
CHAPTER 1

COMPUTERS AND SYSTEMS

CATHY 1986 Cathy Guisewite. Reprinted with permission of UNIVERSAL PRESS SYNDICATE. All rights reserved.

1.0 INTRODUCTION
It is nearly impossible today to escape the immediate reach of computers and
computer-based systems. There is probably a cell phone in your pocket or on your
desk and, perhaps, an iPod as well. For many of you, your laptop or desktop computer
is sitting nearby as you read this paragraph. And that’s not all. Your car probably
has several embedded computers controlling various functions. Even your microwave
oven and the machine that launders your clothes depend on computers to function
properly. As you are probably aware, most of these machines can talk to each other,
using the Internet or some other networking technology.

Indeed, the jargon of computers has become a part of common daily language.
You can open a newspaper and find references to expressions such as ‘‘2 GB DDRAM’’
or ‘‘WXGA LCD display’’ or ‘‘2 MB level 2 cache’’ or ‘‘Wi-Fi’’ in articles and
advertisements. (In a way, it’s scary!) The ad in Figure 1.1, taken from a Sunday
newspaper flier, is typical of recent computer ads.

You’ll notice that this computer features a ‘‘Core 2 Duo Processor’’ CPU, 2 GB of
DDR2 SDRAM memory, a 16× DVD ±RW Drive, and a 160 GB SATA hard drive. It
also contains a 256 MB PCI Express graphics card among other things. But how good
a system is this? Are these features important to the user? Is this the right combination
of features that you need in your computer to have the computer perform the work
that you wish to get done? Are there features missing that we need? Is a Core 2 Duo
processor the best CPU for us? Perhaps we are paying too much for the performance
that we need. Or maybe we need more. And what does ‘‘Core 2 Duo’’ mean, anyway?
What I/O ports might you need to assure a satisfy long-term investment of computers
for your organization? Is a 16× DVD ±RW drive adequate for your work? What if you
have to burn a lot of disks? What other information about this system would allow
you to make a more informed decision? (For example: Hey—where’s the networking
capability?)

Some of the expressions used in these articles and ads are obvious from the
context. Other references may be more obscure. Presumably, everyone today knows
what a ‘‘display monitor’’ is. But how many people know the meaning and significance
of the terms ‘‘cache memory’’ or ‘‘multitasking’’ or ‘‘PCI Express bus’’? Yet all
these expressions have appeared recently in daily newspaper advertisements with the
assumption that people would understand the meaning of the ad.

Despite the jargon, there is obviously no need to understand the inner workings of
most modern computer-based systems to operate them adequately. Indeed, in many
cases the presence of the computer is hidden from us, or embedded, and its operation
invisible to us as users.

Even as experienced users, we can run standard software packages on a personal
computer without understanding exactly how they work; we can program a computer
in a high-level language without understanding the details of how the machine

5

6 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

FIGURE 1.1

A Typical Computer Ad

TECHNOLOGY CHOICES
TO BUILD YOUR BUSINESS

New! Vostre 400 Mini Tower

ON SALE
NOW!

Only Drex delivers this combination of
performance and expandibility in a system
designed exclusively for Small Businesses—
the Vostre 400.
 . Intex Core 2 Duo Processor
 . Genuine Home Basic Operating System
 . 2GB DDR2 SDRAM
 . 160GB SATA Hard Drive
 . 16x DVD+/-RW Drive
 . 256MB PCI Express Graphics Card
 . 1-Yr Limited Warranty, Next Business Day On-Site
 Service, and Hardware Warranty Support
 . 20" Widescreen Flat Panel Display

NEW! Lower-priced upgrades:
Upgrade to 4GB Memory, 250GB Hard Drive,
and 22" Widescreen Flat Panel Display for
only $90!!

executes the individual instructions; we can design and implement Web pages without
understanding how the Web browser gets its pages from a Web server or how the Web
server creates those pages; we can purchase a computer system from a salesperson without
understanding the specifications of the system.

And yet, there is something missing. Perhaps the package doesn’t do exactly what
we want, and we don’t understand the machine well enough to risk fooling around with
the package’s options. Perhaps if we understood the system better we might have written
and configured the program to be faster and more efficient. Perhaps we could create Web
pages that load faster and work better. Perhaps the salesperson did not sell us the optimum
system for our job. Or perhaps it’s nothing more than a sense of excitement that’s missing.
But that’s important, too!

You are reading this book because you are a student studying to become a computer
professional, or maybe you are simply a user wanting a deeper understanding of what the
computer is all about. In either case, you will most likely be interacting with computer
systems for the rest of your life. It’s nice (as well as useful) to know something about the
tools of the trade. More important, understanding the computer system’s operations has
an immediate benefit: it will allow you to use the machine more effectively.

CHAPTER 1 COMPUTERS AND SYSTEMS 7

As a user, you will be aware of the capabilities, strengths, and limitations of the
computer system. You will have a better understanding of the commands that you use.
You will understand what is taking place during the operation of the programs that you
use. You will be able to make informed decisions about your computer equipment and
application programs. You will understand more clearly what an operating system is, and
how to use it effectively and to your advantage. You will know when it is preferable to do
a job manually, and when the computer should be used. You will understand the most
efficient way to ‘‘go online,’’ and what benefits might be gained from a home network. You
will improve your ability to communicate with system analysts, programmers, and other
computer specialists.

As a programmer, it will allow you to write better programs. You will be able to use
the characteristics of the machine to make your programs operate more effectively. For
example, choosing the appropriate data type for a variable can result in significantly faster
performance. Soon you will know why this is so, and how to make the appropriate choices.

Computers can perform integer calculations incorrectly if the integers exceed a certain
size, but they do not necessarily warn the user of the error. You will learn how this can
occur, and what can be done to assure that your programs generate correct results.

You will discover that some computers will process nested loops much more quickly
if the index variables are reversed. A rather surprising idea, perhaps, and you’ll understand
why this is true.

You will understand why programs written in a compiled language like C++ usually
run much faster than those written in interpreted program languages like BASIC or
scripting languages like JavaScript.

As a systems architect or system analyst, you will be responsible for the design and
implementation of systems that meet an organization’s information technology (IT) needs,
recognizing that the differences in the cost and capabilities of the components that you
select may have significant impact on the organization. With the knowledge gained here you
will be in a better position to determine and justify the set of computer system components
and the system architecture that are appropriate for a particular job and to determine the
tradeoffs with other possible system architectures.

You’ll be able to assist management in making intelligent decisions about system
strategy: should the company adopt a large mainframe/virtual machine system approach
for its Web servers, or would a system consisting of a network of off-the-shelf blade servers
provide better performance at lower cost? You’ll be better prepared to analyze the best way
to provide appropriate facilities to meet the needs of your users. In an era of fast-changing
technology, you’ll be more able to differentiate between simple technological obsolescence
that does not affect the organization’s requirements significantly and major advances that
suggest a real need to replace older equipment.

When selecting computers, you would like to purchase the computer that best meets
the needs of the organization’s applications and the users. You must be able to read and
understand the technical specifications in order to compare different alternatives and to
match the system to the users’ needs. This book will teach you what you need to know to
specify and purchase a system intelligently. You’ll know the differences between various
CPU technologies and the advantages and disadvantages of each. You will learn what
peripheral hardware is appropriate for your organization’s files and the trade-offs between
different file system formats, what is required to build an intranet, and what the speed and

8 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

size limitations of a particular system are. You’ll be able to compare the features of Windows
and Linux knowledgeably and decide which ones are important to you. You’ll be able to
apply your basic understanding of computers to new technologies such as virtual machines
as they appear. You’ll learn to understand the jargon used by computer salespeople and
judge the validity of their sales claims.

As a system administrator or manager, your job is to maximize the availability and
efficiency of your systems. You will need to understand the reports generated by your
systems and be able to use the information in those reports to make changes to the systems
that will optimize system performance. You will need to know when additional resources are
required, and be able to specify appropriate choices. You will need to specify and configure
operating system parameters, set up file systems, manage system and user PC upgrades in
a fast-changing environment, reconfigure networks, provide and ensure the robustness of
system security, and perform many other system management tasks. The configuration of
large systems can be very challenging. This text will give you an understanding of operating
system tools that is essential to the effective management of systems.

As a Web services designer, you will be able to make intelligent decisions to optimize
your Web system configurations, page designs, data formatting and scripting language
choices, and operating systems to optimize customer accessibility to your Web services.

In brief, when you complete this book, you will understand what computer hardware
and software are and how programs and data interact with the computer system. You
will understand the computer hardware, software, and communication components that
are required to make up a computer system and what the role of each component in the
system is.

You will have a better understanding of what is happening inside the computer when
you interact with the computer as a user. You will be able to write programs that are
more efficient. You will be able to understand the function of the different components of
the computer system and to specify the computer system you need in a meaningful way.
You will understand the options that you have as a system administrator or Web services
designer.

In an era in which technology changes extremely rapidly, the architecture of the com-
puter system rests on a solid foundation that has changed only slightly and gradually over
the last sixty years. Understanding the foundations of computer system architecture makes
it possible to flow comfortably with technological change and to understand changes in
the context of the improvements that they make and the needs that they meet. In fact,
interviews with former students and with IT executives and other IT professionals clearly
indicate that a deep understanding of the basic concepts presented here is fundamental to
long-term survival and growth in the field of information technology and IT management.

