computer typing text into a word processor. We noted that
the computer accepted input from your mouse and keyboard, processed it according to
rules established by the application software, and produced output, which appeared on a
display. From the system perspective, we can, for now, treat the whole computer, keyboard,
display, printer, storage, software, and all as a single component. You’re the relevant part
of the environment for this discussion. Forgetting the issue of control for now, the system
has an input and an output. Both of these interface with you, the environment. The data
for this interface is alphanumeric text in human-readable form. Other input data to the
document might include graphics drawn with the mouse, photographic images from a
digital camera, bar codes, or music from an iPod or other audio source. We described this
scenario earlier, in Chapter 1, as input-process-output.

A system this simple is unlikely to meet all the needs of even the smallest enterprise
or, even, the least computer-literate individual. But it does serve as a starting point to
recognizing the value of a system approach to the understanding of information technology.

Distributed Processing Systems

Realistically, modern IT system architectures generally rely on multiple computers con-
nected by networks of communication channels to achieve their goals. In all but the smallest
organizations, input data is collected from locations scattered throughout the organization,
stored, processed, and distributed to other locations within the organization. Since modern
computer hardware and networking equipment is plentiful and inexpensive, it is practical
to distribute computing capability to everyone who needs it. Furthermore, the availability
of the Internet and alternative structures, such as satellite communications, make global
data communication practical. Web access, organization intranets, e-mail capability, anal-
ysis tools, such as Microsoft Excel, and document preparation tools are widely available
and are considered essential business tools throughout most organizations. Collaboration

50 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

between different organizations, particularly in the area of automated business-to-business
purchasing and sales, is commonplace.

Therefore, when envisioning effective IT systems, designers typically must create
system architectures that are capable of supporting large numbers of user workstations
who will have ready access to the organizational information that they need. The system
must be able to reliably store and protect large amounts of organizational data. For many
organizations, customers outside of the organization may also need access to the system to
get information and to make purchases.

Consider a few typical simple scenarios:

■ A global fast food chain collects data each day from each of its restaurants
worldwide to establish sales figures and determine sales trends. This allows the
company to determine which locations are most productive and which locations
need assistance, which items sell best and which need to be modified or replaced,
and so on.

■ A large travel organization conducts much of its business online, using travel
agents located all over the world. It maintains Web servers that have immediate
access to large databases of client information and travel information, as well as
continual and instant access to airline and hotel reservation systems to determine
current airfares, seat availability, and hotel room availability. All of this
information must be immediately accessible to every agent and must be current
at every instant. Even brief system failures are very costly.

■ A large Web-based retail sales organization sells large quantities of a wide variety
of merchandise. (Think Amazon or Wal-Mart.) Orders initially come in to a
central facility, where they are billed. Inventory is stored in warehouses in
various countries and local regional areas to expedite delivery and reduce
delivery costs. The system must be able to distribute orders to the various
regional facilities efficiently; it must also maintain appropriate levels of goods
at each warehouse to match sales and must be able to locate goods and arrange
shipping in response to orders as they come in.

Inventory replenishment is handled by an automated purchasing IT system
component that is integrated with the IT systems of the suppliers. Purchase order
data is passed from the retailer to a supplier, which triggers order placement,
billing and shipment components in the supplier’s systems. Web technology is
commonly used to satisfy the need for data and communication compatability
between the systems.

■ Even conventional business order processing is inherently distributed within an
organization. A purchase order, for example, might be entered into the system by
a salesperson in the sales department; the order is checked by order fulfillment
for inventory, then distributed to the accounting department for a credit check
and billing, and sent to the warehousing area for packaging and shipping. Back
orders and inventory replenishment are sent to the purchasing department. For
planning and marketing purposes, data will be collected into a central location
and processed into sales figures, inventory planning and purchase requirements
data, and the like. In a large organization, these functions might be widely
scattered over a city, country, or even the world.

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 51

The emphasis in each of these scenarios is the flow and processing of data within an
organization or between organizations or between an organization and its environment. The
system architecture representation of such operations is called application architecture.
Application architecture is primarily concerned with the activities and processing of
application programs and the communications between them. Since the application
architecture addresses the fundamental business needs of the organization, the application
architecture is typically the primary consideration in IT system design. Therefore, the
system requirements and constraints set by the application architecture have major impact
on the hardware architecture and network architecture requirements for the system.
Within the application architecture realm the selection and layout of computer systems
and communication networks is of concern primarily to the extent that it adequately
supports the application software and its functionality. However, additional factors such
as scalability, convenience, information availability, data security, system administration,
power and space requirements, and cost may also play important roles in computer and
network architectural designs.

CLIENT-SERVER COMPUTING There are a variety of possible application architectures
that can satisfy the requirements of modern organizations. Most, however, are based on
different applications of a simple technological concept, the client-server model.

In a client-server configuration, a program on a client computer accepts services
and resources from a complementary program on a server computer. The services and
resources can include application programs, processing services, database services, Web
services, file services, print services, directory services, e-mail, remote access services, even
computer system initial startup service. In most cases, the client-server relationship is
between complementary application programs. In certain cases, particularly for file services
and printer sharing, the services are provided by programs in the operating system. Basic
communication and network services are also provided by operating system programs.

Basic client-server architecture is illustrated in Figure 2.6. Notice that the link between
client and server is essentially irrelevant within the application architecture view of the
system. The ‘‘cloud’’ in the figure is intended to indicate only that there is a link of some
kind between the client and the server. The link can be a network connection, an intranet

FIGURE 2.6

Basic Client-Server Architecture

Client
Server

Request Request

Service
response

Service
responseCommunication

channel

52 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

or Internet connection, or some sort of direct connection. In fact, a single computer can
act as both client and server, if desired. (A situation where this is the case is described in
Chapter 16.)

The client-server model describes the relationship and behavior of programs in one or
two computers under particular prescribed circumstances. It is important to understand
that the client-server model does not require any special computer hardware. Furthermore,
networking software within the operating system of each computer routinely provides basic
communication capabilities. The only ‘‘special’’ software required is the software within
the complementary application programs that provides the communications between the
programs. The requests and responses take the form of data messages between the client
and server that are understood by both application programs. As an example, slightly
simplified, the HTTP request message sent to a Web server by a Web browser requesting
a Web page consists of the word GET followed by a URL. If the request is successful, the
message returned by the server contains the HTML text for the page.

From the description and the figure you can see that the Web browser–Web server
application described as an example in Chapter 1 fits the description of a client-server
application. We will return to this example momentarily.

A typical use of the client-server concept within an organization is shown in Figure 2.7.
In this case, a number of clients are sharing a number of servers, showing both the
shared server nature of client-server computing, as well as to show that there may be
multiple servers offering different services on the same network. Notice, also, that the
server computer labeled S2 in the figure is running two different server applications. Since
computers are capable of running multiple tasks concurrently, this is a possible scenario.
The only limitations to running multiple applications on a single server are the potential
slowdowns that may result from the load on the server computer and the traffic on the
network to that server. Overall, there is a multiple-multiple relationship between clients
and servers: a server can serve multiple clients, and a client can request services from
multiple servers.

The use of client-server processing as a basis for IT system architecture has a number
of advantages:

■ Providing services on a single computer or on a small number of computers in a
central location makes the resources and services easy to locate and available to
everyone who needs them, but also allows the IT administrators to protect the
resources and control and manage their use. The consistency of files and data can
be managed and assured.

For example, client-server technology can ensure that every user requesting
a particular program from a server will receive the same version of the program.
As another example, suppose a program has a license that limits the number of
simultaneous users. The program server can easily limit distribution of the
program appropriately.

■ The amount of data to be stored, processed, and managed may be extremely
large. It is more efficient to equip a small number of computers with the power
needed than to require powerful computers at every station.

■ Typically, humans request information from knowledgeable sources as they need
it. Thus, the client-server approach is naturally consistent with the way humans
acquire and use information.