This type of understanding is at the very foundation of being a competent and
successful system analyst, system architect, system administrator, or programmer. It may
not be necessary to understand the workings of an automobile engine in order to drive a
car, but you can bet that a top-notch race car driver knows his or her engine thoroughly
and can use it to win races. Like the professional race car driver, it is our intention to
help you to use your computer engine effectively to succeed in using your computer in a
winning way. The typical end user might not care about how their computer system works,
but you do.

. . . These are the goals of this book. So let’s get started!

CHAPTER 1 COMPUTERS AND SYSTEMS 9

1.1 THE STARTING POINT
Before we begin our detailed study of the architecture of computer systems, let us briefly
review some of the fundamental principles and requirements that guide computer system
design and operation.

In a simple scenario, you use your laptop or desktop personal computer to word process
a document. You probably use a mouse to move around the document and to control the
features of the word processor software application, and you use the keyboard to enter
and modify the document text data. The word processor application program, together
with your document, appears on a screen. Ultimately, you might print the document on a
printer. You store the document on a disk or some other storage device.

The fundamentals of a typical computer system are readily exposed in this simple
example. Your mouse movements and clicks and your keyboard entry represent input to
the system. The computer processes the input and provides output to the screen, and,
perhaps, to a printer. The computer system also provides a storage medium of some sort,
usually a hard disk, to store the text for future access. In simplest terms, your computer
receives input from you, processes it, and outputs results to the screen. Your input takes the
form of commands and data. The commands tell the computer how to process the data.

Now consider a second, slightly more complex example. Your task in this example is
to access a Web page on the Internet. Again, your input to the computer is via mouse and
keyboard. When you type the Web page URL, however, your computer sends a message
to another computer that contains Web server software. That computer, in turn, sends a
Web page file that is interpreted by the browser on your computer and presented on your
screen. You are probably already aware that HyperText Transfer Protocol (HTTP) is used
as a standard for Web message exchanges.

The elements of this example differ only slightly from the first example. Your command
inputs tell a Web browser software application on your computer what processing is to take
place; in this case, your desire to access a Web page. The output from your computer is a
message to a Web server on the remote computer requesting the data that represents the
Web page. Your computer receives the data as input from the network; the Web browser
processes the data and presents the Web page output on the screen. Figure 1.2 illustrates
the layout for this example.

The major differences between this and the first example are the source of the input
data and the fact that network connectivity is required between the two computers. Instead
of the keyboard, the input data to be processed by your Web browser comes from a
communication channel. (Note that the exact nature of the channel is not important for
this discussion.) In both cases, your computer receives data input to process, and control
input that determines how the data is to be processed, performs the processing, and
provides output.

These two examples contain all of the key elements found in any IT system, large or
small.

■ An IT system consists of one or more computer systems; multiple computer
systems are connected together using some type of network interconnectivity. As
a matter of necessity, network interfaces must conform to standard agreements,
known as protocols, for messages to be understood by both computers during a
message exchange between a pair of computers. The network itself can take on a

10 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

FIGURE 1.2

Typical Web Browser Application Use

Web Server
User

URL
HTML

file

Page request
message

Communication
Channel

HTML
file

Page request
message

Web Browser

variety of forms, provided that the interface requirements are met, and are
determined by such characteristics as performance, convenience, and cost.

■ The work performed by an individual computer system within the IT system can
be characterized by input, processing, and output. This characterization is often
represented by the Input-Process-Output (IPO) model shown in Figure 1.3.
Storage is also represented within this model. Alternatively, storage can be
interpreted as output to be saved for use as future input. Storage is also used to
hold the software programs that determine the processing operations to be
performed. The ability to store programs and data on a temporary, short-term,
or long-term basis is fundamental to the system. In Chapter 2, Section 2.2, we
will show that all IT systems can ultimately be characterized by the same basic
IPO model at all levels, from a single computer to a complex aggregation of
computers, although the complexity of large systems may obscure the model and
make it more difficult to determine the actual inputs, outputs, and processing

FIGURE 1.3

A Computer Process

Input Process Output

Storage

FI
G
U
RE

1.
4

A
si

m
pl

ifi
ed

IT
C

om
pu

te
r

S
ys

te
m

La
yo

ut

In
tr

an
et

w
eb

 s
er

ve
r

D
at

ab
as

e
se

rv
er

A
pp

s.
se

rv
er

In
te

rn
et

w
eb

 s
er

ve
r

Fi
re

w
al

l To
 I

nt
er

ne
t

Sa
le

s

O
rd

er
 e

nt
ry

S
up

po
rt

A
cc

ou
nt

s
pa

ya
bl

e

A
cc

ou
nt

in
g

S
er

vi
ce

S
al

es

W
eb

 d
es

ig
n

Fi
na

nc
e

Fi
na

nc
ia

l
pl

an
ni

ng

A
cc

ou
nt

s
re

ce
iv

ab
le

C
re

di
t

M
ar

ke
tin

g R
es

ea
rc

h
&

pl
an

ni
ng

P
ri

nt
er

P
ri

nt
er

P
ri

nt
er

P
ri

nt
er

A
dv

er
ti

si
ng

Or
de

r
Fu

lfi
llm

en
t P

ur
ch

as
in

g

In
ve

nt
or

y
W

ar
eh

ou
si

ng

S
hi

pp
in

g

11

12 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

operations. The IPO model provides an important basic tool for system analysis
and design practices.

■ The components of an individual computer system consist of processing
hardware, input devices, output devices, storage devices, application software,
and operating system software. The task of the operating system software is to
provide overall control of the individual system, including management of input,
output, and file storage functions. The medium of exchange, both with users and
between computers within a larger system, is data. (Note that the messages
between computers in the second example are a form of data.) Figure 1.4 is a
simple illustration of computer systems embedded in a larger IT system.

Figure 1.5 summarizes the basic operations that are performed during computer
processing. These operations, in turn, can be reduced to the primitive operations that
are also familiar to you from your understanding of programming languages. The prim-
itive processing operations common to high-level programming languages are shown in
Figure 1.6.

1.2 COMPONENTS OF THE COMPUTER SYSTEM
As noted in the previous section, there are three components required for the implemen-
tation of a computerized input-process-output model:

1. The computer hardware, which provides the physical mechanisms to input and
output data, to manipulate and process data, and to electronically control the
various input, output, and storage components.

2. The software, both application and system, which provides instructions that tell
the hardware exactly what tasks are to be performed and in what order.

3. The data that is being manipulated and processed. This data may be numeric, it
may be alphanumeric, it may be graphic, or it may take some other form, but in
all cases it must be representable in a form that the computer can manipulate.

In modern systems, input entry, output display, and storage of the data and software
used for processing often take place at a location different from the computer where the

FIGURE 1.5

Basic Computer Operations

Input/output
Basic arithmetic and logical calculations
Data transformation or translation (e.g., program compilation, foreign
language translation, file updating)
Data sorting
Searching for data matches
Data storage and retrieval
Data movement (e.g., movement of text or file data to make room for
insertion of additional data)

■

■

■

■

■

■

■

CHAPTER 1 COMPUTERS AND SYSTEMS 13

FIGURE 1.6

Basic High-Level Language Constructs

Input/output (including file storage and retrieval)
Arithmetic and logical assignment statements
True/false decision branching (IF-THEN-ELSE or IF-GOTO)
Loops and/or unconditional branching (WHILE-DO, REPEAT-UNTIL,
FOR, GOTO)

■

■

■

■

actual processing occurs. In many installations, actual processing is distributed among
computer systems, with particular results passed to the individual systems that require
them. Therefore, we must also consider a fourth component:

4. The communication component, which consists of hardware and software that
transport programs and data between interconnected computer systems.

The hardware and system software components make up the architecture of the
computer system. The communication component connects individual computer systems
together. The data component, and also the application software, while fundamental to
the operation of the computer system, are supplied to the computer system by the user,
rather than being a part of the architecture of the computer system itself. (It is useful to
note, however, that application software and data structure are often considered as part of
the overall system architecture when one considers the architecture from the perspective of
the organization. We explore this issue briefly in Chapter 2. Note, however, that the focus
of this book is primarily on computer system architecture, rather than on organizational
system architecture.)

The Hardware Component

The most visible part of the computer system is obviously the hardware that makes up the
system. Consider the computer system upon which you write and execute your programs.
You use a keyboard and mouse to provide input of your program text and data, as well as
for commands to the computer. A display screen is commonly used to observe output. A
printer is frequently available as an alternative output to the screen. These are all physical
components.

Calculations and other operations in your program are performed by a central
processing unit (CPU) inside the computer. Memory is provided to hold your programs
and data while processing is taking place. Other input and output devices, such as a disk
and SD plug-in cards, are used to provide long-term storage of your program and data files.
Data and programs are transferred between the various input/output devices and memory
for the CPU to use.