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 53

FIGURE 2.7

Clients and Servers on a Network

Web
server

S2

Application
server &

print server

Network

Clients

Servers

Database
server

E-mail
serverFile server

The most familiar example of the use of client-server technology is the Web
browser–Web server model used in intranets and on the Internet. In its simplest form, this
model is an example of two-tier architecture. Two-tier architecture simply means that
there are two computers involved in the service. The key features of this architecture are a
client computer running the Web browser application, a server computer running the Web
server application, a communication link between them, and a set of standard protocols,
in this case, HTTP, for the communication between the Web applications, HTML for the
data presentation requirements, and, usually, the TCP/IP protocol suite for the networking
communcations.

In the simplest case, a Web browser requests a Web page that is stored as a pre-created
HTML file on the server. More commonly, the user is seeking specific information, and a
custom Web page must be created ‘‘on the fly’’, using an application program that looks
up the required data in a database, processes the data as necessary, and formats it to build
the desired page dynamically.

Although it is possible to maintain the database and perform the additional database
processing and page creation on the same computer as the Web server, the Web server in a

54 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

large Internet-based business may have to respond to thousands of requests simultaneously.
Because response time is considered an important measure by most Web users, it is often
more practical to separate the database and page processing into a third computer system.
The result, shown in Figure 2.8, is called a three-tier architecture. Note that, in this case, the
Web server machine is a client to the database application and database server on the third
computer. CGI, the Common Gateway Interface, is a protocol for making communication
between the Web server and the database application possible. (In the figure, we have
placed the page creation application software on the database machine, but it could be
located on the Web server instead if doing so would balance the loads on the two machines
better.) In some situations, it is even desirable to extend this idea further. Within reason,
separating different applications and processing can result in better overall control, can
simplify system upgrades, and can minimize scalability issues. The most general case is
known as an n-tier architecture.

Client-server architecture is a distributed processing methodology, in which some of
the processing is performed on the client system and some is performed on the server
system. To see this more clearly, consider the distribution of processing between the client
and server in a database application, in which the client requests specific information from
a database stored on a database server.

At one extreme, the client application provides little more than a request form and a
means to display the results. All of the processing is performed on the server. This might
be appropriate if there is little computing power in the client. Certain so-called ‘‘thin’’
clients or ‘‘end-user’’ terminals might meet this criterion, but this situation is increasingly
rare. Because this extreme case puts the entire processing load on the server, the system
designer will have to specify a more powerful computer for the server; additionally, the
requirements of the database server may limit the capability of the server computer system
to perform other tasks or to scale for increased usage.

At the other extreme, the database server application simply accesses data from the
database and passes all of the data to the client. The client application performs all of
the processing. This relieves the load on the server, and it is reasonable to assume that
modern client computers would be able to handle most database processing tasks relatively
easily. However, the potential transfer of large amounts of raw data from the server to

FIGURE 2.8

Three-Tier Database Architecture

CGI*
Request

HTTP
Request

HTTP
response

CGI
response
(HTML)

Web
server

database
server

database

*CGI: Common Gateway Interface

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 55

the client for processing may put an extra burden on the network instead, requiring the
system designer to specify higher speed network components at potentially higher cost and
additional implementation difficulty.

A well-designed system analysis will consider the different factors, the complexity
of the applications, expected network traffic, usage patterns, and the like. The optimum
solution is likely to fall somewhere in the middle, with some pieces of applications on the
server, others on the client.

One of the strengths of client-server architecture is its ability to enable different
computer hardware and software to work together. This provides flexibility in the selection
of server and client equipment tailored to the needs of both the organization and the
individual users. One difficulty that sometimes arises when different computers have
to work together is potential incompatibilities between the application software that
resides on different equipment. This problem is commonly solved with software called
middleware. Middleware resides logically between the servers and the clients. Typically,
the middleware will reside physically on a server with other applications, but on a large
system it might be installed on its own server. Either way, both clients and servers send
all request and response messages to the middleware. The middleware resolves problems
between incompatible message and data formats before forwarding the messages. It also
manages system changes, such as the movement of a server application program from one
server to another. In this case, the middleware would forward the message to the new
server transparently. The middleware thus assures continued system access and stability. In
general, the use of middleware can improve system performance and administration.

WEB-BASED COMPUTING The widespread success of the World Wide Web has
resulted in a large base of computer users familiar with Web techniques, powerful
development tools for creating Web sites and Web pages and for linking them with
other applications, and protocols and standards that offer a wide and flexible variety
of techniques for the collection, manipulation, and display of data and information. In
addition, a powerful website is already a critical component in the system strategy of
most modern organizations. Much of the data provided for the website is provided by
architectural components of the organization’s systems that are already in place.

Not surprisingly, these factors have led system designers to retrofit and integrate Web
technology into new and existing systems, creating modern systems which take advantage
of Web technology to collect, process, and present data more effectively to the users of the
system.

The user of a Web-based system interacts with the system using a standard Web
browser, enters data into the system by filling out Web-style forms, and accesses data
using Web pages created by the system in a manner essentially identical to those used
for the Internet. The organization’s internal network, commonly called an intranet, is
implemented using Web technology. To the user, integration between the intranet and the
Internet is relatively seamless, limited only by the security measures designed into the system.
This system architecture offers a consistent and familiar interface to users; Web-enabled
applications offer access to the organization’s traditional applications through the Web.
Web technology can even extend the reach of these applications to employees in other parts
of the world, using the Internet as the communication channel.

56 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

Since Web technology is based on a client-server model, it requires only a simple
extension of the n-tier architecture to implement Web-based applications. As an example,
Figure 2.9 shows a possible system architecture to implement Web-based e-mail. Note the
similarity between this example and the three-tier database application shown in Figure 2.8.

Many organizations also now find it possible and advantageous to create system
architectures that integrate parts of their systems with other organizations using Web
technology and Web standards as the medium of communication. For example, an
organization can integrate and automate its purchasing system with the order system of its
suppliers to automate control of its inventory, leading to reduced inventory costs, as well as
to rapid replacement and establishment of reliable stocks of inventory when they are needed.
Internet standards such as XML allow the easy identification of relevant data within data
streams between interconnected systems, making these applications possible and practical.
This type of automation is a fundamental component of modern business-to-business
operations.

PEER-TO-PEER COMPUTING An alternative to client-server architecture is peer-to-
peer architecture. Peer-to-peer architecture treats the computers in a network as equals,
with the ability to share files and other resources and to move them between computers.
With appropriate permissions, any computer on the network can view the resources of
any other computer on the network, and can share those resources. Since every computer
is essentially independent, it is difficult or impossible to establish centralized control to
restrict inappropriate access and to ensure data integrity. Even where the integrity of the
system can be assured, it can be difficult to know where a particular file is located and
no assurance that the resource holding that file is actually accessible when the file is
needed. (The particular computer that holds the file may be turned off.) The system also
may have several versions of the file, each stored on a different computer. Synchronization
of different file versions is difficult to control and difficult to maintain. Finally, since

FIGURE 2.9

Three-Tier Web-Based E-Mail Architecture

CGI*
Request

HTTP
Request

HTTP
response

CGI
response
(HTML)

Web
server

Mail
server

R’cvd mail

Sent mail

SMTP*
to another
mail server

*SMTP: Simple Mail Transfer Protocol
*CGI: Common Gateway Interface

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 57

data may pass openly through many different machines, the users of those machines may
be able to steal data or inject viruses as the data passes through. All of these reasons are
sufficient to eliminate peer-to-peer computing from consideration in any organizational
situation where the computers in the network are controlled by more than one individual
or group. In other words, nearly always.

There is one exception: peer-to-peer computing is adequate, appropriate, and useful
for the movement of files between personal computers or to share a printer in a small office
or home network.

Peer-to-peer technology has also proven viable as an Internet file sharing methodology
outside the organizational structure, particularly for the downloading of music and video.
The perceived advantage is that the heavy loads and network traffic associated with a server
are eliminated. (There are legal ramifications, also, for a server that is sharing copyrighted
material illegally.) This technique operates on the assumption that the computer searching
for a file is able to find another computer somewhere by broadcasting a request across
the Internet and establishing a connection with a nearby computer that can supply the
file. Presumably, that computer already has established connections with other systems. All
of these systems join together into a peer-to-peer network that can then share files. One
serious downside to this approach, noted above, is the fact that the computers in an open,
essentially random, peer-to-peer network can also be manipulated to spread viruses and
steal identities. There are several serious documented cases of both.