The CPU, memory, and all the input, output, and storage devices form the hardware
part of a computer system. The hardware forms the tangible part of the system. It is
physical—you can touch it, which is what the word ‘‘tangible’’ means. A typical hardware

14 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

FIGURE 1.7

A Typical Personal Computer System

Keyboard

Monitor

I/O Interface

Computer

Mouse

Speaker

Printer

Hard disk

CD-R/RW or DVD

USB
interface

Network
interface

CPU Memory

DATA

block diagram for a computer is seen in Figure 1.7. In addition to the input and output
devices shown in this diagram, Figure 1.8 lists some other input and output devices that
are frequently seen as part of computer systems. The diagram in Figure 1.7 actually applies
equally well to large mainframe computers, small personal computers, and even devices
with computers embedded in them, such as PDAs, iPods, GPSs, and cell phones. Large and
small computers differ primarily in speed, capacity, and the selection of peripheral devices
provided. The basic hardware components and design are very similar.

Conceptually, the CPU itself is often viewed as a composition of three primary subunits:

1. The arithmetic/logic unit (ALU) where arithmetic and Boolean logical
calculations are performed.

2. The control unit (CU), which controls the processing of instructions and the
movement of internal CPU data from one part of the CPU to another.

3. The interface unit, which moves program instructions and data between the
CPU and other hardware components.

(In modern CPUs, the actual implementation is usually modified somewhat to achieve
higher performance, although the basic concepts are carefully preserved. More about that
later, in Chapter 8.)

CHAPTER 1 COMPUTERS AND SYSTEMS 15

FIGURE 1.8

Other Common Input/Output Devices

Bar Code Scanners
Optical Character Recognition Scanners
Image Scanners
RFID Readers
Video and Audio Capture Devices
TV Tuners
Video Cameras
SD, SmartCard, etc. Card Readers
Fingerprint and Face Readers
Touch Screens
Graphics Tablets
X-Y Plotters

■

■

■

■

■

■

■

■

■

■

■

■

The interface unit interconnects the CPU with memory
and also with the various I/O (input/output) modules. It
can also be used to connect multiple CPUs together. In
many computer systems, a bus interconnects the CPU,
memory, and all of the I/O components. A bus is simply
a bundle of wires that carry signals and power between
different components. In other systems, the I/O modules
are connected to the CPU through one or more separate
processors known as channels.

The main memory, often known as primary storage,
working storage, or RAM (for random access memory),
holds programs and data for access by the CPU. Primary
storage is made up of a large number of cells, each numbered
and individually addressable. Each cell holds a single binary
number representing part of a data value or part of an
instruction. The smallest addressable size of the cell in most
current computers is 8 bits, known as a byte of memory.
Eight bits of memory can only hold 256 different patterns,
so neighboring cells in memory are nearly always combined

to form groupings with a larger number of bits. In many systems, for example, 4 bytes
of memory combine to form a 32-bit word. Modern computers address memory at least
4 bytes (a ‘‘32-bit’’ computer) or 8 bytes (a ‘‘64-bit’’ computer) at a time to take advantage
of larger instruction and data groupings.

The amount of primary storage determines the maximum number of instructions
and data words that can be loaded into memory from a peripheral device at one time.
For example, a computer with 2 gigabytes (GB), actually 2,147,483,648 bytes1, of memory
would not be able to execute a program that requires 2.7 GB for its instructions and data
unless some means is provided within the computer to load the program in sections as
each section of the program is needed.

The amount of primary storage provided in a typical computer has increased rapidly
as computer technology improves. Whereas 64 kilobytes (KB) of memory was considered
a large amount in 1980, even the least expensive personal computers today usually have
2 gigabytes (GB) of memory or more. Large computers may provide many gigabytes of
primary storage. There are programs on the market that require hundreds of megabytes
(MB) of memory to execute. The inexpensive availability of increased amounts of memory
have allowed the design of very sophisticated programs that would not have been possible
just a few years ago.

The same is true for secondary storage. Even small personal computers provide hard
disks with storage measured in tens or hundreds of gigabytes. The storage of images and
video, in particular, requires tremendous amounts of storage capacity. It is not uncommon
to see arrays of hard disks, even on some personal computers, providing trillions of bytes
(specified as terabytes) of long-term storage.

11 Kilobyte actually equals 1024 bytes. Thus, 1 MB = 1024 × 1024 = 1,048,576 bytes × 2048 = 2,147,483,648
bytes.

16 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

The instructions that form a particular program are stored within the primary storage,
then brought into the central processing unit and executed. Conceptually, instructions are
brought in and executed one at a time, although modern systems overlap the execution
of instructions to some extent. Instructions must be in primary storage in order to be
executed. The control unit interprets each instruction and determines the appropriate
course of action.

Each instruction is designed to perform a simple task. Instructions exist to perform
basic arithmetic, to move data from one place in the computer to another, to perform
I/O, and to accomplish many other tasks. The computer’s power comes from the ability
to execute these simple instructions at extremely high speeds, measured in millions or
billions or trillions of instructions executed per second. As you are already aware, it is
necessary to translate high-level language programs into the language of the machine for
execution of the program to take place. It may require tens or even hundreds of individual
machine instructions to form the machine language equivalent of a single high-level
language statement. Program instructions are normally executed sequentially, unless an
instruction itself tells the computer to change the order of processing. The instruction
set used with a particular CPU is part of the design of the CPU and cannot normally
be executed on a different type of CPU unless the different CPU was designed to be
instruction set compatible. However, as you shall see, most instruction sets perform similar
types of operations. As a result, it is possible to write programs that will emulate the
instruction set from one computer on a computer with a different instruction set, although
a program written for the original machine may execute slowly on the machine with the
emulator.

The data that is manipulated by these instructions is also stored in memory while
being processed. The idea that the program instructions and data are both stored in
memory while being processed is known as the stored program concept. This important
concept is attributed primarily to John von Neumann, a famous computer scientist. It
forms the basis for the computer architecture that is standard to nearly every existing
computer.

The Software Component

In addition to the hardware requirement, your computer system also requires software.
Software consists of the programs that tell the computer what to do. To do useful work,
your system must execute instructions from some program.

There are two major categories of software: system software and application software.
System software helps you to manage your files, to load and execute programs, and to
accept your commands from the mouse and keyboard. The system software programs
that manage the computer are collectively known as an operating system, and differ from
the application programs, such as Microsoft Word, or Firefox, or the programs that you
write, that you normally run to get your work done. Windows and Linux are the best
known examples of an operating system. Others include Unix, Mac OS X, Sun Solaris, and
IBM z/OS.

The operating system is an essential part of the computer system. Like the hardware,
it is made up of many components. A simplified representation of an operating system
is shown in Figure 1.9. The most obvious element is the user interface that allows

CHAPTER 1 COMPUTERS AND SYSTEMS 17

FIGURE 1.9

Simplified Operating System
Block Diagram

User

User
interface

Application
program

Application programming
interface

File
management

system

I/O
drivers

Hardware Network

Network
module

Kernel

you to execute programs, enter commands, and manipulate files. The
user interface accepts input from a keyboard and, in most modern
systems, a mouse, touch screen, or other pointing device. The user
interface also does output presentation on the display. On some
systems, the output display might be simple text, but more likely the
display includes a graphical user interface with a windowing system,
and various gadgets for manipulating the windows.

The operating system’s application program interface (API), acts
as an interface for application programs and utilities to access the
internal services provided by the operating system. These include
file services, I/O services, data communication services, user interface
services, program execution services, and more.2

Many of the internal services are provided by the kernel mod-
ule, which contains the most important operating system processing
functions. The remaining services are provided by other modules
that are controlled by the kernel. The kernel manages memory by
locating and allocating space to programs that need it, schedules time
for each application to execute, provides communication between
programs that are being executed, manages and arranges services
and resources that are provided by other modules, and provides
security.

The file management system allocates and manages secondary
storage space and translates file requests from their name-based form
into specific I/O requests. The actual storage and retrieval of the files is
performed by the I/O drivers that comprise the I/O component. Each
I/O driver controls one or more hardware devices of similar type.

The network module controls interactions between the computer
system and the network(s) to which it is attached.

The operating system software has nearly always been stored on a hard disk, but
on some smaller systems, especially lightweight laptops and embedded systems such as
cell phones and iPods, a solid state disk or SD card may be used instead. On a few
systems the operating system is actually provided as a network service when the system
is turned on. In either case, the bootstrap or IPL (Initial Program Load) program in the
operating system is stored within the computer using a type of memory known as ROM,
or read-only memory. The bootstrap program provides the tools to test the system and to
load the remainder of the operating system from the disk or network. Although the physical
medium where the software is stored can be touched, the software itself is considered
intangible.

Together, the hardware and system software provide a working computer system
environment. Application software, communication support, and user data complete the
picture.

2The same term (API) is also sometimes used to describe the services provided by one application to another.
For example, Amazon and Google are among many companies whose application software provides API tools to
allow users to extend the functionality of the original software.