An alternative, hybrid model uses client-server technology to locate systems and files
that can then participate in peer-to-peer transactions. The hybrid model is used for instant
messaging, for Skype and other online phone systems, and for Napster and other legal file
download systems.

Although there have been research studies to determine if there is a place for
peer-to-peer technology in organizational computing, the security risks are high, the
amount of control low, and the overall usefulness limited. The results to date have been
disappointing.

The Role of the System Architect

In Section 2.1, we suggested that there are different ways of viewing systems. From the
discussion within this section, you can see that the IT system architect must consider
the system from the perspectives of application architecture, data architecture, network
architecture, and computer architecture. Each of these addresses different aspects of the
IT system as a whole. For example, our consideration of different general application
architectures—client-server, web-based architecture, peer-to-peer architecture—ignored
the networking that links the various computers together. Similarly, we attempted to
minimize the effects due to the specifics of individual computer systems when exploring
the various requirements of a system from the perspective of application architecture.

Ultimately, it is the responsibility of the system architect to assess the particular needs
of an organization and create a system that meets those needs while attempting to achieve
an optimum balance of computer power, network capability, user convenience, and budget.
To do so, the architect will consider each aspect of the system: application architecture,
network requirements, specification of computer systems, and data requirements, just as
the architect designing a house considers flow of people through the house, overall use of

58 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

space and room layout, individual room layouts, mechanical systems, and aesthetic design
as different views of the overall architecture of the house.

Although the infrastructure design as defined by the computer hardware, system
software, and communication channels is subordinate to the fundamental business require-
ments that determine a basic IT system architecture, the system architect must understand
the features and constraints that establish the feasibility and desirability of a particular
infrastructure configuration.

Google: A System Architecture Example

So far, we have considered basic system concepts and simple system architectures as
examples. Most IT business systems operate primarily within an organization, with limited
collaboration with other, partnered organizations and carefully controlled public access. At
the opposite extreme are massive systems that are widely open to the public. Google offers
a primary example of such a system.

The primary mission of Google is to provide powerful, fast search capability of
material on the Internet for billions of users all over the world. Income to the organization
is provided from advertising that is targeted to each user based on the specific nature of the
user’s search. The design of Google’s IT system architecture is obviously fundamental to
Google’s ability to achieve its mission and to meet reasonable income goals. In keeping with
the focus of this book, our primary interest is in the computer and network architectures
that Google uses to meet its system requirements; however we will use this example to
explore the relationship between the basic system requirements, the IT system architecture
created to meet those requirements, and the specific computer and network architectures
that evolved from the system architecture.

Some of the basic requirements that the Google IT system must satisfy include the
following:

■ It must be capable of responding to millions of simultaneous requests from all
over the world with pertinent, ranked search results and appropriately targeted
advertising. Most desirably, the results and advertising would be matched in
language, geographic suitability, and culture as much as possible to the location
of the user.

■ The system must be able to troll the Internet systematically and thoroughly to
retrieve data and to organize the data in such a way as to make it readily available
for response to user requests. There must be a processing mechanism to establish
a ranking of the results to a request.

■ The system must respond to requests with a reliability as near to 100 percent as is
technically possible. Individual hardware and software component failures
within the system must not affect system performance adversely.

■ The system must be easily scalable to handle ever-increasing numbers of requests
and must be cost effective.

At the application level, the requirements identify three specific processing tasks that
the system must fulfill:

1. The system must accept search requests from users, identify and rank matches,
create a Web page, and serve it to the user.

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 59

2. The system must collect data—lots of data! This task ‘‘crawls the Web’’,
identifies the search terms (every significant word) on every Web page it
encounters, and maintains an index database connecting each term to the
corresponding page. It likewise stores every Web page in a Web page database
and assigns a ranking value to each entry.

3. The system must manage advertisements, identify appropriate advertisements in
response to user search requests, and make the advertisements available to the
Web page creation application mentioned in 1.

For this discussion we will focus on the processing of search requests. When a user
types the Google URL www.google.com into her browser, the Web browser uses a service
called Domain Name Service (DNS) to identify the IP address of the Web server to which
the request is to be sent. Because Google must be able to handle several milllion requests
per hour, Google provides a number of alternative IP addresses representing different sites
to which the request may be redirected. Based on the approximate location from which the
request was sent, the request is routed by DNS to a Google data center near that location.
Google maintains more than forty separate data centers around the world to serve user
requests.

A simplified system diagram of the application architecture for a Google data center
is shown in Figure 2.10. All of the data centers are architecturally identical, differing
only in such details as the number of processors and the hardware specifications for each
processor. Each data center processes requests independently. Multiple copies of all of the

FIGURE 2.10

Google Data Center Search Application Architecture

Internet

Interface to
internet

Spell
Checker

Index
Servers

Index
databases

Page
databases

Web Page
Document

Servers

Web Servers Ad Checker

60 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

index word data and Web page data are stored locally at every data center, and updated
from master data at regular intervals.

A request enters the system from the Internet and is distributed to a Google Web server
for processing. A request consists of words and phrases. There are many separate Web
servers available so that many requests can be processed in parallel. The words are passed
to a spell checker, to an ad server, and to a pool consisting of a large number of index
servers.

The spell checker checks each word and considers possible alternatives if it believes
that the user may have intended something different. When appropriate, the output of
the spell checker will become part of the response sent to the user. (‘‘Did you mean . . . ’’
is familiar to most Google users.) The ad checker searches for words in the advertising
database that match the user’s request and adds the corresponding advertisement(s) to the
material that will be used to create the response page.

The index servers look up each word from the request in the index database and
compile a list of matching pages for each word. The list is then adjusted for multiple words
and phrases and sorted in order of relevance, based on Google’s ranking algorithms. This
list is then passed back to the Web server.

Next, the Web server calls upon the document servers to look up each matching page
in the Web page database. The document servers return a URL, a title, and a short snippet
of text for each document to the Web server. Finally, the Web server creates an HTML
document from the spelling, ad, and matching page results and returns the page to the
user’s Web browser.

Although the application processing just described is relatively straightforward, the
implementation of this system presented a number of challenges to the system architects,
The index and document databases are both massive in size. Many searches will result in a
large number of ‘‘hits’’; each hit must be evaluated and ranked. Each hit requires retrieval
and processing of a separate page from the document database. All of this processing must
occur very quickly. And the numbers of searches occurring simultaneously may also be
extremely large.

Google’s system architects responded to these challenges by recognizing that each
search could be processed independently on a separate computer, except for certain
bottlenecks. For example, each search request arriving from the Internet could be steered
by a computer to a different Web browser. They also observed that the major bottleneck
was the time required to access the databases on disks, which had to be shared among all
the searches taking place. Since the data in the databases never changed as a result of a
search, however, they reasoned that the databases could also be replicated and accessed in
parallel.

A simplified hardware representation of their solution is shown in Figure 2.11. Groups
of up to eighty computers are connected together in a network, then these networks, up
to sixty-four of them, are, themselves, connected together to form a larger network, sort
of like a miniature Internet of up to 5,120 computers. (There are additional switches and
connections built in for reliability that are not shown in the diagram.) Each computer
acts as a server, with different computers assigned to different pieces of the application
architecture. Each data center is equipped similarly.

Although the computers are manufactured specifically for Google, they are essentially
inexpensive commodity PCs, similar to standard, medium power, non-state-of-the-art,

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 61

FIGURE 2.11

Simplified Google System Hardware Architecture

Network
switch

Up to 80 PCs

Network
switch

Network
switch

Network
switch

Up to 64
lines

To Internet

Up to 80 PCs

Up to 80 PCs

off-the-shelf PCs. Each computer has a fairly large, but still off-the-shelf, hard disk. The
index and document databases are divided up among the hard disks on many computers.
(Google calls these partial databases shards.) This design allows different searches to access
different parts of the databases simultaneously. There are multiple copies of each database,
so that the failure of a PC or hard disk does not affect the overall ability of the system to
conduct searches. Each computer runs standard Linux operating system software, but the
application software was specially written by Google programmers.