18 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

The Communication Component

Very few modern computers or computer-based devices (which includes cell phones, iPods,
and automobile computers, to name just a few possibilities) operate independently. Instead,
they are tied to other computers directly, by modem, or through a network connection of
some sort. The computers may be located physically close to each other, or they may be
separated, even by thousands of miles. To work together, computers must have means to
communicate with each other. The communication component requires both hardware
and software to achieve this goal. Additional hardware components physically connect
computers together into multiprocessing systems, or clusters, or networks, or, via telephone,
satellite, or microwave, to computers at other remote locations. A communication channel
provides the connection between computers. The channel may be a wire cable, a fiber-optic
cable, a telephone line, or a wireless technology, such as infrared light, cellular phone, or
radio-based technology such as Wi-Fi or Bluetooth. Special I/O hardware, consisting of a
device such as a modem or network interface card (NIC) within the computer, serves as an
interface between the computer and the communication channel. There may be additional
hardware within the channel itself.

The communication component also requires additional software within the operating
system of each computer to make it possible for each computer to understand what the
other computers that they are connected with are saying. This software establishes the
connections, controls the flow of data, and directs the data to the proper applications
for use.

The Computer System

Our general description of the computer is valid for all general-purpose computer systems,
and also for most devices with computers embedded in them, regardless of brand name or
size. In more general terms, every computer system consists of a CPU, or central processing
unit, where all the processing takes place; memory to hold the programs and data while they
are being processed; and some form of input and output, usually one or more keyboards
and flat-screen display devices plus one or more forms of long-term storage, usually disks,
CDs or DVDs, and USB or SD plug-in memory. Most modern computer systems provide
more than one CPU (or ‘‘core’’) within the computer system. A single CPU can process
only one instruction at a time; the use of multiple CPUs can increase processing speed by
allowing instructions that do not affect each other to be executed in parallel.

The validity of our general description is true regardless of how complex or simple the
computer system may seem.

As a specific example, the large z10 EC IBM mainframe computer shown in Figure 1.10
can provide complex Web services to thousands of users at a time. IBM mainframes can
have dozens of CPUs working together, with up to 1.52 terabytes (TB) of primary storage.
They are capable of executing instructions at a rate of tens of billions of instructions per
second! The powerful z/OS operating system can keep track of hundreds or thousands of
simultaneous users and divides the time among them to satisfy their differing requirements.
Even in its smallest configuration, the z10 EC Model S64 system, which is the largest current
model at this writing, provides at least 16 GB of memory and processes instructions at

CHAPTER 1 COMPUTERS AND SYSTEMS 19

FIGURE 1.10

IBM System z10 EC Mainframe Computer

Courtesy of International Business Machines Corporation.
Unauthorized use not permitted.

the rate of several billion instructions per second. In
addition to the CPU, there are many large I/O devices—
including tape drives and high speed printers—and disks
that store many billions or trillions of characters. The
computer alone weighs over 5000 pounds/2200 kilo-
grams!

In contrast, the laptop PC shown in Figure 1.11 is
designed for personal use. Everything is self-contained
in one package. This system only has 2 GB of primary
RAM storage and operates at a small fraction of the
speed of the z10 EC. A hard drive is one of many
storage options. The entire system, complete with display
screen, built-in webcam, multiple network connections,
and battery, weighs about three pounds (1.4 kilograms, if
you prefer).

Although these two systems seem very different, the
difference is actually one of magnitude, not of concept.
The large system operates much faster, can support much
more memory, and handles more input and output
much faster. It has operating system software that allows
many users to share this larger resource. Nonetheless, the
fundamental system architecture is remarkably similar in
both cases. Even the actual processing performed by the
CPU is similar.

FIGURE 1.11

A Laptop Computer

 2007 Hewlett-Packard Company.

In fact, today’s CPU operates in the same
fundamental way as its CPU counterpart of
fifty-five years ago, even though the con-
struction is very different. Since computers
all operate so similarly, regardless of size or
type, it is not difficult today to transfer data
between these different systems, allowing each
system to do part of the processing for higher
overall efficiency. This concept is known as
distributed computing. The fact that differ-
ent types of computers can work together,
share files, and communicate successfully is
known as open computing. Communication
technology fulfills the requirements that make
open and distributed computing possible.

Computers are sometimes divided into
categories: mainframe computers, minicom-
puters, workstations, and personal computers,
but these categories are less significant than
they once were. The capability of today’s per-
sonal computer far exceeds the capabilities of
a mainframe computer of just a few years ago.

20 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

The Sun Ultra 40 computer is an example of a workstation that is frequently used as though
it were a minicomputer, or even a small mainframe. Rather than attempting to categorize a
particular computer, it is usually more productive to describe its capabilities in comparison
to other systems being discussed or considered.

1.3 THE CONCEPT OF VIRTUALIZATION
The word ‘‘virtual’’ appears frequently throughout the computer literature in many
different contexts. To name a few applications of the word that appear in this text, there
are virtual computers, a Java Virtual Machine, virtual memory, and virtual networks.
Sometimes, a synonymous word, logical, is used instead: in networking we have logical
connections. Virtual storage consists of a relationship between logical memory and physical
memory.

It is not important at this point that you understand any of the specific concepts
mentioned above. (In fact, we realize that you probably don’t.) Since the words virtual and
logical represent a number of important concepts, however, we introduce them here.

In optics, a virtual image is the reflection that you see when you stand in front of a
regular mirror. (See, for example, the cartoon at the beginning of Chapter 18.) You know
that the image isn’t real. For one thing, it’s behind the wall that the mirror is mounted on.
For another, you can’t touch it. In early, time-shared computing, a large central computer
commonly supplied computing services to users at terminals located remotely from the
computer. In a sense, it seemed as though the user had access to a computer that was all her
own. Starting in the early 1970s, IBM offered the VM (virtual machine) operating system
to support this concept.

The American Heritage Dictionary offers two applicable definitions of virtual that
together describe the usage of the word in modern computing:

■ Existing or resulting in essence or effect though not in actual fact, form, or name
■ Created, simulated, or carried on by means of a computer or computer network

Wikipedia defines virtualization as ‘‘a broad term that refers to the abstraction of
computer resources’’.

In essence, virtual and logical are used to refer to something that appears as though it
is something different. Thus, the Java Virtual Machine (JVM) uses software to simulate a
real computer that works well with the Java programming language, even though the actual
computer executes a different set of instructions than the JVM. A logical connection in
networking offers the appearance of a direct communication link for passing data between
two computers, even though the actual connection might involve a complex series of
interconnections involving many computers and other devices and a variety of software to
make it all look simple. The virtualization of a computer allows a single computer to appear
as a multiplicity of computers, each with its own operating system and hardware resources.

1.4 PROTOCOLS AND STANDARDS
Standards and protocols are of great importance in computer systems. Standards are
agreements among interested parties, often manufacturers, to assure that various system
components will work together interchangeably. Standards make it possible to build

CHAPTER 1 COMPUTERS AND SYSTEMS 21

a computer with components from different suppliers, for example, knowing that a
graphics card will plug properly into a connector on a motherboard and that the image
representations will be consistent between the connector, the CPU, memory, and the
display monitor.

Standards apply to every aspect of computing: hardware, software, data, and commu-
nications, the voltage of a power supply, the physical spacing of pins on a connector, the
format of a file, the pulses generated by a mouse. Computer language standards, such as
Java and SQL, allow programs written on one type of computer to execute properly and
consistently on another, and also make it possible for programmers to work together to
create and maintain programs.

Similarly, data format and data presentation standards, such as the GIF and JPEG
image format standard, the Unicode text format standard, and the HTML and XML
Web presentation standards allow different systems to manipulate and display data in a
consistent manner.

Standards can arise in many different ways. Many standards occur naturally: a
proprietary data format (PDF) belonging to a single vendor becomes a de facto standard
due to the popularity of the product. The PDF print description language is an example
of such a standard. The format was designed by Adobe Corporation to provide a way
of communicating high-quality printed output between computers and printers. Other
standards are created because of a perceived need in an area where no standard exists.

Often a committee will form to investigate the requirements and create the standard.
The MPEG-2 and MPEG-4 standards, which establish the means for the transmission and
processing of digital video images, occurred in this way. The committee that designed the
standard, made up primarily of motion picture engineers and video researchers, continues
to develop the standard as improved techniques evolve. The JPEG photographic standard
and MP3 sound standard are other examples of standards that were developed formally.
Similarly, each version of HTTP has been formalized after many years of discussion by
parties interested in Web communication. A nonstandard protocol or data format is limited
in use to its supporters and may or may not become a standard, depending on its general
acceptance. For example, DVD videos encoded in the proprietary DivX format will play on
some DVD players, but not on others.

Protocols define the specific agreed-upon sets of ground rules that make it possible for
a communication to take place. Except for special applications, most computers perform
their operations such that each hardware or software computer unit will understand
what other computer units that they are connected with are saying. Protocols exist
for communications between computers, for the communications between various I/O
devices and a computer, and for communications between many software programs. A
protocol specification defines such communication features as data representation, signaling
characteristics, message format, meanings of messages, identification and authentication,
and error detection. Protocols in a client-server system assure that requests are understood
and fulfilled and that responses are interpreted correctly.

Since the use of a proprietary protocol would be limited to those with permission to
use it, protocols are almost always eventually standardized. Although not always the case,
protocols that are not standardized tend to die out from lack of use. In fact, international
standards are often created to ensure that the protocols are universally compatible. As
an example, HTTP, HyperText Transfer Protocol, guides communication between Web

22 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

servers and Web browsers on the Internet. The movement of data through the Internet is
controlled by a suite of protocols called TCP/IP (Transmission Control Protocol/Internet
Protocol). Storage devices communicate with a computer using a protocol called SATA.
There are thousands of such protocols.

New protocols and other standards are proposed and created and standardized as
the need arises. XML, RSS, and SIP are all examples of protocols developed recently to
meet new demands. Satellite telecasting, near-universal telephone communication, wireless
communications, and the Internet all demonstrate powerful and useful technologies made
possible by protocols and standards. Indeed, the Internet is a measure of the success
to which protocols that govern intercommunication between computer hardware and
software have been standardized throughout the world. Discussions of various protocols
and standards will occur regularly throughout this book.

1.5 OVERVIEW OF THIS BOOK
The focus of this book is upon the architecture and organization of computers, computer
systems, and computer-based IT systems. Technically, there is a slight difference in
definition between the terms ‘‘computer architecture’’ and ‘‘computer organization.’’ In
this book we will usually not attempt to differentiate these terms and will use them
interchangeably.

In this book we will be concerned with all four components of computer systems:
hardware, software, data, and interconnectivity, and with the interactions between each
component. We will also look initially at the larger picture: the organization of computer
systems as components, themselves, to form enterprise IT systems. Chapter 2 of this first
part is concerned with the system as a whole. The remainder of this book is divided into
four additional parts, consisting of discussions of number systems and the representation
of data in the computer, the hardware that makes up the computer, the software that the
computer uses, and the networks that interconnect computers.

Our first step will be to examine the concept of systems in general. We will look
at the characteristics and qualities that define a system. We will then use that basic
understanding to look at the characteristics of computer-based IT systems and show how
the various elements and requirements of computer systems fit into the system concept.
Part 1 illustrates fundamental IT architecture concepts with several examples of IT system
architectures.

In Part 2, we will look at the different forms the input data may take, and we will
consider the translation processes required to convert data into forms that the computer
hardware and software can process. You will see how the various data types that are familiar
to you from programming languages are stored and manipulated inside the computer.
You’ll learn the many different ways in which math calculations can be performed, and the
advantages and disadvantages of each. You will see the difference between a number and
the alphanumeric representation of a number, and understand why that difference can be
critical in whether a program works or not. You will be able to relate the size of a word
processing text to the storage capability of the computer’s disk.

In Part 3, we will take a detailed look at the various components of the hardware and
how they fit together. You will learn how the CPU works, how different I/O devices work,
and even how text and graphics manage to appear, seemingly by magic, on the display

CHAPTER 1 COMPUTERS AND SYSTEMS 23

screen. You will learn what makes some computers faster and more powerful than others,
and what that means. You will learn about different ways of connecting I/O devices to the
computer and see why you get a fast response from some devices, a slow response from
others. You’ll learn the difference between a serial port, a USB port, and a parallel port.
We’ll even explain the difference between PCI and PCI Express buses.

Most important, you will have the opportunity to see what a simple, program-obedient
machine the computer really is. You will learn about the limitations of a computer. We all
tend to think of the computer as a resource of infinite capacity, speed, and perhaps even
intelligence, but of course that’s not true. We will consider how these limitations affect
your work as a user, and as a means of specifying a system that will your meet your needs
and requirements.

Part 4 will provide a careful introduction to the foundational principles of com-
munication and networking. We will consider the basic communication technologies,
networking hardware, software, channels and channel media, protocols, and methodolo-
gies that are required to support communication between computer systems in an IT
system environment.

In the final part, we will consider the software that is used to control the computer’s basic
processing capabilities. Although computer software falls into two categories, operating
system software and application software, we will focus exclusively on the system software.
We will be concerned with control and efficient use of the computer hardware, fair
and effective allocation of computer resources to different programs, security, storage
management and file system structure, system administration, security, user interfaces,
and more.

There are also four supplementary chapters covering topics that are somewhat outside
the scope of the text, but important and interesting nonetheless. The first supplementary
chapter introduces the fundamental logic that makes up a computer. The second supple-
mentary chapter provides case studies that describe the hardware and system software of
important real-world computer systems. These examples include the ×86 family of PC
hardware, the Microsoft Windows family of operating systems, Linux operating systems,
and IBM mainframe hardware and software. The remaining two supplementary chapters,
on CPU instruction addressing modes and on programming tools, have been maintained
and updated from the 3rd edition. The supplementary chapters can be found on the book’s
website, www.wiley.com/college/englander.

Additional related topics of current interest may also be found on the book’s website.
The website also contains numerous links to reference materials, both general to computing
as well as specific to individual topics discussed within the book.

1.6 A BRIEF ARCHITECTURAL HISTORY
OF THE COMPUTER

Although a study of the history of computing is generally outside the scope of this book,
a brief introduction is useful in showing the wide-ranging and quirky path by which IT
has arrived to its present position. It is of particular interest to note that nearly all of the
revolutionary concepts that define computer systems today were developed between thirty
and sixty years ago; today’s advances are more evolutionary and incremental in nature.
This suggests that an understanding of the basic concepts that we are presenting in this

24 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

book should serve you, the reader, well in your ability to understand the importance and
significance of future developments as they occur.

Early Work

It is not possible, nor particularly useful, to identify the date of the ‘‘invention’’ of the
computer. Indeed it has always been the aspiration of humankind to create devices that
would simplify people’s work. Thus, it is not surprising that people were envisioning
mechanical devices to simplify the jobs of routine data processing and calculation even in
ancient times. In fact, there is recent evidence of the existence of an ancient computing
device used for astronomical calculations. Instead, this discussion covers just a few of the
major developments related to computer architecture.

In this context, one could consider the abacus, already in use as early as 500 BC by the
ancient Greeks and Romans, to be an early predecessor of the computer. Certainly, the aba-
cus was capable of performing calculations and storing data. Actually, if one were to build a
binary numbered abacus, its calculations would very closely resemble those of the computer.

The abacus remained in common use until the 1500s and, in fact, is still considered
an effective calculating tool in some cultures today. In the late 1500s, though, European
inventors again began to put their minds to the problem of automatic calculation. Blaise
Pascal, a noted French mathematician of the 1600s, invented a calculating machine in 1642
at the age of nineteen, although he was never able to construct the machine. In 1801, Joseph
Marie Jacquard invented a loom that used punched cards to control the patterns woven
into cloth. The program provided by the punched cards controlled rods that raised and
lowered different threads in the correct sequence to print a particular pattern. This is the
first documented application of the use of some form of storage to hold a program for the
use of a semiautomated, programmable machine.

FIGURE 1.12

Babbage’s Analytical Engine

Courtesy of International Business Machines Corporation. Unauthorized
use not permitted.

Charles Babbage, an English mathemati-
cian who lived in the early 1800s, spent much
of his own personal fortune attempting to
build a mechanical calculating machine that
he called an ‘‘analytical engine.’’ The analyti-
cal engine resembles the modern computer in
many conceptual ways. A photo of an early
version of the analytical engine is shown in
Figure 1.12. Babbage’s machine envisioned the
use of Jacquard’s punched cards for input data
and for the program, provided memory for
internal storage, performed calculations as spec-
ified by the program using a central processing
unit known as a ‘‘mill,’’ and printed output.
Augusta Ada Byron, Countess of Lovelace and
the daughter of the poet Lord Byron, worked
closely with Babbage and developed many of the
fundamental ideas of programming and pro-
gram design, including the concepts of branches
and loops.

CHAPTER 1 COMPUTERS AND SYSTEMS 25

FIGURE 1.13

Block Diagram of Babbage’s Analytical Engine

Instructions

Program

DataThe mill
(ALU)

Operation
cards

Variable
cards

The store
(memory)

Printer and
card punch

Source: From Computer Architecture and Organization, 2nd ed.,
J. Hayes, copyright 1988, by McGraw-Hill Companies, pg. 14
Reprinted by permission.

A block diagram of the Babbage analytical
engine is shown in Figure 1.13. The mill was
capable of selecting one of four arithmetic oper-
ations, and of testing the sign of a number with
a different program branch specified for each
result. The sequence of operation was speci-
fied by instructions on the operation cards. The
operation cards could be advanced or reversed
as a means of implementing a sort of ‘‘goto’’
instruction. The second set of cards, known as
variable cards, were to be used to specify par-
ticular memory locations for the data involved
in the calculations.

Babbage envisioned a memory of one thou-
sand 50-digit decimal numbers. Each digit was
to be stored using a ten-toothed gear known as

a counter wheel. Although the analytical engine was never completed, it should be apparent
to you that it contains all the essential elements of today’s computers. At approximately
the same time, another English mathematician, George Boole, developed the binary theory
of logic that bears his name, Boolean logic. He also recognized the relationship between
binary arithmetic and Boolean logic that makes possible the circuitry that implements the
modern electronic computer.