Overall, this design allows a large number of searches to progress in parallel. The use of
inexpensive PC hardware makes the solution cost-effective. The system can be scaled easily
by adding more computers. Finally, the failure of a PC does not result in failure and, in
fact, has minimal effect on the performance of the system overall. Thus, this solution meets
the original requirements admirably. It is worth noting that a fundamental understanding
of computer infrastructure was key to the system architects’ solution.

This discussion provides a simple overview of the Google system. Hopefully you found
even this brief look at the Google system interesting and informative. There are a number of
other considerations in the Google system architecture that we have glossed over for now.
However, to understand the Google architecture better, it is first necessary to continue our
exploration of the hardware, software, and network components that make up the Google
system, as well as every other IT system. We will return for a more in-depth discussion of
the Google system architecture in Supplementary Chapter 2.

62 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

SUMMARY AND REVIEW
When working with large concepts with defined boundaries, it is often easiest to think of
them in terms of systems. A system can be defined as a collection of components, linked
together and organized in such a way as to be recognizable as a single unit. The components
themselves may also be recognized as subsystems, to be further reduced into components,
when appropriate. The area outside the boundaries of a system is its environment. The
system affects and is affected by various elements of the environment. In many situations,
the environment supplies inputs to the system and receives outputs from the system. The
patterns of relationships, connections, constraints, and linkages among the components
of a system and between a system and its environment are known collectively as the
architecture of the system.

Information technology systems are systems that support the strategy and operations of
organizations. The technological components of an IT system include computer hardware,
application software, operating system software, networks, and data. Other components
include personnel, policies, and more.

There are a number of different ways of viewing an IT system, including application
architecture, network architecture, software architecture, and hardware architecture. The
general architecture for an IT system includes all of these considerations.

Nearly all modern IT systems rely on distributed processing. Data comes from many
sources and information is required by users distributed throughout an organization
and beyond. The most common application architecture to support distributed pro-
cessing is client-server architecture, in which server computer systems provide various
services—Web, database, file, print, processing—to client computer systems. Client-server
systems are convenient for users and offer centralized control for the organization.
Client-server architecture is commonly organized in tiers, ranging from two-tier to n-tier.
The alternative architecture to client-server computing, peer-to-peer computing, is used
outside of organizations as a means for sharing files over the Internet, but is of limited
use in organizational settings due to difficulties in establishing stable data sources, security
risks, and lack of central control. It is also possible to create a hybrid architecture, with
features from both client-server and peer-to-peer computing.

A specific type of client-server architecture, Web-based computing, predominates the
IT scene, primarily because users are generally familiar with the use of Web browsers, the
technology is standardized and already in use in most organizations, and good development
tools for designing Web pages and accessing data are readily available. Both intranets and
the Internet provide user access.

Protocols are the means used to communicate between computers. IT system protocols
of interest to us include network protocols such as TCP/IP, I/O protocols such as USB
and PCI-Express, and application protocols such as HTTP. Standards make it possible for
different system components to work together. Most modern standards are global. There
are standards that are defined by interested groups and de facto standards that arise from
common usage.

The first step in IT system analysis and design is about finding an appropriate
architecture for a particular business situation. The task can be difficult and challenging.
It is easy to see why system architects need a deep understanding of the computer system

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 63

and network components that comprise the modern IT system to make the appropriate
design, selections, and tradeoffs.

Hopefully this short but concentrated chapter has prepared you for the remainder of
the book, which considers in detail the data, computer system hardware, operating systems,
and networks that make up the technological infrastructure of an IT system.

FOR FURTHER READING
Surprisingly, there are few books that discuss system concepts and system architecture in
a truly general way. Most books that claim to be about system architecture are actually
specific to a particular field, usually the field of information systems. One general book
about systems is by Laszlo [LASZ96]. Some IS systems design and analysis textbooks
provide a brief introduction to general system concepts. (Unfortunately, many don’t!)
One example of a book that provides a good introduction to system concepts is Stampf
[STAM05]. Chapter 1 of Stampf covers the topics in this chapter well. Wikipedia offers
other references under the topic system.