Computer Hardware

In the late 1930s and early 1940s, several different groups of researchers independently
developed versions of the modern electronic computer. The Mark I, built in 1937 by
Howard H. Aiken and associates at Harvard University with help and funding from IBM,
used thousands of relays; relays are mechanical binary switches controlled by electrical
currents, familiar to you perhaps as the clicking devices that control operations in tape
cassette players and telephone answering machines. Although binary relays were used
for computation, the fundamental design was decimal. Storage consisted of seventy-two
23-digit decimal numbers, stored on counter wheels. An additional counter wheel digit
held the sign, using the digit 0 for plus and 9 for minus. The design appears to be based
directly on Babbage’s original concepts and use of mechanical calculator parts from IBM
accounting machines. A similar electromechanical computer was designed and built by
Conrad Zuse in Germany at about the same time.

The first totally electronic digital computer was apparently devised by John V.
Atanasoff, a physicist at Iowa State College, in 1937. The machine was built in 1939 by
Atanasoff and a graduate student, Clifford Berry, using electronic vacuum tubes as the
switching components. The machine was known as ABC, for Atanasoff-Berry Computer.
It is claimed that Atanasoff worked out the original details as he drove restlessly late one
winter night from his house in Iowa to a bar in neighboring Illinois. The machine was
not intended as a general-purpose computer, but was built to solve physics equations that
Atanasoff was working on at the time. There is some doubt as to whether the machine ever
worked completely.

26 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

ABC was a binary-based machine, just like today’s computers. It consisted of an
arithmetic/logic unit with thirty units that could do addition and subtraction, a rotating
drum memory that held thirty binary numbers of 50 digits each, and punched card input.
Each punched card held five 15-digit decimal numbers. These numbers were converted
to binary as they entered the machine. Despite its limitations, ABC was an important
pathmark that led to later significant advances in computer design. It is only recently that
Atanasoff has begun to receive recognition for his achievement.

Much of the effort that culminated in a successful general-purpose computer archi-
tecture resulted from a wartime need for the solution to difficult mathematical formulas
related to ballistic missile trajectories and other World War II research. The ENIAC (for
Electronic Numerical Integrator and Computer, believe it or not) is generally considered
to be the first all-electronic digital computer. It was designed and built between 1943 and
1946 by John W. Mauchly and J. Presper Eckert at the University of Pennsylvania, using
the concepts that Mauchly had seen in Atanasoff’s machine, although this was not publicly
known at the time.

ENIAC had very limited storage capability, with only twenty locations each capable of
holding a 10-digit decimal number. An additional one hundred numbers could be stored in
read-only memory. Calculations were performed using decimal arithmetic. Ten electronic
vacuum tube binary switches were used for each digit, with only one switch in the ‘‘ON’’
position to represent the value of the digit. Input and output used punched cards. The
system could also provide printed output.

Programs could not be stored internally, but were hard wired with external ‘‘patch
panels’’ and toggle switches. It took many hours to change programs, and, of course,
debugging was a nightmare. Nonetheless, ENIAC was an important machine, some say the
most important machine, especially since it led directly to the development of the UNIVAC
I, the first commercially available computer, in 1951.

ENIAC contained eighteen thousand vacuum tubes, occupied a floor space of more
than fifteen thousand square feet, and weighed more than thirty tons. A photograph of
ENIAC, taken from The New York Times of February 15, 1946, is shown in Figure 1.14.
Even in its day, ENIAC was recognized as an important achievement. ENIAC operated
successfully until 1955, when it was dismantled, but not destroyed. Parts of the computer
can be seen at the Smithsonian Institute, at the U.S. Military Academy at West Point, at the
Moore School of the University of Pennsylvania, and at the University of Michigan.

In 1945, John von Neumann, a consultant on the ENIAC project, proposed a computer
that included a number of significant improvements over the ENIAC design. The most
important of these were

1. A memory that would hold both programs and data, the so-called stored
program concept. This solved the difficult problem of rewiring the control panels
for changing programs on the ENIAC.

2. Binary processing of data. This simplified the design of the computer and
allowed the use of binary memory for both instructions and data. It also
recognized the natural relationship between the ON/OFF nature of switches and
calculation in the binary number system, using Boolean logic.

The CPU was to include ALU, memory, and CU components. The control unit read
instructions from memory and executed them. A method of handling input/output through

CHAPTER 1 COMPUTERS AND SYSTEMS 27

FIGURE 1.14

The ENIAC

Courtesy Sperry Univac, Div. of Sperry Corporation.

the control unit was also established. The instruction set contained instructions representing
all the essential features of a modern computer. In other words, von Neumann’s machine
contained every major feature considered essential to modern computer architecture.
Modern computer architecture is still referred to as von Neumann architecture.

Due to political intrigue and controversy, two different versions of von Neumann’s
architecture were designed and built, EDVAC at the University of Pennsylvania and IAS
at the Princeton University Institute for Advanced Studies (hence the unusual name).
Both machines were completed in 1951–1952. The success of EDVAC and IAS led to
the development of many offspring, mostly with odd names, and to several commercial
computers, including the first IBM computers.

At this point, von Neumann’s architecture was firmly established. It remains the
prevalent standard to this day and provides the foundation for the remainder of the
material in this book. Although there have been significant advances in technology, and
improvements in design that have resulted, today’s designs still reflect the work done prior
to 1951 on ABC, ENIAC, EDVAC, and IAS.

All of these early electronic computers relied on the electronic vacuum tube for their
operation. Vacuum tubes were bulky, made of glass, fragile, short-lived, and required large
amounts of power to operate. Vacuum tubes require an internal electric heater to function,
and the heaters tend to fail quickly, resulting in what was known as a ‘‘burned out’’ tube.
Furthermore, the heat generated by the large number of tubes used in a computer required
a massive forced-air or water-cooling system. A report reprinted by computer historian
James Cortada [CORT87] states that the average error-free operating time for ENIAC
was only 5.6 hours. Such bulky, maintenance-requiring systems could not have attained
the prevalence that computers have in our society. The technological breakthrough that
made possible today’s small, sophisticated computers was the invention of the transistor

28 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

and, subsequently, the integration of transistors and other electronic components with the
development of the integrated circuit.

The invention of the integrated circuit led to smaller, faster, more powerful computers
as well as a new, compact, inexpensive form of memory, RAM. Although many of these
computers played an important role in the evolution of today’s computers, two specific
developments stand out from the rest: (1) development of the first widely accepted
personal computer, by IBM in 1981, and (2) design of the Intel 8008 microprocessor,
predecessor to the x86 CPU family, in 1972. The impact of these two developments is felt to
this day.

Companies have developed better ways of moving data between different parts of
the computer, better ways of handling memory, and methods for increasing the speed of
instruction execution. There is a lot more processing power in today’s personal computer
than there was in the largest mainframe computer in the 1970s. Nonetheless, the basic
architecture of today’s machines is remarkably similar to that developed in the 1940s.

Operating Systems

Given how easy it is to communicate with computers today, it is hard to picture a time
when the user had to do everything by hand, one step at a time. We take it for granted
that we can type commands at a keyboard or move a mouse and launch programs, copy
files, send text to a printer, and perform myriad other computer tasks. We power up and
bootstrap our systems by pressing a switch.

It was not always this way. Early computers had no operating systems. The user,
who was also the programmer, entered a program by setting it, one word at a time, with
switches on the front panel, one switch per bit, or by plugging wires into a patch panel that
resembled a cribbage board. Not a pleasant operation! Needless to say, early computers
were single-user systems. Much of the computer’s time was tied up with this primitive
form of program and data entry. In fact, as late as the mid-1970s, there were still vendors
producing computer systems with no operating system and computer hardware that was
still bootstrapped by entering the bootstrap program one instruction at a time into switches
on the front panel of the computer.

The history of system software, particularly operating systems, is much less well defined
than that of hardware. According to Cortada [CORT87],

Without more sophisticated operating systems, scientists would not have been
able to take full advantage of the power of the transistor and later of the
[microprocessor] chip in building the computers known today. Yet their
contribution to the overall evolution of digital computers has been overlooked
by historians of data processing.

Part of the reason, undoubtedly, is that software evolved gradually, rather than as a series
of important individually identifiable steps. The first operating systems and high-level
programming languages appeared in the early 1950s, particularly associated with IBM and
MIT, but with only a few exceptions, these efforts have not been associated with individual
people or projects.

The need for operating system software came from the increasing computer power
that resulted from the rapid development of new computers in the 1950s. Although the

CHAPTER 1 COMPUTERS AND SYSTEMS 29

hardware architecture has not changed substantially since that time, improved technology
has resulted in a continuum of ever-increasing computer capability that continues to this
day. It has been necessary to continually modify and improve operating system architecture
to take advantage of that power and make it available to the user. Computing has changed
from single-user batch processing (where only a single user, with a single program, could
access the machine at one time), to multiple-user batch job submission (where each
user’s ‘‘job’’ was submitted to the computer by an operator for sequential runs), to
multiuser batch job execution (where the computer executed several jobs simultaneously,
thereby keeping the CPU busy while I/O took place on another user’s job), to multiuser
online computing (where each user had direct access to the computer), to single-user
interactive personal computing, to today’s powerful interactive networked systems, with
multitasking, easy-to-use graphical interfaces, the ability to move data between applications,
and near-instant access to other computers all over the world.

Each of these developments, plus various hardware developments—minicomputers,
PCs, new I/O devices, multimedia—have required additional operating system sophistica-
tion; in each case, designers have responded to the need.

The early computers were used primarily by scientists and engineers to solve technical
problems. The next generation of computers, in the late 1950s, provided a punched card
reader for input and a printer for output. Soon after, magnetic tape systems became
available. The first ‘‘high-level’’ languages, primarily assembly language, then FORTRAN,
made it possible to write programs in a language other than binary, and offline card punch
machines allowed programmers to prepare their programs for entry without tying up the
machine. Algol, COBOL, and Lisp followed shortly after. New technology improved the
reliability of the computers. All these advances combined to make the computer system
practical for business commercial use, especially for large businesses.

Still, these computers were single-user batch systems. Initially, users submitted the
cards that they had prepared to the computer for execution. Later, separate, offline systems
were developed that allowed the cards to be grouped together onto a magnetic tape for
processing together. Programs were then submitted to the computer room in the form
of jobs. A job consisted of one or more program card decks, together with the required
data decks for each program. An output tape could also be used to support printing
offline. As an example, Figure 1.15 shows a job that compiles and executes a FORTRAN
program.

I/O routines were needed to operate the card readers, tape drives, and printers. The
earliest operating systems consisted of just these I/O routines, but gradually operating
systems evolved to perform other services. Computer time was very expensive, hundreds
of dollars per minute, and in growing demand. To increase availability, control of the
computer was placed in the hands of an operator, who fed the punched cards, mounted
tapes, and generally tried to keep the system busy and efficient. The operating system
provided a monitor that fed jobs to the system and supported the operator by notifying
him or her of necessary actions, such as loading a new tape, setting switches on the panel,
removing printout, and so on. As system demand increased, the monitor expanded to
include accounting and simple, priority-based scheduling of jobs.

It is generally accepted that the first operating system was built by General Motors
Research Laboratories in 1953–1954 for their IBM 701 computer. Other early systems
included the FORTRAN Monitor System (FMS), IBSYS, and Share Operating System

30 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

FIGURE 1.15

Job Card Deck Used to Compile and Execute a FORTRAN Program

$JOB ENGLANDER
$FORTRAN

$LOAD
$RUN

$DATA

$END

Program to compile

Data for the run

(SOS).3 Many important breakthroughs in operating system design occurred in the early
1960s. These breakthroughs laid the groundwork for the operating system as we know it
today.

■ In 1963, Burroughs released its Master Control Program (MCP). MCP contained
many of the features of modern systems, including high-level language facilities
and support for multiprocessing (with two identical CPUs). Most important,
MCP supported virtual storage, as well as powerful multitasking capabilities.

■ IBM introduced OS/360 as the operating system for its new System/360 in 1964.
OS/360 provided a powerful language to expedite batch processing, JCL, or Job
Control Language, and a simple form of multiprogramming that made it possible
to load several jobs into memory, so that other jobs could use the CPU when one
job was busy with input/output. By this time, disks were also becoming available,
and the system was capable of reading cards onto disk while the CPU executed its
jobs; thus, when a job completed, the operating system could load another job
from disk into memory, ready to run. This improved the OS scheduling
capability. JCL is still used for batch processing! The enormous success of the
IBM OS/360 and its successors firmly established the basis of an operating system
as a fundamental part of the computer.

■ In 1962, a group at MIT known as Project MAC introduced the concept of
time-sharing with an experimental operating system called CTSS. Project
MAC was one of the seminal centers for the development of computer science.
Shortly thereafter, MIT, Bell Labs, and GE formed a partnership to develop a
major time-sharing system. The system was called MULTICS (Multiplexed

3Share was a consortium of system programmers who used IBM systems and who met to discuss problems
and develop solutions. SOS was produced by a team of consortium members.

CHAPTER 1 COMPUTERS AND SYSTEMS 31

Information and Computing Service), and although MULTICS never fully
realized its dream of becoming a major computer utility, many of the most
important multitasking concepts and algorithms were developed by the
MULTICS team. It was supplied for many years as the operating system for
Honeywell computer systems.

■ When Bell Labs withdrew from the MULTICS project, Ken Thompson, a
MULTICS researcher, turned to the development of a small personal operating
system, which he called Unics, later UNIX, to contrast it from MULTICS. He was
later joined by Dennis Ritchie. The original UNIX development was performed
on a Digital PDP-7 minicomputer and later moved to a PDP-11 minicomputer,
the forerunner of the VAX computer. Originally, the system was written in
assembly language, but Ritchie developed a new high-level language, which he
called C, and the operating system was largely rewritten in C.

UNIX introduced many important OS concepts that are standard today,
including the hierarchical file system, the shell concept, redirection, piping, and
the use of simple commands that can be combined to perform powerful
operations. Thompson and Ritchie included facilities for document production
and formatting, including such novelties as a spell checker and a grammar
checker. They created many inventive algorithms to improve operating system
performance, developed techniques for interprocess communication, and even
provided tools for networked and distributed processing. Many facets of
operating systems that are taken for granted today were originated in UNIX
development.

UNIX earned a reputation for power and flexibility. Because it was written in
C, it was also easy to port it, that is, convert it for use, to other computers. As a
result of these factors, UNIX became an important operating system for
universities and was ultimately adopted, in many versions, by the commercial
marketplace as well. UNIX continues to be of great importance, particularly due
to its flexibility in the area of networks and distributed systems.

■ Another important innovation, some would say the most important
development in making the computer accessible to nontechnical users, was the
development of the concept of graphical user interfaces. Most historians
would credit the invention of the windows and mouse interface to Doug
Englebart. This work was done, amazingly enough, in the 1960s, at Stanford
Research Institute. A practical windowing system was built in the 1970s by Alan
Kay and others at Xerox PARC (Palo Alto Research Center), as part of a
visionary computer concept known as the Dynabook project. The original
intention of Dynabook was to develop a book-sized personal computer with a
high-resolution color display and wireless communication that would provide
computer capabilities (particularly secretarial), games, e-mail, and a reference
library. Although the technology of the time was not sufficient to bring the
Dynabook as an entirety to fruition, the engineers at Xerox in the late 1970s built
a personal computer workstation with a graphical user interface known as Star. It
is believed that a visit to Xerox PARC by Steve Jobs, the founder of Apple, in
1979, inspired the development of the Apple Lisa and, subsequently, the Apple
Macintosh.

32 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

The next important breakthrough in computer use occurred in 1982, with the
introduction of the IBM personal computer. The IBM PC was designed as a stand-alone,
single-user computer for the mass market. The IBM PC was supplied with a reasonably
easy-to-use operating system, PC-DOS, which was developed and also later marketed by
Microsoft as MS-DOS. PC-DOS was actually derived from an earlier personal computer
operating system, CP/M (Control Program for Microcomputers), but is important because
of the tremendous success of the IBM PC and its derivatives. Gradually, PC-DOS and
MS-DOS became the prevalent operating system of the era. With later versions, Microsoft
made many improvements, including hierarchical directory file storage, file redirection,
better memory management, and an improved and expanded command set. Many of these
improvements were derived from UNIX innovations. With the addition of Englebart and
Kay’s user interface innovations, MS-DOS has gradually evolved into Windows XP and
Windows Vista, and most recently, Windows 7.

Even with all these earlier innovations, there continue to be tremendous advances in
operating system software. Today’s systems, such as Windows XP and Vista, Linux, and
Macintosh OS X, combine much more power on one hand with improved user friendliness
and ease of use on the other. There are several reasons for this:

■ There has been a great increase in computer speed and power. More powerful
integrated circuits have allowed the design of faster computers using faster clocks
and larger internal data paths, together with techniques for speeding up
instruction execution. Even small personal computers can support tens of
megabytes of memory and many gigabytes of disk storage. A modern PC may
contain as much as one thousand times the memory and execute instructions one
thousand times as fast as the 1965 IBM OS/360 mainframe computer. Thus, more
capability can be built into the operating system without sacrificing performance.

■ There have been fundamental improvements in computer hardware design.
Many modern computers are designed as an integrated unit, hardware and
operating system software together. Most computer hardware contains special
features intended to support a powerful operating system. Such features as
special graphics, cache memory, vector processing, and virtual storage memory
management hardware are intended primarily for use by the operating system.
These features used to be available only on large mainframes. A protected mode
of hardware instructions, accessible only to the operating system, provides
security and protection to the operating system and allows the operating system
to protect the system’s resources and users.

■ There have been fundamental improvements in operating system software
design. Operating system programs have grown in size and complexity. Increased
memory capacity has made a larger operating system feasible. Increased speed
has made it practical. Gradually, innovative operating system techniques from
large computers have drifted down to the PC level. In addition, program design
itself has helped the process. New languages, well designed for system
programming, and better programming methods such as object-oriented
programming have also contributed to the process.

■ There has been a shift in focus to creating operating systems that better serve the
end user. This has resulted in much current research on human-computer

CHAPTER 1 COMPUTERS AND SYSTEMS 33

interfaces, and on the ways in which humans work and use the computer. New
work paradigms, based on object-oriented programming and communication
technologies, and new interfaces continue to extend the role of the operating
system. There is a new willingness to include features that were not a part of
earlier operating systems and to modularize the operating system in different
ways to improve the delivery of services to the user and to the user’s application
programs.