KEY CONCEPTS AND TERMS
abstraction
application architecture
architecture
client-server (model)
decomposition
environment

interface
intranet
middleware
n-tier architecture
peer-to-peer architecture
shared server

subsystem
system
three-tier architecture
top-down approach
two-tier architecture

READING REVIEW QUESTIONS
2.1 What are the most important ideas, keywords, and phrases that are stated in the

definition of a system?

2.2 Explain the relationships among the following words: system, environment, bound-
ary, interface.

2.3 Explain the following statement about systems: ‘‘Decomposition is inherently
hierarchical.’’

2.4 Explain what is meant by the architecture of a system.

2.5 What does the top-down approach allow a system architect to do that might be
more difficult otherwise?

2.6 What is the primary concern of application architecture? Give an example of
application architecture, either your own, or one from the examples in the book.
Explain how this example fulfills the features and requirements of the concept of
application architecture.

2.7 Most modern computing in organizations is based on client-server models. Explain
why this tends to be the case. Give an example of client-server computing that you

64 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

are familiar with and explain the characteristics of your example that fulfill the
concept of client-server computing.

2.8 Web-based system architecture is a popular approach to many organizational
systems because it offers a number of advantages to the users and to the organization
over other types of systems. Discuss the primary advantages to this approach.

2.9 What are the principal responsibilities of a system architect?

2.10 Many system architects base their IT system designs on an n-tier architecture, where
n is a number with value 2 or greater. Explain the difference between a single-tier
architecture and an n-tier architecture. What are the main advantages claimed for
an n-tier architecture?

EXERCISES
2.1 The human body is an example of an object that can be represented as a system.

Consider the various ways in which you could represent the human body as a
system. Select a representation and identify the components that constitute the
system. Select one component and decompose it to the next subsystem level. Now
consider a completely different system representation of the human body and
repeat this exercise.

2.2 Consider a representation of a work organization or school with which you are
familiar. Identify the major components that characterize the primary operations
within the organization and draw a diagram that represents the system’s organi-
zation. Show and identify the links that connect the various components. Identify
the major environmental factors that impact the organization.

2.3 Consider this textbook. Using the detailed table of contents as a reference, we can
represent this textbook as a hierarchical system. As a first pass, we can define this
book by the five component parts that make up the body of the text. Identify by
general name the objects that constitute the next level of decomposition below
the parts components. Continue to do this for at least three more levels of the
hierarchy.

2.4 Thinking in terms of systems allows us to analyze situations that are too complicated
for us to understand as a whole. What specific characteristics and features of system
thinking make this possible?

2.5 Figure 2.8 illustrates the basic architecture for a three-tier database system. This
system can be viewed as an IPO (input-processing-output) system. What is the
input for this system? What environmental element generates the input? (Hint:
the Web browser computer is within the system boundary.) What is the expected
output from this system? What environmental element receives the output? Briefly
describe the processing that takes place in this system.

2.6 Based on the illustration of an iPhone shown in Figure 2.4, draw a system model
for an iPhone.

2.7 It is common to represent network connections in IT systems as a cloud. (See, for
example, Figures 2.6, 2.7, 2.8, and 2.9). The cloud is obviously an abstraction as
we defined abstraction in this chapter. What does the cloud abstraction actually
represent?

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 65

2.8 Suppose that you have been hired to develop a website-based sales system for a
large international retail sales firm. Discuss some environmental issues that are
specific to the Web design of your system that you must consider if your system is
to be successful at attracting and keeping purchasing customers.

2.9 Consider a home theatre system consisting of a television set, a receiver, a DVD
player, speakers, and any other components you wish to include. Draw a system
diagram for this system. Include both components and links. What are the inputs
to this system? What are the outputs? (Remember that the DVD player and receiver
are both components within the system.) Now draw a system diagram for the
receiver subsystem. Include both its primary components and the links between
them. What are the inputs and outputs for the receiver subsystem? Do these inputs
and outputs conform to the links connected to the receiver in your original system
diagram?