■ Networking has provided the opportunity for innovative research and
development in distributed computing, including client-server technology,
shared processing, and grid computing. There is a continuing progression of new
operating system techniques, developed in response to the changing
requirements of modern distributed systems.

■ The rapid growth of the Internet, and of e-mail use, the Web, and multimedia in
particular, has created opportunities and the need for better methods of
accessing, retrieving, and sharing information between different systems. The
results have impacted network design, user interface design, distributed
processing technology, and open system standardization with corresponding
effects in operating system design.

Although today’s operating systems are highly complex and sophisticated, with many
capabilities made possible by modern technology, particularly fast processors, large amounts
of memory, and improved graphical I/O design, it is interesting to note that the major
operating system features that we take for granted today are all evolutions based on
innovations of more than thirty years ago.

Communication, Networks, and the Internet

With the development of large, multiterminal computer systems in the 1960s and 1970s, it
was natural that users would want to use the computer to communicate with each other
and to work collaboratively. Data was centrally stored in storage that was available to all,
so it was easily shared among users on the same system. It soon occurred to software
developers that it would be desirable to allow direct discussion among the users, both in
real time and in the form of messages that could be stored on the system and made available
to users when they logged in. Since data was centrally stored, the addition of message
storage was a minor enhancement. ‘‘Talk’’ facilities that allowed users to communicate in
real time were added later. These were similar to today’s text messaging, although some had
split-screen capability that allowed two users to send messages simultaneously. By 1965,
some of these systems supported e-mail, and in 1971, Ray Tomlinson created the standard
username@hostname format that is still in use today. As modems became available for users
to log into their office systems from home and computers became more affordable, software
innovators developed bulletin board systems, newsgroups, and discussion boards, where
users could dial in and leave and retrieve messages. Gradually, it became possible to support
modems on multiple lines, and affordable real-time ‘‘chat rooms’’ became possible.

During the same period, various developments occurred that made it possible to
connect different computers together into simple networks. Some were based on direct
links between modems on each computer. Others were based on early protocols, notably

34 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

X.25, a packet-switching protocol using phone lines. By 1980, these various innovations had
evolved into a number of international networks, as well as three companies, Compuserve,
AOL, and Prodigy, who offered e-mail, Usenet news, chat rooms, and other services to
personal computer users.

All of this activity was, of course, a precursor to the Internet. Much of the modern history
of networking and communication can be traced back to two specific developments: (1) a
research project, ARPANET, whose goal was to connect computers at various universities
and research centers, funded starting in 1969 by the U.S. Defense Department and later
by the National Science Foundation and other groups, and (2) the development of the
Ethernet by Robert Metcalfe, David Boggs, and others, which started at Xerox PARC in
1973. The ARPANET project was responsible for the design of TCP/IP, which was first
tested in 1974, and issued as an international standard in 1981.

Because ARPANET and its successors, CSNet and NSFNet, were funded by the U.S.
government, its use was initially limited to noncommercial activities. Gradually, other
networks, some of them commercial, joined the network in order to exchange e-mails and
other data, while the administrators of NSFNet chose to ‘‘look the other way’’. Ultimately,
the government turned over its Internet resources to private interests in 1995; at that point
the Internet became commercial and expanded rapidly into the form that we know today.

Although it is only marginally related to the major issues addressed in this book,
we would be remiss if we did not complete this discussion with a mention of Sir Tim
Berners-Lee, of CERN, the European organization for nuclear research, who in 1991
developed the concepts that became the World Wide Web and Max Andreessen of the
University of Illinois, who, in 1993, developed Mosaic, the first graphical Web browser.

SUMMARY AND REVIEW

This chapter has presented a brief review of the basics of computing. We began by recalling
the input-process-output model for computing. Next we demonstrated the connection
between that model and the components of the computer system. We noted that implemen-
tation of the model requires four components: hardware, software, communication, and
data. The architecture of the computer system is made up of the hardware and system soft-
ware. In addition, a communication component exists to enable interconnecting systems.
We discussed the general architecture of a computer and noted that the same description
applies to CPUs both modern and ancient, both large and small. We introduced the
important concepts of virtualization, standards and protocols, noting that these ideas will
appear throughout the book. The chapter concluded with a brief history of the computer
from an architectural perspective.

FOR FURTHER READING

There are many good general introductory computer texts available for review if you feel
you need one. New books appear so rapidly that we are reluctant to recommend any
particular one. For alternative coverage of material in this book, you may find recent
editions of various books by Stallings [e.g., STAL05] or Tanenbaum [e.g., TANE07] to be
useful. Various chapters offer additional suggestions that are specifically applicable to the
material in those chapters. The Web is also a rich source of knowledge. Two websites that

CHAPTER 1 COMPUTERS AND SYSTEMS 35

we have found particularly useful are wikipedia.org and howstuffworks.org. In addition to
a wide range of material, these websites also offer numerous references to facilitate further
study. Other useful websites include arstechnica.com and realworldtech.com.

The book by Rochester and Gantz [ROCH83] is a fun way to explore the history of
computing. Historical facts are blended with other facts, anecdotes, humor, and miscellany
about computers. Although the book is (sadly) out of print, it is available in many libraries.
You can learn, in this book, about von Neumann’s party habits, about movies that became
video games, about computer scams and ripoffs, and lots of other interesting stuff. Perhaps
the most thorough discussion of computer history is found in the three-volume dictionary
by Cortada [CORT87]. Although Cortada is not really designed for casual reading, it
provides ready access and solid information on particular topics of interest. Much of the
historical discussion in this chapter was obtained from the Cortada volumes.

If you live or vacation in a city with a computer museum, you can enjoy another
approach to computer history. Computer museums even allow you to play with some of
the older computers. Well-known museums can be found in Washington, D.C., and within
the Science Museum in Boston.

KEY CONCEPTS AND TERMS

application programming
interface (API)

arithmetic/logic unit (ALU)
bus
byte
central processing unit

(CPU)
channel (I/O)
communication channel
control unit (CU)
data deck
deck (program)
distributed computing
embedded computer
graphical user interface

hardware
input
input-process-output

(IPO) model
interface unit
kernel
logical
memory
modem
network interface card

(NIC)
open computing
operating system
output

port (from one computer to
another)

primary storage
protocol
random access memory

(RAM)
read-only memory (ROM)
software
standards
stored program concept
submit (a job)
suite (protocol)
virtual
von Neumann architecture
word

READING REVIEW QUESTIONS
1.1 Any computer system, large or small, can be represented by the four elements of

an IPO model. Draw an IPO model; clearly label each of the four elements in your
drawing.

1.2 One way to view an information technology system is to consider an IT system
as consisting of four major components or building blocks. This book takes this
approach by dividing the remainder of the book into parts, with a part devoted to
each major type of component. What are the four components of an IT system that
you will study in this book?

36 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

1.3 Explain the differences between primary storage and secondary storage. What is
each type used for?

1.4 The book divides the software component of a computer system into two major
categories. Identify each category and give an example of each that you are already
familiar with. Briefly explain the role of each category.

1.5 The book compares a large mainframe computer to a small laptop computer or
PDA, and states that the difference between them is one of magnitude, not of
concept. Explain the meaning of that statement.

1.6 Virtualization is a concept that has taken on major importance in the early
twenty-first century. Explain what is meant by virtualization.

1.7 What is a protocol? What is a standard? Do all protocols have to be standards?
Explain. Are all standards protocols? Explain.

EXERCISES
1.1 Look at the computer ads on the business pages of a large daily newspaper and

make a list of all the terms used that you don’t understand. Save this list and
check it from time to time during the semester. Cross out the items that you now
understand and look up the items that have been covered but which you still don’t
understand.

1.2 For the computer that you normally use, identify which pieces constitute the
hardware and which pieces constitute the system software. Now think about the
file system of your computer. What part of the file system is hardware, what part
software, and what part data?

1.3 Suppose you would like to buy a computer for your own needs. What are the
major considerations and factors that would be important in your decision? What
technical factors would influence your decision? Now try to lay out a specification
for your machine. Consider and justify the features and options that you would
like your machine to have.

1.4 Write a small program in your favorite high-level language. Compile your program.
What is the ratio of high-level language statements to machine language statements?
As a rough estimate, assume that each machine language statement requires
approximately four bytes of file storage. Add various statements one at a time to
your program and note the change in size of the corresponding machine language
program.

1.5 Locate a current reference that lists the important protocols that are members of
the TCP/IP protocol suite. Explain how each protocol contributes to the operation
and use of the Internet.

1.6 Protocols and standards are an important feature of networks. Why is this so?

1.7 Although there is substantial overlap between protocols and standards there are
protocols that are not standards and standards that are not protocols. With the
help of a dictionary, identify the differences between the definition of protocol and
the definition of standard; then, identify a specific example of a standard that is not
a protocol; identify a specific example of a protocol that is not a standard.

CHAPTER 1 COMPUTERS AND SYSTEMS 37

